O'REILLY"

Relational

Database

The New Relational Database Dictionary
by C. J. Date

Copyright © 2016 C. J. Date. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional

use. Online editions are also available tor most ttles (bttp://safaribooksonline.com).

For more information, contact our corporate/institutional sales department:

(800) 998-9938 or corporate@oreilly.com.

Revision History:
2015-12-15 First release.
See bttp://oreilly.com/catalog/errata.cspisbn=9781491951736 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks ot O’Reilly Media, Inc. The New Relational Database

Dictionary and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations

have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for

damages resulting from the use ot the information contained herein.

ISBN: 978-1-491-95173-6
1.SI]

Thy gift, thy tables, are within my brain
Full charactered with lasting memory,
Which shall above that idle rank remain

Beyond all date, even to eternity.
—William Shakespeare: Sonnet 122

————— 4400 ———

“When 1 use a word,” Humpty Dumpty said, in rather a scornful tone, “it

means just what I choose it to mean—neither more nor less.”

—Lewis Carroll: Through the Looking-Glass and What Alice Found There

Y Y X X ——

Myself when young did eagerly frequent
Doctor and Saint, and heard great Argument
About it and about; but evermore

Came out by the same Door as in [went.

—FEdward Fitzgerald: The Rubdiyit of Omar Khayyam

————— 440 ——

Lexicographer A writer of dictionaries, a harmless drudge

—Dr Johnson: A Dictionary of the English Language

S AR XA N

To all keepers of the true relational flame

About the Author

C. J. Date i1s an independent author, lecturer, researcher, and

consultant, specializing in relational database technology. He is best
known for his book An Introduction to Database Systems (8th edition,
Addison-Wesley, 2004), which has sold some 900,000 copies at the
time of writing and is used in several hundred colleges and universities
worldwide. He 1s also the author of many other books on database

management, the following among them:

» From Addison-Wesley: Databases, Types, and the Relational Model:
The Third Manifesto 3rd edition, with Hugh Darwen, 2007)

» From Tratford: Logic and Databases: The Roots of Relational T'heory
(2007) and Database Explorations: Essays on The Third Manifesto
and Related Topics (with Hugh Darwen, 2010)

« From Ventus: Go Faster! The TransRelational™ Approach to
DBMS Implementation (2002, 2011)

= From O’Reilly: Database Design and Relationallheory: Normal
Forms and All That fazz (2012); View Updating and Relational
Theory: Solving the View Update Problem (2013); Relational Theory
for Computer Professionals: What Relational Databases Are Really All
About (2013); and SQL and Relational Theory: How to Write
Accurate SQL Code (3rd edition, 2015)

» From Morgan Kautmann: 7ime and Relational Theory: Temporal
Data in the Relational Model and SQL (with Hugh Darwen and

Nikos A. Lorentzos, 2014)

Mr. Date was inducted into the Computing Industry Hall of Fame

in 2004. He enjoys a reputation that is seconc

| to none for his ability to

explain complex technical subjects in a c
fashion.

ear and understandable

Introduction

This dictionary contains over 1,700 entries dealing with issues, terms,
and concepts involved in, or arising from use of, the relational model
of data. Most of the entries include not only a definition as such—
often several definitions, in fact—but also an illustrative example
(sometimes more than one). What’s more, I've tried to make those
entries as clear, precise, and accurate as I can; they’re based on my own
best understanding of the material, an understanding I've gradually

been honing over some 45 years of involvement in this field.

I’d also like to stress the fact that the dictionary is, as advertised,

relational. To that end, I’'ve deliberately omitted many topics that are

only tangentially connected to relational databases as such (in
particular, topics that have to do with database technology in general,
as opposed to relational databases specifically); for example, I have
little or nothing to say about security, recovery, or concurrency
matters. ’ve also omitted certain SQL topics that—despite the fact
that SQL 1is supposed to be a relational language—aren’t really
relational at all (cursors, outer join, and SQL’s various “retain

duplicates” options are examples here). At the same time, I've

deliberately included a few nonrelational topics in order to make it
clear that, contrary to popular opinion, the topics in question are
indeed nonrelational (index is a case in point here).

[must explain too that this is a dictionary with an attitude. It’s my
very firm belief that the relational model is the right and proper

foundation for database technology and will remain so for as far out as

anyone can see, and many of the definitions in what follows reflect this

belief. As I said in my book SQL and Relational Theory: How to Wirite
Accurate SQL Code (3rd edition, O’Reilly Media Inc., 2015):

In my opinion, the relational model is rock solid, and “right,” and will

endure. A hundred years from now, I fully expect database systems still
to be based on Codd’s relational model. Why? Because the foundations
of that model—namely, set theory and predicate logic—are themselves

rock solid in turn. Elements of predicate logic in particular go back well

over 2000 years, at least as far as Aristotle (384-322 BCE).

Partly as a consequence of this state of affairs, I haven’t hesitated
to mark some term or concept as deprecated 1t 1 believe there are good
reasons to avoid it, even if the term or concept in question is in
widespread use at the time of writing. Materialized view is a case in

point here.

The Suppliers-and-Parts Database

Many of the examples used to illustrate the detinitions are based on the
familiar (not to say hackneyed) suppliers-and-parts database. I
apologize for dragging out this old warhorse yet one more time, but as
I’ve said many times before, I believe that using the same example—or
essentially the same example, at any rate—in a variety of different
publications can be a help, not a hindrance, in learning. Here are the
relvar definitions for that database (and if you don’t know what a relvar
is, then please see the pertinent dictionary entry!):

VAR S5 BASE RELATION
{ SNO SNO ,
SNAME NAME ,

STATUS INTEGER ,
CITY CHAR }
KEY { SNO } ;

VAR P BASE RELATION
{ PNO PNO ,
PNAME NAME ,
COLOR COLOR ,
WEIGHT WEIGHT ,
CITY CHAR)
KEY { PNO } ;

VAR S5P BASE RELATION

{ SNO SNO
PNO PNO
OTY QTY)}

KEY { SNO , PNO }
FOREIGN KEY { SNO } REFERENCES S5
FOREIGN KEY { PNO } REFERENCES P ;

These definitions are expressed in a language called Tutorial D
(see the section “T'echnical Issues” below for further explanation). The

semantics are as follows:

» Relvar S represents suppliers under contract. Each supplier has one
supplier number (SNO), unique to that supplier; one name
(SNAME), not necessarily unique; one status value (STATUYS);
and one location (CI'TY). Attributes SNO, SNAME, STATUS,
and CITY are of types SNO, NAME, INTEGER, and CHAR,

respectively.

= Relvar P represents kinds of parts. Each kind of part has one part
number (PNQO), which is unique; one name (PNAME); one color
(COLOR); one weight (WEIGH'T); and one location where
parts of that kind are stored (CITY). Attributes PNO, PNAME,

COLOR, WEIGHT, and CITY are of types PNO, NAME,
COLOR, WEIGHT, and CHAR, respectively.

» Relvar SP represents shipments (it shows which parts are shipped,
or supplied, by which suppliers). Each shipment has one supplier
number (SNNO), one part number (PNO), and one quantity
(QTY). There’s at most one shipment at any given time for a
oiven supplier and given part, and so the combination of supplier
number and part number is unique to the shipment in question.

Attributes SNO, PNO, and QTY are of types SNO, PNO, and
QTY, respectively.

Fig. 1 shows a set of sample values for these relvars. Examples in
the body of the dictionary assume those specific values, where

applicable.
Q Sp
SMNO SHNAME STATUS CITY SO PR oTY
51 Smith 20 London S = 300
= Jones 10 Paris 51 2 200
54 Blake 30 Paris S1 3 4010
54 Clark 210 London 5 P g 200
59 ACams 30 Athens =l = 100
51 P& 100
- 52 P1 300
52 P 400
ENO EINAME COLOR wWE1GHT CITY = Ve 200
—_—— 54 P2 200
F1 Nut Fed 12.0 London 54 ! 00
P Baolt Green 17 .40 rParis 54 F5 400
= SCcrew Blue 17,0 O=lo -
P4 SCrew Red 14 .0 London
P5 Cam Blue 12.0 PATrils
Po Cog Rega 19,4 London

Fig. 1: The suppliers-and-parts database—sample values

Alphabetization

For alphabetization purposes, I’ve followed these rules:

1.

Blanks precede numerals.

. Numerals precede letters.

Uppercase precedes lowercase.

Punctuation symbols (parentheses, hyphens, underscores, etc.)
are treated as blanks.

Technical Issues

1.

Keywords, variable names, and the like are set in all uppercase
throughout.

. Coding examples are expressed, mostly, in a language called

Tutorial D. Now, I believe those examples are reasonably self-
explanatory, but in any case that language is largely defined in
the dictionary itself in the entries for the various relational
operators (projection, join, and so on). A comprehensive
description of the language can be found if needed in the book

Databases, Types, and the Relational Model: The Third Manifesto
(3rd edition), by C. J. Date and Hugh Darwen (Addison-Wesley,
2007). To elaborate briefly: As its subtitle indicates, that book—
the Manifesto book for short—also introduces and explains 7he

Third Manifesto, which is a precise though somewhat formal
definition of the relational model and a supporting type theory

(including a comprehensive model of type inheritance). In
particular, that book uses the name D as a generic name for any
language that conforms to the principles laid down by The Third
Manifesto. Any number of distinct languages could qualify as a
valid Dj; sadly, however, SQL isn’t one of them, which 1s why
coding examples are expressed for the most part in Tutorial D
and not SQL. (Tuatorial D is, of course, a valid D; in fact, it was
expressly designed to be suitable as a vehicle for illustrating and

teaching the ideas of The Third Manifesto.)

Note: Tutorial D has been revised and extended somewhat
since the Muanifesto book was first published. A description of the
current version can be found in the book Database Explorations:
Essays on The Third Manifesto and Related Topics, by C. J. Date and
Hugh Darwen (Trafford, 2010)—available online at the

Manifesto website www.thethirdmanifesto.com." What’s more, that
Explorations book also includes some proposals for extending the

language still further (e.g., to incorporate explicit foreign key
support), proposals that for the purposes of this dictionary I
assume to have been adopted.

3. Following on from the previous point, I should make it clear that
definitions in this dictionary are intended to conform tully to the
relational model as detined by The Third Manifesto. As a
consequence, you might find certain aspects of those detinitions
a trifle surprising—for example, the assertion in the entry for
deferred checking that such checking is logically flawed. As I've
said, this 1s a dictionary with an attitude.

4. 'The notion of set is ubiquitous in the database world. On paper,

a set i1s typically represented by a comma separated list (or
“commalist”) of items denoting the elements that constitute the
set in question, the whole enclosed in braces, as here: {z,b,]}.
(Blanks appearing immediately before the first item or any
comma, or immediately after the last item or any comma, are
ignored.) Throughout this dictionary, therefore, I use braces to
enclose commalists of items whenever the items in question are
meant to denote the elements of some set, implying among other

things that (a) the order in which the items appear within that
commalist 1s immaterial and (b) if some item appears more than
once, it’s treated as if it appeared just once.

. Tutorial D in particular uses braces to enclose the commalist of
argument expressions in certain #z-adic (prefix) operator
invocations. If the operator in question is idempotent, as in the
case of, e.g., JOIN, then the argument expression commalist
truly does represent a set of arguments, and the remarks of the
previous paragraph apply unconditionally. For other operators,
however, the argument expression commalist represents a bag of
arguments, not a set—in which case the order in which the
argument expressions appear is still immaterial, but repetition
has significance (despite the fact that Tutorial D and this
dictionary do still both use braces in such a context). For
example, the operator XOR (“exclusive OR”)—meaning the
version of that operator defined in this dictionary, at any rate—
isn’t idempotent. As a consequence, the Tutorial D expressions

XOR { TRUE , FALSE }

and

XOR { TRUE , FALSE , TRUE }

aren’t logically equivalent—the first returns TRUE and the
second FALSE.

6. The notion of /ogic 1s, of course, also ubiquitous in the database
world. The relational model in particular i1s firmly based on

logic. More precisely, it’'s based on conventional two-valued

logic (“2VL”), and all references to logic in this dictionary

should be taken as referring to that logic specifically, except very

occasionally where the context demands otherwise. Note: As
these remarks suggest, many of the dictionary entries do have to
do with concepts from logic. Unfortunately, logic texts (and
logicians) vary widely not just in the terminology they use but
also, 1In some cases, 1n the substance of their definitions. The
definitions I give are the ones I find most appropriate myself, but
be warned that they’re sometimes at odds with others you can
find in the literature.

7. A note on the relational operators: Perhaps unfortunately, it has
become standard practice in the database world to use terms such
as projection, join, and so on in two somewhat different senses.
To be specific, they’re used to refer sometimes to those
operators as such and sometimes to the results obtained when
those operators are invoked. I've followed this practice myself in

this dictionary on occasion, and hope it won’t lead to contusion.

8. In fact, it has become standard practice to use terms such as
projection, join, and so on in another sense also. By definition,
these operators apply to relation values specifically. In particular,

of course, they apply to the values that happen to be the current
values of relvars. It thus clearly makes sense to talk about, e.g.,
the join of relvars RI and R2, meaning the relation 7 that results
from taking the join of the current values 71 and 72, respectively,
of those two relvars. In some contexts, however (normalization,
for example, also view processing), it turns out to be convenient
to use expressions like “the join of relvars Rl and R2” in a
slightly different sense. 'T'o be specific, we might say, loosely but
very conveniently, that some relvar, R say, 1s the join of relvars
R1 and R2—meaning, more precisely, that the value of R 1s equal
at all times to the join of the values of RI and R2 at the time in
question. In a sense, therefore, we can talk in terms of joins of
relvars per se, rather than just in terms of joins of current values
of relvars. Analogous remarks apply to all of the relational
operations.

. Regarding projection in particular, please note that Tutorial D
treats projection as having very high precedence, in order to
reduce the number of parentheses that might otherwise be
required in relational expressions. For example, the Tutorial D

expression

sP JOIN S { SNO }

1s defined to be equivalent to

sP JOIN (S { SNO })

and not

(SP JOIN S){ SNO }

10. Talk of projection raises yet another point. Here’s the definition
from the pertinent dictionary entry:

Let relation » have attributes called A1, A2, ..., An (and possibly
others). Then (and only then) the expression +{A1,42,...,An}
denotes the projection of 7 on {41, A2, ..., An}, and it returns the
relation with heading {A41,42,...,An} and body consisting of all
tuples ¢ such that there exists a tuple in 7 that has the same value
for attributes A1, A2, ..., An as t does.

Now, if the result has heading {41,42,...,An}, then by definition
each of those A7’s 1s an <attribute name, type name> pair. But in
the projection expression 7{A41,A2,...,An}, each of those A’s is
just an attribute name. (The syntax works because attribute
names are unique within the pertinent heading and thus imply
the associated type names.) So there’s a kind ot punning going
on here: The very same symbol Ai is being used to denote
slightly different things in different contexts.

Generalizing slightly from the foregoing remarks, please
understand that the term attribute 1s sometimes used in the body
of the dictionary to mean an attribute name rather than an
attribute as such; likewise, the term heading is sometimes used to
mean a set of attribute names rather than a set of attributes as
such. T apologize if you find this state of atfairs confusing, but
once again it’s fairly standard practice.

Note: While I’'m on the subject of headings, I should mention
that in previous versions of this dictionary, headings were
denoted {H}; in the present version, by contrast, they’re denoted
simply H (i.e., the enclosing braces have been dropped).

11.

12.

13.

There’s another convention I need to mention (yet again it’s
fairly standard, but it’s worth spelling out in detail in order to
avoid any possible confusion). It’s illustrated by, e.g., the entry
for joinable, which includes the following sentence:

Relations 71, 72, ..., yn (n > 0) are joinable if and only if for all ;

and 7, relations 77 and 77 are joinable (1 <7< n, 1 <j <n).

Consider the opening part of this sentence—“Relations 71, 72,
..., 7n (m > 0) are joinable.” Here the case n = 0 is to be
understood as meaning, not that there exists a relation, not
mentioned in the commalist, called 70, but rather that the

commalist is empty—i.e., there aren’t in fact any relations at all.

Similarly, consider the closing part of the sentence
—“relations 77 and 77 are joinable (1 <7<z, 1 <j < n).” Here the
case 7 = 0 1s to be understood as meaning that there aren’t any 7’s
or j’s, and hence that there are no relations 77 and 7y.

I’d also like to draw your attention to still another standard
convention, followed throughout this dictionary (and in fact
spelled out explicitly in the pertinent dictionary entries): viz., |
use the generic term update in lowercase to refer to—among

other things—the familiar INSER'T, DELETE, and UPDATE

operators considered collectively. By contrast, when I want to

refer to the UPDATE operator as such, I'll set it in uppercase
(“all caps”) as just shown.

Certain of the definitions and examples make use of a simplified

notation for tuples. For example, consider the SP tuple shown in

Fig. 1 for supplier S1 and part Pl1. A formal Tutorial D

14.

12.

representation of that tuple might look like this:

TUPLE { SNO SNO('Sl') , PNO PNO('Pl') , QTY QTY (300)

}

In the simplified notation
tuple would be represented

<S1l,P1,300>

under discussion, however, the same
thus:

—or, very occasionally, sometimes even thus:

sl Pl 300

T

['his dictionary has almost nothing to say about distributed
databases or related matters. The reason is that the whole point

about a distributed database as far as the relational model is

concerned 1s that 1it’s

supposed to look exactly like a

nondistributed database! In other words, all of the problems of

distributed databases (and problems there most certainly are) are,

at least in an ideal system, problems of physical implementation,

not problems of the logical

Finally, please note that al

model.

| references to SQL in this dictionary

are to the version of that |

anguage defined by the official SQL

standard. As you might be aware, however, that standard has

been through several versions, or editions, over the years. The

version current at the time

of writing—and the version on which

references to SQL in this dictionary are based—is the 2011
version (“SQL:2011”). Here’s the formal reference:

International Organization for Standardization (ISO), Database

Language SQL, Document ISO/IEC 9075:2011.

Publishing History and Structure of This Edition

Thhis is the third version, or edition, of this dictionary; the first (with
the title The Relational Database Dictionary) was published by O’Reilly
Media Inc. in 2006, and the second (with the title The Relational
Database Dictionary, Extended Edition) by Apress in 2008. The following
remarks are taken from the introduction to that second edition:

It’s a fact of life that dictionaries always expand from one

edition to the next. The first edition of this dictionary had just
over 600 entries; this one has over 900—an almost 50 percent
increase. New entries include atomic relvar, attribute
reference, cardinality constraint, class, computational
completeness, connection trap, default, field, Great Divide,
overriding, referential cycle, safe expression, stored procedure,
and many others. I've also taken the opportunity to improve

(and 1n a few cases correct) several of the existing entries;
examples here include derived relation, essentiality, fifth
normal form, foreign key, JD implied by superkeys, NAND,
NOR, ordering, and pointer. No entries have been removed!

One thing I was slightly surprised to discover in working
on this edition was the extent to which database concepts rely,
ultimately, on certain mathematical terms and constructs. As a
result, I decided to include a few somewhat mathematical
entries; examples here include boolean algebra, group, inverse,
nonnegative, partial ordering, and mathematical (as opposed
to relational model) definitions for relation and tuple. The

relevance of such entries might not be immediately apparent,
but I felt 1t was usetul to collect them together in one place in
order to serve as a convenient reference for anyone who
wishes to delve a little more deeply into the precise meaning
and origins of a term like relational algebra (or the term
relation itself, come to that).

The foregoing remarks, suitably amended, apply to this new

edition as well, but with even more force (which is why I decided to
use the slightly revised, but I believe merited, title The New Relational
Database Dictionary). There are now over 1,700 entries in total (an
almost 90% increase over the previous edition); new ones include
axiom of choice, constant reference, disjoint INSERT, domain of
discourse, double negation, exclusive union, individual constant,
logical ditterence, mediator, possibly nondeterministic, primary key
attribute, Query-By-Example, repeating field, scalar operator, and
tuple product. In addition, numerous existing entries have been
expanded and 1mproved (and occasionally corrected), cosmetic
improvements have been made throughout, and many more examples
have been included.

But the foregoing remarks are far from being the whole of the
story. Indeed, the major reason for the increase in size in this edition is
that I decided to include, this time around, both (a) definitions arising

from the underlying theory of types—including those having to do
with the concept of type inheritance in particular—and (b) definitions
arising from the use of interval types in particular. Thus, the dictionary

is now divided into three parts, as follows:

« Part I: Given that relations have attributes and attributes have

types (also called domains), it’s clear that relational theory does
rely on, or assume, a supporting type theory. But nowhere does
it say what that theory has to look like. In other words, relational
theory and type theory are, at least to a first approximation,
completely independent of one another. At the same time, it’s
quite difficult—-certainly less than tully sausfactory, at least—to

define and illustrate relational concepts properly without saying
something about the underlying theory of types. Thus, Part I of
this new dictionary (“T'ypes and Relations”), which effectively
subsumes the previous edition in its entirety, now contains
numerous entries having to do with that type theory specitically.
(Those entries, like the ones having to do with relational theory
as such, are all intended to conform to the prescriptions laid
down by The Third Manifesto. As you’ll soon see, however, the
inclusion of such entries inevitably led to the inclusion of several
further entries dealing with concepts from the world of object
orientation (OQO). But those entries too are intended to conform
to the prescriptions of The Third Manifesto, inasmuch as it makes
sense for them to do so.)

Part 1I: As mentioned earlier in these introductory notes, the
Manifesto book not only defines a theory of types as such, it

builds on that theory to define a model of type inheritance (“the

Manifesto model”).? Part I of the dictionary (“Inheritance”) deals
with terms and concepts arising in connection with that model.

The definitions and examples in that part of the dictionary are

intended to conform to that model specifically. More details can

be found in the Manifesto book.

= Part 111: Finally, Part I1I of the dictionary (“Intervals”) deals with
terms and concepts arising in connection with the theory of
intervals. Interval theory provides the formal underpinnings for
the support of data of any of a variety of interval types; in
particular, it supports the pragmatically important case of
temporal data specifically. The definitions and examples in this
part of the dictionary are intended to conform to the theory
presented in the book Time and Relational Theory: Temporal Data

in the Relational Model and SQL, by C. J. Date, Hugh Darwen,
and Nikos A. Lorentzos (Morgan Kaufmann, 2014), where
further details can be found.

Note: All three parts include a few additional remarks of an

introductory nature that are specific to the part in question.

Acknowledgments

This dictionary was Jonathan Gennick’s brainchild. Indeed, Jonathan
originally intended to write it himself, and I'm very grateful to him for
stepping out of the limelight, as it were, and letting me steal his idea
and run with it as I've done. Jonathan and I have very different writing
styles, and what follows 1s no doubt a long way from what he originally
had 1 mind; but I hope it at least does justice to his overall vision. I'd
also like to thank Apress (publisher of the second edition) for allowing
me to return to O’Reilly Media Inc. (publisher of the first edition) with
this vastly expanded new version, and my friends and colleagues Hugh
Darwen and (for Part Il in particular) Nikos Lorentzos for numerous
helpful comments and much technical assistance over the past several
years. It goes without saying that any remaining errors and infelicities

are my own responsibility.

C.J. Date
Healdsburg, California 2015

Part |

Types and Relations

Several of the entries appearing in this part of the dictionary—
primarily ones having to do with type theory—are expanded or
elaborated on in Part II (“Inheritance”). Such entries are marked

“Without inheritance” in what follows (and the corresponding

expanded entries in Part II are marked “With inheritance”

accordingly).

AR AR

0-adic (Of an operator or predicate) Niladic. Contrast 0-ary.

0-ary (Of a heading, key, tuple, relation, etc.) Ot degree zero. Contrast O-
adic.

0-place (Of a predicate) Niladic.
0-tuple The empty tuple; the tuple of degree zero.
INF First normal form.

2NF Second normal form.

2VL Two-valued logic.

3NF Third normal form.

3VL "Three-valued logic.

4NF Fourth normal form.

4VL Four-valued logic.

SNF Fifth normal form.

6NF Sixth normal form.

Y Y X X ——

A A relationally complete (q.v.), “reduced instruction set” version of

relational algebra with just two primitive operators—REMOVE

(essentially projection on all attributes but one), q.v., and an algebraic
analog of either NOR or NAND, q.v. The name A (note the boldface)
is a doubly recursive acronym: It stands for ALGEBRA, which in turn
stands for A Logical Genesis Explains Basic Relational Algebra. As this
expanded name suggests, the algebra A is designed in such a way as to

emphasize its close relationship to, and solid foundation in, the
discipline of predicate logic, q.v. Further details can be found in the

Manifesto book. Note: 'That book uses solid arrowheads to delimit A

0

Of

berator names, as in (e.g.) *NOR>, in order to distinguish those

perators from operators with the same name in predicate logic or

Tutorial D or both, but those arrowheads are deliberately omitted
here. More to the point, the Manifesto book doesn’t actually define
either NOR or NAND as a primitive A operator; rather, it defines A

as supporting explicit NOT, OR, and AND operators, q.v. But it then

goes on to show that (a) either OR or AND could be removed without
loss, and (b) NO'T" and whichever of OR and AND is retained could be
collapsed into a single operator—NO'T and OR into NOR, or NOT
and AND into NAND—and thus no serious harm is done by thinking
of either NOR or NAND (like REMOVE) as a primitive operator of
A.

abelian group See group (mathematics). Note: Abelian (after the

mathematician Niels Henrik Abel) is pronounced “ah beel’ ian,” with

the stress on the second syllable.

ABS A scalar operator that returns the absolute value of its argument

(which must be of some numeric type).

Examples: 'The expressions ABS(+5) and ABS(-5) both denote ABS
invocations, and they both return the absolute value 5.

absolute complement See complement (set theory).

absorption Let Opl and Op2 be dyadic operators, and assume for
definiteness that they’re expressed in infix style. Then Opl absorbs Op2
if and only if, for all x and y, x OpI (x Op2 y) = .

Examples: In logic, each of OR and AND absorbs the other,

because x OR (x AND y) and x AND (x OR y) both reduce to—i.e., are
logically equivalent to—just x. Analogously, in set theory and

relational algebra, each of union and intersection absorbs the other.
abstract algebra See algebra.

abstract data type Same as abstract type, in any of the senses of this
latter term.

abstract type (Without inberitance) Type. Caveat: The term is

sometimes used to refer to some specific kind of type (especially one
that isn’t built in), but a strong case can be made that all types are or
should be “abstract,” at least in the sense that their physical
representation is hidden from the user.

access path Usually a physical access path, q.v. The term is sometimes
used to refer to a “logical” access path also, but this latter term really
has no precise definition.

actual operand An argument. Contrast formal operand.
ad hoc polymorphism See overloading.
additive identity See Laws of Algebra.

additive inverse See Laws of Algebra.
AD'T Abstract data type.

aggregate (Noun) An aggregate value, q.v.

aggregate operator A read-only operator that derives a single value,
typically but not necessarily a scalar value, from some aggregate value.
The aggregate value in question is either a set or a bag of individual
values (all of the same type in each case), typically but not necessarily
the set or bag of values of some specified attribute of some specitied
relation, and typically but not necessarily a set or bag of scalar values
specitically.

Examples: Let ST1, ST2, ST3, and ST4 be variables of declared
type INTEGER. First of all, then, the following statement assigns to
ST the sum of the status values for suppliers in London:

STl := SUM (S WHERE CITY = 'London' , STATUS) ;

‘The SUM invocation here has two arguments, denoted by a relational
expression (q.v.) and an attribute reference (q.v.), respectively. With
reference to the definition given above, (a) the first of these arguments
is the “specified relation” (in the example, it’s the relation that’s the
current value of the expression S WHERE CI'TY = 'London’), and (b)
the second 1is the “specitied attribute” (in the example, it’s attribute
STATUS). Given the sample values shown in Fig. 1, therefore, the
agoregate value over which the sum is computed is the bag {20,20} of
STATUS values in the relation that’s the current value of the

expression S WHERE CITY = 'London’, and the SUM invocation in
the example thus returns the value 40.

In contrast to the previous example, the following statement
assigns to ST2 the value 20, not 40, because the aggregate value over
which the sum is computed in this case is the singleton set of STATUS
values {20} (since it’s obtained from the projection on {STATUS} of
the relation that’s the current value of the expression S WHERE
CITY = 'London’):

sT2 = SUM ((S WHERE CITY = 'London') { STATUS } ,
STATUS)

Typical aggregate operators include COUNT, SUM, AVG, MAX,
and MIN. For SUM and AVG, the aggregate argument must consist
of values of some numeric type; for MAX and MIN;, it must consist of
values of some ordered type. Note: COUNT is slightly special—it
simply returns the cardinality of its aggregate argument and thus
neither needs nor permits a second argument. Also, Tutorial D in
particular allows the expression denoting the second argument (and
the immediately preceding comma) to be omitted anyway—i.e., even if
the aggregate operator is something other than COUNT—if the first

argument 1s a relation of degree one (i.e., a unary relation), in which
case the second argument expression is understood by default to be an
attribute reference denoting the sole attribute of that unary relation.
The foregoing assignment to S'T2 could thus be abbreviated as follows:

sT2 = SUM ((S WHERE CITY = 'London') { STATUS }) ;

By way of another example, consider the following assignment:

ST3 := SUM (S WHERE CITY = 'London' , 2 * STATUS) ;

This statement assigns to ST3 twice the sum of the status values for
suppliers in London. As this example suggests, the expression denoting
the second argument isn’t necessarily limited to being a simple
attribute reference but in fact can be arbitrarily complex. Nor does it
necessarily have to contain any attribute references, though in practice
it usually will (see open expression).

Note: Despite the foregoing, we can 1n fact assume without loss of
generality that the expression denoting the second argument—when
there is a second argument—is indeed a simple attribute reference
after all, thanks to the availability of the EX'TEND operator, q.v. For
example, the SUM invocation in the assignment above to ST3 is
logically equivalent to the following:

*

|
N

SUM ((EXTEND S WHERE CITY = 'London' : { X
STATUS }) , X)

Simpler (“z-adic”) versions of the aggregate operators are also
available, in which the aggregate value argument (a set or bag of
individual values) is represented by a simple commalist of argument
expressions. For example, the following assignment makes use of the #-

adic version of SUM (note the use of braces rather than parentheses to
enclose the argument expression commalist):

sT4 := SUM { X , Y , Z2 } ;

The result in this case is the sum of the current values of variables X,
Y, and Z, whatever they might happen to be.

Additional aggregate operators supported by Tutorial D include
(a) AND, OR, XOR, and EQUIV, q.v. (for aggregates consisting of
values of type BOOLEAN) and (b) UNION, XUNION, D_UNION,

JOIN, and INTERSECT, q.v. (for aggregates consisting of values of
some relation type).

Note: Let AggOp be an aggregate operator other than COUNT,
and let 2gg be the aggregate value over which some given invocation of
AggOp 1s to be evaluated. It zgg 1s of cardinality one, the result of the
invocation in question is the single value contained in agg. It agg is of
cardinality zero (i.e., if 2gg 1s empty), and if all three of the following

are true—

a. The invocation in question is essentially just shorthand for
repeated invocation of some dyadic operator Op

b. An identity value, q.v., exists for Op

C. The semantics of AggOp don’t demand that the result of an
invocation be a value actually appearing in agg

—then

d. The result of the invocation in question is the applicable identity
value.

For example, suppose the operator SUM 1is invoked on an

agoregate value consisting of a set or bag of values of type INTEGER.
Since (a) SUM is essentially just shorthand for repeated invocation of
the scalar operator “+”, and (b) an identity value—viz., O—exists for
“+” on integers, the result if the aggregate value i1s empty is the integer
0. By contrast, the AVG, MAX, and MIN of an empty set or bag are
undefined, because (a) for AVG, no appropriate identity value exists
and (b) for MAX and MIN, the result is supposed to be a value actually

appearing in the aggregate argument, and no such value exists (but see

further discussion below).

As for COUNT, the foregoing remarks can be interpreted to
apply to that operator as well by noting that any given COUN'T
invocation 1is logically equivalent to, and indeed defined to be
shorthand for, a certain SUM invocation. For example, the COUNT

Invocation

COUNT (S WHERE CITY = 'London')

is logically equivalent to the following SUM invocation:

SUM (S WHERE CITY = 'London' , 1)

To return to MAX and MIN for a moment: Actually there’s an
argument that says the MAX and MIN of an empty aggregate
shouldn’t be undefined after all. For definiteness, consider MAX

specifically. et MAX2 be a dyadic operator that returns the larger of
its two arguments (in other words, MAX2{x1,x2} returns x1 if x1 2 x2
and x2 otherwise). Then (a) any given MAX invocation is essentially
just shorthand for repeated invocation ot MAX2, and (b) MAX2 clearly

has an identity value, viz., “negative infinity” (meaning the minimum

value of the pertinent type); so we might reasonably define MAX to
return that identity value if its aggregate argument is empty. Likewise,
we might reasonably define MIN to return “positive infinity” (the
maximum value of the pertinent type) if its aggregate argument is
empty. Perhaps the best approach in practice would be to provide both
versions of MAX—they are, after all, different operators—and let the
user decide. We might even provide a third version, one that takes an
additional argument x, where x is supplied by the user and 1s the value
to be returned if the aggregate argument 1s empty.

Incidentally, it’s worth noting that (contrary to popular opinion,
perhaps) SQL doesn’t support aggregate operators at all. It does
support the notion of a summary, q.v., but aggregate operator
invocations and summaries aren’t the same thing—there’s a logical
difference (q.v.) between them, as explained under summary:.

aggregate type In general, a nonscalar type for which the user visible
components are usually required all to be of the same type. For
example, array and relation types might be regarded as aggregate
types, but tuple types usually wouldn’t be.

aggregate value Either a set or a bag of individual values (all of the
same type in each case)—typically but not necessarily the set or bag of
values of some specified attribute of some specified relation, and
typically but not necessarily a set or bag of scalar values specitically. See
aggregate operator.

ALGEBRA See A.

algebra 1. Generically, a formal system consisting of (a) a set of
elements and (b) a set of read-only operators that apply to those

elements, such that those elements and operators together satisty
certain laws and properties (almost certainly closure, probably
commutativity and associativity, and so on); also known as an algebraic
structure or an abstract algebra. 'The word algebra itselt derives from

Arabic al-jebr, meaning a resetting (of something broken) or a
combination. Note: The foregoing definition is admittedly not very
precise, but the term just doesn’t seem to have a very precise
definition, not even in mathematics. Note in particular that not all
algebras abide by The Laws of Algebra, q.v.!—for example, matrix
algebra does not. See also boolean algebra. 2. Relational algebra
specifically, q.v. (if the context demands).

algebra of sets See boolean algebra (second definition).

alias Strongly deprecated term sometimes used in SQL contexts to
mean either a tuple calculus range variable, q.v., or the name of such a
variable. 'The term table alias (also deprecated) 1s also sometimes used

with the same meaning. See also correlation name.

ALL Keyword sometimes used as an alternative spelling for the
aggregate operator AND (see aggregate operator).

ALL BUT See projection.

all key Relvar R is “all key” it and only if the entire heading of R is a
key (in which case 1t’s the only key, necessarily). Equivalently, R is all
key i1f and only if no proper subset of the heading is a key. Note that if

R 1s all key, then it certainly has no nonkey attributes (q.v.), but the

converse is false—a relvar can have no nonkey attributes and yet not be

all key:.

ALPHA A proposal, due to Codd, for a concrete relational language
based on tuple calculus; also known as Data Sublanguage ALPHA.
ALPHA as such was never implemented, but its ideas were influential

on the design of several languages that were, including QBE, QUEL,
and (to a much lesser extent) SQL.

alternate key Loosely, a key that 1sn’t a primary key, q.v. More
precisely, let relvar R have keys KI, K2, ..., Kn (and no others), and let
some Ki (1 <7 <n) be chosen as the primary key for, or of, R; then each
Kj (1 <7< m,7#1)1s an alternate key for, or of, R. The term isn’t much

used.

AND 1. A connective, q.v. (see conjunction). 2. An aggregate operator,
q.v. Note: AND as conventionally understood is a logical operator (and

this observation applies to both of the foregoing definitions); however,
the algebra A, q.v., includes an operator it calls AND that—by

definition—is a relational operator (in fact, it’s just natural join).
antecedent See implication.

antijoin T'erm sometimes used as a synonym for semidifference, q.v.
‘The term 1s deprecated, slightly, because the operator 1s really “ant1”
semijoin, q.v., not “anti” join as such.

antisymmetry See partial ordering. Note that antisymmetry and
asymmetry aren’t the same thing—the former is as defined under
partial ordering, the latter just means lack of symmetry:.

ANY Keyword sometimes used as an alternative spelling for the
aggregate operator OR (see aggregate operator).

appearance (Of a value) An occurrence or “instance” of a value in

some context. Observe that there’s a logical difference between a value
as such (see value) and an appearance of that value in some context—tor
example, as the current value of some variable or as an attribute value
within the current value of some tuplevar or relvar. Of course, every
appearance of a value has an implementation that consists of some
internal or physical representation, q.v., of the value in question (and
distinct appearances of the same value might have distinct physical
representations). Thus, there’s also a logical difference between an
appearance of a value, on the one hand, and the physical representation
of that appearance, on the other; there might even be a logical
difference between the physical representations used for distinct
appearances of the same value. All of that being said, however, it’s
usual to abbreviate physical representation of an appearance of a value to
just appearance of a value, or (more often) to just value, so long as there’s
no risk of ambiguity. Note, however, that appearance of a value 1s a

model concept, whereas physical representation of an appearance is an

implementation concept—users certainly might need to know whether
(for example) two variables contain appearances of the same value, but
they don’t need to know whether those two appearances use the same
physical representation.

Example: Let N1 and N2 be variables of declared type INTEGER.
After the following assignments, then, N1 and N2 both contain an
appearance of the integer value 3. The corresponding physical

representations might or might not be the same (for example, N1
might use a base two representation and N2 a base ten representation),

but either way 1t’s of no concern to the user.
Nl := 3 ;

NZ := 3 ;

application relvar See relvar.

argument (Without inheritance) The actual operand that replaces—i.e.,
is substituted for—some parameter of some operator when the
operator in question is invoked. That argument must be of the same
type as the parameter it replaces. Note that there’s a logical difference
between an argument per se and the expression that denotes it (i.e., the
argument expression, (.v.). ['o be specific, the argument per se is
either a value or a variable; if the pertinent parameter is subject to
update, then the argument is—in fact, must be—a variable specitically,

denoted by some variable reference, otherwise it’s a value and can be

denoted by an arbitrarily complex expression (possibly just a variable
reference). Contrast parameter.

Examples: Let operator DOUBLE be detined as follows:

OPERATOR DOUBLE (X INTEGER) RETURNS INTEGER ;
RETURN (2 * X) ;
END OPERATOR ;

X here is a parameter, of declared type INTEGER. Let N be a
variable of declared type INTEGER. Then, e.g., DOUBLE (IN+1) is
an invocation of DOUBLE, and the value of the expression N+1 at the
time of that invocation 1s an argument—in fact, the sole argument—to
that invocation. What’s more, that invocation is itself an expression,
and 1t can appear wherever an integer literal can appear (because,

thanks to the RE'TURNS clause, q.v., operator DOUBLE returns a
value of type INTEGER when it’s invoked).

Now suppose by contrast that DOUBLE is defined to be an

update operator instead of a read-only one, as follows (observe that the

RETURNS clause has been replaced by an UPDATES clause and the

RETURN statement has been replaced by an assignment):

OPERATOR DOUBLE (X INTEGER) UPDATES { X } ;
X =2 * X ;

END OPERATOR ;

Now the parameter X is subject to update, and any argument
corresponding to X must be a variable specifically. What’s more, the
only way DOUBLE can now be invoked is by means of an explicit
CALL statement (or equivalent), as here:

CALL DOUBLE (N) ;

In this example, the variable N—not the value of that variable,

observe—is the argument to the invocation. Moreover, note carefully
that DOUBLE (N) here isn’t an expression, and it can’t appear
“wherever an integer literal can appear.” Note too that, e.g.,

CALL DOUBLE (N + 1) ;

would be a syntax error, because N+1 1sn’t a variable reference.

argument expression An expression denoting an argument (q.v.) to

some operator mvocation.

arity Degree, q.v. The term isn’t much used, except in formal or
academic contexts.

Armstrong’s axioms / Armstrong’s inference rules (For FDs) Let X
Y, and Z denote sets of attributes; also, let XZ denote the set theory
union of X and Z, and similarly for YZ, etc. Then Armstrong’s axioms

(also known as Armstrong’s inference rules) are as follows:

a. It X2 Y, then X — Y (the retlexivity rule).
b. It X — Y, then XZ — YZ (the augmentation rule).

c. t X— Yand Y — Z, then X — Z (the transitivity rule).

These rules are both sound and complete (see soundness;

completeness).

Examples: The FD X — Y is implied by the FD X — YZ. To be
specific, it can be derived from this latter FD using Armstrong’s
axioms, thus: (a) X — YZ (given); (b) YZ — Y by retlexivity; hence (c)
X — Y by transitivity.

By way of a second example, given the FDs X — Yand Z — W) it
can be shown using Armstrong’s axioms that the FD X7 — YW (where
I 1s the set theory difference Z — ¥ between Z and Y, in that order) 1s
implied by those given FDs. (This example, which is due to Darwen,
can be regarded as another inference rule. It has the interesting

property that the augmentation and transitivity rules, as well as several
other rules not discussed here, are all special cases.)

arrow See tfunctional dependency:.

arrow out of An FD of the form A — B i1s sometimes referred to,
informally, as “an arrow out of 4” (or, even more informally, as an
arrow out of the attribute(s) constituting A—especially if 4 is of degree
one).

2

assignment (Without inberitance) An operator, denoted “=" in
Tutorial D, that assigns a value (the source, denoted by an expression)

to a variable (the target, denoted by a variable reference); also, the
operation performed when that operator is invoked. The source and

target must be of the same type, and the operation overall is required
to abide by (a) The Assignment Principle, q.v. (always), as well as (b) The
Golden Rule, q.v. (if applicable). Note: Every update operator
invocation 1s logically equivalent to some assignment—possibly a
multiple assignment, q.v.—in the second of the senses just defined. See
also multiple assignment; relational assignment; tuple assignment.

Assignment Principle After assignment of value v to variable V| the
comparison v = }is required to evaluate to TRUE.

associative addressing Addressing by value instead of position. All
addressing is associative in the relational model, implying among other

things that pointers, q.v., are outlawed (and hence implying turther
that no database relvar can have an attribute of any pointer type).

associativity Let Op be a dyadic operator, and assume for definiteness
that it’s expressed in infix style. Then Op is associative if and only if,
for all x, y, and 2, x Op (y Op 2) = (x Op y) Op z.

Examples: In ordinary arithmetic, addition (“+”) is associative,
because

x+ (yv+ 2z) = (x+vyv) + z

Hl |!?

for all numbers x, y, and z. Likewise, (string concatenation) 1s

associative, because

x I Cy Il z)=0x11y) |l z

for all strings «, y, and 2. In the same kind of way, UNION and JOIN
are associative in relational algebra (by contrast, MINUS is not).
Likewise, OR and AND are associative in logic (by contrast, IMPLIES
1s not). Note: Each of the associative operators mentioned in these

examples except for “| 17 is also commutative, q.v. Another example of
an operator that’s associative but not commutative 1is the
(conventionally unnamed) dyadic connective in logic that simply
returns the value of its first argument. See a/lso left associativity; right

assoclativity.

atomic predicate A simple predicate, q.v.

atomic projection See atomic relvar; FD preservation.
atomic proposition A simple proposition, q.v.

atomic relvar A relvar that can’t be nonloss decomposed into
independent projections. Note: 'The term independent projection 1s being
used here in a specific technical sense (see FD preservation). Note too
that the term atomic relvar 1s deprecated, somewhat, because it’s likely
to be confused with the term #rreducible relvar (see irreducible, second

definition). While it’s true that irreducible relvars are certainly atomic,
the converse 1s false—a relvar can be atomic without being irreducible

(see the example below). The concept is seldom needed, anyway; thus,
it’s probably best just to spell out the meaning as and when necessary.

Example: Suppose relvar SP 1s subject to a constraint to the effect
that part P1 (only) 1s always supplied in a quantity in the range 1-100,
part P2 (only) is always supplied in a quantity in the range 101-200,
and so on; then the FD {QTY} — {PNO} holds in that relvar. ('This
particular constraint isn’t satisfied by the sample values in Fig. 1, of
course. Indeed, the example overall is highly contrived; however, it
suffices for the purpose at hand.) This revised version of SP can be
nonloss decomposed into its projections on {SNO,QTY} and
{QTY,PNO} (and it can’t be nonloss decomposed in any other way,

other than trivially); in fact, the relvar 1sn’t in BCNF, q.v., because
{QTY} isn’t a superkey (it is, however, in 3NF, q.v., and in fact in
EKNEF, q.v., also). Those two projections—i.e., on {SNO,QTY} and
{QTY,PNO}—are atomic. They’re also in BCNF (the keys are
{SNO,QTY} and {QTY}, respectively). However, they aren’t
independent, because the FD {SNO,PNO} — {QTY}, which holds in
SP, isn’t preserved in the decomposition. Relvar SP, revised as above,
is thus atomic (see FD preservation) but not irreducible. Note that it
follows from this example that the objectives of (a) decomposing into
BCNYF projections and (b) decomposing into independent projections,
though both generally desirable, can sometimes be in conflict.

atomic statement (Programming languages) Syntactically, a statement
that contains no other statements nested inside itself (contrast
compound statement); semantically, a statement that’s guaranteed
either to execute in its entirety or to have no effect (other than
returning a status code or equivalent, perhaps). All syntactically atomic
statements are semantically atomic in the relational model, except
possibly if the statement in question represents an invocation of a user
defined operator, q.v. (The converse is false, incidentally; an important
counterexample is provided by multiple assignment, q.v., which is
semantically atomic but not syntactically so.) Note: A statement might

execute 1n its entirety and yet have no lasting effect, owing to the fact
that its execution will necessarily be part of some transaction (q.v) and
that transaction might subsequently be rolled back.

atomic type Somewhat deprecated term for a scalar type, q.v.

atomic value Old fashioned and somewhat deprecated term for a
scalar value, q.v.

attribute Very loosely, a column; more precisely, an <attribute name,
type name> pair, though it’s common to ignore the type name in
informal contexts. (Ignoring the type name in this way is acceptable
when the heading, q.v., of which the attribute in question is a
component is known, because the relational model requires attribute
names within any given heading to be unique, and the attribute names
thus eftectively imply the corresponding type names.)

Examples: In the suppliers-and-parts database, (a) the pair
<SNAME,NAME> is an attribute of relvar S, and (b) the pair
<SNO,SNO> i1s an attribute—in fact, a “common attribute,” q.v.—of

both relvar S and relvar SP. We might also say, more simply but less
formally, just that (a) SNAME 1s an attribute of relvar S and (b) SNO
is an attribute—a “common attribute”—of both relvar S and relvar SP.

Attributes SNAME and SINO are of declared types NAME and SINO,

respectively.

Caveat: 'The foregoing is the relational meaning of the term
attribute. Be aware, however, that some systems, including SQL
systems in particular (also certain OO systems), use the term with a

meaning or meanings rather different from that ascribed to it here.

attribute assignment An assignment in which the target is specified

syntactically by means of an attribute reference, q.v. Attribute
assignments are permitted in Tutorial D only in the context of an

invocation of EXTEND, SUMMARIZE, or UPDATE.
Example: Consider the following UPDATE statement:

UPDATE S WHERE SNO = SNO('S1l'") : { STATUS := 10 , CITY :=
"Rome' } ;

This UPDATE statement contains two attribute assignments, viz.,

STATUS := 10 and CITY := 'Rome’".

attribute constraint A specification, conceptually part of a relvar
constraint, q.v., to the effect that a given attribute ot a given relvar is of
a given type.

Example: Attribute SNAME of relvar S i1s declared to be of type
NAME—i.e., it’s constrained to contain values of type NAME only.

Any operation (necessarily an update operation) that attempts to assign
a value to relvar S in which some tuple contains a value for attribute

SNAME that’s not of type NAME will fail (and moreover will do so,

ideally, at compile time).

attribute extractor An operator for extracting the value of a specified
attribute from a specified tuple (attribute value extractor would be a

more accurate term).

Example: Let t denote the supplier tuple shown in Fig. 1 for
supplier S1. Then the following Tutorial D expression extracts the
status value 20 (an integer) from that tuple:

STATUS FROM €

STATUS here 1s an attribute reference, q.v. Note: SQL wuses dot

qualification, q.v., for such purposes (as well as for other purposes,

beyond the scope of this dictionary). Here’s the SQL analog of the

foregoing Tutorial D example (though here, of course, + must be
understood as denoting an SQL row, not a tuple):

t.STATUS

attribute level redundancy See redundancy.

attribute reference Syntactically, an attribute name (possibly dot
qualified, though never so in Tutorial D). An attribute reference
denotes either an attribute as such or the value of the attribute in
question (frequently, though not invariably, within some specific tuple
in each case), as the context demands. Note in particular that such a
reference certainly denotes an attribute as such if it’s used to specify

the target for some attribute assignment within some EXTEND,
SUMMARIZE, or UPDATE invocation.

Examples: Consider the following UPDATE statement:

UPDATE P WHERE CITY = 'London'
{ WEIGHT := 2 * WEIGHT , CITY := 'Oslo' }

This statement contains two attribute assignments (q.v.) and four
attribute references, viz., CI'TY (twice) and WEIGH'T (also twice).
Imagine the overall UPDATE being executed by processing the tuples
of relvar P one by one in some sequence, and let ¢ be the tuple
currently being processed. Within the overall statement, then, (a) the

first appearance of CITY and the second appearance of WEIGH'T
currently denote the CITY wvalue and the WEIGHT value,
respectively, within #; (b) the first appearance of WEIGH'T and the
second appearance of CITY currently denote the WEIGH'T attribute
as such and the CITY attribute as such, respectively, within z. See the
example under UPDATE for turther explanation.

attribute reference FROM Tutorial D syntax for an attribute

extractor, q.v.
attribute renaming See renaming.

attribute type See attribute. Note: Attributes can be of essentially any

type whatsoever, except that (a) no attribute can be of a type that’s
defined, directly or indirectly, in terms of the type of the tuple or
relation of which it’s a part (see recursively defined type); (b) no
database relvar can have an attribute of any pointer type (see pointer).

attribute value See tuple value.
attribute value extractor See attribute extractor.

audit trail A special file or database, possibly but not necessarily

integrated with the recovery log (q.v.), in which the system keeps track
of database operations performed by users, with a view to assisting in
the detection of actual or attempted security breaches, among other

things. Further details are beyond the scope of this dictionary (but see
the discussion of logged time in Part III).

augmentation See Armstrong’s axioms.

automatic action An action carried out by the DBMS on the user’s
behalf without having been explicitly requested by the user in question.
Compensatory actions, q.v., are an important special case.

automatic definition (Without inberitance) Defining a scalar type T
automatically causes certain associated operators to be defined as well.
‘The operators in question are assignment (“:=”), equality (“="), and at
least one selector, q.v., and at least one set of THE_ operators, q.v.
Note: If operator Op is automatically defined in this way as an operator
associated with type 7, code to implement Op might or might not be
automatically defined as well. In particular, for “:=” and “=” it probably

—

will be, whereas for selectors and THE_ operators it might not. If it

isn’t, however, then whatever agency (either the system or some user)

is responsible for defining type 7 must also define that code—in effect,
as part of the process of defining 7. Note too that operators analogous
to the ones that are the subject of this entry are “automatically
defined” for tuple and relation types as well, even though such types
are generated (see type generator) instead of being explicitly defined.

automatic optimization See optimization.

axiom Something assumed to be true, available for use in deriving
further truths (i.e., theorems, q.v.; see a/so proof). An axiom is a special
case of a theorem. In a database, the tuples in the base relations can be
regarded as axioms, because they represent propositions that are
assumed to be true (see Closed World Assumption). Note: In a formal
system, it’s usually desirable that the axioms all be independent of one
another, meaning none of them is derivable from the rest. For
precisely analogous reasons, it’s usually desirable in a database that
there be no redundancy, q.v. (or at least no uncontrolled redundancy,
q.v.).

Example: 'The tuple <S1,Smith,20,l.ondon> in the base relation
that’s the current value of base relvar S represents the presumably true
proposition Supplier S1 is under contract, is named Smith, has status 20,
and is located in city London. This proposition thus serves as an axiom
with respect to (the current value of) the suppliers-and-parts database.

axiom of choice An axiom of set theory to the effect that, given a set S
of nonempty, pairwise disjoint sets si, s2, ..., sn, there exists a set of »
elements x1, x2, ..., xn such that each x7 is an elementof 51 7 = 1, 2, ...,
n). The axiom implies among other things that, given some set s, it
must be possible to choose an arbitrary element x from that set (see
Z.0). Note: The axiom ot choice is obviously and intuitively valid (and

noncontroversial) so long as the sets s/, 52, ..., sn, and S are all finite,

but can be (and has been) questioned otherwise.

axiom of extension An axiom of set theory, to the effect that two sets
are equal, and hence are in fact the same set, if and only if they contain

the same elements.
——— 4000

bag Very informally, “a set that permits duplicates”; more precisely, a
collection of objects, called elements, in which the same element can
appear any number of times. An example is the collection {x,y,y,y,2,2},
which can alternatively be written as, e.g., {y,y,x,2,y,2}, since bags, like
sets, have no ordering to their elements. The number of times a given
element appears in a given bag is the multiplicity (of that element with
respect to that bag). Note: As the foregoing text indicates, a bag is
usually represented on paper by a commalist of items denoting the
elements that constitute the bag in question, that whole commalist
then being enclosed in braces. Tutorial D in particular uses braces to
enclose the commalist of argument expressions in certain z-adic
operator invocations when the argument expression commalist in
question denotes a bag of arguments (as well as when it denotes a set).
For example, the Tutorial D expression SUM {1,2,2} denotes an
invocation of the z-adic version of the aggregate operator SUM (see
aggregate operator), and it returns 5, not 3.

The set theory operations of inclusion, union, intersection,
difference, exclusive union (also known as symmetric difference), and
product—but not complement—can all be generalized to apply to
bags, as follows. First, inclusion. Let #1 and 42 be bags, and let element

x appear exactly I times in 41 and exactly »2 times in b2 (nl 20, n2 >
0). Then bag 41 includes bag 62 (“61 2 £2”) it and only if n1 > »n2 for all
such elements x; further, 42 is included in 41 (“62 C b1”) if and only if
b1 includes b2, and 41 is equal to b2 (“b1 = b2”) if and only if each of b1
and 42 includes the other. Note: All of the terms associated with set
inclusion (subset, proper subset, and so on) have analogs in connection
with bag inclusion (subbag, proper subbag, and so on).

Now let Op be union, intersection, difference, or exclusive union,

and let & be the bag obtained by applying Op to bags #1 and b2 (in that

order, in the case of difference), where as before element x appears
exactly »1 times in b1 and exactly »2 times in 42 (nl > 0, n2 > 0). Then
element x appears exactly » times in &, where 7 is:

« MAX{nl1,n2} 1t Op 1s union

= MIN{n1,n2} 1t Op is intersection

« MAX{nl1-n2,0} it Op 1s difference

= ABS(n1-n2) 1t Op 1s exclusive union

In no case does & contain any other elements.

Again let elements ¥/ and x2 appear exactly »I times in b1 and
exactly n2 times in b2, respectively (nl > 0, n2 > 0), and let & be the
product of 41 and b2, in that order. Then the ordered pair <xI,x2>
appears exactly #I*n2 times as an element of 4, and & contains no other
elements.

Finally, there are two further operations, union plus and
intersection star (also known by a variety of other names), that have no
counterpart in set theory. Let b be the bag obtained by applying one of

these operations to bags 41 and b2, where once again element x appears
exactly n1 times in 41 and exactly #2 times in b2 (nl > 0, n2 > 0). Then

x appears exactly # times as an element of 4, where 7 is:
= nl+n2 1t Op is union plus
« n1™n2 it Op 1s intersection star

(and & contains no other elements).

Examples: Let bl and b2 be the bags {w,wxx,y} and {x,y,y,y,2,2},
respectively. Then the following expressions yield the indicated results:

= p] UNION bZ

{W, W, X, X, Vs Vi Vs 2y Z}

» bl INTERSECT b2 = (x,7y)
= bl MINUS b2 = {w, W, X}
= b2 MINUS bl = (v, Vv, 2, 2}

= pl] XUNION bZ

|

{wfwfxfyfyfzfz}

= pl TIMES bZ = {(<w, x>, <W, X>,<X, X>,<X, X>,<y, x>,
<W, V>, <W,V>,<X,V>,<X,vV>, <V, V>,
<W,vy>,<w,v>,<X,vy>,<X,v>, <V, V>,
<W,vy>,<Ww,v>,<X,vyv>,<X,v>, <V, V>,
<w, z>,<W, Z2>,<X, Z2>,<X, E’E‘-",{y, Z 2y

<w,z>,<w,z>,<X,2>,<X,z>,<y, Z>}

= p] UNION+ b2 ={W, W, X, X, X,V, Vi Vy Vs Z, Z}

= bl INTERSECT* b2 = (x,x,v,v, V)

A note on SQL: SQL tables in general contain bags (not sets) of
rows, and SQL supports certain bag operations on such tables. To be
specific, 1t supports bag intersection and bag difference, through its
operators INTERSECT ALL and EXCEPT ALL, respectively. It also
supports union plus, through its operator UNION ALL. It doesn’t
support bag exclusive union, intersection star, or (oddly enough) true

bag union. As for bag product, SQL’s regular product operator—
which is supported in a variety of syntactic styles, including, for
example, the CROSS version of SQL’s explicit JOIN operator—in fact
represents an extended or expanded form of bag product, much as
TIMES in Tutorial D represents an extended or expanded form of
the set theory product operator. See cartesian product.

bag inclusion See bag.

bag membership (Of an element) The property of appearing in some
oiven bag; the operation of testing for that property. Like set
membership, q.v., bag membership is usually denoted by the symbol

“e” (sometimes pronounced epszlon, because it’s a variant form of the

lowercase Greek letter epsilon—i.e., “€”—which is the first letter of

e »

the Greek word meaning “is”); thus, the boolean expression x € b—
which 1s logically equivalent to the expression {x} C /—returns TRUE
if and only if element x does in fact appear at least once in bag 4. Note:

The expression x € b 1s logically equivalent to the expression 4 > ux,

C_ 2

where the symbol “s” denotes containment (the inverse of

membership, in effect).
bag operator See bag.

bang bang A relational operator, denoted in Tutorial D by the

symbol “!!”. See image relation for further explanation.

base relation The value of a given base relvar at a given time. Contrast
derived relation.

Examples: The relations that are the values of relvars S, P, and SP
at some given time.

base relvar A relvar not defined in terms of others (contrast derived
relvar.). Note: It’s a popular misconception that base relvars are
physically stored, in the sense that they correspond directly to

physically stored files and their tuples and attributes correspond
directly to records and fields within those files (see direct image). But
the relational model deliberately has nothing to say about physical
storage; in particular, it categorically doesn’t say that base relvars, as
such, are physically stored—not in the foregoing sense and not in any
other sense, either. The only requirement is that there must be some
defined mapping between whatever i1s physically stored and what’s
perceived by the user (i.e., base relvars or derived relvars or a mixture

of both).
Examples: Relvars S, P, and SP in the suppliers-and-parts database.

base table SQL analog of either a base relation or a base relvar, as the
context demands. See a/so table.

base type (Without inheritance) Synonym for primitive type, q.v.

BCNEF Boyce/Codd normal form.

behavior Term sometimes used (especially in OO contexts) to refer to
the operators that apply to values and variables of some given type.

bi-implication Logical equivalence.

BI-IMPLIES Same as EQUIV.

bijection / bijective mapping Terms used interchangeably to mean a
mapping, or function, from set s/ to set s2 such that each element of 52

1s the 1image of exactly one element of sI; equivalently, a mapping that
is both an injection and a surjection (in other words, a one to one
correspondence, in the strict sense of that term, from s/ to s2). Also

-

known as a bijective or “one to one onto” mapping. Note that if a

oiven mapping is bijective, then it has an inverse mapping that’s
bijective as well.

Examples: The mapping from integers x to their successors x+1 is a
bijection from the set of all integers to itself. So 1s the inverse mapping
from integers x to their predecessors x-1.

binary (Of a heading, key, tuple, relation, etc.) Ot degree two. Contrast
dyadic.

binding 1. In logic, quantifying a free variable, thereby converting it
into to a bound variable. 2. (Without inheritance) In the programming
context, the term linding has a variety of meanings—a name might be
bound to a variable at compile time; a variable might be bound to a
storage location at run time; a variable might be bound to a type at
assignment time; and so on.

body A set of tuples all of the same type—especially, the set of tuples
appearing in a given relation, or in a given relvar at a given time. Every

subset of a body is itself a body.

Examples: 'The set of tuples appearing in relvar S at some given
time; any subset of that set (including the empty subset in particular).

BOOLEAN A scalar data type (the only one required by the relational
model, and thus, in a relational DBMS, necessarily a system defined

type), containing just two values: two truth values, to be precise,

denoted in Tutorial D by the literals TRUE and FALSE, respectively.

boolean algebra 1. (Simple case) The truth values TRUE and FALSE,

together with the logical operators NOT, OR, and AND, q.v. 2.
(General case) Let s be a set; let “<” be a partial ordering, q.v., on s; and

let a monadic operator “=” (“complement”) and distinct dyadic
operators “+” (“addition”) and “*” (“multiplication”) be defined on s,
such that (a) “=” satisfies the closure and involution laws; (b) “+” and
“*” satisfy the closure, commutative, associative, distributive,
idempotence, and absorption laws (meaning, in the case of the
distributive law in particular, that each of “+” and **” distributes over
the other); and (c) “=7, “+”, and **” together satisty De Morgan’s Laws,
q.v. Let s also contain two elements 0 and 1 such that (a) 0 1s the
identity for “+”; (b) 1 is the identity for “*”

- and (c) for all elements x in

5, 0 <x < 1. Then the combination of s and the operators “<”, “=7 “+”

and “*” 1s a boolean algebra. Note: Although they’re usually referred to

in this context as addition and multiplication, respectively, it must be
K »

clearly understood that “+” and “*” aren’t necessarily the operators
referred to by those names in conventional arithmetic.

Example (second definition only): Let s be an arbitrary set; let P(s) be

kM T

the power set (q.v.) of 5; and let “<”, “=”) “+” and “*” denote set
inclusion, set complement, set union, and set intersection, respectively

(“set complement” here meaning the relative complement, q.v., with
respect to the set s). Then the combination of that power set P(s)—not
the set s, observe—and the operators “<”, “=”, “+” and “*” as just
defined is a boolean algebra, in which the empty set and the set s itself
serve as the required additive identity and multiplicative identity,
respectively. In other words, the familiar algebra of sets is in fact a

boolean algebra.
boolean expression A logical expression, q.v.

boolean operator A logical operator, q.v. (especially one of the

connectives, q.v.).

boolean value A value of type BOOLEAN, q.v.; in other words, a
truth value (either TRUE or FALSE, in 2VL).

bound variable Within a predicate, q.v., a variable—more precisely,
an occurrence of a reference to some variable—that either (a) appears
within the scope of a quantifier that explicitly specifies that variable or
(b) is that explicit specitication itself. (T'he term variable is used here in
the sense of logic, not in the programming language sense.) Contrast

free variable.

Examples: Let the symbols ¥ and y denote integers. Then the
following expressions are both predicates, and x appears as a bound
variable, twice, in each of them:

EXISTS x (x > 3)

EXISTS x (x > 3) AND y < 7

The first of these predicates is in fact a proposition, q.v., and its
meaning 1s: /here exists an integer x such that x is greater than three (a

proposition that evaluates to TRUE, as it happens). By contrast, the
second predicate is not a proposition, because it involves a free variable

(namely, y) as well as two bound ones; thus, it has no truth value. Note:

Instantiating that second predicate—i.e., substituting an argument
value for the free variable, or parameter, y—will convert it into a
proposition, and that proposition will have a truth value, of course. For
example, substituting the argument value 2 will yield the true
proposition EXISTS x (x > 3) AND 2 < 7. However (to repeat), the

predicate as such has no truth value.

Turning to a database example, the following i1s a query (“Get
suppliers who supply at least one part”) on the suppliers-and-parts
database, expressed in tuple calculus, q.v.:

{ S } WHERE EXISTS SP (SP.SNO = S.SNO)

The boolean expression following the keyword WHERE here is a
predicate, and the references to SP in that predicate are bound (by
contrast, the reference to S is free). Note, however, that in this
particular example the symbols S and SP denote not only variables in
the sense of logic but also variables in the conventional programming
language sense—but that’s because we’ve indulged in a certain sleight
of hand, as it were. Here’s an expanded version of the same example
that should help clarify matters:

SX RANGES OVER { S }
SPX RANGES OVER { SP } ;

{ SX } WHERE EXISTS SPX (SPX.SNO = SX.SNO)

Here SX and SPX have been explicitly declared as range variables

(q.v.)—in other words, they’re variables in the sense of logic—ranging

over (the current values of) relvars S and SP, respectively. Now it’s the
references to SPX that are bound and the reference to SX that’s free
(in the predicate following the keyword WHERE in both cases). In
ettect, what happened in the tirst version of the example was that we
were appealing to a syntax rule that allowed a relvar name to be used to
denote an implicitly defined range variable that ranges over (the
current value of) the relvar with the same name. Note that SQL
includes a syntax rule of exactly this kind.

Note: Let R be a range variable reference that occurs prior to the
WHERE clause—i.e., in the proto tuple, q.v.—within some tuple
calculus expression. If R also occurs in the predicate in that WHERE
clause (which it usually but not invariably will), then it must be free,
not bound, in that predicate. Observe that these remarks apply in
particular to the references to the range variable SX in the example
shown above.

Boyce/Codd normal form “The” normal form with respect to
functional dependencies (FDs). Relvar R is in Boyce/Codd normal
form (BCNF) if and only if every FD that holds in R is implied by

some superkey of R—equivalently, if and only if for every nontrivial
FD X — Y that holds in R, X 1s a superkey for R. Every BCNF relvar 1s

in 3NF (and in fact in EKNF, q.v.). Note: Although being in BCNF
clearly doesn’t preclude being in the next higher normal form (4NF) as

well, the term BCNF is often used loosely to refer to a relvar that’s in
BCNF and not in 4NF.

Example: With the normal forms it’s often more instructive to

show a counterexample rather than an example per se. Suppose,
therefore, that relvar SP has an additional attribute SNAME,
representing the name of the applicable supplier; suppose also that

supplier names are necessarily unique (i.e., no two suppliers ever have
the same name at the same time). Then this revised version of SP has
two keys, {SNO,PNO} and {SNAME ,PNO}, and every subset of the
heading—{QTY} in particular—is (of course) functionally dependent
on both of them. However, the FDs {SNO} — [SNAME} and
{SNAME} — {SNO} also hold in this relvar; these FDs are certainly

not trivial, nor are they “arrows out of superkeys,” and so this version
of relvar SP isn’t in BCNF (though it 1s in 3NF, and in fact in EKNF,

q.v.).

brute force join A rather unsophisticated join implementation
technique, involving an exhaustive comparison of each tuple from the
first operand relation with each tuple from the second. Sometimes
known as a nested loops join; this terminology 1s deprecated, however,
since all join implementation techniques involve nested loops of some

kind.
built in System defined. Contrast user defined.

business rule A declaration of some kind, usually expressed in natural
language, that’s supposed to capture some aspect of what the data in
the database means or how it’s constrained. There’s no consensus on
any more precise definition of the term, but most if not all writers
would probably agree (a) that relvar predicates, q.v., are an important
special case and (b) that business rules other than relvar predicates map

formally to integrity constraints, q.v.

Examples: Consider the suppliers-and-parts database. The
predicate for suppliers is Supplier SNO is under contract, is named

SNAME, has status STATUS, and is located in city CITY (see the example
under relvar predicate for further discussion). Along with this

predicate, there’ll be rules that specify what type of information is
denoted by the associated parameters—for example, a rule to the effect
that the STATUS parameter (“status values”) denotes values expressed
in integers. Then there’ll be rules that constrain the values those
parameters can take for a given supplier considered in isolation—for
example, a rule that says status values must lie in the range 1 to 100,
inclusive. There’ll also be rules that constrain the set of suppliers taken
as a whole, independent of other “entities” that might also be
represented in the database—for example, a rule to the effect that

supplier numbers must be unique. Finally, there’ll be rules that
constrain suppliers considered in combination with certain other
entities—for example, a rule to the effect that every shipment must
involve some known supplier, or a rule to the etfect that no supplier
with status less than 20 can supply part P6.

Note: The set of all business rules that apply in some given context
—tfor example, the set of rules that apply to a given database, or to a
glven enterprise in its entirety—is sometimes referred to as the
conceptual schema (for the context in question). However, this latter
term resembles the term business rule itselt in that it too has no
universally agreed precise definition.

———— 4444

calculus 1. Generically, a system of formal computation (the Latin
word calculus means a pebble, perhaps used in counting or some other
form of reckoning). 2. Relational calculus specifically, q.v. (it the
context demands).

candidate key Loosely, a unique identifier. More precisely, let K be a

subset of the heading of relvar R; then K is a candidate key (key for
short) for, or of, R if and only if (a) no possible value for R contains

two distinct tuples with the same wvalue for K (the uniqueness

property), while (b) the same can’t be said for any proper subset of K
(the irreducibility property). Note that every relvar, base or derived,
does have at least one key. Note too that, by definition, keys are sets of
attributes (and key values are therefore tuples); however, if the set of
attributes constituting some key K contains just one attribute A4, then
it’s common, though strictly incorrect, to speak informally of that
attribute A per se as being that key. Note further that if K is a key for
relvar R, then the functional dependency K — X necessarily holds in R
for all subsets X of the heading of R. Note finally that the qualifier

candidate 1s a hangover from earlier times when more of a distinction

was made between primary and alternate keys and a generic term was
required to cover both. It could be dropped without serious loss, and

usually 1s. See also alternate key; key constraint; primary key. Contrast
subkey; superkey.

Examples: In the suppliers-and-parts database, {SNO}, {PNOY}, and
{SNO,PNO} are the sole keys for relvars S, P, and SP, respectively.
Note that {SNAME} 1sn’t a key for S, because SNAME values aren’t
necessarily unique (even though the sample values shown in Fig. 1 do
happen to be unique). Note too that, e.g., {SNO,CI'TY} isn’t a key for
S either, because although its values are necessarily unique, 1t isn’t
irreducible—we could remove the CITY attribute, and what would be
left would still have the uniqueness property. (Irreducibility 1s desirable
because, among other things, the system would be enforcing the wrong
integrity constraint without it. In the case at hand, for example, it
wouldn’t be enforcing the constraint that supplier numbers are

“olobally” unique, but merely the weaker constraint that they’re
unique within each city.)

canonical form Given a set sI, together with a stated notion of
equivalence among the elements of that set, subset s2 of s is a set of
canonical forms for s/ if and only if every element x1 of sI is equivalent
to just one element x2 of 52 under that notion of equivalence (and that
element x2 is said to be the canonical form for the element x1). The
set 52 taken as a whole is also sometimes said to be the canonical form
for the set s as such. Various “interesting” properties that apply to s/
also apply to s2; thus, we can study just the “small” set 52, not the
“large” set sI, in order to prove a variety of interesting theorems or
results. Note: It would be usual to require also that every element of s2
be equivalent (under the stated notion of equivalence) to at least one
element of sI. Note also that the set of all elements x1 of sI that are
equivalent to some specific element x2 of s2 in fact constitutes an

equivalence class, q.v.

Example: et s1 be the set of nonnegative integers {0,1,2,...} and let
two such integers be equivalent if and only if they leave the same
remainder on division by five. Then we can define s2 to be the set
{0,1,2,3,4}. (Note 1n particular that s2 here is finite while s/ 1s infinite.)
As for an “interesting” theorem that applies in this example, let x1, y1,
and zI be any three elements of 51, and let their canonical forms in 52
be x2, y2, and 22, respectively; then the product yI * z1 1s equivalent to
xI 1f and only 1f the product y2 * 22 1s equivalent to x2.

cardinality The number of elements in a bag or (especially) set; hence,
of a relation, the number of tuples in the body of that relation. Also
used (a) of a relvar, to mean the cardinality of the relation that’s the

value of that relvar at a given time; (b) of an attribute of a relation or

relvar, to mean the cardinality of the set of distinct values of that
attribute appearing in the body of that relation or relvar (at a given
time, in the case of a relvar). Of course, the cardinality ot attribute A of
relation 7 i1s the same as the cardinality of the projection {4} of that

relation on that attribute; definition (b) here is thus strictly redundant.

Examples: In Fig. 1, (a) the cardinality of the relation that’s the
current value of relvar SP 1s twelve (and the cardinality of relvar SP 1s
thus currently twelve also); (b) the cardinality of attribute SNO in that
relation is four (and the cardinality of that attribute in relvar SP is thus
currently four also).

Note: Since types are sets (see type), types in particular have a
cardinality: viz., the number of distinct values of the type in question.
For example, the cardinality of type SNO 1is a count of all possible

supplier numbers.

cardinality constraint 1. A constraint on the cardinality of a given
relvar (a special case of a relvar constraint, q.v.); for example, a
constraint to the effect that there can never be more than ten suppliers
at any one time. 2. Let 7 be a relationship (q.v.) from set sI to set s2,
and let x1 and x2 be typical elements of sI and 52, respectively. In E/R
modeling (q.v.) and similar design schemes, then, the following are all
cardinality constraints that can be specified for each of sI and s2: 1,
0..1, 0.2, 1..m. (Other notations are also used.) For definiteness,
assume the constraint in question has been specified for set s2; then
that constraint indicates how many x2’s correspond to any given x/ in
relationship 7. 'The various specitications have the following meanings:
| means there must be exactly one such x2; 0..1 means there must be at
most one such x2; (.. means there can be any number of such x2’s,

from zero to some unspecified upper bound 7z; and 1..72 means there
can be any number of such x2’s, from one to some unspecified upper
bound . Note: "T'he terms optional participation and mandatory
participation are sometimes used to refer to the case where the lower
bound is 0 and the case where it’s 1, respectively; however, there’s no

universal agreement on what these terms mean, and they’re probably
best avoided.

cartesian join Same as cartesian product.

cartesian product 1. (Dyadic case) Let relations »I and 72 have no
attribute names in common. Then (and only then) the expression 71
TIMES 72 denotes the cartesian product of I and 72, and it returns
the relation with heading the set theory union of the headings of I
and 72 and body the set of all tuples ¢ such that 7 is the set theory union
of a tuple from »I and a tuple from 2. 2. (N-adic case) Let relations 71,
72, ...,7n (n 2 0) be such that no two of them have any attribute names
in common. Then (and only then) the expression TIMES {r1,72,...,rn}
denotes the cartesian product of »I, 2, ..., 7n, and it returns the
relation with heading the set theory union of the headings of »1, 72, ...,
rn and body the set of all tuples 7 such that # 1s the set theory union of a
tuple from 71, a tuple from 72, ..., and a tuple from 7n. Note: The
relational cartesian product operator differs in several respects from
the mathematical or set theory operator of the same name, q.v., and is
sometimes explicitly said to be an expanded, or extended, cartesian

product for that reason. See a/so tuple product.

Example: The expression S{SNO} TIMES P{PNO} denotes the
cartesian product of the projections on {SNO} and {PNO},

respectively, of the relations that are the current values of relvars S and

P, respectively. 'That product is a relation of type RELATION {SNO

SNO, PNO PNOY}. Moreover, if the current values of relvars S and P
are s and p, respectively, the body of that relation contains (a) all

possible tuples of the form <sno,pno> such that the tuple <sno> appears
in s and the tuple <pno> appears in p and (b) no other tuples. (Given the
values in Fig. 1, the result has cardinality 30.)

Note: 'TIMES 1s actually a special case of JOIN, as the following
alternative definitions make explicit: 1. (Dyadic case) 1f and only 1f »1
and 72 have no attribute names in common, the expression 71 TIMES
72 denotes the cartesian product of »I and 72, and it reduces to 71
JOIN 72. In the foregoing example, therefore, the expression S{SNO}
TIMES P{PNO} i1s logically equivalent to the expression S{SNO}
JOIN P{PNO}. 2. (N-adic case) 1f and only if no two ot »1, 72, ..., rn (n
> (0) have any attribute names in common, the expression TIMES
{rl2,...,rn} denotes the cartesian product of I, 72, ..., mm, and it
reduces to JOIN {rI72,...,/n}. In the foregoing dyadic example,
therefore, the expression S{SNO} TIMES P{PNO}—which could
alternatively have been written TIMES ({S{SNO}, P{PNO}}—is
logically equivalent to the expression JOIN {§{SINO}, P{PNO}}.

cartesian product (bag theory) See bag.

cartesian product (set theory) The cartesian product of two sets sI
and 52, s x s2, 1s the set of all ordered pairs of elements <x1,x2> such
that the first element of the pair, x1, is an element of s/ and the second
element of the pair, x2, is an element of s2. Note: This definition can
obviously be extended to apply to any number of sets (and is so, tacitly,
in the mathematical definition of a relation, q.v.).

cascading Performing an update of the same general kind as, but in

addition to, some explicitly requested update; hence, a compensatory
action, q.v. (but an important special case). Cascading a delete
operation 1s a typical example. Note, however, that such cascading
should occur, if and when logically required, regardless of the concrete
syntactic form in which the original update request is expressed. For
example, an update expressed as a pure relational assignment (using
“.=”), q.v., should nevertheless cause a cascade delete to be performed
—assuming a pertinent cascade DELETE rule has been defined in the
first place, of course.

CAS’T Shorthand for CAST AS 7T for some 7.
CAST_AS_T Let T be a scalar type. Then CAST_AS_T 1s an operator

for mapping values of some scalar type 7" to corresponding values ot
type T (1.e., for performing what’s loosely called type conversion—
specifically, conversion from type 7" to type T). Note: Type T here is
said to be the target type. See also coercion.

Example: Let variables N and C be of declared types INTEGER
and CHAR, respectively. Then CAST_AS_CHAR (N) casts or
“converts” the current value of N to character string form, and
CAST _AS INTEGER (C) casts or “converts” the current value of C
to integer form. (In the latter case, of course, the operation will fail if
the current value in question isn’t a character string representation of
some Integer.)

Observe that the argument to CAST_AS_T will typically be
allowed to be of different types on different invocations; in other
words, the operator will typically be overloaded (see overloading).
Observe also that the number ot CAS'T operators actually needed in
any given situation can sometimes be reduced by good type design. For

example, consider temperatures. A good design will involve a single
TEMPERATURE type, together with operators (namely, selectors
and THE_ operators) to expose a Celsius representation, a Fahrenheit
representation, and so on (see types vs. units). A bad design would

involve different types—CELSIUS, FAHRENHEIT, and so on—
together with a set of CAS'T operators to convert between them.

catalog Within a given database, a set of database relvars that describe
the database in question. Note: The catalog includes descriptions of the

catalog relvars themselves; in other words, the catalog is selt-
describing. It’s sometimes said to contain metadata, q.v. Catalog
relvars are usually updated not by explicit assignment operations but
rather by more user friendly data definition operators, q.v. (which are
nevertheless essentially just shorthand for certain relational
assignments—often multiple assignments, q.v.).

catalog relvar A special kind of database relvar, q.v. (probably but not
necessarily a base relvar), forming part of the database catalog. See
catalog.

Cautious Design Principle See Principle of Cautious Design.

cell T'erm sometimes used to refer to a row and column intersection in
a table; not to be confused with the content of the cell in question.
Note: 'The concept of “cells” makes sense in connection with the idea
that a table 1s a picture of a relation (see table) but not in connection
with the idea that a table 7s such a relation, which 1s why this definition

1s framed in terms of tables and not relations. It’s true that we might
think, very informally, of some relation in terms of “tuple and attribute
intersections,” but we can’t sensibly regard those intersections as being

somehow distinct from their content. (T'ake the content away from a
relation and nothing remains; as Lewis Carroll might have remarked, a

relation without its content would be like a grin without a cat.)
chase See chase algorithm.

chase algorithm An algorithm for determining whether some
specified dependency (q.v.) d 1s a logical consequence of some specified
set of dependencies D. In outline (and speaking somewhat loosely), the
algorithm works by defining a relation 7 containing sample tuples
conforming to the premises (q.v.) of 4 and repeatedly applying the

dependencies of D to 7 (possibly adding further tuples to » in the
process). Then:

= If 4 is an equality generating dependency (q.v.) and this process
causes the pertinent equality condition to be satisfied, then 4 is a
logical consequence of D.

« If 4 1s a tuple generating dependency (q.v.) and this process
causes the pertinent conclusion tuple(s) to be generated, then d is

a logical consequence of D.

» Otherwise 7 1s a relation that satisties the dependencies of D but
doesn’t satisty d; » thus serves as a counterexample to show that d
isn’t a logical consequence of D.

Examples: Here are a couple of very simple examples of the chase
in action. First, consider a heading consisting of attributes A, B, and C

(and no others). Let AB denote the set {4,B}, and similarly for AC. Let
7 and F be the JD X {4B,AC} and the FD A — B, respectively. Here

then 1s a proof that 7 1s a logical consequence of I

1. 7 says “If <al,bl,cl> and <al,b2,c2> appear, then <al,bl,c2> and

<al,b2,cl> appear.” So these two tuples—call them ¢/ and 2,
respectively—represent the premises of 7:

t1 : al bl cl
t” : al b2z cZ

. If these tuples appear, then we have 41 = b2, thanks to F, and so
the tuples

t3 : al bl <2
t4 : al b2z cl

“also” appear (*also” in quotation marks because 73 and t4 are
basically just 1 and #2 in disguise, as it were, shown in reverse
order). But “if 1 and 2 appear, then #3 and t4 appear” is exactly
what 7 says; 1.e., t3 and 4 are the conclusion of 7, given t1 and ¢2
as premises. So 7 is a logical consequence of I'. Note: This result
is basically Heath’s Theorem, q.v.

By way of a second example, again let 7 and F be the
{AB,AC} and the FD A — B, respectively. Here then is a proo:

JD {3
- that F

doesn’t follow from 7 (i.e., the converse of Heath’s Theorem is :

false):

1. F says “If <al,bl,cl> and <al,bl,c2> appear, then bl = b2.” So

these two tuples ¢1 and 72 represent the premises of F:

t1 : al bl ¢l
tZ : al b2 cZ

2. It these tuples appear, then the following tuples also
thanks to 7:

ts al bl c<cZ

appear,

t 4 : al b2 cl

Observe now that tuples #1-#4 taken together satisty 7 without
requiring that 41 = b2. They thus constitute (the body of) a
relation that satisfies 7 but not F. So I isn’t a logical consequence

ot 7.

child / child table Deprecated, because inappropriate, terms

sometimes used in SQL contexts to mean (the SQL analog of) a
referencing relvar, q.v.

class 1. (Mathematics) 'T'erm usually used just as a synonym for set.
However, it’s also used to refer to certain collections—specifically,
collections in which the elements are themselves sets—that aren’t
regarded as legitimate sets for some reason. For example, the (infinite)
collection C of all sets is regarded by some mathematicians as a class
but not a set. (One argument against regarding C as a set is that the
cardinality of the power set, q.v., of any given set s is always greater
than that of s; thus, if 5 1s in fact C, the collection of all sets, then
there’s apparently at least one collection of sets that’s of greater
cardinality than s, which 1s a contradiction.) See a/so equivalence class.
2. (O0O) Term wused to mean, variously, (a) a type; (b) the
implementation or physical representation of some type; (c) a type and
one of its implementations in combination; (d) the set of all values of
some type currently in use; and possibly (e) other things besides.

closed expression See open expression.

closed WFF A WEFF, q.v., that denotes a proposition. Contrast open
WFF.

Closed World Assumption Loosely, the assumption that everything
stated or implied by the database is true and everything else is false.
More precisely, let relvar R have predicate P (see relvar predicate).
‘Then The Closed World Assumption (CWA) says (a) 1f tuple ¢ appears in
R at time 7, then the instantiation of P corresponding to ¢ 1s assumed
to be true at time 7; conversely, (b) if tuple 7 has the same heading as R
but doesn’t appear in R at time 7, then the instantiation of P
corresponding to ¢ 1s assumed to be false at time 7. Loosely speaking,
in other words, tuple ¢ appears in relvar R at a given time 1f and only it
it satisfies the predicate for R at that time. What’s more, it follows that
if proposition p 1s represented by a tuple that appears in some relation
that can be derived from the relations that are the values of the
database relvars at time 7—see derived relation—then proposition p is

true at time 7 (which is why the phrase “or implied” appears in the
original loose characterization). Contrast Open World Assumption.
Caveat: Be aware that very different interpretations of the term “closed
world” can be found in the general computing literature—even in the
database literature specifically, sometimes.

Examples: The tuple <S1,P1,300> currently appears in relvar SP;
we can therefore assume that it’s currently the case that supplier S1
supplies part P1 in quantity 300. By contrast, the tuple <S5,P6,250>
doesn’t currently appear in that relvar, though presumably it could; we

can therefore assume that it’s currently not the case that supplier S5

supplies part P6 in quantity 250.

As for an example of implied information, the tuple <S3> currently
appears in the projection of relvar SP on {SNO}; we can therefore
assume that it’s currently the case that supplier S3 supplies some part
in some quantity. By contrast, the tuple <§5> doesn’t currently appear

in that projection, though presumably it could; we can therefore
assume that it’s currently not the case that supplier S5 supplies any
part In any quantity.

Note: It tollows from the CWA that if relvars RI and R2 have
predicates PI and P2, respectively, and it PI and P2 are both currently
satisfied by the same tuple 7, then r must currently appear in both RI
and R2. As a rule of thumb, it’s a good idea to design the database in
such a way as to ensure that PI and P2 are specitic enough to preclude

such a situation (so long as RI and RZ are both base relvars, at any
rate).

closure 1. (Of algebras in general) See Laws of Algebra. 2. (Of relational
algebra in particular) The property that the result of every relational
algebra operation is a relation. 3. (Of a set of FDs) The set of all FDs
implied by the given set (see Armstrong’s axioms). 4. (Of a set of

attributes) Loosely, the set of all attributes functionally dependent on
those in the given set. More precisely, let [be a heading, let /' be a set
of FDs with respect to H, and let Z be a subset ot H. Then the closure

/7" of Z under F is the maximal subset C of H such that the FD Z — C
is implied by the FDs in F' (again see Armstrong’s axioms).

closure, transitive See transitive closure.
CNF Conjunctive normal form.

Codd, E. F. The inventor of the relational model. See especially the
papers (a) “Derivability, Redundancy, and Consistency of Relations
Stored in Large Data Banks,” IBM Research Report RJ599, August
19th, 1969 (Codd’s very first publication on the relational model); (b)
“A Relational Model of Data for Large Shared Data Banks,” CACM

13, No. 6, June 1970 (a revised and extended version of that first
paper); and (c) “Relational Completeness of Data Base Sublanguages,”

in Randall Rustin (ed.), Data Base Systems: Courant Computer Science
Symposia 6, Prentice-Hall (1972). The last of these papers in particular
contains formal definitions of a relational calculus (actually a tuple
calculus, g.v.) and a relational algebra (“Codd’s relational algebra,”
q.v.), as well as of Codd’s reduction algorithm, q.v. Note: The 1969
paper was republished in ACM SIGMOD Record 38, No. 1 (March
2009); the 1970 paper was republished in Milestones of Research—
Selected Papers 1958-1982 (CACM 25th Anniversary Issue), CACM 26,
No. 1 (January 1983) and elsewhere. 'The 1972 paper has never been
republished in hard copy form but can be found on the web.

Codd’s reduction algorithm An algorithm for reducing a given tuple
calculus expression to a logically equivalent expression of Codd’s

relational algebra. Among other things, the algorithm relies on the fact
that—speaking a trifle loosely (see division)—the operators project and
divide are algebraic counterparts to the existential quantifier and the

universal quantifier, respectively, of tuple calculus. Note that the
existence of such an algorithm suffices to show that Codd’s algebra is
relationally complete, q.v.

Codd’s relational algebra Codd’s tirst few papers all included
definitions of certain operators of an algebraic nature, but the exact set
of operations defined varied somewhat from one paper to the next, and
so did the precise definitions. As a consequence, it’s a little difficult to
say exactly what’s meant by the term “Codd’s relational algebra.” But
most writers would agree that 1t does at least include the following
operators in some shape or form: cartesian product, union,
intersection, difference, restriction, projection, natural and theta join,

and division. Note that extension and aggregate operators are
definitely not included. Nor are relational comparisons of any kind.

codomain See function.

coercion Implicit type conversion (usually best avoided). Note that
implicit conversion will be possible only when explicit conversion is

also possible (unless the types involved are both system defined; a

badly designed language might conceivably support coercion, but not
explicit conversion, between such types). Note: Elsewhere—e.g., in its
definitions of the wvarious relational operations—this dictionary

assumes for simplicity that coercions aren’t supported.

collection (Of an attribute, type, value, or variable; noun used as an
adjective; not much used in the relational comtext) A special case of
nonscalar, q.v., in which the user visible component parts are usually
required all to be of the same type. For example, array and relation
types might be regarded as collection types, but tuple types usually
wouldn’t be. The term 1is also used as a noun, in which case it serves as
an abbreviation for any or all of collection type or collection value or
collection variable, as the context demands. See also aggregate.

collection type Same as aggregate type. See collection.

column 1. Term used variously to refer to the SQL analog of (a) an
attribute of some relation or relvar, or (b) the bag or set of values of
some attribute of some relation or relvar, or (c) the type of some
attribute of some relation or relvar, or sometimes even (d) an attribute
of some tuple or tuplevar or (e) the value of some attribute of some
tuple or tuplevar or (f) the type of some attribute of some tuple or

tuplevar (as the context demands). 2. More generally, a picture of an

attribute (on paper, for example). See also cell; row; table.

common attribute An attribute that’s common to two or more
relations and/or relvars and/or tuples and/or tuplevars.

Examples: In the suppliers-and-parts database, (a) <SNO,SNO> is a
common attribute for relvars S and SP; (b) <PNO,PNO> is a common
attribute for relvars SP and P; and (¢) <CI'TY,CHAR> is a common
attribute for relvars S and P. We might also say, more simply but less
formally, just that (a) SNO 1s a common attribute for S and SP, (b)
PNO is a common attribute for SP and P, and (¢) CI'TY is a common
attribute for S and P.

commutative group See group (mathematics).

commutativity Let Op be a dyadic operator, and assume for
definiteness that it’s expressed in infix style. Then Op is commutative if
and only if, for all v and y, x Op y =y Op «.

Examples: In ordinary arithmetic, addition (“+”) is commutative,
because

X+ yv =y + X

e

for all x and y. By contrast, subtraction (“-~”) is not commutative. In the
same kind of way, UNION and JOIN are commutative in relational
algebra while MINUS 1is not. Likewise, OR and AND are
commutative in logic while IMPLIES 1s not. Note: It so happens that
all of the commutative operators just mentioned are also associative,
q.v. By contrast, the logical operators NAND and NOR, q.v., are
examples of operators that are commutative but not associative. So too

is COMPOSE, q.v.

comparison A boolean expression of the form (expl) theta (exp2),
where expl and exp2 are expressions of the same type T and theta is any
comparison operator that makes sense for values of type 7T (certainly
“=" or “#”) perhaps “<” and “>” also, and so on). Note: The parentheses
enclosing expl and exp2 in the comparison might not be needed in

practice.

compensating action / compensatory action Terms used
interchangeably to mean an update performed automatically in
addition to some explicitly requested update, with the aim of avoiding
some integrity violation that might otherwise occur. Cascading a
delete operation in order to avoid a referential integrity violation is a
typical example; so too is the update performed on some underlying

base relvar in response to some requested view update. Note that such

compensatory actions should be performed, if and when logically
required, regardless of the concrete syntactic form in which the

original update request is expressed. For example, an INSERT
operation expressed as a pure relational assignment (using “:=”), q.v.,
should nevertheless cause the compensatory action for that INSER'T
to be performed—assuming, of course, that such an action has been
defined in the first place.

Note: Compensatory actions should be specified declaratively, and
users should generally be aware of them (that is, users should generally
know when their update requests are shorthand for some more
extensive set of actions), for otherwise they might perceive an apparent
violation of The Assignment Principle, q.v. Note too, however, that—at

least with regard to the compensatory actions needed in connection
with view updating—the system should in fact be able to work out for
itself what compensatory actions are needed, implying that the

required declarative specifications can and should be provided by the
system. See also controlled redundancy; multiple assignment. Contrast
triggered procedure.

complement Let relation » have heading H and body B. Then the
complement of 7 is the relation with heading H and body consisting of
all tuples with heading H not appearing in B.

complement (set theory) The complement—also known as the
absolute complement—of a set s is the set of all elements not appearing
in 5. Note: The difference sI - s2 between sets sI and s2, in that order, is
sometimes referred to as the relative complement of s2 with respect to
s1 (see difference); thus, the absolute complement of s is in fact the
relative complement of s with respect to the universal set, q.v. See also
boolean algebra (second definition).

complementarity 1. (Logic) The disjunction of a predicate and its
negation is a tautology, q.v.; the conjunction of a predicate and its
negation is a contradiction, q.v. 2. (Set theory) The union of a set and
its complement is the universal set, q.v.; the intersection of a set and its
complement is the empty set, q.v.

Example (first definition only): 'The following identities are just a
representation of the foregoing logic laws in symbolic form, but they
might be a little easier to understand than the prose versions:

TRUE

rp OR (NOT p)
p AND (NOT p) = FALSE

completeness (Of a formal system; not to be confused with computational,
relational, or truth functional completeness, ¢.v.) A formal system 1s

complete if and only if, given a set s of sentences of the system, all
sentences implied by those in s can be derived using the rules of
inference of that system (i.e., all tautologies are theorems). See also
soundness.

component 1. (Of 2 7D) See join dependency. 2. (Of a possrep) See
possrep. 3. (Of a tuple) See tuple component.

COMPOSE See composition.

composite attribute / compound attribute Deprecated terms used
interchangeably to mean a combination of two or more attributes. The
terms are deprecated in part because a “composite” or “compound”
attribute isn’t actually an attribute at all.

composite key / compound key Terms used interchangeably to
mean a key consisting of two or more attributes. Contrast simple key.

Example: In the suppliers-and-parts database, SP is the only relvar
with a composite key (namely, {SNO,PNOY}).

composite predicate / compound predicate Terms used
interchangeably to mean a predicate that involves at least one
connective. Contrast simple predicate.

composite proposition / compound proposition Terms used
interchangeably to mean a proposition that involves at least one
connective. Contrast simple proposition.

composite statement / compound statement (Programming
languages) Terms used interchangeably to mean a statement that
contains other statements syntactically nested inside itselt. Contrast
atomic statement.

Examples: Conventional IF, DO, WHILE, and CASE statements;
BEGIN - END statement blocks; multiple assignment statements
(q.v.); and many others.

composition 1. (Dyadic case) Let relations 71 and 72 be joinable, q.v.,
and let their common attributes be called A1, A2, ..., Am (m > 0). Then
(and only then) the expression I COMPOSE 72 denotes the
composition of 71 and 72, and it returns the relation denoted by the
expression (71 JOIN »2) {ALL BUT Al, A2, ..., Am}. See also tuple

composition. Note: Dyadic COMPOSE i1s unusual, in a sense, in that

it’s commutative but not associative. 2. (N-adic case) Let relations 71,
r2, ..., mn (n 2 0) be n-way joinable, q.v., and let the attributes common
to at least two of those relations be called A1, A2, ..., Am (m > 0). Then
(and only then) the expression COMPOSE ({r1,2,...,rn} denotes the
composition of 71, 72, ..., rn, and it returns the relation denoted by the
expression (JOIN {rl,72,....n}) {ALL BUT Al, A2, ..., Am}. Caveat:

This definition is motivated by a desire to preserve commutativity (of a

kind)—more precisely, to preserve the property that the value of the
expression COMPOSE {rl1,72,...,7n} is independent of the order in
which relations 71, 72, ..., 7n are specified. It also has the property that
the expression COMPOSE {r1,72} is logically equivalent to the
expression 71 COMPOSE 72 (i.e., the n-adic version degenerates to its
dyadic counterpart in the special case where 7 = 2). On the other hand,
the operator isn’t associative; in other words, the expressions
COMPOSE {r1,COMPOSE {r2,73}}, COMPOSE {COMPOSE
{(rl,72},r3}, and COMPOSE {rl,72,73} aren’t logically equivalent.
Thus, n-adic COMPOSE as here defined isn’t just shorthand for
repeated dyadic COMPOSE,; rather, it’s a logically distinct operator.
Contrast the situation with, e.g., n-adic JOIN, which is shorthand for

repeated dyadic JOIN.

Example: The expression S{SNO,CITY} COMPOSE
P{PNO,CITY} denotes the composition of the projections on
{(SNO,CI'TY} and {PNO,CI'TY}, respectively, of the relations that are
the current values of relvars S and P, respectively. That composition is
a relation of type RELATION {SNO SNO, PNO PNO}. Moreover, if

the current values of relvars S and P are s and p, respectively, the body

of that relation consists of all tuples of the form <sno,pno> such that sno
1s a supplier number appearing in s, pno 1s a part number appearing in
p, and supplier sno and part pno are located in the same city.

computable function A function that can be computed by a Turing
machine in a finite number of steps).

computational completeness A language 1s computationally

complete 1f and only if it supports the computation of all computable
functions.

Examples: C++; PL/I; SQL; Tutorial D; and many others. Codd’s
relational algebra, q.v., 1s an example of a language that’s not
computationally complete (basically because it includes no support for
either EXTEND, q.v., or aggregate operators, q.v.).

conceptual design Synonym for conceptual modeling; in other words,
the process, or the result of the process, of producing a conceptual
schema, q.v. Note, however, that the boundaries between conceptual
design and logical design are far from being hard and fast, and might
not exist at all in some cases.

conceptual modeling Term sometimes used as a synonym for the
process of conceptual design, q.v. See #/so semantic modeling.

conceptual schema See business rule.

conclusion In logic, that which a proof proves or an attempted proof
attempts to prove. See in particular equality generating dependency;
tuple generating dependency.

conditional expression A logical expression, q.v.

conditional operator A logical operator, q.v. (especially one of the

connectives, q.v.).
conjunct A predicate that’s ANDed with zero or more others.

conjunction 1. (Dyadic case) If and only if p and ¢ are predicates, their
conjunction (p) AND (¢) is a predicate also. Let (zp) AND (7g) be an
invocation of that predicate, where 7p and 7¢ are invocations of p and ¢,
respectively. Then that invocation (7p) AND (ig) evaluates to TRUE if
and only if 7p and ig both evaluate to TRUE. Note: 'The parentheses
enclosing p and ¢ in the predicate, and 7p and 7g in the invocation,
might not be needed in practice. 2. (N-adic case) Let pl, p2, ..., pn (n 2
0) be predicates; then (and only then) the conjunction AND
{nl,p2,....,pn} 1s defined to be shorthand for the expression (p1) AND
(p2) AND ... AND (pn). (Note that this expression evaluates to TRUE

if n = 0, because TRUE is the identity with respect to AND.) See also
universal quantifier.

conjunctive normal form A predicate is in conjunctive normal form,
CNEF, 1f and only if 1t’s of the form (p1) AND (p2) AND ... AND (pn),
where none of the conjuncts (p1), (p2), ..., (pn) involves any ANDs—

more precisely, where each of p1, p2, ..., pn is a disjunction of literals
(see literal, second definition). Note: 'The parentheses enclosing the

individual predicates p1, p2,, pn might not be needed in practice.

connection trap A term used by some writers to refer to an alleged
flaw in the relational model. By way of illustration, consider the
expression (S JOIN P) {SNO,PNO}. This expression denotes a
relation, 7 say, that—given the sample values in Fig. I—happens to
contain the tuple <S§2,P5>, because supplier S2 and part PS5 are both
located in the same city, Paris. Now, from the fact that this tuple
appears in 7, it obviously can’t be inferred (at least, not validly) that
supplier S2 supplies part P5—the predicate for » is Supplier SNO and
part PNO are located in the same city, not Supplier SNO supplies part PNO
(speaking a trifle loosely). However, it’s claimed by certain writers that

users will nevertheless make that invalid inference, and hence that the

relational model is flawed because it lets users fall into that trap. But it
should be clear from the example that the tlaw lies not with the model
but with a failure on the part of those users—or those writers, perhaps
—to understand the semantics of join properly. (Indeed, the tlaw, such
as it is, really has nothing to do with the relational model as such.
Instead, it has to do with the intrinsic nature of data.) Note: As the
example suggests, the term connection trap is typically regarded as an
issue that arises in connection with join specifically (indeed, some
writers even refer to it as the join trap for that reason); however, similar

issues can clearly arise in connection with other operations also.

connective A read-only monadic or dyadic logical operator. There are
exactly 20 connectives in two-valued logic, four monadic and 16 dyadic
(corresponding directly to the four possible monadic and 16 possible

dyadic truth tables). The connectives most frequently encountered in
practice are NO'T (negation), OR (disjunction), AND (conjunction),
IMPLIES (implication), and EQUIV (equivalence); others include

NAND, NOR, and XOR, q.v. Note: A variety of other symbols and
keywords, some but not all of which are mentioned in this dictionary,
are also used to denote these connectives. See also nVL; truth
functional completeness; two-valued logic; three-valued logic.

Here for the record are truth tables for the connectives of two-
valued logic. First the monadic ones:

NOT
T T T T T B T E
B T F F F T F E

And here are the dyadic ones (using, for typographic reasons, IF
for IMPLIES and IFF for EQUIV):

T F IF T F NAND| T F T F

T T T T T F T T T B
B T T F T T B T T B T T
OR T K T XOR| T F A
T T T T T K T FroT T o
B Jl I K b D b A
T F IFE| T F T F NOR| T F

T T T T T K T FoT T o
B T I T B BT B FT
T F AND| T F T F T F

T T T T T F T ET T FF
B FoF I P K B IE—-) B IE—-)

consequent See implication.

consistency Loosely, a synonym for integrity, q.v.; sometimes used
more specifically to refer to the state ot a database that conforms to
just those declared integrity constraints that have to do with controlled
redundancy, q.v. Note, however, that there’s an important distinction
to be drawn between what might be called formal consistency and
informal consistency. To elaborate:

» (Formal consistency) Formally speaking, a database 1s in a state of
consistency if and only if it conforms to all declared integrity
constraints—and the term consistency, unqualified, is usually taken
to mean consistency in this formal (or logical) sense, unless the
context demands otherwise. Note: It follows from this definition
that a database 1s formally inconsistent if and only if there’s some

declared constraint it should satisty but doesn’t. Equivalently, a

database 1s formally inconsistent if and only if it’s self-
contradictory—meaning that it asserts, either explicitly or
implicitly, that some proposition p and its negation NO'I'(p) are
both true. The relational model requires databases to be
consistent in this formal sense at all times (where “at all times”

14

effectively means at statement boundaries or, loosely, “at
semicolons”). Consistency in this sense 1s necessary but not
sufficient for correctness, q.v. See also atomic statement;

controlled redundancy; integrity.

= (Informal consistency, also known as “eventual” consistency)
Consistency in the foregoing formal sense isn’t necessarily the

same thing as consistency as conventionally understood in the

real world (meaning consistency as understood outside the realm

of databases in particular). For example, suppose there are two
items A and B in the database that, in the real world, are
supposed to have the same value (they might both be the selling
price for some given commodity, stored twice in the database to
improve availability). If A and B in fact have different values at
some given time, we might certainly say, informally, that there’s
an inconsistency in the database at that time. But that
“Inconsistency” 1s an inconsistency as far as the system is
concerned if and only if the system has been told that 4 and B
are supposed to be equal—i.e., if and only it “4 = B” has been
declared as a formal constraint. If it hasn’t, then (a) the fact that
A and B are unequal at some time doesn’t in itself constitute a
consistency violation as far as the system 1s concerned, and (b)
importantly, the system will nowhere rely on an assumption that
A and B are equal. Thus, if all we want is for 4 and B to be equal
“eventually”—i.e., if we’re content for that requirement to be
handled outside the database system by some application
program—then all we have to do as far as the system is
concerned 1s omit any declaration of “4 = B” as a formal

constraint.

Examples (formal consistency): Suppose there’s an integrity constraint
on the suppliers-and-parts database to the effect that part weights must
be positive. However, suppose the database were to show some part as
having a negative weight (not possible, of course, if the DBMS is
enforcing constraints properly). Then the database would be

inconsistent (and a fortiori incorrect).

By way of a second example, suppose there’s an integrity
constraint in effect that says that every part must be supplied by at least

one supplier (i.e., the projections P{PNO} and SP{PNO} must be
equal). However, suppose the database were to show part P7 as
represented in relvar P but not in relvar SP (not possible, of course, if
the DBMS is enforcing constraints properly). Again, then, the database
would be inconsistent (and a fortiori incorrect).

consistent 1. (Logic) A set of predicates is consistent if and only if
there exists at least one set of arguments that can be substituted for the

parameters of those predicates in such a way that every resulting

proposition evaluates to TRUE. 2. (Database) See consistency. Note,
however, that consistency in the database sense is really nothing more
than a special case of consistency in the sense of logic, where the

predicates involved are simply the predicates that apply to the
particular database in question.

Examples (logical consistency): Let the symbols x, y, and 2z denote
integers. T'hen the predicates x > y and y > 2z form a consistent set,
while the predicates x > y, y > 2, and z > x do not.

constant 1. (Logic) See individual constant. 2. (Programming languages)
A value, especially one that’s given a name that’s not just a simple
literal representation of the value as such; not to be confused with a
literal, q.v.

Examples (second definition only): See relation constant.

constant reference (Programming languages) Syntactically, the name
of a named constant (q.v.), used to denote the corresponding value. It
can be regarded as an invocation of a read-only operator—and hence
as an expression, q.v.—where the read-only operator in question is
essentially “Return [the value of] the specified constant.” Like all
expressions, therefore, it can appear wherever a literal of the

appropriate type can appear.

CONSTRAINT (Without inberitance) A "Tutorial D keyword, used in

connection with the detinition of type constraints (q.v.) for scalar
types. (It’s also used in connection with database constraints, q.v.) Let
T be such a type. Then the definition of type 7 must include at least
one POSSREP specification (q.v.), and that POSSREP specification
must include exactly one CONSTRAINT specification (either
explicitly or implicitly; CONSTRAINT TRUE is assumed if nothing
is specified explicitly).

Example: Let ELLIPSE be a scalar type. Then the corresponding
type definition might look like this (irrelevant details omitted):

TYPE ELLIPSE
POSSREP { A LENGTH , B LENGTH , CTR POINT
CONSTRAINT A 2 B } }

In other words, ellipses are such that they can possibly be represented
by two lengths # and # and a point ¢t7, where # is the length of the
ellipse’s major semiaxis, & 1s the length of its minor semiaxis, ¢t 1s its
center, and # > & (see the introduction to Part IT of the dictionary for
further discussion). Note: The user defined types LENGTH and
POIN'TT have already been defined (at least, let’s assume so for the sake
of the example). Also, the constraint B > 0 ought by rights to be
specified as well but has been omitted to keep the example simple.

Now let e be a scalar value. Then e is of type ELLIPSE if and only
if the following constraint—call it ETC—is satisfied: The value e can
possibly be represented by a length #, a length 4, and a point czr, such
that # > b. ETC here 1s the type constraint for type ELLIPSE. Note,
therefore, that the CONSTRAINT specification as such doesn’t

define the type constraint in its entirety, though it’s often referred to
informally as if it did.

constraint An integrity constraint, q.v. Usually understood to mean a
database constraint specifically (i.e., not a type constraint), unless the

context demands otherwise.

constraint inference The process of determining the constraints that
hold in a given derived relvar or are satisfied by a given derived
relation.

constructor function Term used in OO contexts for the operator that
creates a new “instance” of a given object type (see instance, first
definition; see #/so mutable object).

containment Generally, the relationship between a container and the
things it contains; in particular, the relationship between a bag or set
and its elements. The containment relationship is the inverse of the
membership relationship, q.v. Containment is sometimes denoted by

the symbol “5”; thus, the boolean expression X > x—which is logically

equivalent to both of the expressions x € X and X 2{x}—returns TRUE
if and only 1f X does in fact contain x. Contrast inclusion.

Examples: A relation contains a heading and a body; a heading
contains attributes; a body contains tuples; a tuple contains tuple

components; a tuple component contains an attribute value; and so on.

contradiction A predicate whose every possible invocation is
cuaranteed to yield FALSE, regardless of what arguments are
substituted for its parameters. Note: A contradiction in logic isn’t quite
the same thing as a contradiction in ordinary discourse. Loosely, we

might say a contradiction in ordinary discourse is something that
implies that some proposition p and its negation NOT(p) are both
true; in logic, by contrast, it’s anything that’s “always false.” Thus,
propositions of the form p AND NO'T(p) are certainly contradictions
in the logical sense, but so are propositions of the form, e.g., p AND
FALSE, and so is the proposition consisting of just the literal FALSE
itself. Contrast tautology.

Examples: Let pl be the predicate (actually a proposition) 2+2 = 5;
let p2 be the predicate x > x, where x denotes an arbitrary integer; and
let p3 be the predicate (p) AND (NOT(p)), where p denotes an
arbitrary predicate. Then pl, p2, and p3 are all contradictions. Note
that a contradiction isn’t necessarily a proposition, even though (like
some propositions) it does unequivocally evaluate to FALSE. For
example, x > x isn’t a proposition; rather, it’s a predicate with exactly
one parameter.

contrapositive ['he implicational predicates IF (p) THEN (¢) and IF
(NOT(g)) THEN (NO'T (p)) are contrapositives of each other. Any

oiven implication and its contrapositive are logically equivalent.

Example: Consider the predicates—actually propositions—If it’s
raining, then the streets are getting wet and If the streets aren’t getting wet,
then it isn’t raining. Each of these 1s the contrapositive of the other,
and, clearly, each is logically equivalent to the other.

controlled redundancy Redundancy, q.v., is controlled if (a) it does
exist (and the user 1s aware of it) but (b) it’s guaranteed never to lead to
any formal inconsistencies in the database. Uncontrolled redundancy,
q.v., can be a problem, but controlled redundancy shouldn’t be. As a
oeneral rule, databases shouldn’t involve any uncontrolled redundancy.

Example: Suppose there’s a business rule to the eftect that all
suppliers in the same city must have the same status. Ot course, the
sample value shown for relvar S in Fig. 1 doesn’t satisty this rule;
however, it would do so it we changed the status for supplier S2 from
10 to 30, so let’s suppose, just for the sake of the example, that this
change has in fact been made. Then the fact that the status associated
with Paris is 30 appears twice, and so there’s some redundancy. (By
contrast, if the status for supplier S2 were lett at 10 instead of being
changed to 30, then the database would be formally inconsistent, and
hence incorrect.) So to say that the database involves some redundancy
is to say that some specific business rule is supposed to hold, and hence
that some specific integrity constraint is supposed to apply (though the
converse is false, of course—not all integrity constraints have to do
with controlling redundancy as such). For example, the “same status”
constraint might be stated thus:

CONSTRAINT CRX COUNT (S { CITY }) = COUNT (S { CITY ,
STATUS }) ;

Stating this constraint explicitly serves to inform the user that the
redundancy exists; enforcing it serves to ensure that it won’t lead to
any formal inconsistencies, thereby guaranteeing that the redundancy
in question is controlled. Note: Of course, enforcing such constraints
should be done by the DBMS, not by the user. In some cases, it might
even be possible for the DBMS to “propagate updates” appropriately

in order to keep the data formally consistent (see compensatory action).
correct See correctness.

correctness (Of a database) The property of truly reflecting the state of
affairs that exists in the real world (see the example under relvar

predicate for further discussion). Contrast consistency.

correlation name SQL term denoting (the SQL analog of) either a
tuple calculus range variable, q.v., or the name of such a variable, as the

context demands.

COUNT 1. Loosely, a synonym for cardinality, q.v. 2. An aggregate
operator, q.v.

cover (Of a set of FDs) It sI and 52 are sets of FDs, then s2 is a cover for
sI if and only if every FD implied by sI is implied by those in 52 (see
Armstrong’s axioms). Note: Some writers use the term cover in a
stronger sense, to mean a set of FDs that’s equivalent to some given set

(see equivalence).

cross join / cross product Terms sometimes used to mean cartesian
product, q.v.

CWA The Closed World Assumption.

cyclic ordering Let s be a set. Loosely speaking, then, a cyclic
ordering on s is like a linear ordering (q.v.) on s, except that it wraps
around 1n such a way that what would otherwise be the first element 1s
considered the immediate successor of what would otherwise be the
last element. An example is provided by the hours of the day (0, 1, 2,
..., 23), where the the available values can be thought of as being
arranged around the circumference of a clockface and every value thus
has both a successor and a predecessor. Note that “<” and “>” both

degenerate to “#” in a cyclic ordering.

————— 44000 ——

D Generic name (note the boldface) used to reter to any language that

conforms to the principles laid down by The Third Manifesto. Contrast
Tutorial D.

D_INSERT See disjoint INSER'T.
D_UNION See disjoint union.

data (Plural noun treated as singular) An encoded representation of

some set of propositions, assumed by convention to be true ones.

data definition operator An operator that either defines some
database object, such as a base relvar or a view or a snapshot or a
constraint, or deletes (“drops”) or updates such a definition; in other
words, an operator that updates the catalog. Note: Dropping a
definition effectively causes the corresponding object to be dropped as
well, of course (at least as far as the user is concerned), and is usually
described in such terms. For example, Tutorial D provides an
operator called for psychological reasons DROP CONSTRAIN'T (not

“drop constraint definition”).

Examples: See the definitions of relvars S, P, and SP. Other
examples could be an operation to add an attribute to one of those
relvars, or an operation to define a constraint on those relvars, or an
operation to delete any of these definitions. Note: Strictly speaking, the
first of the foregoing examples—“adding an attribute” to some relvar,
say relvar S—has the effect of dropping the original relvar with that
name and introducing a new one with the same name but an extended
heading, at the same time preserving, somehow, the current
information content of, and the constraints that apply to, the original
relvar. Details of how this effect might be achieved are beyond the

scope of this dictionary.

data independence The ability to change either the physical or the
logical design of a database without having to make corresponding
changes in the way the database is perceived by users (thereby
protecting investment in, among other things, existing user training
and existing applications). The terms physical data independence and
logical data independence refer to the two cases. Both involve having two
sets of definitions and mappings between them, such that (a) if the

physical design changes, physical data independence is preserved by
changing the mapping between the physical design and the logical
design, and (b) if the logical design changes, logical data independence

is preserved by defining a mapping between the old logical design and
the new one (or, equivalently, by changing the mapping between the
logical design and the physical design). Note: If the logical design
changes, the new logical design will consist of views of relvars in the
old logical design—at least conceptually, if not in actual fact. Thus,
logical data independence in particular implies the need to be able to

update views, q.v.

data manipulation operator Loosely, an operator that isn’t a data
definition operator. However, the distinction isn’t hard and fast; in
fact, 1t’s quite difficult to find an operator that doesn’t, in the last
analysis, “manipulate” data of some kind (unless it’s a read-only
operator, possibly; some writers might claim that update operators are
the only ones that actually “manipulate” data). The term is really a
hangover from prerelational systems, where it arguably made a little
more sense than it does now; in relational contexts, it’s probably better
avoided.

data model 1. An abstract, selt-contained, logical definition of the data
structures, data operators, and so forth, that together make up the
abstract machine with which users interact (contrast implementation).
2. A model of the persistent data of some particular enterprise (in other
words, a conceptual or logical database design).

Examples: For the first definition, the most obvious example is of
course the relational model itself. As for the second definition, any

conceptual or logical database design will suffice as an example.

Note: There’s a nice analogy that can help explain the difference
between the two definitions, as follows: A data model in the first sense

s like a programming language, whose constructs can be used to solve
many specific problems but in and of themselves have no direct
connection with any such specific problem; a data model in the second
sense 1s like a specific program written in that language—it uses the
facilities provided by the model, in the first sense of that term, to solve
some specific problem. Note also that we can usefully characterize the
distinction between a data model in that first sense and an
implementation (q.v.) of that model by saying the model is what the
user has to know, while the implementation is what the user doesn’t
have to know.

data modeling Term sometimes used—with reference to the second
meaning of the term data model specifically, q.v., though never very
precisely defined—to describe either the conceptual or the logical
design process. See conceptual design; logical design.

data sublanguage A language that provides database support for one
or more host languages, q.v., in which its statements can be embedded
or from which they can be invoked.

Example: SQL is an obvious case in point; application programs
that access an SQL database are usually written in some host language

but invoke certain SQL operations, either in “embedded” form or via
some kind of call level interface, to obtain the necessary database
functionality.

Data Sublanguage ALPHA See ALPHA.
data type Same as type.

database Strictly, a database value, q.v.; more commonly used, in this
dictionary in particular, to refer to what would more accurately be
called a database variable, q.v. Note: We assume throughout this
dictionary that databases are relational, barring explicit statements to
the contrary. Be aware, however, that the term database 1s used in
nonrelational contexts to mean a variety of other things—for example,
a collection of data as physically stored. It’s also used, all too
frequently, to mean a DBMS, but this particular usage is strongly
deprecated. (If we call the DBMS a database, what do we call the

database?)

database assignment An operation that assigns a database value to a
database variable; in other words, any operation that updates the

database. For further explanation, see database variable; multple
assignment.

database catalog See catalog.

database constraint 1. (“A” database constraint) Formally, any
constraint that isn’t a type constraint; informally, any constraint that
refers to two or more distinct relvars (also, and better, known as a

multirelvar constraint, q.v.). Note: These definitions aren’t meant to be
equivalent in any sense—they refer to two distinct concepts. 2. (“The”
database constraint) The logical AND of all constraints, other than type
constraints, that apply to a given database (the database constraint—
sometimes called the rota/ database constraint, for emphasis—for the
database in question). Note: It follows from this second detinition that
one constraint that applies to every database 1s the degenerate
(“detault”) constraint TRUE. See also relvar constraint.

Examples: First, the key and foreign key constraints specified in the
definition of the suppliers-and-parts database are all database
constraints. Second, here are some more database constraints that
might also apply to that database:

CONSTRAINT C1 IS EMPTY (S WHERE STATUS < 1 OR STATUS >

100) ;
/* status values must be 1In the range 1 to 100 inclusive
*/

Il

CONSTRAINT C2 IS EMPTY (P WHERE CITY 'London'
AND COLOR # COLOR('Red'))

/* parts 1n London must be red */

CONSTRAINT C3 IS EMPTY
((S JOIN SP) WHERE STATUS < 20 AND PNO =

PNO('"PoE'))
/* no supplier with status less than 20 can supply part
pP6 */

Here for interest is an alternative formulation of constraint CI
that makes use of the AND aggregate operator, q.v.:

CONSTRAINT Cl1 AND (S , STATUS =2 1 AND STATUS =< 100) ;
/* status values must be in the range 1 to 100 inclusive

*/

This same style could also be used with constraints C2 and C3, of

COursc.

Finally, suppose for the sake of the example that the specified key

and foreign key constraints, together with constraints CI1-C3 above,

are the only database constraints that apply to the suppliers-and-parts
database. Then the logical AND of all of them is “the” (total) database

constraint for that database.

database design See logical database design; physical database design.
Note: "The unqualified term database design, or sometimes even just
design, 1s usually taken to mean logical database design specitically,
unless the context demands otherwise. See a/so conceptual design.

database management system The software system (abbreviated
DBMS, plural DBMSs) that manages, and in particular handles all
access to, some database or collection of databases. Note: A relational
DBMS in particular can be thought of, or even defined, as an
implementation of the relational model. Contrast database.

database programming language A programming language that
includes fully integrated (“native”) database support. Contrast data
sublanguage; host language.

Examples: Tutorial D might be regarded as a fully fledged
database programming language, except that it currently includes no
exception handling and no I/O support. A similar remark applies to
SQL; SQL is widely thought of as just a data sublanguage, q.v., but
with the introduction in the 1992 version of the standard
(“SQL:1992”) of such teatures as local variables, exception handling,

IF, CASE, WHILE, CALL, RETURN, and assignment (SET)
statements, it too became a fully fledged database programming

language (except that, like Tutorial D, it currently includes no 1I/0
facilities).

database relation The value of a given database relvar at a given time.
Database Relativity Principle See Principle of Database Relativity.
database relvar See relvar.

database statistics Metadata, typically kept in the catalog, that
(among other things) might be helpful to the optimizer, q.v.

Examples: Relvar and attribute cardinalities; minimum, maximum,
and average attribute values; attribute value frequencies; index
selectivities; and so on.

database value Either the actual (i.e., current) or some possible “state”
for some database; in other words, a collection of relations, those

relations being actual or possible values for the applicable relvars.
Abstractly, therefore, a database value can be thought of as a collection
of propositions (assumed by convention to be true ones), those
propositions being represented by the tuples in the applicable
relations. Contrast database variable.

Example: The relations (i.e., relation values) shown in Fig. 1
constitute the “state” of the suppliers-and-parts database that happens
to be current at this time. But if we were to look at that database at
some different time, we would probably see a different state. In other
words, the database is really a variable—a database variable, to be
precise, meaning a variable whose values are database values (see
database variable). Moreover, the tuples in the relations that are the
values of relvars S, P, and SP at any given time represent propositions
—propositions that are assumed to be true at that time—so, as the

foregoing definition indicates, the database at the time in question can
be thought of, a trifle loosely, as a collection of true propositions.

database variable L.oosely, a container for relvars; more accurately, a
variable whose value at any given time is a database value. Strictly
speaking, there’s a logical difference, analogous to that between
relation values and relation variables, between database values and
database variables; thus, what we usually call a database is really a

variable (typically a rather large one), and updating that database has
the effect of replacing one value of that variable by another such value,
where the values in question are database values and the variable in
question is a database variable. More precisely still, a database is really
a tuple variable, with one attribute (relation valued) for each relvar in

the database in question. Note, therefore, that a database 1sn’t really a

set of relation variables, despite the fact that we usually think of it that
way; rather, the relvars within any given database are really
pseudovariables, q.v. All of that being said, however, we bow to
traditional usage in this dictionary (most of the time, at any rate) and
use the term database to refer to both database values and database
variables, relying on context to make clear which is intended. See also

database; database value.

Examples: For an example of a database value, see Fig. 1. As for the
matter of a database really being a tuple variable, the suppliers-and-
parts database in particular can be thought of as a tuple variable
(SPDB, say) of the following tuple type:

TUPLE { S RELATION { SNO SNO , SNAME NAME ,
STATUS INTEGER , CITY

CHAR } ,
P RELATION { PNO PNO , PNAME NAME , COLOR COLOR

WEIGHT WEIGHT , CITY CHAR
SP RELATION { SNO SNO , PNO PNO , QTY QTY } }

[t follows that, e.g., the following relational update on tuplevar SPDB

DELETE SP WHERE QTY < QTY (150) ;

—is really shorthand for the following tuple update:

UPDATE SPDB : { SP := SP WHERE NOT (QTY < QTY (150)) }

And this statement in turn 1s shorthand for the following tuple

assignment:
SPDB := TUPLE { S ('S FROM SPDB) ,
P (P FROM SPDB) ,
SP ((SP FROM SPDB) WHERE NOT (QTY <
QTY (150))) }

As previously indicated, therefore, the names S, P, and SP really

denote pseudovariables, q.v. Note, however, that if we’re to be able to

write explicit database assignments as in the foregoing example, then
databases—or database variables, rather—Ilike SPDB will certainly
have to have user visible names, which in Tutorial D they don’t (at
least, not as the language is currently defined). Thus, database
assignments in Tutorial D have to be expressed in the form of
relational assignments (in general, multiple assignments) to the

relvar(s) within the database in question. For turther explanation, see
multiple assignment.

Incidentally, assuming the name SPDB 1s indeed user visible, then
Tutorial D would certainly allow the foregoing tuple assignment to be

written in the form of an explicit tuple UPDATE statement as shown

above, thus—

UPDATE SPDB : { SP := SP WHERE NOT (QTY < QTY (150)) } ;

—or even as follows:

UPDATE SPDB : { DELETE SP WHERE QTY < QTY (150) }

Finally, note that a database isn’t just a set of relvars—rather, it’s a
set of relvars that are subject to a certain constraint (viz., the pertinent
total database constraint). And it seems reasonable to require the
database to be fully connected (and hence to form a coherent whole); in
other words, it seems reasonable to require the total database
constraint to be such that every relvar in the database is logically
connected to every other (not necessarily directly, of course). The
following definition 1is intended as an aid in formalizing this
requirement. Let DB be a set of relvars, and let 7C be the logical AND
of all constraints that mention any relvar in DB. Assume without loss
of generality that 7C is in conjunctive normal form. Now let 4 and B
be distinct relvars in DB. Then A and B are logically connected if and
only if there exist relvars R1, R2, ..., Rn in DB (n > 0, A and RI not
necessarily distinct, Rz and B not necessarily distinct) such that there’s
at least one conjunct in 7C that mentions both 4 and RI, at least one
that mentions both RI and R2, ..., and at least one that mentions both
Rn and B. Note: It should be clear that if a given database isn’t fully

connected in the foregoing sense, then the relvars it contains can be

partitioned into two or more disjoint sets, each of which s fully
connected.

DBMS Database Management System; plural DBMSs.

dbvar A database variable, q.v. The term isn’t much used, though
perhaps it should be.

DCO Domain check override, q.v.

De Morgan’s Laws 1. (Logic) The negation of the disjunction of
predicates p and ¢ is logically equivalent to the conjunction of the
negations of p and ¢; the negation of the conjunction of predicates p
and ¢ 1s logically equivalent to the disjunction of the negations of p and
q. 2. (Set theory) The complement of the union of sets sI and 52 is equal
to the intersection of the complements of s/ and s2; the complement of
the intersection of sets s/ and s2 is equal to the union of the
complements of s and s2.

Example (furst definition only): The tollowing identities are just a
representation of the foregoing logic laws in symbolic form, but they
might be a little easier to understand than the prose versions:

NOT ((p) OR (g))
)

Il

(NOT (p)) AND (NOT (g)

NOT ((p) AND (g))
)

(NOT (p)) OR (NOT (g)

decidability (Of a formal system) A formal system is decidable if and
only 1f, given an arbitrary sentence s, it can be determined

mechanically whether s is a sentence of the system.

Examples: Propositional calculus i1s decidable; predicate calculus is
not.

declared Term often used as a synonym for defined or specified.

declared possrep See possible representation. Note: The unqualitied

term possrep 1s used almost invariably to refer to a declared possrep

specifically.

declared type (Without inberitance) Type. Note: The following more
specific definitions are logically correct but reduce, in the absence of
support for inheritance, merely to saying that—as already indicated—
the declared type of some item x 1s just the type of x, as this latter term
is usually understood. 1. (Of a constant, variable, attribute, or parameter)
The type specified when the constant, variable, attribute, or parameter
in question is declared. 2. (Of a read-only operator) The type of the
result, specitied when the operator in question 1s declared (see
RETURNS). 3. (Of an expression) The type of the outermost operator
involved in the expression in question; in other words, the type of the
operator whose execution is last in sequence (logically speaking, at any
rate) in evaluating the expression in question.

Excamples:
= First, the declared type of the literal 5 1s INTEGER.

= Second, let variables E and R be defined as follows:

VAR E ELLIPSE ;

VAR R RECTANGLE ;

Then the declared types of these variables are (the presumably
user defined types) ELLIPSE and RECTANGLE, respectively.

= Next, let ER be the relation type

RELATION { E ELLIPSE , R RECTANGLE }

Then the declared type of attribute R within relation type ER 1is

RECTANGLE.

= Finally, let the specification signature (q.v.) for operator MOVE
be:

MOVE (ELLIPSE , RECTANGLE) RETURNS ELLIPSE

Then the declared type of that operator is ELLIPSE, and the

declared types of the first and second parameter to that operator
are ELLIPSE and RECTANGLE, respectively.

Note: Declared types are always known at compile time. Also, note
in particular that x can have an empty declared type—see empty type—
only if x is an attribute of some tuple type or some relation type.

decomposition Nonloss decomposition, q.v. (unless the context
demands otherwise).

deductive axiom Term occasionally used to mean a rule of inference.
DEE Shorthand for TABLE_DEE.

default value Let A be an attribute of relvar R. Barring explicit rules
to the contrary, then, a deftault value (default for short) can optionally
be declared for A; that value, # say, will then be used as the value for
attribute 4 in any tuple for which no value is specified explicitly when
the tuple in question is entered into relvar R.

Example: Suppose attribute STATUS of relvar S has default value
10. Then the following INSERT might be wvalid, syntactically
speaking:

INSERT S RELATION { TUPLE { SNO SNO('Se') ,

SNAME NAME ('Lopez') ,
CITY '"Madrid' } } ;

‘| 'he relation that’s actually inserted will look like this:

RELATION { TUPLE { SNO SNO('Se') ,
SNAME NAME ('Lopez') ,
STATUS 10 ,
CITY 'Madrid' } }

Note: Tutorial D has no support for default values at the time of
writing, and the foregoing INSER'T on relvar S would thus currently
not be valid in Tutorial D.

deferred checking Checking a database integrity constraint at some
time (typically commit time) later than the time when an update is
performed that might cause it to be violated. The relational model
rejects such checking as logically tlawed. Contrast immediate checking.

deferred constraint A database integrity constraint for which the

checking 1s deferred (see deterred checking). The relational model
rejects such constraints as logically flawed. Contrast immediate
constraint.

degree The number n (# > 0) of attributes in a given heading, key,
tuple, relation (etc.). See also arity.

Examples: The degrees of relvars S, P, and SP are four, five, and
three, respectively; the degrees of the corresponding keys (one per
relvar) are one, one, and two, respectively.

DELETE Loosely, an operator—shorthand for a certain relational
assignment—that deletes specified tuples from a specified relvar. The
syntax I1s:

DELETE R rx

Here R 1s a relvar reference (syntactically, just a relvar name) and 7x 1s
a relational expression (denoting some relation » of the same type as
R), and the effect is to delete the tuples of » from R. In other words,
the DELETE invocation just shown is shorthand for the following
explicit assignment:

R := R MINUS rx

[t follows that an attempt via DELETE to delete a tuple that’s not

present in the first place is not considered an error (contrast included
DELETE).

Examples: "The statement

DELETE SP RELATION

{ TUPLE { SNO SNO('S3') , PNO PNO('P2') , QTY
QTY (200) }
TUPLE { SNO SNO('Sl') , PNO PNO('P1l') , QTY
QTY (400) } } 7

is shorthand for the following explicit assignment statement:

SP := SP MINUS RELATION
{ TUPLE { SNO SNO('S3') , PNO PNO('P2') ,
OTY QTY (200) } ,
TUPLE { SNO SNO('S1l') , PNO PNO('P1l') |,
OTY QTY (400) } } ;

Given the sample values shown in Fig. 1, however, this assignment will
delete just one tuple, not two (speaking a trifle loosely), because the
tuple <S1,P1,400> doesn’t currently appear in relvar SP.

By way of another example, the statement

DELETE S WHERE CITY = 'London' ;

1s shorthand for the following relational assignment statement:

S := S MINUS (S WHERE CITY = 'London') ;

Note: Strictly speaking, this second example is shorthand for a
DELETE statement of the same form as the first example that might
look like this:

DELETE S S WHERE CITY = 'London' ;

It’s clear, however, that it as in this example the expression denoting
the set of tuples to be deleted from relvar R takes the form R WHERE

bx (where WHERE TRUE is assumed if no WHERE clause 1is
specified explicitly), then (a) there’s no point in mentioning R twice in
concrete syntax, and (b) the question of attempting to delete tuples not
present in the first place simply doesn’t arise. Indeed, this common
special case can be defined more simply as shorthand for the following:

R := R WHERE NOT (bx)

For example, the second DELETE statement shown above is
shorthand for:

S := S WHERE NOT (CITY = 'London') ;

DELETE anomaly Same as deletion anomaly.

DELETE rule A rule specifying the action to be taken by the DBMS

automatically—typically but not necessarily a compensatory action,
q.v.—to ensure that DELETE operations on a given relvar don’t
violate any associated multivariable constraint, q.v. Foreign key

[N

DELETE rules (e.g., cascade) are an important special case. Note,

however, that such automatic actions should occur, if and when

logically required, regardless of the concrete syntactic form in which
the original DELETE request is expressed. For example, a DELETE

request expressed as a pure relational assignment (using “:=”), q.v.,

should nevertheless cause the action specified by the pertinent
DELETE rule to be performed—assuming, of course, that such a rule
has been defined in the first place.

delete set See relational assignment.

deletion anomaly Term originally used (though never very precisely
defined) to refer to the fact that DELETE operations on a relvar that’s
subject to FD redundancy, q.v., can sometimes “delete too much.”
E.g., suppose for the sake of the example that relvar S is subject to the
FD {CITY} — {STATUS}. Of course, the sample value shown for that
relvar in Fig. 1 doesn’t satisty this FD; however, it would do so if we
changed the status for supplier S2 from 10 to 30, so let’s suppose, just

for the sake of the example, that this change has in fact been made
(though actually it has no effect on the specific anomaly to be
discussed). Here then is a deletion anomaly: If we delete the tuple for
supplier S5 (the only supplier in Athens), we lose the fact that the
status for Athens 1s 30. Note: A relvar that’s in BCNEFE, q.v., is
cuaranteed to be free of deletion anomalies in this “FD redundancy”

SEINSC.

The term deletion anomaly is also used in connection with relvars
that are subject to JD redundancy, q.v.; in this case, however, the
concept is more precisely defined. To be specific, let the JD 7 hold in
relvar R; then R suffers from a deletion anomaly with respect to 7 it
and only if there exists a relation 7 containing a tuple ¢ such that (a) »
satisfies 7 and (b) the relation »"whose body is obtained from that of

by removing ¢ violates 7. Note: A relvar that’'s in E1NF, q.v., 1s

cguaranteed to be free of deletion anomalies in this “JD redundancy”
sense.

Finally, this latter definition can be generalized, as follows: Relvar
R suffers from a deletion anomaly if and only if (a) there exists a single-
relvar constraint C on R and (b) there exists a relation 7 containing a
tuple ¢ such that 7 satisfies C and the relation 7"whose body is obtained
from that of » by removing r violates C. Note: A relvar that’s in
DK/NF, q.v., is guaranteed to be free of deletion anomalies in this
oeneralized sense.

denormalization Replacing a set of relvars R1, R2, ..., Rn by their join
R, such that (a) for all 7 (z = 1, 2, ..., n) the projection of R on the

attributes of Rz at any given time is guaranteed to be equal to Ri at the
time in question, and usually also such that (b) R is at a lower level of
normalization than at least one of RI, R2, ..., Rn. Denormalization is
generally done for performance reasons; however, it typically has the

effect of increasing redundancy, q.v., thereby increasing (a) the amount

of integrity checking that has to be done, by the user or the system or
both (thereby, incidentally, undermining the performance advantage
that was the justification for doing the denormalization in the first
place), or (b) the likelihood that certain update anomalies, q.v., will
occur, or (c¢) both. It can also increase the complexity of certain
queries. Contrast unnormalized. Note: Denormalization, at least to a
level below E'TNEF, q.v., is always contraindicated from a logical point
of view. Sometimes it can’t reasonably be avoided, however, given the
level of technology found in today’s commercial products.

Example: A denormalization that might be applied to the suppliers-

and-parts database would be to replace relvars S and SP by their join

(SSP, say). Relvars S and SP could then be derived by projecting relvar
SSP on the attributes of S and the attributes of SP, respectively. Note
that S and SP are both in SNF (in fact, SP is in 6NF), while SSP isn’t
even in 2NF. Note too, however, that such a denormalization would
be valid only if S and SP are both true projections of SSP—in other
words, if and only if every supplier number appearing in relvar S at any
oiven time also appears in relvar SP at that same time (and vice versa,
of course)—which isn’t guaranteed to be the case (and indeed isn’t the
case, given the sample values in Fig. 1).

dependant / dependent Terms used interchangeably to mean the set
of attributes on the right side of an FD or MVD. Contrast determinant.

Example: In the FD {SNO,PNO} — {QTY}, which holds in relvar
SP, {QTY} is the dependant and {SNO,PNOY} is the determinant.

dependence / dependency ‘Terms wused generically and
interchangeably to mean an integrity constraint, typically but not
necessarily an EQD or IND or JD or MVD or (especially) FD

specifically. See also generalized dependency.

dependency preservation FD preservation, q.v.; occasionally,
analogous preservation of some other kind of dependency.

dependency theory A body of theory, built on top of—i.e., relying on
certain features of—the relational model and having to do with the
formal properties of FDs, MVDs, and JDs among other things, that
can be used to help with the process of logical database design (though
not limited to that purpose alone).

dereferencing See referencing.

derived relation Loosely, a relation detined in terms of others. More
precisely, let s be a set of relations. Then relation » 1s derived (or,
perhaps more accurately, derivable) from the relations in s if and only
if 1t doesn’t itself appear in s but can be obtained by means of some
relational expression from those that do. Contrast base relation. Note:
The phrase “those that do” here is meant to be understood as referring
to those relations that appear in s and those relations on/y. 'The reason
1s that any relation x can be “derived from the relations in s” by means
of (e.g.) an expression of the form 7{ } JOIN exp, where (a) denotes
some nonempty relation in s and (b) exp is a relation literal whose value
is precisely the desired relation x. In other words, the introduction of
relation literals into such derivation expressions isn’t allowed.

Example: Consider the expression S JOIN SP. If the current values
of relvars S and SP are s and sp, respectively, this expression defines the

derived relation that is the join of s and sp.

derived relvar A relvar defined in terms of others by means of some
relational expression; more specifically, a view or snapshot, q.v. (the

only kinds of derived relvars supported at the time of writing). Contrast
base relvar.

Examples: See snapshot; view.

descriptor Metadata that describes, e.g., a relvar or an attribute or a
constraint.

design dilemma See relvar vs. type.

designator A name, possibly complex, used in a predicate to designate
some specific object (as opposed to a parameter, which doesn’t
designate a specific object but instead stands for an arbitrary value of

the pertinent type). For example, in the predicate The cardinality of
relvar S is n, the phrase “relvar §” 1s a designator, designating the
relation that’s the current value of the suppliers relvar (by contrast, » is
a parameter). Similarly, in the predicates—actually propositions
—FEarth bhas a moon and Earth has a satellite, “a moon” and “a satellite”
are both designators (designating the same object, as it happens).

determinant The set of attributes on the left side of an FD or MVD.
Contrast dependant.

Example: See dependant.

difterence (Without inberitance) Let relations »1 and 72 be of the same
type 7. Then (and only then) the expression I MINUS 72 denotes the
difference between I and 72 (in that order), and it returns the relation
of type T with body the set of all tuples ¢ such that # appears in 7/ and
not in 72. Note: The relational difference operator differs in certain
respects from the mathematical or set theory operator of the same

name, q.v.; in fact, it’s a special case of semidifference, q.v.

Example: 'The expression S{CI'TY} MINUS P{CI'TY} denotes the
difference between (a) the relation that’s the projection on {CITY} of

the current value of relvar S and (b) the relation that’s the projection
on {CITY} of the current value of relvar P (in that order). That

difference 1s a relation » of type RELATION {CITY CHAR}.
Moreover, if the current values of relvars S and P are s and p,
respectively, then the body of that relation 7 consists of all tuples of the
form <c> that appear in s{CI'TY} and not p{CI'TY}—meaning ¢ is a
current supplier city that isn’t also a current part city. Note that the
expression S{CI'TY} MINUS P{CI'TY} is logically equivalent to the
expression S{CITY} NOT MATCHING P{CITY}—or to either of

the simpler expressions S5{CI1Y} NOT MATCHING P and (S NO'T
MATCHING P) {CITY}, come to that. (NOT MATCHING is
Tuatorial D syntax for the semidifference operator, q.v.)

difference (bag theory) See bag.

difference (set theory) The difference between two sets s/ and 52 (in

that order), sI - 52, is the set of all elements x such that x 1s an element
of s1 and not an element of s2. Note: The difference sI - s2 1s also
known as the relative complement (q.v.) of 52 with respect to s1.

direct image A somewhat unsophisticated style of implementation,
found in most if not all of today’s mainstream database products, in
which what’s physically stored is effectively just a direct image of what
the user logically sees. In other words (and simplifying slightly), relvars
are stored as physical files, and tuples and attributes are stored as

records and fields within those files. Contrast TransRelational!M

Model.

direct proof See proof.
direct reasoning See mzodus ponens.

directed relationship A relationship (in the sense of the third
definition of that term, q.v.) from one set to another.

discernibility Distinguishability. See indiscernibility; see also Principle of
[dentity of Indiscernibles.

discriminant See discriminated union (set theory).

discriminated union (set theory) Let s/ = {al,a2,....amn} and s2 =
(b1,b2,....bn} be sets. Define sets sI "and s2"as follows:

sl'" = {<al, 1>,<az,1>,...,<am, 1>}

s2'

{<bl,2>,<bz,2>,...,<bn,zZ>}

Observe that (a) s/ "and s2"are sets of ordered pairs, one such pair for
each element of sI or s2, as applicable; (b) the first element of each

such pair is an element from s or 52, as applicable; and (c¢) the second
element of each such pair (the discriminant) 1s either 7 or 2, indicating
which of sI and s2 that first element is taken from. Then the
discriminated union of sI and s2 is the set theory union—the disjoint
union, in fact—of s/ "and s2".

Note: 'The foregoing definition is essentially the one given in the
literature. However, it suffers from the weakness—surely unintended,
and certainly undesirable—that the operator thus defined won’t be

commutative, unless there’s some systematic way of assigning
discriminants that guarantees that s/ and s2 are assigned discriminants
1 and 2, respectively, and not the other way around. Be that as it may,
note too that the operator as here defined 1s dyadic; however, it would
clearly be possible to detine an n-adic version it desired.

Caveat: Be aware that discriminated union is sometimes referred to
in the literature, rather unfortunately, as disjoint union. That is (to
spell the point out), the discriminated union of s/ and 52 is sometimes
referred to in the literature as the disjoint union of s/ and s2 as such,
instead of as the disjoint union of s "and 52

disjoint 1. (Of bags or sets) Having no elements in common. 2. (Of
relations all of the same type) Having no tuples in common. 3. (Of types)
Having no value in common. Note: Distinct types are always disjoint,
except possibly if inheritance is supported (see Part II of this

dictionary). Contrast overlapping.

disjoint INSERT Loosely, an operator, D_INSER'T (shorthand for a
certain relational assignment), that inserts specified tuples into a
specified relvar, just so long as the tuples in question don’t already
appear in that relvar. The syntax 1s:

D INSERT R rx

Here R is a relvar reference (syntactically, just a relvar name) and rx is
a relational expression (denoting some relation 7 of the same type as
R), and the eftect is to insert the tuples of 7 into R, just so long as none
of those tuples is already present in R. In other words, the D_INSERT

invocation just shown 1is shorthand for the tollowing explicit

assignment:

R = R D UNION rx

It follows that an attempt via D_INSERT to insert a tuple that’s
already present is an error (contrast INSER'T).

Example: The statement

D INSERT SP RELATION
{ TUPLE { SNO SNO('S3') , PNO PNO('P1l') , QTY
QTY (150) }
TUPLE { SNO SNO('S4') , PNO PNO('P5') , QTY
QTY (400) } }

is shorthand for the following relational assignment statement:

SP := SP D UNION RELATION
{ TUPLE { SNO SNO('S3') , PNO PNO('Pl') , QTY
QTY (150) }
TUPLE { SNO SNO('S4') , PNO PNO('P5') , QTY

QTY (400) } } 7

Given the sample values shown in Fig. 1, this assignment will fail—
more precisely, the implicit D_UNION invocation will fail—and no
updating will be done, because the tuple <S4,P5,400> already appears
in relvar SP.

disjoint union A variant on the relational union operator, q.v., in
which the operand relations are required to be disjoint, q.v. In other
words, if (a) relations 71 and 72 are of the same type 7, and (b) they
have no tuples in common, then (and only then) the expression 71
D_UNION 72 denotes the disjoint union ot I and 72, and 1t reduces
to I UNION 72. Note: An n-adic version of this operator could also
be defined (and is so, in Tutorial D). Note too that a version of the
operator could be defined to apply to sets in general as well as to
relations in particular; in fact, elsewhere in this dictionary, such an
operator 1s indeed assumed to exist. Note finally that disjoint union

can also be used as an aggregate operator, q.v. Contrast discriminated

union.

Example: Consider the expression S{CI'TY} D_UNION P{CITY]}.
It the current values of relvars S and P are as shown in Fig. 1, this
expression will raise a run-time error, because some supplier cities are

also part cities. If such were not the case, however, the expression

would then be logically equivalent to S{CI'TY} UNION P{CITY].

disjunct A predicate that’s ORed with zero or more others.

disjunction 1. (Dyadic case) It and only if p and ¢ are predicates, their
disjunction (p) OR (g) is a predicate also. Let (7n) OR (izg) be an

invocation of that predicate, where 7p and 7¢ are invocations of p and ¢,

respectively. 'Then that invocation (7p) OR (z9) evaluates to 1T RUE 1t
and only if at least one of 7p and 7¢ evaluates to TRUE. Note: The
parentheses enclosing p and ¢ in the predicate, and ip and ig in the
invocation, might not be needed in practice. 2. (N-adic case) Let pl, p2,
.., pn (n 2 0) be predicates; then (and only then) the disjunction OR
{nl,p2,...,on} 1s detined to be shorthand for the expression (p1) OR (p2)
OR ... OR (pn). (Note that this expression evaluates to FALSE if n = 0,
because FALSE is the identity with respect to OR.) See also existential

quantifier.

disjunctive normal form A predicate is in disjunctive normal form,
DN, if and only if it’s of the form (1) OR (p2) OR ... OR (pn), where
none of the disjuncts (pl), (»2), ..., (pn) involves any ORs—more
precisely, where each of pl, p2, ..., pn is a conjunction of literals (see
literal, second definition).

DISTINCT See SELECT expression.
distinct type (SQL) See user defined type (SQL).

distributivity 1. (Monadic over dyadic) Let operators Opl and Op2 be
monadic and dyadic, respectively, and assume for definiteness that
they’re expressed in prefix and infix style, respectively. Then Opl
distributes over Op2 if and only if, for all x and y, Opl(x Op2 y) =
(Opl(x)) Op2 (Opl(y)). 2. (Dyadic over dyadic) Let operators Opl and
Op2 both be dyadic, and assume for definiteness that they’re expressed
in infix style. Then Opl distributes over Op2 if and only if, for all «, y,
and z, x Opl (y Op2 z) = (x Opl y) Op2 (x Opl 2).

Examples: 1. (Monadic over dyadic) In ordinary arithmetic,

nonnegative square root (“y”) distributes over multiplication (“*”),

because

V (x*y) = (Nx)* (Ny)

for all x and y. (By contrast, “y” does not distribute over “+”.) In the
same kind of way, restriction distributes over UNION, INTERSECT,
and MINUS in relational algebra. 2. (Dyadic over dyadic) In ordinary

LX)

arithmetic, multiplication (“*”) distributes over addition (“+”), because

x* (y+z)=(x*vyv)+ (x* z)

for all x, y, and z. (By contrast, “+” does not distribute over “*”.) In the
same kind of way, each of UNION and INTERSECT distributes over
the other in relational algebra. Likewise, each of OR and AND

distributes over the other in logic.

DIVIDEBY See GGreat Divide; Small Divide; see also division.

division Over the years several logically distinct relational division
operators (i.e., operators that “divide” one relation by another) have
been defined—so many, in fact, that it’s probably better not to use the
term at all, or at least to state explicitly in any given context which
particular operator is intended. 'T'wo such operators are defined in this
dictionary, the Great Divide and the Small Divide, q.v. Note: Tutorial
D does currently support both of these operators, but they’re in the
process of being dropped, since (as is shown under Great Divide and
Small Divide) their functionality can be obtained by a variety of other,
and psychologically preferable, means.

DK/NF Domain-key normal form.

DNF Disjunctive normal form.

domain lype. Note: Earlier relational writings favored the term
domain; more recent ones favor the term type instead.

domain (mathematics) See function; relation (mathematics).

domain calculus A form of relational calculus in which the range
variables range over domains (i.e., types) instead of relations and thus
denote values from those domains. Note: Domain calculus and tuple
calculus, q.v., are expressively equivalent, because for every expression

of the former there’s a logically equivalent expression of the latter and

vice versa. In fact, they’re both relationally complete, q.v.

Example: Here’s a domain calculus formulation of the query “Get
supplier names for suppliers who supply at least one part” (see tuple
calculus for a tuple calculus analog):

NX RANGES OVER { NAME } ;
SX RANGES OVER { SNO } ;
PX RANGES OVER { PNO } ;

{ NX } WHERE EXISTS SX (EXISTS PX (S { SNO SX , SNAME
NX } AND

sP { SNO SX , PNO PX
Po) o)

In stilted English: “Get names NX where there exist a supplier number
SX and a part number PX such that a tuple with supplier number SX
and supplier name NX appears in relvar S and a tuple with the same
supplier number SX and part number PX appears in relvar SP.” As you
can see, this particular example 1s somewhat clumsier than its tuple
calculus counterpart (see tuple calculus), but there are cases where the

reverse 1S true.

domain check override An ad hoc and logically flawed—and

therefore deprecated—mechanism for performing comparisons
between values of different types. (It’s tlawed because it’s based on a
confusion over the logical difference between types and
representations.)

domain constraint See domain-key normal form.

domain-key normal form The “ultimate” normal form, in the
following special (and limited) sense: Relvar R 1s in domain-key normal
form (DK/NF) it and only 1f every single-relvar constraint that holds
in R is implied by the domain and key constraints that hold in R, where
(a) the phrase “every single-relvar constraint” includes but isn’t limited

to FDs and JDs, q.v., in particular, and (b) a “domain constraint” in
this context is a constraint to the effect that values of a given attribute
are taken from some prescribed set of values—for example, a
constraint on relvar S to the effect that STATUS values must be in the
range 1-100 inclusive. Every DK/NF relvar is in SNF, though not
necessarily in 6INF. Nore: A relvar in DK/NF is guaranteed to be free
of insertion and deletion anomalies as defined elsewhere in this
dictionary; however, the concept is mainly of academic interest,
because relvars can easily be fully normalized—i.e., in SNF or even

6INF—and still not be in DK/NF. In other words, DK/NF isn’t always
achievable. What’s more, the question “Exactly when can 1t be

achieved?” has still not been answered.

Example: As noted under Boyce/Codd normal form, with the
normal forms it’s often more instructive to show a counterexample
rather than an example per se. Suppose, therefore, that shipments are
subject to a constraint to the effect that odd numbered parts can be
supplied only by odd numbered suppliers and even numbered parts

only by even numbered suppliers. (1his example 1s very contrived, of
course, but it suffices for the purpose at hand.) Then that constraint is
clearly not implied by the domain and key constraints that hold in
relvar SP, and so the relvar 1sn’t in DK/NF; yet it’s certainly in 6NF.

domain of discourse Same as universe of discourse.
domain relational calculus Domain calculus, q.v.

dot qualification In tuple calculus and languages based on it, a dot
qualified name 1s an expression of the form R.4, where R is the name
of a range variable and A4 is the name of an attribute of the relation 7
over which R ranges. Such an expression serves as an attribute
reference, q.v.; it denotes the value of attribute A (or possibly attribute
A as such) within the particular tuple of 7 to which R currently refers.
Dot qualitication is used for disambiguation purposes in tuple calculus
—also in SQL—but not in domain calculus or relational algebra (these
latter use attribute (re)naming and/or name scoping to achieve an
equivalent effect). Note: Since i1t’s directly based on relational algebra,
Tuatorial D 1in particular has no dot qualitfication.

Example: 'The tollowing tuple calculus formulation of the query
“Get suppliers who supply at least one part” makes use of two dot

qualified names, SPX.SNO and SX.SNO:

SX RANGES OVER { S } 7
SPX RANGES OVER { SP }

{ SX } WHERE EXISTS SPX (SPX.SNO = SX.SNO)

Here for comparison is a relational algebra (Tutorial D)

formulation of the same query:

S MATCHING SP

The “matching” here is done on the basis of attribute SNO (since that

attribute is the only one common to relvars S and SP). See semijoin.
double arrow See multivalued dependency.

double arrow out of An MVD of the form A —— B is sometimes
referred to, informally, as “a double arrow out ot A” (or, even more
informally, as a double arrow out of the attributes constituting A—
especially if A is of degree one).

double bang Same as bang bang.
double negation (Logic) Same as involution.

double underlining A convention used in pictures like Fig. 1 for
indicating or highlighting primary key attributes. To elaborate, there
are two cases to consider: (a) The relation depicted is a sample value
for some relvar R (this case is illustrated by Fig. 1); (b) the relation
depicted 1s a sample value for some relational expression 7x, where 7x 1s

something other than a simple relvar reference (i.e., just the pertinent
relvar name, syntactically speaking). In the first case, double
underlining simply indicates that a primary key PK has been declared
for R and the pertinent attribute is part of PK. In the second case, 7x
can be thought of as the detining expression for some temporary relvar
R (equivalently, it can be thought of as a view defining expression and
R as the corresponding view); then double underlining indicates that a
primary key PK could in principle be declared for R and the pertinent
attribute 1s part of PK.

DRC Domain relational calculus.

drop See data definition operator.

dual 1. (Logic) The duals of AND, OR, TRUE, and FALSE are OR,
AND, FALSE, and TRUE, respectively (NO'T is its own dual). More

generally, let exp be a logical expression involving no connectives other

than NO'T, AND, and OR, and let exp’ be obtained from exp by
replacing every occurrence of AND, OR, TRUE, and FALSE by its
dual; then exp and exp’are duals of each other. Note: Since every logical

expression is logically equivalent to one involving no connectives other
than NO'T, AND, and OR, it follows that every logical expression has
a dual. Note too that logical expressions expl and exp2 are logically
equivalent if and only if their duals expl” and exp2’ are logically

equivalent. 2. (Set theory) The duals of intersection, union, the
universal set, and the empty set are union, intersection, the empty set,
and the universal set, respectively (complement is its own dual). More
oenerally, let exp be a set theory expression involving no operators
other than complement, intersection, and union, and let exp’ be
obtained from exp by replacing every occurrence of intersection,
union, the universal set, and the empty set by its dual; then exp and exp’
are duals of each other. Note: Since every set theory expression is
logically equivalent to one involving no operators other than
complement, intersection, and union, it follows that every set theory
expression has a dual. Note too that set theory expressions expl and
exp2 are logically equivalent if and only if their duals expl’and exp2are
logically equivalent. See also Duality Principle.

dual mode principle The principle that any relational operation that
can be invoked interactively can also be invoked from an application
program and vice versa.

Duality Principle 1. (Logic) Let exp be a tautology of the tform p = ¢,
and let exp’ be obtained from exp by replacing every appearance of
AND, OR, TRUE, and FALSE by its dual, q.v.; then exp’ is a
tautology. 2. (Set theory) Let exp be a theorem of the form p = ¢, and let
exp’” be obtained from exp by replacing every appearance of
intersection, union, the universal set, and the empty set by its dual,
q.v.; then exp’is a theorem.

Examples: Each of De Morgan’s Laws (q.v.) is a tautology, and each
is the dual of the other.

DUM Shorthand for TABLE DUM.

duplicate Let 2 and #'be appearances (q.v.) in some context of values v
and v, respectively. Then 2 and 2" are duplicates of each other 1f and

only if v and v"are equal (in other words, if and only if v and v are the

very same value). Note: It should be clear from this detinition that the
well known dictum to the effect that no relation ever contains
duplicate tuples really means no relation ever contains duplicate
appearances ot the same tuple—though we stay with the less precise
formulation elsewhere in this dictionary (for the most part, at any
rate), for reasons of familiarity. Observe that since (a) relations never
contain duplicate tuples and (b) every relational operation yields a
relation, the DBMS is required to eliminate redundant duplicate tuples
—meaning, more precisely, redundant appearances of the same tuple
—trom the result of any such operation, if such duplicates would
otherwise appear (i.e., as artifacts of the algorithm used to implement

the operation in question).

Examples (duplicate elimination): Given the sample values shown in
Fig. 1, the projection on {CITY} of the current value of relvar S has

cardinality three, not five; similarly, the union of (a) the projection on
{CI'TY} of the current value of relvar S and (b) the projection on

{CI'TY} of the current value of relvar P has cardinality four, not eleven.
(Note that projection and union are the only relational operators

defined in this part of the dictionary for which duplicate elimination is
a consideration.)

duplicate elimination Term used ubiquitously to mean what would
more accurately be called duplication elimination. See duplicate.

dyadic Of an operator, having exactly two operands; of a predicate,
being defined in terms of exactly two parameters. Contrast binary.

—————— ¢4 ¢ ———

E/R Entity/relationship.

E/R diagram See entity/relationship diagram.
E/R model See entity/relationship model.

E/R modeling See entity/relationship modeling.
E-relation / E-relvar See RM/T.

EKNF Elementary key normal form.

element See bag; set.

elementary key Let K be a subset of the heading of relvar R. Then K
1s an elementary key for, or of, relvar R it and only if (a) it’s a key for R
and (b) there exists some subset 4 of the heading of R such that the FD

K — A 1s nontrivial and 1rreducible. See elementary key normal form.

Examples: 1. Suppose relvar SP has, instead of the usual QTY
attribute, an attribute CITY, representing the city of the applicable
supplier. The sole key of this revised version of SP is still {SNO,PNO};
however, it’s not an elementary key, because the only nontrivial FD
that holds with that key as determinant is {SNO,PNO} — {CITY},
which 1sn’t irreducible (because the FD {SNO} — {CI'TY} also holds).
2. Suppose now that relvar SP has an attribute CI'TY (supplier city) as
well as—not instead of—the usual QTY attribute. The sole key i1s still
{SNO,PNO}. Now, however, that key is elementary, because the FD
{SNO,PNO} — {QTY}, which certainly holds, is both nontrivial and

irreducible.

elementary key normal form Relvar R is in elementary key normal
form (EKINF) 1f and only if, for every nontrivial FD X — Y that holds
in R, (a) X 1s a superkey or (b) ¥ is a subkey of some elementary key
(q.v.). Every EKNF relvar is in 3NF.

Example: As noted under Boyce/Codd normal form, with the

normal forms it’s often more instructive to show a counterexample
rather than an example per se. Suppose, theretore, that relvar SP has,
instead of the usual QTY attribute, an attribute SNAME, representing
the name of the applicable supplier; suppose also that supplier names
are necessarily unique (i.e., no two distinct suppliers ever have the
same name at the same time). Then this revised version of SP has two
keys, {SNO,PNO} and {SNAME,PNO}. However, these keys aren’t
elementary keys, because the only nontrivial FDs that hold with one of
these keys as determinant are {SNO,PNO} — {SNAME} and

{SNAME,PNO} — {SNOY}, and these FDs are both reducible (in both
cases PNO can be dropped from the determinant without loss). So the

relvar 1s subject to two nontrivial FDs, {SNO} — {SNAME} and
{(SNAME} — {SNO}, in which the determinant isn’t a superkey and

the dependant isn’t a subkey of an elementary key. So this version of
relvar SP isn’t in EKNF (though it is in 3NF).

embedded dependency A dependency that’s satisfied by some
projection of some relation but not by the relation itself, or—more
important—a dependency that holds in some projection of some relvar
but not in the relvar itself. Note: It F 1s an FD that holds in some
projection of relvar R, then F certainly holds in R itself; thus,

embedded dependencies aren’t FDs, by definition.

Example: Consider relvar CTXD, with attributes C (course), T
(teacher), X (textbook), and D (days) and predicate Teacher T spends D
days with textbook X on course C. Let the sole key for that relvar be
{CT,X}. Assume also that for a given course, the set of teachers and
the set of textbooks are quite independent of each other. Then CTXD
is in 6NF—it can’t be nonloss decomposed at all, other than trivially—

but its projection on {C,T,X} is subject to the embedded multivalued
dependencies {C} -»— {1} and {C} -»— {X}.

empty (Of a bag or set) Having no elements.

empty bag The bag with no elements (note that there’s exactly one
such); written { } or &. Note: Of course, the empty bag and the empty
set, q.v., are logically indistinguishable—though it B and S are
variables of some bag type and some set type, respectively, they won’t
“compare equal” even if their values are the empty bag and the empty
set, respectively. (In fact, of course, such a comparison wouldn’t even

be syntactically legal, precisely because the comparands are of different

types.)

empty database 1. A database containing only empty relvars. 2. A
database containing no relvars at all. (Of course, the second definition

here is just a special case—but an important special case—of the first.)

empty foreign key A foreign key of degree zero. Note that the
corresponding target key will necessarily be of degree zero also (see
empty key), and the pertinent referential constraint—trom relvar R2 to
relvar R1, say—will therefore be satistied it and only if either RI is
nonempty or R2 is empty or both. Note: Either or both of R1 and R2
here might in fact be “hypothetical views,” in the sense of that term

explained under, e.g., foreign key constraint.

empty heading The heading of degree zero (note that there’s exactly

one such).

empty key A key of degree zero. Note that a relvar with an empty key
can’t have any other keys apart from the empty one, thanks to the key
irreducibility requirement, q.v. Note too that such a relvar can’t
contain more than one tuple, thanks to the key uniqueness
requirement, q.v. Declaring relvar R to have an empty key is thus a
convenient way of stating a cardinality constraint, q.v., to the effect
that R must never contain more than one tuple.

empty possrep A possrep with no components. If type 7 has an empty
possrep, then (a) 7" can’t have any possreps apart from that empty one;
(b) the associated set of THE_ operators is also empty, a fortiori; (c) T
has exactly one value, v say; (d) T has exactly one associated—and
necessarily niladic—selector operator, S say; and (e) the sole legal
invocation of S, viz., S (), returns that value v.

empty range See existential quantifier; UNIQUE; universal quantifier.

empty relation Shightly imprecise term used to refer to a relation with
an empty body. Given a relation type 7, there’s exactly one empty
relation of that type: viz., the relation of type 7 that contains no tuples
at all. Note that two relations can both be empty and yet not equal; to
be specific, they’ll be equal if and only if they’re of the same type.
Contrast universal relation.

Example: Suppose relvars S and P are both currently empty; that is,
their current values s and p are both empty relations. Then s and p
aren’t equal, even though their bodies are equal, precisely because
they’re of different types (equivalently, because their headings aren’t
equal).

empty relvar A relvar whose current value i1s an empty relation.

empty restriction A restriction of a given relation 7 that contains no
tuples (i.e., is equal to » WHERE FALSE); especially, a restriction of
the form » WHERE ¢, where ¢ 1s a contradiction, q.v. Note: The term
1s also used of a relvar.

Examples: Given the sample values in Fig. 1, the expressions S
WHERE STATUS =25 and S WHERE STATUS = STATUS both
denote empty restrictions (the second necessarily so, because STATUS

+ STATUS is a contradiction).

empty set The set with no elements (note that there’s exactly one
such); written { } or &. The empty set is a subset of every set. All
theorems, properties, definitions, etc., that apply to sets in general
apply to the empty set in particular; for example, relation headings and
bodies are both defined to be sets (of attributes and tuples,
respectively), and so each is allowed to be the empty set in particular.

See nullology.

empty tuple lhe tuple of degree zero (note that there’s exactly one
such).

empty type (Without inberitance) A type with no values. This concept
1s of crucial importance if type inheritance 1s supported—see Part II of
this dictionary—but perhaps not otherwise.

encapsulated Scalar—though it’s not always obvious from the

literature (especially the OO literature) that scalar 1s indeed what the
term means. For example, here’s a typical definition (it’s taken from
James Martin and James J. Odell, Object-Oriented Methods: A
Foundation, Prentice-Hall, 1998):

[Encapsulation is a] protective encasement that permits access to an
object’s data only via specifically assigned operations. With

encapsulation, an object’s interface is stated in terms of its permissible

operations. All other implementation details about the object are hidden
from the user. This is why the term encapsulation is often used
interchangeably with information hiding.

And here’s another (this one is from Douglas K. Barry, The Object
Database Handbook: How to Select, Implement, and Use Object-Oriented

Databases, Wiley Publishing, 1996):

[Encapsulation is] the separation of the external aspects of an object

from the object’s internal implementation.

As you can see, the emphasis in both of these definitions is on what the
conventional database literature would call data independence, q.v.

(physical data independence, to be specific). But such data
independence 1s intrinsic to the very notion of scalar data, so it’s not

clear why there’s so much emphasis—at least in some circles—on the

concept of encapsulation as such.

Note: The term encapsulated is also used, especially in OO contexts,
to refer to the physical bundling, or packaging together, of code and
data (or operator definitions and data representation definitions, to be
a little more precise about the matter). But to use the term in this way
is to mix model and implementation considerations; the user shouldn’t
care, and shouldn’t need to care, whether code and data are physically
bundled together or not.

entity A thing. Note: It’s frequently suggested that there should be a
one to one correspondence between “entities of interest” and tuples in
base relvars. The suggestion 1s hard to sustain, however, given that the
term entities of interest has no precise definition. (Of course, the same is
true of the term entity itself, come to that.)

entity integrity A rule, articulated in certain of Codd’s writings, to the
effect that attributes of primary keys in base relvars don’t allow nulls.
However, since (a) relvars, base or otherwise, don’t necessarily have to
have primary keys at all (see primary key) and (b) rules that apply to
base relvars but not to other kinds are more than a little suspect
anyway (because they violate The Principle of Interchangeability, q.v.), the
entity integrity rule could be, and in fact has been, dropped without
serious loss. We mention it here mainly for historical reasons. In any
case, it refers to a concept, null, that is totally incompatible with the
relational model; it would thus require major revision anyway before

any suggestion that it be kept could be seriously entertained.
entity modeling See semantic modeling.

entity/relationship diagram A picture intended to explicate the

logical or conceptual design of a given database at a level of abstraction
in which many details—in particular, details of the underlying types
and almost all integrity constraints—are omitted. (I’he most important
constraints not omitted are, typically, key and foreign key constraints.)
Such pictures can be helpful in connection with the design process, but
they’re certainly not, as some people seem to think, a total solution to
the design problem.

entity/relationship model A set of conventions for drawing
entity/relationship diagrams, q.v. Note: Actually, there’s no consensus
on exactly what the entity/relationship model consists of—different
writers define it in different ways. Thus, the term is best thought of as
referring to a family of similar but distinct schemes.

entity/relationship modeling Using some form of entity/relationship
model, q.v., as a tool to assist in the database design process.

enumerated type A type whose definition specifies the legal values of
the type by simply enumerating or listing them.

Example: Here’s a Tutorial D definition for a type called
WEEKDAY (irrelevant details omitted):

TYPE WEEKDAY POSSREP

{ WD CHAR CONSTRAINT WD e
{ 'Sun' , 'Mon' , 'Tue' , 'Wed' , 'Thu' , 'Fri' ,
rsatt b} g

EQ Same as EQUIV.
EQD Equality dependency.

equality (Without inberitance) A truth valued or logical operator (“=7).

‘I'wo values are equal 1f and only 1f they’re the very same value; that 1s,
the comparison vl = v2 (where v/ and v2 are values) evaluates to
TRUE it and only if v1 and v2 are in fact the very same value. For
example, the integer 3 is equal to the integer 3 and not the integer 4 or
any other integer (and not to anything else either, for that matter).
Note that it follows from this definition that if v1 = v2 evaluates to
TRUE, then vI and v2 must be of the same type 7. It also follows that
if (a) there exists an operator Op (other than “=” itself) with a
parameter P such that (b) two successful invocations of Op—

invocations that are identical in all respects except that the argument
corresponding to P is the value v] in one invocation and the value v2
in the other—are distinguishable in their effect, then (¢) v1 = v2 must
evaluate to FALSE. Note: The equality operator (which is defined for

every type, necessarily) is also known, especially in logic contexts, as
identity. See also bag membership; duplicate; equivalence; identity;
overloading; set membership; relation equality; tuple equality; and
elsewhere.

equality dependency An expression of the form »x = 7y, where »x and
7y are relational expressions of the same type; it can be read as “The
relations denoted by 7x and 7y are equal” (in other words, they’re one
and the same relation). An important special case is as follows: Let RI

and R2 be relvars, not necessarily distinct. Let X7 and X2 be subsets of
the heading of RI and the heading of R2, respectively, such that there
exists a possibly empty set of attribute renamings on RI that maps X1
into X1, say, where X1 "and X2 contain exactly the same attributes (in

other words, X1 "and X2 are in fact one and the same). Further, let RI
and R2 be subject to the constraint that, at all tmes, (a) every tuple ¢1
in R1 has an X1 'value that’s the X2 value for at least one tuple 2 in R2

at the time 1n question, and (b) every tuple 2 1n K2 has an XZ value
that’s the X1’ value for at least one tuple #I in RI at the time in
question. Then that constraint is an equality dependency (EQD for
short)—very loosely, an EQD “on” RI and R2. Note: EQDs shouldn’t

be confused with equality generating dependencies, q.v.; in fact,

they’re a special case of inclusion dependencies, q.v.

Example: Suppose the suppliers-and-parts database is subject to a
constraint to the effect that every part must be supplied by at least one

supplier:

CONSTRAINT E@DX P { PNO } = SP { PNO } ;
/* every part must be supplied */

This constraint 1s an EQD “on” relvars P and SP (and it’s satistied by
the sample values shown in Fig. 1).

Note: "The comparands in an EQD can be specified by means of
arbitrarily complex expressions. As a consequence, all possible database
constraints (in the more formal sense of that term, q.v.) can in fact be
expressed as equality dependencies! To elaborate, let C be such a
constraint; let s be a set of tuples (all of the same type) that together

violate C; let 7 be the relation whose body 1s 5; and let 7« be a relational
expression denoting 7. Then » must be empty, and C must thus

conceptually be of the form IS_EMPTY (rx). But IS_EMPTY (rx) 1s

logically equivalent to each of the following expressions—

rx { } = TABLE DUM

rx = rx WHERE FALSE

—and each of these expressions is an EQD. (The subexpression 7x{ } in

the first of these equivalent expressions denotes the projection of

relation 7 on the empty set ot attributes. Such a projection evaluates,
necessarily, either to TABLE_DEE, it » is nonempty, or to
TABLE_DUM otherwise.)

equality generating dependency An expression of the form {z1,z2,
...,tn} / a = b; 1t can be read as “If tuples t1, t2, ..., tn appear (in some
oiven relvar at some given time), then # and » must be equal.” Tuples
t1, t2, ..., tn are the premises of the dependency and 2 = & is the
conclusion. Observe that FDs in particular are equality generating

dependencies—not the only possible kind, but the only kind
considered in this dictionary—because they take the basic form “If
certain tuples appear (in some given relvar at some given time), then
certain attributes within those tuples must have equal values.” Note:
Equality generating dependencies should not be confused with equality
dependencies, q.v. Contrast tuple generating dependency.

“_»

equijoin A theta join, q.v., in which theta is “=".

Example: The tollowing expression represents the equijoin of
suppliers and parts on cities:

((S RENAME { CITY AS SC })
TIMES
(P RENAME { CITY AS PC })) WHERE SC = PC

Observe the need to rename at least one of the two CITY attributes
before we can apply the operator TIMES, q.v. (the example renames
them both, for symmetry).

Note: 'The result of an equijoin necessarily has two attributes—SC
and PC, in the example—whose values are equal in every tuple. If one
of those two attributes is projected away and the other then renamed
back to CI'TY, the result is the natural join (q.v.) of suppliers and parts

(so natural join can be defined 1n terms of cartesian product,
restriction, projection, and renaming).

EQUIV 1. A connective, q.v. 2. An aggregate operator, q.v. Note: In
practice, the equivalence connective is often represented by the symbol

(C=13)

=”. For further explanation, see equivalence (sixth and seventh

definitions). Contrast XOR.

equivalence 1. (General) Let x and y be elements of some set, and let
that set be partitioned into a set of equivalence classes, q.v. Then x and
y are equivalent (in symbols, x = y) it and only if they’re members of
the same equivalence class. 2. (Logical) See logical equivalence. 3.
(Truth functional) See truth functional equivalence. 4. (Information) See
information equivalence. 5. (Sets of FDs) Two sets of FDs are
equivalent if and only if each 1s a cover for the other. Noze: Any given

set of FDs always has at least one equivalent set that’s irreducible. See
irreducible, fourth definition. 6. (Connective, dyadic case) 1t and only if p
and ¢ are predicates, the equivalence (p) EQUIV (g) is a predicate also.
Let (zp) EQUIV (7g) be an invocation of that predicate, where 7p and g
are invocations of p and ¢, respectively. 'Then that invocation (i)
EQUIV (ig) evaluates to TRUE if and only it 7p and 74 both evaluate to
TRUE or both evaluate to FALSE. In other words, (p) EQUIV (¢) 1s
equivalent to ((p) IMPLIES (9)) AND ((9) IMPLIES (p)). It’s also

eé_uivalent to NOT ((p) XOR (¢)). Note: 'The parentheses enclosing p
and ¢ in the predicate, and 7p and 7g in the invocation, might not be

needed in practice. For further discussion, see truth functional
equivalence; contrast logical equivalence. 7. (Connective, n-adic case) Let
pl, p2, ..., pn (m 2 0) be predicates. Then (and only then) the
equivalence EQUIV {pl,p2,...,pn} is a predicate also; and 1f i1, ip2, ...,
ipn are invocations of pl, p2, ..., pn, respectively, then the invocation

EQUIV {ipl,ip2,...,ipn} returns TRUE 1f and only it exactly 7 ot the
invocations 1, ip2, ..., ipn return FALSE, where = is even. Caveat:

This detfinition 1s motivated by a desire to preserve associativity; to be
specific, it has the property that the expressions EQUIV {p,EQUIV
(r2,p3}1}, EQUIV {EQUIV {pl,p2},p3}, and EQUIV {pl,p2,p3} are all
truth functionally equivalent. On the other hand, it also has the
property that EQUIV {plp2p3} and NOT (XOR {pl,p2p3}), as this
latter expression is defined in this dictionary, are zot truth functionally
equivalent. It would be possible to come up with a different and
possibly more intuitive definition, according to which the invocation
EQUIV {ipl,ip2,...,ipn} returns TRUE if and only if all » of the
invocations 7pl, ip2, ..., ipn return the same truth value. However, the

two definitions are themselves clearly not equivalent (!); in other
words, they define two logically distinct operators (though they both
reduce to the simple dyadic case if 7 = 2, as is surely to be desired).

equivalence class A subset s'of some given set s with the property that
the elements of 5" are (a) all equivalent to one another, under some
stated definition of equivalence, and (b) not equivalent to any other
element of s, under that same definition of equivalence. (Note the
relevance of this concept to the relational grouping operation, q.v.; see
also image relation.) Observe that (a) equivalence classes are pairwise
disjoint, and (b) together, they partition the values in the given set s.
For a more formal definition, see equivalence relation. See also

canonical form.

Examples: 1. Let s be the set of all positive integers, and define
positive integers x and y to be equivalent if and only if they have the
same number of digits in conventional decimal notation (no leading
zeros). T'hen the subset of s containing all one-digit integers is an

equivalence class under this definition of equivalence; so too are the
subsets consisting of all two-digit integers, all three-digit integers, and
so on. 2. Consider the set of parts currently represented by relvar P.
Define two such parts to be equivalent if and only if they’re of the
same color. Then the set of all red parts currently represented in P is

an equivalence class under this definition of equivalence; so too is the

set of all blue parts, and so is the set of all yellow parts, and so on. 3.

Consider the set of tuples in the current value of relvar SP. Define two
such tuples to be equivalent if and only if they contain the same SNO
value. Then the set of all such tuples for supplier number S1 is an
equivalence class under this definition of equivalence; so too is the set
of all such tuples for supplier S2, and so 1s the set of all such tuples for
supplier S3, and so on.

equivalence relation Let » be a binary relation. Then 7 i1s an
equivalence relation if and only if it’s reflexive (q.v.), symmetric (q.v.),
and transitive (q.v.). Further, let x be a value such that the tuple <x,y>
appears in 7 for some y. Given that value x, then, the set of all such

corresponding values y is an equivalence class with respect to 7
namely, that specific equivalence class that corresponds to the given
value x (see equivalence class). Observe that if 7y is the set of all y values
appearing 1n 7, then every value in 7y appears in exactly one

equivalence class with respect to »—in other words, as noted under

equivalence class, equivalence classes are pairwise disjoint, and

together they partition the pertinent set of values.

essential tuple Tuple 7 is essential in relation 7 if and only if it’s not
redundant in 7. Contrast redundant tuple.

essential tuple normal form Relvar R 1s in essential tuple normal

form (ET'NF) 1f and only 1f every relation 7 that’s a legitimate value for
R 1s such that every tuple is essential in 7—equivalently, if and only if
(a) R 1s in BCNF and (b) for every JD 7 that holds in R, at least one
component of 7 is a superkey for R. Every ETNF relvar is in 4NF.
Also, it’s easy to see that if relvar R is in BCNF and has at least one
simple key (q.v.), then it’s in ET'NF.

Example: As noted under Boyce/Codd normal form, with the
normal forms it’s often more instructive to show a counterexample
rather than an example per se. Consider, therefore, relvar SPJ, with
attributes SNO (supplier number), PNO (part number), and JNO
(project number), and predicate Supplier SNO supplies part PNO to
project FNO. Let that relvar be all key (i.e., let no proper subset of the

heading be a key). Let the relvar also be subject to the constraint that it
(a) supplier sno supplies part pno and (b) part pno 1s supplied to project
jno and (c) project jno is supplied by supplier szo, then (d) supplier sno
supplies part pno to project jno. Then SPJ is equal to the join of its

projections on {SNO,PNO}, {PNO,JNO}, and {JINO,SNO}—in other
words, the join dependency

ﬂ{{SND,PNO},{PNO,JNO},{JNO,SNO}}

holds in SPJ—and so that relvar can be nonloss decomposed into those
three projections. Since no component of that JD is a superkey (the

sole superkey being the entire heading), relvar SPJ isn’t in ETNF,
though it is in 4NF.

Note: The ETNF definition refers to “every JD that holds in R.” In
checking whether some relvar R is in fact in ETNEF, however, it’s easy

to see that it’s sufficient just to check those JDs that have been
explicitly declared for R. In fact, it’s sufficient just to check those JDs

that have been explicitly declared for R and are irreducible (see
irreducible JD).

essentiality Let DM be a data model in the first sense of that term,
q.v., and let DS be a data structure supported by DM. Let dm be a data
model in the second sense of that term, constructed in accordance with
the features provided by DM, and let dm include an occurrence ds of
DS. Let db be a database conforming to dm. If removal from db of the
data corresponding to ds would cause a loss of information from db,

then ds is essential in dm (and, loosely, DS is essential in DM).

Examples: 1. Consider a hierarchic analog of the suppliers-and-

parts database, in which (a) suppliers are represented by records with
fields SNO, SNAME, STATUS, and CITY, (b) shipments are

represented by records with fields SNO, PNO, and QTY, and (c)
there’s a hierarchic “link” connecting each supplier record to the
corresponding shipment records. (The “link” can be thought of as a
pointer chain that starts at the pertinent supplier record, runs through
all of the corresponding shipment records in some order, and finally
connects back to the supplier record in question.) Then that link i1s
inessential—there’s no information that can be obtained from the
database using it that can’t alternatively be obtained without it. 2.
Suppose the toregoing hierarchic design is moditied in such a way as to
remove the SNO field from the shipment records, while leaving

everything else unchanged. Then the link is now essential (for without
it, there’s no way to tell which shipments correspond to which
suppliers).

Note: Hierarchic and other nonrelational systems provide
numerous different ways of representing data, any or all of which can
be used “essentially”—links and pointers, record ordering, repeating

ogroups, and so forth. By contrast, relational systems provide just one
way (viz., relations themselves), and so relations themselves are the sole
essential information carrier in relational systems. Now, if data model
DM provides n distinct ways, essential or inessential, of representing
information, then it’s axiomatic that DM must also support » distinct
sets of operators. However, there’s nothing useful that can be done if #
> 1 that can’t be done if » = 1 (and #» = 1 1s the minimum, of course).
And for the relational model, we do have » = 1; that 1s, the relational
model supports just one data structure, the relation itself, and that data
structure is clearly essential, since if it were removed that model would

P

be incapable of representing anything at all. However, since the

relational model is in fact capable of representing absolutely any data
whatsoever, any data model that supports relations in some shape or
form as well as some additional data structure DS must be such that
either relations are inessential or DS is. But if relations are inessential,

then DS must be effectively equivalent to relations anyway!—in which
case it could be argued that it’s really DS that’s inessential, not
relations. What’s more, a data model that doesn’t “support relations in
some shape or form” is unlikely in the extreme; even SQL could be
said to support relations if various SQL idiosyncrasies—nulls,
anonymous columns, duplicate rows, etc.—are avoided. Thus, for
example, pointers (object IDs), bags, lists, and arrays could all be
removed from the so called object model without any loss of

representational power. Indeed, the fact that they’re not removed is
prima facie evidence that “the object model” fails to distinguish

properly between model and implementation issues.
E'TNF Essential tuple normal form.

eventual consistency See consistency.

EVERY Keyword sometimes used as an alternative spelling for the
aggregate operator AND (see aggregate operator).

example value (Without inberitance) Let T be a scalar type other than
omega (see Part Il of this dictionary). Then The Third Manifesto
requires an example value of type 7 to be specified when 7 1s defined,
in order to ensure that 7" 1s nonempty. In the case of user defined
types, Tutorial D uses the keyword INIT for this purpose, as here:

TYPE WEEKDAY ... INIT (WEEKDAY ('Sun')) ;

Use of the keyword INIT here reflects an assumption that, in practice,
otherwise uninitialized variables of type T will almost certainly be
initialized to the example value defined for type T

Note: In type definitions elsewhere in this dictionary, example
values would mostly just be a distraction and are therefore usually
omitted.

EXCEPT SQL analog of MINUS.

exclusive OR 1. (Dyadic case) If and only 1f p and ¢ are predicates, their
“exclusive OR” (p) XOR (¢) 1s a predicate also. Let (zp) XOR (zg) be an
invocation of that predicate, where 7p and 7g are invocations of p and ¢,
respectively. Then that invocation (7p) XOR (ig) evaluates to TRUE if
and only if exactly one of 7p and 74 evaluates to TRUE. In other words,
() XOR (g) 1s equivalent to NOT((p) EQUIV (g)). Note: The
parentheses enclosing p and ¢ in the predicate, and 7p and 74 in the
invocation, might not be needed in practice. 2. (N-adic case) Let pl, p2,
..., pn (m 2 0) be predicates. Then (and only then) the “exclusive OR”
XOR {plp2,...,pn} 1s a predicate also; and it pl, p2, ..., ipn are

invocations ot pl, pZ, ..., pn, respectively, then the mvocation XORKR
{inl,ip2,...,ipn} returns TRUE if and only if exactly 7 of the invocations
ipl, ip2, ..., ipn return TRUE, where 7 is odd. Caveat: This detinition
is motivated by a desire to preserve associativity; to be specific, it has
the property that the expressions XOR {p1,XOR {p2,p3}}, XOR {XOR
{rl,p2} p3}, and XOR {pl,p2,p3} are all truth functionally equivalent.
On the other hand, it also has the property that XOR {p1,p2,p3} and
NOT (EQUIV {pl,p2p3}), as this latter expression is defined in this
dictionary, are not truth functionally equivalent. It would be possible to
come up with a different and possibly more intuitive definition,
according to which the invocation XOR {ip1,ip2,...,ipn} returns TRUE
if and only if exactly one of the invocations #pl, ip2, ..., ipn returns
TRUE. However, the two definitions are themselves clearly not

equivalent; in other words, they define two logically distinct operators
(though they both reduce to the simple dyadic case if n = 2, as is surely
to be desired).

exclusive union 1. (Dyadic case) Let relations #1 and 72 be of the same
type 1. Then (and only then) the expression 71 XUNION 72 denotes
the exclusive union of 71 and 72, and it returns the relation of type T
with body the set of all tuples 7 such that # appears in exactly one of 71

and 72. 2. (N-adic case) Let relations 71, 72, ..., vn (n > 0) all be of the
same type 7. Then (and only then) the expression XUNION
r1,72,...,rn}denotes the exclusive union of 71, 2, ..., #n, and it returns
the relation of type 7" with body the set ot all tuples # such that ¢
appears in exactly » of 1, 2, ..., ¥n, where m 1s odd (and possibly

different for different tuples 7). Note: It n = 0, (a) some syntactic
mechanism, not shown here, 1s needed to specity the pertinent type T
and (b) the result 1s the empty relation, q.v., of that type. Note too (a)

that exclusive union (which 1s also known as symmetric difterence) 1s to

exclusive OR as union is to inclusive OR, and (b) that the relational

exclusive union operator differs in certain respects from the
mathematical or set theory operator of the same name, q.v. Note
finally that exclusive union can also be used as an aggregate operator,

q.v.
Example: 'The expression S{CI'TY} XUNION P{CITY} denotes

the exclusive union of the projections on {CI'TY} of the relations that
are the current values of relvars S and P. That exclusive union is a
relation 7 of type RELATION {CITY CHAR}. Moreover, if the
current values of relvars S and P are s and p, respectively, the body of
that relation 7 consists of all tuples of the form <¢> that appear in either
s{CI'TY} or p{CITY} but not both—meaning ¢ is either a current
supplier city that’s not a current part city or vice versa. Note that the
expression S{CI'TY} XUNION P{CI'TY} is logically equivalent to the
expression (S{CITY} MINUS P{CI'TY}) UNION (P{CI'TY} MINUS
S{CI'TY}).

exclusive union (bag theory) See bag.

exclusive union (set theory) The set of all elements appearing in
either but not both of two given sets. Note: The foregoing definition
could be extended to apply to any number of sets, thus: The exclusive
union of sets s1, s2, ..., sn (n > 0) 1s the set of all values v such that v
appears in exactly m of sl, s2, ..., sn, where m 1s odd (and possibly
different for different values v).

existential quantifier Let p(x) be a predicate with a parameter x; then
EXISTS x (p(x)) 1s a predicate, and it means “T'here exists at least one
argument value v that can be substituted for the parameter x such that

p(v) evaluates to 1 RUE.” In this example, EXIS 1S x 1s an existential
quantifier, and x 1s an existentially quantified bound variable, q.v. Note:
Some writers refer to EXISTS by itself as the quantitier; the literature
is not consistent on this point. More important, note that if v1, v2, ...,
vn are all of the possible argument values in the foregoing example,
then EXISTS x (p(x)) is detined to be shorthand for OR {(p(v1)),
(p(©2)),...,(p(vn))} (see disjunction, second definition). Observe in
particular that this expression evaluates to FALSE it » = 0 (1.e., if the
bound variable x has an empty range), because FALSE is the identity
with respect to OR. Observe further that the expression EXISTS x
(p(x)) 1s logically equivalent to the expression NOT (FORALL w«
(INOT (px)))). See also EXISTS; UNIQUE; contrast universal

quantifier.

Examples: See bound variable; domain calculus; free variable; tuple

calculus; and elsewhere.

EXISTS See existential quantifier. Note: In the literature (but not in
this dictionary), EXISTS is often represented by a backward E, thus: 3.

The keyword is also sometimes used as an alternative spelling for the

aggregate operator OR (see aggregate operator). For example, the
aggregate operator imvocation OR (§,STATUS > 10), which means

“At least one supplier has status greater than 10,” might alternatively,
and intuitively very reasonably, be written thus: EXISTS (S, STATUS

> 10).

expanded cartesian product See cartesian product.

explicit dependency A dependency—e.g., an FD or JD, or some more

oeneral constraint—that’s explicitly declared for some relvar, and 1s
thereby required to hold in that relvar. Contrast implicit dependency:.

explicit dynamic variable See instance.
expressible database See Principle of Database Relativity.

expressible relation Any relation that, given a particular set of
relations, either i1s contained in that set or can be derived from those
that are (see derived relation).

expressible relvar Any relvar that, given a particular set of relvars,
either 1s contained in that set or can be derived from those that are (see
derived relvar).

expression (Without inberitance) In a programming language, a read-
only operator invocation; a construct that denotes a value; in effect, a
rule for computing, or determining, the value in question. Every
expression 1s of some type—namely, the type of the value it denotes.
Literals (q.v.), constant references (q.v), and variable references (q.v.)
are all considered to be read-only operator invocations and thus all
constitute legal expressions. See also closed expression; open expression;
contrast statement.

Examples: X+Y 1s an expression; in fact, it’s an invocation of the
&G M

operator “+”, and it denotes the value that’s the sum of the current
values of the variables X and Y. By contrast,

L= X+ Y

1S a statement; it assigns the value denoted by the expression X+Y
appearing on the right side to the variable Z referenced on the left
side. Note: In both of the foregoing examples, X and Y are variable
references and thus themselves constitute (sub)expressions in turn.

expression transformation Transforming a given expression into

another expression that's logically equivalent to the given expression
and thus denotes the same value. The process applies to relational
expressions in particular, where it’s sometimes called “query rewrite.”
Query rewrite is typically done for performance reasons; it can be done
either by the user or—much more important—by the system (see
optimizer). Note: 'The term query rewrite 1s also used in certain
commercial products with a somewhat more limited meaning. Caveat

lector.

Example: 'The relational expression (I WHERE bxI) JOIN (72
WHERE bx2), where »I and #»2 are relations and bxI and bx2 are
restriction conditions, q.v., 1s logically equivalent to the relational

expression (71 JOIN »2) WHERE (bx1) AND (bx2); therefore, either

of these relational expressions can be transformed into the other.

Transforming the second into the first 1s likely to be advantageous

from a performance standpoint, because the first means doing the

restrictions before the join; thus, it’s likely that the input relations to

the join will be smaller and the output will be smaller too. In fact, this
transformation could make the difference between keeping the result
of the join in main memory and having to spill it out to secondary
storage.

expressive completeness A database design is expressively complete if
and only if it’s capable of representing all facts about the real world
that need to be represented.

Example: Consider the suppliers-and-parts database. That database
is expressively complete (or let’s agree so for the sake of the example,
at least). Now suppose we were to replace relvars S and SP by their
join (SSP, say). Then the resulting design wouldn’t be expressively
complete, because it would be incapable of representing information

concerning suppliers (such as supplier 85 in Fig. 1) who currently
supply no parts.

EXTEND See extension.

extended cartesian product See cartesian product.
Extensible Markup Language See XML.

extension 1. (Relational algebra, first form) Let relation » not have an
attribute called A. Then (and only then) the expression EXTEND # :
{A := exp} denotes an extension of r, and it returns the relation with
heading the heading of 7 extended with attribute 4 and body the set of
all tuples ¢ such that ¢ is a tuple of 7 extended with a value for A that’s

computed by evaluating the expression exp on that tuple of 7. See also
tuple extension; WI'TH. 2. (Relational algebra, second form) Let relation
7 have an attribute called A. Then (and only then) the expression
EXTEND 7 : {4 := exp} denotes an extension of 7, and it returns the
relation with heading the same as that of » and body the set of all
tuples ¢ such that ¢ is derived from a tuple of 7 by replacing the value of
A by a value that’s computed by evaluating the expression exp on that
tuple of . Again, see a/so tuple extension; WITH. 3. (Predicate) Let p be
a predicate; then the extension of p consists of all full instantiations of
(i.e., all propositions that can be derived from p by full instantiation)
that evaluate to 'TRUE. 4. (Relation) Following on from the previous
definition, let 7 be a relation. Then the heading of 7 can be regarded as
representing a predicate (see relation predicate), and the body of 7 can
be regarded as representing the extension of that predicate. Hence, the
term extension 1s also sometimes used to refer to the body of a relation.
Contrast intension. 5. (Set theory) See axiom of extension.

