— The Oxford Handbook of
COGNITIVE

ENGINEERING



M... OXFORD LIBRARY OF PSYCHOLOGY

Editor in Chief PETER E. NATHAN

The Oxford Handbook

of Cognitive Engineering

Edited by
John D. Lee
Alex Kirlik

Consulting Editors
Marvin J. Dainoff
Peter A. Hancock
Neville Moray
Donald A. Norman
Richard W. Pew
Eduardo Salas
Thomas B. Sheridan

OXTORD

UNIVERSITY PRESS



OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide.

Oxford New York

Auckland  Cape Town Dar es Salaam  Hong Kong  Karachi
Kuala  Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi  Shanghai Taipei Toronto

With ofhices in

Argentina  Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary ltaly Japan Poland Portugal Singapore
South Korea  Switzerland  Thailand  Turkey Ukraine Vietnam

Oxford is a registered trademark of Oxford University Press in the UK and certain other
countries.

Published in the United States of America by
Oxford University Press
198 Madison Avenue, New York, NY 10016

© Oxford University Press 2013
Oxford is a registered trademark of Oxford University Press

All righrs reserved. No part of this pub]ication may be repmduced, stored in a

retrieval system, or transmitted, in any form or by any means, without the prior
permission in writing of Oxford University Press, or as expressly permitted by law,

by license, or under terms agreecl with the appropriate reproducrion rights organization.
Inquiries concerning reproduction outside the scope of the above should be sent to the

Rights Department, Oxford University Press, at the address above,

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

Library of Congress Cataloging-in-Publication Data
The Oxford handbook of cognitive engineering / edited by John D. Lee, Alex Kitlik.
pages cm. — (Oxford library of psychology)
ISBN 978-0-19-975718-3 (hardback)
1. User-centered system design. 2. Human-computer interaction. 3. Human engineering.
I. Lee, John D., 1965 editor of compilation. II. Kirlik, Alex, editor of compilation.
QA76.9.H85094 2013
004.01'9—dc23
2012026107

987654321
Printed in the United States of America
on acid-free paper



SHORT CONTENTS

Oxford Library of Psychology  vii
About the Editors  ix
Contributors  xi

Table of Contents  xv

Chapters  1-622

Index 623




This page intentionally left blank



OXFORD LIBRARY OF PSYCHOLOGY

The Oxford Library of Psychology, a landmark series of handbooks, is published by Oxford
University Press, one of the world’s oldest and most highly respected publishers, with a
tradition of publishing significant books in psychology. The ambitious goal of the Oxford
Library of Psychology is nothing less than to span a vibrant, wide-ranging field and, in so
doing, to fill a clear market need.

Encompassing a comprehensive set of handbooks, organized hierarchically, the
Library incorporates volumes at different levels, each designed to meet a distinct need.
At one level are a set of handbooks designed broadly to survey the major subfields of
psychology; at another are numerous handbooks that cover important current focal
research and scholarly areas of psychology in depth and detail. Planned as a reflection
of the dynamism of psychology, the Library will grow and expand as psychology itself
develops, thereby highlighting significant new research that will impact the field. Adding
to its accessibility and ease of use, the Library will be published in print and, later on,
electronically.

The Library surveys psychology’s principal subfields with a set of handbooks that cap-
ture the current status and future prospects of those major subdisciplines. This initial set
includes handbooks of social and personality psychology, clinical psychology, counsel-
ing psychology, school psychology, educational psychology, industrial and organizational
psychology, cognitive psychology, cognitive neuroscience, methods and measurements,
history, neuropsychology, personality assessment, developmental psychology, and more.
Each handbook undertakes to review one of psychology’s major subdisciplines with
breadth, comprehensiveness, and exemplary scholarship. In addition to these broadly
conceived volumes, the Library also includes a large number of handbooks designed to
explore in depth more specialized areas of scholarship and research, such as stress, health
and coping, anxiety and related disorders, cognitive development, or child and adolescent
assessment. In contrast to the broad coverage of the subfield handbooks, each of these lat-
ter volumes focuses on an especially productive, more highly focused line of scholarship
and research. Whether at the broadest or most specific level, however, all of the Library
handbooks offer synthetic coverage that reviews and evaluates the relevant past and pres-
ent research and anticipates research in the future. Each handbook in the Library includes
introductory and concluding chapters written by its editor to provide a roadmap to the
handbook’s table of contents and to offer informed anticipations of significant future
developments in that field.

An undertaking of this scope calls for handbook editors and chapter authors who are
established scholars in the areas about which they write. Many of the nation’s and the world’s
most productive and best-respected psychologists have agreed to edit Library handbooks or
write authoritative chapters in their areas of expertise.

For whom has the Oxford Library ongfchology been written? Because of its breadth,
depth, and accessibility, the Library serves a diverse audience, including graduate students
in psychology and their faculty mentors, scholars, researchers, and practitioners in psy-
chology and related fields. Each will find in the Library the informarion they seek on the
subfield or focal area of psychology in which they work or are interested.

Befitting its commitment to accessibility, each handbook includes a comprehensive
index, as well as extensive references to help guide research. And because the Library was
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designed from its inception as an online as well as a print resource, its structure and con-
tents will be readily and rationally searchable online. Further, once the Library is released
online, the handbooks will be regularly and thoroughly updated.

In summary, the Oxford Library of Psychology will grow organically to provide a thor-
oughly informed perspective on the field of psychology, one that reflects both psychol-
ogy’s dynamism and its increasing interdisciplinarity. Once published electronically, the
Library is also destined to become a uniquely valuable interactive tool, with extended
search and browsing capabilities. As you begin to consult this handbook, we sincerely
hope you will share our enthusiasm for the more than 500-year tradition of Oxford
University Press for excellence, innovation, and quality, as exemplified by the Oxford
Library of Psychology.

Peter E. Nathan
Editor-in-Chief
Oxford Library of Psychology
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Introduction to the Handbook

John D. Lee and Alex Kirlik

Abstract

Since its origins some 30 years ago as a subdiscipline of both human factors and cognitive science, cognitive
engineering has grown into a diverse yet coherent body of research and practitioner activity focused on
informing the human-centered design of engineered systems and workplaces. To introduce this handbook,
we first provide a brief statement of the perspectives that gave rise to the selection and organization of the
research it presents. We then situate cognitive engineering historically, both as a maturation of cognitive
science to embrace applications and as an outgrowth and extension of human factors enabled and required
by developments in information technology and automation. Finally, in the concluding sections of the
chapter, we apply a cognitive engineering approach to the book itself, using large-scale data collection and
analysis, statistical modeling, and pictorial visualization to provide the reader with a set of windows into
the contents of this handbook. We hope that these windows function as effective user-centered aids to
facilitate both efficient use and to communicate the research themes comprising contemporary cognitive

engineering to a broad audience of students, researchers, and practitioners.

Key words: historical foundations, themes, text analysis, visualization

Handbook Contents and Organization

Cognitive engineering is an interdisciplinary
approach to the analysis, modeling, and design of
engincered systems or workplaces, especially those
in which humans and automation jointly operate
to achieve system goals. The field emerged in the
1980s in response to the increased complexity of
the challenges faced by system designers and by the
enhanced array of opportunities afforded both by
these technologies and by the maturation of cogni-
tive science, better enabling it to inform design.

A brief inspection of the table of contents shows
that this handbook is organized into four major
sections:

* Cognition in Engineered Systems

* Cognitive Engineering Methods

* Cognitive Engineering Models

* Cognitive Technologies in Engineered Systems

For the reader with at least some acquaintance
with cognitive engineering research, the most note-
worthy aspect of this organization is most appar-
ent when contrasted with an alternative framework
organized instead around application domains:

» Cognitive Engineering in Health Care

* Cognitive Engineering in Aviation

* Cognitive Engineering in Highway
Transportation

* And so forth

There are at least two reasons for being explicit
in bringing the domain-general, as opposed to
domain-specific, organization chosen for this hand-
book to the readers’ attention.

First, while it is indeed true that most cognitive
engineering projects require the input of substan-
tial domain knowledge or expertise, domain speci-

ficity (of theories, models, best practices, design
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approaches, etc.) has the potential to stand in the
way of informative and efficient cross-domain gen-
eralization and the development of cognitive engi-
neering into a mature engineering discipline in
its own right. We were well aware of the extent o
which some of this handbook’s contributors would
be content or pleased to identify their research with
one application domain or another, as they may
have found it professionally reinforcing to iden-
tify with an application domain in these times of
intensive academic specialization. We were never-
theless delighted to find such a substantial base of
cognitive engineering researchers willing to take on
the challenge we posed to write their chapters in
domain-general terms (that is, every author repre-
sented in this handbook).

Second, prior to our many dialogues with con-
tributors to help identify suitable cross-domain top-
ics for their contributions, and seeing the resulting
manuscripts, we ourselves were unsure what themes
and topic areas would emerge and sustain as viable,
domain-general themes around which this hand-
book could be organized. Unsure if our requests
would yield productive results, we nevertheless put
the challenge to the cognitive engineering research
community to communicate useful information to
readers in a way that did not presume prior knowl-
edge of the reader’s domain of interest. We found
that the community, in our judgment, succeeded
admirably. On the basis of these results, we feel con-
fident that this handbook will be of interest and use
to a broad audience of practitioners, many of them
engineers and computer scientists, involved with
designing human-technology systems for a broad
array ofapplication domains. We also hope that the
benefits to the student and academic communities
will be similarly direct. This handbook may aid in
selecting research problems that already show strong
promise of domain generality, and thus broad rel-
evance and impact, because current research has yet
to explore and probe the full range and depth of
issues involved.

Historical Foundations

We have already mentioned that one of the his-
torical developments that led to the emergence of
cognitive engineering is the maturation of cognitive
science into a discipline whose theories, models,
and methods are capable of guiding application.
These developments have come mainly from two
directions. The first involved the groundbreaking
work toward creating computational models of cog-
nition, initially, in the domain of human-computer

4 INTRODUCTION TO THE HANDBOOK

interaction (Card, Moran, & Newell, 1983). This
research has proven seminal in prompting numerous
extensions resulting in various “cognitive architec-
tures” and related approaches to modeling cognitive
performance in technological interaction. A variety
of these approaches are described in the Cognitive
Engineering Models section of this handbook,
as well as in research volumes devoted to this
approach (e.g., Gluck & Pew, 2005). Research
such as this continues a longstanding apprecia-
tion for the fundamental role played by modeling
in the analysis and design of human-technology
systems (Elkind, Card Hochberg, & Huey, 1990;
Rouse, 1980; Sheridan & Ferrell, 1974). Research
methods grounded in modeling, whether quanti-
tative, computational, or otherwise, are a hallmark
of both professional and research activity in engi-
neering. Cognitive engineering is not likely to be
different.

A second route by which cognitive science
matured into application in a manner that helped
spawn the field of cognitive engineering is through
the research of Donald A. Norman, first outlined
in his chapter titled “Cognitive Engineering” in the
1983 volume User Centered Systems Design. Here,
Norman laid out his influential and intuitive con-
ception of the barriers to good design lying in the
“gulf of execution” (how do I get it to work?) and
“gulf of evaluation” (is it working as [ intended?). It
is useful to consider how Norman himself under-
stood the nature of the discipline he was putting
forward at the time:

Cognitive Engineering, a term invented to reflect
the enterprise I find myself engaged in: neither
Cognitive Psychology, nor Cognitive Science, nor
Human Factors. It is a type of applied Cognitive
Science, trying to apply what is known from science
to the design and construction of machines. It is

a surprising business. On the one hand, there is
quite a lot known in Cognitive Science that can be
applied. On the other hand, our lack of knowledge is
appalling. (Norman, 1983, p. 31)

Norman’s comments prompt one to consider
why he made a contrast between what he was pro-
moting and the much older discipline of human
factors, which by almost any definition involves
applying “what is known from science to the design
and construction of machines” (e.g., Wickens, Lee,
Liu, & Gordon-Becker, 2004). Norman believed
there was a gap between what the discipline of
human factors was offering at the time and what
was needed to provide sufficient guidance for the



design of interactive technologies. Many of these
gaps have developed as important research themes
in this handbook and the field of cognitive engi-
neering more generally.

Why has cognitive engineering emerged as either
a separate or subdiscipline of human factors? Many
perspectives on this question exist. Google Scholar
provides one useful path forward. As of the time of
this writing, the only publication with more Google
Scholar hits using the search term “cognitive engi-
neering” than Norman’s previously cited (1983)
chapter (over 1600 citations) is Jens Rasmussen’s
book Information Processing and Human-Machine
Interaction: An Approach ro Cognitive Engineering,
with over 2300 citations. This monograph and
Rasmussen’s classic (1983) article “Skills, Rules, and
Knowledge; Signals, Signs, and Symbols, and Other
Distinctions in Human Performance Models” are
taken by many in the cognitive engineering com-
munity to be seminal publications and landmarks
at the origin of the field.

In both his 1983 article and 1986 monograph,
Rasmussen, a control engineer working to ensure
the safety of nuclear power plants and operations,
observed that, in the crucially important area of
interface design, semantics had overtaken syntax
as the chief barrier to effective system control and
problem diagnosis. It was not that system opera-
tors had great difficulty perceiving or attending to
proximal information displays, but rather in under-
standing what they meant. This observation implied
that the lion’s share of human factors knowledge
on how to present information at an interface to
best support perception or attention was, while
necessary, far from sufficient to ensure effective
human-machine interaction mediated by interface
displays. Displaying information to which an opera-
tor can attend and perceive was important, but to
Rasmussen, design guidance of this kind was insuf-
ficient if it did not also foster operator comprehen-
sion or understanding.

Rasmussen understood meaning in terms of
external reference. The operator’s ultimate task,
Rasmussen noted, is to monitor, control, and diag-
nose (and so forth) a plant or technology “behind”
the interface, so to speak. The operator’s task is
not merely to attend, perceive, and manipulate the
proximal interface itself, although interface manip-
ulation skills have historically served as the object
of study for the lion’s share of traditional human
factors research. Instead, for Rasmussen, the proxi-
mal interface must be considered functionally, not
as the ultimate or end target of human interaction,

but instead as a window to a distal plant or remote
environment comprising the true target of work.
Just as Bruner (1973) had characterized cogni-
tion as “going beyond the information given,”
Rasmussen (1983) described an operator’s cogni-
tive task in terms of exactly the same sort of going
beyond, but in this case, going beyond the given
interface.

This characterization applies not solely to pro-
cess control, but equally to modern “knowledge
workers” (Zuboff, 1984) more generally, whose
windows to the world of work increasingly con-
sist of computer interfaces of one sort or another
and, as such, who are rarely able to perceive and
manipulate the objects of their work in a direct
fashion. Additionally, the heightened emphasis
given to knowledge-based behavior in Rasmussen’s
research and in an array of related cognitive science
research on expertise (e.g., de Groot, 1978; Simon
8 Chase, 1973) served as one impetus to a line of
research focused on the nature of expert decision
making in cognitive engineering contexts (Klein,
1989) and the mechanisms associated with human
error by otherwise well-trained, well-motivated
human operators (Reason, 1990; Senders & Moray,
1991). Cognitive engineering’s primary focus on
expert or otherwise knowledgeable humans is evi-
dent throughout this handbook. This focus is yet
another factor that marks the discipline off from
much, but not all, traditional engineering psychol-
ogy and human factors research, which has his-
torically focused on the behavior of humans with
perhaps hours, but rarely months or years, of train-
ing and experience.

Rasmussen’s (1983) paper presented a concep-
tual framework that both acknowledged the impor-
tance of the large body of research that had grown
up around relatively simple technological contexts
in which the primary goal was safe and efhcient
interaction with a proximal interface or workplace,
yet nevertheless indicated a need for a novel theory
and method for better understanding the cognitive
activities of knowledge workers. Rasmussen’s obser-
vations have proven prescient: The research prob-
lems that occupy the lion’s share of the attention
of today’s cognitive engineers are those in which
technology is not viewed as the end target of human
interaction, but rather as an intermediary through
which humans interact with the actual objects of
work.

It is also worthwhile to consider how Rasmussen
(1983) laid out what he believed to be necessary for

cognitive engineering to meet its goals:
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In our work, concern is with the timely development
of models of human performance which can be
useful for the design and evaluation of new interface
systems. For this purpose, we do not need a single
integrated quantitative model of human performance
but rather an overall qualitative model which allows
us to match categories of performance to types of
situations. In addition, we need a number of more
detailed and preferably quantitative models which
represent selected human functions and limiting
properties within the categories. The role of the
qualitative model will generally be to guide overall
design of the structure of the system including, for
example, a set of display formats, while selective,
quantitative models can be used to optimize the
detailed designs. (p. 264)

Some 30 years after Rasmussen stated these
objectives for future research, we expect that the
reader will see, as illustrated by this handbook, that
the array of contemporary cognitive engineering
products consists largely of a tolbox of concep-
tual or qualitative frameworks together with a set
of more formal techniques and quantitative models
for detailed performance prediction.

Rasmussen’s research was also influendal in pro-
viding cognitive engineering’s orientation to a unit
of analysis consisting of a human-technology system,
or perhaps even a human-technology-environment
system, rather than the human in isolation. This
was not a new idea within the engineering-oriented,
human performance modeling tradition (see Pew,
2008, for a historical overview), yet Rasmussen’s
observations on the fundamental ecological nature
of cognitive engineering resonated with researchers
interested in grounding the psychology of cogni-
tive engineering in a scientific footing other than
solely information processing theory. Cognitive
engineering researchers such as Vicente (Vicente
& Rasmussen, 1990; Vicente, 1999); Woods and
Hollnagel (Hollnagel, Mancini, & Woods, 1988;
Woods & Hollnagel, 2006); and Flach (1990) have
each pursued cognitive engineering approaches
influenced by the ecological theory of perceptual
psychologist James ]. Gibson, or, more importantly,
on a unit of analysis spanning the human, cogni-
tive tools, and the work environment. Along simi-
lar lines, and though grounded in a computational
rather than an ecological framework, the pioneer-
ing research of Hutchins (1995) and his colleagues
(Hollan, Hutchins, & Kirsh, 2000) on distributed
cognition also brings to cognitive engineering an
approach that seeks to account for how cognitive

6 INTRODUCTION TO THE HANDBOOK

resources both internal and external to the human
might combine to enable the types of performance
observed in technological systems. At a general
level, the guiding theoretical orientation behind
all these approaches is that cognitive engineer-
ing concerns the analysis and design of integrated,
human-technology systems. This general orienta-
tion is evident throughout this handbook.

Another research theme central to this handbook
concerns the challenge of achieving a safe and pro-
ductive coupling of humans and automation. To
the extent that the discussion above has been useful
in communicating the pioneering influence of Jens
Rasmussen’s research on cognitive engineering, the
research of Thomas B. Sheridan has played a simi-
larly pioneering role in bringing the issues involved
with human-automation interaction to the fore-
front of cognitive engineering research (Sheridan &
Johannsen, 1976; Sheridan, 1992; Sheridan, 2002).
Although much of the impetus for Rasmussen’s
research came from his observations of power plant
technicians engaged in troubleshooting tasks (see
Vicente, 2001, for a detailed history and over-
view), Rasmussen was also strongly influenced by
the seminal research of Thomas Sheridan, who was
actively engaged in the problems of remote control
and monitoring of distant vehicles in contexts such
as space and undersea exploration. Sheridan coined
the term “supervisory control” to describe the situ-
ation in which the human is not in direct, manual
control of a system or process, but instead inputs
commands to automated systems that themselves
act directly on the distal system, process, or vehicle.

This seminal research by Sheridan has spawned
dozens of studies over the past decades trying to
characterize human-automation interaction with
models or taxonomies, to understand the conse-
quences of introducing automation into systems
or workplaces, to identify and describe human ten-
dencies in dealing with those consequences, and to
identify design principles, frameworks, and tech-
niques to support human operators or workers in
doing so. As will be seen in the following sections of
this chapter, if one had to name a single key topic
central to this handbook, the impact of automation
and information technology on the human’s role in
engineered systems would be that key topic.

Finally, to both close this section on historical
foundations and to set the stage for a discussion
of the handbook’s contents in detail, it should be
mentioned that cognitive engineering has broad-
ened its focus even further in recent years to include
a consideration of how teams and organizations



communicate and collaborate in the performance
of cognitive tasks (Salas & Fiore, 2004). While
hardly a new idea, the proliferation of information
and communication technologies that increasingly
mediate what was once direct human interaction has
highlighted the importance of these social factors.
A variety of chapters in this handbook—including
those on communication, teamwork, conducting
experiments with teams, and the design of organiza-
tions and communities of practice—illustrate this
rapidly growing dimension of cognitive engineering
research.

Cognitive Engineering Themes and the
Handbook Contents

These historical themes are reflected in the chap-
ter structure and in the associated content. Figure
A.1 shows a word cloud based on the contents of
the 41 chap[ers, which providcs a simple visualiza-
tion of the handbook contents. The size of each
word is proportional to its frequency of occurrence
in the book—the large words occur often. This
representation suggests the broad scope of cogni-
tive engineering, spanning the individual operator
to teams and organizations, with a focus on how
systems of people and technology, often in the form
of automation, influence performancc. This word
cloud provides a holistic view of the handbook con-
tents that can be challenging to extract from read-
ing the individual chapters. While useful, the word

process
engineering
interact example
method research . .
; information
il human analysis  level
technology SITUANONAWATENESS social  studies
w@m o system ¢ model
. display
dESIgﬂ " . . factors Itink
| memory decision strategy multiple
contro environment wickens support psychology
i patient  interface dynamic )
uneuon action  domain  people  approach  behavior
machine understanding | |
—_ uncertainty . anding goal journal st
S"“"“""f" individual ~ share " .
science ¢ study £ o ACHIVIL)
perator dy _leced critical tagk ~ Acuviy
using  expert provice
’ : ergonomics A€M eie learn
mluc‘(k‘” complex endsley context  sjruation  event
practice measure organization tasks
workload aasntion o

theory

communication judgment

cognition automation
f representation
per ormance training
Cognitive knowledge
rive
development

Figure A.1 A word cloud of the handbook content, highlighl:—
ing the modeling and systems perspecrives in understanding the

influence of information technology and automation.

cloud is limited because it provides no link to back
to the chapters. A reader seeing the importance of
models and systems from the word cloud would not
know what chapters to read to learn more about
these topics. Formal analysis of the text represented
in the word cloud can help readers to navigate the
complex field of cognitive engineering.

The 41 chapters contained in this handbook
demonstrate the diversity of perspectives that define
the field of cognitive engineering. The organization
of these chapters in the handbook represents one
way of compiling this content, and we have made
a concerted effort to structure these chapters in a
logical fashion by placing related material together.
At the same time, reading through the chapters or
scanning the table of contents might not convey an
adequate understanding of the field and might not
lead a reader to a set of chapters of particular inter-
est. Not all readers will want to read all 41 chap-
ters, and readers will approach the handbook with
diverse backgrounds and objectives. Different read-
ers will need different tables of contents to satisfy
their needs. We apply text analysis to the chapters to
identify common themes and connections between
the chapters that a single table of contents cannot
provide.

We hope these themes and connections will sup-
port a focused and individualized reading of the
handbook that meets the particular needs of each
reader. As an example, a designer interested in situ-
ation awareness could start by reading chapters that
contain “situation awareness’ in the title, but the
handbook is not organized to identify related chap-
ters that might also be of interest. There is no “situ-
ation awareness~ section in the handbook. The titles
of other chapters might not reveal their relevance,
and chapters located before or after the chapters
with “situation awareness” in their title might not
be particularly closely related to situation awareness.
A reader interested in situation awareness might
then be left to search the index. Many readers will
approach the handbook with similarly individual
perspectives. To support readers who desire for a
focused reading of the handbook, this chapter pro-
vides a systematic analysis and representation of the
handbook contents.

Three analyses support a more focused and indi-
vidualized reading of the handbook. First, we iden-
tify groups of similar chapters based on the relative
frequency of words occurring in each chapter. One
might think of this as identifying clusters of chapters
that have similar word clouds. Second, we describe
topics contained in these chapters. Even chapters
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that fall into the same cluster might address different
topics, and so the topics contained in each chapter
indicate why a chapter belongs to a particular cluster
and also indicate chapters that share the same topic
even if it belongs to a different cluster. Third, we
describe how shared topics connect chapters into a
network of chapters. This network highlights chap-
ters particularly central to the field as those chapters
that contain themes thart are shared by many other
chapters. In combination, these analyses provide an
alternate table of contents to the handbook that we
hope will help readers navigate the field of cognitive
engineering.

The text analysis techniques applied to the chap-
ters in this book are based on the term frequency
data represented in Figure A.1. Each chapter is
reduced to a vector that tabulates the frequency of
each word used in the chaprer. The handbook can
then be represented as a matrix, with each chapteras
arow and each column representing the frequency of
occurrence of words, such as those shown in Figure
A.1. The relative frequency of occurrence of words
across chapters can be analyzed as numeric data
using techniques such as cluster analysis. This “bag
of words”™ approach to text analysis does not include
any information regarding the meaning of particu-
lar words or their relationship to each other within
sentences. Even so, analysis of such term-frequency
data often provides a surprisingly insightful view
into the concepts contained in a set of documents
(Landauer & Dumais, 1997; Deerwester, Dumais,
Furnas, Landauer, & Harshman, 1990).

The statistical package R 2.14.1 (R Development
Core Team, 2011) supported the text analysis of the
handbook chapters, with text mining packages tm
(Feinerer, Hornik, 8 Meyer, 2008) and topicmod-
els Griin & Hornik (2011). The graphics packages
ggplot2 (Wickham, 2010) and igraph (Csardi &
Nepusz, 2006) were used to visualize the results.

Applying Ward’s method of hierarchical clus-
tering to the data from the term-document matrix
identifies similar chapters. Here, chapter similarity
is based on the Euclidian distance between chapters
defined by the relative frequency of each term con-
tained in each chapter. Documents that use the same
terms with the same relative frequency will be close
to each other and so will fall into the same cluster.
Figure A.2 shows the hierarchical cluster analysis,
with the top of the hierarchy showing two sets of
chapters and the bottom of the hierarchy showing
individual chapters. A cut point midway in the hier-
archy produces 13 clusters of chapters. The chapters

generally cluster according to the table of contents
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of the book. Many clusters include chapters from a
similar section of the book, such as chapters I1I.1,
I11.2, and II1.3, 14, 15 on task analysis, work analy-
sis, and decision-centered design. Others that are
not co-located in the book are strongly related, such
as chapters 1.5 and 111.4 on situation awareness and
chapters I1.4 and IV.6 on judgment. Considering
how these clusters combine in the hierarchy shows
that the clusters of clusters also correspond to the
grouping in the book. The cluster that combines the
three clusters beginning with the third cluster from
the left is almost exclusively composed of chapters
from section I11. Importantly, this analysis uses only
word frequency, with no reference to the chapter
structure, and yet it the clusters reflect the structure
of the book surprisingly closely.

Topic analysis reveals the themes contained in
the chapters that influence cluster membership.
Based on a latent Dirichlet allocation approach
(Griin & Hornik, 2011), the text of the 41 hand-
book chapters reveals 22 distinct topics. These top-
ics can be represented by word clouds of the terms
most important in defining each topic. Figure
A.3 shows the word clouds of the 22 topics, and
from these word clouds of the topics names were
defined. These topics and their associated word
clouds provide a much richer description of the
handbook content than a single word cloud in
Figure A.1. These word clouds describe some of
the common themes of the field of cognitive engi-
neering, bur like the overall word cloud in Figure
A.1, by themselves they do not direct readers to
particular chapters.

Figure A.4 shows that each topic occurred in
at least three chapters and that a few topics occur
in almost one quarter of the chapters. The topics
of “decision heuristics,” “simulation for safety,”
and “communication” each occur in four or fewer
chapters, whereas the topics of “team coordination”
and “practice and learning” occur in at least nine
chapters. Figure A.5 shows the distribution of these
topics across the chapters. Chaprters are listed verti-
cally, grouped according to the cluster analysis. The
dark and light grays differentiate neighboring clus-
ters. The horizontal axis indicates the topics of the
handbook. Three topics describe each chapter, and
the size of the circle represents which topic is the
primary, secondary, or tertiary topic of each chap-
ter—the large circle represents the primary topic.
Generally, chapters in the same cluster share top-
ics—the chapters on judgment share the primary
topic of judgment. Chapters in some clusters do
not share topics as uniformly, as in the case of the
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Figure A.2 Ward’s method for hierarchical cluster analysis identifies 13 clusters of chapters using Euclidian distance of each chapter.

Figure A.5 provides a valuable tool for under-
standing the content of the handbook by highlight-
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address topics of interest that might not be obvi-
ous from the chapter titles or by the structure of the
table of contents. Locating the topic on the horizon-
tal axis and then tracing that column upward to find
the circles that indicate chapters that include a par-
ticular topic can identify a set of chapters addressing
an issue that might not be clear from the chapter’s
title or section of the table of contents. Figure A.5
can act as an alternate table of contents that makes
it possible for readers to quickly identify chapters
that are most likely to meet their needs.

Figure A.5 shows that many chapters share top-
ics with other chapters. These shared topics can
be considered as links between chapters that form
a network of chapters. In this network, a chapter
might be connected to one or two other chapters
or to many chapters. The structure of this network
based on shared topics places each chapter into a
rich context of connections with other chapters.

Network analysis measures provide a way to
quantify features of the chapter network defined

probability

uncertain
roth ty
burns

display

bisantz  socil

organization

cwa

region s
car  vicente
cd interface

uscer

=) technique
representation
model

=

[
= | 1
s vo— ccologcal
o ¢

plant visual

color
I’Cqulfcmcnt

parasuraman
vigilance
server

operator

queue

model error

neural €M

interface llu

signal

memory

measure

qnmhp
mentalworkload

brain o

computational response
mental
neuroergonomics
architecture

network

by shared topics. One network analysis measure
considers the frequency of links between nodes in
the network—degree. Nodes with many connec-
tions to other nodes have high degree or centrality.
In the network of chapters, highly central nodes
are those that share topics with many other chap-
ters. Another network analysis measure—between-
ness—considers the number of links to nodes that
are linked to many others. Such nodes have a
short path to other nodes in the network. In the
network of chapters, chapters with high between-
ness are linked to chapters that touch on many
of the topics that define cognitive engineering.
Multidimensional scaling uses the links between
nodes to place nodes that share similar patterns of
connections near each other in a two-dimensional
space.

Figure A.6 shows the network structure of the
handbook defined by shared topics. Highly cen-
tral chaprers are indicated by large nodes, and
chapters with high betweenness are indicated by
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Topics 1—4: Uncertainty representation, collective coordination, neural architectures, automation and organizations

Figure A.3 Word clouds of each of the 22 topics
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Figure A.3 (continued)

nodes that are dark red. In this network, chap-
ters that are highly central also tend to have high
betweeness.

Readers can use space represented by Figure A.6
to find chapters in the same “neighborhood” to
identify a set of chapters of interest. For example,
the chapter V.3 on ecological interface design, in the
lower right of the network, is in the neighborhood
of chaprer II1.2, which addresses a highly related
topic of cognitive work analysis, and relatively close
to chapters on uncertainty visualization and config-
ural displays. Similarly, chapters on queuing models
of cognition, adaptive automation, formal models
of automation, attention, and neuroergonomics are
all closely clustered in the middle left of the figure.
Finding a chapter of interest in this space and then

surveying its neighbors can guide a focused explora-

tion of the handbook.

More generally, the space defined by the network
in Figure A.G reflects the broad themes of the histori-
cal development of cognitive engineering. The cen-
trality and prominence of team cognition is perhaps
the most notable feature of this space. Slightly above
these team chapters is a series addressing supervisory
control and human-automation interaction. This
position suggests an important trend of technology
to share many of the same features of a human team
member, blurring the distinctions of supervisory con-
trol of humans versus thar of automation. From this
center, to the right, many chapters address cognitive
engineering in broader organizations and communi-
ties, pointing to the need to consider the engineer-
ing of organizations and social networks. To the left
of the teamwork chapters, many chapters focus on
individual cognition, addressing topics of attention,
decision making, and multitasking. The horizontal
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Figure A.3 (continued)

dimension broadly moves from individual cognition
to the cognition of teams, and then networks.

In contrast to the individual-to-network span
of the horizontal axis, the vertical axis broadly
contrasts between cognitive task analysis at the
top of the figure and cognitive work analysis at
the bottom of the figure. A focus on the ecology
and an analysis of the constraints and dynamics of
the engineered system anchor the vertical dimen-
sion at the bottom of Figure A.6—cognitive work
analysis. The top of the figure focuses on the cog-
nitive processes and information needed to sup-
port decisions and situation awareness—cognitive
task analysis. In some sense, the top of the figure
represents the cognitive in cognitive engineering,
and the bottom of the figure represents the engi-
neering. The top of the figure represents the appli-
cation of principles of cognitive psychology, and

I2 INTRODUCTION TO THE HANDBOOK

the bottom represents the application of an engi-
neering perspective to characterize the plant or
technology “behind” the interface. Such a simple
caricature of the chapters and cognirtive engineer-
ing as a whole certainly glosses over many impor-
tant distinctions, but does highlight important
themes that have guided the profession since its
inception.

Figure A.6 collapses a complex, multidimen-
sional space to two dimensions. Likewise, the topic
analysis collapses many subtle points to 22 topics.
Like any model, such simplifications distort and fail
to completely capture the phenomena of interest.
Careful inspection of Figures A.5 and A.G reveals
instances where the model might fail to represent
reality well. For example, given the broad dimen-
sions of Figure A.6—with analysis of individuals on
the left, teams in the center, and networks on the
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Figure A4 Frequency of occurrence of topics across chapters

right—one might expect the chapter on organiza-
tion design to anchor the horizontal dimension on
the right. One explanation for its location might
stem from how terms are treated in the analysis, par-
ticularly the term “operator,” which is used to refer
to a person and as a cognitive process in the chap-
ter on queuing models. The text analysis techniques
we used are blind to this distinction, highlighting
the limits of any simple model of a complex field.

10
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Nevertheless, we hope the necessarily imperfect rep-
resentations in Figures A.5 and A.6 are useful tools
for exploring this handbook and the ficld of cogni-
tive engineering.

Conclusions

The field of cognitive engineering and this hand-
book are large and complicated. Consequently, no
single chapter structure will serve all readers’ needs.
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Figure A.5 Chapters, chapter clusters, and the associated topics. The vertical lines highlight the two most frequently occurring topics.

Text ana]ysis reveals clusters of chaptr:rs, topics, and that initiated the emergence of cognitive engineering
connections between chapters based on these topics  nearly 30 years ago have not abated, but instead have
that provide alternate ways of cxploring the material in intensified. Designers face incrcasingly complcx tech-

the handbook and understanding the field. The forces  nologies that, properly engineered, enable people to
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work with and through such technology in new and
increasingly productive ways. The chapters in this
handbook profile advances and remaining challenges

in designing for cognitive work.

References

Bruner, J. (1973). Going 6eyum[ the fnﬁ)rmation given. New York,
NY: Norton.

Card, S. K., Moran, T. ., 8 Newell, A. (1983). The psychology of
human-computer interaction. Hillsdale, NJ: Erlbaum.

Csirdi, G., & Nepusz, T. (2006). The igraph software package
for complex network research. Interfournal Complex Systems,
CX. 18, 1695.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., &
Harshman, R. (1990). Indexing by Latent Semantic Analysis.
Journal of the American Society for Information Science and
Technolagy 41(6), 391-407.

de Groot, A. D. (1978). Thought and choice in chess (2nd ed.).

Paris, Francc: Mouton DC GI'UYIC]'.

Elkind, J. I, Card, S. K., Hochberg, ., & Huey, B. M. (1990).
Human performance models for computer-aided engineering.
New York, NY: Academic Press.

Flach, J. M. (1990). The ecology of human-machine systems :
Introduction. Feolagical Psychology 2(3), 191-205.

Gluck, K. A., & Pew, R. W. (2005). Modeling human behavior
with integrated cognitive architectures: Comparison, evaluation,
and validation. Mahwah, NJ: Erlbaum.

Griin, B., & Hornik, K. (2011). ropicmode]s: An R package for
fitting topic models. fournal of Statistical Software, 40(13),
1-30.

Hollan, ., Hutchins, E., & Kirsh, D. (2000). Distributed cog-
nition: Toward a new foundation for human-compurer
interaction research. ACM Transactions on Computer-Human
Interaction, 7(2), 174-196.

Hollnagel, E., Mancini, G., & Woods, D. D. (1988). Cagnitive
engineering in complex, dynamic worlds. New York, NY:
Academic Press.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA:
MIT Press.

LEE, KIRLIK 15



Klein, G. (1989). Recognition-primed decisions. In W. B. Rouse
(Ed.), Advances in man-machine systems research (pp. 47-92).
Greenwich, CT: JAI Press.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s
problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological
Review, 104(2), 211-240.

Norman, D. A. (1983). Cognitive engineering. In D.A.
Norman & S.W. Draper (Eds.), User centered systems design
(pp. 31-62). Hillsdale, NJ: Erlbaum.

Pew, R. W. (2007). Some history of human performance mod-
eling. In W. Gray (Ed.), [ntegrated models of cognitive systems
(pp. 29—44). New York, NY: Oxford University Press.

Pew, R. W. (2008). More than 50 years of history and accom-
Plishments lI] }lunlal‘ Pﬁrformﬂﬂcﬁ model dﬁvﬂlopmﬁnt.
Human Factors, 50(3), 489-496.

R Core Team, R. C. (2012). R: A Language and Environment
tor Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing.

Rasmussen, J. (1983). Skills, rules, and knowledge; Signals, signs,
and symbols, and other distinctions in human performance
models. [EEE Transactions on Systems, Man, and Cybernetics,
SMC-13(3), 257-2606.

Rasmussen, . (1986). Information processing and human-machine
interaction: An appmado to cognitive engineering (North-Holland
Series in Systems Science and Engineering, No. 12). Elsevier.

(1990). Human error. Cambridge, England:

Cambridge University Press.

Reason, ].

Rouse, W. B. (1980). Systems engineering models of human-machine
interaction. Amsterdam, The Netherlands: North-Holland.

Salas, E., & Fiore, S. (2004). Team cognition. Washington, DC:
APA Press.

Senders, J., Moray, N. L. (1991). Human ervor: Cause, prediction, and
reduction. Series in appﬁed psyc}ao[agy. Hillsdale, NJ: Erlbaum.

16 INTRODUCTION TO THE HANDBOOK

Sheridan, T. B. (1992). Telerobotics, automation, and supervisory
control. Cambridge, MA: MIT DPress.

Sheridan, T. B. (2002). Humans and automation: System design
and research issues. New York, NY: Jo hn Wiley & Sons.

Sheridan, T. B., & Ferrell, W. R. (1974). Man-machine systems.
Cambridge, MA: MIT Press.

Sheridan, T. B., & Johannsen, J. (19706). Monitoring behavior and
supervisory control (NATO special program panel on human
factors). New York, NY: Plenum Press.

Simon, H. A., 8 Chase, W. G. (1973). Skill in chess. American
Scientist, 61, 394—403.

Vicente, K. J. (1999). Cognitive work analysis: Toward safe, pro-
ductive and bealtij mmputerc'msed work. Boca Raton, FL:
CRC Press.

Vicente, K. J. (2001). Cognitive engineering research at Riso
from 1962-1979. In E. Salas (Ed.), Advances in human per-
formance and cognitive engineering research (Vol. 1, pp. 1-58).
Oxford, England: Elsevier.

Vicente, K. J., & Rasmussen, ]. (1990). The ecology of
human-machine systems II: Mediating

“direct perception” in complex work domains. Ecological
Prychology, 2(3), 207-249.

Wickens, C. D., Lee, J. D., Liu, Y., & Gordon-Becker, S. (2004).
An introduction to human factors engineering (2nd ed.). Upper
Saddle River, NJ: Prentice-Hall.

Wickham, H. (2010). A layered grammar of graphics. Journal of
Computational and Graphical Statistics, 19(1), 3-28.

Woods, D. D., & Hollnagel, E. (20006). Joint cognitive systems:
Fatterns in cognitive systems engineering. Boca Raron, FL:
CRC Press.

Zuboff, S. (1984). In the age of the smart machine. New York,
NY: Basic Books.



PART : !

Cognition in
Engineered Systems




This page intentionally left blank



CHAPTER

1 The Closed-Loop Dynamics
of Cognitive Work

John M. Flach, Kevin B. Bennett, Richard |. Jagacinski, Max Mulder, and Rene van Paassen

Abstract

the behavior of cognitive systems.

This chapter provides a tuterial intreduction to the logic of closed-loop systems. A series of examples
is presented to illustrate the dynamics of closed-loop systems and to contrast the behavior of

these systems with expectations suggested by the logic of open-loop causal systems. In particular,

the examples show that “feedback” per se is insufficient to guarantee convergence on a target.

The chapter explores some of the issues that must be addressed in order to determine whether
closed-loop systems will be stable. Parallels to the phenomena of cognition in the wild are highlighted,
and the case is made that the logic of closed-loop systems is an essential foundation for understanding

Key Words: adaptive control, abduction, closed-loop control, observer, self-organization

Introduction

In 1942, ata conference sponsored by the Macey
Foundarion to promote intcrdisciplinary discussions
about neuroscience, Arturo Rosenblueth introduced
a radical challengc to classical ideas of cause and
effect. He introduced the construct of “circular cau-
sality.” This new construct was motivated by collab-
orations with Norbert Wiener and Julian Bigelow
to understand stability in feedback control systems
(Rosenblueth, Wiener, 8 Bigelow, 1943; Wiener,
1948/1961). The neuro- and social scientists at the
meeting (including Warren McCulloch, Gregory
Bateson, and Margaret Meade) immediately identi-
fied this idea as relevant to their work—easily iden-
tifying concrete examples of circular coupling in the
biological and social systems that they were study-
ing (Conway & Siegelman, 2005).

There is no doubt that the “cybernetic hypothe-
sis” that emerged from the work of Norbert Wiener
and his colleagues had an enormous impact on the
trajectory of cognitive science. For cxample, feed-

back was a central theme in Miller, Galanter, and

Pribram’s (1960) influential book Plans and the
Structure of Behavior.

‘The general pattern of reflex action, therefore,

is to test the input energies against some criteria
established in the organism, to respond if the

result of the test is to show an incongruity, and to
continue to respond until the incongruity vanishes,
at which time the reflex is terminated. Thus, there is
“feedback” from the result of the action to the testing
phase, and we are confronted by a recursive loop. (p.
26, emphasis added)

Miller et al. introduced the TOTE unit (Test-
Operate-Test-Exit) as a simple process to illustrate
the concept of feedback using the example of ham-
mering a nail. They conclude:

It may seem slightly absurd to analyze the motions
involved in hammering a nail in this explicit way, but
it is better to amuse a reader than to confuse him. It
is merely an illustration of how several simple TOTE
units, each with its own test-operate-test loop, can

be embedded in the operational phase of a larger unit
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with its particular test-operate-test loop. Without
such an explicit illustration it might not have been
immediately obvious how these circles within circles

could yield hierarchical trees. (p. 37, emphasis added)

Miller et al. used the “feedback” concept as a
means to motivate their exploration of plan hierar-
chies, and in turn they helped to mortivate a 50-year
program of research to explore human information
processing. However, with some notable exceptions,
the cybernetic hypothesis has generally been trivial-
ized, and the field of cognitive science as a whole
has failed to appreciate the dynamics of circles and
loops. Most in the field have persisted in viewing
the phenomenon of human information processing
through the lens of the logic of simple open-loop
causal systems. Most have failed to understand
the full implications of the concept of circular
causality.

The classical image of an information processing
system is an open-loop series of “stages.” These stages
form a chain from the stimulus to the response,
which is treated as a string of dominoes with the
“response” from one stage being the “stimulus” for
the next in a sequence of discrete acts. In this frame-
work, there is an implicit arrow of time, such that
some stages are seen as logically prior (as input or
cause) to other stages. In fact, whole research pro-
grams are designed around single stages—as if each
stage can be understood independently from the
other stages.

However, if the dynamic of cognition is
closed-loop, this image will not work. A better
image is to think of the stages as being linked within
a web—so that an impact anywhere within the web
reverberates through the whole web. In a circular
dynamic, each stage is simultaneously providing
input to other stages and receiving input from
those stages. There is no implicit arrow of time.
Therefore, relative to the overall recursive, circular
flow of influence, no stage can be simply categorized
as cither “cause” or “effect” relative to another stage.
Also, note that the loop is closed through the ecol-
ogy, so that the ecology is an intrinsic component of
the web, simultaneously contributing as both cause
and effect (consequence).

The goal of this chapter is to reintroduce the idea
of circular causality—to provide a pedagogically
sound but analytically simple introduction to the
logic of feedback control. We hope to correct some
common misconceptions about the nature of feed-
back and to help those interested in cognition in
the wild to appreciate the dynamics of circles and

loops and the implications for studying situated

cognition.

The Stability Problem

One of the most pervasive misconceptions about
feedback is that the presence of feedback is sufficient
to explain stable progression toward a goal. In fact,
the central problem of control theory as a field of
study is to identify the special conditions under
which feedback will result in stable control. Stable
progression to a goal is NOT guaranteed by the pres-
ence of feedback. In Miller et al.’s example of hitting
the nail, there is an assumption that each swing is
executed exactly right so that the only relevant feed-
back is whether the nail is flush or not. However,
what if the nail position shifts from vertical or the
nail bends? How will the swing need to be adjusted
to achieve the goal of the carpenter? Or should
the goal be shifted to removing the nail and start-
ing over? Hammering a nail so that it satisfies the
goals of the carpenter is not as trivial a problem as
Miller et al.’s description suggests. They prematurely
dismiss the “circles within circles” in order to get to
hierarchies, leaving the dynam ics of feedback systems
unexplained; for the most part, cognitive science has
persisted in ignoring the dynamic of circles.

To illustrate the stabilicy problem, consider the
simple controller illustrated in Figure 1.1. 'This
system consists of three components: a time delay
that reflects the time to process error feedback, a
gain that determines the magnitude of correction
as a result of the error at each moment, and an
integrator that effectively sums or concatenates the
corrections across moments to determine the next
response. Let’s consider the time delay to be a fixed
property of the system (e.g., representing the reac-
tion time from seeing an error to initiating a cor-
rective action). Thus, the lone free parameter is the
gain, which can be treated as a simple multip]ier of
the error signal. As input to the system, we will use
a step function. Tracking a step can be considered
analogous to a rtarget acquisition task. When the
signal changes from one level (position) to another,
this is analogous to the target appearing—requiring
the person to move a cursor from one fixed (home)
position to another fixed position (the target).

Can you guess what value of the gain will
insure that the output of the system illustrated in
Figure 1.1 will follow the target (i.e., so that the
output will shift from the home position to reliably
converge on the new target Position commanded

by the step input)? You might guess that a gain
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Figure 1.1 A simple feedback system with a step input. How will the output response vary as a function of the gain parameter? Under

what conditions will the output converge to match the inpur?

of 1 would be ideal, insuring a one-to-one match
between the input and the output. This is not a bad
guess, and depending on the magnitude of the time
delay, this may well produce a satisfactory solution.
However, it probably will not be optimal. What
would happen if the gain were reduced to less than
1 or increased to more than 1? How would this
affect the output? Would it cause an offset between
the target and the output, such that the size of the
output step would scale proportional]y to the mag-
nitude of the gain? This is what would happen if
this were an open-loop system. However, in this
closed-loop system the gain does not determine the
size of the output signal, but rather the speed at
which the output will converge toward the input.
Very low gains will result in a “sluggish” response
to the input. The output will eventually reach the
target position, but it will take a long time to get
there (Figure 1.2). As gain is increased (i.e., sensi-
tivity to error is increased), the speed of correction
will increase. However, at some point the higher
gains will cause the system output to overshoot the
target, before gradually converging back to the tar-
get. At even higher gains the output will oscillate
around the target before settling down, and ar still
higher gains the oscillations will actually grow over
time—so that the output diverges, never sett]ing
down on the target (Figure 1.2).
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In general, the range of stable gains will depend
on the size of the time delay. As time delays become
larger, the range of gains that will produce stable
control will get smaller. That is, with longer time
delays the system will need to be less sensitive (i.e.,
lower gains—more conservative or more cautious)
in responding to errors in order to avoid oscillatory
or unstable responses (e.g., Jagacinski, 1977). In
designing automatic control systems, much of the
attention is given to eliminating unnecessary time
delays and then determining an appropriate gain for
the forward loop—in order to insure a fast butstable
response to errors. In cases where long time delays
are unavoidable (e.g., tele-operation over large dis-
tances), there may be no satisfactory gain for pro-
portional control. In these cases, a discrete style of
control (small adjustment, wait, small acljustment,
wait,...) will generally prove to be a more satisfac-
tory means of control.

Figure 1.2 illustrates the range of output behaviors
as a function of the gain parameter. [t should be clear
from this illustration that feedback alone does not
guarantee that the output will converge to the tar-
get. This is one of the fundamental issues of control
[hcory—to identify those spccial conditions thar lead
to stable control, or more generally to study those
factors thar determine the boundaries of stable con-
trol. In fact, it was the parallels between the behavior

h

]
"
[

-

Very Low Gain
Sluggish

Figure 1.2 This diagram illustrates a range ofourputs for the control system illustrated in Figure 1.1 asa function of the gain parameter.

For very low gains, the response will “sluggishly” converge to the target without overshoot. For very high gains, the response will become

unstable with oscillations that diverge from the target. At intermediate gains, the response will range from relatively rapid convergence

to the target without overshoot to converging oscillations as gain is increased within this range.
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of unstable engineered control systems and behavior
associated with some motor ataxias (purpose tremor)
that stimulated the interdisciplinary collaboration
between Wiener and Rosenblueth. These parallels
suggested that the logic of circles was not simply an
engineering problem, but a general problem of any
system that adjusts its behavior based on feedback.

In natural closed-loop systems (with inevitable
time delays) there will always be a speed-accuracy
trade-off. That is, there will always be a limit to how
fast a goal can be reliably approached (i.e., a limit
to the gain). In human-machine systems, the gain
is typically a joint function of the plant (e.g., the
gain setting for the mouse, the gain of the control
stick or steering wheel, and/or the vehicle dynam-
ics) and the human (e.g., the scaling of the man-
ual response to observed error). You may notice
this when you use a computer system that has the
mouse gain set differently than on your own com-
puter. If the gain is higher, you may find yourself
initially overcorrecting and oscillating around the
target before finally capturing it. If the gain is lower,
then the new system will feel “sluggish.” However,
it will typically not take you long to recalibrate to
the system gain and to make adjustments so that the
combined gain (human + plant) results in reliable
target acquisition.

Controls on high-performance aircraft typically
have very high gains, so that pilots must compen-
sate by making only small adjustments (lower gain)
in response to errors so that the net gain (human +
plant) will meet the constraints for stable conuol. Tt
is not unusual to see novices lose control (i.e., gener-
ate pilot-induced oscillations) when they first try to
fly a simulaton of a high-performance aircraft. That
is, their initial gain is too high! Research on human
tracking shows that humans can learn to adjust their
gain so that the human-vehicle system behavior is
stable. Effectively, McRuer’s classic crossover model
predicts that the effective control dynamics of the
human-machine system will (with practice) behave
much like the controller illustrated in Figure 1.1
(McRuer & Jex, 1967). That is, the combined system
dynamics will approximate the behavior of a system
with a time delay, gain, and integrator in the for-
ward loop. This will be true for a fairly broad range
of different plant (or vehicle) dynamics. In fact, the
optimal control model predicts that for a range of
vehicle dynamics humans can learn to conform fairly
closely to the ideals prescribed by normative linear
models for optimal tracking of randomly appearing
input signals (Kleinman, Baron, & Levison, 1971).
That is, the human will choose gains that minimize

a weighted combination of mean squared control
speed (effort) and mean squared error (accuracy).
Similar adaprations regarding plant dynamics, speed,
and accuracy can be seen in the Fitts' Law paradigm
(e.g., Jagacinski & Flach, 2003).

There are several key points that we hope to have
made in this section:

1. The intuitions derived from simple causal
assumptions (based on open-loop dynamics)
can be misleading when applied to closed-loop
systems. That is, increasing gain determines the
speed of convergence to the command inputin a
closed-loop system, NOT the relative magnitude
or scale of the response as would be true in the case
of an open-loop system.

2. All natural closed-loop systems will exhibit
a speed-accuracy trade-off. That is, there will
generally be a limited range of gains that result
in satisfactory stable performance. When gain is
too low, the response will be sluggish (too slow).
When gain is too high, the response will become
oscillatory, and with very high gain the oscillations
can become unstable (increasingly diverging from
the target).

3. The main point of this section is that zhe
presence of feedback alone does not insure stable
convergence on a target or goal. Thus, the presence
of feedback is not the answer that explains
behaviors guided by a goal. Rather, the logic
of circles provides the context for asking the
appropriate questions and for generating viable
hypotheses about the conditions that lead to stable,
goal-directed behaviors.

The Regulator Paradox: Control and
Observation

The challenge that intrigued Wiener and Bigelow
as they struggled with the design of systems for guid-
ing artillery during World War II was not the design
of simple servomechanisms, as is part of social sci-
ence lore. Rather, the key problem was to predict the
future positions of aircraft. That is, because of the
speed and altitude of aircraft, you would not hit an
aircraft if you fired at its current position. You had to
fire ata point that corresponded to a future position
of the aircraft (where the plane would be when the
missile arrived). This problem was complicated by
the fact that enemy pilots would not fly in simple
paths. They would maneuver evasively with the goal
to make it difficult to predict where they would be
by the time a missile arrived. This problem can best
be conceprualized as an observation and prediction
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problem. The challenge is to predict the future based
on noisy samples of past behavior. This is a problem
of distinguishing signal from noise and extrapolat-
ing to predict where the aircraft will be when the
missile arrives. This is a problem of anticipating or
predicting the future. Whereas the goal of the servo-
mechanism (control system) is to minimize “error”
(i.e., the deviation between an input goal and behav-
ior output), the goal of the observer is to minimize
“surprise” (i.e., the deviation between estimates of
target position and velocity based on noisy obser-
vations and the actual position and velocity of the
target), and the goal of the predictor is to extrapolate
that estimate forward in time.

Figure 1.3 illustrates a simple observer system.
Note that this is essentially the same dynamical
system as in Figure 1.1. The components include
a time delay reflecting the time to register the sur-
prise, a gain reﬂec[ing the magni[ude of ad]'ustment
based on the current surprise, and an integrator that
effectively sums or concatenates past corrections to
determine the next estimation. As in the previous
section, let’s assume a fixed time delay that reflects
hard constraints on the system. This again leaves the
gain as the lone parameter to consider. Let’s consider
the input to this system to be a noisy stream of data
to which we want to estimate the mean as a reason-
able prediction of future samples. For this example
let’s consider this a stream of sampled data about
the height of people in a particular population as
illustrated in Figure 1.4. Further, lecs consider the
possibility that in addition to the variability from
sample to sample, there is a step change in the mean
height of the population (e.g., due to a social change
improving diet and access to health care) that occurs
during the period of sampling.

In dcsigning an observer for this problcm, the
goal is to design a system that will not be fooled by
the noise (i.e., that will filter out the changes due
to noise) but that will be sensitive to real changes
in the underlying population (i.e., that will detect

the step change when it occurs). The lone param-
eter you have to adjust the system is the gain.
What value for the gain would be best? Certainly,
we know from the discussion in the previous sec-
tion that if the gain is set too high, the system will
become unstable and the estimates will oscillate
wildly and will not converge to the input signal.
So, we know that there is an upper limit to the
gain, but how low should we go? At the setting that
is ideal for solving the control problem as it was
described in the previous section, the outputr will
follow the input signal very closely. Thart is, it will
respond to every change in input, whether result-
ing from noise (sampling variability) or from a real
change in the underlying distribution, because this
distinction was not previously considered in char-
acterizing the input. If the goal is to track the “true
signal” based on noisy observations, then deter-
mining a satisfactory gain requires simultaneous
consideration of both the constraints on control
and the constraints on observation. So, it is ]ikely
that to reduce the impact of noise, the ideal gain for
solving the tracking problem would be lower than
if there were no observation noise. In this simpli-
fied context, the tracking system in Figure 1.1 has
the same structure as the observer in Figure 1.3, so
the structure has multiple interpretations.

As in the previous section, there is a funda-
mental trade-off associated with the gain. Figure
1.4 shows a range of responses for the observer
problem as a function of changes in gain. As the
gain is lowered, the response to the noise signal
will be “smoothed” so that the impact of sampling
variability on the estimation will be reduced.
However, the price of this “smoothing” is that the
observer will be slower to detect real changes when
thcy occur. Thus, in the design of an observer,
the engineer must weigh the cost of following
the noise against the costs of a slower detection
of real changes when they occur. The Kalman fil-
ter, which is an optimal solution to the observer

Signal+ Noise

~ Surprise Time

Estimation

Gain

Delay

Integrator >

A

Figure 1.3 This illustrares a simple observer system. The inpur reflects a noisy signal and the outpur is an estimare of the signal. In

essence, the observer is designed to “filter” out the noise.
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problem in a stationary environment. The Kalman
filter employs a time-varying gain that minimizes
the mean squared error in the estimate.

In essence, this is analogous to a signal detec-
tion problem, and the gain parameter will deter-
mine the ultimate balance between false alarms
(following noise) and hits (detecting real changes).
That is, the gain parameter determines the relative
sensitivity to signal and noise, as might be cap-
tured by the beta parameter in the signal detection
model. However, there are important distinctions
between the problem as presented here and con-
ventional treatments of signal detection in the
social sciences. First, the conventional treatrments
typically don’t consider the factor of time—
integration of information from one sample to
the next and changes over time in the underly-
ing signal distributions. In essence, conventional
treatments treat the signal detection problem as
open-loop.

A second important point is that conventional
open-loop information processing models and
linear closed-loop control models such as the
optimal control model (e.g., Pew & Baron, 1978)
partition the observation and control processes
into separate stages. In a closed-loop model, this
elaboration allows different gain settings for the
observer and controller. The gain of the observer
is chosen to separate signal from noise. The

gain of the controller is chosen to satisfy some
effort-accuracy trade-off. This partitioning is
advantageous for overall performance. However,
it does not capture the true intimacy between per-
ception and action that often exists in closed-loop
systems. As Wiener and Bigelow discovered in the
process of solving practical control problems like
targeting evasive aircraft, there is often an intimate
coupling between the observer problem (separat-
ing signal and noise to estimate the present posi-
tion and velocity of an airplane), the prediction
problem of extrapolating the path of the aircraft
forward in time, and the control problem (aim-
ing projectiles relative to the path of the aircraft).
For example, a series of projectiles could be fired
either to influence or to constrain the path of the
evasive aircraft (i.e., to simplify the observation
and prediction problems) as well as to actually hit
the aircraft.

In the context of discussing adaptivity, Weinberg
and Weinberg (1979) summarize the close cou-
pling between observing and controlling in their
Fundamental Regulator Paradox:

‘The task of a regulator is to eliminate variation, but
this variation is the ultimate source of information
about the quality of its work. Therefore, the better
the job a regulator does, the less information it gets

about how to improve.

Observer
73 ---Signal
74 —Signal + Noise (Observation)
o High Gain
73 a Medium Gain
7 o Low Gain

Very Low Gain

I}
=
20
o
e
68
67
66
65
0 10 20 30 40 50 60
Sample

Figure 1.4 This graph illustrates the response of a simple observer as a function of the gain. When the gain is very low, the system
will ef:f'-ec(ively filter out the noise but will be sluggish in responcling to changes in the signal. As gain is increased, more of the noise is

reflected in the response, but the system is also more responsive to real changes in the signal. At the high gain the outpur responds to

both signal and noise.
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or
Better regulation today risks worse regulation

tomorrow. (p. 250)

The point is that often cognitive systems and bio-
logical control systems must solve the observer, pre-
dictor, and control problems simultaneously. That
is, they must discover the goals (find the signal in
the noise) in real time while simultancously extrap-
olating forward in time and managing stable control
with respect to those goals. The Weinbergs used the
example of controlling a car during the winter to
illustrate this coupling. On the one hand, the driver
must function as a controller, keeping the car safely
on the road. On the other hand, the driver must
function as a higher-order observer of system per-
formance—in order to discover potential changes in
the control dynamics (e.g., resulting from changes
of the road surface such as black ice). In balancing
the demands of these two tasks, good drivers learn
to act to both steer the car and to test for changes
in road conditions (e.g., put in test signals such as
jiggling the steering wheel or tapping the brakes).
Note that the test signals produce “error” with
regards to the control problem, but they provide
information with regards to the changing dynamic
context (c.g., detecting control-relevant changes
in the situation). This information may be critical
for maintaining stable control when road condi-
tions change. Gibson (1979/1986) used the terms
“performatory action” and “exploratory action” to
distinguish between those actions motivated by the
demands of control and those actions motivated by
the demands for information.

To reiterate, in designing automatic control sys-
tems, engineers typically “solve” the control problem
and the observer problem offline and then imple-
ment the solutions as an automatic control system
(with gains tuned to reflect both the signal-to-noise
and the stability constraints of the problem). This
works well if the environments are relatively stable
(i.e., stationary). However, cognitive and biologi-
cal systems have to design themselves while simul-
taneously interacting with the problem situation.
For example, the new driver or new pilot must
discover the appropriate gains with respect to 1)
signal—and—noise (i.e., determine what aspects of
variability to filter out) and 2) good control (i.c.,
efficient, stable correction of errors) while engaged
in the control task. These systems must learn by
doing. These systems must self-organize. Further, to
survive, the cognitive and biological systems must
be prepared to adapt to changing contingencies.

That is, they cannot assume a stable environment.
For example, the operators of the anti-aircraft artil-
lery cannot assume that the enemy pilots will not
change their evasive tactics, and the operators may
even act to influence those tacrics.

Today, control theory and information theory
are typically treated as distinct fields of research.
This is in part due to the different analytic tools
(differential equations for control theory; probabil-
ity statistics for information theory). However, both
fields emerged as a result of the work of Wiener and
Bigelow on the problem of predicting aircraft move-
ments in order to target them. Note that the subtitle
of Wiener’s (1948/1968) classical work Cybernetics
was Control and Communication in the Animal and
the Machine. In closed-loop systems, observation
and control are two sides of a single coin!

The main points for this section were:

1. To show the feedback dynamic from
the perspective of informartion processing or
perception. In this case, the gain functions to tune
the filtering properties of the dynamic—in order to
distinguish signal from noise based on observations
over time.

2. To suggest that in most natural systems the
control and observer problems are intimately
linked. There could be a single gain parameter
to meet both the constraints on observation and
control in a simplified context, or there could be
two or more independent gain parameters for
observer and controller that together determine
the overall responsiveness and stability of the
closed-loop system. In addition, the actions of the
system may have multiple goals of influencing the
observation/prediction process and well as tracking
the input signal.

3. Finally, it is important to appreciate that
research into closed-loop systems must be guided
by the intuitions of both control and information
theory.

The Comparator Problem

In a control or observer system, the compara-
tor is the point at which the output is fed back and
“compared” with the input to compute an error (or
surprise) signal. In typical engineered control sys-
tems such as those illustrated in Figures 1.1 and 1.3,
the system is designed so that the comparator sim-
ply involves subtraction of one signal from another
to get a third signal. That is, all signals are in a
comparable currency that allows subtraction of one
from another to get the third. However, consider
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Figure 1.5 A second-order control system in which the gain determines the acceleration of the response (outpur).

the novice pilot learning to land. The goal might
be a particular approach path or simply a soft con-
tact at a particular region of the runway. The feed-
back would be in the form of optical Aow th rough
the windows and/or information presented on the
cockpit instruments. These two very different types
of signals must somehow be compared in order
to specify appropriate movements of the controls
(stick, throttle, rudders).

It should be clear that for the pilot, and more
generally for most cognitive or biological control
systems, the signals involved in the comparator pro-
cess may be in diverse forms or currencies. Thus,
comparing feedback to intentions in order to spec-
ify actions is not a trivial process. In fact, this is a
central issue for control theory—to determine the
dimensionality of the state space or, in other words,
to identify what variables must be fed back in order
to guide action in a particular situation (e.g., as a
function of different vehicle dynamics). This is also
probably the central issue for skill development—
artuning to the feedback that speciﬁes the appro-
priate actions with respect to the opportunities and
consequences (e.g., E. J. Gibson, 1969; Ericsson &
Charness, 1994). In Gibsonian (1979/1986) terms,
this is the problem of specification of affordances.

Figure 1.5 showsa simple feedback system to illus-
trate the comparator problem. This system has a gain
and two integrators in the forward loop. As with the
other systems, the gain determines the sensitivity to
error. Because of the two integrations in the forward
loop, the output from the gain element determines

the acceleration of the output. This is a dynamic that
is consistent with most movement tasks (e.g., vehicle
control or body movement) in a world governed by
inertia. For cxample, the initial response of deflection
of the accelerator or brake is an initial change in the
acceleration or deceleration for your car.

What do you suppose the response of this sys-
tem would be to a step input, and how might this
response change as a function of the lone parameter
in the forward loop—the gain? Is there any gain
value thar will result in an asymprotic approach to
the step rarget? Somewhat surprisingly in the context
of naive discussions of feedback systems, the answer
is “No.” Here again is a situation that illustrates that
feedback is not sufficient to insure convergence with
the input. In fact, the response of this system to a
step input is a sine wave output. The speed of oscil-
lation of this sine wave (i.e., its frequency) is deter-
mined by the value of the gain parameter. A higher
gain produces a higher-Frequency response. There is
NO value of gain that will lead to convergence of
output with the input rarget]

Figure 1.6 shows an alternative system that
includes feedback of both the output position
and the output velocity. This system will result in
an output that will converge to the input target, if
the feedback of position and velocity are combined
with the appropriate weights. Heavy relative weight
on the velocity component will lead to “sluggish”
or conservative approaches to the target. Less rela-
tive weight on velocity will lead to more aggressive
approaches—with a damped oscillation at very low

Inpuit Error Aee Vel Output
» > Jain » Integrator ntegrator >
) G Integ Integ
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+

Figure 1.6 Stable goal following can be achieved in a second-order system if feedback includes both position and velocity of the

output.
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weights and, as described above, a non-converging
oscillation at zero weight on velocity. Depending on
the relative weights on position and velocity, this sys-
tem will achieve a similar range of responses (from
sluggish to oscillatory) as illustrated in Figure 1.2.

A general implication of the behavior of the sys-
tems illustrated in Figures 1.5 and 1.6 is that for
control of an inerdal system (e.g., a car), position
feedback alone is insufficient. The system must
have feedback about both position and velocity in
order to control the vehicle. For example, in order
to stop the car in front of an obstacle on the road
(e.g., stopped line of traffic), a driver must take into
account both distance to the obstacle and the speed
ofapproach. Current research suggests that for visual
control of locomotion, this information is specified
in terms of the angular extent (e.g., visual angle of
the taillights of the preceding vehicle) and the angu-
lar velocity (e.g., rate of expansion of the taillights)
of the object in the visual flow field (e.g., Lee, 19706;
Smith, Flach, Dittman, & Stanard, 2001; Flach,
Smith, Stanard, & Dittman, 2004).

In most natural situations, cognitive systems
must deal with many different potentially useful
sources of feedback. Figure 1.7 provides a simpli-
fied illustration of the multiple variables that need
to be considered in controlling the lateral posi-
tion of an aircraft when trying to track a specific

approach path. The top portion of Figure 1.7 illus-
trates the multiple “state variables” that a controller
must be aware of in order to control effectively. The
input from the pilot directly affects the position of
the aileron, which is integrated (first-order lag) to
determine the roll rate, which in turn is integrated
to determine the roll angle, which is integrated to
determine the heading angle or turn rate, which
ultimately is integrated to determine the lateral
position of the aircraft. The outpurt of each integra-
tion represents a “state variable” of the aircraft that
must be fed back in order to achieve reliable con-
trol. Note that the lateral control problem is only
a subser of the variables that need to be considered
in landing.

The lower portion of Figure 1.7 illustrates how
cach of these state variables might be fed back and
combined to determine the appropriate control
adjustments. Each loop has a specific gain that in
effect reflects the relative weighting of each of the
state variables in determining the next adjustment
of aileron position. In designing an effective con-
trol system, the engineer would set the gains in each
loop to reflect the dynamics of a particular aircraft.
Similarly, a pilot who is learning to fly the aircraft
must discover the appropriate mappings from the
perceptual information associated with each varia-
ble (e.g., properties of optical flow or instrument
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Figure 1.7 The top diagram provides a highly simplified representation of the aircraft lateral dynamics and the state variables involved
in controlling lateral position of an aircraft (e.g., in trying to track the target approach path to an airport). The bottom diagram illus-

trates the mulrivariable control problem. Fach of the state variables are perceived, weighted, and combined to determine the appropriate

control actions.
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readings) and the adjustments of his or her control
interface (e.g., control stick).

In addition to considering the multiple state vari-
ables associated with the lateral and vertical posi-
tions of the aircraft, pilots must consider potentially
conflicting goals (e.g., aborting the approach when
a taxiing aircraft encroaches on the runway), and
many potential actions or means for moving toward
those goals (e.g., whether to make stick or throt-
tle adjustments to correct for excessive air speed).
Thus, the comparator problem involves attuning
to many potentially useful sources of feedback; it
involves setting priorities to appropriately trade off
the potential consequences of multiple competing
goals; and it involves choosing among many poten-
tial means for reducing the error between outpur
and intention. These multiple degrees of freedom in
terms of multiple consequences, multiple sources of
information, and multiple potential control actions
emphasize the intimacy between observation and
control introduced in the preceding section.

Also, it is important to understand that the set-
ting of the gains in Figure 1.7 that result in satis-
factory control depend on the particular aircraft
dynamic. However, the aircraft dynamic itself may
change as a functon of context. For example, the
dynamics can change as a function of both speed
and altitude. For example, gains that lead to stable
control at low altitudes may lead to instabilities at
higher alticudes. In the design of automatic control
systems, engineers address this by designing adap-
tive control systems. As illustrated in Figure 1.8,
an adaptive control system is capable of adjusting
the gains on the inner loop dynamics as a result of
monitoring the context or the quality of inner loop
responses.

In Figure 1.8, the thin (wire) arrows represent
the flow of signals or information that is then acted
on or processed according to the workings (i.e., the
transfer function—e.g., control gains) of each box.
However, the fat arrows that close the outer loopsare
signals that change the properties of the boxes (e.g.,
change the control gains or the expectations within
the boxes). Note that the inner loop includes three
modes of action: performatory actions are intended
to reduce error, exploratory actions are intended
to test hypotheses, and anticipative actions reflect
direct action to achieve a goal. The anticipative path
reflects direct response to the reference (i.e., not
dependent on error feedback). This is an open-loop
path from the reference or goal and could reflect
actions that are shaped by previous experience
with the plant dynamics (e.g., what has often been

called a mental model or schema). That is, these are
responses in anticipation of a consequence, rather
than in response to error feedback. Actions may ful-
fill any or all of these roles at any moment.

Figure 1.8 illustrates three different ways that
an engineer might close the outer loop to achieve
stable adaptive control. First, the adaptation might
be a direct function of the changing context, as
illustrated in the outermost loop. For example, the
engineer might compute the appropriate gains for
different altitudes and preprogram these different
gains into the automated control system. The gains
would be changed as a function of a direct measure of
the appropriate context variable (e.g., the altitude).
This is typically called “gain scheduling.” In human
performance, this path may be representative of the
phenomenon of context sensitivity. That is, the strat-
egy for controlling action or the expectations of the
human agent may change as a function of the situa-
tion. For example, data suggests that a reenage driver
with a parent in the car is one of the safest drivers,
while a teenage driver in a car with other teenagers is
one of the most dangerous drivers.

The next outer loop (hypothesis) in Figure 1.8
reflects conscious exploration of the dynamics
through exploratory actions. In engineered systems
this might involve a low-amplitude test signal that
is constantly input to the plant (i.e., dithering). This
input is designed to have minimum consequences
relative to the performance objective (i.c., to pro-
duce minimal error). However, the changes in the
properties of the output from this signal can be
information relevant to detecting changes in the
plant dynamics. Deviation in the output related
to the dithering can be fed back and used to adapt
the control gains (and the expectations). Skilled
human drivers use a similar strategy to test for pos-
sible changes in the driving dynamics due to chang-
ing road conditions. They may dither the steering
wheel to test for changing traction (Weinberg &
Weinberg, 1979). The reference signals for this loop
are labeled “local expectations” to reflect that this
loop reflects explicit tests of local hypotheses. In
this loop the human agent is acting as a test signal
generator and observer—in order to detect control-
relevant changes.

The innermost of the outer loops (surprise) rep-
resents an approach to adaptive control that engi-
neers call “model reference” control. With this style
of adaptive control, a normative model of the plant
dynamics can be simulated in parallel with the actual
performance. For example, this model might be a
simulation of aircraft performance at the typical
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Figure 1.8 This diagram combines an inner (control) loop with outer (adaptive or metacognitive) loops to illustrate three styles that

engineers use in the design of adaptive control systems.

altitude. Expectations based on the normative simu-
lation can then be compared with the actual behav-
ior of the vehicle, and deviations from expectation
can be fed back to adapt the control strategy (and
the expectations). Again, the engineer’s “simulation”
may be somewhat analogous to whar cognitive sci-
entists refer to as knowledge or a menral model. This
“model” reflects integrated experiences from the past
that provide a backdrop that experts can use to assess
situations. In many cases, this “internal model”
operates implicitly—so that experts may not become
aware of the expectations until there is a mismatch.
And even when the mismartch is norticed, the feed-
back may be experienced only as a vague sense that
something is not normal. Thus, this might be the
basis for intuitive aspects of expertise (Klein, 2004).
Overall, the outer loops in Figure 1.8 may provide
a constructive way to think about the general phe-
nomena of “metacognition,” that is, self-awareness or
our ability to monitor and critique our own Perfor-
mance. This is another layer of closed-loop, iterative
processing in which the processes are simultaneously
shaping their responses and being shaped by those
responses. Again, this reflects the self—organizing
aspect of cognitive systems. These are systems that
are capable of learning from their mistakes.
Adaptive control systems where outer loops
change parameters of inner loops are inherently
nonlinear. The stability of these systems becomes
a much more difficult analytic problem for control
theory, particularly considering that all three outer
loops may be acting simultaneously. These systems
can be trapped in local minima (e.g., converge on a

degenerate model of the plant superstitious behav-
ior), and they are vulnerable to butterfly effects (e.g.,
a small change can cascade, having dramatic effects
with regards to stability).

Finally, it should be apparent that as we increase
the number of variables that must be fed back and as
we add outer loops that change inner loops, the com-
plexity of the computations involved expands rapidly,
thus raising questions with respect to the capacity of
the human agent to manage this complexity. This
issue will be addressed in the next section.

The main points of this section are:

1. To increase appreciation of the natural
complexity of the comparator process whereby
feedback is compared with intentions in order to
specify corrective actions. The comparator process
is typically represented as simple subtraction. This
formalism greatly trivializes the problem faced by
cognitive systems.

2. To reinforce the intimacy of observation and
Control in Closed-lOOP Sys[ﬁms. T]'le ClOSCd'lOQP
dynamic demands that questions of intention,
perception, and action be framed in relation
to each other. A program that studies these as
independent stages in a linear causal stream will
result in trivializing the dynamics of cognition.

3. To reinforce the fact that despite the
common misconception, feedback does not insure
stable convergence ofoutput to the target input
due to the complexity of multi-loop dynamics
and nonstationary (i.e., changing over time)
parameters.
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Smart Mechanisms and Situation Awareness

There are two important consequences of having
multiple degrees of freedom in terms of intentions,
feedback information, and possible actions. On the
positive side, multiple degrees of freedom mean that
there are many ways to “skina cat.” Thatis, there will
typically be multiple ways to satisfy an intention.
This reflects a range of goal trade-offs that might be
acceptable, multiple potentially redundant sources
of information relative to guiding action, and mul-
tiple combinations of actions that move the system
toward satisfactory goals. On the negative side,
multple degrees of freedom can greatly increase the
computational demands on the system. That is, the
computational load associated with the comparator
problem will be a rapidly increasing function of the
number of variables involved—due to the potential
for multilevel interactions among these variables
and across inner and outer control loops.

It is clear that the human is a limited bandwidth
information Processor. Thartis, there is a limit to how
many independent things the system can attend to
or be aware of at the same time (e.g., Broadbent,
1971; Miller, 1956). Thus, there will be limits to the
complexity of the comparator problem that humans
(and other biological systems) are able to solve. In
general, for “good” or “smart” control, the system
should prefer solutions that both satisfy the inten-
tions and minimize the compurtational demands
(i.e., demands on awareness).

Bernstein (1967) was one of the first to draw
attention to the awareness or computational con-
straints on feedback control in the context of motor
skills. He noted that from the many possible means
for achievinga goal, skilled athletes tended to choose
solutions that reduced the degrees of freedom that
needed to be monitored (or controlled) in real time.
This was typically accomplished by locking out or
constraining other potential degrees of freedom.
This is easily illustrated by considering the swing of
a skilled golfer when driving a golf ball. The way
that the golfer holds the club, addresses the golf ball,
and moves during the swing is explicitly designed to
lock out many degrees of freedom (e.g., keeping head
fixed with eyes on the ball and keeping the elbow of
the left arm straight for a right-handed golfer). The
result of locking out or constraining many poten-
tial degrees of freedom is that the complexity of the
comparator problem is greatly reduced. It reduces
the number of variables that need to be monitored/
controlled in real time (i.e., attended or adjusted) in
order to control convergence to a satisfactory solu-
tion. For example, if the elbow position of the left

arm were also changing during a swing, its interac-
tions with all the other variables (e.g., wrist angle)
would have to be monitored and compensated for
in order to reliably make contact with the ball. The
term “coordinative structures’ has been suggested
for the patterns of constraint seen in skilled motor
activities (Turvey, 1977).

Runeson (1977) contrasted the solutions such
as coordinative structures with some of the early
conventional approaches to engineering and gen-
eral problem-solving processes. The conventional
approaches tended to start with a fixed general coor-
dinate system (e.g., orthogonal three-dimensional
spatial coordinates), and all control problems were
then organized with respect to those dimensions
(e.g-, describing the motion of all arm components
with respect to the positions and velocities in this
orthogonal space). The result of using this fixed coor-
dinate space is that many common natural motions
required relatively complicated descriptions; thus,
very complex computations were implied. To sim-
plify computations, engineers typically choose
solutions that are more compatible with the fixed
coordinate system. This results in very unnatw-
ral, “robotic” motion. Runeson called the systems
resulting from reliance on a single, fixed coordinate
system “rote mechanisms,” suggesting that these
reflected brute, one-size-fits-all solutions.

Alternatively, Runeson suggested that biological
systems change the coordinate system to reflect the
intrinsic constraints on the degrees of freedom (i.e.,
the coordinative structures). In these cases, a coor-
dinate system was chosen to make the description of
the solutions simpler—in effect reducing the com-
putational demands. Runeson called systems that
organize the comparator processes around “intrin-
sic” rather than “extrinsic” coordinates “smart
mechanisms.”

The constructs of “coordinative structure” and
“smart mechanism” have important implications
for understanding the dynamics of cognitive sys-
tems. Much of the research on perception defines
“space” with respect to a fixed coordinate system,
where human performance is evaluated with respect
to fixed rulers (e.g., length measured in cm) and
fixed coordinate systems (e.g., height, length, depth
perception). This classic approach is designed
around open-loop tasks where a stimulus is pre-
sented (e.g., an object of a particular size and posi-
tion in the world), and subjects are asked to make
passive judgments (e.g., how big is the object? or
how far away is it?). Great care is typically taken to
insure that the subjects’ responses do not change the
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stimulus (e.g., stabilizing the eyes using chin rests
or bite bars).

The constructsofcoordinarive scructureand smare
mechanism suggest that the closed-loop system may
self-organize around the intrinsic geometry of the
problem (e.g., vehicle dynamics). This suggests that
intrinsic aspects of the situation (e.g., imminence of
collision relative to the braking dynamics) may be
more “basic” to perception than the extrinsic coor-
dinates used by physicists to describe space (e.g.,
depth perception). In other words, this suggests
that “space” in the classical extrinsic sense is not the
dominant coordinate frame for perception. That is,
the perceptual system is not designed to “see” space,
but rather to detect those properties most directly
relevant to guiding action (e.g., the imminence of
collision). It is designed (or has evolved) to solve
the comparator problem. Gibson (1979/1986) has
argued for this hypothesis in terms of his construct
of “direct perception of affordances.” That is, a smart
mechanism organizes itself so that the functionally
relevant properties (i.e., the affordances) are speci-
fied in a simple or direct way to reduce the com-
putational demands. This idea, which once seemed
quite radical, becomes quite plausible when consid-
ered in the context of feedback control.

In the spirit of Gibson’s approach, the challenge is
not to understand “space perception” per se. Rather,
the challenge is to understand the ability for experts
to discover those coordinates that provide the most
direct mapping across the dimensions of intention,
feedback, and action. In other words, the challenge
is to find the smartest solutions to the comparator
problem (e.g., the simplest solution that satisfies the
demands of the situation). While in some cases the
solutions might be based on global constraints (sug-
gested by the scarch for optical invariants), recent
research suggests that even in relatively simple per-
ceptual judgments, people are likely to utilize more
local constraints of specific task environments when
they are locally reliable (e.g., kinematic correlates to
the specifying mass ratios for predicting the results
of collisions) (Jacobs, Runeson, & Michaels, 2001).
This suggests that even solutions to basic perception
tasks may be more heuristic in nature than had pre-
viously been thought by those following a Gibsonian
approach. That is, people will often organize behav-
ior around local constraints, rather than always
utilizing global invariants. However, Gibson’s main
point remains—the key to understanding the cou-
pling between perception and action is to discover
the intrinsic coordinates that allow direct mapping
berween intentions, consequences, and action.

The key point of this section is to reframe the
challenge of cognition. In classical approaches the
challenge of cognition is framed as the ability to con-
struct a valid internal model of the world (that then
becomes the basis for motor control and decision
making). This “internal model” is typically judged
relative to extrinsic physical models of space (e.g.,
standard rulers and coordinate systems). We suggest
that the problem of cognition is simply to guide
or direct successful action. Thar is, the function of
cognition is to solve the comparator problem. This
requires that our understanding of “awareness” (e.g.,
internal models) be grounded in an understanding
of “situations” (e.g., Flach & Rasmussen, 2000;
Flach, Mulder, & van Paassen, 2004). The “test” of
a belief is not based on classical induction or deduc-
tion, but rather it is based on the consequences of
actions based on that belief.

It is important to understand that this mapping
between perception and action is not a trivial prob-
lem (e.g., consistcntly hitting a nail is not as trivial
as suggested by Miller et al.’s TOTE example). It
is very likely that as a result of searching for and
discovering smart control mechanisms for the com-
parator problem, we build internal representations
of the world that might generalize to more abstract
models that guide scientific exploration and dis-
covery and that create new ways for interaction.
However, from the circular systems perspective,
the abstract models of science are a product of the
coupling of perception and action, not a necessary
prerequisite for the coupling. We discover the world
through acting in it.

Generalizing to Problem Solving and
Decision Making

The relevance of the dynamics of closed-loop sys-
tems is easy to discover in the context of programs
of research on perceptual-motor coordination (e.g.,
manual control). In that research context, there is
an obvious mapping between the normative models
(e.g., optimal control models and automated con-
trol systems) and the cognitive phenomena (e.g.,
piloting an aircraft), and there is a history of work
utilizing the analytic tools of control theory (e.g.,
frequency domain analysis) to describe human per-
formance (e.g., Sheridan & Ferrell, 1974; Jagacinski
& Flach, 2003). However, do these principles have
implications more generally for cognitive systems? [s
the logic of circles also relevant to phenomena asso-
ciated with decision making and problem solving?

We believe that the answer to this is obviously
“Yes.” This belief is supported by observations of
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naturalistic decision making that discovered that
in many decision contexts there is an intimate
link between “recognition” (i.e., perception) and
“choice” (i.e., action) (Klein, 1993). For example,
choices (decisions/actions) of a fire ground com-
mander (e.g., where to direct the hoses) are primed
by recognition processes or feedback (e.g., obser-
vations of the fire relative to the goal priorities—
saving lives and property). It is also supported by
work on problem solving in the wild (Hutchins,
1985). For example, Hutchins (1985) describes how
the solutions to navigation problems are shaped by
the available tools and representations (e.g., maps).
Again, we believe that these analyses of “cognition
in the wild” are unpacking the comparator prob-
lem. That is, these analyses are discussing the rela-
tions between input (e.g., intentions/goals), output
(e.g., consequences, feedback), and action. Different
strategies can then be evaluated relative to whether
they lead to satisfaction of the goals (i.e., whether
the system converges to stable solutions) and rela-
tive to the computational load (i.e., how smart are
the computational mechanisms?). Finally, a big part
of the story is how experts in natural work domains
leverage intrinsic problem constraints to improve
efficiency (i.e., coordinative structures).

Cognitive theory and research continues to be
dominated by the logic of open-loop causal rea-
soning, despite the growing evidence that cogni-
tive phenomena in nature are typically closed-loop.
For example, human decision making continues
to be evaluated against normative models that are
based on open-loop logic (induction, deduction).
However, the logic of abduction that was first pro-
posed by Charles Sanders Peirce (1978) provides an
alternative basis for rationality that is more consist-
ent with the logic of circles. For Peirce, the test of
a hypothesis was not the form of the argument (as
suggested by classical logic), but rather, the test of
the hypothesis was the pragmatic consequences of
actions directed by that hypothesis.

The abductive process described by Peirce is
directly analogous to the observer illustrated in
Figure 1.3. That is, an abductive system is a system
designed to eliminate surprise. In an abductive sys-
tem, as in an observer, beliefs that lead to accurate
perceptions and predictions about the world (i.e.,
converge in ways that reduce surprise) are strength-
ened. However, remember that this observation
process is not independent from the process of con-
trol. Thus, the real test of our beliefs in an abductive
system is whether the actions guided by these beliefs
lead to satisfactory consequences (i.e., reduce error

with respect to intentions). In essence, the target-
ing problem that challenged Wiener and Bigelow
was a problem of abduction. The problem was to
anticipate the actions of an aircraft in order to suc-
cessfully target it. The ultimate test of any belief/
guess about the behavior of the aircraft was the con-
sequences of an action (either firing projectiles or
simply comparing predicted and actual behavior)
that were then fed back, compared, and integrated
to both change the belief (prediction) and guide the

next prediction and/or action.

Conclusion

The primary motive for this chapter is that we
believe that cognition is a closed-loop phenomenon.
Thus, the logic of circles is fundamental. We believe
that many of the conundrums in cognitive science
and the failures of that science to inform design
are the result of framing the questions in the con-
text of simple open-loop causal systems. Although
Wiener’s cybernetic hypothesis has helped to inspire
the cognitive revolution, and although feedback
loops are often included in the images we create to
represent cognitive systems, we believe that for the
most part the logic of circular systems has not been
fully appreciated or applied. For the most part, cog-
nitive theory and research continues to be framed in
an open-loop context.

This is not simply a problem for cognitive sci-
ence, but it seems to be integral to the more general
logic of experimental science, where experiments
are expliciddy designed to explicate open-loop
cause-effect relations. Note that in considering a
circle as a whole, there is no unambiguous direction
for distinguishing cause from effect. In a recursive
circular dynamic, what we see determines what we
do, while simultaneously what we do determines
what we see. Observation and control are intimately
coupled. There is no basis for one (either perception
ot action) to have causal precedence over the other.

There is a tendency for experimental science to
organize around general, extrinsic coordinate sys-
tems that are at least implicitly accepted as ground
truth. These truths become the ruler against which
behavior is measured. For example, perception of
size is judged againsta standard measure in centime-
ters. Or choices are judged against the prescriptions
of inductive or deductive logic. However, circular
systems are self-organizing. This means that under-
standing will generally depend on the ability to dis-
cover the intrinsic coordinates (or standards) that
are structuring that organization. Thus, the ques-
tion is not “how big?” or “how far?” in any absolute
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sense (e.g., X cm), but rather whether it is grasp-
able, or pass-through-able, or whether collision is
imminent relative to the capacity to brake. In a cir-
cular system, the value of any variable (intention,
action, or perception) must be “measured” relative
to the other variables. The meaning of “too close”
is contingent on the action dynamics (i.e., the
capacity for braking or evasive maneuvering). The
question is not whether the reasoning is “sound” in
an absolute sense (e.g., valid relative to normative
prescriptions), but rather does the reasoning lead to
successful action?

In the classical approach, performance is gauged
with respect to ideal norms derived from abstract
mathematical models that were intended to gen-
eralize across a myriad of different situations. We
believe such abstract norms can be very important
for bounding the space of possible behaviors, but
that they are often not the appropriate gauges for
understanding the dynamics of actual behavior.
Actual behavior is grounded in the pragmatcs of
situations, and while an artful application of math-
ematics may be essential for describing the resulting
patternsand constraints, it needs to be particularized
to distinct situations. Actual behavior of circular sys-
tems is situated. Closed-loop systems are adapting
to their environments, and they are simultaneously
adapting (i.e., changing) their environments. This
coupling between environment and organism is
reflected in the dynamics of prey-predator systems,
where the size of each population is shaping and
being shaped by the size of the other population.
This coupling and the resulting self-organization are
also nicely illustrated by Kugler and Turvey’s (1987)
metaphor of insect nest building. In this system,
insect behavior creates the pheromone landscape at
the same time the pheromone landscape is shaping
insect behavior. The resulting structure of the insect
nest is a product of this coupling.

In this chapter, our goal was to use a few very
simple examples to help people to appreciate the
dynamics of closed-loop systems. These examples
were chosen to highlight differences between the
expectations developed from an open-loop theory
of behavior and to increase appreciation for the
complexity of closed-loop systems. We intention-
ally chose very simple closed-loop systems so that
the examples would be understandable and to mini-
mize any need for complex analysis. However, it
is important to realize that we are not suggesting
these examples as specific “models” or “metaphors”
of cognition, although we do believe that intuitions
developed through understanding these simple

circular dynamics may be important in shaping a
theory of cognition that captures the dynamics of
particular situations.

We believe that the evidence for circularity in
natural cognitive phenomena is pervasive. Although
one can find local behaviors that are open-loop
(e.g., ballistic braking), even in these cases the local
actions will typically be components of a larger
circular dynamic (e.g., safe driving). However, the
point here is not to fully elucidate cognition, but
to elucidate the logic of circular systems. Our hope
is that a deeper appreciation and understanding of
closed-loop systems will enrich theory, experimen-
tal practice, and application of cognitive science.
We hope that a deeper appreciation of closed-loop
systems will lead cognitive scientists to ask better
questions.

Finally, we believe that posing a question cor-
rectly will take us much further toward finding
satisfactory answers to that question. We are very
optimistic that trends in cognitive science (e.g.,
associated with neural nets, dynamical systems, arti-
ficial life, etc.) and in cognitive engineering (e.g.,
associated with ecological interfaces and semantic
computing) suggest that appreciation for the cir-
cularity inherent in cognitive phenomena is grow-
ing. However, unfortunately, this appreciation is
hampered by pervasive temptations to trivialize the
dynamics of circles in order to satisfy conventional
assumptions about the open-loop nature of expla-
nation and the open-loop nature of experimental
inference. Although most programs in cognitive
science require students to take experimental meth-
ods courses (e.g., to learn analysis of variance and
regression), we are aware of no academic program in
cognitive science that requires a course to introduce
the dynamics of closed-loop systems.

Future Directions

We suggest three challenges for the future asso-
ciated with theory, methodology, and practice. On
the theoretical side, it is important to move beyond
trivial control metaphors to more carefully consider
the dynamics of closed-loop systems. There are two
levels of theory to consider. At the meta-level, we
need to give up the domino theory of open-loop
causality to consider general models of complex,
dynamical systems. At the base theoretical level, we
need to attend to the situated (e.g., Suchman, 1987)
or embodied (e.g., Clark, 1997) dynamics of cogni-
tion. We need to move beyond an exclusive focus
on formal logic and other context-free models of
rationality to consider the pragmatic, ecological
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constraints of perception and action (e.g., abduc-
tion) (e.g., Todd & Gigerenzer, 2003).

Methodologically, it is important to broaden
the empirical base. This includes attending more
to naturalistic observations of cognition in com-
plex work domains (e.g., Hutchins, 1985). It also
means considering more representative designs for
controlled experimentation (e.g., Kirlik, 2006).
The representative designs need to provide more
degrees of freedom to the participants with respect
to both the means and ends for performance. If
the laboratory tasks are designed around the sim-
ple servomechanism metaphor, then of course the
humans will adapt and behave like a simple ser-
vomechanism. If we want to explore the creative,
adaptive capacity of human cognition, then we have
to create laboratory situations that invite creativity
and adaptation. Synthetic task environments pro-
vide a unique opportunity here (Flach, Schwartz,
Courtice Behymer, & Shebilske, 2010). In these
environments it is possible to empirically link per-
formance at the micro-level (e.g., reaction time to
specific events) to functional ends at a macro-level
(e.g., success in domain terms, such as successfully
completing a mission). The capacity to empirically
link variations at the micro-performance level with
more global functional consequences will be crirical
to modeling self-organizing dynamics.

Finally, at a practical level, it becomes necessary
for enhanced collaborations between those who focus
on awareness (e.g., cognitive scientists) and those
who focus on sitatons (e.g., engineers, domain
experts). Without cooperation and mutual respect
across disciplines, it will never be possible to achieve
a deep understanding of situation awareness. This
will require that we escape from the view where basic
and applied sciences are seen as competitors in a zero
sum game. We need to embrace the spirit of Pasteur’s
quadrant, where the goals of theory and practical util-
ity are respected and valued equally as complementary
components of a mature science (Stokes, 1997).
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CHAPTER

Attention

Christopher D. Wickens

Abstract

This chapter describes attention in cognitive engineering and in design by metaphors of the filter,
that selects incoming sensory information for perception, and the fuel that supports all stages of
information processing with a limited supply of resources, and that therefore limits multi-tasking
We describe applications of the filter to noticing events, alarm design, supervisory control and
display layout, display integration, and visual search. We then consider two aspects of multi-task
performance: when fuel is available to support concurrent processing, predicted by a multiple
resource model, and when the task demands are sufficiently high, as to force sequential processing,
and consideration of task and interruption management strategies. Finally, we consider the role of
mental workload in automation and situation awareness. Where relevant, the chapter highlights the
role of computational models.

Key Words: attention, multi-tasking, interruption management, multiple resources, time-sharing,
display integration, visual scanning, alarms, visual search

Fundamentals
What Is Attention?

Attention may be described as one of a funda-
mental set of limits to human performance (along
with, for example, memory or control precision) on
the amount of information that can be processed
per unit of time. Of use for the current chapter is
the consideration of two metaphors of attention, as
a filter and as a fuel (Kramer, Wiegmann, & Kirlik,
2007; Wickens & McCarley, 2008). As a filter, it
describes the limits and constraints on the sensory
systems (particularly the eyes and ears) to acceptand
process varying events and elements, up to the level
of perception, where the meaning of those events
is understood. Thus we conventionally describe
the filter metaphor as selective attention. As a fuel it
describes the limits and constraints on all informa-
tion processing operations—perception, working
memory, decision, and action—to operate concur-
rently, whether in the service of a single task or in
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multitasking. That is, attention characterizes a sort
of limited mental energy, fuel, or “resource” that
facilitates performance of the relevant process. For
cxample, as the worker “tries harder” to understand
a difficult instruction, he or she may lose focus on
monitoring other changing variables in the work
environment. Thus we can apply the fuel metaphor
to divided attention between tasks and processes.
Importantly, this dichotomy of metaphors can
be broken down by the extent to which the two
attention operations succeed or fail. We speak for
example of the success of the filter as guiding atten-
tion (often our eyes) to relevant sources of informa-
tion or events in the world; we speak of failures of
selective attention as both failures to notice those
events at all, and distraction as failures to focus
attention on important information as attention is
diverted to less important things. We speak of “suc-
cess’ of divided attention, when we can multitask
cffectivcly, doing two things at once as well as either



alone. In contrasrt, failure of divided artention, a
matter of degree, ranges from a small dual task dec-
rement in one or the other of two tasks to a complete
abandonment of one of them and postponement of
its initiation until the other is completed (serial rask
switching).

What Is Attention in Design?

At a fundamental level, we conceptualize design
from a human factors standpoint as an engineering
process, whereby the balance between two mea-
surable constructs, performance and workload,
is optimized. This balance is complicated in two
respects. First, “performance” is itself multifaceted,
and in particular in many systems we consider both
routine performance and performance in unex-
pected or “off-nominal” conditions (Burian, 2007;
Wickens, Hooey, Gore, Sebok, & Koenicke, 2009).
The former is rypically the goal of design, but effec-
tive human response to off-nominal unexpected
conditions depends upon design that supports
accurate situation awareness of the task (and the
environment in which the task is being performed
(Burns et al., 2008; Wickens, 2000a). Such design
may not necessarily help routine performance and
may sometimes even compromise it. The second
complication is that workload should not necessar-
ily be minimized for optimal dcsign, but must be
preserved within a range in the middle. This chap-
ter addresses the role of attention in characterizing
variables of performance, situation awareness, and
workload.

Attention Allocation

As we discuss below, attention may be allocated
at two different levels. At the highest level, we can
speak of attention—the fuel—as allocated to rasks,
as tasks may be defined by distinct semi-indepen-
dent goals (Kirwan & Ainsworth, 1992). Thus the
vehicle driver has the task of lane keeping, a sec-
ond task of navigating, and a third task of dealing
with in-vehicle technology (e.g., radio listening,
cell phone conversation). Tasks are distinct in this
sense in that they usually compete for attentional
resources. At the lowest level, we can speak of atten-
tion—the filter—as allocated to elements within the
environment as well as to internal cognition. Thus,
in the vehicle example, the single task of navigation
(and higher-level attention directed to the goal of
successful navigation) may need to be accomplished
by dividing or allocating visual attention (the filter)
between a map and the search for landmarks and
road signs outside; or between reading a navigation

display, recalling the correct option, and placing
the fingers on the correct key for menu choice; or
between searching for the road signs and rehearsing
the route number to be searched for. In our discus-
sion below, we consider both levels of artention.

A Brief History: Single-Channel Theory and
Automaticity

There are two concepts, single-channel process-
ing and automaticity, that are fundamental to most
findings and theories in attention, and indeed define
endpoints on a sort of continuum from attentional
failure to attentional success. Both are deeply rooted
in the history of the study of attention (James, 1890;
Titchner, 1908).

Single-channel theory (Craik, 1947; Welford,
1967; Pashler, 1998; Broadbent, 1958), the more
pessimistic view of human attention, underlies
the notion that attention can be focused on only
one task at a time, as if performing one task so
totally occupies the “single channel” of human
cognition and information processing that any
other task (usually one arriving later or deemed of
lesser importance) must wait, unstarted, until the
higher-priority task is completed. Its proponents
have cited data in which people must perform two
tasks of very high demands at once (like reacting in
emergency to an unexpected roadway hazard while
dialing a cell phone) or perform two tasks that com-
pete for incompatible resources (like reading a paper
document and reading a computer screen).

In stark contrast, the more optimistic view, auto-
maticity (James, 1890; Schneider & Shiffrin, 1977;
Fitts & Posner, 1963) defines circumstances when
a task requires csscntially no attention at all; if it
has no attention demands, then ample attention
(reserve resources) can be allocated to performing
other tasks concurrently without decrement. Classic
examples here include walking and talking, or driv-
ing (lane keeping) and listening to the radio. In
both pairs, the first-mentioned task is so “easy” or
automated that it requires little attention.

Single-channel behavior and the perfect time
sharing invoked by automaticity of course represent
two endpoints on a continuum that can be best
defined by the degree of attentional resources necessary
to obtain a given level of performance. Such a relation
between resources and performance is described by
the performance-resource function (PRF; Norman &
Bobrow, 1975), three examples of which are shown
in Figure 2.1. The graph line at the bottom (A) sug-
gests a task that would invoke single-channel behav-
ior, since full resources musrt be allocated to obrain
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Resources Invested ————

Figure 2.1 Three examples of the performance-resource function.

perfect performance (or indeed any performance at
all). The curve at the top (C) represents an auto-
mated task. Perfect performance can be obtained
with little or no attention. The graph in the middle
(B) highlights the continuum between SCT and
automaticity; performancc improves up to a point
as more resources are allocated to it, but it eventu-
ally reaches a level where “trying harder” will not
improve performance.

Importantly, the transitdon from A — B — C can
describe both an intrinsic change in the objective dif-
ficulty (complexity or demand value) of the task, or in
the subjecrive diFﬁcul[y of the task as rendered across
three levels of skill development (e.g., novice, journey-
man, expert). Important also is the observation that
tasks A and C may be performed at equivalent levels
in single task conditions; however, when a concurrent
task is added, task A will suffer, but C will not.

In the following pages, we describe several gen-
eral design issues relevant to attention (or atten-
tion issues that can be addressed by design)—the
role of the filter in noticing, information, access,
and search; the role of both the filter and fuel in
information integration; the role of the fuel in mul-
titasking that is both parallel and serial; the role of
the fuel in mental workload prediction and mea-
surement; and the relationship between workload,
situation awareness, and automation. Within each
section, we address, where relevant, certain validated
computational models that can serve the engineering

design community.

Noticing and Alerting

Selective attention as the filter can be seen to
“tune” toward certain physical events in the envi-
ronment, while filtering out others. Designers
can capitalize on this by assuring that such tun-
ing is focused on important events. Thus a criti-
cal design implication of attention is rendered by
the attention-capturing properties of alarms and
alerts that will direct operators’ attention to events
(and locations) that a designer (and sometime
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automation) has deemed to be important. The fun-
damental basis of this approach lies in the fact that
people are not very good monitors for infrequent
or unexpected events if these are not highlighted
in some way, a phenomenon recently described as
change blindness (Carpenter, 2002; Rensink, 2002;
Simons & Levine, 1997; St. John & Smallman,
2008; Wickens Hooey etal., 2009a) or inattentional
blindness (Mack & Rock, 1998). The latter is a form
of change blindness that occurs when a change is
not noticed, even when directly looking at it.

Alert Salience

Research has identified a number of features of
warning systems that will capture attention by mak-
ing events salient (Boot, Kramer, & Becic, 2007, Itd
& Koch, 2000)). For example, appearances of new
“objects” in the scene will capture attention, and
onsets (increases in luminance) will be more effec-
tive in attention capture than will offsets (decreases
in luminance or contrast, or disappcaring objccts;
Yantis, 1993). Whether appearing or disappear-
ing, the noticing or attention-capturing properties
of these transients is much better when the visual
contrast of the changes is larger, the signal/noise
ratio is higher (less clutter around the change event
location), when visual or cognitive load is lower,
and when they occur near or close to foveal vision,
than when they are in the periphery (McCarley et
al.,, 2009; Wickens et al., 2009; Steelman-Allen,
McCarley, & Wickens, 2011; McKee & Nakayama,
1984). 'This loss in sensitivity with increasing eccen-
tricity is estimated to be approximately 0.8%/degree
(McCarley et al., 2009; Wickens, Alexander, et al.,
2003). An extreme example of this eccentric pre-
sentation is when the to-be-noticed-event is not in
the visual field at all when it occurs (e.g., the eye is
closed in a blink or the head is turned beyond about
60 degrees away from the changing element. In
these instances, referred to as “completed changes”
(Rensink, 2002), change is very hard to notice when
fixation is restored to the location of the change.

To some extent, the attention-capturing proper-
ties of the physical event (measurable for example by
luminance contrast differences) are also modified by
knowledge-driven or cognitive processes. One such
process is expectancy. We will better notice events if
they are expected (Wickens, Hooey, et al., 2009);
for example, if the operator knows that a system is
operating near its limits, he or will more likely expect
the warning that those limits have been exceeded
and therefore notice the alert when it appears, even
if it may not be in foveal vision. A second process



is tuning, whereby people are able to “tune” their
monitoring to certain event features, to enhance
noticing when events contain those features (Most
& Astur, 2007; Folk, Remington, & Johnson, 1992,
Wolfe & Horowitz, 2004). An obvious case is when
the tuned feature is location; people can tune their
attention by simply directing their gaze toward the
location where an alert is likely to be. But they can
also tune attention to be receptive to certain features
at a given location: For example, in most cockpit
situations, attention is tuned to a red event (e.g., a
red light onset) because of the high priority given to
red as a warning.

The difference between the attention-capturing
processes defined by physical elements in the
environment (e.g., signal-noise ratio) and the
attention-tuning processes defined by worker expec-
tations illustrates the more general contrast between
what are termed “bottom-up” and “top-down”
influences on perception. A final, strong effect on
attention capture or noticeability is the ongoing
non-visual (auditory and cognitive) workload at the
time an event occurs (Fougnie & Marois, 2007).

A computational model called N-SEEV (notic-
ing—salience effort expectancy value; Wickens,
Hooey, et al.,, 2009; Steelman-Allen et al., 2011;
Wickens, 2012) can be used to preclict the likelihood
of detecting an event as a combined function of its
salience (Itti & Koch, 2000), expectancy, peripheral
eccentricity (from foveal vision), and overall work-
load. However, in the workplace, as opposed to the
laboratory, it is often challenging to determine what
the eccentricity of a particular event at a given loca-
tion may be, as the eyes can be scanning many dif-
ferent locations around the workplace. The SEEV
model, the second component of N-SEEV model,
predicts the course of this workplace scanning as a
context in which the event to be noticed (N) occurs.
The SEEV model will be described in a later section.

Beyond the visual modality, there are of course
differences in attention-capturing properties
between modalities. Most critically, vision is ham-
pered in noticing events in that only about 2 x
2 = 4 squared degrees of a momentary visual field of
around 60 x 60 degrees is occupied by foveal vision
atany time; that is, only around 0.1%, and noticing
degrades rapidly outside of this region. In contrast,
events in either the auditory or tactile modality are
not much constrained by sensor orientation; they
are said to be omni-directional, and so auditory (and
more recently tactile) warnings have been validated
as superior alerts. However, within these non-visual
modalities, issues of bottom-up capture (signal-to-

noise ratio) and tuning or expectancy play the same
role that they do in vision. As an example, audi-
tory warnings may not be effective in noisy or
conversation-rich environments, nor tactile alerts
in an environment with extensive physical activity
(e.g., a soldier crashing through heavy timber).
Nevertheless, a meta-analysis of noticing events
within a visual workplace indicates that the auditory
and tactile modality are 15% more effective (faster,
mote accurate) in capturing attention than are visual
interrupting events, even when the latter events are
adjacent (in the best case) to the location of the
ongoing visual tasks (Wickens, Prinet et al., 2011;
Lu, Wickens etal., 2011; Sarter, this handbook).

Alert Reliability

Most alert systems are imperfect in their reliabil-
ity. They are designed with algorithms to integrate
raw physical data to infer an important or “dan-
ger” state (e.g., a malfunction, a fire, or a predicted
collision), and if this integratcd product exceeds
a threshold, the alert activates. However, the raw
data are often noisy, and in the case of predic-
tive alerts, circumstances in the environment may
change after the alert is given to make the forecast
event less likely. The longer this span of prediction
is, the lower the reliabiliry. As the obvious conse-
quence, as described by Meyer (2001, 2004) and
Meyer and Lee (this handbook), alerts can make
one of two types of decision errors: deciding there
is nota problem when there is (a “miss”) and decid-
ing that there is a problem when there is not (a
“false alert”). When considering the consequences
of these two types of errors, most designers quite
reasonably assume that misses (or delayed alerts)
are worse than false alerts, and so they choose
to adjust the threshold lower so that the false
alarms are more prevalent. In this case, when the
FA rate increases, the system often produces the
well-known “cry wolf” problem (Breznitz, 1983;
Dixon, Wickens, & McCarley, 2007; Wickens,
Rice, et al, 2009; Xiao et al., 2004), whereby
operators may turn their attention away from the
alerts when they occur and hence are more likely
to respond late, or not at all, to true alerts.

Alert Dependence: An Attentional Analysis
in a Dual-Task Environment

The effect of alarm reliability can be placed
within the broader context of the multitask envi-
ronment in which alarms are mosr critical, and the
consideration of two cognitive states and two aspects
of attention with which those states are associated
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(Meyer, 2001, 2004; Meyer & Lee, this handbook;
Dixon & Wickens, 2006; Maltz & Shinar, 2003).
Thus, in most applications, a busy operator in a
multitask environment (driving, flying, health care
operations) is depending upon the automartion t
(1) alert him or her if there is a problem, but (2)
be “silent” if all is well so that he or she can com-
fortably turn full attention to the concurrent tasks
and away from the domain of the alerted event. As
Mevyer describes, an operator who responds rapidly
to the alerts when they occur is demonstrating the
compliance to the alert system; one who retains full
attention to the concurrent tasks when the alert is
silent is demonstrating reliance on the alerts. Thus
the psychological constructs of compliance and reli-
ance represent two independent aspects of operator
dependence upon the alert system (Meyer & Lee,
this handbook).

With regard to attention, when the overall reli-
ability of the alert system degrades, both types of
automation errors (misses or late alarms and false
alarms) may increase. However, a designer-imposed
shift in the alert threshold can mitigate the rise in one
at the expense of the other. In these cases, data sug-
gest that a rise in false alert rate, with miss rate held
constant, will cause a progressive loss in compliance.
This “cry wolf” effect can be objectively measured by
the response rate, by the response time (to address
the alarm), and by a selective attention measure of
the time it takes to look at or switch attention to) the
alerting domain (Wickens, Dixon, Goh, & Hammer,
2005). Conversely, an increase in miss rate, with FA
rate more or less constant, will lead to a progressive
loss in performance on the concurrent task with lower
reliance as more attentional resources are reallocated
continuously to monitoring the automated domain
even when “allis well” (Wickens & Colcombe, 2007).
This allocation is directly manifest as increased scan-
ning to any visual display of “raw data” within the
alerted domain (Wickens, Dixon, Goh, & Hammer,
2005). These human adjustments in response to fail-
ure event frequency may be described as optimal or
“eutactic” (Moray & Inagaki, 2000), much as human
signal detectors optimally adjust beta in response
to signal frequency, as discussed in McCarley &
Benjamin (this handbook).

The influences of false alert rate on compliance
and miss rate on reliance are not entirely indepen-
dent in two respects. First, if the threshold of an
alert system with constant reliability is varied by the
designer, it is obvious that reliance and compliance
measures will change in opposite directions. Second,
there is some evidence that increasing FA rate not
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only degrades compliance but will also degrade reli-
ance (Dixon, Wickens, & McCarley, 2007; Dixon
& Wickens, 2000), as if false alarms, being more
salient and noticeable than misses, lead to an overall
reduction in trust in (and therefore dependence on)
the system. So, from the perspective of the impact
on human performance in the multitask environ-
ment, it appears that FA-prone systems are more
problematic than miss-prone (or late-alert-prone)
systems. But of course, a full analysis of the appro-
priate balance between misses and false alarms in
alert system design must take into account the pri-
mary issue of the costs of overall system misses ver-
sus false alerts (i.e., should both the human and the
alert system miss the dangerous event).

Amplifying and mitigating the AFA problem. Three
factors amplify the AFA problem. First, for any given
threshold setting, the lower the base rate of events, the
greater will be the false alert rate, at least as measured
by the proportion of alerts that are false. In some cir-
cumstances this can be as high as 0.90. Indeed, in one
case (border monitoring for nuclear fuel), it reached
100% (Sanquist, Doctor, & Parasuraman, 2008).

Second, in environments with multiple indepen-
dent alerts and low thresholds (e.g., the intensive
care unit; Seagull et al., 2001), if the probability of a
false alert in any given system is even modestly high,
then the probability that a single alert within the
total workspace will be false can be extraordinarily
high. A recent study at a medical center revealed
that the typical health care worker was exposed to
approximately 850 alerts in a typical workday, many
of them undoubtedly false. Nurses experience 841
nuisance alerts/day. Kestin, Miller, and Lockhart
(1988) estimated that in the typical operating room
an alarm was triggered every 4.5 minutes.

In such circumstances with multiplc alarm sys-
tems, some of them more prone to false alarms than
others, people tend to generalize across the popula-
tion of all systems, distrusting the good as well as
the bad (Keller & Rice, 2010).

Third, the problems with false alarms can obvi-
ously be amplified to the extent that those alerts
themselves are annoying and intrusive. A visual alert
that is false can be fairly effectively “filtered,” since
as we noted above, only when it is in the fovea is
it most salient. In contrast, the down side of the
omni-directionality of auditory or tactile alerts is
that the attentional filter cannot restrict access. The
increased annoyance accompanying such intrusive
false alerts will increase the tendency of workers
to deactivate them, or at least try to ignore them

(Sorkin, 1989).



Finally, there is emerging evidence that people
respond differently when false alerts are clearly “bad”
(e.g., the user can obviously perceive that there is
no danger) versus when they are “plausible” (e.g.,
a danger threshold was approached but not quite
passed; Lees & Lee, 2007; Wickens, Rice, et al,,
2009; see also Madhavan, Wiegmann, & Lacson,,
2006). “Cry wolf™ behavior is more likely in the
former case than in the latter. However, in order
for humans to make this determination thart a false
alarm is plausible, they must be able to monitor the
“raw data” independently from, and in parallel with,
the automated sensors.

The mitigating solutions for the AFA problem
range from the highly intuitive to the less obvious,
as we describe below.

* Increasing alerti g system semsitivity in
a’iscriminaring safé ﬁom dangemm conditions. Often
algorithms can be improved and an approach
taken over tme in developing the airborne
traffic alert (TCAS) as designers responded to
pilots’ complaints about the high false alarm rate
(Rantanen, Wickens, Xu, & Thomas, 2004). An
important question in this regard is how low such
sensitivity (or reliability) can be before an alerting
system becomes no longer effective. One review
of alerting studies indicated that with reliabilities
above about 0.80 (mean of FA and miss rate), for
humans operating in a multitask environment
(where attentional resources were at a premium),
performance of a human supported by an
imperfect alerting system would be better than that
of the unaided human (Wickens & Dixon, 2007).

o Instructing users about the inevitable necessity
of some false alarms in uncertain environments, and
pczrticut‘ar{y when the event base rate is lower. Such
instructions can render the false alerts as more
“forgivabic,” particulariy if thcy are not bad false
alerts, as described above.

. [mplementing context sensitive mechanisms that
may raise the threshold during circumstances when
the base rate is known to be quite low, and lower it
when the base rate is higher (e.g., fire alerts during
fire season versus rainy season).

* Providing the user with rapid (and ideally
continuously available) access to the raw data in
parallel with the automation. Hence, to the extent
that false alerts are in the “plausible,” not the
“bad,” category described above, such access will
diminish cry-wolf problems. Indeed, in such a
system with raw data access, the activation of the

aiert may actuaiiy reinforce ti‘lC human‘s own raw

data monitoring behavior (if the human detected
the pending event before the alert sounded), as
well as confirm to the human that the system is in
fact well functioning (albeit a little too sensitive).
These characteristics appear to have mitigated the
“alarm false alarm” issue in some segments of air
trafic control (Wickens, Rice, et al., 2009).

» Developing “likelihood alarms” in which
the alert system itself can express its own degree of
uncertainty when events occur that are close to the
threshold (Sorkin, Kantowitz, & Kantowitz, 1988;
St. Johns & Manes, 2002; Wickens & Colcombe,
2007). Such uncertain-class events can then be
associated with a physical sign (e.g., an amber
signal) that is less urgent than “sure events” (e.g.,
red flashing) but more urgent than the sign of
“all clear” (e.g., green, or no sign at all). Some
evidence suggests that likelihood alerts provide
better overall sensitivity than simple two-state
alerts (on-off).

* Informative alerts. Many complaints about
alerts are associated with frustration that, while
informing that something has gone wrong, they
say little about whar is wrong and what to do
about it. Such concerns, addressed by making the
alerts more informative (e.g., voice alerts), lead
us beyond their attention-capturing properties to
consideration of the further information properties
associated with alerts and other displays, the issue
we turn to in the next section.

Attention & Attention Travel
in Information Processing
Display Layout

Attention, both its filter and fuel capabilities,
is particularly challenged in a spatially distributed
workspace such as that confronted by the pilot,
driver, health care worker, or process controller,
where multiple sources of information must be pro-
cessed as a basis for action and not simply moni-
tored. Such processing may consist of multitasking
(as when the driver examines a map while endeavor-
ing to maintain some attention to the roadway), or
it may consist of information integration, as when
the pilot compares the map with the visual view of
landmarks outside the airplane to assure that he or
she is on the right track. In such circumstances, we
see that attention must travel from place to place, an
analog to physical travel, and that such travel is not
effortless, particularly in a widely distributed visual
workspace.

In these circumstances, designers often have
an opportunity to “lay out” some aspects of the
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workspace to minimize net travel time, accord-
ing to seven specific principles (Wickens, Vincow,
Schopper, & Lincoln, 1997), as we describe in the
following. The first two of these principles depend
upon defining a “normal line of sight” (NLOS);
that is, in a seated workspace, a line about 20
degrees below the horizon extending from the eyes
(Sanders & McCormick, 1993). With regard to
the point where the line intersects the workspace
surface:

1. The most important displays should be closer
to the NLOS. (This applies particularly to displays
whose changes are critical to be noticed in a timcly
fashion.)

2. The mostﬁequentéf used displays should be
closest to the NLOS.

3. Pairs (or N-tuples) of displays used for
a single task (i.e., that musc be integrated or
compared and are therefore typically used in
sequence) should be close together. In some
cases this may involve database overlay, as when
terrain and weather are superimposed in a pilot’s
navigational map so that a safe route through both
hazards can be planned (Kroft & Wickens, 2003).

4. Displays related to a single class of
information should be close together, or grouped.
This will aid in visual search, as we will see below.

5. Displays should be positioned close to the
controls that affect those displays (display-control
compatibility; Proctor & Proctor, 2000).

We note that in particular, principles 2 (frequency
of use) and 3 (relatedness) are designed to minimize
the total attention travel time. This optimization, if
not followed, may lead to slower performance (since
attention travel takes time) but, in a worst case,
when attention travel is very effortful, may lead to a
relevant display not being visited at all.

Given the role of attention travel in display
layout optimization, it is important to realize that
travel cost (or information access cost) is not a lin-
ear function of distance, but instead can be seen to
have at least three components (see Wickens, 1993;
Wickens & McCarley, 2008): (1) When displays are
close together, so that the eye can scan from one to
the other without head movement (within abour 20
degrees), the cost is minimal and does not change
with separation distance. (2) When the displays are
separated by more than 20-30 degrees, head move-
ments are required to move the eyes from one to the
other, imposing not only a substantially increased
cost, but one that grows with the distance (angle) of
head movement. (3) Sometimes displays just cannot
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be accessed by head movements alone, but rather,
require body rotation (checking the blind spot in
a car) or, increasingly, key presses or mouse move-
ments to access a particular “page” in a menu or
multdfunction display. In the latter case, the “dis-
tance” of attention travel can be calculated in part
by the number of key presses and in part by the cog-
nitive complexity of menu navigation. (e.g., num-
ber of options; Seidler & Wickens, 1992, Wickens
& Seidler, 1997). Greater information access can
not only impose direct time costs but also inhibit
information retrieval (Gray & Fu, 2004) and may
alter the overall strategy and accuracy of task perfor-
mance (Morgan, Parrick, et al., 2009).

An important question for designers to answer is
what happens when principles “collide” or oppose
cach other. Suppose, for example, that frequency-of-
use dictates that a particular display be close to the
NLOS, but integration requires that the same dis-
play be close to another, which (for other reasons) has
been positioned far from the NLOS. Which princi-
ple is more costly to violate? A study that addressed
this question had pilots fly with eight different dis-
play layouts that either conformed to or violated
each of three different principles; frequency of use,
integration (sequence of use), and display-control
compatibility (Andre & Wickens, 1992). The results
revealed that the sequence-of-use principle (close
positioning of displays to be integrated for the same
task) dominated the frequency-of-use principle,
as assessed by overall pilot performance. Both of
these dominated display-control compatibility. The
impact of these human performance weightings,
coupled with others, has been represented in vari-
ous display layout models summarized in Wickens,
Vincow, et al. (1997), which have integrated vari-
ous clements that influence the efficiency of atten-
tion travel, as described above, to provide “figure
of merit” estimates of display layout optimization
(e.g., Fowler, Williams, Fowler, & Young, 1968).

There are two additional attention-guided princi-
ples that can be applied to display layout: A principle
of (6) consistency dictates that displays should remain
in the same consistent location so that they can
always be found (selective attention directed there)
with minimal interference. Adhering to this principle
will not only lead to standardization of layouts across
different systems (e.g., aircraft instrument panels
always adhere to the basic “T” formation for locat-
ing four critical instruments), but adherence will also
provide a resistant force against flexible reconfigurable
display layouts, where designers may chose to reposi-
tion displays as a function of work phase (e.g., phase



of flight, or normal vs. abnormal operations), or
workers may be given the option of moving displays
according to their preference. While such flexibility
provides some advantages, these may be offset by the
lack of consistency (Andre & Wickens, 1992).

A principle of (7) clutter avoidance is one that
resists the forces to either put too many displaysina
workspace or, in adhering to frequency of use, place
all displays tightly clustered or even overlapping.
Close proximity achieved via minimizing spatial
separation will create clutter—difficulty of focus-
ing attention on individual elements—whenever
the spatial separation is less than around 1 degree
of visual angle (Broadbent, 1982), and particularly
when the elements overlap or are overlaid, as in a
HUD display, or a map with text labels overlay-
ing ground features, or overlaying an ATC map
(Wickens, 200b).

Head-up displays and head-mounted displays
accomplish this by superimposing instruments over
an important forward view. The benchit (of not
having to move the eyes between the instruments
and the forward view) is partially offset by the clut-
ter costs of closely placed information (Wickens,
Ververs, & Fadden, 2004). We note here that a
special case of close spatial proximity for informa-
tion to be integrated is represented by geographical
database overlay; for example, a map of terrain and
weather for an aircraft pilot. When the two data-
bases must be integrated (e.g., to find a safe path
avoiding both terrain and weather), the close prox-
imity (0 distance) of an overlay provides better per-
formance than a side-by-side presentation of each,
despite the greater clutter of the overlay (Kroft &
Wickens, 2003; Wickens, 2000b).

The Proximity Compatibility Principle

The theoretical basis for the particular advan-
tage of close proximity displays for information that
needs to be integrated (principle 3) lies in the mulri-
tasking required as the human must retain (often by
rehearsal) information from a first-accessed source,
while attention travels to the second source for it to
be accessed and then compared or combined. At a
minimum, the time for travel will degrade memory
for the first source. However, if locating the second
source requires some search through a cluttered
field or (worse yet) accessing another screen via a
key press or turning a page, then the mental effort
of such access will compete with the retention. This
principle, that information that must be integrated
in the mind (close mental proximity) should also be
close together onadisplay (close physical proximity),

is referred to as the proximity compatibility principle
(Wickens & Carswell, 1995; Wickens & McCarley,
2008) and will be addressed further below.

The SEEV Model of Visual Attention Travel

Attention travel across displays and visual work-
spaces requires eye movements. While in read-
ing text these movements are relatively linear and
systematic, in monitoring multi-element displays
to supervise dynamic systems, like those of the
anesthesiologist, pilot, driver, or process control
supervisor, scan paths will be much less predict-
able. Assisting these predictions is the SEEV model,
which was introduced in the previous section in the
context of the noticing-SEEV (NSEEV) model of
event detection. SEEV predicts steady state scan-
ning around the workspace before the event to be
noticed occurs. The integration of its four com-
ponents—S = salience, E = effort, E = expectancy,
and V = value—is based on the prior modeling of
Senders (1964, 1980), Sheridan (1970), and Moray
(1986), and these are combined additively to pre-
dict the distribution of fixation locations. Then,
when the to-be-noticed event (TBNE) is scheduled
to occur at a specific location in this workspace,
SEEV will predict the distribution of eccentricities
of that location from the fovea, which in turn pre-
dicts the likelihood of detection (diminishing with
increasing eccentricity).

The SEEV model has been validated to predict
the percentage of time looking at different areas
of interest or displays with 80%-90% validity, in
workspaces ranging from the live surgical operating
table (Koh, Park, Wickens, Teng, 8 Chia, 2011) to
simulations of vehicle driving (Horrey, Wickens, &
Consalus, 2006) to both the conventional cockpit
(Wickens, Goh, et al., 2003) and the more auto-
mated cockpit (Wickens, McCarley, et al., 2008;
Steelman-Allen et al., 2011). As noted above,
when N is added to SEEV, SEEV then provides the
context for predicting eccentricity of the TBNE.
N-SEEV has been able to predict pilot detection
of a variety of unexpected events both within and
outside the cockpit with reasonably high accuracy
(r = 0.75; Steelman-Allen et al., 2011, Wickens,
2012, Wickens, Hooey, et al., 2009).

The SEEV model predicts how attention is
actually allocated across displays. Without the
unwanted influence of salience and effort, how
attention SHOULD be allocated across displays
is defined purely by expectancy (frequency of
use and frequency of sequential use) and value.
These parameters have been combined in several
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computational models of display layout, as dis-
cussed above (see Wickens, Vincow, et al., 1997,
for review of these).

Display Integration
Design Principles

As noted in the previous section, simply mov-
ing displays close together to reduce information
access cost can create clutter. There are other means
of creating closeness or “proximity” between two
or more display elements and hence aid the move-
ment of attention between them, techniques that
can loosely be referred to as “display integration.”
Many of these are incorporated within the prox-
imity compatibility principle introduced above (see
also Wickens & McCarley, 2008). Thus, when spa-
tial proximity cannot be achieved for two elements
that are to be integrated (as, for example, when
comparing two clements on a map whose coordi-
nates are fixed), the following two techniques can
be employed:

* Linking, by constructing a physical line
between the two, as a line connecting two points
on a line graph. Arttention can be said to “follow
the line,” just as following a road between two
geographical locations facilitates the travel from
one to another (Jolicoeur & Ingleton, 1991).

* Common color, by combining linking and
common color. Consider the air traffic control
display shown schematically in Figure 2.2 in
which planes A and D are at the same altitude
and on a collision course. Clearly the controller
must mentally integrate the trajectories of the
two to determine where and when this collision
might take place. Having automation construct a
graphic link between them and illuminate them in
a distinct color (e.g., red) will facilitate this mental
integration computing the anticipated point, time,
and separation of closest passage.

The ATC URET conflict alterting system.

Co-altitude (and conflicting) aircraft, need to be mentally integrated to understand

conflict. Hence they are common-colored

X7
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Figure 2.2 Creating proximiry in an air traffic display via link-

ing and color.
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Besides spatial proximity, linkage, and color,
a fourth technique of display integration involves
moving two elements so close together that they
essentially “fuse” into a single object, a technique
known as object integration. For example, a single
data point on a correlation plot represents two ele-
ments, an X and a Y value (Goettl, Wickens, &
Kramer, 1991). The “artificial horizon” on a pilot’s
atritude display represents pitch and roll by a single
line that can rotate and translate. A single icon object
on a weather map may contain several attributes of
information. One advantage of object integration,
supported by a great deal of research on attention
(e.g-, Treisman, 1986; Carswell & Wickens, 1996;
Duncan, 1984; Scholl, 2001), results because all
attributes of a single object are processed more or
less in parallel, whereas two separate objects are
more likely to be processed in series; hence there is
greater efficiency of divided attention between two
attributes of the single object display than berween
two objects.

A fifth technique for display integration, and one
that sometimes accompanies object integration, is the
creation of emergent features (Pomerantz & Pristach,
1989; Bennett & Flach, 2011). This results when mul-
tiple elements of a given display “configure” to create a
new feature that is not inherent in any of the objects
themselves. For example, four bar graphs (e.g., repre-
senting engine temperature on four systems) that are
all aligned to the same baseline will present an emer-
gent feature of “equality,” which is the co-linearity of
their tops, when all are at the same level. Such emer-
gent features can greatly benefit performance to the
extent that the feature itself “maps” directly to a criti-
cal integration quantity necessary for monitoring and
control (Bennett & Flach, 1992; Bennett & Flach,
this handbook; Peebles, 2008). If the features are
perceptually salient (like the co-linearity above or the
symmetrical appearance of certain geometric objects),
then direct perception can allow the integration to be
achieved without imposing extensive cognitive effort
(Vicente, 2002).

Note that the association of object displays
with emergent features results because the forma-
tion of an object by dimensions, like the length,
height, and width of sides and tops of a rectangle,
will almost always create emergent features (like the
size and shape of the rectangle) that would not exist
were the dimensions presented in isolation from
each other (e.g., as separate bar graphs; Barnetr &
Wickens, 1988). However, we also note that if the
emergent features of the object are n#or mapped to
critical integration task parameters, such object



integration may be of no benefit, and other means
of configuring the individual variables may provide
better emergent features.

Display Proximity and Clutter

As we have noted above, close proximity achieved
via minimizing spatial separation will create clutter.
‘This is one distinct advantage of object integration.
Two (or more) attributes of a single object are pro-
cessed in parallel and hence unlikely to interfere with
each other’s processing, in contrast to two separate
objects occupying the same space (e.g., overlay).
Various computational models of clutter have been
proposed (e.g., Rosenhotz, Li, & Nakano, 2007;
Beck, Lohrenz, & Trafton, 2010).

Extensions of Proximity Compatibility and
Object Integration

Two important design concepts related to prox-
imity compatibility are those of visual momentum
(Woods, 1984; Aretz, 1991; Wickens & McCarley,
2008; Bennett & Flach, 2012) and ecological inter-
face displays (Vicente, 2002; Burns & Hajdukiewicz,
2004; Burns et al., 2008). Both have, at their core,
the goal of fluently moving attention across com-
plex multi-element workspaces in order to facilitate
integration and comparison. Visual momentum is
a technique designed to facilitate mental integra-
tion of two or more different “views” of a single
spatial area or network. For example, one technique
of visual momentum would involve presenting a
global view of the full workspace, alongside a more
localized zoom-in view, with the region of the local
view highlighted in the global view (Aretz, 1991;
Olmos, Liang, & Wickens, 1997; Tang, 2001).
Such highlighting allows rapid movement of atten-
tion between the two views. A second technique is
continuous “panning” rather than abrupt switching
berween two views of the same region, but from dif-
ferent orientations (Hollands et al., 2008). Visual
momentum concepts are particularly valuable
when visualizing compiex information (Robertson,
Czerwinski, et al., 2009; Wickens, Hollands,
Banbury, & Parasuraman, 2012).

The concept of an ecological interface is more
complex, and space here does not allow much
coverage except to note that for very complex sys-
tems like power plants, industrial process control
industries, or human physiology, there are ways of
presenting the multiple variables in such a manner
that they directly signal certain critical constraints
of the environment or “ecology” that they represent
(Burns & Hajdukiewicz, 2004; Burns et al., 2008);

not surprisingly, many of these “ways” capitalize on
emergent features and configural displays to graphi-
cally represent constraints and boundary conditions
in the system (e.g., the balance between mass and
energy, or between inflow and outflow, which char-
acterizes stability). Such ecological displays are often
found to be most beneficial in fault management,
a particular situation when variables must be inte-
grated in new and different ways to diagnose the
source of a fault and project its implications to sys-
tem safety and productivity (Burns, this Handbook,
Vicente, 2002; Burns & Hajdukiewicz, 2004).

Visual Search

Visual search is a selective attention function,
similar to both noticing and supervisory sam-
piing. However, unlike noticing, search is more
goal directed toward finding a predetermined tar-
get. In doing so, attention (often coupled with the
eyes) usually moves sequentially until the target is
found or a decision is made that it is not present
(Drury, 2006; Wickens & McCarley, 2008). Search
is a key component in many industrial inspec-
tion tasks (Drury, 1990, 2006). Thus the primary
cognitive demands associated with search precede
iocating the object; whereas the primary rask in
noticing typically follows the triggering event. That
said, many variables affect both tasks in the same
way: Both usually involve eye movements (when
noticing involves a visual event), both are inhib-
ited by a cluttered background and cognitive work-
load, and both are improved when the target (in
search) or the TBNE (in noricing) is salient (flash-
ing, high-contrast, moving, etc.). Importantly, and
for a given level of salience, a target will be more
likely to be found in a search task than it will be
noticed in a noticing task. This difference reflects
the added top-down influence of the goal direction
of the search task; the search is “tuned” to certain
[arget prDPEl‘(if:s. BO[l'l rﬂsks are aiSO iﬂﬂuenced by
top-down expectancy in other ways. In search, there
are two sources of expectancy. Expectancy for target
location influences where we look first, and expec-
tancy of whether there is a target at all infuences
how long we continue a search when the target has
not been found (Wolfe, Horowitz, & Kenner, 2005;
Drury & Chi, 1995).

From a design perspective, long, tedious searches
can have two detrimental influences. First, they can
often sacrifice worker efficiency, as, for example,
when a computer service worker must spend several
seconds searching for a target on a screen, repeating
the operation hundreds of times over a workday.
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In these circumstances, even milliseconds of added
search delay can accumulate large costs (Gray &
Boehm-Davis, 2000). Second, they can often
inhibit safety, particularly in vehicle control, when
long head-down searches (e.g., for a destination on
an electronic map) can leave the driver exposed to
roadway hazards (Wickens & Horrey, 2009). In
another example, analysts computed that the long
search time on a railway traffic map spelled the dif-
ference between safety and a faral railway crash, as
dispatchers spent 18 precious seconds attempting
to locate the source train, causing a flashing col-
lision alert (Stanton & Babar, 2008). This elapsed
time spelled the tragic difference between the dis-
patcher commanding a braking action in time, and
too late.

Improving Search

In response concerns such as those described
above, a number of attention principles can speak
to ways that search can be improvcd. Some of these

solutions include:

* Target enhancement. In some circumstances,
simple solutions like improving workplace lighting
can increase the discriminability between targets
and non-targets, a definite advantage when the
targets themselves are subtle (like cracks in che hull
of an aircraft; Drury, Spencer, & Schurman, 1997).

* Signal-noise enhancement. Creative solutions
can identify ways to differentially amplify the
target over the non-targets. For example, if
targets are identified by different depths in a
three-dimensional display, then providing the user
with the ability to change the viewpoint on that
dispiay will producc differenrial morion of rargets
vs. non-targets(Drury etal., 2001, Drury, 2006).

o Selective faig/a[z'ghtz'ng. To the extent that the
searcher (or another agent) can define features
possessed by the target, display technology can
then artificially enhance all elements possessing
those features—for example, by painting them
a different color or increasing their intensity.
Thus, for example, in air traffic control, all
aircraft flying at a common altitude may be
highlighted as particularly relevant because they
are more likely to be on a collision course than
those at different altitudes (Remington, Johnson,
Ruthruff, Gold, & Romera, 2001). Of course,
such attention-guidance automation imposes the
danger that it could be less than fully reliable
(Yeh & Wickens, 2001a; Yeh, Merlo, Wickens,
& Brandeberg, 2003; Fisher & Tan, 1989;
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Mertzger & Parasuraman, 2005). For example,
highlighting could be imposed on an element
that is not a target, or, more seriously, it could
fail to highlight one that is. (These two classes
of highlighting errors parallel the two classes

of alerting errors discussed previously.) Studies
of highlighting validity indicate that people
naturally tend to search the highlighted items
first (Fisher, Coury, Tengs, & Duffy, 2009), and
if there is uncertainty as to whether a target is
present or not, people may truncate the search if
they fail to find it in the highlighted subset. This
behavior would lead to a miss if the target was
not highlighted.

* Search field organization. In many search fields
(e.g-, a computer screen), it is possible to impose
an organization on the elements to be searched:

a linear list or grid. Such organization aids search
in two respects. It can help people keep track of
examined and not-yet-examined items without
excessive burden on memory. It can also avail

the opportunity for designers to place the items
most likely to be the target of search near the top
(for example, the most frequently used items in a
computer menu), given the tendency for people to
search from top to bottom.

s Search instructions and target expectancy. As
noted, the expectancy of whether a target is present
or not can influence the amount of effort spent
on continuing the search when a target is not
yet found. Search shows a clear speed-accuracy
trade-off, such that longer searches are more
likely to turn up a target (Drury, 1994). On the
one hand, instructions that emphasize the value
of finding the target will produce greater success
(bur longer search times; Barclay, Vicari, Doughty,
Johanson, & Greenlaw, 2006). On the other hand,
a low target expectancy will more likely produce a
premature termination, leading to a miss (Wolfe
etal., 2005). Furthermore, when there may be
multiple targets (such as malignant nodules in
an x-ray), instructions can counter the tendency
to stop the search after a first target is found and
impose the search in an exhaustive manner (Barclay

etal., 2000).

Modeling Search: The Serial
Self-Terminating Model

The serial self-terminating search (STSS) model
proposed by Sternberg (1966) is based on data from
Neisser (1963) by which attention searches a field

of non-targets sometimes containing a rarget. The



model predicts the time to locate the target or, if it
is not present, to decide that it is not. Accordingly,
the model predicts that each non-target element is
inspected in series, requiring a constant time (T) to
decide that each is nor the target, until the target is
reached and a response is made. Thus the search is
self-terminated. When the target is not present, all
items must be inspected. When the target is pres-
ent, on average half the items will be inspected.
Hence, the slope of the search time as a function of
the size of the search field (N) is NT when the tar-
get is absent, and NT/2 when it is present. Various
versions of search models have borrowed from the
basic elements of the SSTS model (Drury, 1994;
Drury et al., 2001; Teichner & Mocharnuk, 1979;
Yeh & Wickens, 2001b; Fisher et al., 1989; Fisher
& Tan, 1989; Beck et al., 2010; Nunes, Wickens,
& Yin, 20006).

Several modifications and elaborations of this
model can be made. For example, if the target
is more confusable with the non-targets, T will
increase (hence increasing the slope; Geisler &
Chou, 1995). If the target is defined by a single
salient feature (e.g., red in a sea of green), the slope
is essentially 0, describing a parallel search process
(all items inspected at once). Wolfe (1994;2007,
Wolfe & Horowitz, 2004) has proposed a “guided
search” model by which initially several non-
targets in the search field can be immediately fil-
tered out (i.e., in parallel), but search through the
remainder is serial. This approach has been taken
to modeling the benefits of highlighting certain key
elements of the search field that are assumed to be
most relevant, as discussed above (Fisher, Coury,
et al., 1989; Beck et al., 2010; Nunes et al., 20006;
Yeh & Wickens, 2001b; Wickens, Alexander,
et al., 2004).

Attention to Tasks: Multiple Resources

When two tasks must be performed within a
narrow window of time, there are two qualitatively
different ways in which this can be managed: They
can be time-shared, wherein the performance of each
task is ongoing concurrently, as when listening to
a cell phone while driving (Regan, Lee, & Young,
2011; Wickens, Hollands et al., 2012). This is
divided attention between tasks. Alternatively, they
can be performed in sequence, as when a driver stops
the car before answering the cell phone call. Each
situation has very different implications and differ-
ent sorts of processing operations underlying the
success and failure of multitasking, so we consider
each in turn.

Concurrent Task Performance: Multiple
Resources

According to one prominent theory of muld-
tasking, the multiple resource theory (Navon &
Gopher, 1979; Wickens, 1980, 1984, 2002, 2005,
2008a), there are three fundamental elements dic-
tating how well a given task will be performed
concurrently with another. First, most intui-
tively, the difficulty or atzentional resource demand
of both tasks will influence time sharing. Easier
tasks (those of lower mental workload, or greater
automaticity) will be time shared more effectively
(Kahneman, 1973).

Second, a greater degree of shared versus separate
resources within the human’s information processing
structure will increase interference. Wickens (2002)
has developed a conception of what those separate
resources might be in a way that is consistent with
neurophysiological data (Justetal., 2001). For design
purposes, these can be broken down in terms of four
dichotomies, with “different resources” defined by
the two levels of each dichotomy, as follows:

* processing stages—perceptual-cognitive
(working memory) versus response selection and
execution of action

* processing codes—spatial versus verbal/
linguistic

* processing modalities (within perception)—
visual versus auditory (and there is now emerging
evidence that the tactile channel defines a third
perceptual resource category; Lu, Sarter, &
Wickens, 2011)

* visual channels (within visual modality)—focal
(object recognition) versus ambient (motion

processing) vision (Previc, 1998, 2000)

Accordingly, as a design and analysis tool
(Wickens, 2002, 2005; Wickens, Bagnall,
Gosakan, & Walters, 2011), a given task may be
defined by levels within one or more of the four
dimensions. The interference between two tasks
can then be partially predicted by the number of
dimensions on which their demands share common
levels. This prediction of dual task interference is
then augmented by summing the total resource
demands of the two tasks (independent of their
resource competition). A computational version of
this model is described in more detail in Wickens,
2005; Sarno and Wickens, 1995; and Wickens,
Bagnall etal., 2011.

The third elementin predicting success or failure
in divided attention between tasks is the allocation
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policy between them (Norman & Bobrow, 1975;
Navon & Gopher, 1979). Intuitively, the more
favored task of a pair (the primary task) will pre-
serve its performance close to the single rask level,
whereas the less favored (the secondary task) will
show a greater decrement. This simple feature, allo-
cation policy, describes why the automobile acci-
dent rate while using cell phones, while substantial,
is not higher than it is: Most drivers still do treat
lane keeping and hazard monitoring as a rask of
higher priority than that of phone conversation.

There is one final factor not accommodated by
multiple resource theory that can account for dif-
ferences in the effectiveness of concurrent task
performance, and that is confusion, caused by the
similarity of elements within the two tasks (Wickens
& Hollands,2000). The more similar those elements
are, the more likely there will be cross tralk between
the two such that, for example, elements of one task
show up in the response to the second task. A clas-
sic example relates to the challenge of patting your
head while rubbing your stomach. Another might
be trying to tally or copy student test scores while
listening to basketball scores. Note, however, that
similarity-based confusion is most likely to occur
when the tasks already share some demand for com-
mon resources (e.g., in the above two examples,
both spatial manual tasks or both auditory/verbal
tasks using digits).

Sequential Performance & Task
Management

Even when an operator may try to perform two
tasks in parallel (albeit with degraded performance
on one or both), this may become impossible cither
because one or both are of high resource demand
or because they compete for common incompat-
ible resources, like speaking two different messages
at once (the voice can speak only one at a time)
or looking to two sources of widely spaced visual
inputs. In these circumstances, once the limits of
multiple resources have dictated that concurrence
is impossible, the first two elements of multiple
resource theory (demand and resource structure)
no longer play a role in predicting interference.
However the third element—allocation policy—
now occupies center stage as fhe most important
factor in sequential task management: which task
is performed and which is completely abandoned or
neglected, and for how long.

Two general scenarios underlie the manifesta-
tion of sequential task management strategies,
both involving a decision process of which task to
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perform, and both partially embedded within the
framework of queuing theory (Moray, Dessouky,
Kijowski, & Adapathya, 1991). One of these is the
study of task switching (e.g., Rogers & Monsell,
1995; Goodrich, this handbook), and the other is
the study of interruption management (e.g., Trafton
& Monk, 2007). In the former case, the operator
is confronted with two tasks and must choose one
to inidate first. In the latter case, the operator is
already performing one (the “ongoing task™—OT)
when a second task (the “interrupting task™—IT)
arrives, and must decide whether (or for how long)
to continue the OT before switching to the IT, then
when to return to the OT. Here researchers often
focus on the guality of OT upon return (e.g., how
fast it is resumed, whether it is resumed where it
was “left off,” etc. Trafton & Monk, 2007; Wickens,
Hollands et al., 2000).

In both cases, queuing theory can sometimes
be applied to determine optimal strategies of task
(and interruption) management (Moray et al,
1991; Liao and Moray, 1993). Some of these strat-
egies are quite intuitive, such as when two tasks
differ in their importance (or penalty for delayed
completion), the more important should be under-
taken first. However, when a large number of task
features vary between the two, such as their length,
their cxpccted duration, their difﬁculry, the decay
of information within a task while it is neglected,
or the uncertainty in priority, then assessing opti-
mal solutions becomes very complex. Indeed, in
these circumstances it can easily be argued that
the mental workload (and time) cost of a human
computing the optimal strategy will consume suf-
ficient resources to offset the very goal of trying to
make the optimal choice (Raby & Wickens, 1994;
Laudeman & Palmer, 1995).

While there are many design-relevant research
conclusions in this area, many of these are also
based upon only limited data, or data collected in
fairly simple laboratory environments. The follow-
ing paragraphs describe some of the more impor-
tant of these.

More optimal task switching can be achieved
with a preview of upcoming tasks (e.g., its duration
(Tulga & Sheridan, 1980).

Very slow task switching in multitask environ-
ments is suboptimal (Raby & Wickens, 1994), and
optimal switching frequency can at least partially be
dictated by optimal models (Moray, 1986; Wickens,
McCarley, et al., 2008). Particularly in widely dis-
tributed visual workspaces, task switching can be
partially captured by eye movements, using the



SEEV model to prescribe optimal switching (Kohe
etal, 2011).

Very slow task switching characterizes what is
sometimes referred to as “attentional tunneling” or
“attentional narrowing,” where critical areas of inter-
est (and tasks served by those areas) are neglected
for long periods of time, inviting failures to notice
key events in those areas (Wickens & Alexander,
2009; Wickens & Horrey, 2009), particularly when
those events are unexpected (Wickens, Hooey etal.,
2009). In these instances, the “task” that is neglected
is often considered the task of maintaining situation
awareness (see below).

Three qualitatively different task features tend to
induce attentional tunneling, these being extreme
levels of interest (such as an engaging cell phone
conversation (Horrey, Lesch, & Gabaret, 2009),
compelling realistic displays (e.g., a 3-D naviga-
tional display; Wickens & Alexander, 2009), and
fault management (Moray & Rotenberg, 1989).

Attentional tunneling can be mitigated by salient
alarms for neglected tasks (see above), but to be
most effective such alarms should be adaptive (see
Kaber, this handbook), more likely to be activated if
automation infers that neglect is taking place (e.g.,
following an assessment of prolonged head-down
orientation in vehicle control).

In interruption management, several variables
influence the fluency of task resumption (Dismukes,
2010; Trafron & Monk, 2007; Monk, Trafton, &
Boehm-Davis, 2008; Grundgeiger et al., 3010;
Smallman & St. John, 2008; Wickens & McCatley,
2008; Morgan, Patrick et al., 2009; Wickens,
Hollands et al., 2012), particularly the choice of
when to leave an ongoing task (after a subgoal has
been completed) and whether a “placeholder” is
imposcd when the ongoing task is left (e.g., a mark
on the page where reading stopped), in order to
increase the fluency of return to the OT.

Voice communication tasks tend to be particu-
larly intrusive in interruptions, leading to premature
abandonment of ongoing tasks of higher priority
(McFarlane & Latorella, 2002; Damos, 1997).

Many aspects of interruption management flow
from the study of prospective memory (Dismukes,
2010; Loukopoulos, Dismukes, & Barshi, 2009),
which is the memory to do a future task. In this
particular case, the “future task” is re-engaging the
ongoing task following the interruption.

There are beginning to be developed design-ori-
ented solutions that can (a) use automation to moni-
tor the progress of certain types of manual work to
assess mote appropriate times to interrupt (Bailey &

Konstan, 2006; Dorneich et al., 2012); (b) provide
advanced notification of the importance of the inter-
ruption so that the operator can decide whether or
not to fully abandon the ongoing task or postpone a
switch to the interruption task (Ho, Nikolic, Waters,
& Sarter, 2004); (c) provide visual placeholders, like
a flashing cursor, that will support rapid reacquisition
ofan ongoing task after the switch (Trafton, Altmann,
& Brock, 2005); and (d) provide support tools such
as that described by Smallman and St. John, 2008.

Hybrid Models

There isasetof models describing multitasking that
are neither strictly parallel (like multiple resources; see
above) nor strictly serial (like queuing theory models
of sequential performance), but involve scheduling
multiple cognitive processes in the service of two tasks
that may sometimes be used in series and sometimes
in parallel (Meycr & Kieras, 1997; Liu, 1996). One
particularly important approach along this line is that
of threaded cognition (Salvucci & Taatgan, 2008, 2011;
Salvucci, this handbook). In particular, the authors
have proposed a series of guidelines in the design of
multitasking environments.

Conclusion

In conclusion, a great deal of research is required to
better understand how people handle sequental tasks
under time pressure. One of the more intriguing aspects
of this issue involves defining the boundary condition
of increasing demands when the multitasker abandons
hope of concurrent processing and “regresses” to a
sequential mode, ceasing the performance of one task
altogether. This “point” is sometimes referred to as a
“red line” along a scale of increasing mental workload,
imposed by tasks (or sets of tasks), and brings us to the
next section on mental workload.

Mental Workload
Mental Workload Assessment

Mental workload may be roughly described
as the relation between the attentional resource
demands (fuel requirements) imposed by tasks and
the resources supplied by the operator in performing
those tasks (fuel available “in the tank”). In the former
case, resource requirements can be specified by criti-
cal task characteristics that impose greater demands,
such as the working memory demands of a task, the
number of mental operations, the signal-noise ratio
of its displayed elements, the compatibility of map-
ping from display to control, the precision of required
control, the time pressure, or simply the number
of tasks imposed at one time. Because a given task
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Figure 2.3 The supply‘demand curve of resource allocation, il-

lustrating the concept of the “red line”. Wickens, Christopher;

Hollands, Justin G.; Engineering Psychology and Human Performance,
3rd Edition, (c) 2000. Reprinted by permission of Pearson Education,
Inc., Upper Saddle River, NJ.

environment may be characterized by several of these
dimensions at once, each expressed in very differ-
ent units, the issue of how to combine these into a
single metric of “mental workload imposed” is quite
challenging, to say the least. It is complicated further
because demands of a task configuration will decrease
with the skill and practice of the performer.

In the case of resources supplied, there is some evi-
dence that measures of “effort investment” may be more
quantjﬁablc, in terms of either physiological measures
(Tsang & Vidulich, 2006; Kramer & Parasuraman,
2007) such as heart rate variability or pupil diameter,
or in terms of subjective measures (Hart & Staveland,
1988; Hill et al., 1992; Tsang & Vidulich, 2006).

Both measures of resources required and resources
supplied (invested) are joined in the “supply-demand”
function shown in Figure 2.3, in which increasing
demands on the task (x-axis) are met with increasing
resources supplicd (solid line), up to the pointat which
resources available are “maxed out.” Performance on
the task(s) in question (the dashed line) is perfect up
to this point, but further increases in demand cannot
be met, and performance then declines. In the par-
lance of the previous section, this point of inflection
on both curves is often referred to as the “red line” of
workload, in that designers should strive to maintain
task demands always slightly to the left of this point.
The desire to stay to the left of the inflection is driven
by the design goal of maintaining a margin of “reserve
capacity” in order to deal with unexpected emergen-
cies should something go wrong.

In addressing issues of workload, designers are
confronted with two top-level questions. First,
how can we predict or measure the point along the
x-axis of Figure 2.3 imposed by a particular task
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requirement in relation to the “red line.” Given the
challenges of assessing either resources required or
supplied, this can be a difficult enterprise, although
progress is being made via the elaborate develop-
ment of workload assessment measures and compu-
tational models of task demand (Laughery, LaBiere,
& Archer, 20006). Second, if workload is either pre-
dicted or assessed to be above the red line, what can
be done to reduce it? Solutions often can be catego-
rized into those that:

* redesign the task (e.g., by changing an
interface to use separate resources; by reducing
incompatible mappings, by reducing working
memory requirements, by facilitating information
integration, etc.)

* “redesign” the operator by training

* impose automation

The third solution, using automation to elimi-
nate or reduce human task demands, leads us to a
final section relating automation to attention but
also invoking a critical third variable, situation

awarcnecss.

Attention, Situation Awareness, Workload,
and Automation

Ata fundamental level, as suggested above, auto-
mation and attention demands (workload) are neg-
atively related: The higher the levels of automation
that are invoked, the lower the operator workload.
The pilot of the modern aircraft with an automated
flight management system can fly a complex route
with far less hands-on flying than that of a general
aviation airplane, where stick, rudder, and throttle
may need to be continuously adjusted. But such a
simple relationship is complicated in many ways,
particularly given the all-important influence of siz-
uation awareness (Endsley, 1995; Endsley, this hand-
book; Durso, Rawson, & Girotto, 2007; Banbury
& Tremblay, 2004; Parasuraman, Sheridan, &
Wickens, 2008; Wickens, 2008b). Thus it is now
well established that higher levels of automation
will degrade SA in two attention-related respects:
monitoring/complacency and working memory.

With regard to monitoring, as automation
assumes more tasks that would otherwise require
human perception & supervision, the need to mon-
itor what automation is doing decreases. In terms of
alerting systems discussed earlier, this was described
as increasing reliance upon automation (Meyer &
Lee, 2004, this handbook), reflected in decreased

scanning. Such decreases can be justified as, in some



sense, optimal (Moray, 2003; Moray & Inagaki,
2000), given the low likelihood of automation fail-
ure. But if the human supervisor is not looking at
automation (or the raw data it is processing), he or
she will be slower in noticing those very rare failures
in the automated task domain. This is what Endsley
has described as a reduction in level 1 situation
awareness.

With regard to understanding, the relevant
phenomenon in cognitive psychology is referred to
as the generation effect (Slamecka & Graf, 1978).
People are more likely to remember, even briefly,
the status of a dynamic system if they have actively
responded to change the system than if they have
passively witnessed another agent (here automa-
tion) making those changes. You remember well
the actions you have just taken. The resources
invested in making those actions serves you well
for future retention. In contrast, decreased mem-
ory for (or awareness of ) changed state in a highly
automated system will leave the monitor of such
a system less aware of its precise condition, if a
manual takeover is required in a case of a failure.
This describes a degradation of Endsley’s level 2
SA (understanding); since in many dynamic sys-
tems the current state is predictive of future states,
it also translates to a degradation of level 3 SA
(prediction).

We note then that, as mediated by changes in
automation level, there is a direct relationship
between SA and workload, a finding that is partially
(although imperfectly) documented by empirical
rescarch (e.g., Kaber & Endsley, 2004; see Wickens,
2008; Wickens, Li, Santamaria, Sebok, & Sarter,
2010, for a summary). System designers should
therefore seek a compromise in adopting a level of
automation, between keeping workload manage-
able and maintaining SA ac a sufficiently high level
so that the operator can effectively notice and enter
the loop should things go wrong.

Itis important to realize, however, that the auto-
mation-mediated trade-off (between workload and
loss of situation awareness) is not inevitable (Tsang
& Vidulich, 2006; Wickens, Li, et al., 2010). For
example, on the one hand, it may be possible to
increase the level of automation to some degree such
that workload will decrease but SA will not. This
will happen if the curves of SA and WL decrease
against automation level increase are non-linear
(Wickens, 2008). On the other hand, there are cer-
tainly things that can be done to design that will
simultaneously reduce workload while improving
SA. Certainly training is one: The skilled operator

will have less workload and greater SA than the
novice. But importantly, for this chapter, many
aspects of display integration can also accomplish
the combined goals: A well-designed, integrated,
and intuitive display can provide a rapid, easy-to-
process picture of a dynamic system (supporting
situation awareness), and in so doing reduce the
cognitive demands of information access, integra-
tion, and working memory, simultaneously lower-
ing workload.

Conclusion

In conclusion, we have seen how both the fuel
and the filter mertaphors provide a useful way of
representing many aspects of attention. Derived
from basic theory, these two also provide impor-
tant implications for system design and cognitive
engineering. Yet despite the fact that theoretical
concepts of attention have been prominent for over
a century (James, 1880; Titchner, 1908) and have
been applied to system design for over half that
time (e.g., Craik, 1947), much remains to be done.
For example, the two metaphors need to be bet-
ter linked to understand the relationship between
scanning, selection, and multitasking. In particular,
computational models of how attention operates
in the complex world beyond the laboratory must
be formulated and subjected to rigorous empirical
validation, with complex and heterogeneous tasks,
to assess the strategies adopted by workers: when to
perform tasks concurrently and when, once the red
line is exceeded, to abandon and initiate serial mul-
titasking. This is the invitation to the next genera-
tion of researchers.
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