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INTRODUCTION

Eleanor Robson and Jacqueline Stedall

We hope that this book will not be what you expect. It is not a textbook, an
encyclopedia, or a manual. If you are looking for a comprehensive account of the
history of mathematics, divided in the usual way into periods and cultures, you
will not find it here. Even a book of this size is too small for that, and in any case it
is not what we want to offer. Instead, this book explores the history of mathematics
under a series of themes which raise new questions about what mathematics has
been and what it has meant to practise it. The book is not descriptive or didactic
but investigative, comprising a variety of innovative and imaginative approaches
to history.

The image on the front cover captures, we hope, the ethos of the Handbook
(Chapter 1.2, Fig. 1.2.5). At first glance it has nothing to do with the history of
mathematics. We see a large man in a headdress and cloak, wielding a ceremonial
staff over a group of downcast kneeling women. Who are they, and what is going
on? Who made this image, and why? Without giving away too much—Gary
Urton’s chapter has the answers—we can say here that the clue is in the phrase
written in Spanish above the women’s heads: Reparticion de las mugeres donzellas
qlue] haze el ynga ‘categorization (into census-groups) of the maiden women that
the Inka made’. As this and many other contributions to the book demonstrate,
mathematics is not confined to classrooms and universities. It is used all over the
world, in all languages and cultures, by all sorts of people. Further, it is not solely
a literate activity but leaves physical traces in the material world: not just writings
but also objects, images, and even buildings and landscapes. More often, math-
ematical practices are ephemeral and transient, spoken words or bodily gestures
recorded and preserved only exceptionally and haphazardly.

A book of this kind depends on detailed research in disparate disciplines
by a large number of people. We gave authors a broad remit to select topics
and approaches from their own area of expertise, as long as they went beyond
straight ‘what-happened-when’ historical accounts. We asked for their writing
to be exemplary rather than exhaustive, focusing on key issues, questions, and
methodologies rather than on blanket coverage, and on placing mathematical
content into context. We hoped for an engaging and accessible style, with strik-
ing images and examples, that would open up the subject to new readers and
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challenge those already familiar with it. It was never going to be possible to cover
every conceivable approach to the material, or every aspect we would have liked
to include. Nevertheless, authors responded to the broad brief with a stimulating
variety of styles and topics.

We have grouped the thirty-six chapters into three main sections under the
following headings: geographies and cultures, people and practices, interac-
tions and interpretations. Each is further divided into three subsections of four
chapters arranged chronologically. The chapters do not need to be read in numer-
ical order: as each of the chapters is multifaceted, many other structures would
be possible and interesting. However, within each subsection, as in the book as
a whole, we have tried to represent a range of periods and cultures. There are
many points of cross-reference between individual sections and chapters, some
of which are indicated as they arise, but we hope that readers will make many
more connections for themselves.

In working on the book, we have tried to break down boundaries in several
important ways. The most obvious, perhaps, is the use of themed sections rather
than the more usual chronological divisions, in such a way as to encourage com-
parisons between one period and another. Between them, the chapters deal with
the mathematics of five thousand years, but without privileging the past three
centuries. While some chapters range over several hundred years, others focus
tightly on a short span of time. We have in the main used the conventional western
BC/AD dating system, while remaining alert to other world chronologies.

The Handbook is as wide-ranging geographically as it is chronologically, to the
extent that we have made geographies and cultures the subject of the first section.
Every historian of mathematics acknowledges the global nature of the subject, yet
it is hard to do it justice within standard narrative accounts. The key mathemati-
cal cultures of North America, Europe, the Middle East, India, and China are
all represented here, as one might expect. But we also made a point of commis-
sioning chapters on areas which are not often treated in the mainstream history
of mathematics: Russia, the Balkans, Vietnam, and South America, for instance.
The dissemination and cross-fertilization of mathematical ideas and practices
between world cultures is a recurring theme throughout the book.

The second section is about people and practices. Who creates mathematics?
Who uses it and how? The mathematician is an invention of modern Europe.
To limit the history of mathematics to the history of mathematicians is to lose
much of the subject’s richness. Creators and users of mathematics have included
cloth weavers, accountants, instrument makers, princes, astrologers, musicians,
missionaries, schoolchildren, teachers, theologians, surveyors, builders, and
artists. Even when we can discover very little about these people as individu-
als, group biographies and studies of mathematical subcultures can yield impor-
tant new insights into their lives. This broader understanding of mathematical
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practitioners naturally leads to a new appreciation of what counts as a histori-
cal source. We have already mentioned material and oral evidence; even within
written media, diaries and school exercise books, novels and account books have
much to offer the historian of mathematics. Further, the ways in which people
have chosen to express themselves—whether with words, numerals, or symbols,
whether in learned languages or vernaculars—are as historically meaningful as
the mathematical content itself.

From this perspective the idea of mathematics itself comes under scrutiny.
What has it been, and what has it meant to individuals and communities? How
is it demarcated from other intellectual endeavours and practical activities? The
third section, on interactions and interpretations, highlights the radically dif-
ferent answers that have been given to these questions, not just by those actively
involved but also by historians of the subject. Mathematics is not a fixed and
unchanging entity. New questions, contexts, and applications all influence what
count as productive ways of thinking or important areas of investigation. Change
can berapid. But the backwaters of mathematics can be as interesting to historians
as the fast-flowing currents of innovation. The history of mathematics does not
stand still either. New methodologies and sources bring new interpretations and
perspectives, so that even the oldest mathematics can be freshly understood.

At its best, the history of mathematics interacts constructively with many
other ways of studying the past. The authors of this book come from a diverse
range of backgrounds, in anthropology, archaeology, art history, philosophy, and
literature, as well as the history of mathematics more traditionally understood.
They include old hands alongside others just beginning their careers, and a few
who work outside academia. Some perhaps found themselves a little surprised to
be in such mixed company, but we hope that all of them enjoyed the experience,
as we most certainly did. They have each risen wonderfully and good-naturedly
to the challenges we set, and we are immensely grateful to all of them.

It is not solely authors and editors who make a book. We would also like to
thank our consultants Tom Archibald and June Barrow-Green, as well as the
team at OUP: Alison Jones, John Carroll, Dewi Jackson, Tanya Dean, Louise
Sprake, and Jenny Clarke.
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"CHAPTER 1.1

What was mathematics in the ancient world?
Greek and Chinese perspectives

G ER Lloyd

Two types of approach can be suggested to the question posed by the title of
this chapter. On the one hand we might attempt to settle a priori on the cri-
teria for mathematics and then review how far what we find in different ancient
cultures measures up to those criteria. Or we could proceed more empirically or
inductively by studying those diverse traditions and then deriving an answer to
our question on the basis of our findings.

Both approaches are faced with difficulties. On what basis can we decide on
the essential characteristics of mathematics? If we thought, commonsensically,
to appeal to a dictionary definition, which dictionary are we to follow? There is
far from perfect unanimity in what is on offer, nor can it be said that there are
obvious, crystal clear, considerations that would enable us to adjudicate uncon-
troversially between divergent philosophies of mathematics. What mathemat-
ics is will be answered quite differently by the Platonist, the constructivist, the
intuitionist, the logicist, or the formalist (to name but some of the views on the
twin fundamental questions of what mathematics studies, and what knowledge
it produces).

The converse difficulty that faces the second approach is that we have to
have some prior idea of what is to count as ‘mathematics’ to be able to start our
cross-cultural study. Other cultures have other terms and concepts and their
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interpretation poses delicate problems. Faced with evident divergence and
heterogeneity, at what point do we have to say that we are not dealing with a
different concept of mathematics, but rather with a concept that has nothing to
do with mathematics at all? The past provides ample examples of the dangers
involved in legislating that certain practices and ideas fall beyond the boundar-
ies of acceptable disciplines.

My own discussion here, which will concentrate largely on just two ancient
mathematical traditions, namely Greek and Chinese, will owe more to the second
than to the first approach. Of course to study the ancient Greek or Chinese con-
tributions in this area—their theories and their actual practices—we have to
adopt a provisional idea of what can be construed as mathematical, principally
how numbers and shapes or figures were conceived and manipulated. But as we
explore further their ancient ideas of what the studies of such comprised, we can
expect that our own understanding will be subject to modification as we proceed.
We join up, as we shall see, with those problems in the philosophy of mathemat-
ics I mentioned: so in a sense a combination of both approaches is inevitable.

Both the Greeks and the Chinese had terms for studies that deal, atleast in part,
with what we can easily recognize as mathematical matters, and this can provide
an entry into the problems, though the lack of any exact equivalent to our notion
in both cases is obvious from the outset. I shall first discuss the issues as they
relate to Greece before turning to the less familiar data from ancient China.

Greek perspectives

Our term ‘mathematics’ is, of course, derived from the Greek mathématike,
but that word is derived from the verb manthanein which has the quite general
meaning of ‘to learn’. A mathéma can be any branch of learning, anything we
have learnt, as when in Herodotus, Histories 1.207, Croesus refers to what he has
learnt, his mathémata, from the bitter experiences in his life. So the mathématikos
is, strictly speaking, the person who is fond of learning in general, and it is so
used by Plato, for instance, in his dialogue Timaeus 88c, where the point at issue
is the need to strike a balance between the cultivation of the intellect (in general)
and that of the body—the principle that later became encapsulated in the dictum
mens sana in corpore sano ‘a healthy mind in a healthy body’. But from the fifth
century BC certain branches of study came to occupy a privileged position as the
mathémata par excellence. The terms mostly look familiar enough, arithmeétike,
geometriké, harmonike, astronomia, and so on, but that is deceptive. Let me spend
a little time explaining first the differences between the ancient Greeks’ ideas and
our own, and second some of the disagreements among Greek authors them-
selves about the proper subject-matter and methods of certain disciplines.
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Arithmetiké is the study of arithmos, but that is usually defined in terms of
positive integers greater than one. Although Diophantus, who lived at some time
in late antiquity, possibly in the third century Ap, is a partial exception, the Greeks
did not normally think of the number series as an infinitely divisible continuum,
but rather as a set of discrete entities. They dealt with what we call fractions as
ratios between integers. Negative numbers are not arithmoi. Nor is the number
one, thought of as neither odd nor even. Plato draws a distinction, in the Gorgias
451bc, between arithmetiké and logistike, calculation, derived from the verb logiz-
esthai, which is often used of reasoning in general. Both studies focus on the odd
and the even, but logistiké deals with the pluralities they form while arithmetike
considers them—so Socrates is made to claim—in themselves. That, at least, is
the view Socrates expresses in the course of probing what the sophist Gorgias
was prepared to include in what he called ‘the art of rhetoric’, though in other
contexts the two terms that Socrates thus distinguished were used more or less
interchangeably. Meanwhile a different way of contrasting the more abstract and
practical aspects of the study of arithmoi is to be found in Plato’s Philebus 56d,
where Socrates distinguishes the way the many, hoi polloi, use them from the way
philosophers do. Ordinary people use units that are unequal, speaking of two
armies, for instance, or two oxen, while the philosophers deal with units that do
not differ from one another in any respect; abstract ones in other words.!

At the same time, the study of arithmoi encompassed much more than we
would include under the rubric of arithmetic. The Greeks represented numbers
by letters, where a represents the number 1, p the number 2, y 3,1 10, and so on.
This means that any proper name could be associated with a number. While some
held that such connections were purely fortuitous, others saw them as deeply sig-
nificant. When in the third century Ap the neo-Pythagorean Iamblichus claimed
that ‘mathematics’ is the key to understanding the whole of nature and all its
parts, he illustrated this with the symbolic associations of numbers, the patterns
they form in magic squares and the like, as well as with more widely accepted
examples such as the identification of the main musical concords, the octave,
fifth, and fourth, with the ratios 2:1, 3:2, and 4:3. The beginnings of such associa-
tions, both symbolic and otherwise, go back to the pre-Platonic Pythagoreans
of the fifth and early fourth centuries Bc, who are said by Aristotle to have held
that in some sense ‘all things’ ‘are’ or ‘imitate’ numbers. Yet this is quite unclear,
first because we cannot be sure what ‘all things’ covers, and secondly because of
the evident discrepancy between the claim that they are numbers and the much
weaker one that they merely imitate them.

1. Cf. Asper, Chapter 2.1 in this volume, who highlights divergences between practical Greek
mathematics and the mathematics of the cultured elite. On the proof techniques in the latter, Netz (1999)
is fundamental.



10

GEOGRAPHIES AND CULTURES

What about ‘geometry’? The literal meaning of the components of the Greek
word gedmetria is the measurement of land. According to a well-known passage
in Herodotus, 2 109, the study was supposed to have originated in Egypt in rela-
tion, precisely, to land measurement after the flooding of the Nile. Measurement,
metretike, still figures in the account Plato gives in the Laws 817e when his
spokesman, the Athenian Stranger, specifies the branches of the mathémata that
are appropriate for free citizens, though now this is measurement of ‘lengths,
breadths and depths’, not of land. Similarly, in the Philebus 56e we again find a
contrast between the exact geometria that is useful for philosophy and the branch
of the art of measurement that is appropriate for carpentry or architecture.

Those remarks of Plato already open up a gap between practical utility—
mathematics as securing the needs of everyday life—and a very different mode
of usefulness, namely in training the intellect. One classical text that articulates
that contrast is a speech that Xenophon puts in the mouth of Socrates in the
Memorabilia, 4 7 2-5. While Plato’s Socrates is adamant that mathematics is use-
ful primarily because it turns the mind away from perceptible things to the study
of intelligible entities, in Xenophon Socrates is made to lay stress on the useful-
ness of geometry for land measurement and on the study of the heavens for the
calendar and for navigation, and to dismiss as irrelevant the more theoretical
aspects of those studies. Similarly, Isocrates too (11 22-3, 12 26-8, 15 261-5) dis-
tinguishes the practical and the theoretical sides of mathematical studies and in
certain circumstances has critical remarks to make about the latter.

The clearest extant statements of the opposing view come not from the math-
ematicians but from philosophers commenting on mathematics from their own
distinctive perspective. What mathematics can achieve that sets it apart from
most other modes of reasoning is that it is exact and that it can demonstrate
its conclusions. Plato repeatedly contrasts this with the merely persuasive argu-
ments used in the law-courts and assemblies, where what the audience can be
brought to believe may or may not be true, and may or may not be in their best
interests. Philosophy, the claim is, is not interested in persuasion but in the truth.
Mathematics is repeatedly used as the prime example of a mode of reasoning
that can produce certainty: and yet mathematics, in the view Plato develops in
the Republic, is subordinate to dialectic, the pure study of the intelligible world
that represents the highest form of philosophy. Mathematical studies are valued
as a propaedeutic, or training, in abstract thought: but they rely on perceptible
diagrams and they give no account of their hypotheses, rather taking them to be
clear. Philosophy, by contrast, moves from its hypotheses up to a supreme prin-
ciple that is said to be ‘unhypothetical’.

The exact status of that principle, which is identified with the Form of the
Good, is highly obscure and much disputed. Likening it to a mathematical axiom
immediately runs into difficulties, for what sense does it make to call an axiom
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‘unaxiomatic’? But Plato was clear that both dialectic and the mathematical
sciences deal with independent intelligible entities.

Aristotle contradicted Plato on the philosophical point: mathematics does not
study independently existing realities. Rather it studies the mathematical prop-
erties of physical objects. But he was more explicit than Plato in offering a clear
definition of demonstration itself and in classifying the various indemonstrable
primary premises on which it depends. Demonstration, in the strict sense,
proceeds by valid deductive argument (Aristotle thought of this in terms of his
theory of the syllogism) from premises that must be true, primary, necessary,
prior to, and explanatory of the conclusions. They must, too, be indemonstrable,
to avoid the twin flaws of circular reasoning or an infinite regress. Any premise
that can be demonstrated should be. But there have to be ultimate primary pre-
mises that are evident in themselves. One of Aristotle’s examples is the equality
axiom, namely if you take equals from equals, equals remain. That cannot be
shown other than by circular argument, which yields no proof at all, but it is clear
in itself.

It is obvious what this model of axiomatic-deductive demonstration owes to
mathematics. I have just mentioned Aristotle’s citation of the equality axiom,
which figures also among Euclid’s ‘common opinions’, and most of the examples
of demonstrations that Aristotle gives, in the Posterior analytics, are mathemat-
ical. Yet in the absence of substantial extant texts before Euclid’s Elements itself
(conventionally dated to around 300 Bc) it is difficult, or rather impossible, to
say how far mathematicians before Aristotle had progressed towards an explicit
notion of an indemonstrable axiom. Proclus, in the fifth century Ap, claims to be
drawing on the fourth century Bc historian of mathematics, Eudemus, in report-
ing that Hippocrates of Chios was the first to compose a book of ‘Elements’, and
he further names a number of other figures, Eudoxus, Theodorus, Theaetetus, and
Archytas among those who ‘increased the number of theorems and progressed
towards a more epistemic or systematic arrangement of them’ (Commentary on
Euclid’s Elements I 66.7-18).

That is obviously teleological history, as if they had a clear vision of the goal
they should set themselves, namely the Euclidean Elements as we have it. The two
most substantial stretches of mathematical reasoning from the pre-Aristotelian
period that we have are Hippocrates’ quadratures of lunes and Archytas’ deter-
mining two mean proportionals (for the sake of solving the problem of the
duplication of the cube) by way of a complex kinematic diagram involving the
intersection of three surfaces of revolution, namely a right cone, a cylinder, and
a torus. Hippocrates’ quadratures are reported by Simplicius (Commentary on
Aristotle’s Physics 53.28-69.34), Archytas’ work by Eutocius (Commentary on

2. Often translated as ‘common notions’.

11
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Archimedes’ On the sphere and cylinder II, vol. 3, 84.13-88.2), and both early
mathematicians show impeccable mastery of the subject-matter in question. Yet
neither text confirms, nor even suggests, that these mathematicians had defined
the starting-points they required in terms of different types of indemonstrable
primary premises.

Of course the principles set out in Euclid’s Elements themselves do not tally
exactly with the concepts that Aristotle had proposed in his discussion of strict
demonstration. Euclid’s three types of starting-points include definitions (as in
Aristotle) and common opinions (which, as noted, include what Aristotle called
the equality axiom) but also postulates (very different from Aristotle’s hypoth-
eses). Thelastincluded especially the parallel postulate that sets out the fundamen-
tal assumption on which Euclidean geometry is based, namely that non-parallel
straight lines meet at a point. However, where the philosophers had demanded
arguments that could claim to be incontrovertible, Euclid’s Elements came to be
recognized as providing the most impressive sustained exemplification of such
a project. It systematically demonstrates most of the known mathematics of the
day using especially reductio arguments (arguments by contradiction) and the
misnamed method of exhaustion. Used to determine a curvilinear area such as
a circle by inscribing successively larger regular polygons, that method precisely
did not assume that the circle was ‘exhausted’, only that the difference between
the inscribed rectilinear figure and the circumference of the circle could be made
as small as you like. Thereafter, the results that the Elements set out could be, and
were, treated as secure by later mathematicians in their endeavours to expand the
subject.

The impact of this development first on mathematics itself, then further afield,
was immense. In statics and hydrostatics, in music theory, in astronomy, the hunt
was on to produce axiomatic-deductive demonstrations that basically followed the
Euclidean model. But we even find the second century Ap medical writer Galen
attempting to set up mathematics as a model for reasoning in medicine—to yield
conclusions in certain areas of pathology and physiology that could claim to be
incontrovertible. Similarly, Proclus attempted an Elements of theology in the fifth
century AD, again with the idea of producing results that could be represented as
certain.

The ramifications of this development are considerable. Yet three points must
be emphasized to put it into perspective. First, for ordinary purposes, axiomatics
was quite unnecessary. Not justin practical contexts, butin many more theoretical
ones, mathematicians and others got on with the business of calculation and
measurement without wondering whether their reasoning needed to be given
ultimate axiomatic foundations.’

3. Cuomo (2001) provides an excellent account of the variety of both theoretical and practical concerns
among the Greek mathematicians at different periods.
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Second, it was far from being the case that all Greek work in arithmetic and
geometry, let alone in other fields such as harmonics or astronomy, adopted
the Euclidean pattern. The three ‘traditional’ problems, of squaring the circle,
the duplication of the cube, and the trisection of an angle were tackled already
in the fifth century Bc without any explicit concern for axiomatics (Knorr 1986).
Much of the work of a mathematician such as Hero of Alexandria (first century
AD) focuses directly on problems of mensuration using methods similar to those
in the traditions of Egyptian and Babylonian mathematics by which, indeed,
he may have been influenced.* While he certainly refers to Archimedes as if he
provided a model for demonstration, his own procedures sharply diverge, on
occasion, from Archimedes’.> In the Metrica, for instance, he sometimes gives
an arithmetized demonstration of geometrical propositions, that is, he includes
concrete numbers in his exposition. Moreover in the Pneumatica he allows
exhibiting a result to count as a proof. Further afield, I shall shortly discuss the
disputes in harmonics and the study of the heavens, on the aims of the study, and
the right methods to use.

Third, the recurrent problem for the model of axiomatic-deductive demonstra-
tion that the Elements supplied was always that of securing axioms that would be
both self-evident and non-trivial. Moreover, it was not enough that an axiom set
should be internally consistent: it was generally assumed that they should be true
in the sense of a correct representation of reality. Clearly, outside mathematics
they were indeed hard to come by. Galen, for example, proposed the principle
that ‘opposites are cures for opposites” as one of his indemonstrable principles,
but the problem was to say what counted as an ‘opposite’. If not trivial, it was con-
testable, but if trivial, useless. Even in mathematics itself, as the example of the
parallel postulate itself most clearly showed, what principles could be claimed as
self-evident was intensely controversial. Several commentators on the Elements
protested that the assumption concerning non-parallel straight lines meeting at a
point should be a theorem to be proved and removed from among the postulates.
Proclus outlines the controversy (Commentary on Euclid’s Elements I 191.211f)
and offers his own attempted demonstration as well as reporting one proposed by
Ptolemy (365.5ff., 371.101F.): yet all such turned out to be circular, a result that has
sometimes been taken to confirm Euclid’s astuteness in deciding to treat thisas a
postulate in the first place. In time, however, it was precisely the attack on the par-
allel postulate that led to the eventual emergence of non-Euclidean geometries.

These potential difficulties evidently introduce elements of doubt about the
ability of mathematics, or of the subjects based on it, to deliver exactly what

4. Cf. Robson (Chapter 3.1), Rossi (Chapter 5.1), and Imhausen (Chapter 9.1) in this volume.

5. Moreover Archimedes himself departed from the Euclidean model in much of his work, especially,
for example, in the area we would call combinatorics; cf. Saito (Chapter 9.2) in this volume and Netz
(forthcoming).
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some writers claimed for it. Nevertheless, to revert to the fundamental point,
mathematics, in the view both of some mathematicians and of outsiders, was
superior to most other disciplines, precisely in that it could outdo the merely per-
suasive arguments that were common in most other fields of inquiry.

It is particularly striking that Archimedes, the most original, ingenious, and
multifaceted mathematician of Greek antiquity, insisted on such strict standards
of demonstration that he was at one point led to consider as merely heuristic
the method that he invented and set out in his treatise of that name. He there
describes how he discovered the truth of the theorem that any segment of a par-
abola is four-thirds of the triangle that has the same base and equal height. The
method relies on two assumptions: first that plane figures may be imagined as
balanced against one another around a fulcrum and second that such figures may
be thought of as composed of a set of line segments indefinitely close together.
Both ideas breached common Greek presuppositions. It is true that there were
precedents both for applying some quasi-mechanical notions to geometrical
issues—as when figures are imagined as set in motion—and for objections to
such procedures, as when in the Republic 527ab Plato says that the language of
mathematicians is absurd when they speak of ‘squaring’ figures and the like, as if
they were doing things with mathematical objects. But in Archimedes’ case, the
first objection to his reasoning would be that it involved a category confusion,
in that geometrical objects are not the types of item that could be said to have
centres of gravity. Moreover, Archimedes’ second assumption, that a plane figure
is composed of its indivisible line segments, clearly breached the Greek geomet-
rical notion of the continuum. The upshot was that he categorized his method as
one of discovery only, and he explicitly claimed that its results had thereafter to
be demonstrated by the usual method of exhaustion. At this point, there appears
to be some tension between the preoccupation with the strictest criteria of proof
that dominated one tradition of Greek mathematics (though only one) and the
other important aim of pushing ahead with the business of discovery.

The issues of the canon of proof, and of whether and how to provide an axio-
matic base for work in the various parts of ‘mathematics’, were not the only sub-
jects of dispute. Let me now illustrate the range of controversy first in harmonics
and then in the study of the heavens.

‘Music’, or rather mousiké, was a generic term, used of any art over which one
or other of the nine Muses presided. The person who was mousikos was one who
was well-educated and cultured generally. To specify what we mean by ‘music’
the Greeks usually used the term harmonike, the study of harmonies or musical
scales. Once again the variety of ways that study was construed is remarkable
and it is worth exploring this in some detail straight away as a classic illustration
of the tension between mathematical analysis and perceptible phenomena. There
were those whose interests were in music-making, practical musicians who were
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interested in producing pleasing sounds. But there were also plenty of theorists
who attempted analyses involving, however, quite different starting assumptions.
One approach, exemplified by Aristoxenus, insisted that the unit of measurement
should be something identifiable to perception. Here, a tone is defined as the
difference between the fifth and the fourth, and in principle the whole of music
theory can be built up from these perceptible intervals, namely by ascending and
descending fifths and fourths.

But if this approach accepted that musical intervals could be construed on
the model of line segments and investigated quasi-geometrically, a rival mode of
analysis adopted a more exclusively arithmetical view, where the tone is defined
as the difference between sounds whose ‘speeds’ stand in a ratio of 9:8. In this,
the so-called Pythagorean tradition, represented in the work called the Sectio
canonis in the Euclidean corpus, musical relations are understood as essentially
ratios between numbers, and the task of the harmonic theorist becomes that of
deducing various propositions in the mathematics of ratios.

Moreover, these quite contrasting modes of analysis were associated with quite
different answers to particular musical questions. Are the octave, fifth, and fourth
exactly six tones, three and a half, and two and a half tones respectively? If the
tone is identified as the ratio of 9 to 8, then you do not get an octave by taking six
such intervals. The excess of a fifth over three tones, and of a fourth over two, has
to be expressed by the ratio 256 to 243, not by the square root of 9/8.

This dispute in turn spilled over into a fundamental epistemological disagree-
ment. Is perception to be the criterion, or reason, or some combination of the
two? Some thought that numbers and reason ruled. If what we heard appeared
to conflict with what the mathematics yielded by way of an analysis, then too
bad for our hearing. We find some theorists who denied that the interval of an
octave plus a fourth can be a harmony precisely because the ratio in question
(8:3) does not conform to the mathematical patterns that constitute the main
concords. Those all have the form of either a multiplicate ratio as, for example, 2:1
(expressing the octave) or a superparticular one as, for example, 3:2 and 4:3, both
of which meet the criterion for a superparticular ratio, namely n+1 : n.

It was one of the most notable achievements of the Harmonics written by
Ptolemy in the second century Ap to show how the competing criteria could be
combined and reconciled (cf. Barker 2000). First, the analysis had to derive what
is perceived as tuneful from rational mathematical principles. Why should there
be any connection between sounds and ratios, and with the particular ratios that
the concords were held to express? What hypotheses should be adopted to give
the mathematical underpinning to the analysis? But just to select some principles
that would do so was, by itself, not enough. The second task the music theorist
must complete is to bring those principles to an empirical test, to confirm that the
results arrived at on the basis of the mathematical theory did indeed tally with
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what was perceived by the ear in practice to be concordant—or discordant—as
the case might be.

The study of the heavens was equally contentious. Hesiod is supposed to have
written a work entitled Astronomia, though to judge from his Works and days his
interest in the stars related rather to how they tell the passing of the seasons and
can help to regulate the farmer’s year. In the Epinomis 990a (whether or not this is
an authentic work of Plato) Hesiod is associated with the study of the stars’ risings
and settings—an investigation that is contrasted with the study of the planets,
sun, and moon. Gorgias 451c is one typical text in which the task of the astron-
omer is said to be to determine the relative speeds of the stars, sun and moon.

Both astronomia and astrologia are attested in the fifth century Bc and are
often used interchangeably, though the second element in the first has nemo as
its root and that relates to distribution, while logos, in the second term, is rather
a matter of giving an account. Although genethlialogy, the casting of horoscopes
based on geometrical calculations of the positions of the planets at birth, does not
become prominent until the fourth century Bc, the stars were already associated
with auspicious and inauspicious phenomena in, for example, Plato’s Symposium
188b. Certainly by Ptolemy’s time (second century Ap) an explicit distinction
was drawn between predicting the movements of the heavenly bodies themselves
(astronomy, in our terms, the subject-matter of the Syntaxis), and predicting
events on earth on their basis (astrology, as we should say, the topic he tackled in
the Tetrabiblos, which he explicitly contrasts with the other branch of the study
of the heavens). Yet both Greek terms themselves continued to be used for either.
Indeed, in the Hellenistic period the term mathématikos was regularly used of
the astrologer as well as of the astronomer.

Both studies remained controversial. The arguments about the validity of
astrological prediction are outlined in Cicero’s De divinatione for instance, but
the Epicureans also dismissed astronomy as speculative. On the other hand, there
were those who saw it rather as one of the most important and successful of the
branches of mathematics—not that they agreed on how it was to be pursued. We
may leave to one side Plato’s provocative remarks in the Republic 530ab that the
astronomikos should pay no attention to the empirical phenomena—he should
‘leave the things in the heavens alone’—and engage in a study of ‘quickness and
slowness’ themselves (529d), since at that point Plato is concerned with what the
study of the heavens can contribute to abstract thought. If we want to find out
how Plato himself (no practising astronomer, to be sure) viewed the study of the
heavens, the Timaeus is a surer guide, where indeed the contemplation of the
heavenly bodies is again given philosophical importance—such a vision encour-
ages the soul to philosophize—but where the different problems posed by the
varying speeds and trajectories of the planets, sun, and moon are recognized
each to need its own solution (Timaeus 40b-d).
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Quite how the chief problems for theoretical astronomy were defined in the
fourth century Bc has become controversial in modern scholarship (Bowen
2001). But it remains clear first that the problem of the planets’ ‘wandering),
as their Greek name (‘wanderer’) implied, was one that exercised Plato. In his
Timaeus, 39cd, their movements are said to be of wondrous complexity, although
in his last work, the Laws 822a, he came to insist that each of the heavenly bod-
ies moves with a single circular motion. The model of concentric spheres that
Aristotle in Metaphysics lambda (A) ascribes to Eudoxus, and in a modified form
to Callippus, was designed to explain some anomalies in the apparent movements
of the sun, moon, and planets. Some geometrical model was thereafter common
ground to much Greek astronomical theorizing, though disputes continued
over which model was to be preferred (concentric spheres came to be replaced
by eccentrics and epicycles). Moreover, some studies were purely geometrical in
character, offering no comments on how (if at all) the models proposed were to
be applied to the physical phenomena. That applies to the books that Autolycus of
Pitane wrote On the moving sphere, and On risings and settings. Even Aristarchus
in the one treatise of his that is extant, On the sizes and distances of the sun and
moon, engaged (in the view I favour) in a purely geometrical analysis of how
those results could be obtained, without committing himself to concrete con-
clusions, although in the work in which he adumbrated his famous heliocentric
hypothesis, there are no good grounds to believe he was not committed to that as
a physical solution.

Yet if we ask why prominent Greek theorists adopted geometrical models to
explain the apparent irregularities in the movements of the heavenly bodies,
when most other astronomical traditions were content with purely numerical
solutions to the patterns of their appearances, the answer takes us back to the
ideal of a demonstration that can carry explanatory, deductive force, and to the
demands of a teleological account of the universe, that can show that the move-
ments of the heavenly bodies are supremely orderly.

We may note once again that the history of Greek astronomy is not one of
uniform or agreed goals, ideals, and methods. It is striking how influential the
contrasts that the philosophers had insisted on, between proof and persuasion
or between demonstration and conjecture, proved to be. In the second century
AD, Ptolemy uses those contrasts twice over. He first does so in the Syntaxis in
order to contrast ‘mathematics’, which here clearly includes the mathematical
astronomy that he is about to embark on in that work, with ‘physics” and with
‘theology’. Both of those studies are merely conjectural, the first because of the
instability of physical objects, the second because of the obscurity of the subject.
‘Mathematics’, on the other hand, can secure certainty, thanks to the fact that it
uses—so he says—the incontrovertible methods of arithmetic and geometry. In
practice, of course, Ptolemy has to admit the difficulties he faces when tackling
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such subjects as the movements of the planets in latitude (that is, north and south
of the ecliptic): and his actual workings are full of approximations. Yet that is not
allowed to diminish the claim he wishes to make for his theoretical study.

Then, the second context in which he redeploys the contrast is in the opening
chapters of the Tetrabiblos, which I have already mentioned for the distinction it
draws between two types of prediction. Those that relate to the movements of the
heavenly bodies themselves can be shown demonstratively, apodeiktikos, he says,
but those that relate to the fortunes of human beings are an eikastike, conjectural,
study. Yet, while some had used ‘conjecture’ to undermine an investigation’s cred-
ibility totally, Ptolemy insists that astrology is founded on assumptions that are
tried and tested. Like medicine and navigation, it cannot deliver certainty, but it
can yield probable conclusions.

Many more illustrations of Greek ideas and practices could be given, but
enough has been said for one important and obvious point to emerge in relation
to our principal question of what mathematics was in Greece, namely that gen-
eralization is especially difficult in the face of the widespread disagreements and
divergences that we find at all periods and in every department of inquiry. Some
investigators, to be sure, got on with pursuing their own particular study after
their own manner. But the questions of the status and goals of different parts of
the study, and of the proper methods by which it should be conducted, were fre-
quently raised both within and outside the circles of those who styled themselves
mathematicians. But if no single univocal answer can be given to our question, we
can at least remark on the intensity with which the Greeks themselves debated it.

Chinese perspectives

The situation in ancient China is, in some respects, very different. The key point
is that two common stereotypes about Chinese work are seriously flawed: the first
that their concern for practicalities blocked any interest in theoretical issues, and
the second that while they were able calculators and arithmeticians, they were
weak geometers.

It is true that while the Greek materials we have reviewed may suffer from a
deceptive air of familiarity, Chinese ideas and practices are liable to seem exotic.
Their map or maps of the relevant intellectual disciplines, theoretical or practical
and applied, are very different both from those of the Greeks and from our own.
One of the two general terms for number or counting, shu %%, has meanings that
include ‘scolding’, ‘fate’, or ‘destiny’, ‘art’ as in ‘the art of’, and ‘deliberations’ (Ho
1991). The second general term, suan %, is used of ‘planning’, ‘scheming’, and
‘inferring’, as well as ‘reckoning’ or ‘counting’. The two major treatises that deal with
broadly mathematical subjects that date from between around 100 B¢ and 100 AD,
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both have suan in their title: we shall have more to say on each in due course. The
Zhou bi suan jing i # 5T % is conventionally translated ‘Arithmetic classic of
the gnomon of Zhou'. The second treatise is the Jiu zhang suan shu ju %t 5 i, the
‘Nine chapters on mathematical procedures’. This draws on an earlier text recently
excavated from a tomb sealed in 186 BC, which has both general terms in its title,
namely Suan shu shu 5i % #, the ‘Book of mathematical procedures’, as Chemla
and Guo (2004) render it, or more simply, ‘Writings on reckoning’ (Cullen 2004).
But the ‘Nine chapters’ goes beyond that treatise, both in presenting the problems
it deals with more systematically, and in extending the range of those it tackles,
notably by including discussing gou gu #Jji, the properties of right-angled tri-
angles (a first indication of those Chinese interests in geometrical questions that
have so often been neglected or dismissed). Indeed, thanks to the existence of the
Suan shu shu we are in a better position to trace early developments in Chinese
mathematics than we are in reconstructing what Euclid’s Elements owed to its
predecessors.

When, in the first centuries Bc and Ap the Han bibliographers, Liu Xiang and
Liu Xin, catalogued all the books in the imperial library under six generic head-
ings, shu shu % #7 ‘calculations and methods’ appears as one of these. Its six sub-
species comprise two that deal with the study of the heavens, namely tian wen
A 3 ‘the patterns in the heavens’ and /i pu /& ‘calendars and tables’, as well as
wu xing . 17 ‘the five phases’, and a variety of types of divinatory studies. The
five phases provided the main framework within which change was discussed.
They are named fire, earth, metal, water, and wood, but these are not elements
in the sense of the basic physical constituents of things, so much as processes.
‘Water’ picks out not so much the substance, as the process of ‘soaking down-
wards’, as one text (the Great plan) puts it, just as ‘fire’ is not a substance but
‘flaming upwards’.

This already indicates that the Chinese did not generally recognize a funda-
mental contrast between what we call the study of nature (or the Greeks called
phusike) on the one hand and mathematics on the other. Rather, each discipline
dealt with the quantitative aspects of the phenomena it covered as and when the
need arose. We can illustrate this with harmonic theory, included along with
calendar studies in the category i pu.

Music was certainly of profound cultural importance in China. We hear of
different types of music in different states or kingdoms before China was unified
under Qin Shi Huang Di in 221 Bc, some the subject of uniform approval and
appreciation, some the topic of critical comment as leading to licentiousness and
immorality—very much in the way in which the Greeks saw different modes of
their music as conducive to courage or to self-indulgence. Confucius is said to
have not tasted meat for three months once he had heard the music of shao in the
kingdom of Qi (Lun yu 7 14).
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But musical sounds were also the subject of theoretical analysis, indeed of sev-
eral different kinds. We have extensive extant texts dealing with this, starting
with the Huai nan zi, a cosmological summa compiled under the auspices of Liu
An, King of Huainan, in 136 BC, and continuing in the musical treatises contained
in the first great Chinese universal history, the Shi ji written by Sima Tan and his
son Sima Qian around 90 Bc. Thus Huai nan zi, ch 3, sets out a schema correlat-
ing the twelve pitchpipes, that give what we would call the 12-tone scale, with the
five notes of the pentatonic scale. Starting from the first pitchpipe, named Yellow
Bell (identified with the first pentatonic note, gong), the second and subsequent
pitchpipes are generated by alternate ascents of a fifth and descents of a fourth—
very much in the manner in which in Greece the Aristoxenians thought that all
musical concords should be so generated. Moreover, Huai nan zi assigns a num-
ber to each pitchpipe. Yellow Bell starts at 81, the second pitchpipe, Forest Bell, is
54 —that is 81 times 2/3, the next is 72, that is 54 times 4/3, and so on. The system
works perfectly for the first five notes, but then complications arise. The number
of the sixth note is rounded from 42 2/3 to 42, and at the next note the sequence
of alternate ascents and descents is interrupted by two consecutive descents of a
fourth—a necessary adjustment to stay within a single octave.

On the one hand it is clear that a numerical analysis is sought and achieved,
but on the other a price has to be paid. Either approximations must be allowed,
or alternatively very large numbers have to be tolerated. The second option is the
one taken in a passage in the Shi ji 25, where the convention of staying within a
single octave is abandoned, but at the cost of having to cope with complex ratios
such as 32,768 to 59,049. Indeed Huai nan zi itself in another passage, 3. 21a, gen-
erates the twelve pitchpipes by successive multiplications by 3 from unity, which
yields the number 177,147 (that is 3'!) as the ‘Great Number of Yellow Bell’. That
section associates harmonics with the creation of the ‘myriad things’ from the
primal unity. The Dao it is one, and this subdivides into yin [ and yang I, which
between them generate everything else. Since yin and yang themselves are corre-
lated with even and with odd numbers respectively, the greater and the lesser yin
being identified as six and eight respectively, and the greater and lesser yang nine
and seven, the common method of divination, based on the hexagrams set out in
such texts as the Yi jing 5 4 ‘Book of changes’, is also given a numerical basis.
But, interestingly enough, the ‘Book of changes” was not classified by Liu Xiang
and Liu Xin under shu shu. Rather it was placed in the group of disciplines that
dealt with classic, or canonical, texts. Indeed the patterns of yin and yang lines
generated by the hexagrams were regularly mined for insight into every aspect of
human behaviour, as well as into the cosmos as a whole.

Similarly complicated numbers are also required in the Chinese studies of the
heavens. One division dealt with ‘the patterns of the heavens’, tian wen, and was
chiefly concerned with the interpretation of omens. But the other /i fa included
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the quantitative analysis of periodic cycles, both to establish the calendar and
to enable eclipses to be predicted. In one calendrical schema, called the Triple
Concordance System, a lunation is 29 43/81 days, a solar year 365 385/1539 days,
and in the concordance cycle 1539 years equals 19,035 lunations and 562,120 days
(cf. Sivin 1995). On the one hand, considerable efforts were expended on carrying
out the observations needed to establish the data on which eclipse cycles could
be based. On the other, the figures for the concordances were also manipulated
mathematically, giving in some cases a spurious air of precision—just as happens
in Ptolemy’s tables of the movements of the planets in longitude and in anomaly
in the Syntaxis.

Techniques for handling large-number ratios are common to both Chinese
harmonics and to the mathematical aspects of the study of the heavens. But there
is also a clear ambition to integrate these two investigations—which both form
part of the Han category li pu. Thus, each pitchpipe is correlated with one of the
twelve positions of the handle of the constellation ‘Big Dipper’ as it circles the
celestial pole during the course of the seasons. Indeed, it was claimed that each
pitchpipe resonates spontaneously with the gi of the corresponding season and
that that effect could be observed empirically by blown ash at the top of a half-
buried pipe, a view that later came to be criticized as mere fantasy (Huang Yilong
and Chang Chih-Ch’eng 1996).

While the calendar and eclipse cycles figure prominently in the work of
Chinese astronomers, the study of the heavens was not limited to those subjects.
In the Zhou bi suan jing, the Master Chenzi is asked by his pupil Rong Fang
what his Dao achieves, and this provides us with one of the clearest early state-
ments acknowledging the power and scope of mathematics.® The Dao, Chenzi
replies, is able to determine the height and size of the sun, the area illuminated
by its light, the figures for its greatest and least distances, and the length and
breadth of heaven, solutions to each of which are then set out. That the earth is
flat is assumed throughout, but one key technique on which the results depend
is the geometrical analysis of gnomon shadow differences. Among the observa-
tional techniques is sighting the sun down a bamboo tube. Using the figure for
the distance of the sun obtained in an earlier study, the dimension of the sun
can be gained from those of the tube by similar triangles. Such a result was just
one impressive proof of the power of mathematics (here suan shu) to arrive at
an understanding of apparently obscure phenomena. But it should be noted that
although Chenzi eventually explains his methods to his pupil on the whole quite
clearly, he first expects him to go away and work out how to get these results on

6. The term Dao, conventionally translated ‘the Way’, can be used of many different kinds of skills, and
here the primary reference is to Chenzi’s ability in mathematics. But those skills are thought of as subordinate
to the supreme principle at work in the universe, which it is the goal of the sage to cultivate, indeed to embody
(Lloyd and Sivin 2002).
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his own. Instead of overwhelming the student with the incontrovertibility of the
conclusion ‘quod erat demonstrandum’, the Chinese master does not rate know-
ledge unless it has been internalized by the pupil.

The major classical Chinese mathematical treatise, the ‘Nine chapters’, indicates
both the range of topics covered and the ambitions of the coverage. Furthermore
the first of the many commentators on that text, Liu Hui in the third century Ap,
provides precious evidence of how he saw the strategic aims of that treatise and
of Chinese mathematics as a whole. The ‘Nine chapters’ deals with such subjects
as field measurement, the addition, subtraction, multiplication, and division of
fractions, the extraction of square roots, the solutions to linear equations with
multiple unknowns (by the rule of double false position), the calculation of the
volumes of pyramids, cones, and the like.

The problems are invariably expressed in concrete terms. The text deals with
the construction of city-walls, trenches, moats, and canals, with the fair distri-
bution of taxes across different counties, the conversion of different quantities of
grain of different types, and much else besides. But to represent the work as just
focused on practicalities would be a travesty. A problem about the number of
workmen needed to dig a trench of particular dimensions, for instance, gives the
answer as 7 427/3064ths labourers. The interest is quite clearly in the exact solu-
tion to the equation rather than in the practicalities of the situation. Moreover the
discussion of the circle-circumference ratio (what we call n) provides a further
illustration of the point. For practical purposes, a value of 3 or 3 1/7 is perfectly
adequate, and such values were indeed often used. But the commentary tradition
on the ‘Nine chapters’ engages in the calculation of the area of inscribed regular
polygons with 192 sides, and even 3072-sided ones are contemplated (the larger
the number of sides, the closer the approximation to the circle itself of course): by
Zhao Yougqin’s day, in the thirteenth century, we are up to 16384-sided polygons
(Volkov 1997).

Liu Hui’s comments on the chapter discussing the volume of a pyramid illus-
trate the sophistication of his geometrical reasoning (cf. Wagner 1979). The fig-
ure he has to determine is a pyramid with rectangular base and one lateral edge
perpendicular to the base, called a yang ma % 1. To arrive at the formula setting
out its volume (namely one third length, times breadth, times height) he has to
determine the proportions between it and two other figures, the gian du # i
(right prism with right triangular base) and the bie nao %: it (a pyramid with right
triangular base and one lateral edge perpendicular to the base). A yang ma and a
bie nao together go to make up a gian du, and its volume is simple: it is half its
length, times breadth, times depth. That leaves Liu Hui with the problem of find-
ing the ratio between the yang ma and the bie nao. He proceeds by first decompos-
ing a yang ma into a combination of smaller figures, a box, two smaller gian du,
and two smaller yang ma. A bie nao similarly can be decomposed into two smaller
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qian du and two smaller bie nao. But once so decomposed it can be seen that the
box plus two smaller gian du in the original yang ma are twice the two smaller
qian du in the original bie nao. The parts thus determined stand in a relation of
2:1. The remaining problem is, of course, to determine the ratios of the smaller
yang ma and the smaller bie nao: but an exactly similar procedure can be applied
to them. At each stage more of the original figure has been determined, always
yielding a 2:1 ratio for the yang ma to the bie nao. If the process is continued, the
series converges on the formula one yang ma equals two bie nao, and so a yang ma
is two-thirds of a gian du, which yields the requisite formula for the volume of the
yang ma, namely one third length, times breadth, times height (Fig. 1.1.1).

Two points of particular interest in this stretch of argument are first that Liu
Hui explicitly remarks on the uselessness of one of the figures he uses in his
decomposition. The bie nao, he says, is an object that ‘has no practical use’. Yet
without it the volume of the yang ma cannot be calculated. At this point we have
yet another clear indication that the interest in the exact geometrical result takes
precedence over questions of practical utility.

Second, we may observe both a similarity and a difference between the pro-
cedure adopted by Liu Hui and some Greek methods. In such cases (as in Euclid’s
determination of the pyramid at Elements 12 3) the Greeks used an indirect proof,
showing that the volume to be determined cannot be either greater or less than
the result, and so must equal it. Liu Hui by contrast uses a direct proof, the tech-
nique of decomposition which I have described, yielding increasingly accurate
approximations to the volume, a procedure similar to that used in the Chinese
determination of the circle by inscribing regular polygons, mentioned above. Such
a technique bears an obvious resemblance to the Greek method of exhaustion,
though I remarked that in that method the area or volume to be determined was
precisely not exhausted. Liu Hui sees that his process of decomposition can be

N\

yang ma bie nao gian du

Figure 1.1.1 the yang ma, bie nao, and gian du
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continued indefinitely, and he remarks on the progressively smaller remainders
that this yields. We are dealing evidently with what we would call a converging
series, but although Liu Hui has no explicit concept for the limit of such, he ends
his investigation with the rhetorical question ‘how can there be any remainder?’.

There is no suggestion, however, in any of the texts we have been considering,
of giving mathematics an axiomatic base. The notion of axiom is absent from
Chinese mathematics until the arrival of the Jesuits in the sixteenth century.
Rather the chief aims of Chinese mathematicians were to explore the unity of
mathematics and to extend its range. Liu Hui, especially, comments that it is the
same procedures that provide the solutions to problems in different subject-areas.
What he looks for, and finds, in such procedures as those he calls gi 7% ‘homog-
enizing’ and fong [ ‘equalizing’, is what he calls the gang ji 4 4 ‘guiding princi-
ples’ of suan ‘mathematics’. In his account of how, from childhood, he studied the
‘Nine chapters’, he speaks of the different branches of the study, but insists that
they all have the same ben 4 ‘trunk’. They come from a single duan s ‘source’.
The realizations and their lei #i ‘categories’, are elaborated mutually. Over and
over again the aim is to find and show the connections between the different parts
of suan shu, extending procedures across different categories, making the whole
‘simple but precise, open to communication but not obscure’. Describing how he
identified the technique of double difference, he says (92.2) he looked for the zhi
qu #i 1 ‘essential characteristics’ to be able to extend it to other problems.

While Liu Hui is more explicit in all of this than the ‘Nine chapters’, the other
great Han classic, the Zhou bi, represents the goal in very similar terms. We are
not dealing with some isolated, maybe idiosyncratic, point of view, but with one
that represents an important, maybe even the dominant, tradition. ‘It is the ability
to distinguish categories in order to unite categories’ which is the key according
to the Zhou bi (25.5). Again, among the methods that comprise the Dao ‘Way’, it
is ‘those which are concisely worded but of broad application which are the most
illuminating of the categories of understanding. If one asks about one category
and applies [this knowledge] to a myriad affairs, one is said to know the Way’
(24.124%., Cullen 1996, 177).

Conclusions

To sum up what our very rapid survey of two ancient mathematical traditions
suggests, let me focus on just two fundamental points. We found many of the
Greeks (not all) engaged in basic methodological and epistemological disagree-
ments, where what was at stake was the ability to deliver certainty—to be able
to do better than the merely persuasive or conjectural arguments that many
downgraded as inadequate. The Chinese, by contrast, were far more concerned
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to explore the connections and the unity between different studies, including
between those we consider to be mathematics and others we class as physics or
cosmology. Their aim was not to establish the subject on a self-evident axiomatic
basis, but to expand it by extrapolation and analogy.

Each of those two aims we have picked out has its strengths and its weaknesses.
The advantages of axiomatization are that it makes explicit what assumptions
are needed to get to which results. But the chief problem was that of identifying
self-evident axioms that were not trivial. The advantage of the Chinese focus on
guiding principles and connections was to encourage extrapolation and analogy,
but the corresponding weakness was that everything depended on perceiving
the analogies, since no attempt is made to give them axiomatic foundations. It is
apparent that there is no one route that the development of mathematics had to
take, or should have taken. We find good evidence in these two ancient civiliza-
tions for a variety of views of its unity and its diversity, its usefulness for practical
purposes and for understanding. The value of asking the question ‘what is math-
ematics?’ is that it reveals so clearly, already where just two ancient mathemat-
ical traditions are concerned, the fruitful heterogeneity in the answers that were
given.
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CHAPTER 1.2

Mathematics and authority: a case study in Old
and New World accounting

Gary Urton

he title of an article published by Alan Bishop, ‘Western mathematics: the

secret weapon of cultural imperialism’ (1990), must surely be one of the
most provocative in the recent literature concerning the history of mathematics
and the nature and status of mathematical practice.! There are several surprises
in this title, beginning with the adjective ‘western’. According to Platonism, the
grounding philosophy that informs the thinking of most mathematicians, math-
ematical truths lie beyond human experience, in an abstract realm set apart from
language, culture, and history. In what sense, then, could mathematics be con-
ceived of as preferentially linked to one or the other of the earthly hemispheres?
And how could mathematics—the supposed dispassionate and logical investi-
gation of arrangement, quantity, and related concepts in algebra, analysis, and
geometry—be implicated in any meaningful way with such socially and polit-
ically loaded objects and concepts as ‘weapons’, ‘culture’, and ‘imperialism’?
Conveniently, Bishop’s title provides an answer to this puzzle in the assertion
that the association of mathematics with this disturbing set of modifiers is (or
was) a ‘secret’.

1. Thanks to Carrie Brezine and Julia Meyerson for their critical readings of drafts of this work. I alone am
responsible for any errors of fact or logic that remain.
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In the article in question, Bishop argues that western European colonizing
societies of the fifteenth to nineteenth centuries carried with them to various
exotic locales the gifts of rationalism and ‘objectism’ (that is, a way of conceiving
of the world as composed of discrete objects that could be abstracted from their
contexts), as well as a number of clearly formulated ways of employing mathem-
atical ideas and procedures, all of which combined to promote western control
over the physical and social environments in the colonies. Such regimes of power
and control constituted what Bishop (1990, 59) terms a ‘mathematico-technolog-
ical cultural force’ embedded in the colonies in institutions related to accounting,
trade, administration, and education:

Mathematics with its clear rationalism, and cold logic, its precision, its so-called ‘object-
ive’ facts (seemingly culture and value free), its lack of human frailty, its power to predict
and to control, its encouragement to challenge and to question, and its thrust towards yet
more secure knowledge, was a most powerful weapon indeed. (Bishop 1990, 59)

When we look more broadly at the uses to which mathematics has been put,
especially in accounting systems and in other administrative projects in ancient
and modern states, it becomes clear that what is ideally conceived of as the fine,
elegant, and dispassionate art of mathematics has in many times and places been
intimately linked to systems and relations of authority in a wide range of ideo-
logical, philosophical, and political programs and productions. The central ques-
tions that we will address here in relation to this history are: how has the linkage
between mathematics and authority come about? And how and why has this rela-
tionship evolved in the particular ways it has in different historical settings?

To speak of a relationship between mathematics and authority is by no means
to limit the issues to imperialist administrative regimes. It also arises in other
settings, from the authority that emerges among mathematicians as a result of
the successful execution of mathematical proofs, to the attempt by those steeped
in the measurement and quantification of social behaviors to adopt math-based
paradigms for ordering society (see Mazzotti, Chapter 3.3 in this volume). In
short, what we will be concerned with here are a number of problems connected
with the manipulation of numbers by arithmetical procedures and mathematical
operations and the ways these activities enhance authority and underlie differ-
ences in power between different individuals and/or groups or classes in soci-
ety—for example, between bureaucrats and commoners, or, as in the particular
setting to be discussed below, between conquerors and conquered.

We will address the questions raised above in three different but historically
related cultural and social historical contexts. The first concerns mathematical
philosophies and concepts of authority in the West in the centuries leading up
to the European invasion of the New World. This section will include an over-
view of the rise of double entry bookkeeping in European mercantile capital-
ism. Next, we will examine the practice of khipu (knotted-string) record-keeping
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in the Inka empire of the Pre-Columbian Andes. And, finally, we will examine
the encounter between Spanish written (alphanumeric) record-keeping practices
and Inka knotted-string record-keeping that occurred in the Andes following the
European invasion and conquest of the Inka empire, in the sixteenth century.

Accounting, authority, power, and legitimacy

A wealth of literature produced by critical accounting historians over the past
several decades has elucidated the role of accounting as a technology of, and a
rationality for, governance in state societies. Accounting and its specialized nota-
tional techniques are some of the principal instruments employed by states in
their attempts to control and manage subjects (Hoskin and Macve 1986; Miller
and O’Leary 1987; Miller 1990). As Miller has argued:

Rather than two independent entities, accounting and the state can be viewed as inter-
dependent and mutually supportive sets of practices, whose linkages and boundaries
were constructed at least in their early stages out of concerns to elaborate the art of
statecraft. (Miller 1990, 332)

A focus on accounting is one of the most relevant approaches to take in
examining Andean and European (Spanish) mathematical practices, as this
was the context of the production of most of the documentation deriving from
mathematical activities in these two societies that is preserved in archives and
museums. The khipu was, first and foremost, a device used for recording infor-
mation pertaining to state activities, such as census-taking and the assessment
of tribute; this was also true of the information recorded by Spanish bureaucrats
in written documents in the administration of the crown’s overseas holdings.
For instance, among the some 34,000 legajos (bundles of documents) deriving
from Spanish colonial administration in the New World, preserved today in the
Archivo de Indias in Seville, the largest collections—other than those labeled
Indiferente ‘miscellaneous/unclassified’—are those categorized under the head-
ings Contaduria ‘accountancy’ (1953 legajos) and Contratacion ‘trade contracts’
(5873 legajos; Gomez Cafiedo 1961, 12-13). Focusing on accounting will, there-
fore, provide us with the best opportunity for investigating the relative complex-
ity of arithmetic and mathematical practices employed in the records of these two
states, as well as similarities and differences in their principles of quantification.

Although the focus of this essay is on the relationship between mathematics
and authority in the context of accounting, we will not get far in our examination
of these concepts and domains of human intellectual activity without first devel-
oping a clear sense of the meaning of ‘authority’ and discussing how this concept
relates to the wider field of social and political relations that includes legitimacy,
power, and social norms. The principal figure whose work must be engaged on
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these topics is, of course, Max Weber (1964). Insofar as the question of power
is concerned, Weber famously defined this concept as ‘...the probability that
one actor within a social relationship will be in a position to carry out his[/her]
own will despite resistance, regardless of the basis on which this probability rests’
(cited in Uphoff 1989, 299). It is clear from this definition that power is inextric-
ably linked to authority and legitimacy. Uphoft makes a forceful argument to
the effect that authority should be understood as a claim for compliance, while
legitimacy should be understood as an acceptance of such a claim. Thus, differ-
ent persons are involved in such power relationships; on the one hand there are
‘the authorities’ and on the other there are those who are subject to and accept
the claims of the authorities (Uphoff 1989, 303). Thus, the three central concepts
we are concerned with are linked causally in the sense that the power associated
with authority depends on the legitimacy accorded to it.

Weber identified three principal types of authority, each having a particular
relationship to norms. One type, referred to as ‘charismatic authority’, which may
be embodied by the prophet or the revolutionary, Weber considered the purest
form of authority in that, in coming into being, it breaks down all existing norma-
tive structures. In ‘traditional authority’, the leader comes into power by heredity
or some other customary route, and the actions of the leader are in turn limited by
custom. Thus, in traditional systems of authority, norms generate the leader, and
one who comes into such a position of authority—the king, chief, or other heredi-
tary leader—depends on traditional norms for his/her authority. Finally, in what
Weber termed ‘legal-rational authority’, the leader occupies the highest position in
a bureaucratic structure and derives authority from the legal norms that define the
duties and the jurisdiction of the office he/she occupies (Spencer 1970, 124-5).

In terms of the relationship between types of authority and forms of political
rule relevant to our study, both the Inka state under its (possibly dual) dynastic
rulers, as well as the Spanish kings of the Hapsburg dynasty, experienced proc-
esses of increasing regularization of bureaucratic procedures from traditional
to rational-legal authority structures during the century or so leading up to the
European invasion of the Andes. Our study will examine ways in which math-
ematical activities linked to accounting practices in pre-modern states in the
Old and New Worlds served to legitimize or empower particular individuals or
classes in their claims for compliance of the exercise of their will. Our task will
be particularly challenging because we will examine these matters in the context
of the Spanish conquest of the Inka empire, a historical conjuncture that brought
two formerly completely unrelated world traditions of mathematics and author-
ity into confrontation with each other.

Two almost simultaneous developments in European mathematics and
commercialism during the fourteenth and fifteenth centuries are critical to the
picture we are sketching here of accounting and record-keeping practices of
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Spanish colonial administrators in the sixteenth century. These developments
were the invention of double-entry bookkeeping and the replacement of Roman

numerals by Hindu-Arabic numerals.

The earliest evidence for double-entry bookkeeping dates from the thirteenth
century when the method was put to use by merchants in northern Italy (Yamey
1956; Carruthers and Espeland 1991). The first extended explanation of double-
entry bookkeeping appeared in a treatise on arithmetic and mathematics written
by the Franciscan monk Luca Pacioli in 1494 (Brown and Johnston 1984). In
the double-entry method, all transactions are entered twice, once as a debit and
again as a credit (Fig. 1.2.1). Daily entries are posted to a journal, which are later

Hypothetical Medieval Ledger Postings
based on Luca Pacioli’s Directions

In the Name of God

+Jesus MCDIII
On this day, Cash shall give to
Capital CLI lire in the form of
coin.
CLlI lire
Cr. ref. page

+Jesus MCDLXXX
Giovanni Bessini shall give, on
This day, CC lire, which he
promised to pay to us at our
pleasure, for the debt which
Lorenzo Vincenti owes us.

CClire

Cr. ref. page

+Jesus MCDLXXIV
On this day, Jewels with a value
DLXX lire, shall give to

Capital
DLXX lire

Cr. ref. page

+Jesus MCDXXX
On this day, Business Expense
for office material worth CCC lire
Shall give to Cash
CCClire

Cr. ref. page

+Jesus MCDIII
On this day, Capital shall have
from Cash in the form of coin
CLl lire.
CLlI lire
Dr. ref. page

+Jesus MCDLXXX
Giovanni Bessini shall have back
on Nov. Il, the CC lire, which he

deposited with us in cash.
CClire

Dr. ref. page

+Jesus MCDLXXIV
On this day, Capital shall have of
from Jewels, a value of
DLXX lire.
DLXX lire
Dr. ref. page

+Jesus MCDXXX
On this day, Cash shall have
from Business Expense CCC

lire.
CCClire

Dr. ref. page

Figure 1.2.1 Double entry book-keeping ledger postings based on Luca Pacioli's

(1494) directions (Aho 2005, 71, Table 7.2)
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transferred to a ledger. The ledger books provide the material for the process of
accounting, which relies on the equation: assets = liabilities + equity. For books
to remain in balance, a change in one account (a debit or credit) must be matched
by an equal change in the other. In the rhetorical form in which Pacioli presented
the method, the balancing of accounts by double-entry was constructed as an
undertaking that had deep religious and moral implications.

The invention and implementation of double-entry went hand-in-hand with
the replacement of Roman numerals by Hindu-Arabic numerals, which had
been introduced into western Europe almost five hundred years before their
eventual acceptance into accounting practice in the fifteenth century. Ellerman
(1985, 232) argues that what is distinctive about double-entry is not that it
relates two or more accounts, as that is a characteristic of the transaction itself;
rather, the distinction of double-entry is that this is a new system of recording
transactions. Double-entry required complex mathematics based on an efficient
system of numbers—Ilike Hindu-Arabic numerals, rather than the cumbersome
Roman numerals. There are extensive literatures documenting (Swetz 1989,
11-13; Durham 1992, 48-49) and demonstrating (Donoso Anes 1994, 106) that
the coupling of Hindu-Arabic numerals and double-entry in accounting had
a powerful affect in promoting increasing rationality in business, society, and
politics. There is controversy over whether capitalism was nurtured initially and
primarily by Catholicism, with its emphasis on penance and confession con-
stituting a form of accounting (Sombert 1967; Aho 2005), or by Protestantism
(Weber 1958). However, those arguing on both sides of this question agree that
the spread of double-entry bookkeeping throughout western Europe was a
central component of the increasing rationalization and standardization associ-
ated with the rise of mercantile capitalism (Carruthers and Espeland 1991, 32;
Aho 2005).

While the centers of development of double-entry bookkeeping were the bur-
geoning mercantile city-states of northern Italy, the method soon spread to other
regions of western Europe, including the Iberian peninsula. From detailed study
of accounts pertaining to the sale of gold and silver brought from the Americas
kept in the Casa de Contrataciéon “Treasury House’, in Seville, Donoso Anes
(1994) has shown convincingly that the double-entry method was employed in
the central accounts of the Royal Treasury of Castille from as early as 1555. In
fact, Spain was the first European country to issue laws (in 1549 and 1552) com-
pelling merchants to apply the double-entry method, as well as the first coun-
try in which the method was implemented by a public institution—the Casa de
Contratacion (Donoso Anes 1994, 115). Furthermore, Spanish merchants appear
to have taught the method to English traders (Reitzer 1960, 216), and they were
instrumental in developing and passing on to French merchants the practice of
drawing bills of exchange (Lapeyre 1955, 22; cited in Reitzer 1960, 216). While
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double-entry was used in Spanish accounting for the sale and minting of gold
and silver by the Royal Treasury, single-entry accounts were kept at the same
time, primarily as the official accounting procedure controlling the activities of
the treasurer of the Casa de Contratacion (Donoso Anes 1994, 115; cf. Klein and
Barbier 1988, 54; Hoffman 1970, 733).

The cities of northern Italy that were the centers of commercial activities from
the fourteenth to the sixteenth centuries also became centers of learning in arith-
metic and mathematics. It was in these cities—Venice, Bologna, Milan—that
Hindu-Arabic numerals were first linked with double-entry to form the basis of
modern accounting science. It was here as well that abacus or ‘reckoning’ schools
grew up that were patronized by the sons and apprentices of merchants through-
out Europe. The masters of those schools, the maestri d'abbaco, taught the new
arithmetic, or arte dela mercadanta, ‘the mercantile art’ (Swetz 1989, 10-16). It
was in northern Italy as well where, a couple of decades prior to the publication
of Pacioli’s exposition of double-entry bookkeeping, the first arithmetic text-
book, the so-called Treviso arithmetic, was published in 1478 (Swetz 1989). While
not discussing the double-entry method itself, the Treviso arithmetic proclaimed
itself from the opening passage as intended for study by those with an interest in
commercial pursuits (Swetz 1989, 40).

This, then, was a new kind of authority in mathematics, one that was grounded
not in theoretical considerations, but rather with a mathematics that served the
practical needs and interests of the merchant. The efficacy of this new mathem-
atics was determined not by how closely it cleaved to some body of theoretical
principles or philosophical values, but rather by how well it tracked the debits,
credits, and profit fluctuations of merchant capitalists, how well it served in
arbitrating disputes, and its overall contribution to the well-being of those who
put the methods into practice. This new mathematics of the fifteenth century
both stimulated and reflected the development of mercantilism and economic
accounting and administration throughout Europe, and it was this mathematical
practice that was transplanted to the New World in the fifteenth and sixteenth
centuries as the basis of accounting for trade, tribute, and the growth of wealth
in the American colonies.

From virtually the earliest years following the invasion of the Andes, European
administrators—toting accounting ledgers filled with columns of Hindu-Arabic
numerals and alphabetically-written words and organized in complex formats—
came into contact with Inka administrative officials wielding bundles of colorful
knotted cords. These local administrators—known as khipukamayugs ‘knot-
keepers/makers/organizers’—were, oddly enough, speaking the language (in
Quechua) of decimal numeration and practicing what may have looked for all
the world, to any Spaniard trained by the reckoning masters of northern Italy,
like double-entry bookkeeping.
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A new world of knotted-cord record keeping

Khipus are knotted-string devices made of spun and plied cotton or camelid
fibers (Figure 1.2.2).> The colors displayed in khipus are the result of the natural
colors of cotton or camelid fibers or of the dyeing of these materials with nat-
ural dyes. The ‘backbone’ of a khipu is the so-called primary cord—usually
around 0.5 cm in diameter—to which are attached a variable number of thinner
strings, called pendant cords. Khipus contain from as few as one up to as many
as 1500 pendants (the average of some 450+/- samples studied by the Harvard
Khipu Database project is 84 cords). Top cords are pendant-like strings that leave
the primary cord opposite the pendants, often after being passed through the
attachments of a group of pendant strings. Top cords often contain the sum of
values knotted on the set of pendant cords to which they are attached. About
one-quarter of all pendant cords have second-order cords attached to them; these
are called subsidiaries. Subsidiaries may themselves bear subsidiaries, and there
are examples of khipus that contain up to thirteen levels of subsidiaries, making

Figure 1.2.2 A khipu from Museum for World Culture, Gdteborg, Sweden
(#1931.37.0001 [UR113])

2. According to my own inventory, there are some 780+/- khipu samples in museums and private collec-
tions in Europe, North America, and South America. While many samples are too fragile to permit study,
almost 450 samples have been closely studied to date. Observations on a few hundred khipus may be viewed at
<http://khipukamayuq.fas.harvard.edu/> and <http://instructl.cit.cornell.edu/resear4ch/quipu~ascher/>.
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the khipu a highly efficient device for the display of hierarchically organized
information.’

The majority of khipus have knots tied into their pendant, subsidiary, and top
strings (Locke 1923; Pereyra 2001). The most common knots are of three different
types, which are usually tied in clusters at different levels in a decimal place sys-
tem of numerical registry (Fig. 1.2.3). The most thorough treatment to date of the
numerical, arithmetic, and mathematical properties of the khipus is Ascher and
Ascher’s Mathematics of the Incas: code of the quipus (1997; see also Urton 1997;
2003). The Aschers have shown that the arithmetic and mathematical operations
used by Inka accountants included, at a minimum, addition, subtraction, multipli-
cation, and division; division into unequal fractional parts and into proportional
parts; and multiplication of integers by fractions (Ascher and Ascher 1997, 151-2).

What kinds of information were registered on the khipus? In addressing this
question, it is important to stress that, although we are able to interpret the
quantitative data recorded in knots on the khipus, we are not yet able to read
the accompanying nominative labels, which appear to have been encoded in the
colors, twist, and other structural features of the cords. The latter would, were
we able to read them, presumably inform us as to the identities of the items that
were being enumerated by the knots. Thus, in discussing the identities of objects
accounted for in the khipus, we are forced to rely on the Spanish documents from
the early years following the European invasion.

Accordingto the Spanish accounts, records were kept of censuses, tribute assessed
and performed, goods stored in the Inka storehouses, astronomical periodicities
and calendrical calculations, royal genealogies, historical events, and so on (see
Murra 1975; Zuidema 1982; Julien 1988; Urton 2001; 2002; 2006). The overriding
interest in the recording, manipulation and eventual archiving of quantitative data
in the khipus was the attempt to control subject peoples throughout the empire.
This meant being able to enumerate, classify, and retain records on each subject
group. The most immediate use to which this information was put was the imple-
mentation of the labor-based system of tribute. Tribute in the Inka state took the
form of a labor tax, which was levied on all married, able-bodied men (and some
chroniclers say women as well) between the ages of 18 and 50. In its conception and
application to society, Inka mathematics appears to have taken a form remarkably
like the political arithmetic of seventeenth-century Europeans.® In sum, the deci-
mal place system of recording values—including zero (Urton 1997, 48-50)—of the

3. For general works on khipu structures and recording principles, see Urton (1994; 2003); Ascher and
Ascher (1997); Arellano (1999); Conklin (2002); Radicati di Primeglio (2006).

4. Approximately one-third of khipu studied to date do not have knots tied in (decimal-based) tiered
arrangements. I have referred to these as ‘anomalous khipu’ and have suggested that their contents may be
more narrative than statistical in nature (Urton 2003).

5. See the discussions of Inka arithmetic and mathematics in Ascher (1992); Ascher and Ascher (1997);
Pereyra (2001); and Urton (1997).
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Figure 1.2.3 A clustering of knots on a khipu in decimal hierarchy

Inka knotted-cords was as precise and complex a system of recording quantitative
data as the written Hindu-Arabic numeral-based recording system of Europeans
at the time of the conquest, although the records of the former were not as rapidly
produced, nor as easily changeable, as those of the latter.

Richardson (1987, 341) has argued that accounting has long been one of the
principal institutions and administrative practices involved in maintaining and
legitimizing the status quo in western European nation-states. Can this be said
of khipu accounting in the pre-Hispanic Andes as well? We gain a perspective on
this question by looking at two accounts of how censuses were carried out in the
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Inka state. As in other ancient societies, census-taking was a vital practice in the
Inka strategy of population control, as well as serving as the basis for the assess-
ment and eventual assignment of laborers in the mita (taxation by labor) system
(Murra 1982; Julien 1988). The first account of census-taking is from the famed
mid-sixteenth century soldier and traveller, Cieza de Leon:

the nobles in Cuzco told me that in olden times, in the time of the Inka kings, it was
ordained of all the towns and provinces of Peru that the head men [sefiores principales]
and their delegates should [record] every year the men and women who had died and
those who had been born; they agreed to make this count for the payment of tribute, as
well as in order to know the quantity of people available to go to war and the number
that could remain for the defense of the town; they could know this easily because each
province, at the end of the year, was ordered to put down in their quipos, in the count of
its knots, all the people who had died that year in the province, and all those that had
been born.¢ (Cieza de Ledn 1967 [1551], 62; my translation)

Some forty years after Cieza wrote down the information cited above, Martin
de Murda gave an account of Inka census-taking that varies somewhat from
Cieza’s understanding of this process and that contains interesting details con-
cerning the actual procedures involved in local population counts.

They sent every five years quipucamayos [khipu-keepers], who are accountants and over-
seers, whom they call tucuyricuc. These came to the provinces as governors and visitors,
each one to the province for which he was responsible and, upon arriving at the town he
had all the people brought together, from the decrepit old people to the newborn nurs-
ing babies, in a field outside town, or within the town, if there was a plaza large enough
to accommodate all of them; the tucuyricuc organized them into ten rows [‘streets’] for
the men and another ten for the women. They were seated by ages, and in this way they
proceeded [with the count]...” (Murua 2004 [1590], 204; my translation)

Late sixteenth-century drawings—what we could term ‘re-imaginings’—of
these male and female accounting events from the chronicle of Martin de Murua,
are shown in Figs. 1.2.4 and 1.2.5.

One would be hard put to find better examples than the two quotations cited
above, and the images of census events in Figs. 1.2.4 and 1.2.5, of what Michel

6. ...concuerdan los orejones que en el Cuzco me dieron la relacion, que antiguamente, en tiempo de los
reyes Incas, se mandaba por todos los pueblos y provincias del Perti que los sefiores principales y sus delega-
dos supiesen cada ano los hombres y mugeres que habian sido muertos y todos los que habian nacido; porque,
asi para la paga de los tributes como para saber la gente que habia para la Guerra y la que podia quedar por
defensa del pueblo, convenia que se tuviese ésta [cuental]; la cual facilmente podian saber porque cada provin-
cia, en fin del afio, mandaba asentar en los quipos por la cuenta de sus nudos todos los hombres que habian
muerto en ella en aquel afo, y por el [con]siguiente los que habian nacido.

7. Enviaba de cinco a cinco afios quipucamayos, que son contadores y veedores, que ellos llaman Tucuyricuc.
Estos venian por sus provincias como gobernadores y visitadores, cada uno en las que le cabia, y llegado al
pueblo hacia juntar toda la gente, desde los viejos decrépitos hasta los indios nifios de teta y en una pampa o
plaza, si la habia, hacian estos gobernadores, llamados Tucuyricuc, senalar diez calles para los indios y otras
diez para las indias, con mucho orden y concierto, en que por las edades ponian los dichos indios con mucha
curiosidad y concierto...
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Figure 1.2.4 Conducting a census count of men, by age-grade (Murtia 2004, 114v)
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Figure 1.2.5 Conducting a census count of women, by age-grade (Murtia 2004,
116v)
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Foucault characterized as the disciplinary power of state institutions—what he
termed power/knowledge structures—as they attend to the work of social sur-
veillance and the control of the bodies of subjects. The result of such procedures
was, as Foucault noted, the production of subjects that cooperate and connive
in their own subjection (Foucault 1977, 184-187; Hoskin and Macve 1986, 106;
Stewart 1992). In Inka census-taking, people were ordered into public spaces to
be counted and classified. Although resistance and evasion may have been com-
mon in such proceedings, from what the Spanish chroniclers and administrative
officials tell us, Inka censuses were accomplished using non-coercive measures—
that is, local people apparently were compliant with the claims of authority com-
ing from local officials and state administrators. Such surveillance, reporting,
and social control procedures are examples of what Foucault termed a discipli-
nary, as opposed to sovereign, form of power.

Sovereign power is identified as a diminished form of power. Its ultimate recourse is
seizure—of things, of bodies and ultimately of life. Disciplinary power is much richer
and entails penetrating into the very web of social life through a vast series of regulations
and tools for the administration of entire populations and of the minutiae of people’s
lives. (cited in Miller and O’Leary 1987, 238)

Thus, as much as an accounting tool, the census khipu was an instrument for
the performance and display of state authority and power within local communi-
ties.® The census data collected by local record-keepers were knotted into khipus,
copies were made of each record, and the data were subsequently reported to
higher-level accountants in regional and provincial administrative centers (see
Urton and Brezine 2005). Two issues arise with respect to these procedures: one
concerns the practice of making one or more copies of khipu records, the other
concerns the training and education of state record-keepers.

While there are a number of references in the Spanish chronicles to khipu
copies, the study of such copies in the corpus of extant khipus has proceeded
slowly. Recent advances have come about, however, following the development of
a searchable database—the Khipu Database (KDB).” From searches of the 450 or
so samples included in the KDB, some 12-15 examples of copies of accounts have
been identified (Urton 2005). While referred to as duplicate, or ‘matching’ khipus,
we could also consider ‘pairs’ of khipus to represent an original and a copy.

Copies (or matching) khipus occur in three different forms. First, there are
examples in which the numerical values on a sequence of strings on one sample

8. Guevara-Gil and Salomon (1994) have discussed what were similar procedures, and results, in the cen-
suses undertaken by Spanish visitadores (administrative ‘visitors’) who were responsible for counting, classi-
fying, and (re-)organizing local populations in the early colonial Andes.

9. The Khipu Database project (KDB), located in the Department of Anthropology, Harvard University, is
described fully on the project website <http://khipukamayugq.fas.harvard.edu/>. I gratefully acknowledge the
following research grants from the National Science Foundation, which made the creation of the KDB pos-
sible: #SBR-9221737, BCS-0228038, and BCS-0408324. Thanks also to Carrie ] Brezine, who served as Khipu
Database Manager from 2002 to 2005.
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are repeated exactly on another khipu. In some samples of this type, we find that
while the pair of khipus bears the same knot values, the colors of the strings may
vary (see Urton 2005, 150-151). The second type of matching khipus, which I
have termed ‘close matches’, involves instances in which two different samples
contain not exactly matching sequences of numbers, but rather ones in which the
values are similar (for example, those of one sample varying a small amount from
those on another sample). And, finally, we have examples in which a numerical
sequence recorded on one cord section of a khipu are repeated exactly, or closely,
on another section of cords of that same khipu.

I argued elsewhere (Urton 2005) that duplicate khipus may have been produced
as a part of a system of ‘checks and balances’. However, duplicates seem also to
possess most of the requisite elements of double-entry bookkeeping in which ‘all
transactions were entered twice, once as a debit and once as a credit... The debit
side pertained to debtors, while the credit side pertained to creditors’ (Carruthers
and Espeland 1991, 37). Close matches would be accounts in which the debits and
credits sides of the ledger were not in balance. On pairs of khipus having iden-
tical numerical values on sequences of strings, but in which string colors vary
(Urton 2005, 150-151), color could have been used to signal the statuses of credits
and debits in the matching accounts.”® In the Inka state, debit/credit accounting
would have been employed primarily in relation to the levying of labor tribute on
subject populations.

The principal information that we lack in order to be able to confirm whether
or not duplicate khipus might have been produced and used as double-entry-like
accounts are the identities of the objects recorded on the khipus. Since we still
cannot read the code of the khipus, we are unable to determine whether paired
accounts were simply copies made for the purposes of checks-and-balances or if
they might represent a relationship between a debit for an item on one account
and the credit for that same item on another account. Research into this matter
is on-going."

What can we say about the individuals who became khipu-keepers for the
state? How were these individuals recruited and trained? What role did they
play in exercising authority and maintaining social and political control in the
Inka state? The late sixteenth-century chronicler Martin de Murua provided the

10. It is interesting to note that in early Chinese bookkeeping, red rods signified positive numbers while
black rods were used for negative numbers. As Boyer noted, ‘[flor commercial purposes, red rods were used
to record what others owed to you and black rods recorded what you owed to others’ (cited in Peters and
Emery 1978, 425).

11. Three articles published in the 1960s and 1970s by economists and accounting historians contain a
lively debate not only about whether or not the khipus contained double-entry bookkeeping, but about the
claim made by one of the disputants (Jacobsen) to the effect that the Inkas may in fact have invented the
technique (Jacobsen 1964; Forrester 1968; Buckmaster 1974). There is not space here to review the arguments
made in these three articles. Suffice it to say that, while interesting for historical purposes, these articles are
all poorly informed about the nature of the khipus, about what the Spanish documents say about their use, as
well as about Inka political and economic organizations.
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following account of a school that was set up in the Inka capital of Cusco for the
training of khipu-keepers.

The Inca...he set up in his house [palace] a school, in which there presided a wise old
man, who was among the most discreet among the nobility, over four teachers who were
put in charge of the students for different subjects and at different times. The first teacher
taught the language of the Inca...and upon gaining facility and the ability to speak and
understand it, they entered under the instruction of the next [second] teacher who taught
them to worship the idols and the sacred objects [huacas]...In the third year the next
teacher entered and taught them, by use of quipus, the business of good government and
authority, and the laws and the obedience they had to have for the Inca and his gover-
nors... The fourth and last year, they learned from the other [fourth] teacher on the cords
and quipus many histories and deeds of the past.’> (Murua 2001, 364; my translation).

The curriculum of the young administrators aimed at engendering loyalty
to the Inka and adherence to state values, policies, and institutions. The khipu
studies component of the administrative curriculum fulfilled what Miller and
O’Leary (1987) have referred to as accounting education’s objective of produ-
cing ‘governable persons’ who themselves went on to administer for the state in
the provinces. The curriculum also incorporated what has been described as a
process whereby examination, discipline, and accounting are bound together
to empower texts, rationalize institutional arrangements for state interests and,
ultimately, to transform the bodies of the persons subjected to training (Hoskin
and Macve 1986, 107).

The situation outlined above was not to last for long, as less than half a century
after the school of administration was set up, a cataclysmic event brought the
school, not to mention the entire imperial infrastructure, crashing down; this
event was the Spanish conquest.

Congquest, colonization, and the confrontation between knot- and
script-based texts

The story of the conquest of the Inka empire by the Spaniards, which was under-
taken by Francisco Pizarro and his small force of around 164 battle-hardened con-
quistadores, beginningin 1532, has been told too many times—in all its astonishing

12. Dijo el Ynga...puso en su casa una escuela, en la cual presidia un Viejo anciano, de los mas discretos
orejones, sobre cuatro maestros que habia para diferentes cosas y diferentes tiempos de los discipulos. El
primer maestro ensefaba al principio la lengua del Ynga... Acabado el tiempo, que salian en ella faciles, y
la hablaban y entendian, entraban a la sujecion y doctrina de otro maestro, el cual les ensefiaba a adorar los
idolos y sus huacas... Al tercer afo entraban a otro maestro, que les declaraba en sus quipus los negocios
pertenecientes al buen gobierno y autoridad suya, y a las leyes y la obediencia que se habia de tener al Yngay
a sus gobernadores...El cuarto y postrero afio, con otro maestro aprendian en los mismos cordeles y quipus
muchas historias y sucesos antiguos...
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and entrancing/appalling details—for me to add much to the telling in the space
available here (see Hemming 1970). The events of the conquest and the processes
of colonization that are relevant for our discussion here are the following. The ini-
tial battle of conquest, which occurred in November 1532 in the Inka provincial
center of Cajamarca, in the northern highlands of what is today Peru, resulted in
the defeat of the Inka army and the capture and execution of Atahualpa, one of
two contenders for succession to the Inka throne. Pizarro then led his small force
southward, arriving in the Inka capital city of Cuzco in 1534. The Spaniards and
their native allies were soon forced to defend Cuzco against a rebellion led by the
Spanish-installed puppet-king, Manco Inca. This gave rise to a decades-long war
of pacification of the rebels, which finally came to an end in 1572 with the execu-
tion of the then rebel leader, Tupac Amaru (Hemming 1970).

Three years prior to the capture and execution of Tupac Amaru, a new Viceroy
of Peru (the fourth), Francisco de Toledo, had arrived in Peru with a mandate
to put down the rebellion and to transform the war- and disease-ravaged land
of the former Inka empire into an orderly and productive colony for the bene-
fit of the king of Spain, Philip II. Viceroy Toledo instituted a set of reforms that
were in some respects a continuation of certain of the processes of pacification,
reorganization, and transformation that had been on-going since the earliest days
following the initial conquest. In other ways, Toledo’s reforms represented some-
thing completely new, different, and profoundly transformative in their effects on
Andean ways of life (Stern 1993, 51-79).

The end result of the Toledan reforms, the clear shape of which became mani-
fest by the mid-to-late 1570s, included, most centrally, the following institutions:
encomiendas—grants of groups of Indians to Spanish encomenderos ‘overseers’
who were charged with the care and religious indoctrination of the natives and
who, in exchange, had the right to direct native labor for their personal benefit
but without the right (after the Toledan reforms) to levy tribute demands on them;
corregimientos—territorial divisions for the management and control of civil
affairs, including (theoretically) oversight of the encomenderos; reducciones—
newly-formed towns that were laid out in grid-like ground plans to which the
formerly dispersed natives were transferred for their surveillance, control, and
indoctrination; doctrinas—parish districts staffed by clergy who attended to the
religious indoctrination of the natives within the reducciones and who received a
portion of the tribute for their own maintenance; and mita—a form of labor tax
based on the Inka-era mit'a, which supplemented what was, for Andeans, a new
kind of tribute imposed on them by Toledo: specified quantities of agricultural
produce, manufactured goods (textiles, sandals, blankets), and coinage (Rowe
1957; Ramirez 1996, 87-102).

The census was a critical institution for reorganizing Andean communities.
Spanish censuses were carried out by administrative visitadores ‘visitors’ who
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produced documents, known as a visitas, which were detailed enumerations of
the population in the reducciones broken down (usually) into household group-
ings. Each household member was identified by name, age and—in the case of
adult males—ayllu ‘social group’ affiliation (Guevara-Gil and Salomon 1994;
Urton 2006). The visitadores were usually joined in their rounds by the kurakas
‘local lords’ and often by the local khipukamayugqs. The khipu-keepers could sup-
ply historical, corroborating information on population figures and household
composition (Loza 1998). It is important to stress that participation by the native
record-keepers was not primarily for the benefit of the Spaniards, rather, it was
to ensure that the natives would have their own, khipu-based accounts of the
enumeration in the event—which seems always and everywhere to have come
to pass—that a dispute arose over the population count, the amount of tribute
levied, or other administrative questions.

There are two contexts in which I will explore native Andean encounters with
Old World mathematical principles and practices, each of which was linked to
a wholly new relation of authority and power: the manner of collecting infor-
mation pertaining to the censuses, and the striking and circulation of coinage.
These practices were closely linked to new forms of tribute, as well as to what was,
for Andean peoples, a completely new form of communication: writing—that is,
the inscribing of marks in ordered, linear arrangements on paper, parchment, or
some other two-dimensional surface. Such a medium and associated recording
technology were unprecedented in the Andean world.

There have been numerous important works published in recent years on
the confrontation between khipu records and alphabetic texts in the early colo-
nial Andes (Rappaport and Cummins 1994, 1998; Mignolo 1995; Brokaw 1999;
Quilter and Urton 2002; Fossa 2006; Quispe-Agnoli 2006). That this body of
works responds to what was, in fact, an area of intense interest and concern on
both sides of an initially starkly drawn dual—native/Spaniard—world of social
interactions and power relations is confirmed by the documentation detailing
initial efforts by the Spaniards to establish an orderly colony in the former Inka
territories. Central to this process from the 1540s through the 1570s was a pro-
gram of enumerating the native population, investigating its form(s) of organiza-
tion, and beginning to sketch out its history. One form that this process took was
to call the khipu-keepers before colonial officials and have them read the contents
of their cords (Loza 1998; Urton 1998). These recitations were made before a len-
gua ‘translator’; the Spanish words spoken by the translator were written down
by a scribe. This activity resulted in the production of written transcriptions in
Spanish alphanumeric script of the census data and other information previously
jealously guarded by the khipu-keepers in their cords.

Many of the khipu transcriptions discovered to date have been assembled in
an important collection, entitled Textos Andinos (Pdrssinen and Kiviharju 2004).
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While these documents have been studied in terms of the displacement, and
eventual replacement, of khipu ‘literacy’ by alphabetic literacy, what has received
virtually no attention to date is the equally striking information they contain
with respect to the confrontation between Inka knot-based numeration and
Spanish grapheme-based written numerals and mathematics. How and what did
individuals on either side of this confrontation think about the translation of
quantitative values from knotted-cords to written texts?

Fig. 1.2.6a shows an image of a khipu juxtaposed to an unrelated khipu tran-
scription, in Fig. 1.2.6b."”” It is important to stress that we do not have an actual
match—such as that suggested in Figs. 1.2.6a and b—between an extant khipu
and a transcription of that same sample. As for the khipu in Fig. 1.2.6a, we are
able to read the knot values of this sample and thereby interpret the numerical
information encoded on this sample. We assume that the identities of the objects
accounted for in this khipu were represented in a constellation of elements, includ-
ing color, structure, and perhaps numbers interpreted as labels (Urton 2003). In
the (unrelated) khipu transcription in Fig. 1.2.6b, the text is organized line by

| CMA -850

Figure 1.2.6 a) A khipu from Centro Mallqui, Leymebamba, Amazonas, Peru (#CMA
850/LC1-479 [UR9])

13. The khipu sample shown in Fig.1.2.6a is from the site of Laguna de los Céndores, in the area of
Chachapoyas, northern Peru (#CMA 850/LC1-479; in the ‘Data table’ page of the KDB website, this is sample
URY). The khipu transcription shown in Fig. 1.2.6b is from a tribute khipu from Xauxa, in the central Peruvian
highlands, dating to 1558 (AGI, Lima 205, no. 16 folio 10r; see Pérssinen and Kiviharju 2004, 172-173).
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Figure 1.2.6 b) A khipu transcription (AGI, Lima 205, no. 16, folio 10r)
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line, as the khipu itself is organized string by string; each line in the transcription
contains a number followed by the name/identity of the object enumerated on
that string in the khipu from which the transcription was derived.

The numerical values recorded in the khipu shown in Fig. 1.2.6a are similar in
their range of magnitudes and distribution to those found in early Spanish cen-
sus accounts in the Andes (Urton 2006). The khipu transcription illustrated in
Fig. 1.2.6b is a tribute account recorded in the valley of Xauxa, in 1558 (Pdrssinen
and Kiviharju 2004, 172-173). If Fig. 1.2.6a were the khipu from which the tran-
scription in Fig. 1.2.6b was drawn up (which it is not), we assume (but do not
know for certain) that there would be a parallelism between number signs and
object identity signs that would form a bridge across the semiotic—nominative
and quantitative—divide separating these two species of texts.

Not surprisingly, almost all of the information we have in order to address the
question of how Andean people thought about khipus and their translation and
transcription into written texts comes to us from the Spanish side of the equa-
tion. The Spaniards were at least initially respectful of the khipus and their keep-
ers, as the khipus were the primary sources of information on the basis of which
Spanish officials began to erect the colonial administration. The most important
point that should be made for our interest here concerning the juxtaposition of
documents in Figs. 1.2.6a and b is that not only information, but authority as well,
was located initially in the khipu member of the khipu/transcription pair juxta-
posed in Fig. 1.2.6. However, once the information was transferred from khipus
to written texts, the locus of textual authority, legitimacy, and power began to
shift toward the written documents.

While many native Andeans learnt how to read and write alphabetic script
and how to manipulate Hindu-Arabic number signs, only a handful of Spaniards
appear to have achieved any degree of familiarity with the khipus (Pirssinen
1992, 36-50); it appears that no Spaniard became truly proficient at manipulat-
ing and interpreting the cords (Urton 2003, 18-19). What this meant was that,
rather than contests over interpretations of information contained in the two sets
of documents coming down to reciprocal readings of the two sets of texts, what
emerged between the 1540s and the 1570s were separate, contested readings by
the keepers of the two different text types before a Spanish judge. As disputes
intensified, and as more and more original data were recorded uniquely in the
written documents, the khipu texts became both redundant and increasingly
troublesome for the Spaniards (Platt 2002). By the end of the tumultuous six-
teenth century, khipus had been declared to be idolatrous objects—instruments
of the devil—and were all but banned from official use."

14. The khipus were declared idolatrous objects and their use was severely proscribed by the Third Council
of Lima, in 1583 (Vargas Ugarte 1959). However, the khipus continued to be used for local record-keeping
purposes—in some cases down to the present day (see Mackey 1970; Salomon 2004).
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The circulation of coins is another area in which Andeans were confronted
with a completely new and unfamiliar terrain of political relations, economic
activity, and shifting relations of authority over the course of the early colonial
period. The first mint in South America was formally established in Lima in
1568, just 36 years after the events of Cajamarca. The royal decree that controlled
the weights, fineness, and the fractional components of the coins to be struck in
Lima—the real and the escudo—were issued by Ferdinand and Isabella in 1479
and amended by Charles V in 1537 (Craig 1989, 2). The first coins struck in Lima
bore a rendering of the Hapsburg coat of arms on the obverse and a cross with
castles and lions on the quartered face on the reverse (Craig 1989, 6).

As noted, the two coin types were the real, a silver coin, and the gold escudo.
Each of these coin types was broken down into subunits, each of which was val-
ued in relation to a general, unified standard of valuation known as the maraved.
The latter was not a coin but rather it was what Moreyra Paz Soldan (1980, 66)
terms moneda imaginaria y de cuenta ‘imaginary money of account’. The mar-
avedi was used to coordinate values between different types of coins as deter-
mined by material differences and subdivisions of standard units (for example,
the silver real = 34 maravedis; the gold escudo = 350 [from 1537-1566] or 400
[after 1566] maravedis). From this primary coordinating function, the maravedi
served as a common denominator that permitted the interrelating of heteroge-
neous monetary values pertaining to gold and silver. For example, until 1566, the
maravedi coordinated the value of silver to gold at 11.5 to 1; after 1566 the ratio
was 12.12 to 1 (Moreyra Paz Soldan 1980, 66-67; Craig 1989, 2).

What did any of the above have to do with Andean peoples? How were they to
understand the meaning of these words and concepts? To understand the force
of these questions, we can begin by imagining how one might go about trans-
lating the previous two paragraphs into a language like those spoken by large
numbers of people throughout the Andes in the first few decades following the
conquest, such as Quechua, Aymara, Puquina, or Yunga. They did not have terms
for money or coinage, much less a term like maravedi, and had formed such con-
cepts as ‘value’, ‘heterogeneity’, and ‘account’ in the absence of markets and a
monetary economy (Murra 1995). It is clear in this case where authority would
quickly come to reside in any dispute that might arise over the exchange value
of any one of the several coin types in this system that would have begun to cir-
culate through Andean communities by the 1570s. But we are getting ahead of
ourselves.

From almost the earliest years following the conquest, Spanish officials in the
countryside (the encomenderos) had been levying tribute in kind, which in some
places included a demand for plates of silver and bars of gold, and translating
the value of these items into Spanish currency values (Ramirez 1996, 92-112).
Spanish officials regularly produced documents translating the quantities of
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items of tribute in kind into values in pesos ensayados (a unit of value in silver
currency). This was the main context within which the kurakas ‘local lords’ in
communities would have begun to encounter translations of the use-value of
objects, which they were familiar with in their local non-monetized economies,
into exchange-values stated in terms of currency equivalents (Spalding 1973).
Furthermore, the Viceroy Francisco de Toledo introduced in the mid-1570s a
new tribute system, which included not only produce and manufactured goods
but also coins; the sum to be given yearly by each tributary was four-to-five pesos
ensayados (that is, coinage in plata ensayada “assayed silver’). Tribute payers were
designated as male heads of households between the ages of 18-50. The native
chronicler, Guaman Poma de Ayala, drew several images of native people paying
their tribute using what appears to be coinage bearing the quartered reverse face
of the cuatro reales (Fig. 1.2.7).1°

People in communities—the newly-built reducciones—were able to acquire
coins to pay their tribute from forced work in the mines (another component
of the Toledan tributary system), as well as from marketing and wage labor. The
engagements with currency that resulted from these activities required people to
begin to think about the different units of coinage, shifting equivalencies between
coinage units, as well as to accommodate themselves to fluctuations in currency
values in the periodic currency devaluations and the debasement of coinage that
took place during the colonial period. The act of ‘devaluing’ currency is a claim
of authority on the part of some entity (such as the state) over the exchange-value
of the coinage one holds in one’s own purse. One’s subsequent use of that same
coinage according to the newly announced rate of exchange represents compli-
ance with the claim by the entity in question to control the value of one’s cur-
rency. Although we have almost no data on the basis of which to consider how
Andean peoples responded to such changes (see Salomon 1991), these were some
of the processes that were transpiring on the front lines of the confrontation
between Old and New World mathematics and notions and relations of authority
in the early colonial Andes.

Conclusions

We began this exploration by asking about the relevance and salience of a charac-
terization of mathematics as ‘the secret weapon of cultural imperialism’ (Bishop

15. See the study by Salomon (1991) of one of the few references in the colonial literature to the engagement
with coinage (la moneda de cuatro reales) by a native Andean during the colonial period. Salomon argues
that the story, which appears in a well-known manuscript from Huarochiri (Salomon and Urioste 1991), is
concerned with the internal conflicts of a man due to the competing religious sentiments he experiences
over loyalty to a local deity (huaca) and the Christian deity. The narrative plays on the precise symbolism of
images, as well as the lettering, on a quartered Spanish coin.
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Figure 1.2.7 Paying tribute with coin bearing a quartered design (Guaman Poma de
Ayala 1980, 521[525])
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1990). Having now looked at several aspects of arithmetic, mathematics, and
accounting in western Europe and the Andes during the period leading up to,
and a century or so beyond, the fateful encounter between Pizarro and Atahualpa
in Cajamarca in 1532, we return to ask: in what sense was mathematics linked to
authority, power, and legitimacy in this historical conjuncture?

I argue that the answer to the question posed above is found in the same ration-
ale and set of explanations that explain who writes history and who determines
truth in history. The answer to both of these questions is: the conqueror. This is
not because the conqueror knows what is, in fact, true; rather, it is because the
conqueror possesses the power to speak, and to represent and establish the rules
of the game as it is to be played from that moment forward. This is the case not
only in terms of narrating and writing the events of history and explaining their
causes (Urton 1990), but also in taking the measure of the world and accounting
for those measurements—geographic, demographic, economic, and so on—for
as long as the dominant group holds power.

Power, which is intimately linked to the exercise of authority, takes many forms.
In its most extreme and, paradoxically, weakest form, power is maintained by
force. As Foucault has shown more clearly than any recent political theorist, the
most effective species of power is that which takes shape as individuals and groups
become complicit with and participate in institutions of the state, such as in cen-
suses, regulatory and corrective institutions, and accounting (Foucault 1979, 140-
141; Stewart 1992; Smart 2002, 102-103). What is the place of mathematics in this
Foucauldian, ‘genealogical’ conception of power and authority? I think that here
we must return to the question of the certainty of mathematics, and of how that
certainty relates to truth and, ultimately, to power. I suggest that the critical obser-
vation on these matters for our purposes here is that mathematics may be made
to serve, although it itself is not responsible for giving rise to, regimes of power.
A ‘regime of power’ may be manifested in the trappings of a king’s court, in the
ministrations of a priestly hierarchy, or in complex ‘book-keeping’ procedures—
such as bundles of knotted cords in the hands of individuals authorized to record
information (numerical and otherwise) in the interests of the state.
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CHAPTER 1.3

Heavenly learning, statecraft, and scholarship:
the Jesuits and their mathematics in China

Catherine Jami

he story of the transmission of mathematics from Europe to Chinain the early

modern age is closely linked to that of the Jesuit mission from 1582 to 1773,
which spanned the last decades of the Ming dynasty (1368-1644) and the Qing
dynasty (1644-1911) from its advent to its apogee in the mid-eighteenth century.!
For almost two centuries, the Jesuits put the sciences in the service of evangeli-
zation: their knowledge enhanced the prestige of their religion and opened the
way first to the patronage of individual officials, and then to that of the state. This
emphasis on the sciences as a tool for proselytization seems to have been unique
at the time, both among the missionary orders present in China, and among
Jesuit missions around the world (Standaert 2001, 309-354; Romano 2002). Even
within the China mission, most Jesuits devoted their time and effort solely to
evangelization, while only a few ‘specialists’ among them taught and practiced
the sciences (Brockey 2007). However, it could be argued that Jesuits’ science had
a much more pervasive influence than their religion. Christianity remained a
minority religion, even a marginal one.? On the other hand all scholars interested

1. For names and dates of people and dynasties, see Table 2 on page 80.

2. For the period under discussion, there were no more than about 200,000 Chinese Christians, with this
maximum reached around 1700, when the Chinese population is estimated to have been about 150 million
(Standaert 2001, 380-386).
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in the mathematical sciences knew about xi xue /i ‘western learning’ whatever
their attitude towards it might have been.

Two factors contributed to shaping Jesuit science in China: on the one hand,
the importance that the Society of Jesus gave to mathematics (in the usual sense
of this term in early modern Europe)—what we might call the offer; on the other
hand, the renewal of interest in shi xue 7t ‘solid learning’ among late Ming
scholars—what we might call the demand. Accordingly, I shall first outline the
place of mathematics in Jesuit education and briefly describe the state of math-
ematics in China around 1600. I will then go on to discuss translations of works
on the mathematical sciences during the first decades of the mission, and recount
how participation in the Calendar Reform of 1629 and integration in the Chinese
civil service in 1644 shaped the Jesuits’ practice and teaching of mathematics.
Chinese responses to western learning entailed competing propositions for struc-
turing the discipline. Mei Wending’s #3C4i# integration of Chinese and western
mathematics was the most elaborate reconfiguration of the field. His synthesis
and the Kangxi emperor’s appropriation of western science were instrumental in
reshaping the landscape of mathematics in China.

Mathematics in the Jesuit curriculum

Founded in 1540, the Society of Jesus soon started setting up colleges across
Europe. The sons of the elites of Catholic countries were educated in them, as
were most members of the Society. The latter often trained to be teachers, and for
some of them this remained their main occupation. The content and structure
of the education provided by the Society were crucial in shaping Jesuit culture,
in Europe as well as in China. Having previously studied the trivium (grammar,
logic, and rhetoric), students entering a Jesuit college would typically begin with
further training in rhetoric. This was followed by three years devoted to logic,
philosophy, and metaphysics. Early in the Order’s history, natural philosophy (or
physics) and mathematics were both grouped under philosophy. According to the
Aristotelian classification, physics and mathematics addressed two of the ten cat-
egories, respectively quality and quantity. Physics provided a qualitative explan-
ation of natural phenomena; it was based on the four-elements theory, according
to which all matter was composed of earth, air, fire, and wind, and the earth lay
motionless at the centre of concentric crystalline spheres. In the scholastic trad-
ition, mathematics consisted of the four disciplines of the quadrivium, namely
arithmetic, music, geometry, and astronomy.

However, it was somewhat redefined in the Jesuit curriculum. The Roman
College, founded in 1551, set the standards for the Society’s educational
network. The Ratio studiorum (final version 1599), which defined the Jesuit



HEAVENLY LEARNING, STATECRAFT, AND SCHOLARSHIP

system of teaching, gave a new importance to mathematics (Ratio studiorum
1997). Christoph Clavius, architect of the Gregorian Calendar Reform of 1582,
had taught mathematics at the Roman College since 1565, and was the first to
hold the chair of mathematics there. He was instrumental in establishing it as
a subject independent from philosophy and in asserting its status as a science
(Baldini 1992; Romano 1999, 133-178). This was the outcome of a debate within
the Society that was mainly epistemological. However the new importance of the
mathematical arts in sixteenth-century Italy must also have played a role in the
inclusion of mathematics in the subjects in which the Jesuits strove to be eminent
(Gorman 1999, 172).

While establishing mathematics as an independent discipline in the Jesuit cur-
riculum, Clavius redefined its structure and produced textbooks for its teaching.
Following Proclus, he divided mathematics into ‘pure’ and ‘mixed’, the former
consisting of arithmetic and geometry, the latter comprising six major branches
(which were further divided into subordinate disciplines): natural astrology
(astronomy), perspective, geodesy, music, practical arithmetic, and mechanics.
This structure broadened the scope of mathematics and extended its fields of
application (Engelfriet 1998, 30-32; Feldhay 1999, 110). The works authored by
Clavius, first and foremost his editions of and commentaries on Euclid’s Elements
and Sacrobosco’s Sphaera ‘Sphere’ (a thirteenth-century treatise on astronomy),
as well as his textbooks on arithmetic and algebra, formed the basis of mathem-
atical education as he defined it for the Society (Feldhay 1999, 109).

Jesuit education was not uniform: there were local variants in the mathemat-
ics taught,® and, as with any school curriculum, a number of updates occurred.
Thus, after the 1620s, the Ptolemaic system defended and taught by Clavius was
gradually replaced by the Tychonic system, in which the sun, while revolving
around the earth, was the centre of the orbit of the planets (Baldini 2000, 77). By
and large, the tradition Clavius had established was continued in the sense that
many teachers produced their own textbooks that were conceived as continua-
tions of his, though departing from them in their approach (Feldhay 1999, 114).
Two examples are relevant to the mathematics transmitted to China. First, the
number of textbooks entitled Elements of geometry produced in the seventeenth
century, within and without the Society, was such that the phrase, and even the
name of Euclid, came to refer to a genre—that of geometry textbooks—rather
than merely to editions of the Greek classic. Second, whereas Clavius’ Algebra
was one of the last representatives of the medieval tradition of cossic algebra, in
which the unknown and its powers are denoted by abbreviations of their names
(Reich 1994), Viete’s new notation, with vowels denoting the unknowns and con-
sonants the given quantities, was introduced into Jesuit teaching in the 1620s

3. On Portugal see Leitdo (2002); on France see Romano (1999, 183-354; 2006).
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(Feldhay 1999, 116-126). Matteo Ricci, the first Jesuit to enter China at the end
of the sixteenth century, had studied with Clavius at the Roman College and
brought with him Clavius’ mathematics, but some of his successors in the China
mission would present mathematics as it evolved in Jesuit colleges later in the
century.

Mathematics in Late Ming China: the ‘Unified lineage of mathematical
methods’

Itis widelyadmitted thatby 1600, the most significant achievements of the Chinese
mathematical tradition had fallen into oblivion. The Jiu zhang suan shu J15% 5tk
‘Nine chapters on mathematical procedures’ (first century Ap), regarded as the
founding work of the Chinese mathematical tradition (Chemla and Guo 2004)
and included in the Suan jing shi shu 574¢1# “Ten mathematical classics’ (656),
had effectively been lost. Furthermore the sophisticated tian yuan Xt ‘celestial
element’ algebra developed in the thirteenth century had been forgotten.* The
calculating device on which both were based, the counting rods, had fallen into
disuse; the abacus had become the universally used calculating device.’

By contrast with this picture of decline in mathematics, some historians
describe the sixteenth century as a ‘second Chinese Renaissance’. In reaction
against Wang Yangming’s 5] philosophy of the mind, which, around 1500,
gave priority to introspection over concern with the outside world, as well as in
response to a more and more perceptible political crisis, the last decades of the
sixteenth century witnessed a strong renewal of interest in technical learning
and statecraft (Cheng 1997, 496-530). The advocates of ‘solid learning’ empha-
sized the social role of literati, underlining that scholarship was of value only
if it contributed to welfare and social harmony, while being grounded in verifi-
able evidence. At the same time, the lowering of the cost of printing resulted in
a significant broadening of the book market, which facilitated the circulation
of knowledge. The renewal in many fields of scholarship is exemplified by such
major works as Ben cao gang mu A%4iH, ‘Compendium of medical material’
(1593) by Li Shizhen #1522, Lii lii jing yi # ¥ 5% ‘Essential meaning of pitchpipes’
(1596) by Zhu Zaiyu i, and Tian gong kai wu K TH#) ‘Exploitation of the
works of nature’ (1637) by Song Yingxing %%/ 5. The mathematical treatise Suan
fa tong zong 5i7k%i%% ‘Unified lineage of mathematical methods’ (1592) by Cheng
Dawei ## X1 can be regarded as belonging to this trend and is representative of

4. General accounts of the history of Chinese mathematics in western languages include Li and Du (1987),
Martzloff (1997), Yabuuti (2000).
5. On counting rods see Volkov (1998); Lam and Ang (2004, 43-112). On the abacus see Jami (1998a).
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the state of mathematics in China by 1600. It was to remain a bestseller to the end
of the imperial age (1911).

In mathematics as in many other fields, late Ming scholars blamed the perceived
loss of ancient traditions on their more recent predecessors’ indulgence in self-
centred and esoteric pursuits. Far from claiming to innovate radically, Cheng
Dawei aimed at providing a compilation of earlier treatises that he had spent dec-
ades collecting. This is reflected in the book’s title:* it is not unlikely that Cheng
saw himself as the heir of a lineage of scholars versed in mathematics. In his
work he gave a bibliography of all earlier works on the subject that he knew of.
Suan % was the usual term to refer to mathematics, fa i referred to the methods
by which each problem was solved; suan fa occurred in the title of many of the
works known to Cheng Dawei. The ‘Unified lineage of mathematical methods’
represents a synthesis of a tradition of popular mathematics based on the abacus
that can be traced back to Yang Hui #if (fl. 1261), in the Southern Song dynasty
(Lam 1977; Yabuuti 2000, 103-121). This tradition is usually contrasted with the
learned tradition of the Song and Yuan dynasty that culminated with celestial
element algebra.

Like most of the predecessors known to him, Cheng Dawei referred to a
canonical nine-fold classification of mathematics that can be traced back to the
‘Nine chapters on mathematical procedures’, although the book itself was evi-
dently unavailable to him. In fact, during the late Ming and early Qing period,
the phrase jiu zhang /1% ‘nine chapters’ mostly referred to that classification
rather than to the classic work itself. But like most if not all authors before and
after him, Cheng Dawei failed to fit all the mathematical knowledge at his com-
mand into the headings of the nine chapters: his work is divided into seventeen
chapters. It opens with a general discussion of some ancient diagrams then
thought to represent the origins of mathematics. Chapter 1 contains some gen-
eral prescriptions for the study of mathematics, a list of the nine chapters, concise
glosses of more than seventy terms used thereafter (yong zi fan li Ji“7/#1, ‘guide
to characters used’), lists of powers of tens and units, tables of addition, subtrac-
tion, multiplication, and division for the abacus, and brief explanations of some
terms referring to common operations such as the simplification of fractions or
the extraction of cube roots. Chapter 2 focuses on abacus calculation; it opens
with an illustrated description of the instrument. The following fifteen chapters
contain 595 problems presented in the traditional form: question, answer, and
method of solution. Chapters 3 to 6 and 8 to 12 take up the headings of the nine
chapters in the traditional order, whereas Chapter 7 introduces a particular type
of problem, which involves Fen tian jie ji fa srmi#fi%: ‘Methods for dividing

6. This is the reason why I prefer to translate tong zong %753 literally as ‘unified lineage’ rather than to use
the most common translation: ‘systematic treatise’.

61



62

GEOGRAPHIES AND CULTURES

fields by cutting off their areas™ they deal with the dimensions and areas of fig-
ures obtained by cutting off a part of a known figure. Chapters 13 to 16 contain
Nan ti # ‘Difficult problems’, often stated as rhymes; these problems are again
classified according to the headings of the nine chapters. The last chapter gives
Za fa 5i% ‘Miscellaneous methods’; it includes various diagrams such as magic
squares and depictions of hand calculation mnemonics. The chapter closes with
a bibliography of 52 titles, from the Song edition (1084) of the “Ten mathemati-
cal classics’ to works published in Cheng’s lifetime, spanning five centuries (Guo
1993, 11 1217-1453). As this brief description of the work suggests, while the ‘Nine
chapters on mathematical procedures’ was not accessible to Cheng, and while
abacus calculation underlies the whole of his mathematics, his work belongs to a
lineage that can be traced back to the first-century Ap classic. In this as well as in
other respects, the ‘Unified lineage of mathematical methods’ can be regarded as
representative of mathematics as practised in China at the time of the first Jesuits’
arrival.

Teaching and translating: Jesuit mathematics in Ming China

The China mission was part of the Portuguese assistancy of the Society of Jesus:
since the end of the fifteenth century, all Asian missions were under the patron-
age of the Portuguese crown. The port of Macao, founded by the Portuguese in
1557, served as their Eastern base. While their Japanese mission flourished, the
Jesuits’ attempts to settle in China were unsuccessful until 1582. The first Jesuit
residence in China was set up in Zhaoqing %% (Guangdong province). In estab-
lishing contact with local elites, Matteo Ricci used both knowledge and artifacts
that he had brought with him from Europe. At the same time, he assessed their
knowledge in terms familiar to him:

They have acquired quite a good mastery not only of moral philosophy, but also of astrol-
ogy [that is, astronomy] and of several mathematical disciplines. However, in the past
they have been better versed in arithmetic and in geometry; but they have acquired all
this and dealt with it in a confused way.” (Ricci and Trigault 1978, 95)

In line with this emphasis on the shortcomings of the Chinese as regards math-
ematics, Ricci turned himself into a teacher. His relations with the first literati
interested in Christianity were modelled on a master—disciple relationship, which
can be interpreted both in the context of Jesuit education and of Chinese lineages

7. Ils ont non seulement acquis assez bonne connaissance de la philosophie morale, mais encore de
l'astrologie et de plusieurs disciplines mathématiques. Toutefois il ont autrefois été plus entendus en
I’arithmétique et géométrie; mais aussi ils ont acquis ou traité tout ceci confusément.
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of scholarship (Jami 2002a). He described the progress of Qu Rukui #i4%E, one
of his first sympathizers and advisors, who eventually converted (Standaert 2001,
419-420):

He started with arithmetic, which in method and ease by far surpasses the Chinese one:
for the latter all in all consists in a certain wooden instrument in which round beads,
strung on copper wire, are changed here and there, to mark numbers. Although in fact
it is sure, it is easily subject to misuse, and reduces a broad science to very little. He then
heard Christoph Clavius’ sphere and Euclid’s elements, only what is contained in Book I;
towards the end he learnt to paint almost any kind of figures of dials to mark the hours.
He also acquired knowledge of the heights of things through the rules and measures of
geometry. And being, as I said, a man of wit and well versed in writing, he reduced all
this into commentaries in a very neat and elegant language, which he later showed to
mandarins. One would hardly believe what reputation this earned to him and to our
fathers, from whom he acknowledged having learned it all. For all that he had been taught
delighted the Chinese, so that it seemed that he himself could never learn to his heart’s
content. For he repeated day and night what he had heard, or adorned the beginnings
with figures so beautiful that they were by no means inferior to those of our Europe. He
also made several instruments, spheres, astrolabes, dials, magnet boxes, mathematical,
and other similar instruments very elegantly and artistically set up.® (Ricci and Trigault
1978, 308-309)

Ricci’s success is evidenced by his student’s capacity to produce both instruments
and texts that were fit for circulation among literati. The former points to the
inclusion of instrument making in mathematics as the Jesuits taught it in China.
The latter brings out the fact that the Jesuits needed Chinese scholars’ help in
order to write in Chinese. During the first decades of the mission, the translation
of mathematical texts was the outcome of teaching. After Ricci settled in Beijing
in 1601, he taught mathematics to Xu Guangqi #t%% and Li Zhizao %42 #, two
high officials who converted and took on the role of protectors of the Jesuit mis-
sion. They collaborated with Ricci in producing works based on some of Clavius’
textbooks (Martzloff 1995).

8. Il commenga par l'arithmétique qui en méthode et en facilité surpasse de beaucoup la chinoise: car icelle
consiste toute en certain instrument de bois auquel des grains ronds enfilés de fil d’archal sont changés ¢a et
la, pour marquer les nombres. Ce qu'encore que véritablement il soit assuré est sujet a recevoir facilement de
I’abus et réduit a peu d’espéces d’une science trés ample. Il ouit en apreés la sphére de Christopher Clavius et
les éléments d’Euclide, ce que seulement est contenu au premier livre; sur la fin il apprit & peindre quasi toutes
sortes de figures de cadrans pour marquer les heures. Il acquit aussi la connaissance des hauteurs des choses
par les régles et mesures de la géométrie. Et, pour autant, comme je l'ai dit, qu’il était homme d’esprit et fort
expert en I’écriture, il réduisit tout ceci en commentaires d’un langage fort net et élégant, lesquels venant par
aprés & montrer aux mandarins ses amis, a peine pourrait-on croire quelle réputation cela acquit tant a lui
qu’a nos Péres, desquels il confessait avoir tout appris. Car tout ce qui lui avait été enseigné ravissait par sa
nouveauté tous les Chinois en admiration, de fagon qu’il semblait que lui méme ne pouvait en aucune sorte
se saouler et contenter d’apprendre. Car il répétait jour et nuit ce qu’il avait oui ou ornait ses commence-
ments de figures si belles qu’ils ne cédaient en rien a ceux de notre Europe. Il fit aussi plusieurs instruments,
des spheres, astrolabes, cadrans, boites d’aimants, instruments de mathématiques et autres semblables fort
élégamment et artistement dressés.
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Table 1 Chinese translations and adaptations of Clavius' works

Clavius’ work Date of Title of Chinese Authors/
Chinese work  work translators
Euclidis elementorum, 1607 Elements of geometry Matteo Ricci
1574 (Ji he yuan ben A J5FAC) Xu Guangqi
Astrolabium, 1607 Illustrated explanation of Matteo Ricci
1593 cosmographical patterns Li Zhizao
(Hun gai tong xian tu shuo
Vi 0 R )
Geometria practica, 1608 Meaning of measurement Matteo Ricci
1604 methods Xu Guangqi
(Ce liang fa yi I HE173%)
In sphaeram loannis 1608 On the structure of heaven Matteo Ricci
de Sacro Bosco and earth Li Zhizao
commentarius, (Qian kun ti yi FeI#EFE)
1570
Epitome arithmeticae 1614 Instructions for calculation Matteo Ricci
practicae, in common script Li Zhizao
1583 (Tong wen suan zhi [7] 3CH$i7)
In sphaeram Ioannis de 1614 Meaning of compared Matteo Ricci
Sacro Bosco commen- [figures] inscribed in circles Li Zhizao
tarius, (Yuan rong jiao yi [&| 7% 1% 7%)
1570
Geometria practica, 1631 Complete meaning of Giacomo Rho
1604 measurement

(Ce liang quan yi i)

The relationship between the Chinese works and their Latin sources varies. The
‘Meaning of measurement methods’, a brief treatise on surveying, completed by
Ricci and Xu Guanggqi at the same time as their translation of the first six books
of Euclid’s Elements in ‘Elements of geometry’, is not a direct translation from the
Geometrica practica; it is probably based on Ricci’s lecture notes (Engelfriet 1998,
297). The ‘Instructions for calculation in common script’ takes up a number of
problems found in earlier Chinese works such as Cheng Dawei’s ‘Unified lineage
of mathematical methods’ and applies to them written arithmetic and the meth-
ods given by Clavius in his Epitome arithmetice practice (Jami 1992; Pan 2006).

Collaboration seems to have followed a pattern common to all translations,
religious or secular: the Jesuit gave an oral explanation of the meaning of some
original text, which the Chinese scholar then wrote down in classical Chinese.
New terms were coined when there was no obvious equivalent for a Latin term in
Chinese. For example, terms like definition, axiom, postulate, proposition, proof,
had to be created during the translation of Euclid’s Elements. These new Chinese
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terms were not explicitly defined before being used: whereas their Latin originals
were part of the cultural background of those who studied geometry in Europe,
such notions would have been entirely alien to a Chinese reader, and would prob-
ably remain somewhat of a mystery unless this reader was taught by someone
familiar with them. But the vast majority of Chinese scholars who read the 1607
translation did so without the help of such teaching. It is little surprise, therefore,
that while there was much interest in the content of the Elements, the Euclidean
style on the whole aroused more perplexity than enthusiasm (Martzloff 1980;
Engelfriet 1998, 147-154; Jami 1996).

Defining and situating mathematics

Whereas Euclidean geometry was presented as a radical innovation, in arithmetic
western learning was introduced as an improvement on the Chinese mathemat-
ical tradition. The dichotomy between number and magnitude was made explicit
in the structure of mathematics described in Ricci’s preface to the ‘Elements of
geometry’:

The school of quantity (ji he jia %) consists of those who concentrate on examining
the parts (fen 4}) and boundaries (xian [[!) of things. As for the parts, if [things] are cut
so that there are a number (shu ) [of them], then they clarify how many (ji he zhong #
fiT%¢) the things are; if [things] are whole so as to have a measure (du f¥), then they point
out how large (ji he da #%f7X) the things are. These number and measure may be dis-
cussed (lun i) in the abstract, casting off material objects. Then those who [deal with]
number form the school of calculators (suan fa jia $7:%); those who [deal with] measure
form the school of mensurators (liang fa jia #7:%). Both [number and measure] may
also be opined on with reference to objects. Then those who opine on number, as in the
case of harmony produced by sounds properly matched, form the school of specialists of
pitchpipes and music (lii lii yue jia 544%); those who opine on measure, in the case of
celestial motions and alternate rotations producing time, form the school of astronomers

(tian wen li jia XIE%).?

This is a description of the quadrivium, which, in Chinese terms, proposes to
subsume four well-known technical fields under a broader, hitherto unknown
discipline: the ‘study of quantity’. Ji he #f{i renders the Latin quantitas. The title
chosen by Ricci and Xu for their translation was apparently intended to encom-
pass not just geometry, but rather the whole quadrivium. The claim here is also
that the ‘Elements of geometry’ provides foundations for a discipline that includes

9. FEAT 5 S 2 o3 R Al S0 o3 3 4 A LA 2 SICEU S0 46 A A 5 5 A 2 P2 F 490 78 1] A, SC IOl iR 7 490 8 1
A i UM N S 5 A N AR B R N A U A 2 R O T R I A R i A M G
BRI AR LR SCE A Guo (1993, V 1151-1152, cf. Engelfriet (1998, 139); Hashimoto and Jami (2001,
269-270).
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the Chinese tradition of suan fa as one of its parts. Ji he means ‘how much’ in
classical Chinese: it occurred in every problem of the ‘Nine chapters on math-
ematical procedures’. In the ‘Unified lineage of mathematical methods’, however,
ruo gan #7+ (a synonym) is used in the question stated in problems; ji he appears
in the ‘Guide to characters used it is glossed by ‘same as ruo gan’ (Guo 1993, 11
1230). Later in the seventeenth century, ji he came to refer to the content of the
‘Elements of geometry’, that is, to Euclidean geometry."

The dichotomy between the two instances of quantity rendered as shu %t
‘number’ and du /¥ ‘magnitude’ respectively would have been new to a Chinese
reader at the time: shu was more evocative of numerology and the study of the Yi
jing 5% ‘Classic of change’, than of procedures of suan fa. By using this last term
to refer to procedures, Ricci and Xu again implied that mathematics as hitherto
practised in China was to be embedded into a broader discipline.

No matter how unfamiliar Ricci’s distinction between shu and du might have
appeared, the translations based on Clavius’ works, made in response to the
curiosity of a few Chinese scholars, aroused enduring interest among a wider
audience. Moreover, bringing together mathematics, surveying, astronomy, and
musical harmony was not foreign to their tradition (Lloyd, Chapter 1.1; Cullen,
Chapter 7.1 in this volume): surveying was one of the main themes of mathem-
atical problems; mathematical astronomy and musical harmony were discussed
in the same section of quite a few dynastic histories. Also, one finds many exam-
ples of scholars known both as mathematicians and astronomers: Zhu Zaiyu,
mentioned above as the author of the ‘Essential meaning of pitchpipes’ (1596, the
earliest known discussion of equal temperament), strove to unify musical har-
mony and astronomy (Needham 1962, 220-228).

The translations mentioned above were part of the Jesuits’ larger enterprise
of ‘apostolate through books’ their publications merged into the thriving book
market of the late Ming (Standaert 2001, 600-631). Their teachings were first pre-
sented as a whole in a compendium edited by Li Zhizao, the Tian xue chu han
K24k First collection of heavenly learning’ (1626). It was divided into two
parts: [i ¥ ‘Principles’ (nine works) and gi # “Tools” (ten works). The first part
opens with a description of the European educational system, entitled Xi xue fan
P52 ‘Outline of Western learning’ (1621). Like Ricci, its author, Giulio Aleni,
had been a student of Clavius at the Roman College. It presents the structure of
disciplines that was then most common, mathematics consisting of the quadriv-
ium and being one subdivision of philosophy (Standaert 2001, 606). The next six
works of the collection discuss mainly ethics and religion. The first part closes
with an introduction to world geography, also written by Aleni. Illustrated by
several maps, including an elliptical world map, the Zhi fang wai ji B /740, ‘Areas

10. The modern Chinese term for geometry is ji he xue {5, literally ‘the study of ji he’.



HEAVENLY LEARNING, STATECRAFT, AND SCHOLARSHIP

outside the concern of the imperial geographer’ (1623) describes the earth as part
of the universe created by God, and Europe as the ideal realm where Christianity
has brought long-lasting peace.

The second part of the ‘First collection’ contains five of Ricci’s six works based
on Clavius. It also includes three works by another former student of Clavius,
Sabatino de Ursis, dealing respectively with hydraulics, the altazimuth quadrant,
and the gnomon. A short treatise entitled Gou gu yi fz# “The meaning of base-
and-altitude’, written by Xu Guangqi after he had completed the translation of
the Elements with Ricci, is also included. This was the first attempt to interpret
the traditional approach to right triangles (gou %J, base, refers to the shorter side
of the right angle, and gu f%, altitude, to the longer one) in terms of Euclidean
geometry (Engelfriet 1998, 301-313; Engelfriet and Siu 2001, 294-303).

In this compilation, Ricci’s treatise on the sphere based on Clavius was substi-
tuted by another one, the Tian wen liie X% ‘Epitome of questions on the heav-
ens’. This is the only work pertaining to ‘tools’ that does not stem from the student
lineage of Clavius: its author, Manuel Dias Jr, never left the Portuguese Assistancy
of the Society of Jesus. Due to the importance of navigation in Portugal, the study
of the sphere was emphasized in Jesuit colleges there (Leitao 2002). Clavius’ trea-
tise was one of a genre; it seems that the ‘Epitome of questions on the heavens’
was an original composition within that genre rather than a translation of a
Latin text. It gave a description of Ptolemy’s system; in an appendix, it reported
Galileo’s invention of the telescope and the observations he had made with it
(Leitdo 2008). This was in keeping with the Society’s policy in Europe, where
innovations were usually incorporated into teaching. As a whole, the works on
instruments in the ‘First collection’ were part of the mathematical sciences con-
strued and constructed by Clavius for Jesuit colleges.

For converted officials like Xu Guangqi and Li Zhizao, Jesuit teaching met
essential concerns of their own agenda. The ‘Principles’ and the “Tools’ of the
‘First collection’ formed a coherent whole: whereas the latter could better the
material life of the people, the former could contribute to their moral improve-
ment and therefore to social harmony. Heavenly learning was a fitting response
to the concerns of ‘solid learning’, to which jing shi #sfit ‘statecraft’ was central.
Xu Guanggqi’s list of the applications of mathematics is revealing in this respect:
astrological prediction (for the state), surveying and water control, music (har-
mony and instruments), military technology, book-keeping and management
for the civil service, civil engineering, mechanical devices, cartography, medi-
cine, and clockwork (Wang 1984, 339-342). All these were fields in which any
progress would be socially useful. This list includes not only the topics in which
western learning proposed innovations but also, more importantly, some of
the main fields that ‘solid learning’ scholars strove to study. The latter’s agenda
thus oriented the choice of topics for translation; only the subjects that met their
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concerns had a significant influence. Mathematics in its broader sense was among
those subjects.

Mathematics and calendar reform

The field in which converted officials were most successful in promoting the
Jesuits and their learning was astronomy. The calendar had always been of utmost
symbolical and political importance in China; issued in the emperor’s name, it
ensured that human activity followed the cycles of the cosmos. The need for cal-
endar reform had been felt before the Jesuits” arrival (Peterson 1968), and Ricci
had recommended the Society to send missionaries versed in this matter. In 1613,
Li Zhizao proposed that three Jesuits be commissioned to reform the calendar
(Hashimoto 1988, 16-17). This may well have fostered opposition to Christianity
(Dudink 2001). In 1629 a new proposal put forward by Xu Guanggqi was finally
approved. Under his supervision, a special Li ju /&= ‘Calendar Office’ was created
(Hashimoto 1988, 34-39). This meant that officials rather than private literati
became the main recipients of European science.

The first output of this newly created office was a series of twenty-two works
(a few of which had actually been written before 1629). They were presented to
the emperor between 1631 and 1634, and formed the Chong zhen li shu 215 &
‘Books on calendrical astronomy of the Chongzhen reign’. The knowledge they
contained was very different in content and structure from that of the First col-
lection’: reference was no longer made to an overarching system of knowledge,
nor to the Catholic religion. The Ptolemaic system was discarded in favor of the
Tychonic system. Thus institutionalized, western learning had become a techni-
cal subject organized according to official astronomers’ needs.

Three Jesuits, Johann Schreck, Johann Adam Schall von Bell, and Giacomo
Rho, were in charge of the work; in 1633 Li Tianjing Z= X% succeeded Xu
Guangqi as supervisor. More than twenty Chinese collaborated in this task.
Some of these were converts, as were many Chinese who worked at the Qin tian
jian $CK 4 ‘Astronomical Bureau’ thereafter. In late Ming officials’ eyes, calen-
dar reform was to contribute to the restoration of social order and the dynasty’s
strength, at a time when the military situation in particular was getting worse.
However the result of the work done at the Calendar Office ultimately benefited
the newly established Qing dynasty, to which Schall offered his service on the
fall of the Ming; the calendar he had calculated was promulgated in 1644. The
compendium’s title was changed to Xi yang xin fa li shu vi¥#iJ& % ‘Books
on calendrical astronomy according to the new Western method’ and a few
works were added to it. This marked the Jesuits” entry into officialdom at the
Astronomical Bureau.
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According to Xu Guanggqi’s classification, which he proposed while the ‘Books
on calendrical astronomy’ were being composed, those books should fall into
five categories: fa yuan %55 ‘fundamentals’, fa shu 4 ‘numbers’, fa suan 5
‘calculations’, fa qi ¥:# ‘instruments’, and hui tong i@ ‘intercommunication’,
or correspondence between Chinese and western units. None of these categor-
ies correspond to specifically mathematical subjects as opposed to astronom-
ical ones. Once the works were completed, it was not always specified which of
these categories they belonged to; the ‘Calculation’ category remained empty.
‘Fundamentals’ include practical geometry and trigonometry; Bi li gui jie it ibifi#
‘Explanation of the proportional compass’ is among the ‘instruments’; trigono-
metric tables and Napier’s rods are included in ‘numbers’; this suggests that the
latter aid to calculation was understood as a kind of moveable table (Jami 1998b).
Neither Euclidean geometry nor the basics of written calculation were deemed
necessary for the purposes of calendar reform. On the other hand Ricci’s math-
ematics had to be supplemented, mainly by trigonometry. On the whole, the
‘Books on calendrical astronomy’ do not bring out astronomy and mathematics
as two separate disciplines.

In the 1644 version of the ‘Books on calendrical astronomy’, a geometry trea-
tise was added, which was not allotted into any of these categories: the Ji he yao
fa %M1k ‘Essential methods of geometry’ (1631). It was composed of extracts
from the ‘Elements of geometry’, focusing on constructions and leaving out
proofs. The work was the result of collaboration between Aleni and Qu Shigu #!
X #, Qu Rukui’s son, and a Christian like his father (Jami 1997). To paraphrase
Xu Guanggqi, a recasting of western knowledge into the ‘Chinese mould™ had
occurred between the translation of Euclid’s Elements and the calendar reform.
At the time of the former, astronomy was a branch of ‘the study of quantity’.
During the latter, mathematics was conversely subsumed under calendrical
astronomy for which it provided a series of tools and methods.

Integrating Chinese and Western mathematics: the work
of Mei Wending

Whereas conversion to Catholicism remained a marginal phenomenon in offi-
cialdom and literati circles, a number of scholars during the late Ming and early
Qing period were interested in the Jesuits’ mathematics. While the calendar
reform took place in Beijing, it was mostly in the Lower Yangzi region, which
had been of foremost economic and cultural importance since the tenth century
AD, that some scholars read the Jesuits’ works. The most thorough and systematic

11. For a discussion of this phrase and its posterity, see Han Qi (2001, 367-373).
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of them was Mei Wending #f 3, who is the best known mathematician and
astronomer of the period.

Mei’s syncretistic approach is suggested by the title of a collection of nine
of his works that he put together in 1680: Zhong xi suan xue tong Hifi3:im
‘Integration of Chinese and western mathematics’. Only six of these nine works
were eventually printed: this reflects the limits of Chinese literati’s interest in
the mathematical sciences at the time. Mei, however, argued that they were a key
to understanding the world: in his view, /i # ‘principles’, a key concept of Neo-
Confucian philosophy, could only be fathomed through shu % ‘numbers’, and the
principles thus uncovered were universally valid. For him numbers encompassed
the whole of mathematics, which he divided into suan shu $i#j ‘calculation pro-
cedures’ and liang fa 4% ‘measurement methods’ (SKQS 794, 64); accordingly,
he proposed to reorganize the traditional nine chapters into two groups. Unlike
the Jesuits and Chinese scholars before him, however, he also argued that calcula-
tion had primacy over measurement, as only the former could deal with invisible
objects; however, the fashion of Euclidean geometry resulted in the neglect of this
primordial field. In his view the great contribution of Western learning to both
mathematics and astronomy was that it explained suo yi ran firbl% ‘why it is so’,
whereas the Chinese tradition stated only suo dang ran 4 ‘what must be so’
(Engelfriet 1998, 430-431; Jami 2004, 708 and 719). Acknowledging the excel-
lence of Westerners in measurement methods, Mei proposed alternative proofs
for some propositions of the ‘Elements of geometry’, and went on to explore sol-
ids (Martzloft 1981, 260-290). In calculation, however, he emphasized the short-
comings of the Westerners. This did not prevent him from adopting and adapting
written calculation: in his lengthy Bi suan %% ‘Brush calculation’ he transposed
the four basic operations by writing all numbers in place-value notation verti-
cally, with the aim of making the orientation of the layout of calculations consist-
ent with writing in China, as it was in the West.

On the other hand, Mei set out to restore what had been lost of the Chinese
mathematical tradition. Thus he proposed a reconstruction of the method of fang
cheng Ji¥# ‘rectangular arrays’, equivalent to systems of linear equations in sev-
eral unknowns. The method had been handed down from the eighth of the ‘Nine
chapters on mathematical procedures’ through works like the ‘Unified lineage
of mathematical methods’, in which problems were classified according to the
number of unknowns; he regarded it as the acme of calculation. In his Fang cheng
lun JiFim ‘Discussion of the comparison of arrays’ (1672),'* Mei criticized this
classification, and also chastised the authors of the ‘Instructions for calculation
in common script’ for failing to recognize the specificity and powerfulness of
the fang cheng method. Against both works, from which he took up a number

12. Unlike today’s historians of mathematics, Mei interpreted fang cheng as ‘comparison of arrays’ (SKQS
795, 67; cf. Martzloff 1981, 166-168).
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of problems, and corrected several mistakes, he proposed an entirely new clas-
sification of problems according to the operations involved in their resolution
rather than to the number of unknowns (Martzloff 1981, 161-231; Jami 2004,
706-714). Further, he clarified how the arrays were to be laid out according to the
way the problem was stated, as regarded both the place where each number was
to be and its ming % ‘denomination’, that is to say, the sign assigned to it for the
purpose of solving the problem. ‘Denominations” had been transmitted from the
‘Nine chapters on mathematical procedures’, so in this respect Mei was indeed
restoring an ancient method rather than innovating.”” After explaining the ‘com-
parison of arrays’ in all its technicalities, he went on to use it in order to solve a
number of problems that pertained to other ‘chapters’ of the traditional nine-fold
classification, and to astronomy. By showing that his reconstructed method was
a generic tool that could solve problems traditionally associated with more spe-
cific methods, he substantiated the claim that it was the acme of calculation. By
applying it to astronomical problems, he also exemplified why he gave primacy to
calculation over measurement.

In several respects the style of the ‘Discussion of the comparison of arrays’ is
in rupture with that dominant in mathematical works by Chinese authors of the
time. Indeed, the work contained a series of problems, followed by their solution
and the fa 7% ‘method’ used to solve them, which included the array associated to
each problem. However, the author warns us, these problems only occupy 30%
of the work, and play the role of i #5] ‘examples’, to illustrate lun & ‘discussion’,
which occupies 70% of the work. Indeed the examples always follow a general
discussion and in turn each of them is followed by further lengthy discussion, for
the purpose of ming suan li #1521 ‘clarifying the principles of calculation’ (SKQS
795, 68). Thus after a general discussion of positive and negative denominations,
one particular problem, borrowed from the ‘Unified lineage of mathematical
methods’, is rephrased four times; four corresponding arrays are given, in order
to illustrate the rule that the first number given in the problem should be laid out
in the top right place of the array, and should always be assigned a zheng ming ii-
% ‘positive denomination’ (SKQS 795, 76-78).

Mei’s choice of the term lun ‘discussion’ to designate the discursive parts of
his text is significant: whereas it was not a term traditionally used in mathemati-
cal texts, he knew at least two precedents. In the ‘Unified lineage of mathemat-
ics’, the method for solving a problem was sometimes followed by a discussion
in the form of a poem, most likely with a mnemonic function. Lun also rendered
‘proof” in the 1607 translation of the ‘Elements of geometry’ but it is difficult to
tell whether this was independent of its use for ‘discussion’. As mentioned before,

13. Following the earlier Chinese tradition, Mei considered signs associated to numbers only in the con-
text of fang cheng problems. No concept of negative numbers occurs in his works.
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no explanation of the deductive structure of Euclidean proofs was given by the
Jesuits; on the other hand, the latter themselves frequently used lun in the broader
sense of ‘discussion’ or ‘discuss’, as Ricci did in the passage of his preface of the
‘Elements’ quoted above. It is not unlikely, therefore, that Mei Wending saw the
portions of the ‘Elements’ entitled un as discussions that clarified the ‘why it is
so” of each proposition. The presence of lengthy ‘discussions’ in his own work
can be understood as his appropriation of what he felt was a strong point of the
Westerners’ mathematical style for writing on a subject anchored in the Chinese
tradition. Thus the integration of Western learning was not simply a matter of
adding a new field, like Euclidean geometry, or choosing, among the methods
proposed by the Jesuits and those found in earlier works, the most relevant one.
The craft of writing mathematics itself shows signs of hybridization. In discourse
on mathematics Chinese and western were often opposed, but in practice they
were combined at every possible level.

The Kangxi emperor’s appropriation of mathematics

After he was put in charge of the Astronomical Bureau, Schall successfully cul-
tivated the favour of the young Shunzhi emperor. After the death of the latter
in 1661, however, the conflicts around Schall culminated in the Calendar Case
(1664-1669). Choosing dates and locations for rituals was part of his tasks as the
head of the Astronomical Bureau. Therefore, when it was found out that the time
of an imperial prince’s funeral had been miscalculated, this mistake was added to
the charge of promoting heterodox ideas that had previously been brought against
him. This brought about his downfall: he was sentenced to death—a sentence
soon commuted to house arrest—and all the missionaries who worked in the
provinces were expelled to Macao. In 1669, in the process of assuming personal
rule at the end of the regency that had followed the death of his father, the young
Kangxi emperor had the case reexamined. Ferdinand Verbiest, who succeeded
Schall as the main specialist in the sciences after the latter’s death, turned out
to be more accurate than his Chinese adversaries in predicting the length of the
shadow of a gnomon at noon, and the verdict was reversed (Chu 1997). Following
this, Kangxi undertook the study of western science, which he was to continue
throughout his reign. Verbiest, who was his first tutor, listed the mathematical
sciences which thus ‘entered the imperial Court’ in the wake of astronomy, each
presenting to the Emperor some achievement in the form of one or several tech-
nical objects: gnomonics, ballistics, hydragogics, mechanics, optics, catoptrics,
perspective, statics, hydrostatics, hydraulics, pneumatics, music, horologic tech-
nology, and meteorology (Golvers 1993, 101-129). Thus from the early years of
the reign, the two-fold pattern of the Jesuits’ role at court was settled. On the one
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hand they were court savants, who built and maintained various machines and
instruments and took part in imperial projects. In line with the late Ming trend
of ‘solid learning’, the emperor regarded most of their skills as tools for statecraft.
On the other hand the Jesuits were imperial tutors, who wrote textbooks in both
Chinese and Manchu. Kangxi’s motivations for studying western science were
two fold: genuine curiosity was combined with eagerness to be in a position to
control all issues and arbitrate all controversies, and to display his abilities to
higher officials. The mathematical sciences within western learning were thus
integrated into the body of Confucian learning mastered by the emperor—who
emulated the Sages of antiquity (Jami 2002b; 2007).

The Jesuits’ tutoring of Kangxi in mathematics is best documented for the
1690s, when it seems to have been at its most intensive. There were two different
teams of tutors. Geometry was mostly taught by two French Jesuits, Jean-Francois
Gerbillon and Joachim Bouvet, in Manchu; meanwhile, Antoine Thomas was in
charge of calculation and he used the Chinese language, with Tomé Pereira as his
interpreter. Both teams of tutors produced textbooks that have been preserved as
manuscripts (Jami and Han 2003). Kangxi also had his sons trained in the math-
ematical sciences; Thomas was their tutor. His most talented pupil was prince
Yinzhi Jil#L, Kangxi’s third son. In 1702 tutor and student were sent on an expe-
dition to measure the length of a degree of a meridian (Bosmans 1926). This was
a preliminary to the general survey of the empire that Kangxi commissioned in
1708. A number of Jesuits took part in it, applying the methods used by the Paris
Academicians in their survey of France a few years earlier. The outcome of this
was the famous Huang yu quan lan tu % #14:5Efi ‘Complete maps of the Empire’
(1718) known in Europe as the ‘Kangxi Atlas’ (Standaert 2001, 760-763).

The tutoring reflected Jesuit mathematical education at the time in Europe.
Thus the geometry treatise that the two Frenchmen composed for the emperor was
based on one of the many handbooks produced in Europe under the title ‘Elements
of geometry’ in the seventeenth century. Their choice of Elemens de geometrie
(1671) by Ignace Gaston Pardies for tutoring the emperor—a choice that Kangxi
approved—echoed the success of the work in Europe, where it underwent sev-
eral editions and reprints up to 1724, and was translated into Latin, Dutch, and
English (Ziggelaar 1971, 64-68). This work fitted in with Gerbillon and Bouvet’s
specific agenda in teaching Kangxi. As they were among the five Jesuits sent to
China in 1685 by Louis XIV, they saw themselves as representatives of French sci-
ence as practised under the auspices of the Paris Académie Royale des Sciences.
They were in China not only to contribute to its evangelization but also to fur-
ther French interests in Asia. The latter entailed gathering data for the Académie
(Landry-Deron 2001). In their tutoring, which also included medicine and other
aspects of philosophy, they claimed that they wrote ‘in the briefest and clearest way
that [they] could, removing all there is of complicated terms and of pure chicanery,
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following the style of the moderns’.'* Pardies, who had dedicated his geometry text-
book to the Paris Academicians, discarded the axiomatic and deductive style that
characterized Euclid as edited by Clavius, in favour of shortness and ease. This was
an adjustment to the widening audience of Jesuit colleges in Europe; it also reflects
the idea, common among seventeenth-century mathematicians, that clarity is an
intrinsic quality of mathematics (Jami 1996; 2005, 217-221). Both the Manchu and
the Chinese versions of the treatise, which are abridged translations, were written
under the emperor’s personal supervision: some corrections and comments in his
hand are found on two copies of the treatise. Like its European counterpart, this
new treatise took up the title of the translation of Euclid’s Elements: in Chinese it
was called Ji he yuan ben #fi)ii4, like the 1607 translation.

Meanwhile, Antoine Thomas composed two lengthy treatises. Before setting
sail for Asia, he had taught mathematics in Coimbra, Portugal. For this purpose
he had written a kind of vademecum, the Synopsis mathematica, a work expli-
citly designed for candidates to the China mission as well as for novices. The
first of his Chinese treatises was called Suan fa zuan yao zong gang i) 5 24841
‘Outline of the essentials of calculation’, possibly a translation of the title of his
Latin treatise. The structure of the former work followed that of the chapters
devoted to arithmetic in the latter (Han and Jami 2003, 150-152). However, while
the Latin work only gave one example to illustrate each rule of calculation, the
Chinese treatise contained a wealth of problems for each of these rules. Some
problems were drawn from the ‘Instructions for calculation in common script’
by Ricci and Li Zhizao. Others evoked subjects that Kangxi discussed with the
Jesuits during the tutoring sessions, such as astronomy or the speed of sound
(Jami 2007). Another treatise written by Thomas presented a branch of mathem-
atics never before taught by the Jesuits in China, namely algebra. The term was
transcribed as aerrebala B # =47 in the foreword of the treatise; however, it was
the title of the treatise, Jie gen fang suan fa it J757i% ‘Calculation by borrowed
root and powers’, that gave its name to the mathematical method described in it.
Seventy years after some of the Jesuit colleges started to teach Viéte’s notation,
the Kangxi emperor was still being taught cossic algebra. In Chinese, full names
in characters were used rather than abbreviations as in European treatises. Thus,
for instance, the equation x> + 44 x* + 363 x = 1950048 appears in the Jie gen fang
suan fa {55557 ‘Calculation by borrowed root and powers’ as:

—Ji —— W —— ZAER =—— —JLhOOI)\

lcube +  44square + 363 root = 1950048
(Bibliotheque Municipale de Lyon, Manuscript 39-43, V 135)

14. [...] de la maniere la plus brieve et la plus claire qu’il nous a esté possible, en retranchant tout ce qu’il
y a de termes embrouillés et de pure chicane, conformément au style des modernes (Archivum Romanum
Societatis Iesu, Jap Sin 165, f. 101r).
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Thomas’s textbook may well be an original composition, but the algebra in it
is similar to that found in, among other works, Clavius’ Algebra (1608). Like
Clavius, Thomas included some first degree problems in several unknowns, in
which he represented the unknowns by the cyclical characters (jia !, yi &, bing
W, ding 1"...), in a manner equivalent to that in which one would use letters.
Coeflicients, on the other hand, were always numerical. Thus, more than three
decades after Mei Wending’s ‘Discussion on the comparison of arrays’, a Jesuit
produced two treatises that appear as refutations of Mei’s criticism of Westerners
as incompetent in calculation; moreover one of these treatises contained a pos-
sible alternative to the fang cheng method as reconstructed by Mei. At the time,
algebra was not part of elementary mathematical education in Europe. Thomas
had not included it in his Latin mathematical treatise, but he was familiar with
symbolic algebra. That he nonetheless taught the emperor cossic algebra may
reflect his wish to perpetuate the mathematics taught by Clavius and the Jesuits
working in China during the late Ming period. It may also simply be due to the
fact that symbolic algebra was regarded as more difficult. In 1713, that is, less
than fifteen years after Thomas completed his treatise on cossic algebra, another
Jesuit, Jean-Frangois Foucquet, attempted to present symbolic algebra to Kangxi;
for this purpose, he set out to write a treatise that he entitled Aerrebala xin fa kil
L4z #id: ‘New method of algebra’. A section on first-degree problems in several
unknowns was completed and explained to the emperor; however the tutoring
happened to stop just as Foucquet was starting on second-degree equations, so
that the emperor did not have the chance to grasp the meaning of the juxtapos-
ition of two unknowns as a representation of their product. The ‘New method of
algebra’ was rejected, and, given the fact that Kangxi actually arbitrated matters
to do with mathematics personally, symbolic algebra did not find its way into
Chinese mathematical textbooks until the second half of the nineteenth century
(Jami 1986).

The emperor strove to integrate the mathematical sciences into imperial schol-
arship. In 1713 he created a Suan xue guan 57544 ‘Office of Mathematics’ staffed
by Chinese, Manchus, and some Mongols. It was modelled on various offices of
the same kind for literary or historical projects and headed by his son Yinzhi. The
staff of this office compiled a three-part compendium, the Yu zhi lii li yuan yuan
R ‘Origins of musical harmony and calendrical astronomy, imperi-
ally composed’, which was printed at the beginning of the Yongzheng reign
(1723-1735). Western learning was dominant in the astronomical part, the Li
xiang kao cheng &% %k “Thorough investigation of calendrical astronomy’ (42
chapters). It was expounded in a separate appendix in the Lii lii zheng yi i 1F
#% ‘Exact meaning of pitchpipes’ (5 chapters). It was interspersed with Chinese
learning in the mathematical part, entitled Shu li jing yun ¥@ki4i ‘Essence
of numbers and their principles’ (53 chapters), which set the standard for
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the study of the subject. The association of the three fields of astronomy, math-
ematics, and music points to the influence of the quadrivium, all the more so as
mathematics was constructed on the dual foundations of geometry and calcula-
tion. However, the link between calendrical astronomy and the pitchpipes was a
traditional one: both were about measuring and setting norms for the cosmos.
Since number, that is mathematics, was used in both, putting the three disciplines
together would not seem strange to Chinese readers. The rationale put forward to
justify it was borrowed from the Classics, the origin of all this learning being said
to be the same as that of the Yi jing %4 ‘Classic of change’ (Kawahara 1995).
Most of the content of the ‘Essence of numbers and their principles’ can be
traced back to the Jesuits’ tutoring of the 1690s. Some chapters, however, resulted
from Chinese scholars’ work inspired by the nine chapters tradition. The ‘Essence
of numbers and their principles’ is divided into two parts of very unequal length,
followed by some tables. The first five chapters are devoted to li gang ming ti \i.4i
W4 ‘Establishing the structure to clarify the substance’. After a discussion of the
foundations of mathematics, which roots it into Chinese antiquity, three chap-
ters are devoted to the ‘Elements of geometry’, a revised version of Gerbillon and
Bouvet’s textbook. This part closes on a chapter on the Suan fa yuan ben 5
# ‘Elements of calculation’, a revised version of one of the textbooks produced in
the 1690s, probably authored by Thomas and mostly based on books VII and VIII
of Euclid’s Elements. Thus, while imperial mathematics was asserted to have its
origins in ancient China, its foundations stemmed from Western learning, and
more precisely from the early modern European appropriation of the Euclidean
tradition. The second part, comprising forty chapters, is on fen tiao zhi yong /»
%801 “dividing items to convey their use’. It is divided into five sections: shou
¥ ‘initial’, xian %3 ‘line’, mian 1fi ‘ared’, ti #% ‘solid’, and mo & ‘final’. The con-
tent is presented in the traditional form, that is, as a sequence of problems and
solutions. After basic instruction on the four operations and fractions has been
given in the ‘beginning section’, the three middle sections organize problems
according to their dimension. A great part of the material in these first four
sections can be traced back to Thomas’s ‘Outlines of the essentials of calcula-
tion’, while some material was drawn from Chinese authors as well. Six of the
ten chapters in the end section, devoted to cossic algebra, are derived from his
‘Calculation by root and powers’, with slightly modified vocabulary and nota-
tions; three chapters are devoted to a general presentation of the notation and
of the techniques for solving equations; the three next chapters give problems
that fall respectively in the ‘line’, ‘area’, and ‘volume’ categories. After cossic
algebra, there follows a chapter of Nan ti & ‘Difficult problems’ this chap-
ter is one among several clues that suggest that Cheng Dawei’s ‘Unified lineage
of mathematical methods’, among other Chinese works, were used to compile
the ‘Essence of the principles of numbers’. The last three chapters are devoted
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to the principles of logarithms and to the proportional compass (Guo 1993, III
1143-1235). Logarithms and trigonometric tables were appended. Imperial
mathematics, which encompassed most of the knowledge available at the time,
integrated an updated version of western learning devised for Kangxi and some
revived branches of Chinese learning.

The compilers of ‘Essence of numbers and their principles’ had at their dis-
posal at least two methods for dealing with problems equivalent to systems of
linear equations in several unknowns: Mei Wending’s ‘comparison of arrays’, and
Thomas’s notation using cyclical characters. Unlike in the case of right triangles,
for which they included both the traditional gou gu fJli ‘base-and-altitude’ meth-
ods and the techniques of western geometry, they retained only Mei Wending’s
method, which they presented as an independent chapter of the ‘line section’. In
the chapter on ‘line’ problems solved by ‘calculation by root and powers’, on the
other hand, only one root, denoted as usual by gen i&, is used. Thus, in the eyes
of the compilers, none of the methods proposed by the Jesuits for solving linear
problems in several unknowns measured up to the ancient Chinese method as
reconstructed by Mei. This can hardly have been the result of a bias in favour of
traditional Chinese mathematics on their part: altogether only three chapters of
the imperial compendium are titled after the names of the ‘Nine chapters’.

In bibliographies compiled during the two centuries that followed its compo-
sition, the ‘Essence of numbers and their principles’ was attributed to Kangxi.
The list of editors of the ‘Origins of musical harmony and calendrical astronomy,
imperially composed’, published in 1724, comprises forty-seven names, includ-
ing Yinzhi and one of his brothers. There is ample evidence that the emperor kept
a close eye on the compilation’s progress, discussing details such as the layout of
numerical tables with Yinzhi (Jami 2002b, 40-41). The compendium was later
used for the study of mathematics in imperial institutions (SKQS 600, 445). Thus,
officials, if not all scholars, were to model their study of mathematics on that of
the emperor.

Western learning without the Jesuits

The Rites Controversy, in which the Jesuit policy of accommodation to Chinese
customs such as the ritual honouring of ancestors was over-ruled by Rome,
brought about a change of imperial policy towards Catholic missionaries. The
court Jesuits seem to have lost imperial trust after the visit of a papal legate
to Beijing in 1706, bringing the news that Chinese converts must abandon all
‘idolatrous’ practices. In 1732, all missionaries working in the provinces were
expelled to Macao; however, the Beijing Jesuits were allowed to remain and to
practise their religion. They continued to be employed as official astronomers
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and as cartographers, engineers, architects, and artists. Western learning at court
remained in the service of imperial magnificence and of control of the expanding
Qing territory (Standaert 2001, 358-363, 823-835). During the Qianlong reign
(1736-1795), lengthy sequels to the “Thorough investigation of calendrical astron-
omy’ and to the ‘Exact meaning of pitchpipes’ were published. By contrast, the
‘Essence of numbers and their principles’ does not seem to have been regarded
as in need of supplementing. Although it never competed with the ‘Unified line-
age of mathematical methods’ for popular readership, the imperial compendium
represented the basis of scholarly culture in mathematics.

Eighteenth-century scholars indeed appropriated mathematics and astronomy,
but not quite in the way that Kangxi had tried to foster. Instead of becoming
an end in itself or a tool for other technical fields, the discipline was integrated
into the main intellectual trend of China at the time, kao zheng xue %:%5: ‘evi-
dential scholarship’ (Elman 1984, 79-89; Tian 2005, 134-145). The aim was the
restoration of the original text of ancient classics, the meaning of which, it was
argued, had been distorted, especially by Song dynasty (960-1279) commenta-
tors. Scholars who followed this trend developed sophisticated methods in phil-
ological disciplines. Mathematics and astronomy were a tool for that purpose:
ancient records of astronomical events were used to date documents and events.
But they were also an object of study; thus Dai Zhen &%, who is regarded as the
greatest philologist of the time, reconstructed the text of the ‘Nine chapters on
mathematical procedures’.

The turn towards ancient texts in the mathematical sciences went together with
the development of the idea xi xue zhong yuan 7515 ‘western learning origi-
nated in China’. While at first he argued for the unity of mathematics East and
West, Mei Wending eventually turned to investigating this idea in detail, encour-
aged by Kangxi (Chu 1994, 184-217; Han 1997). The advantage for the emperor
was obvious: if the calendar was based on foreign knowledge, then he could be
challenged for applying Barbarian knowledge to regulate the rites that lay at the
heart of Chinese civilization. If on the other hand that knowledge had originated
in China, he became the personification of the Confucian monarch who retrieved
ancient learning for the empire’s benefit, which was quite an achievement for a
Manchu ruler. For Chinese scholars on the other hand, the Chinese origin of
western knowledge neutralized any claim of superiority of the latter. The idea
could have some heuristic value as was the case in the field of algebra: identifi-
cation with calculation by borrowed roots and powers as introduced by Thomas
eventually proved instrumental in the rediscovery of thirteenth-century celestial
element algebra (Han 2003, 80-81). At the turn of the nineteenth century there
were debates over the respective merits of the two methods (Tian 2005, 250-271).

Thus western learning, represented both by late Ming Jesuits’ translations and
by the ‘Essence of numbers and their principles’, became an entity opposed to
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Chinese learning. Even as eighteenth-century scholars distinguished between
these two types of learning, and could side with one against the other, none of
them simply ignored western learning; the latter, while keeping its identity, had
been appropriated.

Conclusion

Studies of the Jesuits’ transmission of mathematics from Europe to China have
long focused on Euclid’s Elements of geometry, arguably to the detriment of
other branches of mathematics; this is no doubt a consequence of the role of this
work as a supposed embodiment of the essence of either ‘western mathemat-
ics’ or mathematics tout court. The story of ‘Euclid in China’ has been told in
terms of European categories, as one of a radical innovation that had universal
validity; ‘the Chinese understanding’ (or misunderstanding) of this innovation
supposedly revealed general features of ‘Chinese thought’. Writings on geometry
by Chinese authors of the seventeenth century have been assessed according to
their conformity to the Euclidean model (Martzloff 1980). This fitted in a his-
toriography that modelled Sino-European contacts as (European) ‘action’ and
(Chinese) ‘reaction’ (Gernet 1982).

Further contextualization of the introduction of Euclidean geometry
(Engelfriet 1998; Jami 1996), as well as inclusion of other branches of mathemat-
ics into the narrative, have yielded a different picture, one of complex interaction
rather than of action and reaction. In introducing European written arithmetic,
for example, a synthesis was proposed from the onset between what the Jesuits
brought in and what was found in Chinese mathematical works of the time.
Looking at the Chinese category suan #f, which by 1600 by and large denoted
the whole of mathematics, one can trace the restructuring of the field during
the hundred and twenty years that followed. The Jesuits first used suan as refer-
ring to arithmetic, and proposed to embed the Chinese tradition into a broader
field, for which their geometry provided a foundation. However, as some Chinese
scholars’ subsequent interpretations of suan, eventually taken up by the Jesuits
of the Kangxi court themselves, were broader: a more general category, best ren-
dered by the term ‘calculation’, was thus constructed, within which a number of
competing methods were proposed. In parallel, the term shu # ‘number’, used
by the Jesuits to denote only one of the two instances of quantity, came to name
the broader field that encompassed geometry and calculation. Mathematics thus
gained a status within scholarship as defined in neo-Confucian philosophy: it
was a tool to access li # ‘principles’ which was the ultimate goal of all learning.
Thus the cross-cultural transmission and reception of mathematics entailed its
reconstruction at several levels: its methods, branches, the structure of texts, but
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also the discipline as a whole vis-a-vis other scholarly pursuits, were reshaped by
the process of their integration into a different landscape. This conclusion brings
out mathematics as a flexible and dynamic system of knowledge and practice,

rather than as an immutable body of truths.

Table 2: Names and dates

Song dynasty (960-1279)

Yuan dynasty (1279-1368)

Ming dynasty (1368-1644)

Qing dynasty (1644-1911)
Chongzhen reign (1628-1644)
Shunzhi reign (1644-1661)
Kangxi reign (1662-1722)
Yongzheng reign (1723-1735)
Qianlong reign (1736-1795)
Jesuit mission (1582-1773)

Cheng Dawei 2 A4V, (1533-1606)
Dai Zhen #&/ (1724-1777)

Li Shizhen 2= (1518-1593)

Li Tianjing 4 K& (1579-1659)
Li Zhizao 2 #: (1565-1630)
Mei Wending #f L5t (1633-1721)
Qu Rukui BV 4E (1549-1611)
Qu Shigu AL (b. 1593)

Song Yingxing K MEA (1582 after 1665)
Wang Yangming +[5] (1472-1529)
Xu Guanggqi #R)GH% (1562-1633)
Yang Hui ## (fl 1261)

Yinzhi JiLfik (1677-1732)

Zhu Zaiyu AKifilf}H (1536-1611)

Giulio Aleni (1582-1649)

Joachim Bouvet (1656-1730)
Christoph Clavius (1538-1612)
Manuel Dias Jr (1574-1659)
Jean-Frangois Foucquet (1665-1741)
Jean-Frangois Gerbillon (1654-1707)
Ignace Gaston Pardies (1636-1673)
Giacomo Rho (1592-1638)

Matteo Ricci (1552-1610)

Johann Adam Schall von Bell (1592-1666)
Johann Schreck (1576-1630)
Antoine Thomas (1644-1709)
Sabatino de Ursis (1575-1620)
Ferdinand Verbiest (1623-1688)

For biographies of the Jesuits who went to
China see: http://ricci.rt.usfca.edu/biog-
raphy/index.aspx
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CHAPTER 1.4

The internationalization of mathematics in a
world of nations, 1800-1960

Karen Hunger Parshall

Mathematics has a history with elements of both the contingent and the
transcendent. Over the course of the nineteenth century, as the emer-
gence of nation states increasingly defined a new geopolitical reality in Europe,
competition among states manifested itself in the self-conscious adoption of the
contingent, cultural standards of those states viewed as the ‘strongest’. In the
case of mathematics, these self-consciously shared cultural standards centred on
educational ideals, the desire to build viable and productive professional com-
munities with effective means of communication, and the growing conviction
that personal and national reputation was best established on an international
stage (Parshall 1995).

In this context, mathematics also increasingly became a ‘language spoken’ and
an endeavor developed internationally, that is, between and among the math-
ematicians of different nations."! For example, in the late nineteenth and early

1. The terminology is important. The word ‘international’ connotes, as indicated here, something shared
between or among mathematicians. ‘Internationalization’, the topic of this chapter, is the process by which
a globalized community of mathematicians, which shares a set of values or goals, has developed. That pro-
cess, however, has sometimes involved merely ‘transnational’ communication, that is, communication across
national borders, whether or not that communication is understood or appreciated. Transnational commu-
nication may ultimately lead to mutually appreciated, shared values and goals, but this is not a necessary
consequence. The words ‘international’ and ‘transnational’ will be used in these respective senses in what
follows. For more on the terminology that has developed in the historical literature on the process of the
internationalization of science, see Parshall and Rice (2002, 2-4).
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twentieth centuries, an Italian style of algebraic geometry with its own very
idiosyncratic method of theorem formation and proof—a language of alge-
braic geometry that essentially only Italians spoke—developed in the context
of a newly united Italian nation state seeking to demonstrate its competitive-
ness in the international mathematical arena and in parallel to the very different
German tradition (Brigaglia and Ciliberto 1995). By the mid-twentieth century,
however, following the advent of modern algebra with its structural approach
to, and organization of, mathematics, algebraic geometers whether in the British
Isles, Germany, or Italy, or in the United States, China, or Japan all spoke largely
the same, nationally transcendent, mathematical language and tackled import-
ant, open problems recognized as such by all (Schappacher 2007).

That mutual recognition had stemmed, among other things, from the inter-
nationalization of journals and from the institutionalization of the International
Congresses of Mathematicians (ICMs) beginning in 1897 for the direct commu-
nication of mathematical results and research agendas. It also manifested itself,
at least symbolically, in the awarding of the first Fields Medals in 1936 in recog-
nition of that mathematical work judged ‘the best” worldwide. This chapter traces
the evolution of mathematics as an international endeavor in the context both of
the formation of professional communities in a historically contingent, geopolit-
ical world and of the development of a common sense of research agenda via the
evolution of a nationally transcendent mathematical language.

The establishment of national mathematical communities in the
nineteenth century

Although scientific communities began to coalesce in the seventeenth century
around societies like the Accademia dei Lincei in Rome, the Royal Society in
London, and the Académie des Sciences in Paris, the evolution of national math-
ematical communities, indeed the evolution of national communities regardless
of the specialty, was largely a nineteenth-century phenomenon. In mathemat-
ics as well as in other academic disciplines, Prussia was in the vanguard in the
last half of the nineteenth century, serving as a model for other emergent nation
states and ultimately supplanting France as the dominant mathematical nation
in western Europe (Grattan-Guinness 2002).

Defeated during the Napoleonic Wars at the beginning of the nineteenth cen-
tury, Prussia had responded with a major political, socioeconomic, and educa-
tional reorganization aimed at safeguarding against a similar humiliation in the
future. One of the masterminds behind the educational reforms, Wilhelm von
Humboldt, used the new University of Berlin (founded in 1810) as a platform
from which to launch a neohumanist educational agenda aimed at ‘provid[ing]
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a model for scholarship as well as an idealistic framework for galvanizing the
German people into action” (Pyenson 1983, 6). In particular, the classical lan-
guages and mathematics, but also the physical sciences, were emphasized in
an institutional context that was unfettered by political or religious concerns,
and that fostered teaching and pure research over what were perceived as the
more utilitarian concerns of the French. This evolved into the twin ideals of
Lehr- und Lernfreiheit, the freedom to teach and to learn in a politically and
religiously disinterested university environment characterized by the tri-
partite mission of teaching and the production of both original research and
future researchers. Universities in Berlin, Konigsberg, and ultimately Leipzig,
Erlangen, Géttingen, and elsewhere produced a generation of mathematicians
who matured as researchers not only in professorial lecture halls but also in tar-
geted mathematical seminars. The research they generated, moreover, appeared
on the pages of specialized journals like Crelle’s Journal fiir die reine und ange-
wandte Mathematik (founded in 1826) and later the Mathematische Annalen
(founded in 1869).

In the last half of the nineteenth century and up to the outbreak of World
War I, educational reformers in general and mathematical aspirants in particu-
lar from China (Dauben 2002, 270), Italy (Bottazzini 1981), Japan (Sasaki 2002,
236-238), Spain (Ausejo and Hormigon 2002, 51), the United States (Parshall
and Rowe 1994), and other countries took their lead from Prussia in crafting
broad reforms as well as more specific mathematics curricula that aimed at trans-
planting to, and naturalizing in, their respective soils the perceived fruits of the
Prussian system. One result of this transplantation and naturalization was the
consolidation and growth of mathematical research communities in a number of
national settings between the closing decades of the nineteenth century and the
opening decades of the twentieth.

After its defeat in the Franco-Prussian War of 1870-1871, France, too, moved
toward reforms of its educational system. French scientists, in fact, had long been
warning that they were falling behind the Germans (Grattan-Guinness 2002,
24-25; Gispert 2002). In the United States, the Civil War that had divided the
nation in the years from 1861 to 1865 was followed by a so called Gilded Age that
witnessed not only the development of federally funded institutions of higher
education—the land-grant universities—for the promotion especially of the prac-
tical sciences of agriculture, mining, and engineering, but also the establishment
of new, privately endowed universities. The presidents of both of these new kinds
of institutions consciously looked across the Atlantic for exemplars on which to
model their new educational experiments. In importing the research ethos of
the Prussian universities, two of the privately endowed universities, the Johns
Hopkins University (founded in 1876) and the University of Chicago (founded
in 1892), set the tone for higher educational reform in the United States. In
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mathematics, this translated into the formation of at least two programmes that
enabled research-level mathematical training competitive with—although not
yet equal to—that attainable, for example, at Berlin or Géttingen (Parshall 1988;
Parshall and Rowe 1994, 367, note 9). At the University of Chicago, in particu-
lar, two of the three original members of the mathematics faculty—Oskar Bolza
and Heinrich Maschke—were Gottingen-trained, German mathematicians, and
they, together with their American colleague E H Moore, directly imported the
ideas of mathematicians like Felix Klein on elliptic and hyperelliptic function
theory and David Hilbert on the foundations of mathematics to their American
students (Parshall and Rowe 1994, 372-401). Those students—independently
and in concert with their mentors—embraced and extended the mathematical
ideas to which they were exposed.” In so doing, they participated in what was an
increasingly transatlantic mathematical dialogue on research questions of com-
mon interest,” although this kind of direct importation of mathematical ideas did
not dissuade American mathematical aspirants, especially in the 1880s, 1890s,
and in the first decade of the twentieth century, from travelling abroad for post-
graduate training (Parshall and Rowe 1994, 189-259 and 439-445).

By the outbreak of World War I, America’s older colleges, notably Harvard, Yale,
and Princeton, had made the transition from undergraduate colleges to research-
oriented universities. Together, these and other institutions of higher education
contributed to the formation of an American mathematical research commu-
nity that coalesced around the New York Mathematical Society at its founding in
1888 and then around its reincarnation in 1894 as the American Mathematical
Society.* This national community also sustained specialized journals like the
American Journal of Mathematics (founded in 1878), the Annals of Mathematics
(founded in 1884), and the Transactions of the American Mathematical Society
(first published in 1900) that actively fostered the communication of mathemat-
ical results (Parshall and Rowe 1994, 427-453).

If the United States provides an illustration of a national mathematical com-
munity that formed in the nineteenth century in fairly direct emulation of the

2. Students from Italy—notably, Luigi Bianchi, Gregorio Ricci-Curbastro, and Gino Fano—also went to
Germany expressly to work with Felix Klein first at the Technische Hochschule in Munich from 1875 to 1880
and then at Géttingen after 1886.

3. See, for example, Fenster (2007) for an account of the transnational development between A Adrian
Albert in the United States and Richard Brauer, Emmy Noether, and Helmut Hasse in Germany of the theory
of finite-dimensional algebras over the rationals.

4. The American Mathematical Society (AMS) modeled itself on the London Mathematical Society (LMS),
which had formed in 1865 (and which, despite its name, was a national society). The LMS was the first such
society but other national societies soon followed; for example, the Société mathématique de France began in
1872 and the Tokyo Mathematical (later Mathematico-Physical) Society started in 1877. The more localized
Moscow Mathematical Society actually predated them all; it was founded in 1864. By the early decades of the
twentieth century even more countries—like Spain (Ausejo and Hormigoén 2002, 53-57), Italy, Japan, and
China (see below)—had followed suit. The specialized national mathematical society—like the specialized
mathematical journal—came to define national mathematical communities internationally.
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Prussian model, England represents a country in which a national mathematical
community developed with only occasional glances across the Channel, and
those perhaps more at France than at Germany. In 1830, Charles Babbage fam-
ously caricatured English science in his Reflections on the decline of science in
England. For Babbage, that decline had resulted from many factors, not the least
of which were the ineffectiveness of the Royal Society and the absence of true cul-
tural and professional inducements for science in England.

As with all caricatures, Babbage’s contains elements of truth. His rhetorical
salvos—as well as those of others like John F W Herschel and Augustus Bozzi
Granville—came just as the new British Association for the Advancement of
Science was being founded and the Royal Society of London was entering into
a period of reorganization and renewal. If English science had been in decline
before 1830, its trajectory had a strongly positive slope by the middle of the nine-
teenth century as exemplified by John Couch Adams’s mathematical predic-
tion—independent of that of the French astronomer, Urbain Leverrier—of the
existence of the planet Neptune in 1845-6. As the case of Adams also suggests, if,
as Herschel famously averred in 1830, ‘in mathematics we have long since drawn
the rein, and given over a hopeless race’, things were improving on that score as
well (Babbage 1830, ix).

Although mathematics had long been published in the British Isles in the
context of the journals of general science societies, the decades immediately fol-
lowing mid-century witnessed there as in Germany, France, Italy, Russia, and
elsewhere the development of specialized, research oriented journals that helped
to distinguish a community of mathematical researchers (Despeaux 2002).° Of
particular importance in the British context was the Quarterly Journal of Pure
and Applied Mathematics which began under that title in 1855 but which had
resulted from an evolutionary process that had transformed the highly localized,
undergraduate-oriented Cambridge Mathematical Journal (founded in 1837) into
the more self-consciously research-oriented and trans-Britannic Cambridge and
Dublin Mathematical Journal (in 1845) (Crilly 2004).

In 1855 and under the editorialleadership of James Joseph Sylvester and Norman
Ferrers, the Quarterly Journal not only followed France’s Journal de mathéma-
tiques pures et appliquées in emulating in name Crelle’s Journal fiir die reine und
angewandte Mathematik but also specifically articulated an internationalist view
(albeit with nationalistic overtones) of the mathematical endeavor. As the editors
put it in their ‘address to the reader’ in the journal’s first number, their aim was

5. Crelle’s Journal fiir die reine und angewandte Mathematik and the Mathematische Annalen have already
been mentioned. In France, among others, were Liouville’s Journal de mathématiques pures et appliquées
(begun in 1836) and later the Bulletin de la Société mathématique de France (started in 1873), while Italy sup-
ported the publication of, for example, the Annali di matematica pura ed applicata (first published in 1858),
and mathematicians in Moscow launched Matematicheskii Sbornik in 1866.
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to ‘communicate a general idea of all that is passing in mathematical circles, both
at home and abroad, that can be of interest to Mathematicians as such’ (Parshall
2007, 139; my emphasis). To that end, they actively fostered contributions from
other countries, and especially from France, thanks both to the presence of
Charles Hermite on the editorial board and to the ongoing efforts particularly of
Sylvester (Despeaux 2002, 243-271).° In this way, they brought some of the latest
foreign mathematical research directly to their fellow countrymen in an effort to
keep them abreast of what was being done abroad. It was not, however, just a mat-
ter of keeping current; it also involved becoming actively competitive on what
was recognized as an increasingly international mathematical stage. The editors
held ‘that it would be little creditable to English Mathematicians that they should
stand aloof from the general movement, or else remain indebted to the courtesy
of the editors of foreign Journals, for the means of taking part in a rapid circula-
tion and interchange of ideas by which the present era is characterised’ (Parshall
2007, 139; my emphasis). No longer would the British Isles be mathematically
insular.” It was a national participant in what was increasingly viewed as a trans-
European, if not yet fully international, mathematical endeavor.®

Transnational and international impulses in the closing decades
of the nineteenth century

Mathematics, as the views expressed by Sylvester and his editorial team illus-
trate, came to be seen during the last half of the nineteenth century as a body of
knowledge that develops effectively through the communication of ideas across
national political borders. Sometimes that communication produces—as in the
case of Liouville and various of his contributions to, for example, mechanics,
potential theory, and differential geometry—new results inspired by and built
on the work of mathematicians in other countries (Liitzen 2002, 95-100). Or it
serves, as in the case of Cesare Arzela during the 1886-7 academic year, to pro-
vide a rich literature—the works of Eugen Netto, Peter Lejeune Dirichlet, Joseph
Serret, Camille Jordan—from which to craft the first course of lectures on Galois
theory ever to be given in Italy (Martini 1999). As these examples illustrate, trans-
national communication could lead to an internationally shared set of research

6. Other ‘national’ journals also accepted and encouraged contributions from abroad in an effort at inter-
national communication, for example, Liouville’s Journal (Liitzen 2002, 91-93).

7. Although some Russian mathematicians like Pafnuti Chebyshev traveled to western Europe to make
scientific contacts, and some mathematicians like ] ] Sylvester journeyed to Russia, the Russian mathematical
community experienced first a kind of linguistic isolation and then also a political isolation relative to the rest
of Europe in the nineteenth and well into the twentieth century. This did not, however, prevent the formation
there of strong mathematical traditions in number theory at St Petersburg University and in function theory
at Moscow University.

8. On the development of mathematical Europe, see Goldstein et al. (1996).
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goals. Communication could, however, be complicated by the growing spirit of
active competition not only between individual, emerging national communities
but also between individuals within those nations to establish their reputations.
A striking example of this phenomenon was the development in the British Isles
and in Germany of two distinct approaches to, and languages for, the theory of
invariants.

Although examples of what would come to be known as invariants may
be found, like the germs of so much other modern mathematics, in Gauss’s
Disquisitiones arithmetice of 1801, invariant theory developed in a largely alge-
braic context in the British Isles and in a primarily number-theoretic and geomet-
ric context in Germany beginning in the 1840s and continuing strongly through
the 1880s (Parshall 1989). In both settings, the basic question was the same: given
a homogeneous polynomial in # (although in practice usually just two or three)
variables with real coefficients, find all expressions in the coefficients (invariants)
or in the coefficients and the variables (covariants) that remain unchanged under
the action of a linear transformation.

As the simplest example, and this example appeared in the Disquisitiones, con-
sider Q = ax® + 2bxy + cy? and a nonsingular linear transformation of the vari-
ables x and y which takes x to mx + ny and y to m’x + n’y, for m, n, m’, and n’real
numbers and for mn’ - m'n # 0. Applying this transformation to Q gives Ax* +
2Bxy + Cy’, where A, B, and C are obviously expressions in a, b, ¢, m, n, m’,and n’.
It is easy to see that the following equation holds: B> - AC = (mn’ - m'n)* (b? - ac),
that is, the expression b* - ac in the coefficients of Q, the discriminant, remains
invariant up to a power of the determinant of the linear transformation.

Developing a theory of how to find all such expressions occupied Arthur
Cayley, J J Sylvester, George Salmon, and others in the British Isles as well as
Otto Hesse, Siegfried Aronhold, Alfred Clebsch, Paul Gordan, and others in
Germany. The British employed very concrete calculational techniques to seek
explicit Cartesian expressions of the invariants, as in the form b* — ac above; the
Germans developed a more abstract notation and approach, although they, too,
aimed at finding complete systems of covariants for homogeneous polynomials
of successive degrees. Each group also worked largely in isolation from the other,
with the British publishing primarily in their own journals and the Germans in
theirs, until 1868 when Gordan proved the finite basis theorem—namely, for any
homogeneous form in two variables, a finite (minimum generating) set of cov-
ariants generates them all—and explicitly called attention to a major flaw in the
British invariant-theoretic superstructure. The British, and especially Sylvester,
then went to work to correct the error and to vindicate their techniques. Nothing
less than national mathematical pride was at stake, yet neither side could really
understand the work of the other. They had literally been speaking different math-
ematical languages that had been created in their respective national contexts, yet
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their confrontation over the finite basis theorem also evidenced the increasingly
transnational—if perhaps not yet fully international—nature of mathematics by
the last quarter of the nineteenth century (Parshall 1989).

Coincidentally, but symptomatic of the kind of situation that had presented
itself in invariant theory, a new type of mathematical publication, the review-
ing journal, was launched in Germany in 1868 expressly ‘to provide for those,
who are not in a position to follow independently every new publication in the
extensive field of mathematics’, to give them moreover ‘a means to gain at least
a general overview of the development of the science’, and ‘to ease the efforts
of the scholar in his search for established knowledge’’ The Jahrbuch iiber die
Fortschritte der Mathematik represented a collaborative effort among math-
ematicians to survey the international mathematical landscape and to report,
in German, on the research findings of mathematicians throughout Europe
and eventually in the United States and elsewhere. By the end of the century,
the Jahrbuch had been joined by two additional reviewing journals—the French
Bulletin des sciences mathématiques et astronomiques (begun in 1895) and the
Dutch Revue semestrielle des publications mathématiques (started in 1897)—in
the ongoing quest effectively to disseminate mathematical results transnationally
(Siegmund-Schultze 1993, 14-20).1°

These reviewing efforts, moreover, were supplemented by great synthetic
undertakings like the Enzyclopddie der mathematishen Wissenschaften, begun in
1894 under the direction of Felix Klein, and the French translation and update,
the Encyclopédie des sciences mathématiques, started in 1904 with Jules Molk as
editor. Both of these works aimed, in some sense, to go beyond the reviewing
journals by surveying contemporary mathematics and indicating promising lines
for future research. In so doing, they had the potential to create shared research
agendas across national boundaries."

Transnational impulses also manifested themselves at this time in the form
of new, expressly international research journals, although these ventures also
had nationalistic or regionalistic overtones. As one case in point, the Norwegian
mathematician Sophus Lie encouraged his Swedish friend and fellow mathe-
matician Gosta Mittag-Leffler to found a new journal, Acta mathematica (first

9. For the quote, see the ‘Vorrede’ of the Jahrbuch as translated in Despeaux (2002, 297-298).

10. In the twentieth century, the Zentralblatt fiir Mathematik und ihre Grenzgebiete (begun in 1931 by the
German publishing house of Julius Springer) and the Mathematical Reviews (started in 1940 by the American
Mathematical Society) represented two rival, national, international reviewing journals. The Mathematical
Reviews was founded largely in response to the dismissal of the Italian Jewish mathematician, Tullio Levi-
Civita, as editor of the Zentralblatt and to the Zentralblatt’s National Socialist policy of debarring Jewish
mathematicians from reviewing the work of German mathematicians (Siegmund-Schultze 2002, 340-341).
As the case of these two journals makes clear, even the ostensibly international—or at least transnational —
reviewing journal was not immune to broader geopolitical currents.

11. Translations were yet another manifestation of efforts at transnational communication. On, for
example, a sustained nineteenth-century French translation effort, see Grattan-Guinness (2002, 39-44).
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published in 1882), that was to be international in outlook while highlighting
the best of Scandinavian mathematical research (Barrow-Green 2002, 140-148).
Similarly, the Italian mathematician Giovan Battista Guccia was instrumental
not only in founding the Circolo Matematico di Palermo in 1884, a society that
despite its local name soon became Italy’s de facto national mathematical organ-
ization, but also the Circolo’s Rendiconti (first published in 1887). By the out-
break of World War I, both the Circolo and its Rendiconti had succeeded in the
agenda Guccia had explicitly articulated, namely, ‘to internationalize, to diffuse,
and to expand mathematical production of the whole world, making full use of
the progress made by modern civilization in international relations’ (Brigaglia
2002, 187-188).

The International Congresses of Mathematicians and the
impact of World War I

Guccia’s efforts in Italy, especially in the 1890s and up to the outbreak of World
War I, reflected a widely spreading sense among mathematicians that the time
was ripe for fostering greater international contact and cooperation. The German
mathematician Georg Cantor was one of the first actively to advocate the idea of
mounting an actual international congress of mathematicians. Frustrated by the
hostile reception that his work on transfinite set theory had received within the
hierarchical and paternalistic German university system, Cantor sought as early
as 1890 to create a venue for the presentation of new mathematical ideas that
would be free of internal mathematical politics and prejudices. In Cantor’s view,
an international arena would provide the openness and diversity of perspective
that he found so lacking in his parochial national context (Dauben 1979, 162-
165). By 1895, he had succeeded through what was effectively an international
letter-writing campaign in enlisting the support for his efforts of mathemati-
cians like Charles Hermite, Camille Jordan, Charles Laisant, Emile Lemoine, and
Henri Poincaré in France, Felix Klein and Walther von Dyck in Germany, and
Alexander Vassiliev in Russia, among others (Lehto 1998, 3).

After much discussion and negotiation, the first International Congress of
Mathematicians was held in 1897 in Ziirich, in politically neutral Switzerland.
In all just over two hundred mathematicians from sixteen countries—among
them, Austria-Hungary, Finland, France, Germany, Great Britain, Italy, Russia,
Switzerland, and the United States—took part in the congress. In addition to
hearing a full and rich program of mathematical lectures, the participants suc-
ceeded in formulating a set of objectives for future congresses. These events
would aim ‘to promote personal relations among mathematicians of different
countries’, to survey ‘the present state of the various parts of mathematics and its
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applications and to provide an occasion to treat questions of particular impor-
tance’, ‘to advise the organizers of future Congresses’, and ‘to deal with questions
related to bibliography, terminology, etc. requiring international cooperation’
(Lehto 1998, 7-11, quotes on 9-10). In light of the emphasis on treating ‘ques-
tions of particular importance’ and on issues like terminology that might require
‘international cooperation’, those present at the Ziirich ICM clearly foresaw a
mathematical world in which researchers, regardless of their nationalities, com-
municated in ever more common mathematical terms in their pursuit of answers
to questions commonly viewed as ‘important’. At the second ICM, held in Paris
in 1900, David Hilbert did much to shape this new, international, mathematical
world order.

In the address he gave on ‘Mathematical problems’, Hilbert famously charted
the courses of anumber of mathematical fields by isolating in them what he viewed
as key unsolved problems. As he explained in his introductory remarks, he aimed
‘tentatively as it were, to mention particular definite problems, drawn from the
various branches of mathematics, from the discussion of which an advancement
of science may be expected’ (Hilbert 1900, 7). Among these, the first six problems
highlighted what became, owing in no small part both to Hilbert’s Paris lecture
and to the publication in 1899 of his Grundlagen der Geometrie, an emphasis in
twentieth-century mathematics on an axiomatic, foundational, and ultimately
structural approach (Mehrtens 1990, 108-165; Corry 1996, 137-183). In some
sense, this not only provided a vernacular in which mathematicians, regardless
of their nationality, could communicate, but also delineated specific structures—
groups, rings, fields, algebras, topological spaces, vector spaces, probability
spaces, Hilbert spaces, and so on—for further mathematical development.

The import of Hilbert’s address at the Paris ICM was sensed immediately. In
addition to its publication in French translation in the Congress proceedings,
the address was published in German in the Nachrichten von der koniglichen
Gesellschaft der Wissenschaften zu Géttingen and in the Archiv der Mathematik
und Physik as well as in English translation in the Bulletin of the American
Mathematical Society. German, French, and English speakers could all partici-
pate in the agenda that Hilbert had laid out."

The next three ICMs took place in Heidelberg, Rome, and Cambridge, at four-
year intervals from 1904 to 1912. The number of attendees steadily increased as
did non-European participation. At the Cambridge ICM, in particular, of the five
hundred and seventy-four participants, eighty-two were non-European with two
from Africa, six from Asia, sixty-seven from North America, and seven from
South America (Lehto 1998, 14). It was decided on that occasion that, following

12. To date, at least sixteen of Hilbert’s twenty-three problems can be considered to have been solved in
whole or in part by mathematicians from the Baltic States, France, Germany, Japan, the former Soviet Union,
and the United States (Yandell 2002).
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Mittag-Leffler’s invitation, the next congress would be held in Stockholm in
1916. Those plans, however, were scuttled owing to the outbreak of World War I
in 1914.

The politics of internationalization in the West during
the interwar period

At the war’s close in 1918, Mittag-Leffler immediately renewed the invitation
to Stockholm; he sensed an urgency to resume the ICMs and to get mathemat-
ics back on its international track. The new political realities that prevailed in
postwar Europe worked counter to his efforts, however. The French, and espe-
cially the noted complex analyst and algebraic geometer Emile Picard, actively
opposed any relations with the former Central Powers. Picard’s answer to the
question ‘veut-on, oui ou non, reprendre des relations personnelles avec nos enne-
mis?, ‘do we want, yes or no, to resume personal relations with our enemies?’
was a resounding ‘no’ (Lehto 1998, 16). While some in the British mathematical
community agreed, others like G H Hardy strongly supported the resumption of
normal scientific relations. Hardy, a well known pacifist, had done his best even
during the war to maintain working relations with his mathematical colleagues
despite the political agendas of nations. In 1915, for example, the book General
theory of Dirichlet series that he co-authored with the Hungarian Marcel Riesz
appeared as volume twenty-six in the series of Cambridge Mathematical Tracts
and bore the avowal ‘auctores hostes idemque amici’, ‘the authors, enemies, and all
the same friends’ (Segal 2002, 363).

As these differing opinions make clear, there was little agreement in the imme-
diate aftermath of the war on how best—or even whether—to proceed with the
international initiatives that had begun with such promise some two decades
earlier. Still, two initiatives did go forward: plans for an ICM to be held not in
Stockholm but in Strasbourg in 1920 and plans for an International Mathematical
Union (IMU) to be founded officially at the Strasbourg ICM and to oversee, among
other things, the planning of future ICMs. Both of these efforts—international
only in name in 1920—were fraught with political difficulties from the start.

First, the former Central Powers were barred from attending the Strasbourg
ICM and were ineligible both for membership in the IMU and for participation
in future ICMs. In the view of the majority, the Central Powers had ‘broken the
ordinances of civilization, disregarding all conventions and unbridling the worst
passions that the ferocity of war engenders’; in order for them to be readmitted
into the international confraternity of mathematicians, moreover, they ‘would
have to renounce the political methods that had led to the atrocities that had
shocked the civilized world’ (Lehto 1998, 18). As a result, Germany, in particular,
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the mathematical trendsetter since the mid-nineteenth century, would not be
able to participate.

Second, the selection of Strasbourg as the locale for the ICM had blatantly
political overtones, given that Alsace-Lorraine in general and Strasbourg in par-
ticular had been returned to French control as a result of the Germans’ defeat
in the war. As Mittag-Lefller bitterly put it, ‘ce congreés est une affaire frangaise
qui ne peut nullement annuler le congrés international a Stockholm’, ‘this con-
gress is a French affair which can in no way annul the international congress in
Stockholm’ that he had originally proposed (Lehto 1998, 24).

When mathematicians finally convened in Strasbourg in September 1920,
it was indeed, as Mittag-Leffler had predicted, ‘a French affair’. The unwaver-
ingly anti-German Picard was elected one of the first Honorary Presidents of
the Executive Committee of the IMU as well as the President of the Strasbourg
ICM, and he took the occasion of his opening ICM address publicly to uphold the
decision to debar mathematicians from the former Central Powers. In his words,
‘pardonner a certains crimes, cest s’en faire le complice’, ‘to pardon certain crimes
is to become an accomplice in them’ (Lehto 1998, 29).

These overtly political sentiments clouded not only the Strasbourg ICM but
also efforts to mount the next ICM scheduled for 1924. Mathematicians from
the United States and British Isles had begun to push for an end to the exclusion-
ary rules imposed by the IMU, and only efforts by the Canadian mathematician
John C Fields to host the 1924 ICM in Toronto ultimately rescued it from com-
plete political entanglement. In some sense, matters were no better in 1928 when
the Congress met in Bologna. While some in the IMU continued to insist on
exclusion, Salvatore Pincherle (IMU President from 1924 to 1928 and President
of the 1928 Congress) and his Italian co-organizers, implemented an open door
policy at the Bologna ICM. Although some German mathematicians like Ludwig
Bieberbach vociferously opposed German participation on political grounds,
David Hilbert rallied his countrymen, who ultimately formed the largest non-
Italian national contingent at the ICM (Lehto 1998, 33-46).

This ongoing politicization soon took its toll. By the time the next ICM con-
cluded in Ziirich in 1932, the IMU had essentially ceased to exist. The prevailing
sentiment among the almost seven hundred mathematicians in attendance in
Ziirich was that the unabashedly political agenda of the IMU had been detrimen-
tal to the international health of the community, and that national politics should
thenceforth remain separate from mathematics.

One corrective that followed was the establishment in 1932 of the Fields Medal,
the equivalent in mathematics to the Nobel Prize, to be awarded on the occasion
of the ICMs to acknowledge outstanding achievements made by mathematicians
regardless of nationality. The first of these were given at the Oslo Congress in 1936
to the Finnish mathematician Lars Ahlfors for his work on the theory of Riemann
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surfaces and to the American Jesse Douglas for his solution of Plateau’s problem
on minimal surfaces (Monastyrsky 1997, 11). Another corrective that had, in
fact, already been at work during the troubled postwar years of the ICMs was
the Rockefeller Foundation and its International Education Board (IEB), which
expressly sought to encourage international scientific and mathematical develop-
ment in the interwar period. The Foundation, through the IEB, had, for example,
funded the building of both the new Mathematics Institute in Géttingen and the
Institut Henri Poincaré in Paris in the late 1920s for the international encourage-
ment and exchange of mathematical research. Unfortunately, the activities of the
Gottingen Institute were curtailed from 1933 with the rise of National Socialism
in Germany and the subsequent ousting of Jews, not least the Institute’s director
Richard Courant (see Siegmund-Schulze, Chapter 9.4 in this volume); a little later
the Institut Henri Poincaré was fundamentally affected by the outbreak of World
War II (Siegmund-Schultze 2001).

Internationalization: West and East

The confused political situation in the interwar period in the West did not prevent
international mathematical relations more globally, and especially between West
and East.”” Prior to the nineteenth century, Japan and China were largely closed
to Western scientific influences, the most notable exception being the introduc-
tion of some Western science by Jesuit missionaries in China in the seventeenth
century (Jami, Chapter 1.3 in this volume). Following the Meiji Restoration in
1868, however, Japan looked increasingly to the West for educational, scientific,
and cultural models that would help them to compete more effectively in the
modern world. The same became true of China after its defeat in the first and
second Opium Wars (1839-42 and 1856-60) and in the first Sino-Japanese War
in 1895.

In the case of Japan, Westernization was officially mandated, and it was swift.
Although the infiltration of Western science—notably mathematics and aspects
of naval and military science—had begun after Japan opened some of its ports to

13. The interwar period also witnessed international mathematical relations between the northern
and southern hemispheres. In particular, soon after he took office in 1933, US President Franklin Delano
Roosevelt announced what came to be known as the ‘Good Neighbor Policy’ between the United States and
the countries of Central and South America. In the sciences and mathematics, this translated into support
from private foundations like the Rockefeller Foundation and the John Simon Guggenheim Foundation
for intellectual exchanges beginning in the 1930s, carrying on through the war and afterward. In 1942, for
example, Harvard mathematician George David Birkhoff went on a mathematical ‘good neighbor’ lecture
tour of Latin America (Ortiz 2003) to be followed in 1943 by his former student and then Harvard colleague
Marshall Stone (Parshall 2007). These trips resulted in North American study tours for a number of tal-
ented Latin American students and in the establishment of ties between mathematical communities in the
Americas.
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