THE
PHILOSOPHICAL
PROGRAMMER

REFLECTIONS ON THE
MOTH IN THE MACHINE

DANIEL KOHANSKI

e

Contents

Title Page
Copyright Notice

—pigraphs
Dedicati

Preface

PART I: A PHILOSOPHICAL INTRODUCTION
— 1. Beyond the Cuckoo Clock

2. 1s There an Aesthetic of Programming?
3. The Ethical Quotient

PART Il: THE STRUCTURE OF THE COMPUTER

4. Types of Computers
5. The Parts of a Computer

6. The Construction of Memory
7. “On a Clear Disk You Can Seek Forever”
8. A Brief Interruption
9. Operating Systems

PART lll: FUNDAMENTAL TOOLS OF PROGRAMMING

10. The Language of the Machine
11. Forms of Data Definition
12. Classes and Types of Statements

13. The Functional Program
14. A Short Commentary
15. Algorithms and Objects

PARTIV: THEPROGRAMMER’S TRADE

16. The Moth in the Machine
17. The Real World Out There

18.Fhe Limitations of Design
19. Programming as Abstraction and Reflection

Appendix: Number Representations
Acknowledgments
Glossary
Selected Bibliography
About the Author
Copyright

Insofar as the laws of mathematics refer to reality, they are
not certain. And insofar as they are certain, they do not refer

to reality.
Albert Einstein

In the design of programming languages one can let oneself
be guided primarily by considering “what the machine can
do.” Considering, however, that the programming language is
the bridge between the user and the machine—that it can, in
fact, be regarded as his tool—it seems just as important to
take into consideration “what Man can think.”

Edsger W. Dijkstra

For Jean
And for Pat, who should have lived to see this.

Preface

In less than three generations, the computer has gone from
being a scientific curiosity and military secret to becoming
the defining technology of the age. In the last fifteen years
alone, its status has changed from the prized possession of
a university or corporation to that of a common household
appliance—and one that is sometimes replaced every year
or two as new developments make the current one
obsolete. In the last five years, books have flooded the
marketplace describing Iin detaill what some computer
product does, or how to write programs in some particular
language on some specific machine. Yet there has been
very little discussion about what programming /s and about
the meaning of programs for our lives.

This book tries to look at that question, and to look at it
from a philosophical perspective. The starting point for any
philosophical inquiry, particularly in the modern age, is from
the stand-point of humanity: What is the impact of
programming on the human beings who write programs,
who use programs, and who in some way are affected by
what programmers do? Another approach is to look for
common structures In our activities; applied to
programming, such an inquiry examines what a program is
and how it is put together, and what principles of
construction we can discover through this examination.

To do this, | have looked at programming and

computers not only as they are now but as they used to be.
We build upon the past, and the computer’'s past—short as
It iIs—explains much about the way we have come to work
with it today. The conventions of programming are by no
means intuitive, and they are as much the result of
accidents of history as they are the product of deliberate
design. Understanding how the conventions developed will
help us to remember them when intuition fails.

So, although this is not a "how-to” book and will not
teach anyone how to write a program, it will look into what
the writing of programs is all about. As such, | hope it will
be useful to beginning programmers who need a solid
foundation on which to start construction, as well as to my
more experienced colleagues in the field, who will benefit
from a review of skills that can sometimes become too
much a matter of rote.

Most of this book is also for the general reader,
someone who wants an idea of what computers are and
what programmers do, and why we do it this way. Some
chapters are necessarily more technical than others, and |
have tried to organize them so that the beginning parts of
each will give a general idea of what is going on. A
nontechnical reader can skim through the rest of the
chapter with no real loss of the sense of the whole.

The first part of the book, then, is a philosophical
Introduction to computers and programming; that is, it
explores what a computer is and what its impact is, and
discusses some of the problems that it poses for those who
must master its intricacies. The second part describes how
the computer is seen by the programmer, while the third
goes into some detail about the tools that programmers
use. The final part, again a philosophical inquiry, looks at
the problems and opportunities the computer offers to

humanity as a whole.

Part |

A PHILOSOPHICAL INTRODUCTION

BEYOND THE CUCKOO CLOCK

The degree to which we make and use tools is one of the
qualities that distinguishes us from the rest of the animal
kingdom. Even so simple a thing as a pointed rock gave our
hominid ancestors new powers: They could use it to cut up
meat, and could even kill game that had previously been
too strong, too fast, or simply too big for their unaided
bodies to handle. A dead Iimb might become a lever to pry
up a boulder that their muscles by themselves could never
budge. The essence of a tool Is that it extends our reach,
multiplies the power of our limbs, improves our eyesight,
and In countless other ways increases our ability to
manipulate and control the world around us. The
development of new tools is one of the ways in which we
measure the progress of our species from hominid to
human.

Until recently (that is, recently even by historica
standards), tools were used primarily to extend the physica
powers of our bodies. We use the hammer to increase the
power of our fist; we use the plow to help break up soil too
hard for our fingers; we use sacks to carry more seed than
our hands can hold. All of these require our physical
presence and our physical involvement, and for all of them,
no matter how much they magnify the power of our
muscles, they are limited to providing an incremental
Increase of the enabling muscle power.

Now consider an example of a different kind of tool: the
medieval clock. It was driven not by the constant action of
our muscles but by the movement of weights and
counterweights; once set in motion, it could function for
hours or days with no further human intervention. Whereas
other tools altered our environment, the clock altered our
perception of the environment instead. Much of this was
done deliberately; monks in their medieval monasteries had
committed themselves to saying their prayers at precisely
defined times of the day, and to miss even once was to put
their immortal souls in peril. Rather than guess at the hour
of Prime (6 AM.), they developed ever more sophisticated

Instruments to announce the time for them. Thus they left
the natural time of circadian rhythm and daily course of the
sun, choosing instead to be guided by instruments which
they had devised but over which they had somewhat less
than complete control—for of course they could not
arbitrarily change the time once it had been established. In
a small way, this tool exerted control over the toolmaker.

Because tools such as the clock expand the power of
our minds rather than our muscles, it becomes part of their
function to give us guidance and even control. The human
mind cannot measure time with the accuracy of even a
cuckoo clock, so we have learned to rely on timepieces to
determine the proper time and will even cite them as
authority for our actions. When the cuckoo comes out to
sound the hour, we assume that it is correct. That is to say,
we depend on the clockmaker’s skill to provide us with an
accurate device. And as with other tools of this sort, as their
complexity increases it becomes harder and harder for the
ordinary, unskilled user to fix them when they go wrong, or
sometimes even to be aware that they have gone wrong at
all.

The modern computer is even more a tool of the mind
than is the cuckoo clock. Although its appendages can
manipulate physical objects with great precision and
dexterity, the computer itself is essentially a tool that
extends the power of our thoughts. But it goes far beyond
the cuckoo clock and any other mind tool we have invented
thus far because, unlike any of them, it is a general-
purpose tool that can be transformed almost at whim into
nearly anything that our minds can conceive.

Yet there are still some ways in which the cuckoo clock
resembles the computer. It processes raw data—the
movement of weights or a spring or a pendulum—into
useful information: the time. Once started and set, it
operates for the most part without human intervention. It
makes decisions, such as when to send the cuckoo out to
sound the hour, on its own, again without human
Intervention once the clockmaker has designed and built its
gears. The cuckoo clock and its contemporaries are in fact
early examples of what today would be called an analog
computer.

Analogs are representations of objects in the world. An
analog computer processes these representations as
continuous streams of information—a flow rather than a set
of discrete intervals. It is the difference between a sweep
second hand and one that jumps from second to second;
the sweep movement is an exact analog of all the infinite
iInstants of time. What makes the cuckoo clock a kind of
analog computer is its processing of the continuous swings
of its pendulum or the smooth rise and fall of its weight and
counterweight.

Analog computers are not widely used these days.
While they can handle infinitely varied input, they are
limited in their ability to preserve and manipulate this data.

A telephone circuit can carry the nuances and tones of a
human voice In all its infinite varieties, but as the voice
travels from switch to switch on its way to its destination, it
loses more and more of its quality until, sent far enough, it
can become unrecognizable gibberish. The power of the
modern computer comes in large part from its processing of
data as a set of discrete units—as digital information.
Digital technology analyzes the continuous voice curve and
assigns a number to various points on the curve. These
numbers are then transmitted to the receiving end, which
reconverts them into sounds that, while not a perfect match
for the original, provide a close approximation. Digital
technology trades perfect representation of the original data
for a perfect preservation of the representation. To return to
our clock example, an analog clock may use a sweep
second hand which might be exactly accurate, but which
cannot be exactly described. On the other hand, one can
look at the face of a modern digital timepiece and describe
exactly what time it reads, though such a clock is accurate,
at best, only to the nearest second.

Digital technology provides far more flexibility in
toolmaking than the analog world can. The cuckoo clock
can decide when to send out the cuckoo, but that is about
it. The microcomputer in a modern answering machine,
however, can tell us what time a call came in, how long the
message ran, and perhaps even where it came from. In
theory, we could build an analog device to do these things
as well. But it would not be able to do anything else unless
we disassembled it and rebuilt it for its new task. The digital
computer, however, uses for its instructions a set of
discrete numbers rather than a series of gears or other
analog devices. Thus the advantage of the digital computer
Is that to change what it does, we need only change these

iInstruction numbers—its programming—and start it up
again. If we want to add new features to the answering
machine, In many cases we can do so simply by
reprogramming it.

It iIs this idea of programming that gives the modern
computer its power. Merely by changing a set of written
iInstructions we create new tools out of the same physical
device: we can turn the computer into a clock, an adding
machine, a typewriter, or even a chess or Scrabble player.
For the first time, words themselves have become tools
which in and of themselves cause things to happen. Manua
dexterity need no longer be a requirement for a physica
creation; instead, it is the ingenuity of the programmer’s
thinking that is crucial to bringing an idea to fruition. In this
new era, the primary creative force is becoming less and
less the hand and more and more the word.

Words—instructions to a computer—have become tools
largely because of another major component of the modern
computer: its memory. Early computing devices were driven
by numbers punched as holes in cards or paper tape; even
today, a Jacquard loom will weave a cloth pattern as
directed by a punched card, and player pianos will play
music according to the notches on a drum. The Harvard
Mark |, which started operation in 1944, followed
Instructions punched on holes In paper tape to produce
gunnery tables for the U.S. Navy. All such devices,
however, had a common limitation: they could not change
the instructions or the data on their own. If any change was
needed—a new formula for a table, for example—the entire
tape had to be punched all over again.

By the time the Mark | was running, engineers had
already recognized this restriction and were working to
overcome it by developing methods of storing numbers in a

modifiable medium—that is, memory. Early forms of
memory included mercury delay lines, vacuum tubes, and
magnetic drums. The ENIAC, another prototype computer
built during World War Il, used 18,000 vacuum tubes—a
phenomenal number for the time. By 1954, core memories
—small doughnut-shaped magnets on a wire grid—were in
use in commercial computers, and the transistor was
replacing the vacuum tube. It was now possible to store
large groups of numbers that could be easily manipulated
at electronic speed.

The EDVAC project, successor to the ENIAC, inspired
another breakthrough, one that now defines the modern
computer: the idea of a program as data. The ENIAC was
programmed, as some of its predecessors had been, by
setting wire plugs in a board. This method not only made
reprogramming a time-consuming chore, but it also made
programs slow to execute. The mathematician John von
Neumann, assisting the ENIAC and EDVAC projects In
194445, documented a new approach that has since been
likened to the invention of the wheel: storing the instructions
in the computer's memory along with the data.’

Storing the program in memory meant that the new
computer could access each Instruction at the same
electronic speed with which it accessed the data. But it also
meant that the computer could treat instructions as though
they were themselves data—that is, numbers to be
manipulated. This ability is the basis of all modern
programming. A programmer writes a program—a set of
Instructions—using words that more or less resemble
English (or other natural language) and enters these words
Into the computer as data. A program called a compiler
then examines these words and converts them into numeric
Instructions, which the computer circuitry can execute. It

then puts these new numbers into memory, and the
computer executes them. A program can even alter its own
Instructions in response to changing circumstances, which
IS a basic prerequisite of artificial intelligence. Just as we
change and refine our actions as we learn more about our
environment, so the computer is capable of altering its
programming as it acquires more data.

Each instruction that the computer executes is stored In
a particular location In its memory, and the computer
normally proceeds from one instruction to the next.
However, there are some instructions which will alter the
flow of execution based on some condition—for instance, if
the value of a piece of data exceeds a defined threshold,
the computer will be directed to execute a different set of
Instructions than it would have otherwise. These types of
Instructions are called conditional branch instructions, and
they give the computer the ability to make decisions. In a
rocket guidance system, for example, the computer is
constantly receiving new data—the current position, speed,
and angle—and making decisions based on that data to
Increase or decrease the fuel flow to the various thrusters
that keep the rocket on target.

Although we often speak of the computer as making
decisions, In reality it is the programmer who decides, or
rather, it Is the programmer who determines the conditions
under which the computer will execute one or another set of
Instructions. The computer does nothing on its own, but
only what some programmer has told it to do. If the
programmer gives incorrect instructions, the computer will
blithely follow them. In this respect the computer is no more
than an infinitely more complex cuckoo clock, which is only
as accurate as the skill of the clockmaker. But where a
faulty cuckoo clock might result only in a missed

appointment, the consequences of a failure in a computer
program can be drastic indeed.

The cuckoo clock affected the lives of those who
depended on it although it provided only a single piece of
iInformation (the correct time), and even the earliest
computers quickly became indispensable for solving all
kinds of mathematical problems. But the ultimate difference
between the computer and the cuckoo clock lies In the
computer’s generalized ability to process almost any kind of
information, not just the value of a formula or the time of
day. Stock transactions and bank transfers can be instantly
ordered and credited. Telephones can be made to hold
calls, to transfer or reject calls, to remember who called
while the line was busy, all by prior instruction to a
computer. Photographs and movies can be enhanced,
colorized, and even completely altered through computer
graphics. Pacemakers can adjust a heart’s rhythm instantly
In response to the changing state of the heart muscles. Our
era has barely begun to explore the possibilities of the
computer, and yet it is already known as the Computer
Age.

But each new use of the computer’'s abilities means a
new demand on the programmer’s talents. The early days
of simple computation of a mathematical formula have long
since given way to complex manipulations of vast quantities
of data, with each innovation giving rise to demands for
more—and all of it is controlled by some programmer's
Instructions to a machine that is both blindingly fast and
witheringly intolerant of error. This almost inhuman
requirement for accuracy in computer programming has
both philosophical and practical ramifications. The next
chapters and Part |V explore some of these issues, while
Parts Il and Ill explain some of the means by which we

ease the burden of dealing with them.

2

IS THERE AN AESTHETIC OF
PROGRAMMING?

A program Is a set of detailed instructions given to a
computer to perform a specific task. The computer will take
no action without such instructions. In this respect, the
computer is no different from a shovel. Just as a shovel will
do nothing on its own, and performs its function only when
someone picks it up and shoves it into the dirt, so a
computer does nothing unless we give it orders. It matters
not whether the motivating force is muscle power or typed
commands; what is important is the motivation, which in all
cases comes from the human mind.

It is therefore appropriate to speak of computer
programming, as we speak of all other human activities, as
having an aesthetic aspect. While aesthetics might be
dismissed as merely expressing a concern for
appearances, its encouragement of elegance does have
practical advantages. Even so prosaic an activity as digging
a ditch I1s improved by attention to aesthetics; a ditch dug in
a straight line is both more appealing and more useful than
one that zigzags at random, although both will deliver the
water from one place to the other. Getting a computer
program to deliver its intended result is a far more complex
task than digging a ditch from a well, and attention to the
aesthetic aspects ought to be an essential part of the
process.

To begin with, there are aesthetic concerns inherent in
the design of a program. Every program is the expression
In computer language of a series of actions that the
computer needs to take in order to solve a problem. Each
such action or set of actions, when described in theoretical
terms, is called an algorithm. While there may be a
seemingly endless number of algorithms that can be used
to solve a problem, some are more efficient, more elegant
—more aesthetically correct—than others.

Consider, for example, the designing of a house. Did the
architect put the bathroom near the bedrooms, or at the
other end of the hall? And are there enough bathrooms for
the people who will be living there? |Is the kitchen near
enough to the bathrooms to use the same water supply, or
will extra money need to be spent to lay more pipes? Are
there useless corners and dead ends? How much sunlight
will each room have? There is not necessarily one right
answer to any of these questions—it may be that putting
the bathroom near the bedrooms justifies the cost of extra
pipe—but it is clear that there are better designs and there
are worse designs. The better designs are more
aesthetically pleasing because they are more efficient and
take more considerations into account.

The same is true with programming design. Although we
use algorithms instead of blueprints, the same types of
guestions need to be raised: Is this piece of the structure
necessary? Will it get in the way of other parts? Is it too far
from—or too close to—other steps in the process? How
much weight should be given to each part in order to
achieve an overall balance? Is there another, more efficient
way to reach the same solution? And, of course, what can
be done to ensure that this is a correct solution?

Suppose | want to look up a name in a telephone

directory. | could start at the beginning of the book, and
examine every name to see if it matches the one | am
looking for. If | find it, then | can stop; otherwise | get to the
end of the book and know that the name is not in there.

While it will work, such an algorithm—such a means of
solving the problem—is hardly elegant or efficient. A much
better approach to finding the name is to open the book
near to where the first letter of the name is likely to be, then
to go backwards or forwards in the book according to
whether the name | want is before or after the name in the
book that | am pointing to right now. | repeat this process
until | either find the name, or else find two names next to
each other, such that the name that | want would have
been between them; in this case, the name is not in the
book. This method yields its result—found or not found—
much faster than the first one. It is much less taxing, and
there is an aesthetic appeal to it with which the brute force
method of the first technique cannot compete.

It is also readily understandable to a human being.
Aesthetics, let us admit, mean nothing to a computer. And
elegance in programming is by no means a guarantor of
efficiency. It must be constantly borne in mind, however,
that programs are not written solely to be understood by
computers, but by people as well. While the computer may
well be able to execute a poorly designed program and
produce the correct answer, it is often difficult to determine
from an examination of the program that it /s the correct
answer. Badly designed programs are notoriously error-
prone, are likely to be slower, and are often referred to by
derisive nicknames such as “spaghetti code™—for the logic
paths resemble nothing so much as a bowl of spaghetti and
are even harder to untangle. The very programmer who
wrote such a piece of code might find it hard to trace its

logic a week or a month later on. Moreover, even if the
program does the proper job today, tomorrow may bring a
new set of requirements. Programs constantly evolve, or to
be more precise, the uses of a program evolve, and it is the
programmer who performs the evolution. The requirements
of modern programming assignments are such that they
place an almost inhuman—and certainly inhumane—
burden of perfection on fallible human beings, who will find
an all-but-impossible job that much harder if the program’s
design Is not perceptible to them. Attention to aesthetics
Improves human perception.

Another area of programming where aesthetics is
Involved is Iin the structure of the data. Take the previous
example of the telephone book. The more efficient
algorithm only worked because the data was organized
alphabetically. A phone book in random order would indeed
require the first, brute force algorithm of examining every
entry, and a company that produced such a book would
probably not last long. Most computer data structures are
more complex than a phone book, and attention to the
aesthetic aspects of their design will result both in more
efficient processing of the data and faster understanding by
the human programmers who must work with them.

The requirement for elegance involves not just the
design of the algorithm and the internal data layout but the
design of the input and output as well. The organization of
iInformation being entered, and the way the answers appear
on the screen or the printed page, make a great deal of
difference in their ability to be understood by the human
beings who use them, although once again, it means
nothing to the computer. Lives have been lost because a
computer operator could not make sense of the data
displayed.]

This aspect of aesthetics often goes by the name
ergonomics. The science of ergonomics studies how
people relate to the machines they use and tries to make
such use more comfortable and more efficient. The design
of the office chair is one obvious application of ergonomics.
But it also applies to the computer programs that people
use. A program, as | shall discuss later in detail, generally
Interacts with human beings at various points, particularly in
accepting raw data as input and producing its results as
finished output.

At every airline ticket counter there is a computer
terminal. The airline agent, using a keyboard, fills in various
flelds on the screen—name of the passenger, destination,
checked luggage, number of screaming children, and so
on. The computer then checks its files to validate the
reservation, makes a seat assignment if one was not
already made, and prints out the boarding pass and
baggage stickers. In processing all this, the computer—that
IS to say, the computer program, which is ultimately to say
the computer programmer—must accept and display this
information in such a way that the ticket agent can easily
digest it and pass it on. Boarding passes, to take but one
small part of the example, have (or should have) the seat
number printed in large type in a blank area, which is easier
for the passenger to see.

In the early days of computing, aesthetics was a luxury
programmers felt they could ill afford. Space and time were
at a premium, computers were slow, and any trick that
programmers could play with the design, any extra space
they could squeeze out of the data, was a savings well
earned. While computer costs have dropped dramatically,
this short-cut mentality still endures. Moreover, computer
programmers are just as susceptible as everyone else to

falling to take the long view; all too often an algorithm, a
technique, or a data layout that was meant to be a
temporary quick-and-dirty fix becomes etched in stone—or
at least in silicon.

A dramatic example of this insufficient attention to
consequences is the potential for disaster presented by the
year 2000 problem. Early computers, and the punched
cards they used for input, were very short on space and
often used a two-digit field to represent the year. Everyone
understood that “50” meant “1950.” But no one stopped to
think that a computer program that interpreted “50” as
“1950” would also interpret “00” as “1900” instead of 2000
—or If some did think about it, they thought that a program
written in 1950 would be long gone by the turn of the
century.

Many of these early programs and the computers they
ran on are indeed relics of the past. But the algorithms and
the data layouts that were developed for them still haunt us
today; each succeeding incarnation of these programs was
written to carry on the program of before, and the habits of
an earlier generation propagated their way through new
generations of programmers. Now we are faced with a
horrendous effort to track down, upgrade, test, and install
every single program—and there are millions—that relies
on knowing what year it really is. The IRS, the Social
Security Administration, even so simple an object as an
elevator which is programmed to shut down if it has not had
maintenance In the past six months, all are vulnerable
because of our carelessness in restricting our
representation of a year to a single century.

A greater concern for the long-term consequences of
our casual programming decisions would have gone a long
way toward minimizing the problems the year 2000 is

causing us. While such a concern is not normally classified
as an aesthetic principle, one of the qualities of elegance is
its longevity—an acknowledgment that our constructions
may well live longer than we first thought and should
therefore be designed for the long term. There is also an
aesthetic factor in recognizing that one’s design may, even
must, evolve to meet unanticipated challenges. Growth—for
programs as well as for living things—can be orderly, well
designed, elegant—or it can be ungainly and grotesque, a
cancerous mass. The inexorability of time should have
taught us in no uncertain terms that such growth will occuir;
our only choice is whether to guide it or to be consumed by
It.

A working list of the aesthetic principles of programming
might read as follows:

1) The program has an elegant design. Each step in the
design follows logically from the previous one, and the flow
from step to step is in the same direction. Each step
performs one task.

2) The program evolves. A program that is written for one
purpose will often be used to handle related but different
situations, and the design must allow for expansion. The
program must be flexible enough to grow, and to grow
neatly.

3) The program will last longer than you think. It is often
tempting to write an ungainly, sloppy “quick fix” to solve an
urgent problem. But it often happens that the same program
will be needed for other similar problems, or it is discovered
that it can be used as the foundation for a larger program.
Once this occurs, changing the original design of the
program Is effectively impossible. Better to start off right in
the first place.?

4) The program has a limited life span. No matter how much
thought is given to design, expansion, and new

requirements, eventually a program will become so
ungainly and so overburdened with tasks that it becomes
error-prone and difficult to maintain. A programmer must be
prepared to recognize this when it occurs and to write a
new program rather than pile more complexities onto an old
one.

5) The data is well laid out. The data is organized so that it
can be quickly and accurately accessed for the purposes of
the program, and so that it is readily understood by anyone
who needs to write code to manipulate it. The data structure
also allows for expansion.

6) The program and data structures are explained. Each
algorithm, each step in the program, has comments and
other documentation that describe what it does in clear and
concise prose. Each part of the data layout includes a
description of what it is used for. Any shortcuts or other
tricks are thoroughly explained and well marked. This
should be the most obvious principle of all. All too often it is
not, and failure to observe it costs the industry untold hours
of lost productivity.

All of the ideas | have discussed here are well known to
many programmers; the current crop grew up with
structured programming, well-defined data layouts, and in
recent years have become familiar with object-oriented
principles. True, it is rare for us to call them by the term
“aesthetics.” Yet | group them together under this heading
because, as | said In the beginning, aesthetics is a
profoundly human concept that speaks to peculiarly human
needs. A programmer must always keep in mind that other
human beings will use this code, will have to maintain,
evolve, and ultimately replace this code, and will be
profoundly affected in all aspects of life by what this code
does or fails to do. Calling it aesthetics reminds us of the
human dimension.

Copyrighted material

3

THE ETHICAL QUOTIENT

Ethics may be understood to mean a set of philosophical
principles that govern our conduct, with the primary focus
being on human interaction. Any object constructed or used
by human beings in a way that affects other human beings
therefore carries with it elements of ethical concern. While
this applies to any of the tools we have created and used
over the vyears, there are characteristics unique to
computers and computer programming that present us with
ethical challenges unlike any we have ever faced before. In
brief, these include the qualities of magnification, precision,
alienation, believability, malleability of Information,
Impermeability, and autonomy of operation.

By magnification | mean the power of any tool to
magnify our personal abilities. But unlike earlier tools, or
even what we are accustomed these days to thinking of as
tools, the computer magnifies our thoughts more than our
muscles, and does so to a greater degree than any
previous tool ever could. Whereas a bookkeeper in a firm
keeps track of as many customer accounts as can be
humanly read and updated in a day, a programmer can
direct a computer to monitor thousands or millions of
accounts in that same period of time. A sailor might watch
two, three, or four planes on a radar screen in an effort to
determine If they are hostile or peaceful, a computer
processing that same data might be able to track dozens of

planes at once. The local cop on the beat may know the
faces and habits of a few dozen local criminals; the
computer back at the precinct house is collecting data
about thousands of them all over the city. Government
clerks plod slowly and sometimes Iinaccurately through
Income tax returns, while a computer can check a hundred
taxpayers’ calculations in a fraction of a second.

But magnification of thought in this way means that
mistaken and malicious thoughts are also magnified. The
computer possesses no moral compass, no more than any
other tool; it cannot distinguish good from evil or truth from
error unless we carefully instruct it to do so. An
unscrupulous programmer could write a bookkeeping or
banking program to transfer money from unsuspecting
customers into a private account. Or an outside thief might
discover an unanticipated contingency in the programming
and use it as a license to steal. A program to help decide
whether an approaching aircraft is hostile might have
iInadvertently left out a display of altitude changes—a
crucial element in determining a plane’s intentions. A
database on criminals might not allow an operator to delete
entries where the accused was found innocent, or might
confuse two people who have similar names, or might not
bother to distinguish between an arrest warrant for murder
and a twenty-year-old parking violation. Outdated IRS
computers, while still faster than a human clerk, are not fast
enough to keep up with the flood of tax returns, nor are they
always updated accurately to include changes in the tax
code. The computer magnifies all our thoughts uncritically,
both for good and for ill. It is we human beings who must
choose which thoughts the computer follows and how it
follows them.

The difficulty we face in doing so is partly explained by

the next ethical conundrum the computer poses: the need
for precision. Instructions to a computer must be precise In
every detail, with no ambiguity, or the program will go off in
some unintended direction or even fail completely just when
It is needed most. Every contingency must be planned for in
advance; the computer has no ability to make new
decisions on its own, but can decide only in accordance
with instructions we have already given it. There have been
considerable advances In programming techniques
designed to provide just this sort of precision and to make
allowances for each possible situation. Yet completeness
remains an unreachable goal as the increasingly complex
demands we make on computers and their programs
generate an exponential increase Iin the details associated
with them. Any program of any size and consequence
requires constant monitoring and maintenance.

In addition, the tendency of the computer to isolate
programmers and operators from the people impacted by
their actions fosters a new degree of alienation, which
iIncreases the problems created by its magnification of our
imprecise thoughts. We are accustomed to making ethical
decisions about how we use our tools according to the
iImmediate and visible consequences of those decisions.
But when we are separated from the people affected by our
actions, this distance—this alienation—often provides us
with an excuse to overlook the connection. This temptation
long predates the computer, of course. A building
contractor using inferior materials in the expectation of
being long gone from the scene when the walls collapse is
but one infamous example. The facility with which the
computer alienates perpetrator from victim, however, adds
a new dimension to an ancient concern. We no longer see
a real person, only numbers and names on a computer

screen. People who would never have the temerity to rob
passers-by on the street have no compunctions about using
a computer to steal their credit reputations instead—and do
far more damage Iin the process. Negligence in keeping a
database up-to-date or carelessness in data entry can have
disastrous consequences for the person whose record has
been mishandled. It has happened that a person is arrested
again and again on the basis of the same mistaken
information because the original error in the database was
never corrected or the dismissal of the case was never
entered. Such a cavalier attitude is credible because the
database operator never deals with anything but streams of
data that all seem the same, so the operator does not
connect them with the real people they represented.

The phenomenon of alienation works on the
programmer even more than on operators or users. Instead
of seeing the program as a real instrument affecting the
lives of real people, programmers sometimes see it as a
game, a challenge to their ingenuity. The alienating quality
of the computer permits us to overlook the human
consequences of a programming decision or error. An
assignment to link scattered databases in different
computers, for example, becomes nothing more than a
problem to be solved; the programmer does not notice the
resulting diminution of privacy and the increased
opportunities for mischief that can result.

That we can allow ourselves to be so blind to the
consequences of the collection of personal information is a
result of how the computer approaches this data. To the
computer and its programs, data about a person is no
different from data about the physical world. Both are
quantities to be manipulated according to mathematical
formulas. The alienating quality of the computer is such that

it can reduce a living person to nothing more than numbers
In a machine.

Alienation in the form of mediation—which is to say, the
computer as mediator or intermediary—works on the user
as well. People who would be unfailingly polite to strangers
on the street do not hesitate to hurl insults at them on the
Internet. The computer separates people from the person at
the other end; they are not insulting a fellow human being,
only a message on the screen. Again, this Is a
phenomenon with ancient roots, but one that is magnified
by the ability of the computer to isolate us from those who
are affected by our actions. The anonymity that the
computer offers is not always as complete as it allows us to
pretend—the computer may well keep records of our
actions that we never know about until a much later
confrontation—but the semblance, at least, of anonymous
escape presents a great temptation for both deliberate and
careless harm. It is ironic that the same Internet that allows
us to interact with a wide variety of people that we might
never otherwise meet also allows (and in some sense even
encourages) behavior that alienates all who are not exactly
of like mind.

Alienation and its concomitant anonymity figure in yet
another aspect of the computer that raises ethical
concerns, and that is its believability. The development of
the computer and modern society have each been
encouraged by each other in a kind of symbiosis; each
growth spurt by one part stimulates a matching leap by the
other part. As a result, our society and its institutions have
become so large and so complex that without computers
they would instantly dissolve. Imagine for a moment trying
to run the Social Security system, or a modern bank, or
even a warehouse, without computers. But this same

dependence has resulted in a necessity to believe what the
computer tells us: whether the Social Security recipient is
alive or dead, or how much money iIs In a customer’s
account, or whether we have sufficient stock on hand to fill
an order. Because the computer has allowed us to collect
and maintain far more information than we could before, it
has also made us almost totally dependent on it to produce
valid information. The computer simply provides us with too
much information too fast for us to do anything more than
assume it Is correct.

This assumption of correctness has been further
strengthened by our acute awareness of the computer’s
arithmetic abilities. We can easily verify the results when a
computer calculates 2 plus 2. But when we ask it to multiply
9,785.63 by 10,348.27, we are not inclined to question it
when it reports the answer as 101,264,341.3601. We
expect the computer to compute, in the original meaning of
the word: to perform arithmetic calculations, and to do them
flawlessly.]

But now we have transferred this aura of infallibility from
calculation to information, although there is no guarantee of
its correctness beyond that of the skill of the operator who
entered the data and the programmer who wrote the
instructions to manipulate it. If the National Crime
Information Center computer reports an outstanding
warrant, the police are far more likely to believe it than the
protests of the hapless victim who claims they are arresting
an innocent man. Unexpunged parking violation tickets,
theft and assumption of another’'s identity, carelessness in
cleaning up case backlogs—all have resulted In citizens
who were going about their lawful business being detained
and forced to prove their innocence against the word of the
computer.? We have gone beyond dependence on the

