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Introduction

JAMES READ AND NICHOLAS J. TEH

Few articles can reasonably be described as epoch-making. Einstein’s ‘Zur Elektrodynamik
bewegter Korper’ (1905) is undoubtedly one such; Turing’s *On Computable Numbers, with
an Application to the Entscheidungs problem’ (1936) is undoubtedly another. But standing
equally tall among these ranks should surely be the article to which this volume — and so
much else besides — owes its existence: Emmy Noether’s ‘Invariante Variationsprobleme’
(1918). In that one article, Noether proved two theorems (and their converses), forging
links between symmetries and conserved quantities which were to go on — whether by her
intentions or not — to constitute the bedrock of modern theoretical physics.

But—perhaps surprisingly, perhaps not — the significance of an epoch-maker is not always
recognised in the moment. Whether this is so in the case of Einstein is debatable; it is cer-
tainly true for Turing — and arguably even more so for Noether. Strikingly, the significance of
what Noether proved in her 1918 article was not well appreciated until as late as the 1970s:
only at that point were all of the theorems of the 1918 piece widely understood; and only
at that point did they begin to be generalised and applied in substantially novel ways. Since
then, progress has not stopped, and this volume — born out of an international 2018 centenary
conference held at the London campus of the University of Notre Dame — represents the next
episode in the same continuation. Bringing together historians, physicists, mathematicians,
and philosophers, the volume constitutes the cutting edge of our understanding of (the
application of) Noether’s seminal work on variational problems, one hundred years on from
her original article.

Why do we add ‘the application of” in parentheses above? It is now well-known that
Noether remarked little on the physical applications of her mathematical results; see, for
example, the contributions of Kosmann-Schwarzbach and Rowe in this volume. In light of
this, one should distinguish the creativity of Noether’s methods — the creativity of her rech-
nique —from the creativity of their application — the creativity of the physical representations
effected on the basis of her methods. In the post-1970s literature, the former are at least
relatively well understood (albeit still not completely; see, for example, the contributions
of Baez and Olver to this volume, which continue to add to such understanding); not so for
the latter, in the case of which we are only beginning to explore a rich orchard of fruits.

The contributions to this volume pursue a number of distinct threads on both Noether’s
techniques and their applications to physics; these we will summarise here as succinctly as
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possible. We begin with Noether’s history: both regarding specifically her work on varia-
tional problems, and more generally. In Chapter |, Yvette Kosmann-Schwarzbach reviews
this historical context of ‘Invariante Variationsprobleme’, from its prehistory, to its dol-
drums in the mid-twentieth century, to (as alluded to above) its revival in the post-1970s
literature. Following on from this, in Chapter 2 David Rowe focuses on the interactions
between Noether and Felix Klein in the years surrounding the appearance of her ‘Invariante
Variationsprobleme’, and specifically on the role of differential invariants in Noether’s two
theorems. In Chapter 3, Tomoko Kitagawa focuses on another specific episode highlighted
by Kosmann-Schwarzbach: namely, Noether’s deliberations preceding her move to Bryn
Mawr College.

Having presented this updated Noether history, we turn to the mathematics of her theo-
rems, both generalisations and applications. In Chapter 4, John Baez illuminates the con-
tent of Noether’s (first) theorem in the Hamiltonian context by pursuing a (Jordan-Lie)
algebraic — rather than the traditional geometric — approach. In Chapter 5, Kasia Rejzner
continues this study of Noetherian themes from an algebraic point of view (this time via
homological algebras), by exploring the ‘BV formalism’ — an extension of the BRST pre-
scription, in which auxiliary fields enjoying rigid symmetries are introduced, and in which
the Noether charges associated with those symmetries are then quantised — from the point
of view of perturbative algebraic quantum field theory.

Next, we turn to more philosophical questions regarding the explanatory arrow running
from symmetries to conservation laws which is often (misleadingly, our authors would have
it!) taken to be an important moral drawn from Noether’s theorems. In Chapter 6, Peter
Olver considers the significance of the fact that one can define infinitely many inequiv-
alent Lagrangians invariant under a stipulated set of variational symmetries: should these
Lagrangians be understood as encoding ‘equivalent’ physics —and if so, why? In Chapter 7,
Harvey R. Brown questions the reasons for which, in light of the converse of Noether’s first
theorem, symmetries are often indeed considered to have this explanatory priority over con-
servation laws. In Chapter 8, Mark Baker, Niels Linnemann, and Chris Smeenk deploy
the under-appreciated work of Bessel-Hagen in order to demonstrate how the converse of
Noether’s first theorem can be used to resolve ambiguities over what should be regarded as
the ‘physical’ energy-momentum tensor in field theories.

The next three chapters address the significance of Noether’s theorems in the context in
which they were originally developed: the foundations of general relativity. In Chapter 9,
Sebastian de Haro provides both a crystal-clear survey of the role of Noether’s theorems
in considerations of gravitational energy in general relativity, as well as a substantial novel
contribution to recent philosophical discussions regarding the status of gravitational energy
in that theory, including quasi-local notions. In Chapter 10, James Read continues these
discussions, arguing that the pseudotensorial quantities obtained on application of Noether’s
theorems to general relativity are best interpreted physically from within the framework of
‘perspectival realism’. Finally, in Chapter 11, Laurent Freidel and Nicholas J. Teh apply
Noether’s theorems in order to shed new light on three infamously vexed notions in the
foundations of spacetime theories: (i) general covariance, (ii) the Principle of Relativity,
and (iii) the status of conserved charges (including, again, gravitational energy).
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For many years, there was practically no recognition of either of these theorems. Then
multiple references to ‘the Noether theorem’ or ‘Noether’s theorem’ — in the singular —
began to appear, referring either to her first theorem, in the publications of those mathemati-
cians and mathematical physicists who were writing on mechanics — who ignored her second
theorem —or to her second theorem by those writing on general relativity and, later, on gauge
theory. I shall outline the curious transmission of her results, the history of the mathematical
developments of her theory, and the ultimate recognition of the wide applicability of ‘the
Noether theorems’. To conclude, in the hope of dispelling various misconceptions, I shall
underline what Noether was not, and I shall reflect on the fortune of her theorems.

1.2 A Family of Mathematicians

Emmy Noether was born to a Jewish family in Erlangen (Bavaria, Germany) in 1882. Her
life was described in Hermann Weyl’s obituary (Weyl 1935). In a manuscript curriculum
vitae, written for official purposes circa 1917, she described herself as ‘of Bavarian nation-
ality and Israelite confession’.® She died in Bryn Mawr (Pennsylvania) in the United States
in 1935, after undergoing an operation. Why she had to leave Germany in 1933 to take up
residence in America is clear from the chronology of the rise of the Nazi regime in Germany
and its access to power and has, of course, been told in the many accounts of her life that
have been published,* while numerous and sometimes fanciful comments have appeared in
print and in the electronic media in recent years.

She was the daughter of the renowned mathematician, Max Noether (1844-1921), pro-
fessor at the University of Erlangen. He had been a privatdozent, then an ‘extraordinary
professor’ in Heidelberg before moving to Erlangen in 1875, and was eventually named an
‘ordinary professor’ in 1888. Her brother, Fritz, was born in 1884 and studied mathematics
and physics in Erlangen and Munich. He became professor of theoretical mechanics in
Karlsruhe in 1902 and submitted his Habilitation thesis in 1912. Later, he became professor
in Breslau, from where he, too, was forced to leave in 1933. He emigrated to the Soviet
Union and was appointed professor at the University of Tomsk. Accused of being a German
spy, he was jailed and shot in 1941.

1.3 The Young Emmy Noether

Emmy Noether first studied languages in order to become a teacher of French and En-
glish, a suitable profession for a young woman. But from 1900 on, she studied mathe-
matics, first in Erlangen with her father, then audited lectures at the university. For the
winter semester in 1903—4, she travelled to Gottingen to audit courses at the university.
At that time, new regulations were introduced which enabled women to matriculate and
take examinations. She then chose to enroll at the University of Erlangen, where she listed

3 Declaring one’s religion was compulsory in Germany at the time.

4 The now classical biographies of Noether can be found in the book written by Auguste Dick (1970), translated into English in
1981, and in the volumes of essays edited by James W. Brewer and Martha K. Smith (1981), and by Bhama Srinivasan and
Judith D. Sally (1983).
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mathematics as her only course of study,” and in 1907, she completed her doctorate un-
der the direction of Paul Gordan (1837-1912), a colleague of her father. Here I open a
parenthesis: One should not confuse the mathematician Paul Gordan, her ‘Doktorvater’,
with the physicist Walter Gordon (1893-1939). The ‘Clebsch—Gordan coefficients’ in quan-
tum mechanics bear the name of Noether’s thesis adviser together with that of the physi-
cist and mathematician Alfred Clebsch (1833-72). However, the ‘Klein-Gordon equation’
is named after Walter Gordon and the physicist Oskar Klein (1894—1977) who, in turn,
should not be confused with the mathematician Felix Klein, about whom more will be said
shortly.

1.4 Noether’s 1907 Thesis on Invariant Theory

Noether’s thesis at Erlangen University, entitled ‘Uber die Bildung des Formensystems der
ternéren biquadratischen Form’ (“On the Construction of the System of Forms of a Ternary
Biquadratic Form™), dealt with the search for the invariants of those forms (i.e., homoge-
neous polynomials) which are ternary (i.e., in 3 variables) and biquadratic (i.e., of degree 4).
An extract of her thesis appeared in the Sitzungsberichte der Physikalisch-medizinischen
Societdt zu Erlangen in 1907, and the complete text was published the following year in
the Journal fiir die reine und angewandte Mathematik (Crelle’s Journal). She later dis-
tanced herself from her early work as employing a needlessly computational approach to the
problem.

After 1911, her work in algebra was influenced by Ernst Fischer (1875-1954), who was
appointed professor in Erlangen upon Gordan’s retirement in 1910. Noether’s expertise in
invariant theory revealed itself in the publications in 1910, 1913, and 1915 that followed her
thesis, and was later confirmed in the four articles on the invariants of finite groups that she
published in 1916 in the Mathematische Annalen. She studied in particular the determination
of bases of invariants that furnish an expansion with integral or rational coefficients of each
invariant of the group, expressed as a linear combination of the invariants in the basis.

At Erlangen University from 1913 on, Noether occasionally substituted for her ageing
father, thus beginning to teach at the university level, but not under her own name.

1.5 Noether’s Achievements

Her achievement of 1918, whose centenary was duly celebrated in conferences in London
and Paris, eventually became a central result in both mechanics and field theory and, more
generally, in mathematical physics, though her role was rarely acknowledged before 1950
and, even then, only a truncated part of her article was cited. On the other hand, her articles
on the theory of ideals and the representation theory of algebras published in the 1920s
made her world famous. Her role in the development of modern algebra was duly recognised
by the mathematicians of the twentieth century, while they either considered her work on
invariance principles to be an outlying and negligible part of her work or, more often, ignored

5 On this, as well as on other oft-repeated facts of Noether's biography, see Dick (1970), English translation, p. 14.
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it altogether. In fact, the few early biographies of Noether barely mention her work on
invariant variational problems, while both past and recent publications treat her fundamental
contributions to modern algebra. I shall not deal with them here. They are, and will no doubt
continue to be, celebrated by all mathematicians.

1.6 In Gittingen: Klein, Hilbert, Noether, and Einstein

In 1915, the great mathematicians Felix Klein (1849-1925) and David Hilbert (1862-1943)
invited Noether to Géttingen in the hope that her expertise in invariant theory would help
them understand some of the implications of Einstein’s newly formulated general theory of
relativity. In Gottingen, Noether took an active part in Klein’s seminar. It was in her 1918
article that she solved a problem arising in the general theory of relativity and proved ‘the
Noether theorems’. In particular, she proved and vastly generalised a conjecture made by
Hilbert concerning the nature of the law of conservation of energy. Shortly afterwards, she
returned to pure algebra.

At the invitation of Hilbert, Einstein had come to Géttingen in early July 1915 to de-
liver a series of lectures on the general theory of relativity, which is to say, on the ver-
sion that preceded his famous paper, ‘Die Feldgleichungen der Gravitation® (“The Field
Equations of Gravitation™), of November of that year. Noether must have attended these
lectures. It is clear from Hilbert’s letter to Einstein of 27 May 1916 that she had by then
already written some notes on the subject of the problems arising in the general theory of
relativity:

My law [of conservation] of energy is probably linked to yours; I have already given Miss Noether
this question to study.

Hilbert adds that, to avoid a long explanation, he has appended to his letter ‘the enclosed
note of Miss Noether’. On 30 May 1916, Einstein answered him in a brief letter in which
he derived a consequence of the equation that Hilbert had proposed ‘which deprives the
theorem of its sense’, and then asks, “‘How can this be clarified?’” He continues,

Of course it would be sufficient if you asked Miss Noether to clarify this for me.®

Thus, her expertise was conceded by both Hilbert and Einstein as early as her first year in
Gottingen, and was later acknowledged more explicitly by Klein when he re-published his
articles of 1918 in his collected works (Klein 1921), a few years before his death.

1.7 Noether’s Article of 1918

In early 1918, Noether published an article on the problem of the invariants of differen-
tial equations in the Gdttinger Nachrichten, ‘Invarianten beliebiger Differentialausdriicke’
(“Invariants of Arbitrary Differential Expressions™), which was presented by Klein at the
meeting of the Konigliche Gesellschaft der Wissenschaften zu Gottingen (Royal Géttingen

6 Einstein, Collected Papers, 8A, nos, 222 and 223.
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Scientific Society) of 25 January. It was then, in the winter and spring of 1918, that Noether
discovered the profound reason for the difficulties that had arisen in the interpretation of
the conservation laws in the general theory of relativity. Because she had left Géttingen for
a visit to Erlangen to see her widowed and ailing father, her correspondence remains and
yields an account of her progress in this search. In her postcard to Klein of 15 February, she
already sketched her second theorem, but only in a particular case. It is in her letter to Klein
of 12 March that Noether gave a preliminary formulation of an essential consequence of
what would be her second theorem, dealing with the invariance of a variational problem
under the action of a group which is a subgroup of an infinite-dimensional group. On
23 July, she presented her results to the Mathematische Gesellschaft zu Géttingen (Got-
tingen Mathematical Society). The article which contains her two theorems is ‘Invariante
Variationsprobleme’ (“Invariant Variational Problems™). On 26 July, Klein presented it at
the meeting of the more important — because it was not restricted to an audience of pure
mathematicians — Gottingen Scientific Society, and it was published in the Nachrichten
(Proceedings) of the Society of 1918, on pages 235-47. A footnote on the first page of her
article indicates that ‘“The definitive version of the manuscript was prepared only at the end
of September.’

1.8 What Variational Problems Was Noether Considering?

We consider variational problems which are invariant under a continuous group (in the sense of Lie).
.. What follows thus depends upon a combination of the methods of the formal calculus of variations
and of Lie’s theory of groups.7

Noether considers a general n-dimensional variational problem of order « for an R*-valued
function, where n, «, and (& are arbitrary integers, defined by an integral,

Bu 32u 3%y
I= dx,
Tax2 T axk

where x = (xq, ...,x,) = (x;) denote the independent variables, and where u = (uy, ...,

) = (u;) are the dependent variables. In footnotes, she states her conventions and explains

her abbreviated notations: ;I omit thze indices here, and in the summations as well whenever

it is possible, and I write —; for ==« Txpoey a ,etc’, and ‘I write dx fordx; ... dx, for short’.
Noether then states her two theorems

In what follows we shall examine the following two theorems:

L If the integral I is invariant under a [group] & ,. then there are p linearly independent combinations
among the Lagrangian expressions which become divergences — and conversely, that implies the
invariance of 7 under a [group] &,. The theorem remains valid in the limiting case of an infinite
number of parameters.

7 Icite the English translation of Noether’s article that appeared in The Noether Theorems (2010).
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IL. If the integral [ is invariant under a [group] B, depending upon arbitrary functions and their
derivatives up to order o, then there are p identities among the Lagrangian expressions and their
derivatives up to order o. Here as well the converse is valid.®

Noether proves the direct part of both theorems in section 2, then the converse of theorem
I in section 3 and that of theorem II in section 4. In section 2, she assumes that the action
integral I = [ fdx is invariant. Actually, she assumes a more restrictive hypothesis, the
invariance of the integrand, fdx, which is to say, 8( fdx) = 0. This hypothesis is expressed
by the relation

Sf+Div(f - Ax) = 0.

Here Div is the divergence of vector fields and & f is the variation of f induced by the
variation

= Bu,-

Sui = Auj — —AX;.

Ui Ui Z axl X

Thus, Noether introduced the evolutionary representative, 8, of the vector field §, and é f is
the Lie derivative of f in the direction of the vector field 8. What she introduced, with the
notation 8, is a generalised vector field, which is not a vector field in the usual sense. on the
trivial vector bundle R" x R* — R In fact, if

i 9 ~ 9
=9 X*x)— Y (o u)—.
; Wz + ; ()

then § is the vertical generalised vector field

"
- . |
5= (Y’x,u fXAxu')—.,
; () = X*H0ous )+
where u; = ;‘% It is said to be “generalised’ because its components depend on the deriva-

8.9

tives of the u' (x). It is said to be ‘vertical’ because it contains no terms in Ft

By integrating by parts, Noether obtains the identity
> Widu; =5f +Div A,

where the ;s are the ‘Lagrangian expressions’, i.e., the components of the Euler-Lagrange
derivative of f, and A is linear in §u and its derivatives. In view of the invariance hypothesis
which is expressed by & f + Div(f - Ax) = 0, this identity can be written as

Zy_’qgu; =DivB, with B=A— f-AX.

8 In a footnote, Noether announces that she will comment on ‘some trivial exceptions’ in the next section of her article.
The evolutionary representative of an ordinary vector field has also been called the vertical representative. Both terms are
modern. Noether does not give § a name. An arbitrary vertical generalised vector field is written locally,

: 2
—_H i, du 8<u a
Z= Z‘;:l Z (1.11. T2 ) g
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of the most important points of this history. Lagrange, in his Méchanique analitique (1788),
claimed that his method for deriving ‘a general formula for the motion of bodies’ yields
‘the general equations that contain the principles, or theorems known under the names of
the conservation of kinetic energy, of the conservation of the motion of the center of mass,
of the conservation of the momentum of rotational motion, of the principle of areas, and
of the principle of least action’.'? In the second edition of his Mécanique analytique, in
1811, as a preliminary to his treament of dynamics, he presented a detailed history of the
diverse ‘principes ou théorémes’ (principles or theorems) formulated before his Mécanique,
thus recognising the contributions of his predecessors in the discovery of these principles —
Galileo, Huyghens, Newton, Daniel Bernoulli, Maupertuis, Euler, the Chevalier Patrick
d’Arcy and d’Alembert — and in this second edition, he explicitly observed a correlation
between these principles of conservation and invariance properties. After Lagrange, the
correlation between invariances and conserved quantities was surveyed by Jacobi in several
chapters of his Vorlesungen iiber Dynamik, lectures delivered in 1842-3 but published
only posthumously in 1866. The great advances of Sophus Lie (1842-99) — his theory of
continuous groups of transformations that was published in articles and books that appeared
between 1874 and 1896 — became the basis of all later developments, such as the work of
Georg Hamel (1877-1954) on the calculus of variations and mechanics in 1904, and the
publication of Gustav Herglotz (1881-1953) on the 10-parameter invariance group of the
[special] theory of relativity in 1911. In her 1918 article, Noether cited Lie very prominently,
as his name appears three times in the eight lines of the introductory paragraph, but with no
precise reference to his published work. Both Hamel and Herglotz were cited by her. In her
introduction, she also referred to publications, all of them very recent, by ‘[Hendrik] Lorentz
and his students (for example, [Adriaan Daniel] Fokker), [Hermann] Weyl, and Klein for
certain infinite groups’ and, in a footnote, she wrote, ‘In a paper by [Adolf] Kneser that
has just appeared (Math. Zeitschrift, vol. 2), the determination of invariants is dealt with
by a similar method.” In fact, while Noether was completing the definitive version of her
manuscript, in August 1918, Kneser had submitted an article, ‘Least Action and Galilean
Relativity’, in which he used Lie’s infinitesimal transformations and, as Noether would
do, emphasised the relevance of Klein’s Erlangen program, but he did not treat questions
of invariance. Noether stressed the relation of her work to ‘Klein’s second note, Gdttinger
Nachrichten, 19 July 1918’, stating that her work and Klein’s were ‘mutually influential” and
referring to it for a more complete bibliography. In section 5 of her paper, she cited an article,
‘On the Ten General Invariants of Classical Mechanics’ by Friedrich Engel (1861-1941),
that had appeared two years earlier. Indeed, scattered results in classical and relativistic
mechanics, tying together properties of invariance and conserved quantities, had already
appeared in the publications of Noether’s predecessors which she acknowledged. However,
none of them had discovered the general principle contained in her Theorem I and its
converse. Her Theorem II and its converse were completely new. In the expert opinion of

12 Lagrange (1788, p. 182), italics in the original.
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the theoretical physicist Thibaut Damour,'? the second theorem should be considered the
most important part of her article. It is certainly the most original.

1.11 How Modern Were Noether’s Two Theorems?

What Noether simply called ‘infinitesimal transformations’ are, in fact, vast generalisations
of the ordinary vector fields, and they are now called generalised vector fields. They would
eventually be re-discovered, independently, in 1964 by Harold H. Johnson, then at the Uni-
versity of Washington, who called them “a new type of vector fields’, and in 1965 by Robert
Hermann (1931-2020). They appeared again in 1972 as Robert L. Anderson, Sukeyuki
Kumei, and Carl Wulfman published their ‘Generalization of the Concept of Invariance of
Differential Equations. Results of Applications to Some Schrodinger Equations’ in Physical
Review Letters. In 1979, R. L. Anderson, working at the University of Georgia in the United
States, and Nail Ibragimov (1938-2018), then a member of the Institute of Hydrodynamics
at the Siberian branch of the USSR Academy of Sciences in Novosibirsk — such east-west
collaboration was rare at the time — in their monograph, Lie-Bdcklund Transformations
in Applications, duly citing Klein and Noether while claiming to generalise ‘Noether’s
classical theorem’, called them ‘Lie-Bicklund transformations’, a misleading term because
Albert V. Bicklund (1845-1922) did not introduce this vast generalisation of the concept of
vector fields, only infinitesimal contact transformations. The concept of a generalised vector
field is essential in the theory of integrable systems which became the subject of intense
research after 1970. On this topic, Noether’s work is modern, half a century in advance of
these re-discoveries. Peter Olver’s book, Applications of Lie Groups to Differential Equa-
tions (1986a), is both a comprehensive handbook of the theory of generalised symmetries
of differential and partial differential equations, and the reference for their history, while
his article of the same year on *Noether’s theorems and systems of Cauchy-Kovalevskaya
type’ is an in-depth study of the mathematics of Noether’s second theorem. His article (Olver
2018), written for the centenary of Noether’s article, stresses the importance of her invention
of the generalised vector fields.

In Géttingen, Noether had only one immediate follower, Erich Bessel-Hagen (1898-
1946), who was Klein’s student. In 1921, he published an article in the Mathematische
Annalen, entitled “Uber die Erhaltungssiitze der Elektrodynamik’ (“On the Conservation
Laws of Electrodynamics™), in which he determined in particular those conservation laws
that are the result of the conformal invariance of Maxwell’s equations. There, Bessel-Hagen
recalls that it was Klein who had posed the problem of ‘the application to Maxwell’s equa-
tions of the theorems stated by Miss Emmy Noether about two years ago regarding the
invariant variational problems” and he writes that, in the present paper, he formulates the
two Noether theorems ‘slightly more generally’ than they had been formulated in her article.
How did he achieve this more general result? By introducing the concept of ‘divergence
symmetries’ which are infinitesimal transformations which leave the Lagrangian invariant

13 Damouris a professor at the Institut des Hautes Etudes Scientifiques and a member of the Académie des Sciences

de I'Institut de France.
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up to a divergence term, or ‘symmetries up to divergence’. They correspond not to the
invariance of the Lagrangian fdx, but to the invariance of the action integral [ fdx, ie.,
instead of satisfying the condition §( fdx) = 0, they satisfy the weaker condition é( fdx) =
Div C, where C is a vectorial expression. Noether’s fundamental relation remains valid
under this weaker assumption, provided that B = A — f - Ax is replaced by B = A +
C — f - Ax. Immediately after he stated that he had proved the theorems in a slightly more
general form than Noether had, Bessel-Hagen added: ‘T owe these [generalised theorems]
to an oral communication by Miss Emmy Noether herself’. We infer that, in fact, this more
general type of symmetry was also Noether’s invention. Bessel-Hagen’s acknowledgment
is evidence that, to the question, ‘Who invented divergence symmetries?’, the answer is:
Noether.

1.12 How Influential Were Noether’s Two Theorems?

The history of the reception of Noether’s article in the years 1918-70 is surprising. She
submitted the ‘Invariante Variationsprobleme’ for her Habilitation, finally obtained in 1919,
but she never referred to her article in any of her subsequent publications. I know of only
one mention of her work of 1918 in her own writings, in a letter she sent eight years
later to Einstein, who was then an editor of the journal Mathematische Annalen. In this
letter, which is an informal referee report, she rejects a submission ‘which unfortunately is
by no means suitable’ for the journal, on the grounds that ‘it is first of all a restatement
that is not at all clear of the principal theorems of my “Invariante Variationsprobleme”
(Géott[inger] Nachr[ichten], 1918 or 1919), with a slight generalization — the invariance of
the integral up to a divergence term — which can actually already be found in Bessel-Hagen
(Math[ematische] Ann[alen], around 1922)".'4

I found very few early occurrences of Noether’s title in books and articles. While Her-
mann Weyl, in Raum, Zeit, Materie, first published in 1918, performed computations very
similar to hers, he referred to Noether only once, in a footnote in the third (1919) and
subsequent editions. It is clear that Richard Courant must have been aware of her work
because a brief summary of a limited form of both theorems appears in all German, and later
English editions of ‘Courant-Hilbert’, the widely read treatise on methods of mathematical
physics first published in 1924, It is remarkable that we found so few explicit mentions of
Noether’s results in searching the literature of the 1930s. In 1936, the little-known physicist
Moisei A. Markow (1908-94), who was a member of the Physics Institute of the USSR
Academy of Sciences in Moscow, published an article in the Physikalische Zeitschrift der
Sowjetunion in which he refers to ‘the well-known theorems of Noether’. Markow was a
former student of Georg B. Rumer (1901-85), who had been an assistant of Max Born
in Gottingen from 1929 to 1932. Rumer, in 1931, had proved the Lorentz invariance of the
Dirac operator but did not allude to any associated conservation laws, while in his articles on
the general theory of relativity published in the Géttinger Nachrichten in 1929 and 1931, he

14 For a facsimile, a transcription, and a translation of Noether’s letter, see Kosmann-Schwarzbach (2010, pp. 161-5), and see
comments on this letter, Kosmann-Schwarzbach (2010), pp. 51-2.
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cited Weyl but never Noether. Similarly, it seems that V. A. Fock (1898-1974) never referred
to Noether’s work in any of his papers to which it was clearly relevant, such as his celebrated
‘Zur Theorie des Wasserstoffatoms’ (On the Theory of the Hydrogen Atom) of 1935. Was
it because, at the time, papers carried few or no citations? Or because Noether’s results
were considered to be ‘classical’? The answers to both questions are probably positive, this
paucity of citations being due to several factors.

An early, explicit reference to Noether’s publication is found in the article of Ryoyu
Utiyama (Utiyama 1916-90), then in the department of physics of Osaka Imperial Uni-
versity, ‘On the Interaction of Mesons with the Gravitational Field. I', which appeared in
Progress of Theoretical Physics (Utiyama 1947), four years before he was awarded the
PhD. His paragraph I begins with the “Theory of invariant variation’ for which he cites
both Noether’s 1918 article and page 617 of Pauli’s ‘Relativititstheorie’ (1921). Following
Noether closely, he proves the first theorem, introducing ‘the substantial variation of any
field quantity’, which he denotes by §* — i.e., what Noether had denoted by § — and also
treats the case where the dependent variables ‘are not completely determined by [the] field
equations but contain r undetermined functions’. This text dates, in fact, to 1941, as the
author reveals in a footnote on the first page: “This paper was published at the meeting[s] of
[the] Physico-mathematical Society of Japan in April 1941 and October 1942, but because of
the war the printing was delayed’. Such a long delay in the publication of this scientific paper
is one example — among many — of the influence of world affairs on science. It appears that
this publication is a link in the chain leading from Noether’s theorems to the development,
by the physicists, of the gauge theories, where the variations of the field variables depend
on arbitrary functions. Episodes in this history, told by Utiyama himself, were published
in Lochlainn O’Raifeartaich’s book (1997), from which we learn that, although Utiyama
published his important paper ‘Invariant Theoretical Interpretation of Interaction’ in the
Physical Review only in 1956, two years after the famous article of Yang and Mills, he had
worked independently and had treated more general cases, showing that gauge potentials
are in fact affine connections. In this paper, Utiyama gave only six references: one is (nec-
essarily) to the publication of Yang and Mills, another is to his own 1947 paper, clearly
establishing the link from his previous work to the present one, and another reference is to
page 621 of Pauli (1921). This time, however, a reference to Pauli serves as a reference to
Noether, so that her name does not appear.

In later developments, in the Soviet Union in 1959, Lev S. Polak published a translation
of Noether’s 1918 article into Russian and, in 1972, Vladimir Vizgin published a historical
monograph whose title, in English translation, is The Development of the Interconnection
between Invariance Principles and Conservation Laws in Classical Physics, in which he
analysed both of Noether’s theorems. At that time, new formulations of Noether’s first
theorem had started to appear with the textbook of Israel M. Gel’fand and Sergei V. Fomin
on the calculus of variations, published in Moscow in 1961, which contains a modern
presentation of Noether’s first theorem — although not yet using the formalism of jets as
would soon be the case — followed by a few lines about her second theorem. This book
appeared in an English translation two years later. In the 1970s, Gel’fand published several
articles with Mikhael Shubin, Leonid Dikii (Dickey), Irene Dorfman, and Yuri Manin on the
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‘formal calculus of variations’, not mentioning Noether because they dealt mainly with the
Hamiltonian formulation of the problems, while Manin’s ‘Algebraic Theory of Nonlinear
Differential Equations’ (1978) as well as Boris Kupershmidt’s ‘Geometry of Jet Bundles and
the Structure of Lagrangian and Hamiltonian Formalisms” (1980) both contain a ‘formal
Noether theorem’, which is a modern, generalised version of her first theorem. A few
years earlier already, in the article ‘Lagrangian Formalism in the Calculus of Variations’
(1976), Kupershmidt had presented an invariant approach to the calculus of variations in
differentiable fibre bundles, and Noether’s first theorem was formulated for the Lagrangians
of arbitrary finite order.

Further research in geometry in Russia yielded new genuine generalisations of the con-
cepts introduced by Noether and of her results. Alexandre Vinogradov (1938-2019), who
had been a member of Gel’fand’s seminar in Moscow, left the Soviet Union for Italy in
1990 and the second part of his career was at the University of Salerno. Beginning in 1975,
Vinogradov, together with Joseph Krasil’shchik — who worked in Moscow, then for several
years in the Netherlands, and again in Moscow at the Independent University — published ex-
tensively on symmetries, at a very general and abstract level, greatly generalising Noether’s
formalism and results, and on their applications, a theory fully expounded in their book
(Krasil’shchik and Vinogradov 1997).

Searching for other lines of transmission of Noether’s results, one finds that in the early
1960s Enzo Tonti (later professor at the University of Trieste) translated Noether’s article
into Italian, but his translation has remained in manuscript. It was transmitted to Franco
Magri in Milan who, in 1978, wrote an article in Italian where he clearly set out the rela-
tion between symmetries and conservation laws for non-variational equations, a significant
development, but he did not treat the case of operators defined on manifolds. In France,
Jean-Marie Souriau (1922-2012) was well aware of ‘les méthodes d’Emmy Noether’ which
he cited as early as 1964, on page 328 of his book, Géométrie et relativiré. In 1970, inde-
pendently of Bertram Kostant (1928-2017), Souriau introduced the concept of a momentum
map. The conservation of the momentum of a Hamiltonian action is the Hamiltonian version
of Noether’s first theorem. Souriau called that result ‘le théoréme de Noether symplectique’,
although there is nothing Hamiltonian or symplectic in Noether’s article! Souriau’s funda-
mental work on symplectic geometry and mechanics was based on Lagrange, as he himself
claimed, but it was also a continuation of Noether’s theory.

1.13 From General Relativity to Cohomological Physics

The history of the second theorem — the improper conservation laws — belongs to the history
of general relativity. In the literature on the general theory, the improper conservation laws
which are ‘trivial of the second kind’ are called ‘strong laws’, while the conservation laws
obtained from the first theorem are called ‘weak laws’. The strong laws play an important
role in basic papers of Peter G. Bergmann in 1958, of Andrzej Trautman in 1962, and of
Joshua N. Goldberg in 1980. While the second theorem, which explained in which cases
such improper conservation laws would exist, had been known among relativists since
the early 1950s, it became an essential tool in the non-Abelian gauge theories that were
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In the discrete versions of the Noether theorems, the differentiation operation is replaced
by a shift operator. The independent variables are now integers, and the integral is replaced
by a sum, Llu] = Z” L(n, [u]). where [1] denotes u(n) and finitely many of its shifts.
The variational derivative is expressed in terms of the inverse shift. A pioneer was John
David Logan, who published ‘First Integrals in the Discrete Variational Calculus™ in 1973.
Much more recent advances on the discrete analogues of the Noether theorems, an active
and important field of research, may be found in a series of papers by Peter Hydon and
Elizabeth Mansfield (2001), published since 2001, including a discrete version of the second
theorem.

1.15 Were the Noether Theorems Ever Famous?

Whereas both theorems were analyzed by Vizgin in his 1972 monograph on invariance
principles and conservation laws in classical physics, it appears that the existence of the
first and second theorems in one and the same publication was not expressed in written
form in any language other than Russian before the first edition of Olver’s book in 1986
and his contemporaneous article where ‘Noether’s theorems’ appear in the title. At roughly
the same time, one can find ‘theorems’, in the plural, in a few other publications: in Hans
A. Kastrup’s contribution to Symmetries in Physics (1600—1980), the text of a 1983 com-
munication finally printed in 1987 in this extremely rich collection of essays, and in my
mathematical paper, ‘Sur les théorémes de Noether’, presented in Marseille-Luminy in
1985 at the “Journées relativistes” organised by André Lichnerowicz, which also appeared
in 1987. Then came David Rowe’s survey (Rowe 1999).

Fame came eventually. I quote from Gregg Zuckerman’s ‘Action Principles and Global
Geometry” (1987):

E. Noether’s famous 1918 paper, ‘Invariant variational problems’ crystallized essential mathemati-
cal relationships among symmetries, conservation laws, and identities for the variational or ‘action’
principles of physics. ... Thus, Noether’s abstract analysis continues to be relevant to contemporary
physics, as well as to applied mathematics. 15

Therefore, approximately 70 years after her article had appeared in the Gdttingen
Nachrichten, fame came to Noether for this (very small) part of her mathematical ceuvre.
In the 20 page contribution of Pierre Deligne and Daniel Freed to the monumental treatise,
Quantum Fields and Strings: A Course for Mathematicians (1999), she was credited not
only with ‘the Noether theorems’ but also with ‘Noether charges’ and ‘Noether currents’.
For as long as gauge theories had been developing, these terms had, in fact, been in the
vocabulary of the physicists, such as Utiyama, Yuval Ne’eman (1999), or Stanley Deser
whose discussion of ‘the conflicting roles of Noether’s two great theorems” and ‘the physical
impact of Noether’s theorems’ continues to this day in articles (Deser 2019) and preprints.
At the end of the twentieth century, the importance of the concepts she had introduced was

15" Here Zuckerman cites Olver's book.
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finally recognised, and her name was attached to them by mathematicians and mathematical
physicists alike.

1.16 In Lieu of Conclusion

One can read in a text published as late as 2003 by a well-known philosopher of science that
‘Noether’s theorems can be generalised to handle transformations that depend on the ™ as
well.” Any author who had only glanced at Noether’s paper, or read parts of Olver’s book,
would have been aware that Noether had already proved her theorems under that generalised
assumption. This, in fact, is one of the striking and important features of Noether’s 1918
article. Therefore, caveat lector! It is better to read the original than to rely on second-
hand accounts. For my part, I shall not attempt to draw any philosophical conclusions from
what T have sketched here of Noether’s ‘Invariante Variationsprobleme’, its genesis, its
consequences, and its influence, because I want to avoid the mistakes of a non-philosopher,
of the kind that amateurs make in all fields.'®

It is clear that Noether was not a proto-feminist. She was not a practicing Jew. Together
with her father, she converted to Protestantism in 1920, which did not protect her from
eventual dismissal from the University of Goéttingen by the Nazis. She was not an admirer
of American democracy, and her sympathies were with the Soviet Union. Even though her
1918 work was clearly inspired by a problem in physics, she was never herself a physicist
and did not return to physics in any of her subsequent publications. She never explored the
philosophical underpinnings or outcomes of her work — in a word, she was not a philoso-
pher. She was a generous woman admired by her colleagues and students, and a great
mathematician.

While the Noether theorems derive from the algebraic theory of invariants developed in
the nineteenth century — a chapter in the history of pure mathematics — it is clear from the
testimony of Noether herself that the immediate motivation for her research was a question
that arose in physics, at the time when the new general theory of relativity was emerging —
a fact that she stated explicitly in her 1918 article. The results of this article have indeed
become — in increasingly diverse ways which deserve to be much more fully investigated
than time and space permitted — a fundamental instrument for mathematical physicists. On
the one hand, these results are essential parts of the theories of mechanics and field theory
and many other domains of physical science, and on the other, in a series of mainly separate
developments, her results have been generalised by pure mathematicians to highly abstract
levels, but that was not accomplished in her lifetime. Had she lived longer, she would have
witnessed this evolution and the separate, then re-unified, paths of mathematics and physics,
and we are free to imagine that she would have taken part in the mathematical discoveries
that issued from her 23 page article.

16 Fora philosophical outlook, see, e.g., Brading and Brown (2003).
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yields a stationary value. Formulated in the classical § symbolism, this reads:

b
5f F(y,y' x)dx = 0. (2.2)

a

To solve this, one calculates 3F(y, y’,x) =€ (%q{) + g:: qb’), and finds
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The standard trick at this point is to rewrite the second term on the right by using partial

integration:
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Since ¢ vanishes on the boundary, only the second term remains, and substituting in (2.2)

yields
b b roF F
5f F(y.y' x)dx = f (8— - ia—)qbdx =0. (2.5)
a a ay dx dy’

Since this equation holds for arbitrary ¢(x), the integrand itself must vanish, which yields
the classical Euler-Lagrange equation:

Y= " — o= =0 (2.6)

This well-known argument lies in the background of the formal methods employed in
‘Invariante Variationsprobleme’ (Noether 1918b). In Noether’s setting, however, the func-
tion F' can be much more complicated, and instead of a single variable x, one integrates over
an n-dimensional region. The corresponding solution (2.27) then involves n Lagrangian
expressions ;, which arise as differential invariants from the corresponding variational
problem. These mathematical underpinnings are familiar from analytical mechanics, where
one takes /' = L = T — V. The Lagrangian L(q)., ...,qn.4q1. -...qn.t) uses generalized
coordinates ¢;(¢) and their derivatives ¢; (r) to describe the position and velocity of a physical
system over a time interval ¢ € [a,b]. The equations of motion are then given by the n
equations

d dL aL
Vi) = ————— — =
dt 9gi(t)  9gi(t)
As Noether remarked at the beginning of ‘Invariante Variationsprobleme’, her results
combined methods from the formal calculus of variations with those from Lie’s theory of
continuous groups. The latter take hold when one requires that the integral remain invariant
under the infinitesimal action of the generators of a Lie group, whereas the former hold for
any variational problem of the type Noether considered. These variational methods happen
to be intimately connected with the generation of differential invariants, which will be the
primary focal point of interest in this paper. Indeed, this connection was a central theme in

2.7
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Felix Klein’s lectures, beginning with his modernized interpretation of the derivation of the
Lagrangian equations of motion (see equation (2.31) below).

Emmy Noether was a true virtuoso in wielding formal variational methods as a tool for
systematically generating differential invariants. That this part of her mathematical legacy
has been almost entirely overlooked can largely be explained by the fact that, until fairly
recently, the formal calculus of variations had fallen out of fashion. This point was made
by E. J. McShane, who wrote that her works ‘constitute a major contribution to a highly
formalistic aspect of the calculus of variations that received much attention in the nineteenth
century, but was already becoming less interesting to analysts when her theorems appeared’
(McShane 1981, p. 130).* As was pointed out in Kosmann-Schwarzbach (2006/2011,
pp. 84, 138-9), however, by the mid-1970s there was a resurgence of interest in formal
calculus of variations. It should also be added that Noether was well aware of the need to
supplement and sharpen formal methods when solving concrete problems in the calculus
of variations; see her remarks in Noether (1923, p. 442).

In his lecture courses on relativity, Klein took a retrospective approach. He presented
various topics genetically rather than systematically, pulling together threads from earlier
publications in order to reveal their underlying connections. Provisional texts from these
lectures circulated for a time, either in handwritten or mimeographed form, but these
differed markedly from the version prepared by Stephan Cohn-Vossen and published
posthumously (Klein 1927). Klein’s earlier lectures on the development of mathematics in
the nineteenth century, by contrast, were not altered greatly in Klein (1926).°> Both sets of
lectures had ambitious goals that were never completely realized.® In spirit, Klein’s lectures
on relativity were akin to those he delivered earlier on the development of mathematics in
the nineteenth century, except that he now had a more specific agenda in mind that required
closer attention to technical aspects. Two central topics were invariant theory and variational
methods, both major research interests of Emmy Noether at this time. Her famous paper
‘Invariante Variationsprobleme’ was preceded by a related study on differential invariants
(Noether 1918a), which exploited what she called formal variational methods. The problem
she attacked there amounted to a far-reaching generalization of E.B. Christoftel’s reduction
theorem (Christoffel 1869), a key result taken up in Klein’s lectures (Klein 1927, pp. 195-9).

An important publication for present purposes is Noether’s (1922) rarely mentioned note
that appeared in the German Encyclopedia of the Mathematical Sciences. Although brief
and somewhat opaque, this text will prove highly suggestive for contextualizing her earlier
work. One year later, Noether (1923) elaborated on some of the same ideas by sketch-
ing recent progress in algebraic and differential invariant theory. Both of these notes refer
to Noether’s (1918a) generalization of Christoffel’s reduction theorem for homogeneous
quadratic differential forms. The immediate motivation for Noether’s (1918a) work came
from Klein’s lectures on the mathematical foundations of general relativity, held during the

s

The pitfalls and shortcomings of formal calculus of variations are discussed in Ewing (1985, chap. 4), where the author
emphasized that these methods do not appear in the other chapters of his book.

For details concerning Klein's lecture courses during this period, see Tobies (2019, pp. 455-63).

Richard Courant nevertheless decided to publish edited versions of both posthumously; whether or not Klein ever assented to
this plan remains unclear.

>



28 D. E. Rowe

summer semester of 1917.7 In these, Klein highlighted the methodological advantages of the
approach taken earlier by Bernhard Riemann and Rudolf Lipschitz for attacking the problem
of equivalence for differential forms, a problem first posed and solved by Christoffel (see
Klein (1927, pp. 187-8, 195-9)). Noether also worked closely with Hermann Vermeil, who
also attended Klein’s lectures and contributed to the latter’s research program, above all in a
paper in which he cited her assistance (Vermeil 1919). Vermeil became Klein’s last assistant
in 1919 and played a major role in preparing all three volumes of his collected works (Klein
1921-3).

Although none of these investigations can be discussed in any detail here, they clearly
point to Felix Klein’s strong interest in older mathematical ideas as well as his desire to
develop these further. Apart from this, his collaboration with Noether reveals how quickly
she mastered the methodological tools needed to pursue the program he had in mind. It was
Klein who submitted Noether’s ‘Invariante Variationsprobleme’ (Noether 1918b) as well as
her earlier note (Noether 1918a) for publication in the Nachrichten of the Gottingen Sci-
entific Society. Both of these papers employed invariant theory and variational principles,
and both arose from their mutual research interests at that time. These joint efforts of Klein
and Noether, however, were fairly quickly forgotten, in part because they were superseded
by subsequent developments and results.® The contributions of Géttingen mathematicians
to the new physics, on the other hand, were to some extent canonized in Richard Courant’s
classic textbook Methoden der mathematischen Physik (Courant and Hilbert 1924), which
went through several editions and was later translated into English.” As noted by Kosmann-
Schwarzbach, this was one of the few early texts that provided an account of both Noether
theorems (Kosmann-Schwarzbach 2006/2011, 2011, p. 96).

2.2 On Klein’s Research Agenda, 1916-1918

Most discussions of general relativity in Goéttingen have focused somewhat narrowly
on David Hilbert’'s efforts to wed Einstein’s theory of gravitation with Gustav Mie’s
electromagnetic theory of matter. Seen in retrospect, this was the first in a series of
abortive attempts to establish a unified field theory. Einstein, who later explored numerous
approaches for constructing a viable UFT, dismissed Hilbert’s initial program out of hand
as naive. Hilbert’s own initial enthusiasm for this project seems to have waned as well
(see Renn and Stachel 2007). Very few sources exist that might shed some light on Emmy
Noether’s work with him, but allusions in Hilbert’s lecture course from 1916 to 1917 suggest
that he hoped to exploit insights from invariant theory to advance his physical program

During the previous two semesters, Klein offered lectures on “Invariant Theory of Linear transformations’ (SS 1916) and
‘Invariant Foundations of Special Relativity” (WS 1916/17). His lectures during the SS 1917 were entitled ‘Invariant Theory of
General Point Transformations.” He began the WS 1917/18 with lectures on ‘Invariant Foundations of General Relativity,” but
broke these off after the Christmas vacation. These final lectures were never published, but the others appeared ten years later
in a posthumously published edition prepared by Stephen Cohn-Vossen (Klein 1927). Some of Klein’s contemporaries read
earlier Ausarbeitungen, which already circulated during the war years. Arnold Sommerfeld, who worked closely with Klein
and who edited Band 5 of the Encykiopiidie, helped to distribute these texts from Klein’s lectures.

One of the puzzles surrounding the differential form for energy-momentum conservation in general relativity disappeared once
it was realized that this was an immediate consequence of the contracted Bianchi identities:; see Rowe (2018, pp. 263-72).
This was Volume I, but the second volume did not appear until 1937 when Courant was in the United States.
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(Saver and Majer 2009, pp. 287-9). If so, these hopes came to naught, nor does it
seem likely that Noether’s expertise could have been of any help in this venture, given
her limited knowledge of physics. In fact, she was already pursuing her own ideas in
algebra and invariant theory, inspired by her reading and still-ongoing collaboration with
Ernst Fischer.'” By the final year of the Great War, Hilbert’s research shifted away from
mathematical physics to the foundations of mathematics. Nevertheless, his work opened
an array of mathematical problems that served as a catalyst for Klein’s initial publications
on general relativity. The latter then prompted Noether to analyze the underpinnings of
Hilbert’s Theorem 1, which he had stated without proof (Hilbert 1915).

Notwithstanding the central importance of these matters, they represent only one partic-
ular aspect within the larger complex of problems Klein pursued during the years 1917-19.
One can gain a clear idea of Klein’s interests from that time by reading Klein (1927) while
comparing it with Part II of Wolfgang Pauli’s Theory of Relativity, the part on ‘Mathematical
Tools” in his report for the Encyklopéidie (Pauli 1958, pp. 21-70). Doing so also reveals that
Pauli had carefully studied the Ausarbeitungen from Klein’s lectures as well as the latter’s
published works, which he highlighted in the final section of Part II on variational principles
(Pauli 1958, Sec. 23). Klein read the proofs of Pauli’s report and sent him several letters in
response, some published (Pauli 1979), though for some mysterious reason Pauli failed to
mention Noether’s “Invariante Variationsprobleme”, which was written in order to clarity
the status of conservation laws and energy principles in general relativity. Instead, he cited
Klein’s papers from the final section of Volume 1 of his collected works (Klein 1921-3),
entitled “Zum Erlanger Programm.” The final three papers under that heading reflect Klein’s
research agenda during the period he worked closely with Noether on topics in general
relativity.

In general terms, Klein aimed to link spacetime physics with the approach to geometry
he outlined in his ‘Erlanger Programm’ (Klein 1872). Originally, he conceived of this as
a method for unifying geometrical research by studying transformation groups and their
associated invariants. Already decades earlier, global transformations had begun to assume
a central place in geometrical investigations, though it was only around 1870 that geome-
ters associated these infinite families of transformations with the finite groups studied by
algebraists. Klein’s ‘Erlanger Programm’ marked the culmination of his collaboration with
Sophus Lie during the period 1869-72. As Thomas Hawkins pointed out (Hawkins 1984),
its ideas at first met with a slow reception, though this changed by the the 1890s, the
decade during which Lie’s novel theory of continuous groups drew widespread international
attention.'!

The original conception outlined by Klein (1872) amounts to the following idea. Klein
identified a geometry with a coordinatized space (or a ‘manifold”) M and a group G of coor-
dinate transformations that acted on it. Given a geometry (M, G), one could then induce an
equivalent geometry on a manifold M’ by means of a bijective mapping f: M — M’, since
the group G acting on M will by means of f also act on M’. Furthermore, the properties

10" For an idea of the scope of her research program in invariant theory. see Noether (1923).
T On the history of Lie groups and Lie algebras, see Hawkins (2000).
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of a geometry (M, G) could be studied systematically by developing the invariant theory
for G. Historically, this had been done only for projective groups, once projective geometry
emerged as a major field of research in the nineteenth century. Within the context of Klein’s
‘Erlanger Programm,’ projective and Euclidean geometry were the two paradigmatic cases,
although he described several other geometries as well.

In his old age, Felix Klein tried to picture this scheme as marking the beginning of a grand
narrative that culminated with Einstein’s special and general theories of relativity, both of
which inspired a great deal of interest among mathematicians. While working closely with
Noether, he published three papers on general relativity in the Géttinger Nachrichten (Klein
1918a, 1918b, 1919). He then incorporated these in Volume I of his collected works, along
with commentaries in a special section entitled “Zum Erlanger Programm’ (Klein 1921-3,
L, pp. 411-612). Emmy Noether supported this undertaking from beginning to end, when
she read the page proofs for this section of the volume.!?

Klein had no difficulty interpreting special relativity within the context of his “Erlanger
Programm.’ since the Poincaré group acts globally on Minkowski space. General relativity,
on the other hand, was based on the principle of general covariance. In this setting, one
takes the coordinate transformations to be defined by bijective analytic functions with a
non-vanishing functional determinant; this ensures the existence of local bijective inverses,
and thus a local transformation group. Sophus Lie had begun to develop such a theory in
the 1880s by studying local differential invariants (Lie 1884), whereas Klein’s research after
1872 dealt with applications of finite and infinite discrete groups. Eduard Study, a leading
expert on algebraic invariant theory, later exposed several weaknesses in Lie’s approach,
which differs in many respects from modern Lie theory (Study 1908).

During the mid-1870s, Klein continued working closely with his former Erlangen col-
league, Paul Gordan, a leading expert on formal methods in invariant theory. Gordan was
joined in Erlangen by Max Noether in 1875, the year Klein departed for Munich, and it
was Gordan who later guided the doctoral research of his colleague’s daughter.'> Emmy
Noether completed her dissertation in 1907, after which time she assisted her father and
other Erlangen mathematicians. After 1911, she struck up an intense collaboration with
Ernst Fischer, an Austrian mathematician who came to Erlangen as Gordan’s successor.
Soon thereafter, she began churning out papers closely related to Hilbert’s famous invariant-
theoretic works from the late 1880s and early 1890s. These eventually caught the latter’s
attention, and so it happened that both Hilbert and Klein became well aware of Emmy
Noether’s expertise in invariant theory. As the war dragged on and the usual reservoir of
mathematical talent in Gottingen began to dissipate, both were keen to gain her assistance
for their ongoing work. This turning point was the one and only time in her career when she
could actually profit from not being a man.'#

Klein (1921-3, 1, p. v). Hubert Goenner has pointed out that modern spacetime theories involve fields attached to the
geometry. Physicists typically study the symmetries of Lie groups or Lie algebras associated with such fields rather than
groups that act on the spacetime itself; see Goenner (2015).

On mathematics in Erlangen during this period, see Rowe (2021, pp. 1-37).

Her petition to habilitate in Géttingen initially failed, however, and she only gained the right to teach courses in 1919; see
Rowe (2021, pp. 39-61).
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2.4 On Klein’s Gottingen Lectures, 1916-1917

As is well known, Riemannian geometry and the theory of differential forms took on new
life in the wake of Einstein’s general theory of relativity, which highlighted the importance
of Gregorio Ricci’s absolute differential calculus, dubbed tensor analysis by Einstein. In the
1880s, Ricci was the first to systematize the theory of differential invariants in the form of
a calculus. During the last years of the war, Klein turned to these topics in his historical
lectures, delivered in part to celebrate the legacy of the Gottingen mathematical tradition.
He described an analytical tradition — associated with the names of Christoffel, Bianchi, and
Ricci - setting this against a second tradition, which he identified with the names of Riemann
and Rudolf Lipschitz; the latter happened to have been his formal doctoral supervisor in
Bonn, following the sudden death in 1868 of his actual mentor, Julius Pliicker.

As Abraham Pais pointed out in his scientific biography of Einstein (Pais 1982/2005,
p. 217), Felix Klein situated Einstein’s work in the analytic tradition of Christoffel and
Ricci. Pais warmly recommended Klein’s posthumously published lectures (Klein 1927),%0
but he apparently spent little time reading these himself. Had he done so, he surely would
have noticed that Klein sharply contrasted between Riemann’s methodological approach
and the methods Einstein and Grossmann adopted from Ricci and Levi-Civita. To put the
matter plainly, Klein’s interpretation placed Einstein’s work outside the mainstream of the
Riemannian tradition. This latter direction drew on variational methods and employed so-
called normal coordinates, methods developed further by Lipschitz, who explicitly cited
Riemann’s work (Lipschitz 1869, 1870). Christoffel’s methods for classifying differential
forms, on the other hand, were entirely formal and algebraic. Ricci, in fact, saw these as
major virtues, and he went out of his way to criticize the use of the calculus of variations as
a method for finding differential invariants, a technique employed in earlier works of Jacobi
and Beltrami (Ricci and Levi-Civita 1901, p. 127). Klein mentioned Ricci’s dismissive
attitude toward Beltrami’s work, before he went on to say:

The Christoffel-Ricci representation has found widespread transmission. It takes the place of honor in
Edmund Wright's monograph Invariants of Quadratic Differential Forms (Cambridge Tracts 1908),
whereas Riemann is only dealt with in passing and Lipschitz not at all. Einstein, too, grew up in this
tradition. (Klein 1927, p. 189)%!

In short, Klein’s principal goal in his lectures on differential invariants was to resurrect
this Riemannian approach. His presentation culminated with a fairly detailed account of its
methods and results, tools that provided the background and motivation for Noether (1918a).
As will be described below, these ideas formed a major role in Klein’s overall agenda, and
Noether pursued them with remarkable success. She also attended some of his earlier and
better-known courses on the development of mathematics in the nineteenth century. He
taught these over a span of three semesters, starting in the winter of 1914-15. Although
she was then still in Erlangen, Noether evidently received a copy of the manuscript from

The third chapter stems from his §8§ 1917 lectures, which were supplemented by the editor, Stephan Cohn-Vossen. This
chapter is entitled, ‘Gruppen analytischer Punkttransformationen bei Zugrundelegung einer quadratischen Differentialform.’
Wright's text (Wright 1908), published roughly a decade before Klein’s lectures, summarized the state of the art prior to the
advent of general relativity.
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those initial lectures that Klein’s daughter, Elisabeth Staiger, wrote up for him. Klein made
a note of this in preparation for a meeting with Noether on 28 April 1915, when he began
his second series of lectures.??

Klein’s lectures on the mathematics of the past century were to have ended with a fourth
and final series, held during the summer semester of 1916, in which he originally planned
to discuss the works of Lie and Henri Poincaré. Spurred by Einstein’s and Hilbert’s recent
publications, however, he opted instead to lecture on mathematical developments related to
the theory of relativity. His assistant, Walter Baade, wrote up these lectures in a 100-page
manuscript to which Klein appended a provisional table of contents.”* Nevertheless, he con-
ceived of these as a direct continuation of his earlier courses; he thus labeled these lectures
Teil IV, Kap. 9, so as to follow directly on the eight chapters in the earlier Ausarbeitungen.**
Judging by the many topics touched upon, these lectures represent Klein’s first attempt to
gain an overview of the literature. Some of the material he covered was probably reworked
into subsequent Ausarbeitungen, which he circulated through Sommerfeld and Einstein.2’

Klein’s interest in special relativity largely focused on the invariant theory of the Lorentz
group, starting with Maxwell equations, which he wrote in a manifestly covariant form.
Some years before this, Klein (1910) gave a projective interpretation of Minkowski space,
which placed it within the larger context of metric geometries of constant curvature. Like
Euclidean geometry, it corresponds to a flat space, but one in which the metric is indefinite
rather than positive definite. Klein had been the first to exploit the possibility of attaching
different types of quadrics to a projective space in order to introduce a metric, an idea
inspired by Arthur Cayley’s realization of Euclidean geometry by means of the so-called
Cayley metric.?® In this special case, the quadric is a degenerate imaginary figure, whereas
the Minkowski metric corresponds to a real degenerate quadric. These possibilities for
deriving different metrical geometries served as a major inspiration for Klein’s ‘Erlanger
Programm,’ especially since the same general approach could be applied in many different
settings. After Minkowski geometrized what later came to be called ‘special’ relativity,
Klein proposed calling ‘invariant theory relative to a group of transformations the relativity
theory of a group’ (Klein 1910, p. 539). Emmy Noether underscored this viewpoint at the
very end of “Invariante Variationsprobleme” (Noether 1918b, p. 257) in order to emphasize
how her various results fully accorded with this position.

Nachlass Klein 21J, SUB. Gattingen. Noether was enrolled as one of the 28 auditors for these lectures, which Klein held in
Carathddory’s seminar. She was also one of the 20 who attended his third series of lectures during the winter semester of
1915-16 (Nachlass Klein 21K).

23 Nachlass Klein 21N, SUB, Gottingen.

24 These lectures were entitled “Die Infinitesimalgeometrie bei Gaull und Riemann und ihre Bedeutung fiir die neueste
mathematische Physik’.

Einstein reacted in a letter to Klein from 15 December 1917, in which he criticized the latter’s tendency to overestimate the
importance of formal methods (Einstein 1998a, pp. 569-70). Pais later commented about the irony of this pronouncement in
light of Einstein’s later views about the guiding role of mathematical ideas for physical theories (Pais 1982/2005, p. 325).
In a metric geometry, the distance between two points is an elementary invariant under congruence transformations
(isometries); whereas four collinear points determine an invariant, the cross ratio, in projective geometry. By attaching a
quadric to the space as an “absolute’ figure, one can introduce a metric, owing to the fact that the line joining any two points
will meet the quadric in two more. If the transformation group is then restricted to automorphisms that leave the ‘absolute”
figure fixed, the invariance of the cross ratio ensures that the metric thus defined will remain invariant under these
transformations.
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A prime goal of Klein’s lectures on the mathematical foundations of relativity was to
describe how the relevant ideas first arose. Invariant theory and the calculus of variations
both had a long history; so did group theory, including the theory of transformation groups
first launched by Klein and Lie in the early 1870s. In 1904, Henri Poincaré noted that
the Lorentz transformations form a group, and four years later Minkowski geometrized
special relativity by inaugurating spacetime physics.”’ One of the major strands in Klein’s
lectures dealt with the posthumous reception of Bernhard Riemann’s famous ideas on what
came to be called Riemannian geometry. In his younger years, Klein had been strongly
influenced by Riemann’s geometric theory of complex functions, in particular the notion of
so-called Riemann surfaces. He also read the habilitation lecture Riemann delivered in 1854
on a topic chosen by Carl Friedrich Gauss (Riemann 1868). Hermann von Helmbholtz first
became aware of Riemann’s reflections after reading a lecture delivered by Ernst Schering
in December 1860, the year of Riemann’s death (Schering 1867). As he emphasized soon
thereafter in his celebrated essay (Helmholtz 1868), his own reflections on the empirical
roots of human space perception ran along somewhat parallel lines as those set out by
Riemann. Klein recalled how deep and mysterious Riemann’s ideas seemed to him and
his generation at the time they first appeared (Klein 1927, p. 165).

One reason for this had to do with the circumstance that Riemann was speaking to the
entire philosophical faculty. His allusions to mathematical concepts were thus exceedingly
condensed, though sufficient for Gauss to follow and appreciate, especially since Riemann
indicated clearly how his concept of curvature for n-dimensional manifolds was related
to Gaussian curvature for surfaces. Richard Dedekind reported on Gauss’s praise for this
accomplishment in the biographical essay he wrote for the first edition of Riemann’s Werke
(Riemann 1876, pp. 507-26). This volume also contained Riemann’s ‘Commentatio Math-
ematica’ (Riemann 1876a), a paper he composed in 1861 in response to a prize problem set
by the Paris Academy. Since his submission failed to win a prize, the manuscript languished
among Riemann’s papers until it was rescued by Heinrich Weber, who wrote a fairly lengthy
commentary on it (Riemann 1876, pp. 384-99, and 1892, pp. 405-23). About half of his
commentary was devoted to a single page of the text, which contained the analytic formulas
that Riemann suppressed in his lecture from 1854.28 Klein's ‘Erlanger Programm’ was writ-
ten long before the advent of the modern notion of differential manifolds. In fact, it appeared
even before Heinrich Weber published Riemann’s ‘Commentatio’ (Riemann 1876a) in the
first edition of his Werke. Klein’s longstanding interest in Riemann’s work eventually led
to the discovery of new material from his lectures and manuscripts, which were then edited
by Max Noether and Wilhelm Wirtinger for publication in 1902.% Despite such efforts,

27 Einstein initially considered this a largely superfluous formalism, but after Arnold Sommerfeld and Max von Lauve developed
it further, he soon came to appreciate the virtues of 4-vectors (Walter 2007). In the mathematical section of Einstein and
Grossmann (1913, p. 328), Grossmann cited works by these authors for readers who wished to study the tensor calculus used
in special relativity.

Weber elucidated these in Riemann (1876, pp. 384-91), but to meet criticisms of that commentary he gave a revised version
in the second edition (Riemann 1892, pp. 405-15). Olivier Darrigol recently offered a somewhat different interpretation based
on a study of fragments found in Riemann’s literary estate; see Darrigol (2015).

This undertaking coincided with another, much larger project, namely the Gauss edition, which Klein took over after
Schering’s death in 1897.

29
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the thread of sources tracing back to Riemann that might shed light on his approach to
Riemannian geometry is exceedingly thin.

Riemann’s habilitation lecture presents only the idea behind normal coordinates in quali-
tative terms (Riemann 1892, pp. 276-8), whereas Weber was the first to work out the analytic
form (Riemann 1892, pp. 405—11). Starting with an arbitrary point O as origin and the
bundle of vectors vg emanating from it, one coordinatizes the points P at a distance d from
O in the direction of vy by the lengths along the geodesic curve determined by the given
vector. Since these geodesic curves are invariants of the metric attached to a differential
manifold, Riemannian normal coordinates are part of its intrinsic structure.’"

Klein traced these ideas through Gaussian surface theory in his lectures, introducing
the Lagrangian differential equations for geodesics on a surface. His starting point was the
variational principle

6fds =5 [ VEdu? + 2Fdudv + Gdv? = 0, (2.8)

which leads to two differential equations when u and v are varied independently. In order to
connect this with classical physics, Klein introduced a time variable ¢ so that the geodesic
curves correspond to the paths of inertial motion of test particles on the surface once
launched with a given initial velocity. This well-known fact evidently provided Einstein
with an important clue in 1912, the year he began searching for a non-scalar theory of
gravitation. As he later recalled in his Kyoto address from 1922:

I suddenly realized that there was good reason to believe that the Gaussian theory of surfaces might
be the key to unlock the mystery. I realized at that point the great importance of Gaussian surface
coordinates. However, I was still unaware of the fact that Riemann had given an even more profound
discussion of the foundations of geometry. I happened to remember that Gauss’s theory had been
covered in a course I had taken during my student days with a professor of mathematics named
Geiser.3! From this I developed my ideas, and I arrived at the notion that geometry must have physical
significance. (Einstein 2012, p. 638, my translation)

Following Lipschitz (1870), Klein rewrote (2.8) for a general quadratic differential
form as

f ngdx dx -0

which implies that for arbitrary dx” the invariant

Zd(z g,-kdx"ax"‘) ) (Z g,-kdx"dx"‘) =23 W, ddsx’ =0. (29

This implies that \, (d, d) is a covariant vector, and the equation describes the geodesics for
an n-dimensional differential manifold R”. When written out, it amounts to the usual form
written with Christoffel symbols. Lipschitz obtained 3n differential equations in all:

V,.(d,d) =0, W,.(d,8) =0, W, (8.8) =0, (2.10)

30 For an overview of the uses of normal coordinates, see Pauli (1958, pp. 44-52).
31 The geometer Carl Geiser was a professor at the ETH Ziirich from 1869 to 1913,
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where the first and third are special cases of the second, which can be written as

; 1 /agi gk dgik ;
W, (d.8) = Zg,-,.dax' + Zk: 5 ( oy o _f)dx’dxk =0. (2.11)
1 I,

axy ax; 0x,

Lipschitz applied this formalism to derive Riemann’s curvature form [()] using methods
adapted by Emmy Noether (1918a). Starting from the differential form f = Y gizdx’dx*,
Riemann first introduced

Q=358 Z girdx'dx* —2ds Z girdx'8x* + dd Z gixdx'8xk. (2.12)

The operators d and § commute and have the same formal properties as in ordinary calculus.
Thus,
58 gindxdx* =5 (Y dgudx'dx + Y gix (8dx'dx* + dx'sdx")),

where dgir = >, aai‘:‘ dx,. In connection with Riemann and Lipschitz, Noether referred to
(2.12) as the ‘normal form of the second variation.” She showed how similar methods could
be used to derive corresponding normal forms of higher degree (Noether 1918a).

Riemann derived [Q)] by using the geodesic differential equations (2.10) to find
d?,ds, 88, whereas Lipschitz eliminated the higher-order differentials directly and found:

Q=0 — 2[ 3 87V (d, )W (d. ) — Zg"“\l-'r(d,d)\lls(ﬁ,a)}. (2.13)

Klein used Grassmannian coordinates to express the numerator and denominator of the
Riemannian curvature tensor K g. Starting with f(d.d)= ) g,-kdxi dx*, he formed its polar
f(d,8) = gixdx'5x*, and then the determinant

p_| fdd @)
fe.d f6.9) |

writing this in Grassmannian notation as

F = (8irks — 8r&is)Pik Prs. (2.14)
He did the same with the numerator, writing [QQ] = > (ik,rs) pit prs, and then
Kr= —@ (2.15)
R 2F . .

Klein had long been familiar with Grassmannian coordinates, which in the case n = 4
provide an elegant method for representing the lines in projective 3-space. Taking two points
with coordinates (x1,x2,x3,x4) and (y1, ¥2, v3, v4), the six determinants p;r = x; vk — XrVi
yield homogeneous coordinates for the line joining them. These line coordinates satisfy a
quadratic identity, namely P = pj2p34 + p13p42 + p1ap23 =0. The same relations hold
for arbitrary n, where for any two vectors d.§, the pjy =dx;éx; — dx;dx; form an anti-
symmetric tensor. Klein was later astonished to learn that these were connected with Rie-
mannian differential geometry, an insight Lipschitz never conveyed to him in the late 1860s
when Klein was immersed in his dissertation topic, a systematic investigation of quadratic
line complexes in line geometry. Thus, in his ‘Erlanger Programm,” he noted the significance
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2.5 On Klein’s Collaboration with Noether

The collaboration between Klein and Noether began in 1917 when she was attending his
private lectures on the mathematical foundations of relativity theory. The fact that they never
co-authored a single paper should come as no surprise. Co-authorship was still relatively
uncommon during this period, and German professors were famous for exploiting work
done by their assistants. In the case of Klein and Noether, she was obviously in a subservient
role: not until 1919 was she allowed to join the faculty as an unpaid lecturer (Privatdozent).
Nevertheless, Klein’s papers contain many references to her work as well as allusions to
her vital assistance, whereas she included similar comments in her papers, indicating how
her work was closely tied with his. Emmy Noether was, in fact, a key member in a small
team of researchers who were engaged in Klein’s large-scale research program aimed at
elaborating mathematical methods in modern physics. Others who assisted him included
Hermann Vermeil, Vsevolod Frederiks, and Walter Baade.

It appears that Noether was no longer working closely with Hilbert by the summer of
1917, since he had ended his lectures on relativity theory and was now teaching set theory.
Her work with Klein, on the other hand, began to build momentum around this time. On 22
August 1917, she wrote Fischer to announce that she had finally solved a problem that
had occupied her attention since spring, namely the extension of a theorem proved by
E. B. Christoffel and G. Ricci for quadratic differential forms to arbitrary forms of any
degree (Dick 1981, p. 33). Noether presented a lecture on her general ‘Reduction Theorem’
on 15 January 1918 at a meeting of the Goéttingen Mathematical Society, and 10 days later,
Klein submitted her paper (Noether 1918a) for publication. Drawing on methods in the
calculus of variations going back to Lagrange, she showed how the problem of finding a
complete system of differential invariants could be reduced to classical invariant theory,
i.e. finding all algebraic invariants of a corresponding projective group. One begins with
one or more differential expressions f(x,dx) = f(xy,...,xz:dxy, ...,dx,) and the group
of all analytic transformations x; = x;(yy, ....¥,), where f(x,dx) is mapped to g(y.dy).
On the level of the differentials, this general group corresponds to the group of all linear
transformations:

dx; = Z %d}’k; Sx; = Z %3)’;&-

A general differential invariant is an analytic function J, defined for any f and any num-
ber of its partial derivatives with respect to either the variables, the differentials. or combina-
tions of both, that remains unchanged under the general transformation group. If, however,
none of the derivatives involves the variables x;, and only first-order differentials appear
in J, then these are called projective invariants, as they are restricted to the general linear
group. Noether’s argument thus aimed to show how to generate a system of differential
invariants that can then be reduced to projective invariants by systematically removing
higher-order differentials.

Noether (1922, p. 407) briefly described how her theorem was related to classical vari-
ational problems (2.2), thus leading to the introduction of Riemannian normal coordinates,
which transform the geodesic curves in a differential manifold into lines. The corresponding
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coordinate transformations will consequently be linear mappings, and the system of dif-
ferential invariants can then be transformed to another equivalent system whose underly-
ing transformation group consists of linear transformations. How all this can be carried
out is only sketched by Noether (1918a, pp. 245-6), as she originally planned to pub-
lish a detailed analysis in Mathematische Annalen, a plan that never materialized. She
noted, however, that the case for quadratic forms was worked out in detail by Vermeil
(1919), who closely followed her general ideas. Above all, Noether emphasized that her note
demonstrated the scope and power of formal variational methods as opposed to the far less
transparent methods of Christoffel using elimination theory (Noether 1922: 407). Noether
(1922) refers explicitly to Klein’s seminar lectures from the summer semester of 1917 on
mathematical methods in relativity, which clearly served to launch her work on variational
methods in the theory of differential invariants. Still, it seems very doubtful that Klein
imagined one could extend Christoffel’s ‘Reduction Theorem’ to all possible differential
forms. Only Noether had the full grasp of technical resources to take on such a difficult
problem.
Einstein also read her paper and wrote to Hilbert on 24 May 1918:

Yesterday 1 received from Frl. Noether her very interesting paper on the construction of invariants.
It impresses me that one can view these things from such a general standpoint. It would have done
no harm to the troops returning to Géttingen from the field if they had been sent to school under Frl.
Noether. She appears to know her métier well! (Einstein 1998b, p. 774)

Klein had submitted Noether’s (1918a) paper in January, and in the meantime his
collaboration with Noether had intensified. It was during this time that their attention
shifted to understanding the status of the various formulations of energy-momentum
conservation in general relativity. Unlike Einstein, Klein distinguished sharply between
these new findings and traditional conservation laws in classical mechanics. This soon
became part of his program for promoting the ‘Erlangen Programm’ (Klein 1872) as a
framework for the new physics. In Klein’s view, relativity theory was best conceived as
a broad approach linking mathematics and physics. He thus saw it not in terms of two
groups — the Lorentz group and the group of general point transformations — but rather as
the invariant theory relative to some given group bearing on a particular physical theory.
He thus had this general context in mind when he emphasized the distinction between
conservation laws in classical mechanics, special relativity, and the general theory of
relativity.

These issues surfaced when Klein and Hilbert exchanged their views regarding the status
of the various conservation laws in Klein (1918a). Hilbert not only agreed with Klein’s
general position, he went further by claiming there was no analogue for classical energy
conservation in general relativity. He even asserted that one could prove a theorem effec-
tively ruling out conservation laws for general transformations analogous to those that hold
for the transformations of the orthogonal group. That remark caught Klein’s attention, and
he replied: ‘It would interest me very much to see the mathematical proof carried out that
you alluded to in your answer’ (Klein 1918a, p. 565). Emmy Noether was clearly very
interested, too.
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She wrote Klein from Erlangen on 29 February 1918: ‘I thank you very much for sending
me your note Klein (1918a) and today’s letter, and I'm very excited about your second
note Klein (1918b); the notes will certainly contribute much to the understanding of the
Einstein—Hilbert theory.** Noether then proceeded to explain her progress on the problem
of distinguishing between classical and relativistic conservation laws. Twelve days later,
she wrote Klein again about some key ideas that she would later publish in “Invariante
Variationsprobleme” (see Rowe 2021, p. 81). The next day, 13 March, her father, the emi-
nent algebraic geometer Max Noether, was pleased to report on her progress in a letter to
Klein. Alluding to her collaboration with Klein, he wrote, ‘it has been a great source of
satisfaction for me that our mutual relations have been revived again through the activities
of my daughter; I see every day how her creative powers grow and hope that these will lead
to many new results’ (Nachlass Klein 12, SUB Géttingen). Four months later, on 23 July,
Emmy Noether presented her main results to the Géttingen Mathematical Society. Klein
then submitted a preliminary version of her findings to the Gottingen Scientific Society
three days later. After receiving proofs, she made the final revisions in late September.
Noether (1918b) gave a precise answer to Hilbert’s conjecture, though he apparently never
acknowledged this. In “Grundlagen der Physik™ (Hilbert 1924, p. 5), he cited her paper in a
footnote, though only because her second theorem provided a proof for Hilbert’s Theorem
I in “Die Grundlagen der Physik I” (Hilbert 1915).

As emphasized above, Noether’s methods for constructing differential invariants were
closely related to those of Riemann and Lipschitz. Moreover, as can be seen from her brief
survey article (Noether 1922), the same invariant-theoretic methods she used in Noether
(1918a) were central for setting forth the results in her far more famous paper (Noether
1918b). In the latter paper, Noether began by noting that one can derive identities involving
the Lagrangian expressions vr; for any general variational problem, defined for a function
f that depends on n independent variables xi, ..., x,, a set of functions of these variables,
uy(x),...,u,(x), and their derivatives. One varies the u(x) so that du and all derivatives
vanish on the boundary d D of the domain D, from which follows:

61—6[---ff(x,u,g—i)dx—f—--féfdx. (2.26)
[fZ(a/f (x,u,gz) au,-)dx, (2.27)

where ¥; are the usual Lagrangian expressions that arise in solving 87 =0.3* Since the
du are varied arbitrarily, the integrands must be equal, and applying integration by parts,
Noether obtains the general identity:

This leads to

aA dA
Zglf,-Su;:ch+DivA:§f+W]+---+ &
1

) (2.28)

33 E. Noether to F. Klein, 29 February 1918, Nachlass Klein 22B, SUB, Gottingen.
M To compute such an n-fold integral, one takes D to be a Cartesian product of closed intervals in R" and then iterates the
calculation of the n single integrals.
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where Div A arises from the boundary terms. She noted that for the simplest case, a single
integral and a function f that depends on no derivatives of the u higher than the first, the
corresponding identity takes the form:

> Vidu; =8f - - (Z %au) (2.29)
where u] = %.

Noether calls this Heun’s central Lagrangian equation, but without giving any explana-
tion or reference. It appears that this offhand remark has never received much notice, but, in
fact, this was one of the most important threads connecting Klein’s lectures with Noether’s
publications from this time. To recognize what this says in a more familiar setting, let us
look again at the Lagrangian equations (2.7), where f = L,u = g;, and u’ = ¢;. Then
(2.29) reads™

oL d JL
ZI/,fgqi - Z [aqi(t) Cdr aéf(f):| o
d dL
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Equation (2.29) also occupies a central place in Noether’s note on ‘Formal Variational
Calculus and Differential Invariants’ (Noether 1922), which appeared at the end of the
report on algebraic and differential invariants in the Encyklopddie der mathematischen Wis-
senschaften. The report itself was written by Roland Weitzenbick, a leading expert on
invariant theory who was then working in Graz. He submitted the final manuscript in 1921,
around the time that Felix Klein was giving Wolfgang Pauli fairly detailed feedback on the
proofs for his far better-known report of relativity (Pauli 1921), which contains numerous
references to related works by Klein and his young collaborators. Extant correspondence
probably no longer survives that would confirm how Noether’s note came to be attached
to Weitzenbock’s report, but the circumstances alone strongly suggest that Klein asked her
to write about a special topic that had been at the center of their collaboration during the
last two years of the war. Noether references a page in Heun'’s lengthy report on ‘Ansiitze
und allgemeine Methoden der Systemmechanik’ in Band IV of the Encyklopdidie, which
was edited by Klein. Since her brother Fritz was Karl Heun’s assistant in Karlsruhe when
this article appeared in 1913, she could have learned about the so-called central Lagrangian
equation from him. Far more likely, though, she picked up on the mathematical importance
of this equation from Klein’s lectures.

In those lectures, which Klein delivered in the summer of 1917, his very first topic was
Lagrangian mechanics interpreted by way of the invariant theory of a general group of point
transformations (or, as one would say today, a local diffeomorphism group). Introducing
Lagrangian coordinates ¢,, Klein derived the equations of motion in the usual way by

35 The final step follows from %q—‘ 6%& = 8g;.
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varying the ¢, over the time interval while leaving them fixed on the boundary. Writing
T for the kinetic energy and ) P, g for the work associated with a virtual displacement,
Klein inquires as to why the equations of motion remain invariant under general coordinate
transformations. His simple answer was that the integrand in the variational formulation

aT d(a%)
5[ > e~ + Py |8 | di =0 (2.31)

is an invariant. He then noted that Lagrange had avoided using variational analysis and
instead employed the principle of virtual displacement to derive the same result using what
Heun called the central Lagrangian equation (Klein 1927, pp. 141-2).

In Noether (1922) as well as in Noether (1918b), the physics behind Heun’s equation has
been stripped away. Instead it becomes a tool for showing how the Lagrangian expressions
Y; enter as differential invariants, which can be used to elucidate several important relations
with other differential invariants. For quadratic forms, Noether writes the equation in the
form:

8 gindxidxy —2d Y girdxidxp = =2 Y,(d.d)bx,. (2.32)

The notation on the right is suggestive for exploiting other identities. Indeed, one can derive
a more general identity using d and § that contains the above as a special case:

D Z gixdx;jdx; — 6 Z gixdx; Dxp—
d) " gixdxiDxy = —2Y  ¥,(d.8)Dx,.

Setting § = d, we recover the identity above, where D now appears in place of §. Noether
then observes that v,.(d.d) is a covariant vector, which leads to a contravariant vector
p(d,8), where p(d,d) = 0 are equations for the geodesic curves. By means of p(d.d),
one can carry out covariant differentiation, etc. The condition p(d,d) = 0 was used by
Levi-Civita to interpret curvature in terms of parallel displacement of vectors.

Emmy Noether hardly considered her work on differential invariants the last word on
the subject, though she herself wrote about it only retrospectively. In a report on ‘Alge-
braic and Differential Invariants’ (Noether 1923) that she delivered in September 1922 in
Leipzig at the annual meeting of the German Mathematical Society, she summarized recent
progress but also alluded to a number of still-outstanding problems. In her opening remarks,
she recalled Hilbert’s earlier synopsis of developments in algebraic invariants as having
unfolded in three phases: a naive period, followed by a formal, and then a critical stage (his
own work). Noether remarked that she would only speak with reference to this final phase,
noting that Hilbert’s work had reformed algebraic invariant theory by exploiting arithmetical
methods in algebra. For differential invariants, she identified the critical developments with
Riemann’s name, as he was the first to treat this branch of research with formal variational
methods. Her report ended with some brief remarks about the role these methods play in
her reduction theorem (proved in Noether 1918a). Pointing to recent work by Weyl and
J. A. Schouten, which was no longer based on variational principles, Noether threw open
the question whether higher-order differentials could nevertheless be eliminated in analogy

(2.33)
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As might be expected, these two lectures confirm that Klein and Noether were very
different types of mathematicians whose respective styles practically defy comparison. Weyl
noted that Noether shared with several other major figures — Dedekind. Kronecker, and even
Weierstrass — a strong inclination to algebraicize the broad terrain of analysis, whereas
Klein’s general tendency was to invoke continuity arguments, or as Weyl expressed it,
topological reasoning, which gave his analytical and algebraic works a strong geometric
flavor. Since Weyl’s own mathematical tastes lay closer to Klein’s, he waxed more than a
little enthusiastically when speaking of the latter’s *Erlanger Programm’ from 1872, which
he clearly saw as the centerpiece of Klein’s mathematical legacy. Weyl made the particularly
striking claim — one that would have greatly pleased Klein — that the understanding of
geometry in the latter’s ‘Erlanger Programm’ was ‘nothing other than relativity theory in its
general, mathematically formulated form™ (Weyl 1930, p. 299).

Weyl’s lecture in honor of Emmy Noether has been cited far more often and for good
reason. This was a dramatic occasion, the capstone of truly harrowing times that both of
them had gone through together (Rowe 2021, pp. 199-265). In the fall of 1933, Hermann
Weyl abandoned his chair in Gottingen for a research professorship at Princeton’s Institute
for Advanced Study (IAS). Beginning in February 1934, he again saw Emmy Noether on
a regular basis, as Oswald Veblen had arranged for her to give weekly lectures at the IAS.
Most commentators who have subsequently surveyed Noether’s career have followed Weyl
in viewing it as composed of three periods: (1) 1907-19, period of relative dependence; (2)
1920-26, ideal theory; (3) 1927-35, non-commutative algebras with applications to com-
mutative number fields (Weyl 1935, p. 439). As a general scheme, this tripartite division is
certainly useful, even though the boundaries between these periods should not be drawn too
sharply. More problematic is the label ‘relative dependence’ for (1), when Emmy Noether
emerged as a leading authority in the field of invariant theory, producing work that carried
over into the second period.

Weyl treated the first period rather dismissively, though he was well aware of her two
papers (Noether 1918a, 1918b) written in collaboration with Klein. He recalled those times,
when Hilbert was ‘over head and ears in the general theory of relativity” and Klein saw ‘its
connection with his old ideas of the Erlangen program [that] brought the last flareup of
his ... mathematical production’ (Weyl 1935, pp. 430-1). He noted how the posthumously
published lectures (Klein 1927) bore witness to this, but also how Emmy Noether’s expertise
in invariant theory had supported Hilbert’s research as well as Klein’s. Commenting on her
two papers, he wrote:

For two of the most significant sides of the theory of general relativity she gave at that time the genuine
and universal mathematical formulation: First, the reduction of the problem of differential invariants to
a purely algebraic one by the use of ‘normal coordinates’; second, the identities between the left sides
of Euler’s equation of a problem of variation which occur when the (multiple) integral is invariant
with respect to a group of transformations involving arbitrary functions (identities that contain the
conservation theorem of energy and momentum in the case of invariance with respect to arbitrary
transformations of the four world coordinates). (Weyl 1935, p. 431)

It is worth noting that Weyl’s brief allusion to ‘Invariante Variationsprobleme’ addresses
only Noether’s second theorem, not the first. When physicists write about her paper today,
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they often refer to the Noether theorem, meaning the first of her two main results, thereby
overlooking that she proved two theorems. Seen in historical context, her second theorem
was the central finding, since it clarified the status of identities arising from invariant vari-
ational problems; these were first noticed by Hilbert and played a major role in his 1915
publication. Hermann Weyl had, of course, an excellent vantage point from which to judge
the motivation behind these two studies, but by 1935, the year of her death, only a small
number of experts knew what was in these papers.

Around the centenary of her birth, Emmy Noether’s career was celebrated in several new
publications and with the publication of her Coellected Papers (Noether 1983), edited by
Nathan Jacobson. Noether’s reputation at that time rested squarely on her contributions to
modern algebra, an area of research that had expanded greatly during the half-century since
Noether’s death. By this time, some mathematical physicists had come to appreciate the
importance of her “Invariante Variationsprobleme”, but few seem to have appreciated the
larger context of interests that motivated her work, despite the fact that she cited several other
related papers in it. In “Formale Variationsrechnung und Differentialinvarianten™ (Noether
1922, p. 408), she repeated the citations of these six earlier works, noting that they were
motivated by physical problems.*® Noether characterized her own paper as motivated by
questions of principle.
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