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Preface

How does the bandwidth of a telephone line relate to the bit rate that can be sent through
it? Modems keep getting faster; how quickly can they operate? These sensible questions
have unexpectedly profound answers. At MIT, D've been asked them by people ranging
from undergrads to faculty. A good engincer might know about coding theory and the
concept of channel capacity, but not understand the origin of the noise that limits the
capacity. Conversely, a physicist might use the fluctuation-dissipation theorem to explain
why resistors arc necessarily noisy, but know nothing of information theory. And the
computer scientist sending data over the phone line might not understand cither side.
The most interesting aspects of this problem can casily be missed among these poles.
D've found this pattern to recur over and over: people may not appreciate the uscful
applications of fundamental results in the devices they use, or the deep implications of
their practical knowledge, and may not have a good sense of how their formal academic
training can relate to their personal passions.

The familiar computing and communications devices that we s to manipulate infor-
mation operate near many remarksble physical limits. A handheld GPS reciver applies
both special- and 1 ons to its timing of signals
from atomic clocks in satellites in order to maintain the system’s global 1 n:
The head in a high-capacity disk drive flies within a single mean-free-path of an air
molecule above the platter, and so the acrodynamic design problem can no longer be
solved by modeling the airflow with continuum partial differential cquations. This kind
of tremendous ingenuity has gone into finding practical solutions to what had appeared
to be impossible technological problems. However, the exponential improvements that
we've come to rely on, such as processor speeds doubling every few years, must stop when
current

ccuracy

aling trends run into basic physical limits. Circuits cannot have wires smaller
than atoms, signals faster than light, or charge carricrs less than an electron. Given such
constraints, a CMOS chip that can perform 10° floating-point operations per second (a
gigaflop) is feasible, but 1012 (a teraflop) is unlikely. Understanding these kinds of syster
requires equal familiarity with fundamental physics and with very practical engincering.
Because this kind of background is hard to develop given the traditional split between
basic and applied science, it’s easy for students (and practitioners) to run into either the
Scylla of uncritically accepting the received wisdom of past practice, or the Charybdis of
enthusiastically pursuing impossible alternatives.

"This book grew out of lecture notes for a course that I've developed at MIT’s Media
Lab. The goal is to review basic physical governing equations in a number of areas
relevant to information technology, and then work up through device mechanisms to a




1 Introduction

Why does computation require energy
Because there must be some irreversibility to ensure that calculations go for-
ward (from inputs to outputs) and not in reverse, and because logical erasure
necessarily implies dissipation because of the ion of phas

What is a quantum computer?

One that operates on quantum bits that can be in a superposition of many differ-
ent states simultaneously and that maintain a connection (called entanglement)
following an interaction. These properties change the computational order of
many important problems, such as reducing factoring from requiring a time that
is exponentional to polynomial in the number of bits.

What lxmm the bit density f)r semiconductor memory?

by the used to pattern a memory cell, and
the resulting yield), electromigration (when too few atoms are used in a wire
they move in response to currents), and capacitance (when too few electrons are
used, the fluctuation in their number becomes significant).

What limits the bit density in a typical hard disk?

Magnetic domain wall energies, and the head height.

What limits the bit density for optical storage?

The diffraction limit for focusing light, which is proportional to the wavelength.

Why are twisted pairs twisted, and coaxial cables coaxial?
To reduce the generation of unwanted radiation and the sensitivity to interfer-
ence, and to effectively guide the signal. Twisted pairs are best at low frequencies,
and coaxial cables at high frequencies.

Where does electronic noise come from, and how does it limit data rates?
‘Thermodynamic fluctuations, defect scattering, and finite-size statistics. The
capacity of a communications channel grows as the logarithm of the ratio of the
energy in the signal and the noise.

What is a liquid crystal, and how does it modulate light?

It is a material that maintains long-range orientational ordering without trans-
lational ordering. Under an applied field it is able to rotate the direction of
polarization of light, thereby modulating the intensity of the light if the material
is enclosed between polarizers.




2 Introduction

These questions are examples of the many ways in which familiar devices that detect,
transmit, process, store, and deliver infe operate surprisingly near
physical limits. The goal of this book is to explorc how such devices function, how
they can be used, what the limits on their performance are, and how they might be
improved. This will require developing familiarity with the physical governing equations
for a range of types of behavior, and with the mathematical tools necessary to manipulate
these equations. One important aim is to cquip the reader to work out quantitative answers
t0 questions such as these.
A note about pedagogy: reading about physics is as satisfying as reading about food or
exercise. It can be uscful, but there is no substitute for experience solving problems. Each
chapter has problems that apply and develop the precceding ideas, ranging from trivial
calculations to open rescarch questions. Since another goal of this book is to help develop
problem-solving skills, consulting the supplied answers before a problem is attempted
is entirely counter-productive because the real problems that will come after this book
don’t come with such handy answers.

And a note about cpistemology: it is important to keep in mind the distinction between
truth and models. I will be describing models for a variety of types of behavior; these are
the product of both experimental observations and theoretical inferences. A good model

should compactly explain what you already know and allow you to predict new things
that you did not know, but it does not necessarily contain any guide to an underlying
“truth.” Some physicists believe that there is an ultimate “correct” answer that these
models are approaching, and some violently disagree, yet all agree on the usefulness
of the current set of models and on how to manipulate them. Truth and Meaning are
concepts that one may choose to associate with these models, but their presence or absenc

does not affect the models’ use. At most, they do guide what you choose to think about
“This distinction is very important because, when faced with unexpected claims or results,
there is a recurring danger of secing particular models as privileged correct answers rather
than being open-minded about judging evidence on its merits. The history of science is
littered with conflicts arising from prior belicfs that were stronger than experimental
observations




2 Interactions, Units, and Magnitudes

Modern information technology operates over a spectacular range of scales; bits from a
memory cell with a size of 10~7 meters might be sent 107 meters to a geosynchronous
satellite. It is important to be comfortable with the orders of magnitudes and associated
interaction mechanisms that are useful in practice. Our first task will be to review the
definitions of important units, then survey the types of forces, and finally look at typical
numbers in various regimes.

21 UNITS

Many powers of ten have been named because it is much easier to say something like
“a femtosecond optical pulse™ than “a 0.000 000 000 000 001 second optical pulse” when
referring to typical phenomena at that scale (a cycle of light takes on the order of a
femtosecond). The dizzying growth of our ability to work with large and small systems
pushes the bounds of this nomenclature; data from terabyte storage systems is read out
into femtofarad memory cells. It is well worth memorizing the prefixes in Table 2.1.
Physical quantities must of course be measured in a system of units; there are many
alternatives that are matched to different regimes and applications. Because of their inter-
relationships it is necessary only to define a small number of fundamental quantities to
be able to derive all of the other ones. The choice of which fundamental definitions
to use changes over time to reflect technological progress; once atomic clocks made it
possible to measure time with great precision (small variance) and accuracy (small bias),
it became more reliable to define the meter in terms of time and the speed of light rather
than a reference bar kept at the Bureau International des Poids et Mesures (BIPM,
http://www.bipm.fr) in Sevres, France. The kilogram is still defined in terms of a
platinum-iridium cylinder held at BIPM instead of a fundamental physical process, a
source of great frustration in the metrology community. Aside from the difficulty in
it, the of on the surface increases the mass by
about 1 part in 10 per year, requiring that it be measured only after a special cleaning
procedure [Girard, 1994].
‘The most common set of base defined quantities in use is the Systéme International

@ Unités (SI) [BIPM, 1998]:

length: meter (m)
The meter is the length of path traveled by light in vacuum during a time interval
of 1/299792458 of a sccond.



Interactions, Units, and Magnitudes

‘Table 2.1. Orders of magnitude.

Magnitude _Prefix _Symbol | Magnitude _Prefix _Symbol
10 yoeto  y 10 yoo Y
102 wplo 7 102 zetta z
101 atto a 10" exa E
1075 femto f 10 peta P
10-2 pico P 102 tera T
10 nano n 10° giga G
10 micro g 10° mega M
10} milli m 10° kilo k
102 centi ¢ 102 hecto  h
10" deci d 10! deka da

mass: kilogram (kg)
The kilogram is the unit of mass; it is equal to the mass of the international
prototype of the kilogram.

time: second (s)
The second is the duration of 9192 631 770 periods of the radiation correspond-
ing to the transition between the two hyperfine levels of the ground state of the
cesium-133 atom.

current: ampere (A)
‘The ampere is that constant current which, if maintained in two straight parallel
conductors of infinite length, of negligible circular cross-section, and placed 1
meter apart in vacuum, would produce between these conductors a force equal
10 210”7 newtons per meter of length. (See Problem

temperature: kelvin (K)

The kelvin, the unit of thermodynamic temperature, is the fraction of 1/273.16
of the thermodynamic temperature of the triple point of water. (Temperatures
in degrees Celsius are equal to temperatures in kelvin + 273.15. The triple point
is the temperature and pressure at which the liquid, solid, and gas phases of
water co-exist. It is fixed at 0.01 °C, and provides a more reliable reference
than the original centigrade definition of 0 °C as the freezing point of water at
atmospheric pressure.)

quantity: mole (mol)
The mole is the amount of substance of a system which contains as many el-
ementary entities as there are atoms in 0.012 kg of carbon 12 (i.c., Avogadro’s
constant 6.022... x

intensity: candela (cd)
The candela is the luminous intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 54010 hertz and that has a ra-
diant intensity in the direction of 1/683 watts per steradian. (The frequency
corresponds to the wavelength of 555 nm where the eye is most sensitive, the
factor of 683 comes from matching an earlier definition based on the emission
from solidifying platinum, and a steradian is the solid angle subtended by a unit




6 Interactions, Units, and Magnitudes

Table 2.2. Selected conversion factors.

Tdyne (gm-em-s%) =
lerg (gm-cm’-s7%) =
1 horsepower (hp)

1 atmosphere (atm)

1 ton (short)

101325 Pa

2000 pounds
907.18474 kg

1.60217646210~1 |
1.66053873x10-2 kg

1 electron volt (cV)
amu

1 éngstrom (A) 1x1010 m
1 fermi (fm) 1x107% m
1 parsec (pc) 3.085678x10° m
1 mile (mi) 1609.344 m
1 foot (ft) 0.3048 m
Linch (in) 0.0254 m
1 liter (L) 0.001 m’
1 pound (Ib) 0.45359237 kg
1 pound-force (Ibf) 4822 N

resistance: ohm Q (m?-kg-s™*-A%)

The ohm is the electric resistance between two points of a conductor when
a constant difference of potential of 1 volt, applied between these two points,
produces in this conductor a current of 1 ampere. (These derivative definitions of
the volt and ohm have more recently been replaced by fundamental ones fixing
them in terms of the voltage across a Josephson junction and the resistance
steps in the quantum Hall effect [Zimmerman, 1998], and capacitance may be
defined by counting electrons on a Single-Electron Tunneling (SET) device
[Keller et al., 1999].)

It is important to pay attention to the units in these definitions. Many errors in calcu-
lations can be caught by making sure that the final units are correct, and it can be possible
to make a rough estimate of an answer to a problem simply by collecting relevant terms
with the right units (this is the subject of dimensional analysis). Electromagnetic units
are particularly confusing; we will consider them in more detail in Chapter 5. The SI
system is also called MK because it bases its units on the meter, the kilogram, and the
second. For some problems it will be more convenient to use CG'S units (based on the
centimeter, the gram, and the second); MKS is more common in engineering and CGS
in physics. A number of other units have been defined by characteristic features or by
historical practice; some that will be useful later are given in Table 2.2.

It’s often more relevant to know the value on one quantity relative to another one,
rather than the value itself. The ratio of two values X, and X,, measured in decibels
(dB), is defined to be

X
dB = 20log,, 7; . @1
If the power (energy per time) in two signals is Pj and P, then

B = 10log, g @2
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‘Table 2.3. Selected fundamental constants.

gravitational constant (G)
speed of light (c)
clementary charge (¢)
Boltzmann constant (k)
Planck constant (1)

6.673(10)x10""" m’-kg~!
2.99792438x10° m/s
1.602176462(63)x10~* C
1.3806503(24)x10-% J/K
6.62606876(52)x10~% -5
1054571596(82)x10~3 J -5
6.02214199(47)x10% mol~!
9.10938188(72) 103! kg
1.67262158(13)x10°% kg
8.314472(15) J-mol '-K !
107/(4mc?) = 8.854188 ... 10~ F/m
47x10~7 H/m

Avogadro constant (N»)
electron mass (1)
proton mass (m,)

gas constant (R)

Vacuum permittivity (o)
vacuum permeability (1)

This story starts with quantum mechanics, the laws that govern things that are very
small. Around 1900 Max Planck was led by his inability to explain the spectrum of light
from a hot oven to propose that the energy of light is quantized in units of E = hv =
he/A, where v is the frequency and A is the wavelength; h = 6.626... X107 ] -s is now.
called Planck’s constant. From there, in 1905 Einstein introduced the notion of massless
photons as the discrete constituents of light, and in 1924 de Broglic suggested that the
wavelength relationship applies to massive as well as massless particles by A = h/p; A
is the de Broglie and is a of the particle duality: all
quantum particles behave as both waves and particles. An electron, or a photon, can
diffract like a wave from a periodic grating, but a detector will register the arrival of
individual particles. Quantum effects usually become significant when the de Broglie
wavelength becomes comparable to the size of an object.

Quantum mechanical particles can be either fermions (such as an electron) or bosons
(such as a photon). Fermions and bosons are as unlike as anything can be in our universe.
We will later see that bosons are particles that exist in states that are symmetric under the
interchange of particles, they have an integer spin quantum number, and multiple bosons
can be in the same quantum state. Fermions have half-integer spin, exist in states that
are antisymmetric under particle interchange, and only one fermion can be in a particular
quantum state. Spin is an abstract property of a quantum particle, but it behaves just like
an angular momentum (as if the particle is spinning).

Particles can interact through four possible forces: gravitational, electromagnetic,
weak, and strong. The first two are familiar because they have infinite range; the latter
o operate on short ranges and are associated with nuclar and subnuclar processes(the
characteristic lengths are approximately 1015 m for the strong force and 10~ m for the
weak force). The electromagnetic force is so sngmﬁczn( because of its strength: if a quan-
tum atom was held together by gravitational forces alone (like a miniature solar system)
its size would be on the order of 10 m instead of 10~ m. The macroscopic forces that
we fecl, such as the hardness of a wall, arc transmitted to us by the electromagnetic force
through the clectrons in our atoms interacting with clectrons in the adjoining atoms in
the surface, but can be much more simply described in terms of fictitious effective forces
(“the wall is hard”).




2.2 Particles and Forces 9

All forces were originally (houghi to be transmitted by an intervening medium, the
long-sought ether for forces. We now that forces operate by
the exchange of spin-1 gauge bosons — the photon for the electromagnetic interaction
(electric and magnetic fields), the W* and Z° bosons for the weak interaction, and cight
gluons for the strong interaction (there is not yet a successful quantum theory of gray-
ity). Quantum ElectroDynamics (QED) is the theory of the quantum electromagnetic
interaction, and Quantum ChromoDynamics (QCD) the theory of the strong interac-
tion. The weak and electromagnetic interactions are united in the electroweak theory,
which, along with QCD is the basis for the Standard Model, the current summary of
our understanding of particle physics. This amalgam of experimental observations and
theoretical inferences successfully predicts most observed behavior extremely accurately,
with two important catches: the theory has 20 or so adjustable parameters that must be
determined from experiments, and it cannot explain gravitation. String theory [Giveon
& Kutasov, 1999], a reformulation of particle theory that starts from loops rather than
points as the primitive mathematical entity, appears to address both these limitations,
and so is of intense interest in the theoretical physics community even though it is still
far from being able to make experimentally testable predictions.

‘The most fundamental massive particles that we are aware of are (hc quarks and
leptons. There’s no reason to assume that there’s nothing below them (i.c., turtles all
the way down); there’s just not a compelling reason right now to belicve that there is.
Quarks and leptons appear in the scattering experiments used to study particle physics
to be point-particles without internal structure, and are spin-1/2 fermions. The leptons
interact through the electromagnetic and weak interactions, and come in pairs: the electron
and the electron neutrino (¢~ v..), the muon and its neutrino (1~ v,), and the tau lepton
and its neutrino (7=, ;). Muons and tau leptons are unstable, and therefore are seen
only in accelerators, particle decay products, and cosmic rays. Because neutrinos interact
only through the weak force, they can pass unhindered though a light-year of lead. But
they are profoundly important for the energy balance of the universe, and if they have
mass [Fukuda, 1998] it will have enormous implications for the fate of the universe
Quarks interact through the strong as well as weak and electromagnetic interactions,
and they come in pairs: up and down, charm and strange, and top and bottom. These
fanciful names are just labels for the underlying abstract states. The first member of
cach pair has charge +2/3, the second member has charge —1/3, and each charge flavor
comes in three colors (once again, flavor and color are just descriptive names for quantum
numbers)

Quarks combine to form hadrons; the best-known of which are the two nucleons.
A proton comprises two ups and a down, and the neutron an up and two downs. Th
nucleons, along with their excited states, are called baryons and are fermions. Transitions
between baryon states can absorb or emit spin-1 boson hadrons, called mesons. The size
of hadrons is on the order of 10~'* m, and the energy difference between excited states
is on the order of 10” electron volts (1 GeV).

‘The nucleus of an atom is made up of some number of protons and neutrons, bound
into ground and excited states by the strong interaction. Typical nuclear sizes are on the
order of 10~ m, and energies for nuclear excitations are on the order of 10° €V (1 MeV).
Atoms consist of a nucleus and electrons bound by the electromagnetic interaction; typical
sizes are on the order of 1 ngstrom (A, 1019 m) and the energy difference between states
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is on the order of 1 V. Notice the large difference in size between the atom and the
nucleus: atoms are mostly empty space. Atoms can exist in different isotopes that have
the same number of protons but differing numbers of neutrons, and ions are atoms that
have had electrons removed or added.

Atoms can bond to form molecules; bond energies are on the order of 1 eV and bond
lengths are on the order of 1 A. Molecular sizes range from simple diatomic molecules
up to enormous biological molecules with 10°-10° atoms. Large molecules fold into
complex shapes; ths is called their tertiary structure. These shapes are responsibe
for the in molecular i that govern many biochemical
pathways. Predicting tertiary structure is one of the most difficult challenges in chemistry

Macroscopic materials are described by the arrangement of their constituent atoms, and
include crystals (which have complete long-range ordering), liquids and glasses (which
have short-range order but little long-range order), and gases (which have little short-
range order). There are also very interesting intermediate cases, such as quasiperiodic
alloys called quasicrystals that have order without
periodicity [DiVincenzo & Steinhardt, 1991], and liguid crystals that maintain orienta-
tional but not translational ordering [Chandrasekhar, 1992]. Most solids do not contain
just a single phase; there are usually defects and boundaries between different kinds of
domains.

The atomic weight of an clement is cqual to the number of grams equal to one mole
(Ny ~ 10%) of atoms. It is approximately equal to the number of protons and neutrons
in an atom, but differs because of the mix of naturally occuring isotopes. 22.4 liters of an
ideal gas at a pressure of 1 atmosphere and at room temperature will also contain a mole
of atoms.

The structure of a material at more fundamental levels will be invisible and can be ig-
nored unless energies are larger than its characteristic excitations. Although we will rarely
need to descend below atomic structure, there are a number of important applications of
nuclear transitions, such as nuclear power and the use of nuclear probes to characterize

materials.

23 ORDERS OF MAGNITUDE

Understanding what is possible and what is preposterous requires being familiar with the
range of meaningful numbers for each unit; the following lists include some significant
ones

Time
: the Planck time (Problem 2.7)
ble light, and a typical time scale for chemical

104
105

: this is the period of
reactions

107" s: atomic excitations and molecular rotations typically have lifetimes on the
order of nanoseconds, and this is the clock cycle for the fastest computers

10 s: the shortest time difference that is con:

107 s

fously perceptible by people
the approximate age of the observable universe




2.3 Orders of Magnitude

Power and Energy

1 €V: atomic excitations

€V: nuclear excitations
10° €V: subnuclear excitations
10% ¢V: the Planck energy
10 W: laptop computer
100 W: workstation; human
10* ar
10° W: supercomputer; heating and lighting a building
10* W: luminosity of the sun
1072 W/m?: softest sound that can be heard
1 W/m?: loudest sound that can be tolerated
107 J/kg: energy density of food
10° J: energy in a ton of TNT
10% J: energy consumption in the US per year

Temperature

7 K: lowest temperatures obtained in solids in the laboratory
K: microwave background radiation from the Big Bang

77 K: temperature of liquid nitrogen

6000 K: temperature of the surface of the sun

Mass

1077 kg: proton mass

107" kg: typical cell

1075 kg: small insect

10' kg: Earth’s biomass

5.98x10** kg: the mass of the Earth

10* kg: approximate mass of the Milky Way

Length

10~ m: the Planck distance
1015 m: size of a proton

10-10 e of an atom

4x10° m: height of a Low Earth Orbit satellite above the surface
6.378x10° m: radius of the Earth

4x107 m: height of a geosynchronous satellite above the equator
10" m: distance from the Earth to the Sun

10% m: Milky Way radius

10% m: size of the observable universe

Electromagnetic spectrum

< 0.1 A: gamma rays
0.1-100 A: X-rays



2.5 Problems 13

25 PROBLEMS

(2.1) (a) How many atoms are there in a yoctomole?
(b) How many seconds are there in a nanocentury? Is the value near that of any

important constants?

(2.2) A large data storage system holds on the order of a terabyte. How tall would a 1
terabyte stack of floppy disks be> How does that compare to the height of a tall
building?

(2.3) If all the atoms in our universe were used to write an enormous binary number,
using one atom per bit, what would that number be (converted to base 10)?

(2.4) Compare the gravitational acceleration due to the mass of the Earth at its surface to
that produced by a 1 kg mass at a distance of 1 m. Express their ratio in decibels.

(2.5) (@) Approximately estimate the chemical energy in a ton of TNT. You can assume

that nitrogen is the primary component; think about what kind of energy is
released in a chemical reaction, where it is stored, and how much there i

(b) Estimate how much uranium would be needed to make a nuclear explosion
equal to the energy in a chemical explosion in 10000 tons of TNT (once again,
think about where the energy is stored).

(c) Compare this to the rest mass energy E = mc* of that amount of material
(Chapter 14), which gives the maximum amount of energy that could be liber-
ated from it.

(2.6) (a) What is the approximate de Broglie wavelength of a thrown baseball?

(b) Ofa molecule of nitrogen gas at room temperature and pressure? (This requires
cither the result of Section 3.4.2, or dimensional analysis.)

(c) What is the typical distance between the molecules in this gas?

(d) If the volume of the gas is kept constant as it is cooled, at what temperature
does the wavelength become comparable to the distance between the molecules?

(2.7) (a) The potential energy of a mass m a distance r from a mass M is —~GMm/r.

What is the escape velocity required to climb out of that potential?

) Since nothing can travel faster than the speed of light (Chapter 14), what is the

radius within which nothing can escape from the mass?

(c) Ifthe rest energy of a mass M is converted into a photon, what is its wavelength?

(d) For what mass does its equivalent wavelength equal the size within which light
cannot escape?

(¢) What is the corresponding size?

(/) What is the energy?

(&) What is the period?

(2.8) Consider a pyramid of height H and a square base of side length L. A sphere is
placed so that its center is at the center of the square at the base of the pyramid,
and so that it is tangent to all of the edges of the pyramid (intersecting cach edge
at just one point).

s

(

(a) How high is the pyramid in terms of L?
(b) What is the volume of the space common to the sphere and the pyramid?
(This question comes from an entrance examination for humanities students at
Tokyo University [[Economist, 19931.)
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and the mean square deviation from this is the variance

(34)

s the standard deviation o.

The square root of the varianc
The probability distribution contains no information about the temporal properties of
the observed quantity; a useful probe of this is the autocovariance function:

s .
(et =) = Jim T/*l‘.(»;‘ru —nd . @35

If the autocovariance is normalized by the variance then it is called the autocorrelation
function, ranging from 1 for perfect correlation to 0 for no correlation to —1 for perfect
anticorrelation. The rate at which it decays as a function of 7 provides one way to
determine how quickly a function is varying. In the next chapter we will introduce
the mutual information, a much more general way to measure the relationships among
variables.

3.1.2 Spectral Theorems

The Fourier transform of a fluctuating quantity is

/2

x(n=im_[ o 6.6
and the inverse transform is
12
2(t)= lim / X () df (7
S

The Fourier transform is also a random variable. The Potcer Spectral Density (PSD)
is defined in terms of the Fourier transform by taking the average value of the square
magnitude of the transform

S() = (X(NI) = (XNX"()
T/2 T/2
1 /1_/1(*1*/’;(1)(1' / eIy dt . (3.8)

T ).

X* is the complex conjugate of X, replacing ¢ with —i, and we'll assume that  is real.
The power spectrum might not have a well-defined limit for a non-stationary process;
wavelets and Wigner functions are examples of time~frequency transforms that retain
both temporal and spectral ion for ionary signals [G 1999).

The Fourier transform is defined for negative as well as positive frequencies. If the sign
of the frequency is changed, the imaginary or sine component of the complex exponential
changes sign while the real or cosine part does not. For a real-valued signal this means that
the transform for negative frequencies is equal to the complex conjugate of the transform
for positive frequencies. Since the power spectrum is used to measure energy as a function
of frequency, it is usually reported as the single-sided power spectral density found by
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adding the square magnitudes of the negative- and positive-frequency components. For a
real signal these are identical, and so the single-sided density differs from the tzwo-sided
density by an (occasionally omitted) factor of 2.

The Fourier transform can also be defined with the 27 in front,

2
X@ = fim [ eta(t) dt

L pen
2(t) = lim — / X W) dw . (3.9)
0 21 )_qp
v measures the frequency in cycles per second; w measures the frequency in radians per
second (27 radians = 1 cycle). Defining the transform in terms of v climinates the errors
that arise from forgetting to include the 27 in the inverse transform or in converting
from radians to cycles per sccond, but it is less conventional in the literature. We will
use whichever is more convenient for a problem.

The power spectrum is simply related to the autocorrelation function by the Wiener—
Khinchin Theorem, found by taking the inverse transform of the power spectrum:

[ s
= [T xupe e

| e T § 5
=gm o[ et [, ety g

T
R ,
= Jim -f/ / D) df w(tya(t') dt di'
I —ecJ-T/2J-T/2

1 T/2 (T/2
= lim ?/ 8t —t' — T)x(t)a(t') dt dt’

T=xT Jrp)-rp
_ 1T
,TIT;T./:T/Z‘X‘(l)x(!vT) dt
= (@)t — 7)) (3.10)

using the Fourier transform of a delta function

/ e g = )

[ s@bte -0 do = s &)

(one way to derive these relations is by taking the delta function to be the limit of a
Gaussian with unit norm as its variance goes to zero).

‘The Wiener-Khinchin Theorem shows that the Fourier transform of the autocovari-
ance function gives the power spectrum; knowledge of one is equivalent to the other.
An important example of this is white noisc: a memoryless process with a delta function
autocorrelation will have a flat power spectrum, regardless of the probability distribution
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Figure 3.1. Tustration of the Wiener-Khinchin Theorem: as the power spectrum decays
more quickly, the autocorrelation function decays more slowly.

for the signal. As the autocorrelation function decays more slowly, the power spectrum
will decay more quickly (Figure 3.1).
Taking 7 = 0 in the Wiener-Khinchin Theorem yiclds Parseval’s Theorem:

(wttate =) = [~ s ar= [T gxope

= <\z|‘<t)>:f<\xm\’> a G12)

The average value of the square of the signal (which is equal to the variance if the signal
has zero mean) is equal to the integral of the power spectral density. This means that true
white noise has an infinite variance in the time domain, although the finite bandwidth of
any real system will roll off the frequency response, and hence determine the variance
of the measured signal. If the division by 7" is left off in the limiting process defining
the averages on both sides of Parseval’s Theorem, then it reads that the total energy
in the signal equals the total energy in the spectrum (the integral of the square of the
‘magnitude).
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32 PROBABILITY DISTRIBUTIONS

So far we have taken the probability distribution p(z) to be arbitrary. In practice, three
probability distributions recur so frequently that they receive most attention: binomial,
Poisson and Gaussian. Their popularity is due in cqual parts to the common conditions
that give rise to them and to the convenience of working with them. The latter reason
sometimes outweighs the former, leading these distributions to be used far from where
they apply. For example, many physical system have long-tailed distributions that fall
off much more slowly than these ones do [Crisanti et al., 1993; Boguna & Corral, 1997].

3.2.1 Binomial

Consider many trials of an event that can have one outcome with probability p (such
as flipping a coin and sceing a head), and an alternative with probability 1 — p (such as
seeing a tail). In n trials, the probability p,(z) to see 2 heads and n—  tails, independent
of the particular order in which they were seen, is found by adding up the probability
for cach outcome times the number of equivalent arrangemen

pula) = (L’_)p’(l - (3.13)

ny_  nt
()= aoa 619

(read “n choose 2”). This is the binomial distribution. The sccond line follows by
dividing the total number of distinct arrangements of 1 objects (n!) by the number of
equivalent distinct arrangements of heads ! and tails (1 —2)!. The easiest way to convince
yourself that this is correct is to exhaustively count the possibilites for a small case.

where

3.2.2 Poisson

Now consider events such as radioactive decays that occur randomly in time. Divide
time into n very small intervals so that there are cither no decays or one decay in any
one interval, and let p be the probability of seeing a decay in an interval. If the total
number of events that occur in a given time is recorded, and this is repeated many times
to form an ensemble of measurements, then the distribution of the total number of events
recorded will be given by the binomial distribution. If the number of intervals 7 is large,
and the probability p is small, the binomial distribution can be approximated by using
In(1 + ) % z for small = and Stirling’s approximation for large n:

!~ V2r nt

Inn!~nlhn-n , (3.15)
to find the Poisson distribution (Problem 3.1):
x) (3.16)
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Figure 3.2. Comparison of the binomial (o), Poisson (+) and Gaussian (~) distributions: . is
the number of trials, and p is the probability of secing an event. By definition, the binomial
distribution is correct. For a small probability of secing an event, the Poisson distribution is
a better approximation (although the difference is small for a large number of events), while
for a large probability of secing an event the Gaussian distribution is closer.

any distribution. For these reasons, it is often safe (and certainly common) to assume
that an unknown distribution is Gaussian.

The Fourier transform of a Gaussian has a particularly simple form, namely a Gaussian
with the inverse of the variance

L /f”/“’pmdr 6.2

Vira?

Remember this: you should never need to look up the transform of a Gaussian, just invert
the variance. Because of this relationship, the product of the variance of a Gaussian and
the variance of its Fourier transform will be a constant; this is the origin of many classical
and quantum uncertainty relationships.

Figure 3.2 compares the binomial, Poisson, and Gaussian distributions for n = 10 and
100, and for p = 0.1 and 0.5, showing where they are and are not good approximations.
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will become vanishing small compared to the lower-order terms in the limit N — oo,
‘The last line follows because an exponential can be written as

im (145
which can be verified by comparing the Taylor serics of both sides. To find the probability

distribution for y we now take the inverse transform

Py — (@) = %/ ¢~k /2N -iky= () gp

)N =e (3.28)

Ny @7/ (3.29)

(remember that the Fourier transform of a Gaussian s also a Gaussian). This proves the
Central Limit Theorem [Feller, 1974]. The average of N iid variables has a Gaussian
distribution, with a standard deviation /v/N reduced by the square root of the number
of variables just as with Poisson statistics. It can be a surprisingly good approximation
even with just tens of samples. The Central Limit Theorem also contains the Latw of
Large Numbers: in the limit N — oo, the average of N' random variables approaches
the mean of their distribution. Although this might appear to be a trivial insight, lurking
behind it is the compressibility of data that is so important to digital coding (Section 4.1).

3.3 NOISE MECHANISMS

Now that we've seen something about how to describe random systems we will turn to
a quantitative discussion of some of the most important fundamental noise mechanisms:
shot noise, Johnson noise, and 1/f noise. Chapter 13 will consider other practical sources
of noise, such as interference from unwanted signals.

3.3.1 Shot Noise

A current, such as electrons in a wire or rain on a roof, is made up of the discrete arrival
of many carricrs. If their interactions can be ignored so that they arrive independently,
this is an example of a Poisson process. For an electrical signal, the average current is
(I) = qN/T for N electrons with charge g arriving in a time 7. If the electrons arrive
far cnough apart so that the duration during which they arrive is small compared to the
time between the arrival of successive clectrons, then the current can be approximated
as a sum of delta functions.

N
IW=gY 6t—t) (3.30)

where , is the arrival time for the nth clectron. The Fouricr transform of this impulse

train is.
T/2 N
m / eIt gy st — ) dt
o

n=1

(3.31)
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Therefore, the power spectrum is
Si(f) = (IHI(H)
) N
= jm L (ZU.WHZ .m.,,‘)

m=1

(3.32)

(the cross terms n # m vanish in the expectation because their times are independent).
We see that the power spectrum of carrier arrivals s white (flat) and that the magnitude
is lincarly proportional to the current. This is called shot noise or Schottky noise. If
the carriers do not really arrive as delta functions then the broadening of the impulses
will roll the spectrum off for high frequencics, so the flat power spectrum is a good
approximation up to the inverse of the characteristic times in the system.

To find the fluctuations associated with shot noise, we can use Parseval’s Theorem to
relate the average total energy in the spectrum to the average variance. If the bandwidth
of the system is infinite this variance will be infinite, because for ideal shot noise there is
equal power at all frequencies. Any real measurement system will have a finite bandwidth,
and this determines the amplitude of the noise. Multiplying the power spectrum by 2Af,
where Af is the bandwidth in hertz and the factor of 2 comes from including both positive
and negative frequencies,

(i) =20(DAf . (3.33)

Shot noise will be important only if the number of carriers is small enough for the rate
of arrival to be discernible; Problem 3.2 looks at this limit for detecting light.

3.3.2 Johnson Noise

Johnson (or Nyquist) noisc is the noise associated with the relaxation of thermal fluctu-
ations in a resistor. Small voltage fluctuations are caused by the thermal motion of the
clectrons, which then relax back through the resistance. We will calculate this in Section
343, but the result is simple:

(Vi

(where R is resistance, Af s the bandwidth of the measuring system, T is the temper-
ature, and k is Boltzmann’s constant). Once again, this is white noise, but unlike shot
noise it is independent of the current. The resistor is acting almost like a battery, driven
by thermodynamic fluctuations. The voltage produced by these fluctuations is very real
and very important: it sets a basic limit on the performance of many kinds of clectronics.
Unfortunately, it is not possible to take advantage of Johnson noise by rectifying the fluc-
tuating voltage across a diode to use a resistor as a power source (hint: what temperature
is the diode?).

Johnson noise is an example of a fluctuation—dissipation relationship (Section 3.4.3)
e of a system’s thermodynamic fluctations is closely related to the rate at which

4kTRAf (3.349)




u Noise in Physical Systems

the system relaxes to cquilibrium from a perturbation. A system that is more strongly
damped has smaller fluctuations, but it dissipates more cnergy.

3.3.3 1/f Noise and Switching Noise

In a wide range of transport processes, from clectrons in resistors, to cars on the highway,
to notes in music, the power spectrum diverges at low frequencies inversely proportionally
to frequency: S(f) x f~'. Because such 1/f noise is scale-invariant (the spectrum looks
the same at all time scales [ 1983]) and is so ubiqui many people have
been lured to search for profound general explanations for the many particular examples.
While this has led to some rather bizarre ideas, there is a reasonable theory for the
important case of electrical 1/ f noise.

In a conductor there are usually many types of defects, such as lattice vacancies or
dopant atoms. Typically, the defects can be in a few different inequivalent types of sites
in the material, which have different energies. This means that there is a probability for
a defect to be thermally excited into a higher-cnergy state, and then relax down to the
lower-energy state. Because the different sites can have different scattering cross-sections
for the electron current, this results in a fluctuation in the conductivity of the material.
A process that is thermally activated between two states, with a characteristic time 7 to
relax from the excited state, has a Lorentzian power spectrum of the form

S(f)= (3.35)

2r
T+@nfry

(we will derive this in Problem 3.4). If there is a distribution of activation times p(7)
instead of a single activation time in the material, and if the activated scatterers don’t
interact with each other, then the spectrum will be an integral over this:

< 2
5(f) = —_— d- . 36)
0= [ g H b 39
I the probability of the defect having an energy equal to a barrier height E gocs a5

e~ E/KT (Section 3.4), then the characteristic time 7 to be excited over the barrier will be
inversely proportional to probability

7= nefA (337

This is called a thermally activated process. If the distribution of barrier heights p(E)
is flat then p() o 1/7, and putting this into equation (3.36) shows that S(f) x 1/f
(Problem 3.4) [Dutta & Horn, 1981].

This is the origin of 1/ f noise: scatterers with a roughly flat distribution of activation
energies. Cooling a sample to a low enough temperature can turn off the higher-energy
scatterers and reveal the individual Lorentzian components in the spectrum [Rogers &
Buhrman, 1984]. In this regime, the noise signal in time is made up of jumps between
discrete values, called switching noise. This can be seen unexpectedly and intermittently
at room temperature, for example if a device has a very bad wire-bond so that the current
passes through a narrow constriction.

Unlike Johnson noise, 1/ f noise is proportional to the current in the material because
it is a conductivity rather than a voltage fluctuation, and it increases as the cross-sectional
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Figure 3.3. Noise in a 50 Q resistor with and without a current.

area of the material is decreased because the relative influence of a single defect is greater.
That is why 1/ noise is greater in carbon resistors, which have many small contacts
between grains, than in metal film resistors. Low-noise switches have large contact areas,
and wiping connections that slide against each other as the switch is closed, to make sure
that the conduction is not constrained to small channels.

The power spectrum of the noise from a resistor will be flat because of Johnson noise
if there is no current flowing; as the current is increased the 1/ f noise will appear, and
the frequency below which it is larger than the Johnson noise will depend on the applied
current as well as on the details of the material. 1/ noise is not an intrinsic property:
the magnitude is a function of how a particular sample is prepared. Figure 3.3 shows
the Johnson and 1/f noise for a carbon resistor. Because 1/ f noise diverges at low
frequencies, it sets a time limit below which measurements cannot be made; a common
technique to avoid 1/ f noise is to modulate the signal up to a higher frequency (we will
discuss this in Chapter 13).

3.34 Amplifier Noise

Any device that detects a signal must contend with these noise mechanisms in its work-
ings. Johnson noise leads to the generation of voltage noise by an amplifier. Since the
power spectral density is flat, the mean square noise magnitude will be proportional to
the bandwidth, or the Root Mean Square (RMS) magnitude will increase as the square
root of the bandwidth. The latter quantity is what is conventionally used to characterize
an amplifier; for a low-noise device it can be on the order of 1 nV/y/Hz. Likewise, shot
noise is responsible for the generaton of current noise at an amplifier’s output; this is also
flat and for a low-noise amplifier can be on the order of 1 pA/v/Fiz.
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Figure 3.4. Noise contours for a low-noise amplifier.

large as the device. Since inelastic scattering is the origin of resistance and hence of the
thermodynamic coupling of the conduction electrons to the material, this means that
the noise temperature can be much lower than room temperature. In the best devices it
gets down to just a few kelvins. One of the places where this sensitivity is particularly
important is for detecting the weak signals from space for satellite communications and
radio astronomy.

34 THERMODYNAMICS AND NOISE

Thermal fluctuations and noise are intimately related. Ths section turns to a more general
discussion of this connection, starting with a bricf review of macroscopic thermodynamics
and s origin in microscopic statistical mechanics, and then looking at the Equipartition
Theorem (which relates temperature to the average encrgy stored in a system’s degrees
of freedom) and the Fluctuation-Dissipation Theorem (which relates fluctuations to the
dissipation in a system).

341 TI ics and Statisti

A thermodynamic system can be described by a temperature T an internal energy E,
and an entropy S. The internal encrgy is the sum off all of the energy stored in all of
the degrees of freedom of the system. The entropy provides a relationship between heat
and temperature: if the system is kept at a constant temperature, and a heat current 6Q
flows into or out of the system, the change in entropy is

5Q=TdS . (341)

This is written as 8Q rather than d@ because energy that flows in and increases the
entropy of a system cannot be reversibly recovered to do work. In any spontaneous
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the constraints that we impose. Justifying this essentially experimental fact is the subject
of endless if not m: s H-Theorem provides a
derivation in the context of scattering in a dilute gas [Reichl, 1998]

For the canonical ensemble there are two constraints: the probabil
be normalized

listribution must

(347
and the average energy must be a constant £
a
S Ep=E . (3.48)
-

To do a constrained maximization we will use the method of Lagrange multipliers.
Define a quantity 7 to be the entropy plus Lagrange multipliers times the constraint
equations

a a a
=—kD plogpit M Y_pi+t N Eipi (3:49)
=] = =
We want to find the values for the p,s that make this extremal:
f)—j =0 (3.50)
Ipi

We can do this because the two terms that we've added are just constants, Equations
(3.47) and (3.48); we just need to choose the values of the Lagrange multipliers to make
sure that they have the right values. Solving,

ar
ap, =0 = ~klogp — kA +AE, (3.51)

= py = NRIOE/ )

=
s

If we sum this over i,

(3.54)

Since
(3.56)
(3.57)
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and so equation (3.55) can be written as
S—klogZ+ME=0 . (3.58)

Comparing this to the definition of the free energy A = E' — T'S, we see that

klogZ+ A E=0
——— =~
-A/T —VT
This provides a between the i ynamic quantities and the
microscopic statistical mechanical ones.

Putting the value of ; into equation (3.54) shows that the partition function is given
by

BEC (3.60)

o
2= e B
=

Returning to equation (3.52) we see that

A /K== B KT = (3.61)

pi=e

In terms of this, the expected value of a function f; that depends on the state of the
system is

a o ¢ BT
H=Yfmi= L fie BT (3.62)
=

342 Equipartition Theorem

The Equipartition Theorem is a simple, broadly applicable result that can give the
magnitude of the thermal fluctuations associated with energy storage in independent
degrees of freedom of a system. Assume that the state of a system s specified by variables
Ly, 2y and that the internal energy of the system is given in terms of them by

E=Etg,...,7,) . (3.63)

Now consider the case where one of the degrees of freedom splits off additively in the
cnergy:
E = By(xo) + Ex(z, ..., 20) (3.64)

= C'V#/2 the energy in a particular capacitor
mu}/2 the kinetic energy of one particle in

E might be the energy in a circuit, and Ey
in terms of the voltage Vy across it, or Ey
terms of its velocity v.

If we now assume that the overall system is in equilibrium at a temperature T, the
expectation value for Ey is given by the canonical statistical mechanical distribution (here
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stem)

taken as an integral instead of a discrete sum for a continuous
(% e~ BBz By(ay) day - - day
5, e B B s By(g) day - dey
[ e AR Bl dy - da,

kT)

e BE@L-2) dg, ... dz,,

—BEx@na) dg, -+ di,

[, e B day |
#x0) By(z) datg

T B dry,

_]“/ e BB gy (3.65)

If Ey = azi for some constant a, we can simplify the integral further:
(Ey) = 7% In /: BB gy
= 70% In /_i =005 g,

a1 -
N I -y
w[ 2'““'“/,)(P 'Iy]

L (3.66)

alaj

Each independent thermalized quadratic degree of freedom has an average energy of
kT/2 due to fluctuations.

343 Fluctuation-Dissipation Theorem

The Equipartition Theorem relates the size of thermal fluctuations to the energy stored
in independent degrees of freedom of a system; the Fluctuation-Dissipation Theorem
relates the thermal fluctuations to the amount of dissipation. We will start with a simple
example and then discuss the more general theory. Consider an ideal inductor L connected
in parallel with a resistor R. Because of thermal fluctuations there will be a voltage across
the resistor; model that by a fluctuating voltage source V in series with a noiscless resistor
(Figure 3.5).

In Chapter 6 we will show that the energy stored in an inductor is LI?/2. Since the
inductor is the only energy storage element, from the equipartition theorem we know
what the current across it due to thermal fluctuations must be:

1o\ _ 1, _
<EL]>—2LT . (3.67)

Ohm’s Law (Section 6.1.3) still applies, so this current must also be equal to the fluctu-
ating thermal voltage divided by the total impedance Z of the circuit. Written in terms
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Figure 3.5. Resistor modeled as a fluctuating voltage source in series with a noiseless
resistor, connected in parallel with an inductor.

of the frequency components,
W) _ V)
Jw=Y W _ V@
@= Z(u)) R+ wl@)
(we will explain why the impedance of an inductor is iw when we derive the circuit
equations from Maxwell’s cquations). Writing the cquipartition result in terms of fre-
quency components,

1
T = < L11> S
3 / ([Iw)]?) dw  (Parseval’s Theorem)
V)P
=z dw
<\Z(w)l‘>
/’ (V@) ) )

mren @

(3.68)

Smce (Ius is assumed to be an ideal resistor with no time constant from an inductive or

it's a reasonable on to take the ing voltage V to
have a delta function autocorrelation (this can be justified by a microscopic derivation).
And since that implies that the power spectrum of the fluctuations is flat, V' does not
depend on w and can come out of the intergral:

1 L(V’(w)) 1
ST = / Lo . (3.70)

Tron ®
This integration can then be done analytically,

1w (Vi)
=152 @371
Therefore,
a(Viw) _ 1
w2l
kTR
(Vi) ===
(VA(f)) =4kTR . (3.72)

In the last line there is a factor of 2 to convert from radian per second to cycles per
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gives cnrgy, and that energy per time gives power. Thercfore multiplying the driving
force dS/dx by dz and dividing by dt gives the power P being dissipated,

e o\
P g (i) am

Therefore equation (3.77) shows that
2
P=r%
R
If the entropy is sharply peaked (a large relative to R), then the fluctuations will be small
but the dissipation will be large. If the entropy is flatter (a small), the fluctuations will be

large but the dissipation will be small. A related equation is found by multiplying both
sides of equation (3.77) by « and averaging:

(3.80)

.d‘r = — kol
RaSl = —kar
N
1dz®
2t
—Zk%(ﬂ) (3.81)

If the system is perturbed, the variance also relaxes at a rate proportional to a/R. Tt
doesn’t go to zero, of course, because we've left off the noise source term in the Langevin
equation that drives the fluctuations,

Equation (3.80) is a simple example of the Fluctuation-Dissipation Theorem. The
gencralization is straightforward to systems with more degrees of freedom [Montroll &
Lebowitz, 1987; Reichl, 1998] and to quantum systems [Balian, 1991]. In higher dimen-
sions the relaxation constant R becomes a matrix, and if the system has time reversal
invariance so that the governing cquations arc the same if ¢ — —¢ then this matrix is
symmetrical (Ry; = Ry, called the Onsager reciprocal relationship).

The fluctuation dissipation theorem can be understood by remembering that a change
in entropy is associated with a heat current 5Q = TdS; if the entropy is sharply peaked
then the fluctuations lead to larger changes in the entropy. This is an essential tradeoff’
in the design of any system: the faster and more accurately you want it to do something,
the more power it will require. For example, one of the most important lessons in the
design of low-power electronics is to make sure that the system does not produce results
any faster than they are needed. This also shows why, without knowing anything clse
about clectronics, low-noise amplifiers require more power than noisy ones.

35 SELECTED REFERENCES
[Feller, 1968] Feller, William. (1968). An Introduction to Probability Theory and Its
Applications. 3rd edn. New York: Wiley.

[Feller, 1974] Feller, William. (1974). An Introduction to Probability Theory and Its
Applications. 2nd edn. Vol. IL New York: Wiley.

A definitive probabi

y reference



4 Information in Physical Systems

‘What is information? A good answer is that information is what you don’t already know
You do not learn much from being told that the sun will rise tomorrow morning; you
learn a great deal if you are told that it will not. Information theory quantifies this
intuitive notion of surprise. Its primary success is an explanation of how noise and
energy limit the amount of information that can be represented in a physi
which in tumn provides insight into how to efficiently manipulate information in the
system.

In the last chapter we met some of the many ways that devices can introduce noise into
a signal, cffectively adding unwanted information to it. This process can be abstracted
into the concept of a communications channel that accepts an input and then generates
an output. A telephone connection is a channel, as is the writing and subsequent reading
of bits on a hard disk. In all cases there is assumed to be a set of known input symbols
such as 0 and 1), possibly a device that maps them into other symbols in order to satisfy
constraints of the channel, the channel itself which has some probability for modifying
the message due to noise or other errors, and possibly a decoder that turns the received
symbols into an output set. We will assume that the types of messages and types of
channel errors are sufficiently stationary to be able to define probability di;
Pla) to see an input message 7, and p(y|) for the channel to deliver a y if it is given
an input 2. This also assumes that the channel has no memory so that the probability
distribution depends only on the current message. These are important assumptions: the
results of this chapter will not apply to non-stationary systems.

41 INFORMATION

Let 2 be a random variable that takes on X possible values indexed by i = 1,..., X,
and let the probability of secing the ith value be p. For example,  could be the letters
of the alphabet, and p; could be the probability to see letter i. How much information
is there on average in a value of = drawn from this distribution? If there is only one
possible value for = then we learn very little from successive observations because we
already know everything; if all values are equally likely we learn as much as possible from
cach observation because we start out knowing nothing. An information functional H(p)
(a functional is a function of a function) that captures this intuitive notion should have
the following reasonable properties:
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e H(p) is continuous in p. Small changes in the distribution should lead to small
changes in the information.

H(p) > 0, and H(p) = 0 if and only if just one p; is non-zero. You always learn
something unless you already know everything.

H(p) < C(X), where C(X) is a constant that depends on the number of possible
values X, with H(p) = C(X) when all values are equally likely, and X’ > X =
C(X') > C(X). The more options there are, the less you know about what will
happen next.

If 2 is drawn from a distribution p and y is independently drawn from a distribution
q, then H(p,q) = H(p) + H(q), where H(p,q) is the information associated with
seeing a pair (z,y). The information in independent events is the sum of the
information in the events individually.

While it might appear that this list is not sufficient to define H(p), it can be shown [Ash,
1990] that these desired propertics are uniquely satisfied by the function

X
Hp)=~Y pilogp; .1
=

‘This is the definition of the entropy of a probability distribution, the same definition that
was used in the last chapter in statistical mechanics. To make the dependence on & clear,
we will usually write this as H(z) instead of H(p(z)) or H(p). The choice of the base of
the logarithm is arbitrary; if the base s 2 then the entropy is measured in bits, and if it
is base ¢ then the entropy units are called nats for the natural logarithm. Note that to
change an entropy formula from bits to nats you just change the logarithms from log, to
log,., and so unless otherwise noted the base of the logarithms in this chapter is arbitrary.

Now consider a string of N samples (z1,..., zy) drawn from p, and let N; be the
number of times that the ith value of & was actually seen. Because of the independence of

the observations, the probability to sec a particular string is the product of the individual
probabilities
N
Py, ozy) = [ o) - (42)

This product of terms can be regrouped in terms of the possible values of z,

x
P, .xn) = [ (4.3)

1
— logp@, ) =

(4)
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The third line follows from the Law of Large Numbers (Section 3.2.4): as N —
Vi/N — p;. Equation (4.4) can be inverted to show that

par.. ... zy) & 2 NVHE@ 4.5)

(taking the entropy to be defined base 2). Something remarkable has happened: the
probability of seeing a particular long string s independent of the elements of that string.
This is called the Asymptotic Equipartition Property (AEP). Since the probability of
oceurrence for a string is a constant, its inverse 1/p = 2V7 gives the effective number
of strings of that length. However, the actual number of strings is larger, equal to

XN = gNenX “6)
The difference between these two valucs is what makes data compression possible. It has
two very important implications [Blahut, 1988]:

o Since samples drawn from the distribution can on average be described by H(x)
bits rather than log, X bits, a coder can exploit the difference to store or transmit
the string with N H(x) bits. This is Shannon’s First Coding Theorem, also called
the Source Coding Theorem or the Noiseless Coding Theorem.

o The compressibility of a typical string is made possible by the vanishing probability
to see rare strings, the ones that violate the Law of Large Numbers. In the unlikely
event that such a string appears the coding will fail and a longer representation
must be used. Because the Law of Large Numbers provides an increasingly tight
bound on this occurrence as the number of samples increases, the failure probability
can be made arbitrarily small by using a long enough string. This is the Shannon—
McMillan Theorem.

Because the entropy is @ maximum for a flat distribution, an efficient coder will repre-
sent information with this distribution. This is why modems “hiss”: they make best use of
the telephone channel if the information being sent appears to be as random as possible.
The valu of randomness in improving a system’s performance will recur throughout this
book, particularly in Chapter 13.

We sce that the entropy (basc 2) gives the average number of bits that are required to
describe a sample drawn from the distribution. Since the entropy s equal to

= (~logpi) *7)

it is natural to interpret — log p; as the information in seeing event p;, and the entropy
as the expected value of that information.

Entropy can be applied to systems with more degrees of freedom. The joint entropy
for two variables with a joint distribution p(z, y) is

H(z.y)=~Y_ Y pla.y)logp(x, y) 4.8)
2
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This can be rewritten as
H(z,y)= - Z ;m. y)log pla, y)
= Z 3 vl ) loglplaly)p(u)]
= Z Xv:p(r, ) log p(x|y) — Z me )log p(y)
=- Z Zl’(f ) log plafy) — Zmﬂ log p(y)
E H(r\u) +H(y) 4.9)

1

by using Bayes’ rule p(.y) = px|y)p(y). The entropy in a conditional distribution
H(zly) is the expected value of the information (— log p(x[y)). The entropy of both
variables equals the entropy of one of them plus the entropy of the other one given the
observation of the first.
The mutual information between two variables is defined to be the information in
them taken separately minus the information in them taken together
Ia,y) = Ha) + H(y) - Hz.y)
= H(y) - H(y|z)
= H(z) — H(xly)
P, y)
= P, ) loy (4.10)
rx e
(these different forms are shown to be equal in Problem 4.2). This measures how many
bits on average one sample tells you about the other. It vanishes if the variables are
independent, and it is equal to the information in one of them if they are completely
dependent. The mutual information can be viewed as an information-theoretic analog of
the cross-correlation function (z(t)y(t)), but the latter is useful only for measuring the
overlap among signals from linear systems [Gershenfeld, 1993).
In a sequence of N values ) the joint (or block entropy)

Hy(a) = —):Z Zp(r. z

is the average number of bits needed to describe the string. The limiting rate at which
this grows

<) log ey, 2z, zx) 11

h(x) = lim_ lNH\'(I) Jim Hyoy — Hy .12)

is called the source entropy. It is the rate at which the system generates new information.

So far we've been discussing random variables that can take on a discrete set of values;
defining entropy for continuous variables requires some care. If z is a real number, then
() dz is the probability to see a value between z and  + dz. The information in
such an observation is given by its logarithm, — log[p(c) dz] = — log p(2) — log dzz. As
dz — 0 this will diverge! The divergence is in fact the correct answer, because a single
real number can contain an infinite amount of information if it can be specified to any
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input states p(x)
POX)
output states ® @ ° e p(»

Figure 4.1. Effective number of states input to, added by, and output from a channel.

that are input to a channel specified by p(y|z). On average cach sample contains H(z)
bits of information, so this input string of N symbols can represent roughly 2VH®
different states. After being sent through the channel an output string (1. Uz, - -, yx)
can represent 2V states. However, it is possible that because of noise in the channel
different input states can produce the same output state and hence garble the message;
2NHWI2) is the average number of different output states that are produced by an input
state, the extra information in y given knowledge of . In order to make sure that each
input state typically leads to only one output state it is necessary to reduce the number of
allowable output states by the excess information generated by the channel (Figure 4.1)

2NHW)

i [HW-Hy|) = QNI.y)

i 2 . *.17)
We see that the probability distribution that maximizes the mutual information between

the input and the output leads to the maximum number of distinct messages that can

reliably be sent through the channel. The channel capacity is this maximum bit rate:

C=max I(@.y) - (4.18)

Applying the Shannon-McMillan Theorem to the input and output of the channel taken
together shows that, if the data rate is below the channel capacity and the block length
is long enough, then messages can be decoded with an arbitrarily small error. On the
other hand, it is impossible to send data error-free through the channel at a rate greater
than the capacity. This is Shannon’s Second Coding Theorem (also called the Channel
Coding Theorem or the Noisy Coding Theorem). If you're sending information at a
rate below the channel capacity you are wasting part of the channel and should seck a
better code (Chapter 13 will look at how to do this); if you're sending information near
the capacity you are doing as well as possible and there is no point in trying to improve
the code; and there is no hope of reliably sending messages much above the capacity.
A few points about channel coding:

« As the transmission rate increases it might be expected that the best-case error
rate will also increase; it is surprising that the error rate can remain zero until the
capacity s reached (Figure 4.2).

o This proves the existence of zero-crror codes but it doesn’t help find them, and
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of many small types of i Gaussian distributions are parti important in
information theory because, for a given mean and variance, they maximize the differential
entropy. This makes it easy to calculate the maximum in equation (4.18). To see this, let
N{(z) be a Gaussian distribution

N@)= et 2k (4.19)

and let p(z) be an arbitrary distribution with mean 1, and variance o2. Then

—/1 p(x)InN(z) dx

o oy
= —/me [~|n‘/2na,{»— ”—20’2‘—‘)] dr

N

T * 1 = 2+
ny/2mod, + s (4.20)

This depends only on the mean and variance of p(z) and so if g(z) has the same mean
and variance then

- / " o) o (@) de

7/‘ @) nN@) dz . @21

Now consider the difference in the entropy between a Gaussian distribution A’ and
another one p with the same mean and variance:

HOY - Hp = - [ NN dr [ parmpe) iz
= 7/x Pa)n N(z) 4I+/l ) Inpla) do

- [ »x)
= /,“ pa)in o5 do

=D(p,N)>0 . “22)

The differential entropy in any other distribution will be less than that of a Gaussian with
the same mean and variance. This differs from the discrete case, where the maximum
entropy distribution was a constant, or an exponential if the energy is fixed.

Now return to our Gaussian channel y =  + 7. Typically the input signal will be
constrained to have some maximum power 2). The capacity must be found by
maximizing with respect to this constraint:

C= max_I@y - (4.23)
Py

The mutual information is
I(a,y) = H(y) - H(y|z)
= H(y) - H(x +nlx)
= H(y) - H(nlx)
=Hy) - Hm) . (4.24)
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where the last line follows because the noise is independent of the signal. The differential
entropy of a Gaussian process is straightforward to calculate (Problem 4.3):

1
HN) = ; log(2eN) (4.25)
(where N = 0% is the noise power). The mean square channel output is
W) = (@ +n)?)
= (a%) + 2z) (n) +(m)
N2

0
=S+N . (4.26)

Since the differential entropy of 2 must be bounded by that of a Gaussian process with
the same variance, the mutual information will be a maximum for

I(z,y) = H(y) - H(n)
< % log[27e(S + N)) — %log(ZﬂeN)

55 Zlog(l+ 1%) . @27

The capacity of a Gaussian channel grows as the logarithm of the ratio of the signal power
to the channel noise power.

Real channels necessarily have finite bandwidth. If a signal is sampled with a period
of 1/2Af then by the Nyquist Theorem the bandwidth will be Af. If the (one-sided,
white) noise power spectral density is N, the total energy in a time T is NpA/T, and
the noise energy per sample is (NoAST)/(2AfT) = No/2. Similarly, if the signal power
is S, the signal energy per sample is S/2Af. This means that the capacity per sample is

Jo(1+3)
S 2
log (l + EIT'J
S bits
log, (1 + A_'\’"Af> —=a (4.28)

If the signal power cquals the noise power, then cach samples carries 1/2 bit of informa-
tion.

Since there are 24 f samples per sccond the information rate is

C=Aflog (1 + i)
S bits
= R . 429
Aflog, (1 NoA f) Second 629
This is the most important result in this chapter: the capacity of a band-limited Gaussian

channel. It increases as the bandwidth and input power increase, and decreases as the
noise power increascs.
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