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1. Introduction

The basic fields of classical physics are mechanics and heat on the one hand
and electromagnetism and optics on the other. Mechanical and heat phenom-
ena involve the motion of particles as governed by Newton’s equations. Elec-
tromagnetism and optics deal with fields and waves, which are described by
Maxwell’s equations. In the classical description of particle motion, the posi-
tion of the particle is exactly determined at any given moment. Wave phenom-
ena, in contrast, are characterized by interference patterns which extend over
a certain region in space. The strict separation of particle and wave physics
loses its meaning in atomic and subatomic processes.

Quantum mechanics goes back to Max Planck’s discovery in 1900 that the
energy of an oscillator of frequency v is quantized. That is, the energy emitted
or absorbed by an oscillator can take only the values O, hv, 2hv,... . Only
multiples of Planck’s quanium of energy

E=hv
are possible. Planck’s constant
h=6.262x10"*7Js

is a fundamental constant of nature, the central one of quantum physics. Often
it is preferable to use the angular frequency w = 2mv of the oscillator and to
write Planck’s quantum of energy in the form

E=hw

Here
h

2n
is simply Planck’s constant divided by 27. Planck’s constant is a very small
quantity. Therefore the quantization is not apparent in macroscopic systems.
But in atomic and subatomic physics Planck’s constant is of fundamental im-
portance. In order to make this statement more precise, we shall look at ex-
periments showing the following fundamental phenomena:

h
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2 1. Introduction

[ ]

the photoelectric effect,
e the Compton effect,

the diffraction of electrons,

o the orientation of the magnetic moment of electrons in a magnetic field.

1.1 The Photoelectric Effect

The photoelectric effect was discovered by Heinrich Hertz in 1887. It was
studied in more detail by Wilhelm Hallwachs in 1888 and Philipp Lenard in
1902. We discuss here the quantitative experiment, which was first carried
out in 1916 by R. A. Millikan. His apparatus is shown schematically in Fig-
ure 1.1a. Monochromatic light of variable frequency falls onto a photocathode
in a vacuum tube. Opposite the photocathode there is an anode — we assume
cathode and anode to consist of the same metal — which is at a negative voltage
U with respect to the cathode. Thus the electric field exerts a repelling force
on the electrons of charge —e that leave the cathode. Here e = 1.609 x 10"
Coulomb is the elementary charge. If the electrons reach the anode, they flow
back to the cathode through the external circuit, yielding a measurable current
I. The kinetic energy of the electrons can therefore be determined by varying
the voltage between anode and cathode. The experiment yields the following
findings.

1. The electron current sets in, independent of the voltage U, at a fre-
quency v, that is characteristic for the material of the cathode. There is
a current only for v > v;.

2. The voltage U, at which the current stops flowing depends linearly on
the frequency of the light (Figure 1.1b). The kinetic energy Ey;, of the
electrons leaving the cathode then is equal to the potential energy of the
electric field between cathode and anode,

Ekll’l = eUs

If we call h /e the proportionality factor between the frequency of the
light and the voltage,

h
Us = _(‘) == UU) ’
e
we find that light of frequency v transfers the Kinetic energy eU; to the

electrons kicked out of the material of the cathode. When light has a
frequency less than vy, no electrons leave the material. If we call
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hv

™

=

Fig.1.1. Photoelectric effect.
(a) The apparatus to measure
the effect consists of a vac-
uum tube containing two elec-
trodes. Monochromatic light
of frequency v shines on the
U cathode and liberates elec-
trons which may reach the
anode and create a current
I in the external circuit. The
flow of electrons in the vacuum

=

Us = I_;(v — Vo) tube is hindered by the exter-
—ot nal voltage U/. It stops once the
__,—"v = 1y K voltage exceeds the value U,.
(b) There is a linear depen-
dence between the frequency v
and the voltage U,.
h Vg = €Uk

the ionization energy of the material that is needed to free the electrons,
we must conclude that light of frequency v has energy

E=hv=hw

with
h

27

3. The number of electrons set free is proportional to the intensity of the
light incident on the photocathode.

w=2Tv , h

In 1905 Albert Einstein explained the photoelectric effect by assuming
that light consists of quanta of energy A v which act in single elementary pro-
cesses. The light quanta are also called photons or y quanta. The number of
quanta in the light wave is proportional to its intensity.
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1.2 The Compton Effect

If the light quanta of energy E = hv = hw are particles, they should also have
momentum. The relativistic relation between the energy E and momentum p
of a particle of rest mass m is

|
p:—\/Ez—mzc“ ,
¢

where ¢ is the speed of light in vacuum. Quanta moving with the speed of
light must have rest mass zero, so that we have

1 R
p= Vit =022 =hk |,
C C

where k = w/c is the wave number of the light. If the direction of the light
is k/k, we find the vectorial relation p = k. To check this idea one has to
perform an experiment in which light is scattered on free electrons. The con-
servation of energy and momentum in the scattering process requires that the
following relations be fulfilled:

E,+E = E+E, ,
P, tp. = P,+P.
where E,, p, and £, p’, are the energies and the momenta of the incident

and the scattered photon, respectively. E, p., £, and p’, are the correspond-
ing quantities of the electron. The relation between electron energy E. and

momentum p. is
E.=cy/p2+mic?*

where m. is the rest mass of the electron. If the electron is initially at rest, we
have p. =0, E. = mec?. Altogether, making use of these relations, we obtain

chk+mec® = chk'+c\/p2+mic?

hk = hk'+p.

as the set of equations determining the wavelength A" = 27 / k' of the scattered
photon as a function of the wavelength A = 27 /k of the initial photon and the
scattering angle 9 (Figure 1.2a). Solving for the difference A’ — A of the two
wavelengths, we find

h
AN—A=—(—cos®?)
e
This means that the angular frequency ' = ck’ = 27 ¢ /A’ of the light scattered
at an angle ¢ > 0 is smaller than the angular frequency w = ck = 2m¢/A of
the incident light.
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Fig.1.2. The Compton effect.
(a) Kinematics of the process.
A photon of momentum p,

A MOLYBDENUM is scattered by a free elec-
K(1 LINE tron at rest, one with momen-

tum p. = 0. After the scat-

PRIMARY tering process the two par-

ticles have the momenta p/,
and p;, respectively. The di-
rection of the scattered pho-
| | I N E— ton forms an angle @ with its
original direction. From en-
ergy and momentum conser-
vation in the collision, the ab-
45° solute value p;, of the mo-
mentum of the scattered pho-
ton and the corresponding
. wavelength " = ii/p/ can be
computed. (b) Compton’s re-
sults. Compton used mono-
c chromatic X-rays from the K,
line of molybdenum to bom-
bard a graphite target. The
90° wavelength spectrum of the
incident photons shows the

R rather sharp K, line at the top.
. Observations of the photons
I { | L . | scattered at three different an-
N gles & (45°, 90°, 135°) yielded
D 3 spectra showing that most of
them had drifted to the longer

®: 139°

wavelength . There are also
many photons at the original
wavelength A, photons which
were not scattered by single
electrons in the graphite. From
1 1 1 A. H. Compton, The Physical Review 22
— A (1923) 409, copyright © 1923 by the
American Physical Society, reprinted by

permission.
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Arthur Compton carried out an experiment in which light was scattered
on electrons; he reported in 1923 that the scattered light had shifted to lower
frequencies ' (Figure 1.2b).

1.3 The Diffraction of Electrons

The photoelectric effect and the Compton scattering experiment prove that
light must be considered to consist of particles which have rest mass zero,
move at the speed of light, and have energy E = hiw and momentum p = fik.
They behave according to the relativistic laws of particle collisions. The
propagation of photons is governed by the wave equation following from
Maxwell’s equations. The intensity of the light wave at a given location is
a measure of the photon density at this point.

Once we have arrived at this conclusion, we wonder whether classical
particles such as electrons behave in the same way. In particular, we might
conjecture that the motion of electrons should be determined by waves. If the
relation £ = fiw between energy and angular frequency also holds for the
kinetic energy Ey;, = p°/2m of a particle moving at nonrelativistic velocity,
that is, at a speed small compared to that of light, its angular frequency is
given by

1 p* hk*
~h2m 2m
provided that its wave number k and wavelength A are related to the momen-
tum p by

k=2, A==

p

Thus the motion of a particle of momentum p is then characterized by a
wave with the de Broglie wavelength A = h/p and an angular frequency
w = p*/(2mh). The concept of matter waves was put forward in 1923 by
Louis de Broglie.

If the motion of a particle is indeed characterized by waves, the propaga-
tion of electrons should show interference patterns when an electron beam
suffers diffraction. This was first demonstrated by Clinton Davisson and
Lester Germer in 1927. They observed interference patterns in an experi-
ment in which a crystal was exposed to an electron beam. In their experi-
ment the regular lattice of atoms in a crystal acts like an optical grating. Even
simpler conceptually is diffraction from a sharp edge. Such an experiment
was performed by Hans Boersch in 1943. He mounted a platinum foil with a
sharp edge in the beam of an electron microscope and used the magnification
of the microscope to enlarge the interference pattern. Figure 1.3b shows his
result. For comparison it is juxtaposed to Figure 1.3a indicating the pattern

)2l h
h
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Fig.1.3. (a) Interference pat-
tern caused by the scattering
of red light on a sharp edge.
The edge is the border line of
an absorbing half-plane, the
position of which is indicated
at the top of the figure. (b) In-
terference pattern caused by
the scattering of electrons on
a sharp edge. Sources: (a) From
R. W. Pohl, Optik und Atomphysik,
ninth edition, copyright © 1954

by Springer-Verlag, Berlin, Gottingen,
Heidelberg, reprinted by permission.
(b) From H. Boersch, Physikalische
Zeitschrift, 44 (1943) 202, copyright
© 1943 by S.-Hirzel-Verlag, Leipzig,

reprinted by permission.

produced by visible light diffracted from a sharp edge. The wavelength deter-
mined in electron diffraction experiments is in agreement with the formula of
de Broglie.

1.4 The Stern—-Gerlach Experiment

In 1922 Otto Stern and Walther Gerlach published the result of an experiment
in which they measured the magnetic moment of silver atoms. By evaporating
silver in an oven with a small aperture they produced a beam of silver atoms
which was subjected to a magnetic induction field B. In the coordinate system
shown in Figure 1.4 together with the principal components of the experiment
the beam travels along the x axis. In the x,z plane the field B = (B,, B,, B;)
has only a z component B.. Caused by the form of the pole shoes the field
is inhomogeneous. The magnitude of B, is larger near the upper pole shoe
which has the shape of a wedge. In the x, z plane the derivative of the field is

B 4B, 0B,

—=—e , — >0
0z 0z 0z

Here e, is the unit vector in z direction. In the field a silver atom with the
magnetic moment p experiences the force
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Fig. 1.4. Stern-Gerlach ex-
periment. Experimental
setup with oven O, mag-
net pole shoes N and S, and
glass screen P (a). Silver
deposit on screen without
field (b) and with field (c)
as shown in Stern’s and
Gerlach’s original publica-
tion. The splitting is largest
in the middle and gets
smaller to the left and the
right of the picture because
the field inhomogeneity is
largest in the x.z plane.
Source: (b) and (c) from W, Ger-
lach and O. Stern, Zeitschrift fiir
Physik 9 (1922) 349 © 1922 by
Springer-Verlag, Berlin, reprinted

by permission.

B B,
F= f"'a_ e, =(n-e) €;
rid az

Since the scalar product of p and e, is
f-e, = pucosa

where « is the angle between the direction of the magnetic moment and the
Z direction and w is the magnitude of the magnetic moment, the force has its
maximum strength in the z direction if w is parallel to e; and its maximum
strength in the opposite direction if p is antiparallel to e.. For intermediate
orientations the force has intermediate values. In particular, the force vanishes
if p is perpendicular to e, i.e., if p is parallel to the x, y plane.

Stern and Gerlach measured the deflection of the silver atoms by this force
by placing a glass plate behind the magnet perpendicular to the x axis. In
those areas where atoms hit the glass a thin but visible layer of silver formed
after some time. Along the z axis they observed two distinct areas of silver
indicating that the magnetic moments g were oriented preferentially parallel
(e = 0) or antiparallel (o = ) to the field B. This finding is contrary to the
classical expectation that all orientations of p are equally probable.
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It remains to be said that the magnetic moment of a silver atom is practi-
cally identical to the magnetic moment of a single free electron. A silver atom
has 47 electrons but the contributions of 46 electrons to the total magnetic mo-
ment cancel. The contribution of the nucleus to the magnetic moment of the
atom is very small. The quantitative result of the Stern—Gerlach experiment is

1.

2.

The magnetic moment of the electron is

eh

b=

In the presence of a magnetic field the magnetic moment is found to be
oriented parallel or antiparallel to the field direction.

Problems

L.1.

1.2:

1.3.

Thirty percent of the 100W power consumption of a sodium lamp goes
into the emission of photons with the wavelength A = 589nm. How
many photons are emitted per second? How many hit the eye of an
observer — the diameter of the pupil is 5 mm — stationed 10 km from the
lamp?

The minimum energy Ey = hvy needed to set electrons free is called
the work function of the material. For cesium it is 3.2 x 107" J. What
is the minimum frequency and the corresponding maximum wavelength
of light that make the photoelectric effect possible? What is the kinetic
energy of an electron liberated from a cesium surface by a photon with
a wavelength of 400 nm?

The energy £ = hv of a light quantum of frequency v can also be inter-
preted in terms of Einstein’s formula £ = M c?, where c is the velocity
of light in a vacuum. (See also the introduction to Chapter 18.) What
energy does a blue quantum (A = 400nm) lose by moving 10m upward
in the earth’s gravitational field? How large is the shift in frequency and
wavelength?

Many radioactive nuclei emit high-energy photons called y rays. Com-
pute the recoil momentum and velocity of a nucleus possessing 100
times the proton mass and emitting a photon of 1 MeV energy.

Calculate the maximum change in wavelength experienced by a pho-
ton in a Compton collision with an electron initially at rest. The initial
wavelength of the photon is A = 2 x 10~ '>m. What is the Kinetic energy
of the recoil electron?
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L.6.

L7

1.8.

1.9.

1. Introduction

Write the equations for energy and momentum conservation in the
Compton scattering process when the electron is not at rest before the
collision.

Use the answer to problem 1.6 to calculate the maximum change of en-
ergy and wavelength of a photon of red light (A = 8 x 10~ "m) colliding
head on with an electron of energy E. = 20GeV. (Collisions of photons
from a laser with electrons from the Stanford linear accelerator are in
fact used to prepare monochromatic high-energy photon beams.)

Electron microscopes are chosen for very fine resolution because the
de Broglie wavelength A = //p can be made much shorter than the
wavelength of visible light. The resolution is roughly A. Use the rela-
tivistic relation E*> = p?c?+ m®c* to determine the energy of electrons
needed to resolve objects of the size 10~°m (a virus), 10~*m (a DNA
molecule), and 10~ " m (a proton). Determine the voltage U needed to
accelerate the electrons to the necessary kinetic energy E —mc?.

What are the de Broglie frequency and wavelength of an electron mov-
ing with a kinetic energy of 20keV, which is typical for electrons in the
cathode-ray tube of a color television set?



2. Light Wavess

2.1 Harmonic Plane Waves, Phase Velocity

Many important aspects and phenomena of quantum mechanics can be visu-
alized by means of wave mechanics, which was set up in close analogy to
wave optics. Here the simplest building block is the harmonic plane wave of
light in a vacuum describing a particularly simple configuration in space and
time of the electric field E and the magnetic induction field B. If the x axis
of a rectangular coordinate system has been oriented parallel to the direction
of the wave propagation, the y axis can always be chosen to be parallel to
the electric field strength so that the z axis is parallel to the magnetic field
strength. With this choice the field strengths can be written as

E, = Ejcos(wt—kx) , B. = Bycos(wt —kx)

<

E. = E.=0 , B, = B,=0

They are shown in Figures 2.1 and 2.2. The quantities E, and B, are the
maximum values reached by the electric and magnetic fields, respectively.
They are called amplitudes. The angular frequency w is connected to the wave
number k by the simple relation

w=ck

The points where the field strength is maximum, that is, has the value £,
are given by the phase of the cosine function

S=wt—kx =24 ,

where £ takes the integer values £ = 0,+1,£2,... . Therefore such a point
moves with the velocity
X
Ttk

Since this velocity describes the speed of a point with a given phase, ¢ is
called the phase velocity of the wave. For light waves in a vacuum, it is inde-
pendent of the wavelength. For positive, or negative, k the propagation is in
the direction of the positive, or negative, x axis, respectively.

S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics, 11
DOI 10.1007/978-1-4614-3951-6_2, © Springer Science+Business Media New York 2012
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Fig.2.1. In a plane wave the electric and magnetic field strengths are perpendicular to
the direction of propagation. At any moment in time, the fields are constant within
planes perpendicular to the direction of motion. As time advances, these planes move
with constant velocity.

At afixed point in space, the field strengths E and B oscillate in time with
the angular frequency w (Figures 2.3a and c). The period of the oscillation is
2

T=—

w

For fixed time the field strengths exhibit a periodic pattern in space with a
spatial period, the wavelength

2
A=—
|k|

The whole pattern moves with velocity ¢ along the x direction. Fig-
ures 2.3b and 2.3d present the propagation of waves by a set of curves show-
ing the field strength at a number of consecutive equidistant moments in time.
Earlier moments in time are drawn in the background of the picture, later ones
toward the foreground. We call such a representation a time development.

For our purpose it is sufficient to study only the electric field of a light
wave,
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-

Fig.2.2. For a given moment in time, the electric field strength E and the magnetic field
strength B are shown along a line parallel to the direction of motion of the harmonic
plane wave.

E,=E = Ejcos(wf — kx — )

We have included an additional phase « to allow for the fact that the maximum
of E need not be at x = 0 for t = 0. To simplify many calculations, we now
make use of the fact that cosine and sine are equal to the real and imaginary
parts of an exponential,

cosf +ising =e” |

that is,
cos f =Ree” sinf = Ime'”

The wave is then written as
E=ReE, |,
where E. is the complex field strength:
E. =E e—i(wl—k.\'—a] — E eiae—iwreikx
c— &0 — &0
It factors into a complex amplitude
A= EQ e

and two exponentials containing the time and space dependences, respec-
tively. As mentioned earlier, the wave travels in the positive or negative x
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Fig.2.3. (a) Time
dependence  of
the electric field
of a harmonic
wave at a fixed
point in space.
(b) Time develop-
ment of the elec-
tric field of a har-
monic wave. The
field distribution
along the x di-
rection is shown
for several mo-
ments in time.
Early moments
are in the back-
ground, later mo-
ments in the fore-
ground. (¢, d)
Here the wave
has twice the fre-
quency. We ob-
serve that the pe-
riod T and the
wavelength A are
halved, but that
the phase veloc-
ity ¢ stays the
same. The time
developments in
parts b and d
are drawn for the
same interval of
time.

E(Xo,t}

T

E(xgt)
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direction, depending on the sign of k. Such waves with different amplitudes
are
E _ A efiwl eif«'.i‘ E _ B eflwl‘efik.\'
c+ — L] c—

The factorization into a time- and a space-dependent factor is particularly
convenient in solving Maxwell’s equations. It allows the separation of time
and space coordinates in these equations. If we divide by exp(—iwt), we arrive
at the time-independent expressions

ES+ — Aelf(,\' ; ES_ — Be*l.ﬁ',\' ;

which we call stationary waves.
The energy density in an electromagnetic wave is equal to a constant, &,
times the square of the field strength,

w(x,t) =g E*

Because the plane wave has a cosine structure, the energy density varies twice
as fast as the field strength. It remains always a positive quantity; therefore the
variation occurs around a nonzero average value. This average taken over a
period T' of the wave can be written in terms of the complex field strength as

€ . & 5
w=—EE = —|E
2 2
Here E; stands for the complex conjugate,
E=ReE.—ilmE, |,
of the complex field strength,
E.=ReE.+ilmE,
For the average energy density in the plane wave, we obtain
&, , &
w=—|A]*= 2E?
2

2

2.2 Light Wave Incident on a Glass Surface

The effect of glass on light is to reduce the phase velocity by a factor n called
the refractive index,

Although the frequency w stays constant, wave number and wavelength are
changed according to

kK'=nk , A==

n
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The Maxwell equations, which govern all electromagnetic phenomena,
demand the continuity of the electric field strength and its first derivative at
the boundaries of the regions with different refractive indices. We consider
a wave traveling in the x direction and encountering at position x = x, the
surface of a glass block filling half of space (Figure 2.4a). The surface is
oriented perpendicular to the direction of the light. The complex expression

E1+ — Aleikp{

describes the incident stationary wave to the left of the glass surface, that is,
for x < x|, where A, is the known amplitude of the incident light wave. At
the surface only a part of the light wave enters the glass block; the other part
will be reflected. Thus, in the region to the left of the glass block, x < x|, we
find in addition to the incident wave the reflected stationary wave

E,_= B e ¥
propagating in the opposite direction. Within the glass the transmitted wave
E,= A,
propagates with the wave number
ky = nyk;

altered by the refractive index n = n, of the glass. The waves E,., E,_, and
E, are called incoming, reflected, and transmitted constituent waves, respec-
tively. The continuity for the field strength E and its derivative E' at x = x;
means that

Ei(x)) = Eip(x)+ E-(x1) = Ex(xy)

and
E\(x)) = iki [E11(x1) — Ei_(x1)] = k2 Ex(x)) = Ej(x1)

The two unknown amplitudes, B, of the reflected wave, and A, of the
transmitted, can now be calculated from these two continuity equations. The
electric field in the whole space is determined by two expressions incorporat-
ing these amplitudes,

A e 4 Bie Y for x < x

E,= .
s Ajeikes for x > x;

The electric field in the whole space is obtained as a superposition of constit-
uent waves physically existing in regions 1 and 2. By multiplication with the
time-dependent phase exp(—iwt), we obtain the complex field strength E,
the real part of which is the physical electric field strength.
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=
Fig.2.4. (a) To the
right of  the
. plane x = x;, a

glass block ex-
tends with refrac-
tive index n = n»;
to the left there
is empty space,
n=1. (b) Time
development  of
the electric field
strength of a har-
monic wave which

falls from the left
onto a glass sur-
face, represented
by the vertical
-+ line, and is partly
reflected by and
partly transmit-
ted into the glass.
(¢) Time devel-
opment of the
incoming  wave
alone. (d) Time
development  of
the reflected wave
alone.
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Figure 2.4b gives the time development of this electric field strength. It is
easy to see that in the glass there is a harmonic wave moving to the right. The
picture in front of the glass is less clear. Figures 2.4c and d therefore show
separately the time developments of the incoming and the reflected waves
which add up to the total wave to the left of x,, observed in Figure 2.4b.

2.3 Light Wave Traveling through a Glass Plate

It is now easy to see what happens when light falls on a glass plate of finite
thickness. When the light wave penetrates the front surface at x = x,, again
reflection occurs so that we have as before the superposition of two stationary
waves in the region x < x;:

El — Alexkn 5 Bl eﬁfq.\'

The wave moving within the glass plate suffers reflection at the rear surface at
X = X3, so that the second region, x; < x < x,, also contains a superposition
of two waves,

EZ — AZ exkg.\' + 32 eﬂhx ,

which now have the refracted wave number
ky = nsk,

Only in the third region, x, < x, do we observe a single stationary wave
E3= Az’

with the original wave number k.

As a consequence of the reflection on both the front and the rear surface
of the glass plate, the reflected wave in region 1 consists of two parts which
interfere with each other. The most prominent phenomenon observed under
appropriate circumstances is the destructive interference between these two
reflected waves, so that no reflection remains in region 1. The light wave is
completely transmitted into region 3. This phenomenon is called a resonance
of transmission. It can be illustrated by looking at the frequency dependence
of the stationary waves. The upper plot of Figure 2.5 shows the stationary
waves for different fixed values of the angular frequency w, with its magnitude
rising from the background to the foreground. A resonance of transmission is
recognized through a maximum in the amplitude of the transmitted wave, that
is, in the wave to the right of the glass plate.

The signature of a resonance becomes even more prominent in the fre-
quency dependence of the average energy density in the wave. As discussed
in Section 2.1, in a vacuum the average energy density has the form
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Re E.(x)

Fig.2.5. Top: Frequency dependence of stationary waves when a harmonic wave is in-
cident from the left on a glass plate. The two vertical lines indicate the thickness of the
plate. Small values of the angular frequency @ are given in the background, large values
in the foreground of the picture. Bottom: Frequency dependence of the quantity £ .E
(which except for a factor n, is proportional to the average energy density) of a harmonic
wave incident from the left on a glass plate. The parameters are the same as in part a.
At a resonance of transmission, the average energy density is constant in the left region,
indicating through the absence of interference wiggles that there is no reflection.
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&y
w=_—EE
2

In glass, where the refractive index n has to be taken into account, we have
ee L€
w = TUECE: = n'EUECE: :
where & = n* is the dielectric constant of glass. Thus, although E. is continu-

ous at the glass surface, w is not. It reflects the discontinuity of n*, Therefore
we prefer plotting the continuous quantity

—w = E.E]

n=&y
This plot, shown in the lower plot of Figure 2.5, indicates a resonance of
transmission by the maximum in the average energy density of the transmitted
wave. Moreover, since there is no reflected wave at the resonance of transmis-
sion, the energy density is constant in region 1.

In the glass plate we observe the typical pattern of a resonance.
(i) The amplitude of the average energy density is maximum.

(ii) The energy density vanishes in a number of places called nodes because
for a resonance a multiple of half a wavelength fits into the glass plate.
Therefore different resonances can be distinguished by the number of
nodes.

The ratio of the amplitudes of the transmitted and incident waves is called the
transmission coefficient of the glass plate,

rods
A

2.4 Free Wave Packet

The plane wave extends into all space, in contrast to any realistic physical sit-
uation in which the wave is localized in a finite domain of space. We therefore
introduce the concept of a wave packet. It can be understood as a superposi-
tion, that is, a sum of plane waves of different frequencies and amplitudes.
As a first step we concentrate the wave only in the x direction. It still extends
through all space in the y and the z direction. For simplicity we start with the
sum of two plane waves with equal amplitudes, E;:

E = El + Eg = E()COS((J)][ 7k1.x)‘|‘ EUCOS(CUQI 7k2x)
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Re Ecﬂ

-

e

Re E, = I(Re E) t o=t

cn’o

Fig.2.6. Superposition of two harmonic waves of slightly different angular frequencies
w| and -, at a fixed moment in time.

For a fixed time this sum represents a plane wave with two periodic structures.
The slowly varying structure is governed by a spatial period,

B 4
|ky — ki

Ll

the rapidly varying structure by a wavelength,

4

Ay = ——
T k4 k|

The resulting wave can be described as the product of a “carrier wave”
with the short wavelength A, and a factor modulating its amplitude with the
wavelength A _:

E=2E,cos(w_t —k_x)cos(w, t —k.x)

ki=|k2:|:k]‘/2 ; wi=cki

Figure 2.6 plots for a fixed moment in time the two waves E, and E,, and
the resulting wave E. Obviously, the field strength is now concentrated for
the most part in certain regions of space. These regions of great field strength
propagate through space with the velocity
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Ax  w-
—_— = =i
A ke

Now we again use complex field strengths. The superposition is written as
E — Eoe—i(wlr—iq.ﬂ+Eoe—i(w2r—.f(g.rj
=

For the sake of simplicity, we have chosen in this example a superposition
of two harmonic waves with equal amplitudes. By constructing a more com-
plicated “sum’ of plane waves, we can concentrate the field in a single region
of space. To this end we superimpose a continuum of waves with different
frequencies w = ck and amplitudes:

+0o0

E (x,1)= E(,f dk f(k)e ko
—oQ
Such a configuration is called a wave packet. The spectral function f(k)
specifies the amplitude of the harmonic wave with wave number k and circular
frequency w = ck. We now consider a particularly simple spectral function
which is significantly different from zero in the neighborhood of the wave
number ky. We choose the Gaussian function

1 |: (k — ko)z}
—CX ——
V270 P 207

It describes a bell-shaped spectral function which has its maximum value
at k = ko; we assume the value of &, to be positive, ko > 0. The width of the
region in which the function f(k) is different from zero is characterized by the
parameter o. In short, one speaks of a Gaussian with width o,. The Gaussian
function f(k) is shown in Figure 2.7a. The factors in front of the exponential
are chosen so that the area under the curve equals one. We illustrate the con-
struction of a wave packet by replacing the integration over k by a sum over a
finite number of terms,

Jk)=

N
EC(X,[) ~ Z E”(x,t) ’

n=—N

E,,(X,f) = EO Ak f(kn)eiifm”,iku‘-) »

where
k” - k() + n Ak . wy = Ckn

In Figure 2.7b the different terms of this sum are shown for time ¢ = 0,
together with their sum, which is depicted in the foreground. The term with
the lowest wave number, that is, the longest wavelength, is in the background
of the picture. The variation in the amplitudes of the different terms reflects
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the Gaussian form of the spectral function f(k), which has its maximum, for
k = ko, at the center of the picture. On the different terms, the partial waves,
the point x = 0 is marked by a circle. We observe that the sum over all terms
is concentrated around a rather small region near x = (.

Figure 2.7c shows the same wave packet, similarly made up of its partial
waves, for later time #; > 0. The wave packet as well as all partial waves have
moved to the right by the distance cf;. The partial waves still carry marks at
the phases that were at x = 0 at time ¢ = 0. The picture makes it clear that all
partial waves have the same velocity as the wave packet, which maintains the
same shape for all moments in time.

If we perform the integral explicitly, the wave packet takes the simple
form

E.(x,t) = E/ct—x)

Ukz 2 .
= Ejexp —E(CE—X) exp[—i(wot —kox)]
that is,
O,Z
E(x,t)=ReE.= Ejexp [—Ek(ct — x)2] cos(wyt — kox)

It represents a plane wave propagating in the positive x direction, with a field
strength concentrated in a region of the spatial extension 1/o; around point
x = ct. The time development of the field strength is shown in Figure 2.8b.
Obviously, the maximum of the field strength is located at x = cf; thus the
wave packet moves with the velocity ¢ of light. We call this configuration a
Gaussian wave packet of spatial width

1
Ax=— ,
Ok
and of wave-number width
Ak = Oy

We observe that a spatial concentration of the wave in the region Ax nec-
essarily requires a spectrum of different wave numbers in the interval Ak so
that

AxAk=1

This is tantamount to saying that the sharper the localization of the wave
packet in x space, the wider is its spectrum in k£ space. The original harmonic
wave I = I cos(w! — kx) was perfectly sharp in k space (Ak = 0) and there-
fore not localized in x space. The time development of the average energy
density w shown in Figure 2.8c appears even simpler than that of the field
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strength. It is merely a Gaussian traveling with the velocity of light along the
x direction. The Gaussian form is easily explained if we remember that

w=2NE Er = 2 pre-ol-?
2 2
We demonstrate the influence of the spectral function on the wave packet
by showing in Figure 2.8 spectral functions with two different widths . For
both we show the time development of the field strength and of the average
energy density.

2.5 Wave Packet Incident on a Glass Surface

The wave packet, like the plane waves of which it is composed, undergoes
reflection and transmission at the glass surface. The upper plot of Figure 2.9
shows the time development of the average energy density in a wave packet
moving in from the left. As soon as it hits the glass surface, the already reflec-
ted part interferes with the incident wave packet, causing the wiggly structure
at the top of the packet. Part of the packet enters the glass, moving with a
velocity reduced by the refractive index. For this reason it is compressed in
space. The remainder is reflected and moves to the left as a regularly shaped
wave packet as soon as it has left the region in front of the glass where inter-
ference with the incident packet occurs.

We now demonstrate that the wiggly structure in the interference region
is caused by the fast spatial variation of the carrier wave characterized by
its wavelength. To this end let us examine the time development of the field
strength in the packet, shown in the lower plot of Figure 2.9. Indeed, the spa-
tial variation of the field strength has twice the wavelength of the average
energy density in the interference region.

Another way of studying the reflection and transmission of the packet is
to look separately at the average energy densities of the constituent waves,
namely the incoming, transmitted, and reflected waves. We show these con-
stituent waves in both regions 1, a vacuum, and 2, the glass, although they
contribute physically only in either the one or the other. Figure 2.10 gives

Fig.2.7. (a) Gaussian spectral function describing the amplitudes of harmonic waves of
different wave numbers k. (b) Construction of a light wave packet as a sum of harmonic
waves of different wavelengths and amplitudes. For time 1 = O the different terms of
the sum are plotted, starting with the contribution of the longest wavelength in the
background. Points x = 0 are indicated as circles on the partial waves. The resulting
wave packet is shown in the foreground. (c) The same as part b, but for time ¢, > 0. The
phases that were at x = 0 for t = 0 have moved to x; = c/, for all partial waves. The wave
packet has consequently moved by the same distance and retained its shape.
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f(k) fCk)

Fig.2.8. (a, d) Spectral functions, (b, e) time developments of the field strength, and (c,
f) time developments of the average energy density for two different Gaussian wave
packets.

their time developments. All three have a smooth bell-shaped form and no
wiggles, even in the interference region. The time developments of the field
strengths of the constituent waves are shown in Figure 2.11. The observed av-
erage energy density of Figure 2.9 corresponds to the absolute square of the
sum of the incoming and reflected field strengths in the region in front of the
glass and, of course, not to the sum of the average energy densities of these
two constituent fields. Their interference pattern shows half the wavelength
of the carrier waves.
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Fig.2.9. Time developments of the quantity £ E (which except for a factor n® is propor-
tional to the average energy density) and of the field strength in a wave packet of light
falling onto a glass surface where it is partly reflected and partly transmitted through
the surface. The glass surface is indicated by the vertical line.
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(E, B,

Fig.2.10. Time
developments of

the quantity
EE? (which
except for a
factor n’> s
proportional to
the average
energy density)
of the constit-
uent waves in
a wave packet
of light incident
on a glass
surface: (a)
incoming wave,
(b) transmitted
wave, and (c)
reflected wave.
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Fig.2.11. Time
developments  of
the electric field
strengths of the
constituent waves
in a wave packet
of light incident
on a glass sur-
face: (a) incoming
wave, (b) trans-
mitted wave, and
(c) reflected wave.
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Fig.2.12. Time development of the quantity E.E (which except for a factor n® is pro-
portional to the average energy density) in a wave packet of light incident on a glass
plate.

2.6 Wave Packet Traveling through a Glass Plate

Let us study a wave packet that is relatively narrow in space, that is, one
containing a wide range of frequencies. The time development of its average
energy density (Figure 2.12) shows that, as expected, at the front surface of
the glass plate part of the packet is reflected. Another part enters the plate,
where it is compressed and travels with reduced speed. At the rear surface this
packet is again partly reflected while another part leaves the plate, traveling to
the right with the original width and speed. The small packet traveling back
and forth in the glass suffers multiple reflections on the glass surfaces, each
time losing part of its energy to packets leaving the glass.

Problems

2.1. Estimate the refractive index n, of the glass plate in Figure 2.4b.

2.2. Calculate the energy density for the plane electromagnetic wave de-
scribed by the complex electric field strength
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localize a particle in space, we again have to superimpose harmonic waves
to form a wave packet. To keep things simple, we first restrict ourselves to
discussing a one-dimensional wave packet.

For the spectral function we again choose a Gaussian function,’

o _(p—po)

The corresponding de Broglie wave packet is then

+oo
v = [ fee - xnd
For the de Broglie wave packet, as for the light wave packet, we first approx-
imate the integral by a sum,

N
PR D Yt

n=—N

where the r,(x,7) are harmonic waves for different values p, = po+nAp
multiplied by the spectral weight f(p,) Ap,

w;;(xat) e f(Pn)W(—x _ant)Ap

Figure 3.1a shows the real parts Re r,(x, 1) of the harmonic waves v, (x,1)
as well as their sum being equal to the real part Re v (x, 1) of the wave function
Y (x,t) for the wave packet at time t = 7y = 0. The point x = x; is marked on
each harmonic wave. In Figure 3.1b the real parts Re,(x,7) and their sum
Reyr(x,t) are shown at later time ¢ = f,. Because of their different phase ve-
locities, the partial waves have moved by different distances Ax, = v,(f; — fy)
where v, = p,/(2m) is the phase velocity of the harmonic wave of momentum
pn- This effect broadens the extension of the wave packet.

The integration over p can be carried out so that the explicit expression
for the wave packet has the form

lj/(.‘)c,f) = M(x, [)ei¢l.v.f)

Here the exponential function represents the carrier wave with a phase ¢ vary-
ing rapidly in space and time. The bell-shaped amplitude function

'We have chosen this spectral function to correspond to the square root of the spectral
function that was used in Section 2.4 to construct a wave packet of light. Since the area under
the spectral function f(k) of Section 2.4 was equal to one, the area under Lf(p)]2 is now
equal to one. This guarantees that the normalization condition of the wave function ¥ in the
next section will be fulfilled.
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Re ¥ = I(Re V), t o=t

Re ¥ = I(Re V),

Fig.3.1. Construction of a wave packet as a sum of harmonic waves v, of different
momenta and consequently of different wavelengths. Plotted are the real parts of the
wave functions. The terms of different momenta and different amplitudes begin with
the one of longest wavelength in the background. In the foreground is the wave packet
resulting from the summation. (a) The situation for time 1 = ;. All partial waves are
marked by a circle at point x = x;. (b) The same wave packet and its partial waves at
time 7, > 7. The partial waves have moved different distances Ax, = v,(f, — 1;) because
of their different phase velocities v,, as indicated by the circular marks which have kept
their phase with respect to those in part a. Because of the different phase velocities, the
wave packet has changed its form and width.
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1 x — xo — vpt)?
@n ) fo; 40}
travels in x direction with the group velocity
Po
UU = —
m

The group velocity is indeed the particle velocity and different from the phase
velocity. The localization in space is given by

4 2
ol h? 1_'_40'17 1~
& 4013 n> m?

This formula shows that the spatial extension o, of the wave packet in-
creases with time. This phenomenon is called dispersion. Figure 3.2 shows
the time developments of the real and imaginary parts of two wave packets
with different group velocities and widths. We easily observe the dispersion
of the wave packets in time. The fact that a wave packet comprises a whole
range of momenta is the physical reason why it disperses. Its components
move with different velocities, thus spreading the packet in space.

The function ¢(x,t) determines the phase of the carrier wave. It has the
form

vpt o
P(x,1) = |:Pn + —,L(x —Xg— Unf):| (x —xp— vnt)+ vot —a
Zp() 2
with
2
tana = — L ¢
h m

For fixed time ¢ it represents the phase of a harmonic wave modulated in wave
number. The effective wave number k. is the factor in front of x — xy — vyf
and is given by

1 0-2 vgl
Ker(x) = 5 Po+ TE(X—XO — Upl)

At the value x = (x) corresponding to the maximum value of the bell-
shaped amplitude modulation M(x,1), that is, its position average

(x) =xo+vot ,
the effective wave number is simply equal to the wave number that corre-
sponds to the average momentum p; of the spectral function,
1 1

k = — = —mbuv
0 hpo A 0
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Fig.3.2. (a, d) Spectral functions and time developments of (b, e) the real parts and (c,
f) the imaginary parts of the wave functions for two different wave packets. The two
packets have different group velocities and different widths and spread differently with
time.

For values x > x;, + vyt, that is, in front of the average position (x} of the
moving wave packet, the effective wave number increases,

kese(x > xo+vol) > ko,

so that the local wavelength

Aepi(x) =

decreases.

2T
| Kesr(x)
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For values x < xy 4 vof, that is, behind the average position (x), the effec-
tive wave number decreases,

kegr(x < X0 + vot) < ky

This decrease leads to negative values of k. of large absolute value, which,
far behind the average position, makes the wavelengths A.;(x) short again.
This wave number modulation can easily be verified in Figures 3.1 and 3.2.
For a wave packet at rest, that is, po = 0, vy = po/m = 0, the effective wave
number .

U‘ 4

722(x %)

Kegr(x) =

has the same absolute value to the left and to the right of the average position
xp. This implies a decrease of the effective wavelength that is symmetric on
both sides of x,. Figure 3.4 corroborates this statement.

3.3 Probability Interpretation, Uncertainty Principle

Following Max Born (1926), we interpret the wave function yr(x,?) as fol-
lows. Its absolute square

p(x,1) = [P (x, D> = M(x,1)

is identified with the probability density for observing the particle at position x
and time 7, that is, the probability of observing the particle at a given time 7 in
the space region between x and x + Ax is AP = p(x,t) Ax. This is plausible
since p(x,1) is positive everywhere. Furthermore, its integral over all space is
equal to one for every moment in time so that the normalization condition

+eoo +o00

f yooPde= [ ¢ (u0y(rnnde=1
—0oQ —0oQ

holds.

Notice, that there is a strong formal similarity between the average energy
density w(x,t) = &9| E.(x,1)|?/2 of a light wave and the probability density
p(x,1). Because of the probability character, the wave function ¥ (x,1) is not
a field strength, since the effect of a field strength must be measurable wher-
ever the field is not zero. A probability density, however, determines the prob-
ability that a particle, which can be point-like, will be observed at a given
position. This probability interpretation is, however, restricted to normalized
wave functions. Since the integral over the absolute square of a harmonic
plane wave is



Fig.3.4. Time developments of the probability density for a wave packet at rest and of
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which, in general, remains a function of time. For a Gaussian wave packet the
integration indeed yields
&

(x) =xp+vot , Vo >
m

corresponding to the trajectory of classical unaccelerated motion. We shall
therefore interpret the Gaussian wave packet of de Broglie waves as a quan-
tum-mechanical description of the unaccelerated motion of a particle, that
is, a particle moving with constant velocity. Actually, the Gaussian form of
the spectral function f (k) allows the explicit calculation of the wave packet.
With this particular spectral function, the wave function ¥ (x,7) can be given
in closed form.

The variance of the position is the expectation value of the square of the
difference between the position and its expectation:

var(x) = ((x—(x)))
+oo
= f Y H(x = (X))’ Y (x, 1) dx

Again, for the Gaussian wave packet the integral can be carried out to give

- 4o, 17
var(x) = o, = 1+—=—] ,

405 K m?

which agrees with the formula quoted in Section 3.2.
Calculation of the expectation value of the momentum of a wave packet

+o0

11b(xal‘): f(P)‘ﬁp(x*qu)dp

is carried out with the direct help of the spectral function f(p), that is,

+ o0
(p) =/ plf(p)I*dp

oo

For the spectral function f(p) of the Gaussian wave packet given at the be-
ginning of Section 3.2, we find

+o00 1 (p_p0)2
(p) = P—=—exp| ———5 |d
—0 27[(_)',} 20+

P

We replace the factor p by the identity

p=po+(p—po)

Since the exponential in the integral above is an even function in the variable
P — Po, the integral
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+oo l (P_p0)2
(p— po)——=—exp| ————5— |dp =0
/_ _(P=po 7 p[ 207 p

vanishes, for the contributions in the intervals —co < p < pgand py < p < o0
cancel. The remaining term is the product of the constant p, and the normal-
ization integral,

+oo
[ F(pPdp=1 |

e.=]
so that we find
(p) = po

This result is not surprising, for the Gaussian spectral function gives the
largest weight to momentum p, and decreases symmetrically to the left and
right of this value. At the end of Section 3.2, we found vy = py/m as the group
velocity of the wave packet. Putting the two findings together, we have discov-
ered that the momentum expectation value of a free, unaccelerated Gaussian
wave packet is the same as the momentum of a free, unaccelerated particle of
mass m and velocity vy in classical mechanics:

{p) = po=muy

The expectation value of momentum can also be calculated directly from
the wave function ¥ (x,1). We have the simple relation

hod o Y hoa | o |
— Y, (x —x0,f) = ——{———exp|——(Et-
ax P T iox | @z 2 P | TR px

= P‘J'fp(x _XU,I)

i

This relation translates the momentum variable p into the momentum operator

h a
_> —_——
P™ Tox
The momentum operator allows us to calculate the expectation value of mo-
mentum from the following formula:

e h o
(P):[ i (x, ) - —¢(x,1)dx
oo 1dx

It is completely analogous to the formula for the expectation value of position
given earlier. We point out that the operator appears between the functions
¥ (x,1) and yr(x,1), thus acting on the second factor only. To verify this for-
mula, we replace the wave function ¥ (x,) by its representation in terms of
the spectral function:
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[ v

+o00
f [ P (e, 0 — x0u)lx pF(p)dp

f F(p)Yp(x — xo,1)dpdx

)
I

The inner integral

+o0
[ lﬁ*(xaf)T/fp(x—xo,f)dx

400

| .
= U(x, t)(2 T)‘/’ p{—%[Et—p(x—xo)]}dx

— 00

is by Fourier’s theorem the inverse of the representation

+oo
vi(x,t) = S (), (x — xo,1)dp
= W.[ I (P)expih[Ef—P(x—xo)]]dP
of the complex conjugate of the wave packet ¥ (x,t). Thus we have
+o0

wx(xat)d/p(x 7x()st)dx = f*(P)

— 0o
Substituting this result for the inner integral of the expression for (p), we
rediscover the expectation value of momentum in the form

+oo +00
—f f’(p)pf(p)dp—f plf(p)I*dp

oo
This equation justifies the identification of momentum p with the operator
(h/i)(9/0x) acting on the wave function. The variance of the momentum for
a wave packet is

)
var(p) = ((p — f P(x, t)(———po) Yrx,1)dx

For our Gaussian packet we have
2
var(p) =0,

again independent of time because momentum is conserved.
The square root of the variance of the position,

Ax = \/var(x): G

determines the width of the wave packet in the position variable x and there-
fore is a measure of the uncertainty about where the particle is located. By
the same token, the corresponding uncertainty about the momentum of the
particle is

— \/var(p) =0,
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For our Gaussian wave packet we found the relation

h 4ot 12 i
o= — 142
- h* m?

For time ¢t = 0 this relation reads

h
G-VGF = E

For later moments in time, the product becomes even larger so that, in

general,
h

Ax-Ap > 5
This relation expresses the fact that the product of uncertainties in position
and momentum cannot be smaller than the fundamental Planck’s constant
divided by 4.

We have just stated the uncertainty principle, which is valid for wave
packets of all forms. It was formulated by Werner Heisenberg in 1927. This
relation says, in effect, that a small uncertainty in localization can only be
achieved at the expense of a large uncertainty in momentum and vice versa.
Figure 3.5 illustrates this principle by comparing the time development of
the probability density p(x,f) and the square of the spectral function f2(p).
The latter, in fact, is the probability density in momentum. Looking at the
spreading of the wave packets with time, we see that the initially narrow wave
packet (Figure 3.5, top right) becomes quickly wide in space, whereas the ini-
tially wide wave packet (Figure 3.5, bottom right) spreads much more slowly.
Actually, this behavior is to be expected. The spatially narrow wave packet
requires a wide spectral function in momentum space. Thus it comprises com-
ponents with a wide range of velocities. They, in turn, cause a quick dispersion
of the packet in space compared to the initially wider packet with a narrower
spectral function (Figures 3.5, bottom left and bottom right).

At its initial time 1 = 0 the Gaussian wave packet discussed at the be-
ginning of Section 3.2 has the smallest spread in space and momentum
because Heisenberg’s uncertainty principle is fulfilled in the equality form
o, -0, = h/2. The wave function at ¢ = 0 takes the simple form

e .
x,0) = Wexp Tr} exp | 2-Po(x —Xo

= M(x,0)exp[ig(x,0)]

The bell-shaped amplitude function M(x,0) is centered around the position
xo with the width ,; ¢ is the phase of the wave function at 1 = 0 and has the
simple linear dependence
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2 2.

9 ow A
lhaljf(x,f)——EEV’/(’C’I)'FV(J)W(XJ)

We now denote the operator of total energy by the symbol

H n 9 Vi
© 2mox el )
In analogy to the Hamilton function of classical mechanics, operator H is
called the Hamilfon operator or Hamiltonian. With its help the Schrodinger
equation for the motion of a particle under the influence of a potential takes
the form

9 -
iy (x.0) = Hy (x.1)

At this stage we should point out that the Schrédinger equation, general-
ized to three spatial dimensions and many particles, is the fundamental law
of nature for all of nonrelativistic particle physics and chemistry. The rest of
this book will be dedicated to the pictorial study of the simple phenomena
described by the Schrodinger equation.

3.5 Bivariate Gaussian Probability Density

To facilitate the physics discussion in the next section we now introduce a
Gaussian probability density of two variables x, and x, and demonstrate its
properties. The bivariate Gaussian probability density is defined by

1 (x; — (xl))2
3 = A - 5
p(x1.x2) cxp{ T [ =
B 2C(J€1 — (x1}) (e — (x2)) 4 (x> — (24\"2))':“
g lef;) 0,
The normalization constant
" 1
- 2.71—0'10—2'\/1 762

ensures that the probability density is properly normalized:

+00 pt+oo
f f pxy,x)dxdx; =1
-0 v —o0o

The bivariate Gaussian is completely described by five parameters. They are
the expectation values (x,) and (x,), the widths o, and o,, and the correlation
coefficient c. The marginal distributions defined by



48 3. Probability Waves of Matter

+oo
pi(x;) = / p(xp,x)dxy

oo

+ o0
pa(x2) = f p(x1,x2)dx,
are for the bivariate Gaussian distribution simply Gaussians of a single vari-
able,

1
pri(x) = Ner exp|:

e (x.))z]

po(x) = ——ex |:——
2 \/27102 3 2(722

Each marginal distribution depends on two parameters only, the expectation
value and the width of its variable.

Lines of constant probability density in x,, x, are the lines of intersection
between the surface p(x;,x,) and a plane p = a = const.

One particular ellipse, for which

1
pxy,x0) = Aexp{—E] .

i.e., the one for which the exponent in the bivariate Gaussian is simply equal to
—1/2, is called the covariance ellipse. Points x|, x, on the covariance ellipse
fulfill the equation

1[G = (x))

2 2C(XI _(xl))(xz—(Xz))_i_(xz—(sz))z} 1
1 —¢? P -

1 g (2]

Projected on the x; axis and the x; axis, it yields lines of lengths 2o and 20,
respectively.

The plots in Figure 3.6 differ only by the value ¢ of the covariance. The
covariance ellipses are shown as lines of constant probability on the surfaces
p(x1,x2). For ¢ = 0 the principal axes of the covariance ellipse are parallel
to the coordinate axes. In this situation variables x, and x, are uncorrelated,
that is, knowledge that x; = (x;) holds true does not tell us whether it is more
probable to observe x, > (x,;) or x; < (x;). For uncorrelated variables the
relation between the joint probability density and the marginal distribution
is simple, p(x;,x2) = pi(x;)p2(x;2). The situation is different for correlated
variables, that is, for ¢ # 0. For a positive correlation, ¢ > 0, the major axis
of the ellipse lies along a direction between those of the x; axis and the x;
axis. If we know that x; > (x;) is valid it is more probable to have x, > (x,)
than to have x, < {x). If, on the other hand, the correlation is negative, x < 0,
the major axis has a direction between those of the x, axis and the negative
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Fig.3.6. Bivariate Gaussian probability density p(x,,x;) drawn as a surface over the
X1, X, plane and marginal distributions p,(x;) and p,(x,). The latter are drawn as curves
over the margins parallel to the x, axis and the x, axis, respectively. Also shown is the
covariance ellipse corresponding to the distribution. The rectangle circumscribing the
ellipse has the sides 20, and 20, respectively. The pairs of plots in the three rows of the
figure differ only by the correlation coefficient c.

X, axis. In this situation, once it is known that x; > (x;} is valid, x, < (x,) is
more probable than x, > (x;).

The amount of correlation is measured by the numerical value of ¢, which
can vary in the range —1 < ¢ < 1. In the limiting case of total correlation,
¢ = %1, the covariance ellipse degenerates to a line, the principal axis. The
joint probability density is completely concentrated along this line. That is,
knowing the value x; of one variable, we also know the value x, of the other.
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Also shown in Figure 3.6 are the covariance ellipses directly drawn in the
X1,X, plane and the rectangles with sides parallel to the x, and the x, axes. The
lengths of these sides are 20, and 2o, respectively. If there is no correlation
(¢ = 0) the principal axes of the ellipse are parallel to the coordinate axes so
that the principal semi-axes have lengths o, and o,. For ¢ # 0 the principal
axes form an angle « with the coordinate axes. The angle « is given by
2co05

2

tan2a = 5
Oy — 0y

3.6 Comparison with a Classical Statistical Description

The interpretation of the wave-packet solution as a classical point particle
catches only the most prominent and simplest classical features of particle
motion. To exploit our intuition of classical mechanics somewhat further, we
study a classical point particle with initial position and momentum known
to some inaccuracy only. In principle, such a situation prevails in all clas-
sical mechanical systems because of the remaining inaccuracy of the initial
conditions due to errors inevitable even in all classical measurements. The
difference in principle compared to quantum physics is, however, that accord-
ing to the laws of classical physics the errors in location and momentum of a
particle both can be made arbitrarily small independent of each other. From
Heisenberg’s uncertainty principle we know that this is not possible in quan-
tum physics.

We now study the motion of a classical particle described at the initial
time ¢ = O by a joint probability density in location and momentum which we
choose to be a bivariate Gaussian about the average values x, and p, with the
widths o, and o,. We assume that at the initial time 7 = O there is no correla-
tion between position and momentum. The initial joint probability density is
then

2 2
Pl (x, p) = _l exp{—(x_fﬂ) ] ——exp _M
TTO, 26.\'0 ‘\/27?-' Up 20—,;

For force-free motion the particle does not suffer a change in momentum
as time elapses, e.g., also at a later time > ( the particle still moves with
its initial momentum, i.e., p = p;. Thus, the momentum distribution does not
change with time. The position of a particle of momentum p; at time / initially
having the position x; is given by

x=x+wyt , v = pi/m

The probability density initially described by p¢'(x;, p;) can be expressed at
time ¢ by the positions x at time ¢ by inserting
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xi=x—(p/m}t
yielding the classical phase-space probability density
px,p.1) = pi(x—pt/m,p)

1 { 1[<x—x0—pr/m)2 <p—pn)2”
= ey - -

2 2
2noo, o 8 o;

1
= —explL
2w ono,

The exponent is a quadratic polynomial in x and p which can be written as

1) (x = [xo+ pot/m]—=(p — po)t/m)* (p— po)’
B o= e ¥
2 g 0'3
_logtopt?/m? [ (x = [xo+ pot/m])
B 2 ol ol + o212/ m?
_ 2(x — [xo+ pot /mD)(p — po) | (p — po)’
(0, +olt2/mP)m/t o}

Comparing this expression with the exponent of the general expression for a
bivariate probability density in Section 3.5 we find that p!(x, p,1) is a bivari-
ate Gaussian with the expectation values

(x(D)) = xo+ pot/m (p() =po
the widths
Gx(t) — 6_30 + Ul,gztz/ml s Up(t) =0p

and the correlation coefficient
opt opt/m

o ()m \/afo-l—a;l‘z/mz

In particular this means that the marginal distribution p¢'(x,1), i.e., the spatial
probability density for the classical particle with initial uncertainties o, in
position and o, momentum is

1
pfi(x,t) = ——¢€X

{_(x — [xo+ pot/m])? ]
270,(1)

20_3(()

Let us now study the classical probability density p(x, p,) of a particle
with initial uncertainties o, in position and o, in momentum which satisfy
the minimal uncertainty requirement of quantum mechanics:

0,00, =h/2
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Problems

3.1

3.2.

3.5.

3.6.

3.7.

3.8.

3i9;

Calculate the de Broglie wavelengths and frequencies of an electron
and a proton that have been accelerated by an electric field through a
potential difference of 100V. What are the corresponding group and
phase velocities?

An electron represented by a Gaussian wave packet with average en-
ergy E; = 100eV was initially prepared to have momentum width
o, = 0.1p, and position width o, = 71 /(20,). How much time elapses
before the wave packet has spread to twice the original spatial exten-
sion?

. Show that the normalization condition f_t? | (x,t)]>dx = 1 holds true

for any time if ¥ (x,7) is a Gaussian wave packet with a normalized
spectral function f(p).

Calculate the action of the commutator [p,x] = px —xp, p = (/1)
(8/0x) on a wave function ¥ (x,t). Show that it is equivalent to the
multiplication of ¥ (x,) by fi /i so that we may write [p,x] = % /i.

Express the expectation value of the kinetic energy of a Gaussian wave
packet in terms of the expectation value of the momentum and the width
o, of the spectral function.

Given a Gaussian wave packet of energy expectation value (L) and mo-
mentum expectation value (p), write its normalized spectral function

f(p).

A large virus may for purposes of this problem be approximated by a
cube whose sides measure one micron and which has the density of
water. Assuming as an upper estimate an uncertainty of one micron in
position, calculate the minimum uncertainty in velocity of the virus.

The radius of both the proton and the neutron is measured to be of the
order of 107" m. A free neutron decays spontaneously into a proton,
an electron, and a neutrino. The momentum of the emitted electron is
typically 1 MeV /c. If the neutron were, as once thought, a bound system
consisting of a proton and an electron, how large would be the position
uncertainty of the electron and hence the size of the neutron? Take as
the momentum uncertainty of the electron the value 1 MeV /c.

Show that the solutions of the Schrédinger equation satisfy the continu-
ity equation
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3.11.

3.12.

3.13;

Problems 55

dp(x,1) i aj(x,1)
at ax
for the probability density

0

plx,t) =y (x,0)Y(x,1)
and the probability current density
. ol 9 .
](x,[):2.|:l‘rf (-’Caf)*w()f,f)*%”(xaf)*v’f (I,l‘):|
im el ox

X

To this end, multiply the Schrodinger equation by ¥*(x,f) and its com-
plex conjugate

.haw*(x,r) h’ 9’
h—=—
ot 2m dx?2

Ve, 1) = V)™ (x,1)

by vr(x,t), and add the two resulting equations.

Convince yourself with the help of the continuity equation that the nor-
malization integral

+00
Y (x, ) (x,)dx
-0
is independent of time if yr(x,f) is a normalized solution of the Schro-
dinger equation. To this end, integrate the continuity equation over all
x and use the vanishing of the wave function for large |x| to show the
vanishing of the integral over the probability current density.

Calculate the probability current density for the free Gaussian wave
packet as given at the end of Section 3.2. Interpret the result for 7 = 0
in terms of the probability density and the group velocity of the packet.

Show that the one-dimensional Schrédinger equation possesses spatial
reflection symmetry, that is, is invariant under the substitution x — —x
if the potential is an even function, that is, V(x) = V(—x).

Show that the ansatz for the Gaussian wave packet of Section 3.2 fulfills
the Schrodinger equation for a free particle.



4. Solution of the Schrodinger Equation
in One Dimension

4.1 Separation of Time and Space Coordinates,
Stationary Solutions

The simple structure of the Schrédinger equation allows a particular ansafz in
which the time and space dependences occur in separate factors,

Ye(x,1) =exp (— ;:Et) @e(x)

As in the case of electromagnetic waves, we call the factor ¢ (x) that is inde-
pendent of time a stationary solution. Inserting our ansatz into the Schrédin-
ger equation yields an equation for the stationary wave,

h? d?

_%@(}95()()4- Vx)pep(x)= Epp(x)

which is often called the time-independent Schridinger equation. It is char-
acterized by the parameter E, which is called an eigenvalue. The left-hand
side represents the sum of the kinetic and the potential energy, so that £ is
the total energy of the stationary solution. The solution ¢z(x) is called an
eigenfunction of the Hamilton operator

h2 dZ

H=———
2m dx*

+Vix) |
since the time-independent Schridinger equation can be put into the form

Hop(x)= E@p(x)

We also say that the solution @g(x) describes an eigensiate of the system
specified by the Hamilton operator. This eigenstate is characterized by the
eigenvalue I of the total energy. Often the stationary solution ¢g(x) is also
called a stationary state of the system.

S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics, 56
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The time-independent Schrodinger equation has a large manifold of solu-
tions. It is supplemented by boundary conditions that have to be imposed on
a particular solution. These boundary conditions must be abstracted from the
physical process that the solution should describe. The boundary conditions
on the solution for the elastic scattering in one dimension of a particle un-
der the action of a force will be discussed in the next section. Because of the
boundary conditions, solutions ¢g(x) exist for particular values of the energy
eigenvalues or for particular energy intervals only.

As a first example, we look at the de Broglie waves,

1 i
pr(x — Xp,1) = WGXP |:_£(El —px+ PX())]

The function ¥, (x — xo, ) factors into exp[—(i/%) E] and the stationary wave

1 i
Gnm) 2 exp |:T:P(-’C - Xo)]

It is a solution of the time-independent Schrédinger equation with a van-
ishing potential for the energy eigenvalue E = p?>/2m. A superposition of
de Broglie waves fulfilling the normalization condition of Section 3.3 forms
a wave packet describing an unaccelerated particle. Here x, is the position
expectation value of the wave packet at time 7 = 0.

Since the momentum p is a real parameter, the energy eigenvalue of a
de Broglie wave is always positive. Thus, for the case of de Broglie waves,
we have found the restriction £ > 0 for the energy eigenvalues.

The general solution of the time-dependent Schrédinger equation is given
by a linear combination of waves of different energies. This is tantamount to
stating that the various components of different energy E superimposed in the
solution change independently of one another with time.

For initial time ¢ = 0 the functions ¥z and ¢ coincide. An initial condi-
tion prescribed at f = 0 determines the coefficients in the linear combination of
spectral components of different energies. Therefore the procedure for solving
the equation for a given initial condition has three steps. First, we determine
the stationary solutions ¢g(x) of the time-independent Schrédinger equation.
Second, we superimpose them with appropriate coefficients to reproduce the
initial condition ¥ (x,0) at t = 0. Finally, we introduce into every term of this
linear combination the time-dependent factor exp[—(i/%)E(] corresponding
to the energy of the stationary solution ¢z and sum them up to give ¥ (x,1),
the solution of the time-dependent Schrodinger equation.

In the next section we study methods of obtaining the stationary solutions.
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4.2 Stationary Scattering Solutions:
Piecewise Constant Potential

As in classical mechanics, the scattering of a particle by a force is called
elastic if only its momentum is changed while its energy is conserved. A force
is said to be of finite range if it is practically zero for distances from the center
of force larger than a finite distance d. This distance d is called the range of
the force. The elastic scattering of a particle through a force of finite range
consists of three stages subsequent in time.

. The incoming particle moves unaccelerated in a force-free region to-
ward the range of the force.

2. The particle moves under the influence of the force. The action of the
force changes the momentum of the particle.

3. After the scattering the outgoing particle moves away from the range of
the force. Its motion in the force-free region is again unaccelerated.

In Section 3.3 we have seen that the force-free motion of a particle of mass
m can be described by a wave packet of de Broglie waves,

1 i
Y, (x — xo,1) Wexp[—h(Ef—Px+Pxo):| ,
2
E = 2
2m

They can be factored into the time-dependent factor exp[—(i/f)Ef] and the
stationary wave (2 #) '/ exp[(i/h)p(x — x,)]. This stationary wave is a solu-
tion of the time-independent Schrédinger equation with a vanishing potential.
If the spectral function f(p) of the wave packet has values different from
zero in arange of positive p values, the wave packet
+o00

gb(x,l‘) = f(P)lf’fp(-x‘ant)dp

+o0

I

h ) Q2nh)\/2

moves along the x axis from left to right, that is, in the direction of increasing
x values.

Now we superimpose de Broglie waves of momentum — p,

1
———ex
@any 2P
P

E = 5
2m

. | .
F(p)exp (IEI ————exp |:;lp(.r .)C()):| dp
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Yo, (x —xp,1) = |:—;7(Et+ px — pr)i| ;



