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Preface

Have you ever...

wasted a lot of time coding the wrong algorithm?

used a data structure that was much too complicated?

tested a program but missed an obvious problem?

spent a day looking for a bug you should have found in five minutes?
needed to make a program run three times faster and use less memory?
struggled to move a program from a workstation to a PC or vice versa?
tried to make a modest change in someone else’s program?

rewritten a program because you couldn’t understand it?

Was it fun?

These things happen to programmers all the time. But dealing with such problems
is often harder than it should be because topics like testing, debugging, portability,
performance, design alternatives, and style—the practice of programming—are not
usually the focus of computer science or programming courses. Most programmers
learn them haphazardly as their experience grows, and a few never learn them at all.

In a world of enormous and intricate interfaces, constantly changing tools and lan-
guages and systems, and relentless pressure for more of everything, one can lose sight
of the basic principles—simplicity, clarity, generality—that form the bedrock of good
software. One can also overlook the value of tools and notations that mechanize some
of software creation and thus enlist the computer in its own programming,.

Our approach in this book is based on these underlying, interrelated principles,
which apply at all levels of computing. These include simplicity, which keeps pro-
grams short and manageable; clarity, which makes sure they are easy to understand,
for people as well as machines; generality, which means they work well in a broad
range of situations and adapt well as new situations arise; and aufomation, which lets
the machine do the work for us, freeing us from mundane tasks. By looking at com-
puter programming in a variety of languages, from algorithms and data structures
through design, debugging, testing, and performance improvement, we can illustrate
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universal engineering concepts that are independent of language, operating system, or
programming paradigm.

This book comes from many years of experience writing and maintaining a lot of
software, teaching programming courses, and working with a wide variety of pro-
grammers. We want to share lessons about practical issues, to pass on insights from
our experience, and to suggest ways for programmers of all levels to be more profi-
cient and productive.

We are writing for several kinds of readers. If you are a student who has taken a
programming course or two and would like to be a better programmer, this book will
expand on some of the topics for which there wasn’t enough time in school. If you
write programs as part of your work, but in support of other activities rather than as
the goal in itself, the information will help you to program more effectively. If you
are a professional programmer who didn’t get enough exposure to such topics in
school or who would like a refresher, or if you are a software manager who wants to
guide your staff in the right direction, the material here should be of value.

We hope that the advice will help you to write better programs. The only prereg-
uisite is that you have done some programming, preferably in C, C++ or Java. Of
course the more experience you have, the easier it will be; nothing can take you from
neophyte to expert in 21 days. Unix and Linux programmers will find some of the
examples more familiar than will those who have used only Windows and Macintosh
systems, but programmers from any environment should discover things to make their
lives easier.

The presentation is organized into nine chapters, each focusing on one major
aspect of programming practice.

Chapter 1 discusses programming style. Good style is so important to good pro-
gramming that we have chosen to cover it first. Well-written programs are better than
badly-written ones—they have fewer errors and are easier to debug and to modify—
so it is important to think about style from the beginning. This chapter also intro-
duces an important theme in good programming, the use of idioms appropriate to the
language being used.

Algorithms and data structures, the topics of Chapter 2, are the core of the com-
puter science curriculum and a major part of programming courses. Since most read-
ers will already be familiar with this material, our treatment is intended as a brief
review of the handful of algorithms and data structures that show up in almost every
program. More complex algorithms and data structures usually evolve from these
building blocks, so one should master the basics.

Chapter 3 describes the design and implementation of a small program that illus-
trates algorithm and data structure issues in a realistic setting. The program is imple-
mented in five languages; comparing the versions shows how the same data structures
are handled in each, and how expressiveness and performance vary across a spectrum
of languages.
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It is an old observation that the best writers sometimes disregard
the rules of rhetoric. When they do so, however, the reader will
asually find in the sentence some compensating merit, attained at
the cost of the violation. Unless he is certain of doing as well, he
will probably do best to follow the rules.

William Strunk and E. B. White, The Elements of Stvle

This fragment of code comes from a large program written many years ago:

if ( (country == SING) || (country == BRNI) ||
(country == POL) || (country == ITALY) )
{

VES

If the country is Singapore, Brunei or Poland
then the current time is the answer time
rather than the off hook time.

Reset answer time and set day of week.

EE

#/

It’s carefully written, formatted, and commented, and the program it comes from
works extremely well; the programmers who created this system are rightly proud of
what they built. But this excerpt is puzzling to the casual reader. What relationship
links Singapore, Brunei, Poland and Italy? Why isn’t Italy mentioned in the com-
ment? Since the comment and the code differ, one of them must be wrong. Maybe
both are. The code is what gets executed and tested, so it’s more likely to be right;
probably the comment didn’t get updated when the code did. The comment doesn’t
say enough about the relationship among the three countries it does mention; if you
had to maintain this code, you would need to know more.

The few lines above are typical of much real code: mostly well done, but with
some things that could be improved.
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This book is about the practice of programming—how to write programs for real.
Our purpose is to help you to write software that works at least as well as the program
this example was taken from, while avoiding trouble spots and weaknesses. We will
talk about writing better code from the beginning and improving it as it evolves.

We are going to start in an unusual place, however, by discussing programming
style. The purpose of style is to make the code easy to read for yourself and others,
and good style is crucial to good programming. We want to talk about it first so you
will be sensitive to it as you read the code in the rest of the book.

There is more to writing a program than getting the syntax right, fixing the bugs,
and making it run fast enough. Programs are read not only by computers but also by
programmers. A well-written program is easier to understand and to modify than a
poorly-written one. The discipline of writing well leads to code that is more likely to
be correct. Fortunately, this discipline is not hard.

The principles of programming style are based on common sense guided by expe-
rience, not on arbitrary rules and prescriptions. Code should be clear and simple—
straightforward logic, natural expression, conventional language use, meaningful
names, neat formatting, helpful comments—and it should avoid clever tricks and
unusual constructions. Consistency is important because others will find it easier to
read your code, and you theirs, if you all stick to the same style. Details may be
imposed by local conventions, management edict, or a program, but even if not, it is
best to obey a set of widely shared conventions. We follow the style used in the book
The C Programming Language, with minor adjustments for C++ and Java.

We will often illustrate rules of style by small examples of bad and good program-
ming, since the contrast between two ways of saying the same thing is instructive.
These examples are not artificial. The ‘‘bad’” ones are all adapted from real code,
written by ordinary programmers (occasionally ourselves) working under the common
pressures of too much work and too little time. Some will be distilled for brevity, but
they will not be misrepresented. Then we will rewrite the bad excerpts to show how
they could be improved. Since they are real code, however, they may exhibit multiple
problems. Addressing every shortcoming would take us too far off topic, so some of
the good examples will still harbor other, unremarked flaws.

To distinguish bad examples from good, throughout the book we will place ques-
tion marks in the margins of questionable code, as in this real excerpt:

9 #define ONE 1
? #define TEN 10
? #define TWENTY 20

Why are these #defines questionable? Consider the modifications that will be neces-
sary if an array of TWENTY elements must be made larger. At the very least, each name
should be replaced by one that indicates the role of the specific value in the program:

#define INPUT_MODE 1
#define INPUT_BUFSIZE 10
#define OUTPUT_BUFSIZE 20
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1.1 Names

What’s in a name? A variable or function name labels an object and conveys
information about its purpose. A name should be informative, concise, memorable,
and pronounceable if possible. Much information comes from context and scope; the
broader the scope of a variable, the more information should be conveyed by its name.

Use descriptive names for globals, short names for locals. Global variables, by defi-
nition, can crop up anywhere in a program, so they need names long enough and
descriptive enough to remind the reader of their meaning. It’s also helpful to include
a brief comment with the declaration of each global:

int npending = 0; // current length of input queue

Global functions, classes, and structures should also have descriptive names that sug-
gest their role in a program.

By contrast, shorter names suffice for local variables; within a function, n may be
sufficient, npoints is fine, and numberOfPoints is overkill.

Local variables used in conventional ways can have very short names. The use of
i and j for loop indices, p and q for pointers, and s and t for strings is so frequent
that there is little profit and perhaps some loss in longer names. Compare

? for (theElementIndex = 0; theElementIndex < numberOfElements;
? theETementIndex++)

? elementArray[theElementIndex] = theElementIndex;

to

for (i = 0; i < nelems; i++)
elem[i] = 1i;

Programmers are often encouraged to use long variable names regardless of context.
That is a mistake: clarity is often achieved through brevity.

There are many naming conventions and local customs. Common ones include
using names that begin or end with p, such as nodep, for pointers; initial capital letters
for Globals; and all capitals for CONSTANTS. Some programming shops use more
sweeping rules, such as notation to encode type and usage information in the variable,
perhaps pch to mean a pointer to a character and strTo and strFrom to mean strings
that will be written to and read from. As for the spelling of the names themselves,
whether to use npending or numPending or num_pending is a matter of taste; specific
rules are much less important than consistent adherence to a sensible convention.

Naming conventions make it easier to understand your own code, as well as code
written by others. They also make it easier to invent new names as the code is being
written. The longer the program, the more important is the choice of good, descrip-
tive, systematic names.

Namespaces in C++ and packages in Java provide ways to manage the scope of
names and help to keep meanings clear without unduly long names.
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Be consistent. Give related things related names that show their relationship and high-
light their difference.

Besides being much too long, the member names in this Java class are wildly
inconsistent:

7 class UserQueue {

? int noOfItemsInQ, frontOfTheQueue, queueCapacity;
? public int noOfUsersInQueue() {...}

7 }

The word “‘queue’” appears as Q, Queue and queue. But since queues can only be
accessed from a variable of type UserQueue, member names do not need to mention
‘‘queue’’ at all; context suffices, so

? queue.queueCapacity
is redundant. This version is better:
class UserQueue {
int nitems, front, capacity;

public int nusers(Q) {...}

}
since it leads to statements like

queue.capacity++;
n = queue.nusers();

No clarity is lost. This example still needs work, however: “‘items’’ and ‘‘users’” are
the same thing, so only one term should be used for a single concept.

Use active names for functions. Function names should be based on active verbs,
perhaps followed by nouns:

now = date.getTime();
putchar('\n’);

Functions that return a boolean (true or false) value should be named so that the return
value is unambiguous. Thus

? if (checkoctal(c))
does not indicate which value is true and which is false, while
if (isoctal(c))
makes it clear that the function returns true if the argument is octal and false if not.

Be accurate. A name not only labels, it conveys information to the reader. A mis-
leading name can result in mystifying bugs.

One of us wrote and distributed for years a macro called isoctal with this incor-
rect implementation:
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? #define isoctal(c) ((c) >= '0’ && (c) <= ’8’)
instead of the proper
#define isoctal(c) ((c) »>= "0’ && (c) <= '77)

In this case, the name conveyed the correct intent but the implementation was wrong;
it’s easy for a sensible name to disguise a broken implementation.
Here’s an example in which the name and the code are in complete contradiction:

? public boolean inTable(Object obj) {
? int j = this.getIndex(obj);

? return (j == nTable);

? }

The function getIndex returns a value between zero and nTable-1 if it finds the
object, and returns nTable if not. The boolean value returned by inTab1le is thus the
opposite of what the name implies. At the time the code is written, this might not
cause trouble, but if the program is modified later, perhaps by a different programmer,
the name is sure to confuse.

Exercise 1-1. Comment on the choice of names and values in the following code.

? #define TRUE 0O

7 #define FALSE 1

7

? if ((ch = getchar()) == EOF)
? not_eof = FALSE;

O

Exercise 1-2. Improve this function:

? int smaller(char =s, char =t) {
? if (strcmp(s, t) < 1)

? return 1;

2 else

? return 0;

? }

O

Exercise 1-3. Read this code aloud:

? if ((falloc(SMRHSHSCRTCH, S_IFEXT|[0644, MAXRODDHSH)) < 0)



8 STYLE CHAPTER 1

What does this intricate calculation do?
»  subkey = subkey >> (bitoff - ((bitoff >> 3) << 3));

The innermost expression shifts bitoff three bits to the right. The result is shifted
left again, thus replacing the three shifted bits by zeros. This result in turn is sub-
tracted from the original value, yielding the bottom three bits of bitoff. These three
bits are used to shift subkey to the right.

Thus the original expression is equivalent to

subkey = subkey >> (bitoff & 0x7);

It takes a while to puzzle out what the first version is doing; the second is shorter and
clearer. Experienced programmers make it even shorter by using an assignment oper-
ator:

subkey >>= bitoff & 0x7;

Some constructs seem to invite abuse. The ?: operator can lead to mysterious
code:

? child=(!LC&&!RC)70: (ILC?RC:LC);

It’s almost impossible to figure out what this does without following all the possible
paths through the expression. This form is longer, but much easier to follow because
it makes the paths explicit:

if (LC == 0 && RC == 0)
child = 0;

else if (LC == 0)
child = RC;

else
child = LC;

The ?: operator is fine for short expressions where it can replace four lines of if-else
with one, as in

max = (a>b) ? a: b;
or perhaps
printf("The 1list has %d item¥%s\n", n, n==1 7 "" : "s");

but it is not a general replacement for conditional statements.

Clarity is not the same as brevity. Often the clearer code will be shorter, as in the
bit-shifting example, but it can also be longer, as in the conditional expression recast
as an if-else. The proper criterion is ease of understanding.

Be careful with side effects. Operators like ++ have side effects: besides returning a
value, they also modify an underlying variable. Side effects can be extremely conve-
nient, but they can also cause trouble because the actions of retrieving the value and
updating the variable might not happen at the same time. In C and C++, the order of
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execution of side effects is undefined, so this multiple assignment is likely to produce
the wrong answer:

? strii++] = strli++] =" 7,

The intent is to store blanks at the next two positions in str. But depending on when
i is updated, a position in str could be skipped and i might end up increased only by
1. Break it into two statements:

strii++] = ;
strli++] = ;

Even though it contains only one increment, this assignment can also give varying
results:

? array[i++] = i;

If 1 is initially 3, the array element might be set to 3 or 4.

It’s not just increments and decrements that have side effects; I/O is another
source of behind-the-scenes action. This example is an attempt to read two related
numbers from standard input:

? scanf("%d %d", &yr, &profitlyr]);

It is broken because part of the expression modifies yr and another part uses it. The
value of profit[yr] can never be right unless the new value of yr is the same as the
old one. You might think that the answer depends on the order in which the argu-
ments are evaluated, but the real issue is that @/l the arguments to scanf are evaluated
before the routine is called, so &rofit[yr] will always be evaluated using the old
value of yr. This sort of problem can occur in almost any language. The fix is, as
usual, to break up the expression:

scanf("%d", &yr);
scanf("%d", &profitlyrl);

Exercise caution in any expression with side effects.

Exercise 1-4. Improve each of these fragments:

? if (te=="y" [l c=="Y"))

? return;

? length = (length < BUFSIZE) ? length : BUFSIZE;

? flag = flag ? 0 : 1;

? quote = (x1line == ’"’) 2 1 : 0;
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? if (val & 1)
7 bit = 1;
? else

? bit = 0;

O

Exercise 1-5. What is wrong with this excerpt?

? int read(int =ip) {

? scanf("%d", ip);

? return =ip;

9 }

':* 'inse;"-c.(&graph[vert], read(&val), read(&ch));
O

Exercise 1-6. List all the different outputs this could produce with various orders of
evaluation:

? n=1;
? printf("%d %d\n", n++, n++);

Try it on as many compilers as you can, to see what happens in practice. O

1.3 Consistency and Idioms

Consistency leads to better programs. If formatting varies unpredictably, or a loop
over an array runs uphill this time and downhill the next, or strings are copied with
strcpy here and a for loop there, the variations make it harder to see what’s really
going on. But if the same computation is done the same way every time it appears,
any variation suggests a genuine difference, one worth noting.

Use a consistent indentation and brace style. Indentation shows structure, but which
indentation style is best? Should the opening brace go on the same line as the if or
on the next? Programmers have always argued about the layout of programs, but the
specific style is much less important than its consistent application. Pick one style,
preferably ours, use it consistently, and don’t waste time arguing.

Should you include braces even when they are not needed? Like parentheses,
braces can resolve ambiguity and occasionally make the code clearer. For consis-
tency, many experienced programmers always put braces around loop or if bodies.
But if the body is a single statement they are unnecessary, so we tend to omit them. If
you also choose to leave them out, make sure you don’t drop them when they are
needed to resolve the ‘‘dangling else’” ambiguity exemplified by this excerpt:
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if (month == FEB) {
if (year%4 == 0)
if (day > 29)
Tegal = FALSE;
else
if (day > 28)
legal = FALSE;

P T R S

}

The indentation is misleading, since the else is actually attached to the line
? if (day > 29)
and the code is wrong. When one if immediately follows another, always use braces:

if (month == FEB) {
if (year%4 == 0) {
if (day > 29)
legal = FALSE;
} else {
if (day > 28)
legal = FALSE;

B B B R R R R . |

}

Syntax-driven editing tools make this sort of mistake less likely.
Even with the bug fixed, though, the code is hard to follow. The computation is
casier to grasp if we use a variable to hold the number of days in February:

? if (month == FEB) {

? int nday;

)

? nday = 28;

? if (year%4 == 0)

? nday = 29;

? if (day > nday)

? Tegal = FALSE;
? }

The code is still wrong—2000 is a leap year, while 1900 and 2100 are not—but this
structure is much easier to adapt to make it absolutely right.

By the way, if you work on a program you didn’t write, preserve the style you find
there. When you make a change, don’t use your own style even though you prefer it.
The program’s consistency is more important than your own, because it makes life
easier for those who follow.

Use idioms for comsistency. Like natural languages, programming languages have
idioms, conventional ways that experienced programmers write common pieces of
code. A central part of learning any language is developing a familiarity with its
idioms.
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One of the most common idioms is the form of a loop. Consider the C, C++, or
Java code for stepping through the n elements of an array, for example to initialize
them. Someone might write the loop like this:

? i=0;

? while (i <= n-1)

? array[i++] = 1.0;
or perhaps like this:

? for (i =0; i <n;)
? array[i++] = 1.0;
or even:

? for (i = n; --1 >=0; )
? array[i] = 1.0;

All of these are correct, but the idiomatic form is like this:

for (i =0; i < n; i++)
array[i] = 1.0;

This is not an arbitrary choice. It visits each member of an n-element array indexed
from 0 to n-1. It places all the loop control in the for itself, runs in increasing order,
and uses the very idiomatic ++ operator to update the loop variable. It leaves the
index variable at a known value just beyond the last array element. Native speakers
recognize it without study and write it correctly without a moment’s thought.

In C++ or Java, a common variant includes the declaration of the loop variable:

for (Aint i = 0; i < n; i++)
array[i] = 1.0;

Here is the standard loop for walking along a list in C:

for (p = 1list; p != NULL; p = p->next)

Again, all the loop control is in the for.
For an infinite loop, we prefer

for (53D
but

while (1)

is also popular. Don’t use anything other than these forms.

Indentation should be idiomatic, too. This unusual vertical layout detracts from
readability; it looks like three statements, not a loop:
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The last else handles the ‘‘default’” situation, where none of the other alternatives
was chosen. This trailing else part may be omitted if there is no action for the
default, although leaving it in with an error message may help to catch conditions that
“‘can’t happen.™

Align all of the else clauses vertically rather than lining up each else with the
corresponding if. Vertical alignment emphasizes that the tests are done in sequence
and keeps them from marching off the right side of the page.

A sequence of nested if statements is often a warning of awkward code, if not
outright errors:

? if (argc == 3)

? if ((fin = fopen(argv[1l], "r'")) != NULL)

? if ((fout = fopen(argv[2], "w")) != NULL) {

? while ((c = getc(fin)) != EOF)

9 putc(c, fout);

? fclose(fin); fclose(fout);

? } else

9 printf("Can’t open output file %s\n", argv[2]);
? else

? printf("Can’t open input file %s\n", argv[1l]);
? else

? printf("Usage: cp inputfile outputfile\n");

The sequence of ifs requires us to maintain a mental pushdown stack of what tests
were made, so that at the appropriate point we can pop them until we determine the
corresponding action (if we can still remember). Since at most one action will be per-
formed, we really want an else if. Changing the order in which the decisions are
made leads to a clearer version, in which we have also corrected the resource leak in
the original:

if (argc != 3)
printf("Usage: cp inputfile outputfile\n");
else if ((fin = fopen(argv[1l], "r")) == NULL)
printf("Can’t open input file %s\n", argv[1l]);
else if ((fout = fopen(argv[2], "w")) == NULL) {
printf("Can’t open output file %s\n", argv(2]);
fclose(fin);
} else {
while ((c = getc(fin)) != EOF)
putc(c, fout);
fclose(fin);
fclose(fout);
}

We read down the tests until the first one that is true, do the corresponding action, and
continue after the last e1se. The rule is to follow each decision as closely as possible
by its associated action. Or, to put it another way, each time you make a test, do
something.

Attempts to re-use pieces of code often lead to tightly knotted programs:
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? switch (c) {

? case '-': sign = -1;

2 case '+': ¢ = getchar(Q;

? case '.': break;

? default: if (Misdigit(c))
? return 0;
? }

This uses a tricky sequence of fall-throughs in the switch statement to avoid duplicat-
ing one line of code. It’s also not idiomatic; cases should almost always end with a
break, with the rare exceptions commented. A more traditional layout and structure
is easier to read, though longer:

? switch (c) {

? case '-':

? sign = -1;

? /% fall through =/
? case '+':

? c = getchar(Q;

? break;

? case '.':

7 break;

? default:

? if (lisdigit(c))
? return 0;

? break;

? 3

The increase in size is more than offset by the increase in clarity. However, for such
an unusual structure a sequence of else-if statements is even clearer:

if (c == "'-") {
sign = -1;
c = getchar(Q);
} else if (c == "+7) {
c = getchar(Q);
} else if (c !'= .’ && !lisdigit(c)) {
return O;
}

The braces around the one-line blocks highlight the parallel structure.
An acceptable use of a fall-through occurs when several cases have identical code;
the conventional layout is like this:

case '0’:
case '1':
case '2':

break;

and no comment is required.
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Exercise 1-7. Rewrite these C/C++ excerpts more clearly:

? if (istty(stdin)) ; :

? else if (istty(stdout)) ;

? else if (istty(stderr)) ;
? else return(0);

/= A1l went well! =/
return SUCCESS;

? if (retval != SUCCESS)
9 {

? return (retval);

? }

?

9

? for (k = 0; k++ < 5; x += dx)
? scanf("%1f", &dx);

O

Exercise 1-8. Identify the errors in this Java fragment and repair it by rewriting with
an idiomatic loop:

? int count = 0;

2 while (count < total) {

? count++;

? if (this.getName(count) == nametable.userName()) {
? return (true);

? }

?

O

1.4 Function Macros

There is a tendency among older C programmers to write macros instead of func-
tions for very short computations that will be executed frequently; I/O operations such
as getchar and character tests like isdigit are officially sanctioned examples. The
reason is performance: a macro avoids the overhead of a function call. This argument
was weak even when C was first defined, a time of slow machines and expensive
function calls; today it is irrelevant. With modern machines and compilers, the draw-
backs of function macros outweigh their benefits.

Avoid function macros. In C++, inline functions render function macros unnecessary;
in Java, there are no macros. In C, they cause more problems than they solve.
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One of the most serious problems with function macros is that a parameter that
appears more than once in the definition might be evaluated more than once; if the
argument in the call includes an expression with side effects, the result is a subtle bug.
This code attempts to implement one of the character tests from <ctype.h>:

? #define isupper(c) ((c) »>= "A’ && () <= 'Z7)

Note that the parameter c occurs twice in the body of the macro. If isupper is called
in a context like this,

? while (isupper(c = getchar()))

9

then each time an input character is greater than or equal to A, it will be discarded and
another character read to be tested against Z. The C standard is carefully written to
permit isupper and analogous functions to be macros, but only if they guarantee to
evaluate the argument only once, so this implementation is broken.

It’s always better to use the ctype functions than to implement them yourself, and
it’s safer not to nest routines like getchar that have side effects. Rewriting the test to
use two expressions rather than one makes it clearer and also gives an opportunity to
catch end-of-file explicitly:

while ((c = getchar()) != EOF && isupper(c))

Sometimes multiple evaluation causes a performance problem rather than an out-
right error. Consider this example:

? #define ROUND_TO_INT(x) ((int) ((x)+(((x)>0)70.5:-0.5)))

?

? size = ROUND_TO_INT(sqrt(dx=dx + dy=dy));

This will perform the square root computation twice as often as necessary. Even
given simple arguments, a complex expression like the body of ROUND_TO_INT trans-
lates into many instructions, which should be housed in a single function to be called
when needed. Instantiating a macro at every occurrence makes the compiled program
larger. (C++ inline functions have this drawback, too.)

Parenthesize the macro body and arguments. If you insist on using function macros,
be careful. Macros work by textual substitution: the parameters in the definition are
replaced by the arguments of the call and the result replaces the original call, as text.
This is a troublesome difference from functions. The expression

1 / square(x)
works fine if square is a function, but if it’s a macro like this,
? #define square(x) (x) = (X)

the expression will be expanded to the erroneous
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? 1/ (x> = (xX)
The macro should be rewritten as
#define square(x) (0O = (X))

All those parentheses are necessary. Even parenthesizing the macro properly does not
address the multiple evaluation problem. If an operation is expensive or common
enough to be wrapped up, use a function.

In C++, inline functions avoid the syntactic trouble while offering whatever per-
formance advantage macros might provide. They are appropriate for short functions
that set or retrieve a single value.

Exercise 1-9. Identify the problems with this macro definition:
? #define ISDIGIT(c) ((c >= '0") && (c <="9")) ?21:0

]

1.5 Magic Numbers

Magic numbers are the constants, array sizes, character positions, conversion fac-
tors, and other literal numeric values that appear in programs.

Give names to magic numbers. As a guideline, any number other than 0 or 1 is likely
to be magic and should have a name of its own. A raw number in program source
gives no indication of its importance or derivation, making the program harder to
understand and modify. This excerpt from a program to print a histogram of letter
frequencies on a 24 by 80 cursor-addressed terminal is needlessly opaque because of a
host of magic numbers:

? fac = T1im / 20; /+ set scale factor =/
? if (fac < 1)

? fac = 1;

? /% generate histogram =/
? for (i =0, col = 0; i < 27; i++, j++) {

2 col += 3;

? k =21 - (let[i] / fac);

? star = (let[i] == 0) ? ' ' : "«';

? for (3 = k; j < 22; j++)

? draw(j, col, star);

? draw(23, 2, ’ ’): /+ Tlabel x axis «/

? for (i =A’; i <= "2"; i++)

?

printf("%c ", i);
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Use the language to calculate the size of an object. Don’t use an explicit size for any
data type; use sizeof(int) instead of 2 or 4, for instance. For similar reasons,
sizeof(array[0]) may be better than sizeof(int) because it’s one less thing to
change if the type of the array changes.

The sizeof operator is sometimes a convenient way to avoid inventing names for
the numbers that determine array sizes. For example, if we write

char buf[1024];
fgets(buf, sizeof(buf), stdin);

the buffer size is still a magic number, but it occurs only once, in the declaration. It
may not be worth inventing a name for the size of a local array, but it is definitely
worth writing code that does not have to change if the size or type changes.

Java arrays have a Tength field that gives the number of elements:

char buf[] = new char[1024];
for (int i = 0; i < buf.length; i++)
There is no equivalent of .Tength in C and C++, but for an array (not a pointer)
whose declaration is visible, this macro computes the number of elements in the array:
#define NELEMS(array) (sizeof(array) / sizeof(array[0]))
double dbuf[100];

for (i = 0; i < NELEMS(dbuf); i++)

The array size is set in only one place; the rest of the code does not change if the size
does. There is no problem with multiple evaluation of the macro argument here, since
there can be no side effects, and in fact the computation is done as the program is
being compiled. This is an appropriate use for a macro because it does something that
a function cannot: compute the size of an array from its declaration.

Exercise 1-10. How would you rewrite these definitions to minimize potential
errors?

#define FT2METER 0.3048

#define METER2FT 3.28084
#define MI2FT 5280.0
#define MI2KM 1.609344

]

#define SQMI2SQKM  2.589988
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1.6 Comments

Comments are meant to help the reader of a program. They do not help by saying
things the code already plainly says, or by contradicting the code, or by distracting the
reader with elaborate typographical displays. The best comments aid the understand-
ing of a program by briefly pointing out salient details or by providing a larger-scale
view of the proceedings.

Don’t belabor the obvious. Comments shouldn’t report self-evident information, such
as the fact that i++ has incremented i. Here are some of our favorite worthless com-
ments:

e
* default
*/
default:
break;

P A R gy

7 /% return SUCCESS =/
7 return SUCCESS;

? zerocount++; /+ Increment zero entry counter =/

? /+ Initialize "total" to "number_received" =/
? node->total = node->number_received;

All of these comments should be deleted; they’re just clutter.

Comments should add something that is not immediately evident from the code,
or collect into one place information that is spread through the source. When some-
thing subtle is happening, a comment may clarify, but if the actions are obvious
already, restating them in words is pointless:

while ((c = getchar()) != EOF && isspace(c))
; /% skip white space =/

2

v ,

2 if (c == EOF) /% end of file =/
2 type = endoffile;

2 else if (c == ') /% left paren =/
? type = leftparen;

? else if (c == ")) /# right paren =/
? type = rightparen;

? else if (c == ";7) /% semicolon =/

? type = semicolon;

? else if (is_op(c)) /+ operator =/

” type = operator;

? else if (isdigit(c)) /% number x*/

? - .o

These comments should also be deleted, since the well-chosen names already convey
the information.
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Comment functions and global data. Comments can be useful, of course. We com-
ment functions, global variables, constant definitions, fields in structures and classes,
and anything else where a brief summary can aid understanding.

Global variables have a tendency to crop up intermittently throughout a program;
a comment serves as a reminder to be referred to as needed. Here’s an example from
a program in Chapter 3 of this book:

struct State { /x prefix + suffix Tist =/
char «pref [NPREF]; /+ prefix words =/
Suffix «suf; /% 1ist of suffixes =/
State  xnext; /% next in hash table =/
};

A comment that introduces each function sets the stage for reading the code itself.
If the code isn’t too long or technical, a single line is enough:

// random: return an integer in the range [0..r-1].
int random(int r)

{
}

return (int)(Math.floor(Math.random()=r));

Sometimes code is genuinely difficult, perhaps because the algorithm is compli-
cated or the data structures are intricate. In that case, a comment that points to a
source of understanding can aid the reader. It may also be valuable to suggest why
particular decisions were made. This comment introduces an extremely efficient
implementation of an inverse discrete cosine transform (DCT) used in a JPEG image
decoder.

Ve

idct: Scaled integer implementation of

Inverse two dimensional 8x8 Discrete Cosine Transform,
Chen-Wang algorithm (IEEE ASSP-32, pp 803-816, Aug 1984)

oo %

* 32-bit integer arithmetic (8-bit coefficients)
# 11 multiplies, 29 adds per DCT

¥

% Coefficients extended to 12 bits for

# IEEE 1180-1990 compliance

*/

static void idct(int b[8«8])
{

}

This helpful comment cites the reference, briefly describes the data used, indicates the
performance of the algorithm, and tells how and why the original algorithm has been
modified.
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Don’t comment bad code, rewrite it. Comment anything unusual or potentially con-
fusing, but when the comment outweighs the code, the code probably needs fixing.
This example uses a long, muddled comment and a conditionally-compiled debugging
print statement to explain a single statement:

? /%= If "result" is 0 a match was found so return true (non-zero).
? Otherwise, "result" is non-zero so return false (zero). =/

"

? #ifdef DEBUG

? printf("s=+ isword returns !result = %d\n", !result);

? fflush(stdout);

? #endif

?

?

return(!result);

Negations are hard to understand and should be avoided. Part of the problem is the
uninformative variable name, result. A more descriptive name, matchfound, makes
the comment unnecessary and cleans up the print statement, too.

#1fdef DEBUG

printf("+x+ isword returns matchfound = %d\n", matchfound);
fflush(stdout);
#endif

return matchfound;

Don’t contradict the code. Most comments agree with the code when they are writ-
ten, but as bugs are fixed and the program evolves, the comments are often left in
their original form, resulting in disagreement with the code. This is the likely expla-
nation for the inconsistency in the example that opens this chapter.

Whatever the source of the disagreement, a comment that contradicts the code is
confusing, and many a debugging session has been needlessly protracted because a
mistaken comment was taken as truth. When you change code, make sure the com-
ments are still accurate.

Comments should not only agree with code, they should support it. The comment
in this example is correct—it explains the purpose of the next two lines—but it
appears to contradict the code; the comment talks about newline and the code talks
about blanks:

? time(&now) ;

? strcpy(date, ctime(&now));

? /% get rid of trailing newline character copied from ctime =/
? i=0;

2 while(date[i] >= * ') i++;

? date[i] = 0;

One improvement is to rewrite the code more idiomatically:
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time(&now) ;

strcpy(date, ctime(&now));

/+ get rid of trailing newline character copied from ctime =/
for (i = 0; date[i] != ’\n’; i++)

P IR )

date[i] = "\0’;

Code and comment now agree, but both can be improved by being made more direct.
The problem is to delete the newline that ctime puts on the end of the string it
returns. The comment should say so, and the code should do so:

time(&now) ;

strcpy(date, ctime(&now));

%= ctime() puts newline at end of string; delete it =/
date[strlen(date)-1] = ’\0’;

This last expression is the C idiom for removing the last character from a string. The
code is now short, idiomatic, and clear, and the comment supports it by explaining
why it needs to be there.

Clarify, don’t confuse. Comments are supposed to help readers over the hard parts,
not create more obstacles. This example follows our guidelines of commenting the
function and explaining unusual properties; on the other hand, the function is strcmp
and the unusual properties are peripheral to the job at hand, which is the implementa-
tion of a standard and familiar interface:

int strcmp(char =sl, char =s2)
/% string comparison routine returns -1 if sl is =/

?

9

? /+ above s2 in an ascending order Tlist, 0 if equal %/
? /% 1 if s1 below s2 */

92

? {

? while(#sl==%s2) {

? if(xs1=="\0") return(0);
? Sl++;

? S2+4+;

9 }

? if(xsl>*s2) return(l);

? return(-1);

? }

When it takes more than a few words to explain what’s happening, it’s often an indi-
cation that the code should be rewritten. Here, the code could perhaps be improved
but the real problem is the comment, which is nearly as long as the implementation
and confusing, too (which way is ‘‘above’’?). We’re stretching the point to say this
routine is hard to understand, but since it implements a standard function, its comment
can help by summarizing the behavior and telling us where the definition originates;
that’s all that’s needed:



Algorithms and
Data Structures

In the end, only familiarity with the tools and techniques of the field will pro-
vide the right solution for a particular problem, and only a certain amount of
experience will provide consistently professional results.

Raymond Fielding, The Technigue of Special Effects Cinematography

The study of algorithms and data structures is one of the foundations of computer
science, a rich field of elegant techniques and sophisticated mathematical analyses.
And it’s more than just fun and games for the theoretically inclined: a good algorithm
or data structure might make it possible to solve a problem in seconds that could oth-
erwise take years.

In specialized areas like graphics, databases, parsing, numerical analysis, and sim-
ulation, the ability to solve problems depends critically on state-of-the-art algorithms
and data structures. If you are developing programs in a field that’s new to you, you
must find out what is already known, lest you waste your time doing poorly what oth-
ers have already done well.

Every program depends on algorithms and data structures, but few programs
depend on the invention of brand new ones. Even within an intricate program like a
compiler or a web browser, most of the data structures are arrays, lists, trees, and hash
tables. When a program needs something more elaborate, it will likely be based on
these simpler ones. Accordingly, for most programmers, the task is to know what
appropriate algorithms and data structures are available and to understand how to
choose among alternatives.

Here is the story in a nutshell. There are only a handful of basic algorithms that
show up in almost every program—primarily searching and sorting—and even those
are often included in libraries. Similarly, almost every data structure is derived from a
few fundamental ones. Thus the material covered in this chapter will be familiar to
almost all programmers. We have written working versions to make the discussion

29
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concrete, and you can lift code verbatim if necessary, but do so only after you have
investigated what the programming language and its libraries have to offer.

2.1 Searching

Nothing beats an array for storing static tabular data. Compile-time initialization
makes it cheap and easy to construct such arrays. (In Java, the initialization occurs at
run-time, but this is an unimportant implementation detail unless the arrays are large.)
In a program to detect words that are used rather too much in bad prose, we can write

char =flab[] = {
"actually",
"jUSt",
"quite”,
"really",
NULL

1

The search routine needs to know how many elements are in the array. One way to
tell it is to pass the length as an argument; another, used here, is to place a NULL
marker at the end of the array:

/+ Tookup: sequential search for word in array =/
int lookup(char =word, char =array[])

int 1;
for (i = 0; array[i] != NULL; i++)
if (strcmp(word, array[i]) == 0)
return 1i;
return -1;

}

In C and C++, a parameter that is an array of strings can be declared as char
«array[] or char =xarray. Although these forms are equivalent, the first makes it
clearer how the parameter will be used.

This search algorithm is called sequential search because it looks at each element
in turn to see if it’s the desired one. When the amount of data is small, sequential
search is fast enough. There are standard library routines to do sequential search for
specific data types; for example, functions like strchr and strstr search for the first
instance of a given character or substring in a C or C++ string, the Java String class
has an indexOf method, and the generic C++ find algorithms apply to most data
types. If such a function exists for the data type you’ve got, use it.

Sequential search is easy but the amount of work is directly proportional to the
amount of data to be searched; doubling the number of elements will double the time
to search if the desired item is not present. This is a linear relationship—run-time is a
linear function of data size—so this method is also known as linear search.
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Here’s an excerpt from an array of more realistic size from a program that parses
HTML, which defines textual names for well over a hundred individual characters:

typedef struct Nameval Nameval;
struct Nameval {
char zname;
int value;
1
/+ HTML characters, e.g. AElig is ligature of A and E. =/
/+ Values are Unicode/IS010646 encoding. =/

Nameval htmlchars[] = {
"AETig",  Ox00c6,

"Aacute", 0x00c1,
"Acirc", 0x00c2,
YO Y

"zeta", 0x03b6,

1

For a larger array like this, it’s more efficient to use binary search. The binary
search algorithm is an orderly version of the way we look up words in a dictionary.
Check the middle element. If that value is bigger than what we are looking for, look
in the first half; otherwise, look in the second half. Repeat until the desired item is
found or determined not to be present.

For binary search, the table must be sorted, as it is here (that’s good style anyway;
people find things faster in sorted tables too), and we must know how long the table
is. The NELEMS macro from Chapter 1 can help:

printf("The HTML table has %d words\n", NELEMS(Chtmlchars));
A binary search function for this table might look like this:

/+ Tookup: binary search for name in tab; return index =/
int lookup(char =name, Nameval tab[], int ntab)

int low, high, mid, cmp;

Tow = 0;
high = ntab - 1;
while (low <= high) {
mid = (low + high) / 2;
cmp = strcmp(name, tab[mid].name);
if (cmp < 0)
high = mid - 1;
else if (cmp > 0)
Tow = mid + 1;
else /+ found match =/
return mid;
}

return -1; /= no match =/



32 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

Putting all this together, to search htmlchars we write
half = Tookup("fracl2", htmlchars, NELEMS(htmlchars));
to find the array index of the character V2.

Binary search eliminates half the data at each step. The number of steps is there-
fore proportional to the number of times we can divide n by 2 before we're left with a
single element. Ignoring roundoff, this is log,n. If we have 1000 items to search,
linear search takes up to 1000 steps, while binary search takes about 10; if we have a
million items, linear takes a million steps and binary takes 20. The more items, the
greater the advantage of binary search. Beyond some size of input (which varies with
the implementation), binary search is faster than linear search.

2.2 Sorting

Binary search works only if the elements are sorted. If repeated searches are
going to be made in some data set, it will be profitable to sort once and then use
binary search. If the data set is known in advance, it can be sorted when the program
is written and built using compile-time initialization. If not, it must be sorted when
the program is run.

One of the best all-round sorting algorithms is guicksort, which was invented in
1960 by C. A. R. Hoare. Quicksort is a fine example of how to avoid extra comput-
ing. It works by partitioning an array into little and big elements:

pick one element of the array (the *‘pivot’’).
partition the other elements into two groups:

““little ones”’ that are less than the pivot value, and

“‘big ones’’ that are greater than or equal to the pivot value.
recursively sort each group.

When this process is finished, the array is in order. Quicksort is fast because once an
element is known to be less than the pivot value, we don’t have to compare it to any
of the big ones; similarly, big ones are not compared to little ones. This makes it
much faster than the simple sorting methods such as insertion sort and bubble sort that
compare each element directly to all the others.

Quicksort is practical and efficient; it has been extensively studied and myriad
variations exist. The version that we present here is just about the simplest implemen-
tation but it is certainly not the quickest.

This quicksort function sorts an array of integers:



