The
PP rag matic

P rogramimer

Andrew Hunt
David Thomas

The Pragmatic Programmer

From Journeyman to Master

Andrew Hunt
David Thomas

A
vy

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts Harlow, England Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney

Bonn Amsterdam Tokvo Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals.

Lyrics from the song “The Boxer” on page 157 are Copyright ©1968 Paul Simon. Used by
permission of the Publisher: Paul Simon Music. Lyrics from the song “Alice’s Restaurant”
on page 220 are by Arlo Guthrie, @1966, 1967 (renewed) by APPLESEED MusIc INc. All
Rights Reserved. Used by Permission.

The authors and publisher have taken care in the preparation of this book, but make
no express or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

AWL Direct Sales

Addison Wesley Longman, Inc.
One Jacob Way

Reading, Massachusetts 01867
(781) 944-3700

Visit AWL on the Web: www.awl.com/cseng

Library of Congress Cataloging-in-Publication Data

Hunt, Andrew, 1964 -
The Pragmatic Programmer / Andrew Hunt, David Thomas.
p. cm.
Includes bibliographical references.
ISBN 0-201-61622-X

1. Computer programming. I. Thomas, David, 1956~
II. Title.
QAT76.6.H857 1999
005.1--dc21 99-43581
CIP

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced. stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-61622-X

Text printed on recycled and acid-free paper.
123456789 10—CRS—0302010099
Eighteenth printing, August 2006

Contents

FOREWORD

PREFACE

1 A PRAGMATIC PHILOSOPHY

S e

The Cat Ate My Source Code
Software Entropy. oo
Stone Soup and Boiled Frogs
Good-Enough Software
Your Knowledge Portfolio
Communicate!

2 A PRAGMATIC APPROACH

7.
8.
9.
10.
11.
12.
13.

The Evils of Duplication
Orthogonality,
Reversibility oo
Tracer Bullets
Prototypes and Post-it Notes
Domain Languages

Estimating 000

3 THE Basic TooLs

14.
15.
16.
17.
18.
19.
20.

The Power of Plain Text
Shell Games
Power Editing
Source Code Control
Debugging
Text Manipulation

Code Generators e

© N b b e

12
18

25
26
34
44
48
53
57
64

X

>

CONTENTS

PRAGMATIC PARANOIA

21.
22.
23.
24.
25.

Design by Contract
Dead Programs Tell No Lies
Assertive Progratnming L0
When to Use Exceptions

How to Balance Resources

BEND, OR BREAK

26.
27.
28.
29.
30.

Decoupling and the Law of Demeter
Metaprogramming
Temporal Coupling
ItsdJustaView
Blackboards

WHILE YOU ARE CODING

31.
32.
33.
34.
35.

Programming by Coincidence
Algorithm Speed L.
Refactoring,
Code That's Easy toTest
EvilWizards,

BEFORE THE PROJECT

36.
37.
38.
39.
40.

The Requirements Pit,
Solving Impossible Puzzles
Not Until YoureReady
The Specification Trap

Circlesand Arrows o v v v v v e

PRAGMATIC PROJECTS

41.
42,
43.
44,
45.
46.

PragmaticTeams
Ubiquitous Automation
Ruthless Testing
It's Al Writing
Great Expectations

Pride and Prejudice

107
109
120
122
125
129

137
138
144
150
157
165

171
172
177
184
189
198

201
202
212
215
217
220

Appendices

A RESOURCES

Professional Societies
Building a Library
Internet Resources

Bibliography

B ANSWERS TO EXERCISES

INDEX

CONTENTS < Xxi

Copyrighted material

Foreword

As a reviewer I got an early opportunity to read the book you are hold-
ing. It was great, even in draft form. Dave Thomas and Andy Hunt have
something to say, and they know how to say it. I saw what they were
doing and I knew it would work. I asked to write this foreword so that I
could explain why.

Simply put, this book tells you how to program in a way that you can
follow. You wouldn’t think that that would be a hard thing to do, but it
is. Why? For one thing, not all programming books are written by pro-
grammers. Many are compiled by language designers, or the journalists
who work with them to promote their creations. Those books tell you
how to talk in a programming language—which is certainly important,
but that is only a small part of what a programmer does.

What does a programmer do besides talk in programming language?
Well, that is a deeper issue. Most programmers would have trouble
explaining what they do. Programming is a job filled with details, and
keeping track of those details requires focus. Hours drift by and the
code appears. You look up and there are all of those statements. If you
don't think carefully, you might think that programming is just typing
statements in a programming language. You would be wrong, of course,
but you wouldn’t be able to tell by looking around the programming
section of the bookstore.

In The Pragmatic Programmer Dave and Andy tell us how to program in
a way that we can follow. How did they get so smart? Aren’t they just
as focused on details as other programmers? The answer is that they
paid attention to what they were doing while they were doing it—and
then they tried to do it better.

Imagine that you are sitting in a meeting. Maybe you are thinking
that the meeting could go on forever and that you would rather be
programming. Dave and Andy would be thinking about why they were

<« xiii P

xiv P FOREWORD

having the meeting, and wondering if there is something else they could
do that would take the place of the meeting, and deciding if that some-
thing could be automated so that the work of the meeting just happens
in the future. Then they would do it.

That is just the way Dave and Andy think. That meeting wasn't some-
thing keeping them from programming. It was programming. And it
was programming that could be improved. I know they think this way
because it is tip number two: Think About Your Work.

So imagine that these guys are thinking this way for a few years.
Pretty soon they would have a collection of solutions. Now imagine
them using their solutions in their work for a few more years, and
discarding the ones that are too hard or don’t always produce results.
Well, that approach just about defines pragmatic. Now imagine them
taking a year or two more to write their solutions down. You might
think, That information would be a gold mine. And you would be right.

The authors tell us how they program. And they tell us in a way that we
can follow. But there is more to this second statement than you might
think. Let me explain.

The authors have been careful to avoid proposing a theory of software
development. This is fortunate, because if they had they would be
obliged to warp each chapter to defend their theory. Such warping is
the tradition in. say, the physical sciences, where theories eventually
become laws or are quietly discarded. Programming on the other hand
has few (if any) laws. So programming advice shaped around wanna-be
laws may sound good in writing, but it fails to satisfy in practice. This
is what goes wrong with so many methodology books.

I've studied this problem for a dozen years and found the most promise
in a device called a pattern language. In short, a pattern is a solution,
and a pattern language is a system of solutions that reinforce each
other. A whole community has formed around the search for these
systems.

This book is more than a collection of tips. It is a pattern language
in sheep’s clothing. I say that because each tip is drawn from experi-
ence, told as concrete advice, and related to others to form a system.
These are the characteristics that allow us to learn and follow a pattern
language. They work the same way here.

FOREWORD - xv

You can follow the advice in this book because it is concrete. You won'’t
find vague abstractions. Dave and Andy write directly for you, as if each
tip was a vital strategy for energizing your programming career. They
make it simple, they tell a story, they use a light touch, and then they
follow that up with answers to questions that will come up when you

try.

And there is more. After you read ten or fifteen tips you will begin to see
an extra dimension to the work. We sometimes call it QWAN, short for
the quality without a name. The book has a philosophy that will ooze
into your consciousness and mix with your own. It doesn't preach. It
just tells what works. But in the telling more comes through. That's the
beauty of the book: It embodies its philosophy, and it does so unpre-
tentiously.

So here it is: an easy to read—and use—book about the whole practice
of programming. I've gone on and on about why it works. You probably
only care that it does work. It does. You will see.

—Ward Cunningham

Copyrighted material

Preface

This book will help you become a better programmer.

It doesn’t matter whether you are a lone developer, a member of a large
project team, or a consultant working with many clients at once. This
book will help you, as an individual, to do better work. This book isn't
theoretical—we concentrate on practical topics, on using your experi-
ence to make more informed decisions. The word pragmatic comes from
the Latin pragmaticus—*“skilled in business"—which itself is derived
from the Greek wparreir, meaning “to do.” This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting a
computer to do what you want it to do (or what your user wants it to do).
As a programmer, you are part listener, part advisor, part interpreter,
and part dictator. You try to capture elusive requirements and find a
way of expressing them so that a mere machine can do them justice.
You try to document your work so that others can understand it, and
you try to engineer your work so that others can build on it. What's
more, you try to do all this against the relentless ticking of the project
clock. You work small miracles every day.

It's a difficult job.

There are many people offering you help. Tool vendors tout the mir-
acles their products perform. Methodology gurus promise that their
techniques guarantee results. Everyone claims that their programming
language is the best, and every operating system is the answer to all
conceivable ills.

Of course, none of this is true. There are no easy answers. There is no
such thing as a best solution, be it a tool, a language, or an operat-
ing system. There can only be systems that are more appropriate in a
particular set of circumstances.

<« xvii P

xviii ™ PREFACE

This is where pragmatism comes in. You shouldn’t be wedded to any
particular technology, but have a broad enough background and expe-
rience base to allow you to choose good solutions in particular situ-
ations. Your background stems from an understanding of the basic
principles of computer science, and your experience comes {rom a wide
range of practical projects. Theory and practice combine to make you
strong.

You adjust your approach to suit the current circumstances and envi-
ronment. You judge the relative importance of all the factors affecting a
project and use your experience to produce appropriate solutions. And
you do this continuously as the work progresses. Pragmatic Program-
mers get the job done, and do it well.

Who Should Read This Book?

This book is aimed at people who want to become more effective and
more productive programmers. Perhaps you feel frustrated that you
don’t seem to be achieving your potential. Perhaps you look at col-
leagues who seem to be using tools to make themselves more produc-
tive than you. Maybe your current job uses older technologies, and you
want to know how newer ideas can be applied to what you do.

We don't pretend to have all (or even most) of the answers, nor are
all of our ideas applicable in all situations. All we can say is that if
you follow our approach, you'll gain experience rapidly, your produc-
tivity will increase, and you’ll have a better understanding of the entire
development process. And you'll write better software.

What Makes a Pragmatic Programmer?

Each developer is unique, with individual strengths and weaknesses,
preferences and dislikes. Over time, each will craft his or her own
personal environment. That environment will reflect the programmer’s
individuality just as forcefully as his or her hobbies, clothing, or hair-
cut. However, if you're a Pragmatic Programmer, you'll share many of
the following characteristics:

e Early adopter/fast adapter. You have an instinct for technologies
and techniques, and you love trying things out. When given some-

PREFACE -+ Xxix

thing new, you can grasp it quickly and integrate it with the rest of
your knowledge. Your confidence is born of experience.

¢ Inquisitive. You tend to ask questions. That's neat—how did you
do that? Did you have problems with that library? What's this BeOS
I've heard about? How are symbolic links implemented? You are a
pack rat for little facts, each of which may affect some decision
years from now.

e Critical thinker. You rarely take things as given without first get-
ting the facts. When colleagues say “because that's the way it's
done,” or a vendor promises the solution to all your problems, you
smell a challenge.

¢ Realistic. You try to understand the underlying nature of each
problem you face. This realism gives you a good feel for how diffi-
cult things are, and how long things will take. Understanding for
yourself that a process should be difficult or will take a while to
complete gives you the stamina to keep at it.

¢ Jack of all trades. You try hard to be familiar with a broad range
of technologies and environments, and you work to keep abreast of
new developments. Although your current job may require you to
be a specialist, you will always be able to move on to new areas and
new challenges.

We've left the most basic characteristics until last. All Pragmatic Pro-
grammers share them. They're basic enough to state as tips:

Tie 1
l Care About Your Craft

| SR H

We feel that there is no point in developing software unless you care
about doing it well.

) Tr2 \
l Think! About Your Work

PR

In order to be a Pragmatic Programmer, we're challenging you to think
about what you're doing while you're doing it. This isn’t a one-time
audit of current practices—it's an ongoing critical appraisal of every

xx P> PREFACE

decision you make, every day, and on every development. Never run on
auto-pilot. Constantly be thinking, critiquing your work in real time.
The old IBM corporate motto, THINKI, is the Pragmatic Programmer’s
mantra.

If this sounds like hard work to you, then you're exhibiting the realistic
characteristic. This is going to take up some of your valuable time—time
that is probably already under tremendous pressure. The reward is a
more active involvement with a job you love, a feeling of mastery over
an increasing range of subjects, and pleasure in a feeling of continuous
improvement. Over the long term, your time investment will be repaid
as you and your team become more efficient, write code that's easier to
maintain, and spend less time in meetings.

Individual Pragmatists, Large Teams

Some people feel that there is no room for individuality on large teams
or complex projects. “Software construction is an engineering disci-
pline,” they say, “that breaks down if individual team members make
decisions for themselves.”

We disagree.

The construction of software should be an engineering discipline. How-
ever, this doesn’t preclude individual craftsmanship. Think about the
large cathedrals built in Europe during the Middle Ages. Each took
thousands of person-years of effort, spread over many decades. Lessons
learned were passed down to the next set of builders, who advanced
the state of structural engineering with their accomplishments. But the
carpenters, stonecutters, carvers, and glass workers were all craftspeo-
ple, interpreting the engineering requirements to produce a whole that
transcended the purely mechanical side of the construction. It was their
belief in their individual contributions that sustained the projects:

We who cut mere stones must aliways be envisioning cathedrals.
— Quarry worker’s creed

Within the overall structure of a project there is always room for in-
dividuality and craftsmanship. This is particularly true given the cur-
rent state of software engineering. One hundred years from now, our
engineering may seem as archaic as the techniques used by medieval

PREFACE - xxi

cathedral builders seem to today’s civil engineers, while our craftsman-
ship will still be honored.

It’s a Continuous Process

A tourist visiting England’s Eton College asked the gardener how he got
the lawns so perfect. "That's easy,” he replied, “You just brush off the
dew every morning, mow them every other day, and roll them once a

weele.”
“Is that all?” asked the tourist.

“Absolutely,” replied the gardener. “Do that for 500 years and you'll
have a nice lawn, too.”

Great lawns need small amounts of daily care, and so do great pro-
grammers. Management consultants like to drop the word kaizen in
conversations. “Kaizen” is a Japanese term that captures the concept
of continuously making many small improvements. It was considered
to be one of the main reasons for the dramatic gains in productivity and
quality in Japanese manufacturing and was widely copied throughout
the world. Kaizen applies to individuals, too. Every day, work to refine
the skills you have and to add new tools to your repertoire. Unlike the
Eton lawns, you'll start seeing results in a matter of days. Over the
years, you'll be amazed at how your experience has blossomed and
your skills have grown.

How the Book Is Organized

This book is written as a collection of short sections. Each section is
self-contained, and addresses a particular topic. You'll find numerous
cross references, which help put each topic in context. Feel free to read
the sections in any order—this isn’t a book you need to read front-to-
back.

Occasionally you’ll come across a box labeled Tip nn (such as Tip 1,
"Care About Your Craft” on page xix). As well as emphasizing points in
the text, we feel the tips have a life of their own—we live by them daily.
You'll find a summary of all the tips on a pull-out card inside the back
cover.

xxii P PREFACE

Appendix A contains a set of resources: the book’s bibliography, a list of
URLs to Web resources, and a list of recommended periodicals, books,
and professional organizations. Throughout the book youll find refer-
ences to the bibliography and to the list of URLs—such as [KP99] and
[URL 18], respectively.

We've included exercises and challenges where appropriate. Exercises
normally have relatively straightforward answers, while the challenges
are more open-ended. To give you an idea of our thinking, we've in-
cluded our answers to the exercises in Appendix B, but very few have
a single correct solution. The challenges might form the basis of group
discussions or essay work in advanced programming courses.

What's in a Name?

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means
just what I choose it to mean—neither more nor less.”
» Lewis Carroll, Through the Looking-Glass

Scattered throughout the book you'll find various bits of jargon—either
perfectly good English words that have been corrupted to mean some-
thing technical, or horrendous made-up words that have been assigned
meanings by computer scientists with a grudge against the language.
The first time we use each of these jargon words, we try to define it,
or at least give a hint to its meaning. However, we're sure that some
have fallen through the cracks, and others, such as object and rela-
tional database, are in common enough usage that adding a definition
would be boring. If you do come across a term you haven’t seen be-
fore, please don't just skip over it. Take time to look it up, perhaps on
the Web, or maybe in a computer science textbook. And, if you get a
chance, drop us an e-mail and complain, so we can add a definition to
the next edition.

Having said all this, we decided to get revenge against the computer sci-
entists. Sometimes, there are perfectly good jargon words for concepts,
words that we've decided to ignore. Why? Because the existing jargon
is normally restricted to a particular problem domain, or to a partic-
ular phase of development. However. one of the basic philosophies of
this book is that most of the techniques we're recommending are uni-
versal: modularity applies to code, designs, documentation, and team

PREFACE -<xxiii

organization, for instance. When we wanted to use the conventional
jargon word in a broader context, it got confusing—we couldn’t seem
to overcome the baggage the original term brought with it. When this
happened. we contributed to the decline of the language by inventing
our own terms.

Source Code and Other Resources

Most of the code shown in this book is extracted from compilable source
files, available for download from our Web site:

www.pragmaticprogrammer.com

There you'll also find links to resources we find useful, along with
updates to the book and news of other Pragmatic Programmer devel-
opments.

Send Us Feedback

We'd appreciate hearing from you. Comments, suggestions, errors in
the text, and problems in the examples are all welcome. E-mail us at

ppbook@pragmaticprogrammer.com

Acknowledgments

When we started writing this book, we had no idea how much of a team
effort it would end up being.

Addison-Wesley has been brilliant, taking a couple of wet-behind-the-
ears hackers and walking us through the whole book-production pro-
cess, from idea to camera-ready copy. Many thanks to John Wait
and Meera Ravindiran for their initial support, Mike Hendrickson, our
enthusiastic editor (and a mean cover designer!), Lorraine Ferrier and
John Fuller for their help with production, and the indefatigable Julie
DeBaggis for keeping us all together.

Then there were the reviewers: Greg Andress, Mark Cheers, Chris Clee-
land, Alistair Cockburn, Ward Cunningham, Martin Fowler, Thanh
T. Giang, Robert L. Glass, Scott Henninger, Michael Hunter, Brian

xxiv P PREFACE

Kirby. John Lakos, Pete McBreen, Carey P. Morris, Jared Richardson,
Kevin Ruland, Eric Starr, Eric Vought, Chris Van Wyk, and Deborra
Zukowski. Without their careful comments and valuable insights, this
book would be less readable, less accurate, and twice as long. Thank
you all for your time and wisdom.

The second printing of this book benefited greatly from the eagle eyes
of our readers. Many thanks to Brian Blank, Paul Boal, Tom Ekberg,
Brent Fulgham, Louis Paul Hebert, Henk-Jan Olde Loohuis, Alan Lund,
Gareth McCaughan, Yoshiki Shibata, and Volker Wurst, both for find-
ing the mistakes and for having the grace to point them out gently.

Over the years, we have worked with a large number of progressive
clients, where we gained and refined the experience we write about
here. Recently, we've been fortunate to work with Peter Gehrke on sev-
eral large projects. His support and enthusiasm for our techniques are
much appreciated.

This book was produced using I£IEX, pic, Perl, dvips, ghostview, ispell,
GNU make, cvs, Emacs, XEmacs, EGCS, GCC, Java, iContract, and
SmallEiffel, using the Bash and zsh shells under Linux. The stagger-
ing thing is that all of this tremendous software is freely available. We
owe a huge “thank you” to the thousands of Pragmatic Programmers
worldwide who have contributed these and other works to us all. We'd
particularly like to thank Reto Kramer for his help with iContract.

Last, but in no way least, we owe a huge debt to our families. Not only
have they put up with late night typing, huge telephone bills, and our
permanent air of distraction, but they've had the grace to read what
we've written, time after time. Thank you for letting us dream.

Andy Hunt
Dave Thomas

Chapter 1

A Pragmatic Philosophy

What distinguishes Pragmatic Programmers? We feel it's an attitude, a
style, a philosophy of approaching problems and their solutions. They
think beyond the immediate problem, always trying to place it in its
larger context, always trying to be aware of the bigger picture. After all,
without this larger context, how can you be pragmatic? How can you
make intelligent compromises and informed decisions?

Another key to their success is that they take responsibility for every-
thing they do, which we discuss in The Cat Ate My Source Code. Being
responsible, Pragmatic Programmers won't sit idly by and watch their
projects fall apart through neglect. In Software Entropy, we tell you how
to keep your projects pristine.

Most people find change difficult to accept, sometimes for good reasons,
sometimes because of plain old inertia. In Stone Soup and Boiled Frogs,
we look at a strategy for instigating change and (in the interests of
balance) present the cautionary tale of an amphibian that ignored the
dangers of gradual change.

One of the benefits of understanding the context in which you work
is that it becomes easier to know just how good your software has to
be. Sometimes near-perfection is the only option, but often there are
trade-offs involved. We explore this in Good-Enough Software.

Of course, you need to have a broad base of knowledge and experience
to pull all of this off. Learning is a continuous and ongoing process.
In Your Knowledge Portfolio, we discuss some strategies for keeping the
momentum up.

2 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

Finally, none of us works in a vacuum. We all spend a large amount
of time interacting with others. Communicate! lists ways we can do this
better.

Pragmatic programming stems from a philosophy of pragmatic think-
ing. This chapter sets the basis for that philosophy.

The Cat Ate My Source Code

The greatest of all weaknesses is the fear of appearing wealk.
» J. B. Bossuet, Politics from Holy Writ, 1709

One of the cornerstones of the pragmatic philosophy is the idea of tak-
ing responsibility for yourself and your actions in terms of your career
advancement, your project, and your day-to-day work. A Pragmatic Pro-
grammer takes charge of his or her own career, and isn't afraid to admit
ignorance or error. It's not the most pleasant aspect of programming,
to be sure, but it will happen—even on the best of projects. Despite
thorough testing, good documentation, and solid automation, things
go wrong. Deliveries are late. Unforeseen technical problems come up.

These things happen, and we try to deal with them as professionally as
we can. This means being honest and direct. We can be proud of our
abilities, but we must be honest about our shortcomings—our igno-
rance as well as our mistakes.

Take Responsibility

Responsibility is something you actively agree to. You make a commit-
ment to ensure that something is done right, but you don't necessarily
have direct control over every aspect of it. In addition to doing your own
personal best, you must analyze the situation for risks that are beyond
your control. You have the right not to take on a responsibility for an
impossible situation, or one in which the risks are too great. You'll have
to make the call based on your own ethics and judgment.

When you do accept the responsibility for an outcome, you should ex-
pect to be held accountable for it. When you make a mistake (as we all
do) or an error in judgment, admit it honestly and try to offer options.

THE CAT ATE MY SOURCE CODE -« 3

Don't blame someone or something else, or make up an excuse. Don’t
blame all the problems on a vendor, a programming language, manage-
ment, or your coworkers. Any and all of these may play a role, but it is
up to you to provide solutions, not excuses.

If there was a risk that the vendor wouldn’t come through for you, then
you should have had a contingency plan. If the disk crashes—taking
all of your source code with it—and you don't have a backup, it's your
fault. Telling your boss “the cat ate my source code” just won't cut it.

TIP3

e ——

l Provide Options, Don't Make Lame Excuses

Before you approach anyone to tell them why something can’t be done,
is late, or is broken, stop and listen to yourself. Talk to the rubber
duck on your monitor, or the cat. Does your excuse sound reasonable,
or stupid? How's it going to sound to your boss?

Run through the conversation in your mind. What is the other person
likely to say? Will they ask, “Have you tried this...” or “Didn’t you con-
sider that?” How will you respond? Before you go and tell them the bad
news, is there anything else you can try? Sometimes, you just know
what they are going to say, so save them the trouble.

Instead of excuses, provide options. Don’t say it can’t be done; explain
what can be done to salvage the situation. Does code have to be thrown
out? Educate them on the value of refactoring (see Refactoring, page
184). Do you need to spend time prototyping to determine the best way
to proceed (see Prototypes and Post-it Notes, page 53)? Do you need to
introduce better testing (see Code That's Easy to Test, page 189, and
Ruthless Testing, page 237) or automation (see Ubiguitous Automation,
page 230) to prevent it from happening again? Perhaps you need ad-
ditional resources. Don’t be afraid to ask, or to admit that you need
help.

Try to flush out the lame excuses before voicing them aloud. If you
must, tell your cat first. After all, if little Tiddles is going to take the
blame. ...

-4 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

Related sections include:
e Prototypes and Post-it Notes, page 53
e Refactoring, page 184
e Code That's Easy to Test, page 189
¢ Ubiquitous Automation, page 230
e Ruthless Testing, page 237

Challenges
¢ How do you react when someone—such as a bank teller, an auto mechanic,
or a clerk—comes to you with a lame excuse? What do you think of them
and their company as a result?

Software Entropy

While software development is immune from almost all physical laws,
entropy hits us hard. Entropy is a term from physics that refers to the
amount of “disorder” in a system. Unfortunately, the laws of thermo-
dynamics guarantee that the entropy in the universe tends toward a
maximum. When disorder increases in software, programmers call it
“software rot.”

There are many factors that can contribute to software rot. The most
important one seems to be the psychology, or culture, at work on a
project. Even if you are a team of one, your project’s psychology can
be a very delicate thing. Despite the best laid plans and the best peo-
ple, a project can still experience ruin and decay during its lifetime. Yet
there are other projects that, despite enormous difficulties and con-
stant setbacks, successfully fight nature’s tendency toward disorder
and manage to come out pretty well.

What makes the difference?

In inner cities, some buildings are beautiful and clean, while others
are rotting hulks. Why? Researchers in the field of crime and urban
decay discovered a fascinating trigger mechanism, one that very quickly
turns a clean, intact, inhabited building into a smashed and abandoned
derelict [WK82].

SOFTWARE ENTROPY < 5

A broken window.

One broken window, left unrepaired for any substantial length of time,
instills in the inhabitants of the building a sense of abandonment—a
sense that the powers that be don't care about the building. So another
window gets broken. People start littering. Graffiti appears. Serious
structural damage begins. In a relatively short space of time, the build-
ing becomes damaged beyond the owner’s desire to fix it, and the sense
of abandonment becomes reality.

The “Broken Window Theory” has inspired police departments in New
York and other major cities to crack down on the small stuff in order
to keep out the big stuff. It works: keeping on top of broken windows,
graffiti, and other small infractions has reduced the serious crime level.

S TrP4 \ \
l Don’t Live with Broken Windows J

Don't leave “broken windows” (bad designs, wrong decisions, or poor
code) unrepaired. Fix each one as soon as it is discovered. If there is
insufficient time to fix it properly, then board it up. Perhaps you can
comment out the offending code, or display a "Not Implemented" mes-
sage, or substitute dummy data instead. Take some action to prevent
further damage and to show that you're on top of the situation.

We've seen clean, functional systems deteriorate pretty quickly once
windows start breaking. There are other factors that can contribute to
software rot, and we’ll touch on some of them elsewhere, but neglect
accelerates the rot faster than any other factor.

You may be thinking that no one has the time to go around cleaning
up all the broken glass of a project. If you continue to think like that,
then you'd better plan on getting a dumpster, or moving to another
neighborhood. Don’t let entropy win.

Putting Out Fires

By contrast, there's the story of an obscenely rich acquaintance of
Andy’s. His house was immaculate, beautiful, loaded with priceless
antiques, objets d’art, and so on. One day. a tapestry that was hang-
ing a little too close to his living room fireplace caught on fire. The fire

6 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

department rushed in to save the day—and his house. But before they
dragged their big, dirty hoses into the house, they stopped—with the
fire raging—to roll out a mat between the front door and the source of
the fire.

They didn’'t want to mess up the carpet.

A pretty extreme case, to be sure, but that's the way it must be with
software. One broken window—a badly designed piece of code, a poor
management decision that the team must live with for the duration
of the project—is all it takes to start the decline. If you find yourself
working on a project with quite a few broken windows, it's all too easy
to slip into the mindset of “All the rest of this code is crap, I'll just follow
suit.” It doesn’t matter if the project has been fine up to this point.
In the original experiment leading to the “Broken Window Theory,” an
abandoned car sat for a week untouched. But once a single window was
broken, the car was stripped and turned upside down within hours.

By the same token, if you find yourself on a team and a project where
the code is pristinely beautiful—cleanly written, well designed, and
elegant—you will likely take extra special care not to mess it up, just
like the firefighters. Even if there’s a fire raging (deadline, release date,
trade show demo, etc.), you don’t want to be the first one to make a
mess.

Related sections include:
e Stone Soup and Boiled Frogs, page 7
¢ Refactoring, page 184
e Pragmatic Teams, page 224

Challenges
e Help strengthen your team by surveying your computing “neighborhood.”
Choose two or three “broken windows” and discuss with your colleagues
what the problems are and what could be done to fix them.

e Can you tell when a window first gets broken? What is your reaction? If
it was the result of someone else’s decision, or a management edict, what
can you do about it?

STONE SOUP AND BOILED FROGS - 7

Stone Soup and Boiled Frogs

The three soldiers returning home from war were hungry. When they saw the
village ahead their spirits lifted—they were sure the villagers would give them
a meal. But when they got there, they found the doors locked and the windows
closed. After many years of war, the villagers were short of food, and hoarded
what they had.

Undeterred, the soldiers boiled a pot of water and carefully placed three stones
into it. The amazed villagers came out to waitch.

“This is stone soup,” the soldiers explained. “Is that all you put in it?” asked
the villagers. “Absolutely—although some say it tastes even better with a few
carrots. . .." A villager ran off. returning in no time with a baslket of carrots from

his hoard.
A couple of minutes later; the villagers again asked *Is that it?”

“Well,” said the soldiers, “a couple of potatoes give it body.” Off ran another
villager.

Over the next hour, the soldiers listed more ingredients that would enhance the
soup: beef, leeis, salt, and herbs. Each time a different villager would run off to
raid their personal stores.

Eventually they had produced a large pot of steaming soup. The soldiers removed
the stones, and they sat down with the entire village to enjoy the first square
meal any of them had eaten in months.

There are a couple of morals in the stone soup story. The villagers are
tricked by the soldiers, who use the villagers’ curiosity to get food from
them. But more importantly, the soldiers act as a catalyst, bringing
the village together so they can jointly produce something that they
couldn’t have done by themselves—a synergistic result. Eventually ev-
eryone wins.

Every now and then, you might want to emulate the soldiers.

You may be in a situation where you know exactly what needs doing
and how to do it. The entire system just appears before your eyes—you
know it's right. But ask permission to tackle the whole thing and you'll
be met with delays and blank stares. People will form committees, bud-
gets will need approval, and things will get complicated. Everyone will
guard their own resources. Sometimes this is called “start-up fatigue.”

8 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

It’s time to bring out the stones. Work out what you can reasonably
ask for. Develop it well. Once you've got it, show people, and let them
marvel. Then say “of course, it would be better if we added....” Pretend
it's not important. Sit back and wait for them to start asking you to
add the functionality you originally wanted. People find it easier to join
an ongoing success. Show them a glimpse of the future and you'll get
them to rally around.!

— Te5 \
{ Be a Catalyst for Change

e ——

The Villagers’ Side

On the other hand, the stone soup story is also about gentle and grad-
ual deception. It's about focusing too tightly. The villagers think about
the stones and forget about the rest of the world. We all fall for it, every
day. Things just creep up on us.

We've all seen the symptoms. Projects slowly and inexorably get totally
out of hand. Most software disasters start out too small to notice, and
most project overruns happen a day at a time. Systems drift from their
specifications feature by feature, while patch after patch gets added to
a piece of code until there's nothing of the original left. It's often the
accumulation of small things that breaks morale and teams.

—) Tir6 \

{ Remember the Big Picture

—

We've never tried this—honest. But they say that if you take a frog and
drop it into boiling water, it will jump straight back out again. However,
if you place the frog in a pan of cold water, then gradually heat it, the
frog won't notice the slow increase in temperature and will stay put
until cooked.

1. While doing this, you may be comforted by the line attributed to Rear Admiral Dr.
Grace Hopper: “It's easier to ask forgiveness than it is to get permission.”

GOOD-ENOUGH SOFTWARE <« 9

Note that the frog’s problem is different from the broken windows issue
discussed in Section 2. In the Broken Window Theory, people lose the
will to fight entropy because they perceive that no one else cares. The
frog just doesn’t notice the change.

Don't be like the frog. Keep an eye on the big picture. Constantly review
what's happening around you, not just what you personally are doing.

Related sections include:

Software Entropy, page 4
Programming by Coincidence, page 172
Refactoring, page 184

The Requirements Pit, page 202
Pragmatic Teams, page 224

Challenges
e While reviewing a draft of this book, John Lakos raised the following is-
sue: The soldiers progressively deceive the villagers, but the change they
catalyze does them all good. However, by progressively deceiving the frog,
youre doing it harm. Can you determine whether you're making stone
soup or frog soup when you try to catalyze change? Is the decision subjec-
tive or objective?

Good-Enough Software

Striving to better, oft we mar what's well.
» King Lear 1.4

There’s an old(ish) joke about a U.S. company that places an order for
100,000 integrated circuits with a Japanese manufacturer. Part of the
specification was the defect rate: one chip in 10,000. A few weeks later
the order arrived: one large box containing thousands of ICs, and a
small one containing just ten. Attached to the small box was a label
that read: “These are the faulty ones.”

10 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

If only we really had this kind of control over quality. But the real
world just won't let us produce much that's truly perfect, particularly
not bug-free software. Time, technology, and temperament all conspire
against us.

However, this doesn’t have to be frustrating. As Ed Yourdon described
in an article in IEEE Software [You95], you can discipline yourself to
write software that's good enough—good enough for your users, for fu-
ture maintainers, for your own peace of mind. You'll find that you are
more productive and your users are happier. And you may well find
that your programs are actually better for their shorter incubation.

Before we go any further, we need to qualify what we're about to say.
The phrase “good enough” does not imply sloppy or poorly produced
code. All systems must meet their users’ requirements to be success-
ful. We are simply advocating that users be given an opportunity to
participate in the process of deciding when what you've produced is
good enough.

Involve Your Users in the Trade-Off

Normally you're writing software for other people. Often you’ll remem-
ber to get requirements from them.? But how often do you ask them
how good they want their software to be? Sometimes there’ll be no
choice. If you're working on pacemakers, the space shuttle, or a low-
level library that will be widely disseminated, the requirements will
be more stringent and your options more limited. However, if you're
working on a brand new product, you'll have different constraints. The
marketing people will have promises to keep, the eventual end users
may have made plans based on a delivery schedule, and your company
will certainly have cash-flow constraints. It would be unprofessional to
ignore these users’ requirements simply to add new features to the pro-
gram, or to polish up the code just one more time. We're not advocating
panic: it is equally unprofessional to promise impossible time scales
and to cut basic engineering corners to meet a deadline.

2. That was supposed to be a joke!

GOOD-ENOUGH SOFTWARE - 11

The scope and quality of the system you produce should be specified
as part of that system'’s requirements.

J Te7 \ =y

[Make Quality a Requirements Issue J

Often you’ll be in situations where trade-offs are involved. Surprisingly,
many users would rather use software with some rough edges today
than wait a year for the multimedia version. Many IT departments with
tight budgets would agree. Great software today is often preferable to
perfect software tomorrow. If you give your users something to play with
early, their feedback will often lead you to a better eventual solution (see
Tracer Bullets, page 48).

Know When to Stop

In some ways, programming is like painting. You start with a blank
canvas and certain basic raw materials. You use a combination of sci-
ence, art, and craft to determine what to do with them. You sketch
out an overall shape, paint the underlying environment, then fill in the
details. You constantly step back with a critical eye to view what you've
done. Every now and then you’ll throw a canvas away and start again.

But artists will tell you that all the hard work is ruined if you don’t
know when to stop. If you add layer upon layer, detail over detail, the
painting becomes lost in the paint.

Don't spoil a perfectly good program by overembellishment and over-
refinement. Move on, and let your code stand in its own right for a
while. It may not be perfect. Don’t worry: it could never be perfect. (In
Chapter 6, page 171, we'll discuss philosophies for developing code in
an imperfect world.)

Related sections include:
¢ Tracer Bullets, page 48
e The Requirements Pit, page 202
e Pragmatic Teams, page 224
¢ Great Expectations, page 255

12 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

Challenges

¢ Look at the manufacturers of the software tools and operating systems that
you use. Can you find any evidence that these companies are comfortable
shipping software they know is not perfect? As a user, would you rather
(1) wait for them to get all the bugs out, (2) have complex software and
accept some bugs, or (3) opt for simpler software with fewer defects?

e Consider the effect of modularization on the delivery of software. Will it
take more or less time to get a monolithic block of software to the required
quality compared with a system designed in modules? Can you find com-
mercial examples?

Your Knowledge Portfolio

An investment in knowledge aliways pays the best interest.
» Benjamin Franklin

Ah, good old Ben Franklin—never at a loss for a pithy homily. Why, if we
could just be early to bed and early to rise, we'd be great programmers—
right? The early bird might get the worm, but what happens to the early
worm?

In this case, though, Ben really hit the nail on the head. Your knowledge
and experience are your most important professional assets.

Unfortunately, they're expiring assets.® Your knowledge becomes out of
date as new techniques, languages, and environments are developed.
Changing market forces may render your experience obsolete or irrele-
vant. Given the speed at which Web-years fly by, this can happen pretty
quickly.

As the value of your knowledge declines, so does your value to your
company or client. We want to prevent this from ever happening.

3. An expiring asset is something whose value diminishes over time. Examples include
a warehouse full of bananas and a ticket to a ball game.

YOUR KNOWLEDGE PORTFOLIO <d 13

Your Knowledge Portfolio

We like to think of all the facts programmers know about computing,
the application domains they work in, and all their experience as their
Knowledge Portfolios. Managing a knowledge portfolio is very similar to
managing a financial portfolio:

1

2.

3.

4.
5.

To

. Serious investors invest regularly—as a habit.
Diversification is the key to long-term success.

Smart investors balance their portfolios between conservative and
high-risk, high-reward investments.

Investors try to buy low and sell high for maximum return.

Portfolios should be reviewed and rebalanced periodically.

be successful in your career, you must manage your knowledge port-

folio using these same guidelines.

Building Your Portfolio

¢ Invest regularly. Just as in financial investing, you must invest in

your knowledge portfolio regularly. Even if it's just a small amount,
the habit itself is as important as the sums. A few sample goals are
listed in the next section.

e Diversify. The more different things you know, the more valuable

you are. As a baseline, you need to know the ins and outs of the
particular technology you are working with currently. But don’t
stop there. The face of computing changes rapidly—hot technology
today may well be close to useless (or at least not in demand) to-
morrow. The more technologies you are comfortable with, the better
you will be able to adjust to change.

¢ Manage risk. Technology exists along a spectrum from risky,

potentially high-reward to low-risk, low-reward standards. It's not
a good idea to invest all of your money in high-risk stocks that
might collapse suddenly, nor should you invest all of it conserva-
tively and miss out on possible opportunities. Don’t put all your
technical eggs in one basket.

14 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

e Buy low, sell high. Learning an emerging technology before it be-
comes popular can be just as hard as finding an undervalued stock,
but the payoff can be just as rewarding. Learning Java when it first
came out may have been risky, but it paid off handsomely for the
early adopters who are now at the top of that field.

e Review and rebalance. This is a very dynamic industry. That hot
technology vou started investigating last month might be stone cold
by now. Maybe you need to brush up on that database technology
that you haven’t used in a while. Or perhaps you could be bet-
ter positioned for that new job opening if you tried out that other
language. . ..

Of all these guidelines, the most important one is the simplest to do:

Tip 8

—

{ Invest Regularly in Your Knowledge Portfolio

Goals

Now that you have some guidelines on what and when to add to your
knowledge portfolio, what’s the best way to go about acquiring intellec-
tual capital with which to fund your portfolio? Here are a few sugges-
tions.

e Learn at least one new language every year. Different languages
solve the same problems in different ways. By learning several dif-
ferent approaches, you can help broaden your thinking and avoid
getting stuck in a rut. Additionally, learning many languages is far
easier now, thanks to the wealth of freely available software on the
Internet (see page 267).

¢ Read a technical book each quarter. Bookstores are full of techni-
cal books on interesting topics related to your current project. Once
you're in the habit, read a book a month. After you've mastered the
technologies you're currently using, branch out and study some
that don’t relate to your project.

¢ Read nontechnical books, too. It is important to remember that
computers are used by people—people whose needs you are trying
to satisfy. Don’t forget the human side of the equation.

YOUR KNOWLEDGE PORTFOLIO <d 15

e Take classes. Look for interesting courses at your local commu-
nity college or university, or perhaps at the next trade show that
comes to town.

¢ Participate in local user groups. Don’t just go and listen, but
actively participate. Isolation can be deadly to your career; find out
what people are working on outside of your company.

¢ Experiment with different environments. If you've worked only in
Windows, play with Unix at home (the freely available Linux is per-
fect for this). If you've used only makefiles and an editor, try an
IDE, and vice versa.

e Stay current. Subscribe to trade magazines and other journals
(see page 262 for recommendations). Choose some that cover tech-
nology different from that of your current project.

¢ Get wired. Want to know the ins and outs of a new language or
other technology? Newsgroups are a great way to find out what
experiences other people are having with it, the particular jargon
they use, and so on. Surf the Web for papers, commercial sites,
and any other sources of information you can find.

It's important to continue investing. Once you feel comfortable with
some new language or bit of technology, move on. Learn another one.

It doesn’'t matter whether you ever use any of these technologies on a
project, or even whether you put them on your resume. The process of
learning will expand your thinking, opening you to new possibilities and
new ways of doing things. The cross-pollination of ideas is important;
try to apply the lessons you've learned to your current project. Even if
your project doesn’t use that technology, perhaps you can borrow some
ideas. Get familiar with object orientation, for instance, and you’ll write
plain C programs differently.

Opportunities for Learning

So you're reading voraciously, you're on top of all the latest breaking
developments in your field (not an easy thing to do), and somebody
asks you a question. You don't have the faintest idea what the answer
is, and freely admit as much.

16 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

Don’t let it stop there. Take it as a personal challenge to find the answer.
Ask a guru. (If you don’t have a guru in your office, you should be able
to find one on the Internet: see the box on on the facing page.) Search
the Web. Go to the library.*

If you can’t find the answer yourself, find out who can. Don't let it rest.
Talking to other people will help build your personal network, and you
may surprise yourself by finding solutions to other, unrelated problems
along the way. And that old portfolio just keeps getting bigger. . ..

All of this reading and researching takes time, and time is already in
short supply. So you need to plan ahead. Always have something to
read in an otherwise dead moment. Time spent waiting for doctors and
dentists can be a great opportunity to catch up on your reading—but be
sure to bring your own magazine with you, or you might find yourself
thumbing through a dog-eared 1973 article about Papua New Guinea.

Critical Thinking
The last important point is to think critically about what you read
and hear. You need to ensure that the knowledge in your portfolio is
accurate and unswayed by either vendor or media hype. Beware of the
zealots who insist that their dogma provides the only answer—it may
or may not be applicable to you and your project.

Never underestimate the power of commercialism. Just because a Web
search engine lists a hit first doesn’t mean that it's the best match; the
content provider can pay to get top billing. Just because a bookstore
features a book prominently doesn't mean it's a good book, or even
popular; they may have been paid to place it there.

—// TP9 \
{ Critically Analyze What You Read and Hear

N

Unfortunately, there are very few simple answers anymore. But with
your extensive portfolio, and by applying some critical analysis to the

4. In this era of the Web, many people seem to have forgotten about real live libraries
filled with research material and staff.

YOUR KNOWLEDGE PORTFOLIO < 17

C | Cultivati (G
With the global adoption of the Internet, gurus suddenly are as close

as your Enter key. So, how do you find one, and how do you get one
to talk with you?

We find there are some simple tricks.

¢ Know exactly what you want to ask, and be as specific as you
can be.

e Frame your question carefully and politely. Remember that you're
asking a favor; don’t seem to be demanding an answer.

e Once you've framed your question, stop and look again for the
answer. Pick out some keywords and search the Web. Look for
appropriate FAQs (lists of frequently asked questions with an-
swers).

e Decide if you want to ask publicly or privately. Usenet news-
groups are wonderful meeting places for experts on just about
any topic, but some people are wary of these groups’ public
nature. Alternatively, you can always e-mail your guru directly.
Either way, use a meaningful subject line. (“Need Help!!!”
doesn’t cut it.)

e Sit back and be patient. People are busy, and it may take days to
get a specific answer.

Finally, please be sure to thank anyone who responds to you. And if
you see people asking questions you can answer, play your part and
participate.

torrent of technical publications you will read, you can understand the
complex answers.

Challenges

e Start learning a new language this week. Always programmed in C++? Try
Smalltalk [URL 13] or Squeak [URL 14]. Doing Java? Try Eiffel [URL 10]
or TOM [URL 15]. See page 267 for sources of other free compilers and
environments.

e Start reading a new book (but finish this one first!). If you are doing very
detailed implementation and coding, read a book on design and architec-
ture. If you are doing high-level design, read a book on coding techniques.

18 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

e Get out and talk technology with people who aren’t involved in your cur-
rent project, or who don’'t work for the same company. Network in your
company cafeteria, or maybe seek out fellow enthusiasts at a local user's
group meeting.

Communicate!

I believe that it is better to be looked over than it is to be overlooked.
» Mae West, Belle of the Nineties, 1934

Maybe we can learn a lesson from Ms. West. It's not just what you've
got, but also how you package it. Having the best ideas, the finest code,
or the most pragmatic thinking is ultimately sterile unless you can com-
municate with other people. A good idea is an orphan without effective
communication.

As developers, we have to communicate on many levels. We spend
hours in meetings, listening and talking. We work with end users,
trying to understand their needs. We write code, which communicates
our intentions to a machine and documents our thinking for future
generations of developers. We write proposals and memos requesting
and justifying resources, reporting our status, and suggesting new
approaches. And we work daily within our teams to advocate our ideas,
modify existing practices, and suggest new ones. A large part of our day
is spent communicating, so we need to do it well.

We've put together a list of ideas that we find useful.

Know What You Want to Say

Probably the most difficult part of the more formal styles of commu-
nication used in business is working out exactly what it is you want
to say. Fiction writers plot out their books in detail before they start,
but people writing technical documents are often happy to sit down at
a keyboard, enter “1. Introduction,” and start typing whatever comes
into their heads next.

Plan what you want to say. Write an outline. Then ask yourself, “Does
this get across whatever I'm trying to say?” Refine it until it does.

COMMUNICATE! < 19

This approach is not just applicable to writing documents. When you're
faced with an important meeting or a phone call with a major client,
jot down the ideas you want to communicate, and plan a couple of
strategies for getting them across.

Know Your Audience

You're communicating only if you're conveying information. To do that,
you need to understand the needs, interests, and capabilities of your
audience. We've all sat in meetings where a development geek glazes
over the eyes of the vice president of marketing with a long monologue
on the merits of some arcane technology. This isn’'t communicating: it's
just talking, and it's annoying.®

Form a strong mental picture of your audience. The acrostic WISDOM,
shown in Figure 1.1 on the following page, may help.

Say you want to suggest a Web-based system to allow your end users
to submit bug reports. You can present this system in many differ-
ent ways, depending on your audience. End users will appreciate that
they can submit bug reports 24 hours a day without waiting on the
phone. Your marketing department will be able to use this fact to boost
sales. Managers in the support department will have two reasons to
be happy: fewer staff will be needed, and problem reporting will be
automated. Finally, developers may enjoy getting experience with Web-
based client-server technologies and a new database engine. By making
the appropriate pitch to each group, you'll get them all excited about
your project.

Choose Your Moment

It's six o’clock on Friday afternoon, following a week when the auditors
have been in. Your boss’s youngest is in the hospital, it's pouring rain
outside, and the commute home is guaranteed to be a nightmare. This
probably isn't a good time to ask her for a memory upgrade for your PC.

As part of understanding what your audience needs to hear, you need
to work out what their priorities are. Catch a manager who's just been
given a hard time by her boss because some source code got lost, and

5. The word annoy comes from the Old French enui, which also means “to bore.”

20 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

4 N
Figure 1.1. The wisDOM acrostic—understanding an audience

What do you want them to learn?
What is their interest in what you've got to say?
How sophisticated are they?
How much detail do they want?
Whom do you want to own the information?
How can you motivate them to listen to you?

you’ll have a more receptive listener to your ideas on source code repos-
itories. Make what you're saying relevant in time, as well as in content.
Sometimes all it takes is the simple question “Is this a good time to talk
about...?”

Choose a Style

Adjust the style of your delivery to suit your audience. Some people
want a formal “just the facts” briefing. Others like a long, wide-ranging
chat before getting down to business. When it comes to written docu-
ments, some like to receive large bound reports, while others expect a
simple memo or e-mail. If in doubt, ask.

Remember, however, that you are half of the communication transac-
tion. If someone says they need a paragraph describing something and
you can't see any way of doing it in less than several pages, tell them
so. Remember, that kind of feedback is a form of communication, too.

Make It Look Good

Your ideas are important. They deserve a good-looking vehicle to convey
them to your audience.

Too many developers (and their managers) concentrate solely on con-
tent when producing written documents. We think this is a mistake.
Any chef will tell you that you can slave in the kitchen for hours only
to ruin your efforts with poor presentation.

There is no excuse today for producing poor-looking printed docu-
ments. Modern word processors (along with layout systems such as
[£TX and troff) can produce stunning output. You need to learn just a
few basic commands. If your word processor supports style sheets, use

COMMUNICATE! < 21

them. (Your company may already have defined style sheets that you
can use.) Learn how to set page headers and footers. Look at the sam-
ple documents included with your package to get ideas on style and
layout. Checlc the spelling, first automatically and then by hand. After
awl, their are spelling miss steaks that the chequer can knot ketch.

Involve Your Audience

We often find that the documents we produce end up being less im-
portant than the process we go through to produce them. If possible,
involve your readers with early drafts of your document. Get their feed-
back, and pick their brains. You'll build a good working relationship,
and you'll probably produce a better document in the process.

Be a Listener

There’s one technique that you must use if you want people to listen
to you: listen to them. Even if this is a situation where you have all the
information, even if this is a formal meeting with you standing in front
of 20 suits—if you don't listen to them, they won't listen to you.

Encourage people to talk by asking questions, or have them summarize
what you tell them. Turn the meeting into a dialog, and you’ll make
your point more effectively. Who knows, you might even learn some-
thing.

Get Back to People

If you ask someone a question, you feel theyre impolite if they don't
respond. But how often do you fail to get back to people when they
send you an e-mail or a memo asking for information or requesting
some action? In the rush of everyday life, it's easy to forget. Always
respond to e-mails and voice mails, even if the response is simply “I'll
get back to you later.” Keeping people informed makes them far more
forgiving of the occasional slip, and makes them feel that you haven’t
forgotten them.

S TiPr10 \
l It's Both What You Say and the Way You Say It

M

Unless you work in a vacuum, you need to be able to communicate. The
more effective that communication, the more influential you become.

22 P CHAPTER 1 A PRAGMATIC PHILOSOPHY

E-Mail Communication

Everything we've said about communicating in writing applies equally
to electronic mail. E-mail has evolved to the point where it is a main-
stay of intra- and intercorporate communications. E-mail is used to
discuss contracts, to settle disputes, and as evidence in court. But

for some reason, people who would never send out a shabby paper
document are happy to fling nasty-looking e-mail around the world.

Our e-mail tips are simple:

Proofread before you hit [SEND],
Check the spelling.

Keep the format simple. Some people read e-mail using propor-
tional fonts, so the ASCII art pictures you laboriously created will
look to them like hen-scratchings.

Use rich-text or HTML formatted mail only if you know that all your
recipients can read it. Plain text is universal.

Try to keep quoting to a minimum. No one likes to receive back
their own 100-line e-mail with “| agree” tacked on.

If you're quoting other people’s e-mail, be sure to attribute it, and
guote it inline (rather than as an attachment).

Don't flame unless you want it to come back and haunt you later.

Check your list of recipients before sending. A recent Wall Street
Journal article described an employee who took to distributing
criticisms of his boss over departmental e-mail, without realizing
that his boss was included on the distribution list.

Archive and organize your e-mail—both the important stuff you
receive and the mail you send.

As various Microsoft and Netscape employees discovered during the
1999 Department of Justice investigation, e-mail is forever. Try to give
the same attention and care to e-mail as you would to any written
memo or report.

COMMUNICATE! -« 23

Summary

Know what you want to say.
Know your audience.
Choose your moment.
Choose a style.

Make it look good.

Involve your audience.

Be a listener.

Get back to people.

Related sections include:

Prototypes and Post-it Notes, page 53
Pragmatic Teams, page 224

Challenges

There are several good books that contain sections on communications
within development teams [Bro95, McC95, DL99]. Make it a point to try
to read all three over the next 18 months. In addition, the book Dinosaur
Brains [Ber96] discusses the emotional baggage we all bring to the work
environment.

The next time you have to give a presentation, or write a memo advocating
some position, try working through the WISDOM acrostic on page 20 before
you start. See if it helps you understand how to position what you say. If
appropriate, talk to your audience afterward and see how accurate your
assessment of their needs was.

26 P> CHAPTER 2 A PRAGMATIC APPROACH

Finally, we all work in a world of limited time and resources. You can
survive both of these scarcities better (and keep your bosses happier) if
you get good at working out how long things will take, which we cover
in Estimating.

By keeping these fundamental principles in mind during development,
you can write code that's better, faster, and stronger. You can even
make it look easy.

The Evils of Duplication

Giving a computer two contradictory pieces of knowledge was Captain
James T. Kirk’s preferred way of disabling a marauding artificial intel-
ligence. Unfortunately, the same principle can be effective in bringing
down your code.

As programmers, we collect, organize, maintain, and harness knowl-
edge. We document knowledge in specifications, we make it come alive
in running code, and we use it to provide the checks needed during
testing.

Unfortunately, knowledge isn’t stable. It changes—often rapidly. Your
understanding of a requirement may change following a meeting with
the client. The government changes a regulation and some business
logic gets outdated. Tests may show that the chosen algorithm won't
work. All this instability means that we spend a large part of our time
in maintenance mode, reorganizing and reexpressing the knowledge in
our systems.

Most people assume that maintenance begins when an application is
released, that maintenance means fixing bugs and enhancing features.
We think these people are wrong. Programmers are constantly in main-
tenance mode. Our understanding changes day by day. New require-
ments arrive as we're designing or coding. Perhaps the environment
changes. Whatever the reason, maintenance is not a discrete activity,
but a routine part of the entire development process.

THE EVILS OF DUPLICATION -<d 27

When we perform maintenance, we have to find and change the rep-
resentations of things—those capsules of knowledge embedded in the
application. The problem is that it's easy to duplicate knowledge in the
specifications, processes, and programs that we develop, and when we
do so, we invite a maintenance nightmare—one that starts well before
the application ships.

We feel that the only way to develop software reliably, and to make our
developments easier to understand and maintain, is to follow what we
call the DRY principle:

EVERY PIECE OF KNOWLEDGE MUST HAVE A SINGLE, UNAMBIGU-
OUS, AUTHORITATIVE REPRESENTATION WITHIN A SYSTEM.

Why do we call it DRY?

S Tir11 \ .
l DRY—Don’t Repeat Yourself J

The alternative is to have the same thing expressed in two or more
places. If you change one, you have to remember to change the others,
or, like the alien computers, your program will be brought to its knees
by a contradiction. It isn’t a question of whether you'll remember: it's a
question of when you’ll forget.

You'll find the DRY principle popping up time and time again through-
out this book, often in contexts that have nothing to do with coding.
We feel that it is one of the most important tools in the Pragmatic Pro-
grammer’s tool box.

In this section we’ll outline the problems of duplication and suggest
general strategies for dealing with it.

How Does Duplication Arise?

Most of the duplication we see falls into one of the following categories:

¢ Imposed duplication. Developers feel they have no choice—the
environment seems to require duplication.

¢ Inadvertent duplication. Developers don't realize that they are
duplicating information.

28 P CHAPTER 2 A PRAGMATIC APPROACH

e Impatient duplication. Developers get lazy and duplicate because
it seems easier.

¢ Interdeveloper duplication. Multiple people on a team (or on dif-
ferent teams) duplicate a piece of information.

Let’s look at these four i's of duplication in more detail.

Imposed Duplication

Sometimes, duplication seems to be forced on us. Project standards
may require documents that contain duplicated information, or docu-
ments that duplicate information in the code. Multiple target platforms
each require their own programming languages, libraries, and devel-
opment environments, which makes us duplicate shared definitions
and procedures. Programming languages themselves require certain
structures that duplicate information. We have all worked in situations
where we felt powerless to avoid duplication. And yet often there are
ways of keeping each piece of knowledge in one place, honoring the
DRY principle, and making our lives easier at the same time. Here are
some techniques:

Multiple representations of information. At the coding level, we
often need to have the same information represented in different forms.
Maybe we're writing a client-server application, using different lan-
guages on the client and server, and need to represent some shared
structure on both. Perhaps we need a class whose attributes mirror the
schema of a database table. Maybe you're writing a book and want to
include excerpts of programs that you also will compile and test.

With a bit of ingenuity you can normally remove the need for dupli-
cation. Often the answer is to write a simple filter or code generator.
Structures in multiple languages can be built from a common metadata
representation using a simple code generator each time the software is
built (an example of this is shown in Figure 3.4, page 106). Class defini-
tions can be generated automatically from the online database schema,
or from the metadata used to build the schema in the first place. The
code extracts in this book are inserted by a preprocessor each time we
format the text. The trick is to make the process active: this cannot be
a one-time conversion, or we're back in a position of duplicating data.

THE EVILS OF DUPLICATION -<-d 29

Documentation in code. Programmers are taught to comment their
code: good code has lots of comments. Unfortunately, they are never
taught why code needs comments: bad code requires lots of comments.

The DRY principle tells us to keep the low-level knowledge in the code,
where it belongs, and reserve the comments for other, high-level expla-
nations. Otherwise, we're duplicating knowledge, and every change
means changing both the code and the comments. The comments will
inevitably become out of date, and untrustworthy comments are worse
than no comments at all. (See It's All Writing, page 248, for more infor-
mation on comments.)

Documentation and code. You write documentation, then you write
code. Something changes, and you amend the documentation and up-
date the code. The documentation and code both contain representa-
tions of the same knowledge. And we all know that in the heat of the
moment, with deadlines looming and important clients clamoring, we
tend to defer the updating of documentation.

Dave once worked on an international telex switch. Quite understand-
ably, the client demanded an exhaustive test specification and required
that the software pass all tests on each delivery. To ensure that the
tests accurately reflected the specification, the team generated them
programmatically from the document itself. When the client amended
their specification, the test suite changed automatically. Once the team
convinced the client that the procedure was sound, generating accep-
tance tests typically took only a few seconds.

Language issues. Many languages impose considerable duplication
in the source. Often this comes about when the language separates
a module’s interface from its implementation. C and C++ have header
files that duplicate the names and type information of exported vari-
ables, functions, and (for C++) classes. Object Pascal even duplicates
this information in the same file. If you are using remote procedure
calls or CORBA [URL 29], you'll duplicate interface information between
the interface specification and the code that implements it.

There is no easy technique for overcoming the requirements of a lan-
guage. While some development environments hide the need for header
files by generating them automatically, and Object Pascal allows you to
abbreviate repeated function declarations, you are generally stuck with

30 P CHAPTER 2 A PRAGMATIC APPROACH

what you're given. At least with most language-based issues, a header
file that disagrees with the implementation will generate some form of
compilation or linkage error. You can still get things wrong, but at least
you’'ll be told about it fairly early on.

Think also about comments in header and implementation files. There
is absolutely no point in duplicating a function or class header com-
ment between the two files. Use the header files to document interface
issues, and the implementation files to document the nitty-gritty details
that users of your code don't need to know.

Inadvertent Duplication

Sometimes. duplication comes about as the result of mistakes in the
design.

Let’s look at an example from the distribution industry. Say our anal-
ysis reveals that, among other attributes, a truck has a type, a license
number, and a driver. Similarly, a delivery route is a combination of a
route, a truck, and a driver. We code up some classes based on this
understanding.

But what happens when Sally calls in sick and we have to change
drivers? Both Truck and DeliveryRoute contain a driver. Which one
do we change? Clearly this duplication is bad. Normalize it according
to the underlying business model—does a truck really have a driver
as part of its underlying attribute set? Does a route? Or maybe there
needs to be a third object that knits together a driver, a truck, and a
route. Whatever the eventual solution, avoid this kind of unnormalized
data.

There is a slightly less obvious kind of unnormalized data that occurs
when we have multiple data elements that are mutually dependent.
Let’s look at a class representing a line:

class Line {
public:

Point start;
Point end;
double length;
};

At first sight, this class might appear reasonable. A line clearly has a
start and end, and will always have a length (even if it's zero). But we

THE EVILS OF DUPLICATION < 33

newsgroups to allow developers to exchange ideas and ask questions.
This provides a nonintrusive way of communicating—even across mul-
tiple sites—while retaining a permanent history of everything said.)
Appoint a teamn member as the project librarian, whose job is to facil-
itate the exchange of knowledge. Have a central place in the source
tree where utility routines and scripts can be deposited. And make a
point of reading other people’s source code and documentation, either
informally or during code reviews. You're not snooping—you're learning
from them. And remember, the access is reciprocal—don't get twisted
about other people poring (pawing?) through your code, either.

S Tri2 \ N
l Make It Easy to Reuse J

What you're trying to do is foster an environment where it's easier to
find and reuse existing stuff than to write it yourself. If it isn’t easy,
people won't do it. And if you fail to reuse, you risk duplicating knowl-
edge.

Related sections include:

¢ Orthogonality, page 34
Text Manipulation, page 99
Code Generators, page 102
Refactoring, page 184
Pragmatic Teams, page 224
Ubiquitous Autornation, page 230
¢ It's All Writing, page 248

34 P> CHAPTER 2 A PRAGMATIC APPROACH

Orthogonality

Orthogonality is a critical concept if you want to produce systems that
are easy to design, build, test, and extend. However, the concept of
orthogonality is rarely taught directly. Often it is an implicit feature of
various other methods and techniques you learn. This is a mistake.
Once you learn to apply the principle of orthogonality directly, vou'll
notice an immediate improvement in the quality of systems you pro-
duce.

What Is Orthogonality?

“Orthogonality” is a term borrowed from geom- move parallel
etry. Two lines are orthogonal if they meet at to X-axis
right angles, such as the axes on a graph. In , —
vector terms, the two lines are independent. no Change
Move along one of the lines, and your position on Yaxs

projected onto the other doesn’t change.

In computing, the term has come to signify a kind of independence or
decoupling. Two or more things are orthogonal if changes in one do not
affect any of the others. In a well-designed system, the database code
will be orthogonal to the user interface: you can change the interface
without affecting the database, and swap databases without changing
the interface.

Before we look at the benefits of orthogonal systems, let’s first look at a
system that isn’t orthogonal.

A Nonorthogonal System

You're on a helicopter tour of the Grand Canyon when the pilot, who
made the obvious mistake of eating fish for lunch, suddenly groans and
faints. Fortunately, he left you hovering 100 feet above the ground. You
rationalize that the collective pitch lever 2 controls overall lift, so lower-

2. Helicopters have four basic controls. The cyclic is the stick you hold in your right
hand. Move it, and the helicopter moves in the corresponding direction. Your left hand
holds the collective pitch lever. Pull up on this and you increase the pitch on all the
blades, generating lift. At the end of the pitch lever is the throttle. Finally you have two
foot pedals, which vary the amount of tail rotor thrust and so help turn the helicopter.

ORTHOGONALITY <d 35

ing it slightly will start a gentle descent to the ground. However, when
you try it, you discover that life isn't that simple. The helicopter’s nose
drops, and you start to spiral down to the left. Suddenly you discover
that you're flying a system where every control input has secondary
effects. Lower the left-hand lever and you need to add compensating
backward movement to the right-hand stick and push the right pedal.
But then each of these changes affects all of the other controls again.
Suddenly you're juggling an unbelievably complex system, where every
change impacts all the other inputs. Your workload is phenomenal:
yvour hands and feet are constantly moving, trying to balance all the
interacting forces.

Helicopter controls are decidedly not orthogonal.

Benefits of Orthogonality

As the helicopter example illustrates, nonorthogonal systems are in-
herently more complex to change and control. When components of
any system are highly interdependent, there is no such thing as a local
fix.

S TiPr13 |

l Eliminate Effects Between Unrelated Things

SRR

We want to design components that are self-contained: independent,
and with a single, well-defined purpose (what Yourdon and Constan-
tine call cohesion [YC86]). When components are isolated from one
another, you know that you can change one without having to worry
about the rest. As long as you don't change that component’s external
interfaces, you can be comfortable that you won't cause problems that
ripple through the entire system.

You get two major benefits if you write orthogonal systems: increased
productivity and reduced risk.

Gain Productivity

e Changes are localized, so development time and testing time are
reduced. It is easier to write relatively small, self-contained compo-
nents than a single large block of code. Simple components can be

36 P CHAPTER 2 A PRAGMATIC APPROACH

designed, coded, unit tested, and then forgotten—there is no need
to keep changing existing code as you add new code.

e An orthogonal approach also promotes reuse. If components have
specific, well-defined responsibilities, they can be combined with
new components in ways that were not envisioned by their original
implementors. The more loosely coupled your systems, the easier
they are to reconfigure and reengineer.

e There is a fairly subtle gain in productivity when you combine
orthogonal components. Assume that one component does A dis-
tinct things and another does N things. If they are orthogonal and
you combine them, the result does M x N things. However, if the
two components are not orthogonal, there will be overlap, and the
result will do less. You get more functionality per unit effort by
combining orthogonal components.

Reduce Risk

An orthogonal approach reduces the risks inherent in any development.

e Diseased sections of code are isolated. If a module is sick, it is less
likely to spread the symptoms around the rest of the system. It
is also easier to slice it out and transplant in something new and
healthy.

e The resulting system is less fragile. Make small changes and fixes to
a particular area, and any problems you generate will be restricted
to that area.

¢ An orthogonal system will probably be better tested, because it will
be easier to design and run tests on its components.

¢ You will not be as tightly tied to a particular vendor, product, or
platform, because the interfaces to these third-party components
will be isolated to smaller parts of the overall development.

Let’s look at some of the ways you can apply the principle of orthogo-
nality to your work.

Project Teams
Have you noticed how some project teams are efficient, with everyone
knowing what to do and contributing fully, while the members of other

ORTHOGONALITY d 37

teams are constantly bickering and don’t seem able to get out of each
other’s way?

Often this is an orthogonality issue. When teams are organized with lots
of overlap, members are confused about responsibilities. Every change
needs a meeting of the entire team, because any one of them might be
affected.

How do you organize teams into groups with well-defined responsibili-
ties and minimal overlap? There's no simple answer. It depends partly
on the project and yvour analysis of the areas of potential change. It also
depends on the people you have available. Our preference is to start by
separating infrastructure from application. Each major infrastructure
component (database, communications interface, middleware layer,
and so on) gets its own subteam. Each obvious division of application
functionality is similarly divided. Then we look at the people we have
(or plan to have) and adjust the groupings accordingly.

You can get an informal measure of the orthogonality of a project team’s
structure. Simply see how many people need to be involved in dis-
cussing each change that is requested. The larger the number, the less
orthogonal the group. Clearly, an orthogonal team is more efficient.
(Having said this, we also encourage subteams to communicate con-
stantly with each other.)

Design

Most developers are familiar with the need to design orthogonal sys-
tems, although they may use words such as modular, component-hased,
and layered to describe the process. Systems should be composed of
a set of cooperating modules, each of which implements functionality
independent of the others. Sometimes these components are organized
into layers, each providing a level of abstraction. This layered approach
is a powerful way to design orthogonal systems. Because each layer
uses only the abstractions provided by the layers below it, you have
great flexibility in changing underlying implementations without affect-
ing code. Layering also reduces the risk of runaway dependencies be-
tween modules. You'll often see layering expressed in diagrams such as
Figure 2.1 on the next page.

There is an easy test for orthogonal design. Once you have your com-
ponents mapped out, ask yourself: If I dramatically change the require-

40 P CHAPTER 2 A PRAGMATIC APPROACH

are normally generated by sprinkling explicit calls to some log function
throughout your source. With AOP, you implement logging orthogonally
to the things being logged. Using the Java version of AOP, you could
write a log message when entering any method of class Fred by coding
the aspect:

aspect Trace {
advise * Fred.*(..) {
static before {
Log.write("-> Entering
}
}

+ thisJoinPoint.methodName) ;

b

If you weave this aspect into your code, trace messages will be gen-
erated. If you don't, you'll see no messages. Either way, your original
source is unchanged.

Coding

Every time you write code you run the risk of reducing the orthogonality
of your application. Unless you constantly monitor not just what you
are doing but also the larger context of the application, you might un-
intentionally duplicate functionality in some other module, or express
existing knowledge twice.

There are several techniques you can use to maintain orthogonality:

¢ Keep your code decoupled. Write shy code—modules that don’t
reveal anything unnecessary to other modules and that don't rely
on other modules’ implementations. Try the Law of Demeter [LH89],
which we discuss in Decoupling and the Law of Demeter, page 138.
If you need to change an object’s state, get the object to do it for you.
This way your code remains isolated from the other code’s imple-
mentation and increases the chances that you'll remain orthogonal.

¢ Avoid global data. Every time your code references global data,
it ties itself into the other components that share that data. Even
globals that you intend only to read can lead to trouble (for exam-
ple, if you suddenly need to change your code to be multithreaded).
In general, your code is easier to understand and maintain if you
explicitly pass any required context into your modules. In object-
oriented applications, context is often passed as parameters to

ORTHOGONALITY d 41

objects’ constructors. In other code, you can create structures con-
taining the context and pass around references to them.

The Singleton pattern in Design Patterns [GHJV95] is a way of
ensuring that there is only one instance of an object of a particular
class. Many people use these singleton objects as a kind of global
variable (particularly in languages, such as Java, that otherwise do
not support the concept of globals). Be careful with singletons—
they can also lead to unnecessary linkage.

¢ Avoid similar functions. Often you’'ll come across a set of functions
that all look similar—maybe they share common code at the start
and end, but each has a different central algorithm. Duplicate code
is a symptom of structural problems. Have a look at the Strategy
pattern in Design Patterns for a better implementation.

Get into the habit of being constantly critical of your code. Look for any
opportunities to reorganize it to improve its structure and orthogonal-
ity. This process is called refactoring, and it's so important that we've
dedicated a section to it (see Refactoring, page 184).

Testing

An orthogonally designed and implemented system is easier to test.
Because the interactions between the system’s components are formal-
ized and limited, more of the system testing can be performed at the
individual module level. This is good news, because module level (or
unit) testing is considerably easier to specify and perform than integra-
tion testing. In fact, we suggest that every module have its own unit
test built into its code, and that these tests be performed automatically
as part of the regular build process (see Code That’s Easy to Test, page
189).

Building unit tests is itself an interesting test of orthogonality. What
does it take to build and link a unit test? Do you have to drag in a large
percentage of the rest of the system just to get a test to compile or link?
If so, you've found a module that is not well decoupled from the rest of
the system.

Bug fixing is also a good time to assess the orthogonality of the system
as a whole. When you come across a problem, assess how localized

