The Princeton Companion to Applied Mathematics



The Princeton Companion to
Applied Mathematics

EDITOR

Nicholas J. Higham
The University of Manchester

ASSOCIATE EDITORS
Mark R. Dennis

University of Bristol

Paul Glendinning

The University of Manchester

Paul A. Martin

Colorado School of Mines

Fadil Santosa
University of Minnesota

Jared Tanner
University of Oxford

Princeton University Press

Princeton and Oxford



Copyright © 2015 by Princeton University Press

Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

press.princeton.edu
Jacket image courtesy of iStock
All Rights Reserved

Library of Congress Cataloging-in-Publication Data

The Princeton companion to applied mathematics / editor,
Nicholas J. Higham, The University of Manchester ;
associate editors, Mark R. Dennis, University of Bristol
[and four others].

pages cm
Includes bibliographical references and index.
ISBN 978-0-691-15039-0 (hardcover : alk. paper)
1. Algebra. 2. Mathematics. 3. Mathematical models.
1. Higham, Nicholas J., 1961- editor. IIl. Dennis, Mark R.,
editor. IIL. Title: Companion to applied mathematics.
IV. Title: Applied mathematics.

QA155.P75 2015
510—dc23 2015013024

British Library Cataloging-in-Publication Data is available

This book has been composed in LucidaBright

Project management, composition and copyediting
by TgT Productions Ltd, London

Printed on acid-free paper ®
Printed in the United States of America

12345678910



Contents

Preface ix I.25  Markov Chains 116

Contributors xiii I.26  Model Reduction 117

11.27  Multiscale Modeling 119

I1.28  Nonlinear Equations and Newton's Method 120

. . 1.29  Orthogonal Polynomials 122

Part I mtroduct19n to Applied 130 Shocks 122

1.31  Singularities 124

L1 What Is Applied Mathematics? 1 11.32  The Singular Valu.e Decomposition 126

- - IL.33  Tensors and Manifolds 127

1.2 The Language of Applied Mathematics - o

13 Methods of Soluti 27 1.34  Uncertainty Quantification 131

L4 Algorithms 40 11.35 V,arlatlonal Principle 134

- - - .36 Wave Phenomena 134
L5 Goals of Applied Mathematical Research 48
1.6 The History of Applied Mathematics 55

Part III Equations, Laws, and

Part I Concepts Functions of Applied
Mathematics
1.1 Asymptotics 81
1.2 Boundary Layer 82 IIL1  Benford's Law 135
1.3 Chaos and Ergodicity 82 1.2 Bessel Functions 137
1.4 Complex Systems 83 1.3 The Black-Scholes Equation 137
1.5 Conformal Mapping 84 1.4  The Burgers Equation 138
IL6  Conservationlaws 86 1.5  The Cahn-Hilliard Equation 138
1.7 Control 88 II.6  The Cauchy-Riemann Equations 139
1.8 Convexity 89 [II.7  The Delta Function and Generalized
1.9 Dimensional Analysis and Scaling 90 Functions 139
IL.10  The Fast Fourier Transform 94 1.8  The Diffusion Equation 142
IL.11  Finite Differences 95 1.9  The Dirac Equation 142
IL12  The Finite-Element Method 96 II.10  Einstein’s Field Equations 144
I.13  Floating-Point Arithmetic 96 II.L11 The Euler Equations 146
I.14  Functions of Matrices 97 III.12 The Euler-Lagrange Equations 147
I.15  Function Spaces 99 IL13 The GammaFunction 148
.16  Graph Theory 101 IlI.14 The Ginzburg-Landau Equation 148
.17 Homogenization 103 .15 Hooke's Law 149
I.18  Hybrid Systems 103 lI.16 The Korteweg-de Vries Equation 150
I.19 Integral Transforms and Convolution 104 1IL17 The Lambert W Function 151
I.20  Interval Analysis 105 III.L18 Laplace’s Equation 155
I.21 Invariants and Conservation Laws 106 II.19 The Logistic Equation 156
I1.22  The Jordan Canonical Form 112 1I.20  The Lorenz Equations 158
I.23  Krylov Subspaces 113 II.21 Mathieu Functions 159

IL24  The Level SetMethod 114

I1.22 Maxwell's Equations 160




Vi Contents
Il1.23  The Navier-Stokes Equations 162 IV.36 Information Theory 545
IlI.24  The Painlevé Equations 163 IV.37 Applied Combinatorics and Graph Theory 552
IlI.25 The Riccati Equation 165 IV.38 Combinatorial Optimization 564
1I1.26  Schrodinger’s Equation 167 IV.39 Algebraic Geometry 570
[I1.27 The Shallow-Water Equations 167 IV.40 General Relativity and Cosmology 579
111.28 The Sylvester and Lyapunov Equations 168
111.29 The Thin-Film Equation 169
[II.30 The Tricomi Equation 170 .
1II.31 The Wave Equation 171 Part V Modellng
V.1 The Mathematics of Adaptation
(Or the Ten Avatars of Vishnu) 591
Part IV Areas of Applied V.2 Sport 298
Matl . V.3 Inerters 604
V.4 Mathematical Biomechanics 609
V.1 Complcx Ana]ySiS 173 V.5 Mathematical Physiology 616
IV.2__ Ordinary Differential Equations 181 V-6  Cardiac Modeling 623
IV.3  Partial Differential Equations 190 V.7___Chemical Reactions 627
IV.4  Integral Equations 200 V.8 Divergent Series: Taming the Tails 634
IV.5  Perturbation Theory and Asymptotics 208 V.9 Financi.al Mathematics 640
IV.6__ Calculus of Variations 218 V.10 Portfolio Theory 648
V.7 Special Functions 297 V.11  Bayesian Inference in Applied Mathematics 658
IV.8  Spectral Theory 236 V.12 A Symmetric Framework with Many
IV.9  Approximation Theory 248 V.13 gpphclatl(;rlls gbl
IV.10 Numerical Linear Algebra and Matrix : ranuiar o.ws 65
Analysis 263 V.14 Modern Optics 673
IV.11 Continuous Optimization (Nonlinear and V.15 Numerical Relativity 680
Linear Programming) 281 V.16  The Spread of Infectious Diseases 687
IV.12 Numerical Solution of Ordinary Differential V.17 The Mathematics of Sea Ice 694
Equations 203 V.18 Numerical Weather Prediction 705
V.13 Numerical Solution of Partial Differential V.19 Tsunami Modeling 712
Equations 306 V.20 Shock Waves 720
IV.14 Applications of Stochastic Analysis 319 V.21 Turbulence 724
IV.15 Inverse Problems 327
IV.16 Computational Science 335
IV.17 Data Mining and Analysis 350 P
art VI Example Problems
IV.18 Network Analysis 360 P
IV.19 Classical Mechanics 374 VI.1 Cloaking 733
IV.20 Dynamical Systems 383 VL2 Bubbles 735
IV.21 Bifurcation Theory 393 VI3  Foams 737
IV.22  Symmetry in Applied Mathematics 402 VL4 Inverted Pendulums 741
IV.23 Quantum Mechanics 411 VL5  Insect Flight 743
V.24 Random-Matrix Theory 419 VL6  The Flight of a Golf Ball 746
IV.25 Kinetic Theory 428 VL7 Automatic Differentiation 749
V.26 Continuum Mechanics 446 VL.8  Knotting and Linking of Macromolecules 752
V.27 _Pattern Formation 458 VL9  Ranking Web Pages 755
V.28  Fluid Dynamics 467 VI.10 _Searching a Graph 757
V.29 Magnetohydrodynamics 476 VI.I1 Evaluating Elementary Functions 759
IV.30 Earth System Dynamics 485 VI.I2 Random Number Generation 761
1V.31 _Effective Medium Theories 500 VI.13 Optimal Sensor Location in the Control of
IV.32  Mechanics of Solids 505 Energy-Efficient Buildings 763
V.33  Soft Matter 516 VI.14 Robotics 767
V.34 Control Theory 523 VL.15 Slipping, Sliding, Rattling, and Impact:
IV.35 Signal Processing 533 Nonsmooth Dynamics and Its Applications 769




Contents

VI.16 From the N-Body Problem to Astronomy and

Dark Matter 771

VI.17 The N-Body Problem and the Fast Multipole

Method
VI.18 The Traveling Salesman Problem

775
778

vii

VIL.19 Airport Baggage Screening with X-Ray
Tomography 866
VIL.20 Mathematical Economics 868
VIL.21 Mathematical Neuroscience 873
879

VIL.22 Systems Biology
!/“ 23 Cumm"nicatiuu Nﬂuf'(][];f' 883

VIL.24 Text Mining 887
Part VII Application Areas VIL.25 Voting Systems 891
VIL1 _ AircraftNoise 783
VIL.2 A Hybrid Symbolic-Numeric Approach to Part VIII Final Perspectives
Geometry Processing and Modeling 787
VIL.3  Computer-Aided Proofs via Interval VIIL.1 Mathematical Writing 897
Analysis 790 VIIL.2 How to Read and Understand a Paper 903
VIL.4  Applications of Max-Plus Algebra 795 VIIL.3 How to Write a General Interest Mathematics
VIL.5  Evolving Social Networks, Attitudes, and Book 906
Beliefs—and Counterterrorism 800 VIIL4 Workflow 912
VIL.6  Chip Design 804 VIIL.5 Reproducible Research in the Mathematical
VIL7  Color Spaces and Digital Imaging 808 Sciences 916
VIL.8 Mathematical Image Processing 813 VIIL6 Experimental Applied Mathematics 925
VIL9  Medical Imaging 816 VIIL.7 Teaching Applied Mathematics 933
VIL.10 Compressed Sensing 823 VIII.8 Mediated Mathematics: Representations
VIL11 Programming Languages: An Applied of Mathematics in Popular Culture and
Mathematics View 828 Why These Matter 943
VIL12 High-Performance Computing 839 VIIL.9 Mathematics and Policy 953
VIL.13 Visualization 843
VIL14 El ic S Calculati
(Solid State Physics) 847 Index 963
VIL.15 Flame Propagation 852
VIL16 Imaging the Earth Using Green’s Theorem 857
VIL.17 Radar Imaging 860
VII.18 Modeling a Pregnancy Testing Kit 864 Color plates follow page 364



Copyrighted material



Preface

1 What Is The Companion?

The Princeton Companion to Applied Mathematics de-
scribes what applied mathematics is about, why it
is important, its connections with other disciplines,
and some of the main areas of current research. It
also explains what applied mathematicians do, which
includes not only studying the subject itself but also
writing about mathematics, teaching it, and influencing
policy makers.

The Companion differs from an encyclopedia in that
it is not an exhaustive treatment of the subject, and it
differs from a handbook in that it does not cover all
relevant methods and techniques. Instead, the aim is
to offer a broad but selective coverage that conveys
the excitement of modern applied mathematics while
also giving an appreciation of its history and the out-
standing challenges. The Companion focuses on topics
felt by the editors to be of enduring interest, and so it
should remain relevant for many years to come.

With online sources of information about mathemat-
ics growing ever more extensive, one might ask what
role a printed volume such as this has. Certainly, one
can use Google to search for almost any topic in the
book and find relevant material, perhaps on Wikipedia.
What distinguishes The Companion is that it is a self-
contained, structured reference work giving a consis-
tent treatment of the subject. The content has been
curated by an editorial board of applied mathemati-
cians with a wide range of interests and experience, the
articles have been written by leading experts and have
been rigorously edited and copyedited, and the whole
volume is thoroughly cross-referenced and indexed.

Within each article, the authors and editors have tried
hard to convey the motivation for each topic or concept
and the basic ideas behind it, while avoiding unnec-
essary detail. It is hoped that The Companion will be
seen as a friendly and inspiring reference, containing
both standard material and more unusual, novel, or
unexpected topics.

2 Scope

Itis difficult to give a precise definition of applied math-
ematics, as discussed in WHAT IS APPLIED MATHEMAT-
1cs? [I.1] and, from a historical perspective, in THE HIS-
TORY OF APPLIED MATHEMATICS [1.6]. The Companion
treats applied mathematics in a broad sense, and it
cannot cover all aspects in equal depth. Some parts
of mathematical physics are included, though a full
treatment of modern fundamental theories is not given.
Statistics and probability are not explicitly included,
although a number of articles make use of ideas from
these subjects, and in particular the burgeoning area of
UNCERTAINTY QUANTIFICATION [I1.34] brings together
many ideas from applied mathematics and statistics.
Applied mathematics increasingly makes use of algo-
rithms and computation, and a number of aspects at
the interface with computer science are included. Some
parts of discrete and combinatorial mathematics are
also covered.

3 Audience

The target audience for The Companion is mathe-
maticians at undergraduate level or above; students,
researchers, and professionals in other subjects who
use mathematics; and mathematically interested lay
readers. Some articles will also be accessible to stu-
dents studying mathematics at pre-university level.

Prospective research students might use the book to
obtain some idea of the different areas of applied math-
ematics that they could work in. Researchers who reg-
ularly attend seminars in areas outside their own spe-
cialities should find that the articles provide a gentle
introduction to some of these areas, making good pre-
or post-seminar reading.

In soliciting and editing the articles the editors aimed
to maximize accessibility by keeping discussions at the
lowest practical level. A good question is how much
of the book a reader should expect to understand.
Of course “understanding” is an imprecisely defined



concept. It is one thing to read along with an argument
and find it plausible, or even convincing, but another
to reproduce it on a blank piece of paper, as every
undergraduate discovers at exam time. The very wide
range of topics covered means that it would take a
reader with an unusually broad knowledge to under-
stand everything, but every reader from undergradu-
ate level upward should find a substantial portion of
the book accessible.

4 Organization

The Companion is organized in eight parts, which are
designed to cut across applied mathematics in different
ways.

Part [, “Introduction to Applied Mathematics,” begins
by discussing what applied mathematics is and giv-
ing examples of the use of applied mathematics in
everyday life. THE LANGUAGE OF APPLIED MATHEMAT-
ICs [I.2] then presents basic definitions, notation, and
concepts that are needed frequently in other parts of
the book, essentially giving a brief overview of some
key parts of undergraduate mathematics. This arti-
cle is not meant to be a complete survey, and many
later articles provide other introductory material them-
selves. METHODS OF SOLUTION [I.3] describes some gen-
eral solution techniques used in applied mathematics.
ALGORITHMS [1.4] explains the concept of an algorithm,
giving some important examples and discussing com-
plexity issues. The presence of this article in part I
reflects the increasing importance of algorithms in all
areas of applied mathematics. GOALS OF APPLIED MATH-
EMATICAL RESEARCH [L.5] describes the kinds of ques-
tions and issues that research in applied mathematics
addresses and discusses some strategic aspects of car-
rying out research. Finally, THE HISTORY OF APPLIED
MATHEMATICS [I.6] describes the history of the subject
from ancient times up until the late twentieth century.

Part II, “Concepts,” comprises short articles that
explain specific concepts and their significance. These
are mainly concepts that cut across different models
and areas and provide connections to other parts of the
book. This part is not meant to be comprehensive, and
many other concepts are well described in later articles
(and discoverable via the index).

Part III, “Equations, Laws, and Functions of Applied
Mathematics,” treats important examples of what its
title describes. The choice of what to include was based
on a mix of importance, accessibility, and interest.
Many equations, laws, and functions not contained in
this part are included in other articles.

Preface

Part IV, “Areas of Applied Mathematics,” contains
longer articles giving an overview of the whole sub-
ject and how it is organized, arranged by research
area. The aim of this part is to convey the breadth,
depth, and diversity of applied mathematics research.
The coverage is not comprehensive, but areas that
do not appear as or in article titles may neverthe-
less be present in other articles. For example, there is
no article on geoscience, yet EARTH SYSTEM DYNAM-
1Cs [IV.30], INVERSE PROBLEMS [IV.15], and IMAGING
THE EARTH USING GREEN’S THEOREM [VII.16] all cover
specific aspects of this area. Nor is there a part IV
article on numerical analysis, but this area is rep-
resented by APPROXIMATION THEORY [IV.9], NUMERI-
CAL LINEAR ALGEBRA AND MATRIX ANALYSIS [IV.10],
CONTINUOUS OPTIMIZATION (NONLINEAR AND LINEAR
PROGRAMMING) [IV.11], NUMERICAL SOLUTION OF ORDI-
NARY DIFFERENTIAL EQUATIONS [IV.12], and NUMERI-
CAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
[TV.13].

Part V, “Modeling,” gives a selection of mathemati-
cal models, explaining how the models are derived and
how they are solved.

Part VI, “Example Problems,” contains short articles
covering a variety of interesting applied mathematics
problems.

Part VII, “Application Areas,” comprises articles on
connections between applied mathematics and other
disciplines, including such diverse topics as integrated
circuit (chip) design, medical imaging, and the screen-
ing of luggage in airports.

Part VIII, “Final Perspectives,” contains essays on
broader aspects, including reading, writing, and type-
setting mathematics; teaching applied mathematics;
and how to influence government as a mathematician.

The articles within a given part vary significantly in
length. This should not be taken as an indication of the
importance of the corresponding topic, as it is partly
due to the number of pages that could be allocated to
each article, as well as to how authors responded to
their given page limit.

The ordering of articles within a part is alphabeti-
cal for parts IT and III. For part IV some attempt was
made to place related articles together and to place
one article before another if there is a natural order
in which to read the two articles. The ordering is never-
theless somewhat arbitrary, and the reader should feel
free to read the articles in any order. The articles within
parts V-VIII are arranged only loosely by theme.



Contributors

David Acheson, Emeritus Fellow, Jesus College,
University of Oxford

INVERTED PENDULUMS [VIL.4],

TEACHING APPLIED MATHEMATICS [VIIL7]

Miguel A. Alonso, Associate Professor,
The Institute of Optics at the University of Rochester
MODERN OPTICS [V.14]

Douglas N. Arnold, McKnight Presidential Professor of
Mathematics, University of Minnesota
THE FLIGHT OF A GOLF BALL [VL6]

Karl Johan Astrém, Emeritus Professor,
Department of Automatic Control,

Lund Institute of Technology/University of Lund
CONTROL THEORY [IV.34]

David H. Bailey, Lawrence Berkeley National Laboratory
(retired); Research Fellow, University of California, Davis
EXPERIMENTAL APPLIED MATHEMATICS [VIILG]

June Barrow-Green, Senior Lecturer in the History of
Mathematics, The Open University
THE HISTORY OF APPLIED MATHEMATICS [L.6]

Peter Benner, Director, Max Planck Institute for
Dynamics of Complex Technical Systems
MODEL REDUCTION [I1.26]

Andrew J. Bernoff, Kenneth and Diana Jonsson Professor of
Mathematics, Harvey Mudd College
THE THIN-FILM EQUATION [II1.29]

Michael V. Berry, Melville Wills Professor of Physics (Emeritus),
University of Bristol
DIVERGENT SERIES: TAMING THE TAILS [V.8]

Michael W. Berry, Professor, Department of Electrical
Engineering and Computer Science, University of Tennessee
TEXT MINING [VIL.24]

Brett Borden, Professor of Physics,
The Naval Postgraduate School, Monterey, California
RADAR IMAGING [VIL17]

Jeffrey T. Borggaard, Professor of Mathematics, Virginia Tech
OPTIMAL SENSOR LOCATION IN THE CONTROL OF
ENERGY-EFFICIENT BUILDINGS [VI.13]

Jonathan M. Borwein, Laureate Professor,
School of Mathematical and Physical Sciences,
University of Newcastle, Australia
EXPERIMENTAL APPLIED MATHEMATICS [VIIL6]

Fred Brauer, Professor Emeritus of Mathematics,
University of Wisconsin-Madison
THE SPREAD OF INFECTIOUS DISEASES [V.16]

Thomas J. Brennan, Professor of Law, Harvard Law School
PORTFOLIO THEORY [V.10]

David S. Broomhead, Professor of Applied Mathematics,
The University of Manchester (deceased)
APPLICATIONS OF MAX-PLUS ALGEBRA [VIL.4]

Kurt Bryan, Professor of Mathematics,
Rose-Hulam Institute of Technology
CLOAKING [VI.1]

Dorothy Buck, Reader in BioMathematics,
Imperial College London
KNOTTING AND LINKING OF MACROMOLECULES [VL.8]

Chris Budd, Professor of Applied Mathematics,
University of Bath; Professor of Mathematics,

Royal Institution of Great Britain

SLIPPING, SLIDING, RATTLING, AND IMPACT:
NONSMOOTH DYNAMICS AND ITS APPLICATIONS [VI.15]

John A. Burns, Hatcher Professor of Mathematics and
Technical Director for the Interdisciplinary Center for
Applied Mathematics, Virginia Tech

OPTIMAL SENSOR LOCATION IN THE CONTROL OF
ENERGY-EFFICIENT BUILDINGS [VI.13]

Daniela Calvetti, The James Wood Williamson Professor,
Department of Mathematics, Applied Mathematics and Statistics,
Case Western Reserve University

DIMENSIONAL ANALYSIS AND SCALING [I1.9]

Eric Cances, Professor of Analysis, Ecole des Ponts and INRIA
ELECTRONIC STRUCTURE CALCULATIONS (SOLID STATE PHYSICS)
[VIL14]

René Carmona, Paul M. Wythes '55 Professor of
Engineering and Finance, Bendheim Center for Finance,
ORFE, Princeton University

FINANCIAL MATHEMATICS [V.9]

C. J. Chapman, Professor of Applied Mathematics,
University of Keele
SHOCK WAVES [V.20], AIRCRAFT NOISE [VIL1]

S. Jonathan Chapman, Professor of Mathematics and Its
Applications, University of Oxford
THE GINZBURG-LANDAU EQUATION [II1.14]

Gui-Qiang G. Chen, Statutory Professor in the Analysis of Partial
Differential Equations and Professorial Fellow of Keble College,
University of Oxford

THE TRICOMI EQUATION [II1.30]

Margaret Cheney, Professor of Mathematics and Albert C. Yates
Endowment Chair, Colorado State University
RADAR IMAGING [VIL.17]



Peter A. Clarkson, Professor of Mathematics, University of Kent
THE PAINLEVE EQUATIONS [I11.24]

Eugene M. Cliff, Professor Emeritus, Interdisciplinary Center for
Applied Mathematics, Virginia Tech

OPTIMAL SENSOR LOCATION IN THE CONTROL OF
ENERGY-EFFICIENT BUILDINGS [VI.13]

Paul G. Constantine, Ben L. Fryrear Assistant Professor of
Applied Mathematics and Statistics, Colorado School of Mines
RANKING WEB PAGES [VL.9]

William Cook, Professor of Combinatorics and Optimization,
University of Waterloo
THE TRAVELING SALESMAN PROBLEM [VI.18]

Robert M. Corless, Distinguished University Professor,
Department of Applied Mathematics,

The University of Western Ontario

THE LAMBERT W FUNCTION [III.17]

Darren Crowdy, Professor of Applied Mathematics,
Imperial College London
CONFORMAL MAPPING [IL.5]

James M. Crowley, Executive Director,
Society for Industrial and Applied Mathematics
MATHEMATICS AND POLICY [VIIL9]

Annie Cuyt, Professor, Department of Mathematics &
Computer Science, University of Antwerp
APPROXIMATION THEORY [IV.9]

E. Brian Davies, Emeritus Professor of Mathematics,
King's College London
SPECTRAL THEORY [IV.8]

Timothy A. Davis, Professor, Department of Computer Science
and Engineering, Texas A&M University
GRAPH THEORY [I.16], SEARCHING A GRAPH [VIL.10]

Florent de Dinechin, Professor of Applied Sciences,
INSA—Lyon
EVALUATING ELEMENTARY FUNCTIONS [VL.11]

Mark R. Dennis, Professor of Theoretical Physics,

University of Bristol

INVARIANTS AND CONSERVATION LAWS [IL.21],

TENSORS AND MANIFOLDS [I1.33], THE DIRAC EQUATION [II1.9],
MAXWELL'S EQUATIONS [I11.22],

SCHRODINGER’S EQUATION [II1.26]

Jack Dongarra, Professor, University of Tennessee;
Professor, Oak Ridge National Laboratory;
Professor, The University of Manchester
HIGH-PERFORMANCE COMPUTING [VIL.12]

David L. Donoho, Anne T. and Robert M. Bass Professor in the
Humanities and Sciences, Stanford University

REPRODUCIBLE RESEARCH IN THE MATHEMATICAL SCIENCES
[VIIL5]

Ivar Ekeland, Professor Emeritus, CEREMADE and
Institut de Finance, Université Paris-Dauphine
MATHEMATICAL ECONOMICS [VIL.20]

Yonina C. Eldar, Professor of Electrical Engineering,
Technion—Israel Institute of Technology, Haifa
COMPRESSED SENSING [VII.10]

George F. R. Ellis, Professor Emeritus, Mathematics Department,
University of Cape Town
GENERAL RELATIVITY AND COSMOLOGY [IV.40]

Contributors

Charles L. Epstein, Thomas A. Scott Professor of Mathematics,
University of Pennsylvania
MEDICAL IMAGING [VIL9]

Bard Ermentrout, Distinguished University Professor of
Computational Biology and Professor of Mathematics,
University of Pittsburgh

MATHEMATICAL NEUROSCIENCE [VIL.21]

Maria Esteban, Director of Research, CNRS
MATHEMATICS AND POLICY [VIIL9]

Lawrence C. Evans, Professor, Department of Mathematics,
University of California, Berkeley
PARTIAL DIFFERENTIAL EQUATIONS [IV.3]

Hans G. Feichtinger, Faculty of Mathematics,
University of Vienna
FUNCTION SPACES [IL.15]

Martin Feinberg, Morrow Professor of Chemical & Biomolecular
Engineering and Professor of Mathematics,

The Ohio State University

CHEMICAL REACTIONS [V.7]

Alistair D. Fitt, Vice-Chancellor, Oxford Brookes University
MATHEMATICS AND POLICY [VIIL9]

Irene Fonseca, Mellon College of Science University Professor of
Mathematics and Director of Center for Nonlinear Analysis,
Carnegie Mellon University

CALCULUS OF VARIATIONS [IV.6]

L. B. Freund, Adjunct Professor, Department of Materials Science
and Engineering, University of Illinois at Urbana-Champaign
MECHANICS OF SOLIDS [IV.32]

David F. Gleich, Assistant Professor of Computer Science,
Purdue University
RANKING WEB PAGES [VL.9]

Paul Glendinning, Professor of Applied Mathematics,

The University of Manchester

CHAOS AND ERGODICITY [IL.3], COMPLEX SYSTEMS [IL.4],
HYBRID SYSTEMS [II.18], THE EULER-LAGRANGE EQUATIONS
[II1.12], THE LOGISTIC EQUATION [II1.19],

THE LORENZ EQUATIONS [III.20], BIFURCATION THEORY [IV.21]

Joe D. Goddard, Professor of Applied Mechanics and
Engineering Science, University of California, San Diego
GRANULAR FLOWS [V.13]

Kenneth M. Golden, Professor of Mathematics/Adjunct Professor
of Bioengineering, University of Utah
THE MATHEMATICS OF SEA ICE [V.17]

Timothy Gowers, Royal Society Research Professor,
Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge

MATHEMATICAL WRITING [VIIL1]

Thomas A. Grandine, Senior Technical Fellow,

The Boeing Company

A HYBRID SYMBOLIC-NUMERIC APPROACH TO GEOMETRY
PROCESSING AND MODELING [VII.2]

Andreas Griewank, Professor of Mathematics,
Humboldt University of Berlin
AUTOMATIC DIFFERENTIATION [VI.7]

David Griffiths, Emeritus Professor of Physics, Reed College
QUANTUM MECHANICS [IV.23]



Contributors

Peter Grindrod, Professor of Mathematics, University of Oxford
EVOLVING SOCIAL NETWORKS, ATTITUDES, AND
BELIEFS—AND COUNTERTERRORISM [VIL5]

Julio C. Gutiérrez-Vega, Director of the Optics Center,
Technologico de Monterrey
MATHIEU FUNCTIONS [II.21]

Ernst Hairer, Honorary Professor of Mathematics,

University of Geneva

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
[Iv.12]

Ian Hawke, Associate Professor, Mathematical Sciences,
University of Southampton
NUMERICAL RELATIVITY [V.15]

Stephan Held, Professor, Research Institute for
Discrete Mathematics, Bonn University
CHIP DESIGN [VIL6]

Didier Henrion, Professor, LAAS-CNRS, University of Toulouse;
Professor, Faculty of Electrical Engineering,

Czech Technical University in Prague

CONVEXITY [IL.8]

Willy A. Hereman, Professor of Applied Mathematics,
Colorado School of Mines
THE KORTEWEG-DE VRIES EQUATION [IIL.16]

Desmond J. Higham, 1966 Professor of Numerical Analysis,
University of Strathclyde
BAYESIAN INFERENCE IN APPLIED MATHEMATICS [V.11]

Nicholas J. Higham, Richardson Professor of Applied
Mathematics, The University of Manchester

WHAT IS APPLIED MATHEMATICS? [I.1], THE LANGUAGE OF
APPLIED MATHEMATICS [1.2], METHODS OF SOLUTION [L.3],
ALGORITHMS [1.4], GOALS OF APPLIED MATHEMATICAL RESEARCH
[L.5], CONTROL [IL.7], FINITE DIFFERENCES [IL.11],

THE FINITE-ELEMENT METHOD [I.12], FLOATING-POINT
ARITHMETIC [I1.13], FUNCTIONS OF MATRICES [I.14],

INTEGRAL TRANSFORMS AND CONVOLUTION [I.19], THE JORDAN
CANONICAL FORM [I1.22], ORTHOGONAL POLYNOMIALS [I1.29],
THE SINGULAR VALUE DECOMPOSITION [I.32],

VARIATIONAL PRINCIPLE [IL.35], THE BLACK-SCHOLES EQUATION
[III.3], THE SYLVESTER AND LYAPUNOV EQUATIONS [II1.28],
NUMERICAL LINEAR ALGEBRA AND MATRIX ANALYSIS [IV.10],
COLOR SPACES AND DIGITAL IMAGING [VIL.7],

PROGRAMMING LANGUAGES: AN APPLIED MATHEMATICS VIEW
[VIL11], HOW TO READ AND UNDERSTAND A PAPER [VIIL2],
WORKFLOW [VIIL4]

Theodore P. Hill, Professor Emeritus of Mathematics,
Georgia Institute of Technology
BENFORD'S LAW [II1.1]

Philip Holmes, Fugene Higgins Professor of Mechanical and
Aerospace Engineering and Professor of Applied and
Computational Mathematics, Princeton University
DYNAMICAL SYSTEMS [IV.20]

Stefan Hougardy, Professor of Mathematics, University of Bonn
CHIP DESIGN [VILG]

Christopher J. Howls, Professor of Mathematics,
University of Southampton
DIVERGENT SERIES: TAMING THE TAILS [V.8]

Yifan Hu, Principal Research Scientist, Yahoo Labs
GRAPH THEORY [I.16]

David W. Hughes, Professor of Applied Mathematics,
University of Leeds
MAGNETOHYDRODYNAMICS [IV.29]

XV

Julian C. R. Hunt, Emeritus Professor of Climate Modelling and
Honorary Professor of Mathematics, University College London
TURBULENCE [V.21]

Stefan Hutzler, Associate Professor, School of Physics,
Trinity College Dublin
FOAMS [VL3]

Richard D. James, Professor, Department of Aerospace
Engineering and Mechanics, University of Minnesota
CONTINUUM MECHANICS [IV.26]

David J. Jeffrey, Professor, Department of Applied Mathematics,
The University of Western Ontario
THE LAMBERT W FUNCTION [II.17]

Oliver E. Jensen, Sir Horace Lamb Professor,
School of Mathematics, The University of Manchester
MATHEMATICAL BIOMECHANICS [V.4]

Chris R. Johnson, Director, Scientific Computing and Imaging
Institute; Distinguished Professor, School of Computing,
University of Utah

VISUALIZATION [VIL13]

Chandrika Kamath, Member of Technical Staff,
Lawrence Livermore National Laboratory
DATA MINING AND ANALYSIS [IV.17]

Randall D. Kamien, Vicki and William Abrams Professor in the
Natural Sciences, University of Pennsylvania
SOFT MATTER [IV.33]

Jonathan Peter Keating, Henry Overton Wills Professor of
Mathematics, University of Bristol
RANDOM-MATRIX THEORY [IV.24]

David E. Keyes, Professor of Applied Mathematics and
Computational Science and Director, Extreme Computing
Research Center, King Abdullah University of Science and
Technology; Professor of Applied Mathematics and Applied
Physics, Columbia University

COMPUTATIONAL SCIENCE [IV.16]

Barbara Lee Keyfitz, Dr. Charles Saltzer Professor of
Mathematics, The Ohio State University
CONSERVATION LAWS [I1.6], SHOCKS [I.30]

David Krakauer, President and Professor, Santa Fe Institute
THE MATHEMATICS OF ADAPTATION (OR THE TEN AVATARS OF
VISHNU) [V.1]

Rainer Kress, Professor Emeritus, Institut fiir Numerische und
Angewandte Mathematik, University of Gottingen
INTEGRAL EQUATIONS [IV.4]

Alan J. Laub, Professor, Department of Electrical Engineering/
Mathematics, University of California, Los Angeles
THE RICCATI EQUATION [II1.25]

Anita T. Layton, Robert R. and Katherine B. Penn Associate
Professor, Department of Mathematics, Duke University
MATHEMATICAL PHYSIOLOGY [V.5]

Tanya Leise, Associate Professor of Mathematics,
Ambherst College
CLOAKING [VI.1]

Giovanni Leoni, Professor, Department of
Mathematical Sciences, Carnegie Mellon University
CALCULUS OF VARIATIONS [IV.6]

Randall J. LeVeque, Professor, Department of Applied
Mathematics, University of Washington
TSUNAMI MODELING [V.19]



Rachel Levy, Associate Professor of Mathematics,
Harvey Mudd College
TEACHING APPLIED MATHEMATICS [VIIL7]

W. R. B. Lionheart, Professor of Applied Mathematics,
The University of Manchester
AIRPORT BAGGAGE SCREENING WITH X-RAY TOMOGRAPHY [VIL.19]

Andrew W. Lo, Charles E. and Susan T. Harris Professor,
Massachusetts Institute of Technology
PORTFOLIO THEORY [V.10]

Christian Lubich, Professor, Mathematisches Institut,
Universitdt Tiibingen

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
[Iv.12]

Peter Lynch, Emeritus Professor, School of
Mathematical Sciences, University College, Dublin
NUMERICAL WEATHER PREDICTION [V.18]

Malcolm A. H. MacCallum, Emeritus Professor of Applied
Mathematics, Queen Mary University of London
EINSTEIN’S FIELD EQUATIONS [IIL.10]

Dian L Martin, CEO, Senior Consultant,
Small Bear Technologies, Inc.
TEXT MINING [VI.24]

P. A. Martin, Professor of Applied Mathematics,

Colorado School of Mines

ASYMPTOTICS [II.1], BOUNDARY LAYER [IL.2],

INTEGRAL TRANSFORMS AND CONVOLUTION [I1.19],
SINGULARITIES [I1.31], WAVE PHENOMENA [IL.36],

BESSEL FUNCTIONS [II.2], THE BURGERS EQUATION [II1.4],
THE CAUCHY-RIEMANN EQUATIONS [II.6], THE DIFFUSION
EQUATION [II.8], THE EULER EQUATIONS [IIL.11], THE GAMMA
FUNCTION [II1.13], HOOKE'S LAW [III.15], LAPLACE'S EQUATION
[I11.18], THE SHALLOW-WATER EQUATIONS [II1.27], THE WAVE
EQUATION [II1.31], COMPLEX ANALYSIS [IV.1]

Youssef Marzouk, Associate Professor, Department of
Aeronautics and Astronautics and Center for Computational
Engineering, Massachusetts Institute of Technology
UNCERTAINTY QUANTIFICATION [I1.34]

Moshe Matalon, Caterpillar Distinguished Professor,
Mechanical Science and Engineering,

University of Illinois at Urbana-Champaign

FLAME PROPAGATION [VIL15]

Sean McKee, Research Professor of Mathematics and Statistics,
University of Strathclyde, Glasgow
MODELING A PREGNANCY TESTING KIT [VIL.18]

Ross C. McPhedran, Emeritus Professor in Physics,
CUDOS, University of Sydney
EFFECTIVE MEDIUM THEORIES [IV.31]

John G. McWhirter, Distinguished Research Professor,
School of Engineering, Cardiff University
SIGNAL PROCESSING [IV.35]

Beatrice Meini, Professor of Numerical Analysis,
University of Pisa
MARKOV CHAINS [I1.25]

James D. Meiss, Professor, Department of Applied Mathematics,
University of Colorado at Boulder
ORDINARY DIFFERENTIAL EQUATIONS [IV.2]

Heather Mendick, Reader in Education, Brunel University
MEDIATED MATHEMATICS: REPRESENTATIONS OF MATHEMATICS
IN POPULAR CULTURE AND WHY THESE MATTER [VIIL8]

Contributors

Peter D. Miller, Professor of Mathematics,
The University of Michigan, Ann Arbor
PERTURBATION THEORY AND ASYMPTOTICS [IV.5]

H. K. Moffatt, Emeritus Professor of Mathematical Physics,
University of Cambridge
THE NAVIER-STOKES EQUATIONS [II1.23], FLUID DYNAMICS [IV.28]

Esteban Moro, Associate Professor, Department of Mathematics,
Universidad Carlos Il de Madrid
NETWORK ANALYSIS [IV.18]

Clément Mouhot, Professor of Mathematical Sciences,
University of Cambridge
KINETIC THEORY [IV.25]

Jean-Michel Muller, Directeur de Recherche, CNRS
EVALUATING ELEMENTARY FUNCTIONS [VI.11]

Tri-Dung Nguyen, Associate Professor in Operational Research
and Management Sciences, University of Southampton
PORTFOLIO THEORY [V.10]

Qing Nie, Professor, Department of Mathematics, Center for
Mathematical and Computational Biology, Center for Complex
Biological Systems, University of California, Irvine

SYSTEMS BIOLOGY [VIL22]

Harald Niederreiter, Senior Scientist, RICAM,
Austrian Academy of Sciences, Linz
RANDOM NUMBER GENERATION [VI.12]

Amy Novick-Cohen, Professor, Department of Mathematics,
Technion—Israel Institute of Technology, Haifa
THE CAHN-HILLIARD EQUATION [IIL.5]

Bernt @ksendal, Professor, Department of Mathematics,
University of Oslo
APPLICATIONS OF STOCHASTIC ANALYSIS [IV.14]

Alexander V. Panfilov, Professor, Department of Physics and
Astronomy, Gent University
CARDIAC MODELING [V.6]

Nicola Parolini, Associate Professor of Numerical Analysis,
Dipartimento di Matematica, MOX Politecnico di Milano
SPORT [V.2]

Kristin Potter, Scientific Software Consultant,
University of Oregon
VISUALIZATION [VIL.13]

Andrea Prosperetti, C. A. Miller Jr. Professor of

Mechanical Engineering, Johns Hopkins University;

G. Berkhoff Professor of Applied Physics, University of Twente
BUBBLES [VI.2]

Ian Proudler, Professor of Signal Processing,
Loughborough University
SIGNAL PROCESSING [IV.35]

Alfio Quarteroni, Professor and Director, Chair of Modelling and
Scientific Computing, Ecole Polytechnique Fédérale de Lausanne
SPORT [V.2]

Anders Rantzer, Professor, Automatic Control,
LTH Lund University
CONTROL THEORY [IV.34]

Marcos Raydan, Professor, Departamento de Computo Cientifico
y Estadistica, Universidad Simon Bolivar
NONLINEAR EQUATIONS AND NEWTON'S METHOD [I1.28]

Daniel N. Rockmore, William H. Neukom 1964 Professor of
Computational Science, Dartmouth College

THE FAST FOURIER TRANSFORM [I1.10], THE MATHEMATICS OF
ADAPTATION (OR THE TEN AVATARS OF VISHNU) [V.1]



Contributors

Donald G. Saari, Distinguished Professor and Director,

Institute for Mathematical Behavioral Sciences,

University of California, Irvine

FROM THE N-BODY PROBLEM TO ASTRONOMY AND DARK MATTER
[VL.16], VOTING SYSTEMS [VIL.25]

Fadil Santosa, Professor, School of Mathematics,
University of Minnesota; Director, Institute for
Mathematics and its Applications

HOMOGENIZATION [I1.17], THE LEVEL SET METHOD [I1.24],
MULTISCALE MODELING [I.27], INVERSE PROBLEMS [IV.15]

Guillermo Sapiro, Edmund T. Pratt, Jr. School Professor of
Electrical and Computer Engineering, Duke University
MATHEMATICAL IMAGE PROCESSING [VIL8]

Arnd Scheel, Professor, School of Mathematics,
University of Minnesota
PATTERN FORMATION [IV.27]

Emily Shuckburgh, Head of Open Oceans,
British Antarctic Survey
EARTH SYSTEM DYNAMICS [IV.30]

Reinhard Siegmund-Schultze, Faculty of Engineering and
Science, University of Agder
THE HISTORY OF APPLIED MATHEMATICS [1.6]

Valeria Simoncini, Professor of Numerical Analysis,
Alma Mater Studiorum Universita di Bologna
KRYLOV SUBSPACES [I1.23]

Ronnie Sircar, Professor, Operations Research & Financial
Engineering Department, Princeton University
FINANCIAL MATHEMATICS [V.9]

Malcolm C. Smith, Professor, Department of Engineering,
University of Cambridge
INERTERS [V.3]

Roel Snieder, W. M. Keck Distinguished Professor of Basic
Exploration Science, Colorado School of Mines
IMAGING THE EARTH USING GREEN'S THEOREM [VII.16]

Erkki Somersalo, Professor, Department of Mathematics,
Applied Mathematics and Statistics,

Case Western Reserve University

DIMENSIONAL ANALYSIS AND SCALING [I1.9]

Frank Sottile, Professor of Mathematics, Texas A&M University
ALGEBRAIC GEOMETRY [IV.39]

Ian Stewart, Emeritus Professor of Mathematics,

University of Warwick

SYMMETRY IN APPLIED MATHEMATICS [IV.22], HOW TO WRITE A
GENERAL INTEREST MATHEMATICS BOOK [VIIL3]

Victoria Stodden, Associate Professor,

Graduate School of Library and Information Science,
University of Illinois at Urbana-Champaign

REPRODUCIBLE RESEARCH IN THE MATHEMATICAL SCIENCES
[VIIL5]

Gilbert Strang, Professor of Mathematics,

Massachusetts Institute of Technology

A SYMMETRIC FRAMEWORK WITH MANY APPLICATIONS [V.12],
TEACHING APPLIED MATHEMATICS [VIIL7]

Agnés Sulem, Researcher, INRIA Paris-Rocquencourt
APPLICATIONS OF STOCHASTIC ANALYSIS [IV.14]

Endre Siili, Professor of Numerical Analysis, University of Oxford
NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
[IV.13]

William W. Symes, Noah G. Harding Professor in Computational
and Applied Mathematics and Professor of Earth Science,

Rice University

INVERSE PROBLEMS [IV.15]

Nico M. Temme, Emeritus Researcher,
Centrum Wiskunde & Informatica, Amsterdam
SPECIAL FUNCTIONS [IV.7]

David Tong, Professor of Theoretical Physics,
University of Cambridge
CLASSICAL MECHANICS [IV.19]

Warwick Tucker, Professor of Mathematics, Uppsala University
INTERVAL ANALYSIS [I1.20], COMPUTER-AIDED PROOFS VIA
INTERVAL ANALYSIS [VIL3]

Peter R. Turner, Dean of Arts and Sciences and
Professor of Mathematics, Clarkson University
TEACHING APPLIED MATHEMATICS [VIIL7]

P. J. Upton, Lecturer, Department of Mathematics and Statistics,
The Open University
THE DELTA FUNCTION AND GENERALIZED FUNCTIONS [II1.7]

P. van den Driessche, Professor Emeritus of
Mathematics and Statistics, University of Victoria
THE SPREAD OF INFECTIOUS DISEASES [V.16]

Sergio Verdu, Eugene Higgins Professor of
Electrical Engineering, Princeton University
INFORMATION THEORY [IV.36]

Cédric Villani, Professor of Mathematics, University Claude
Bernard Lyon I; Director, Institut Henri Poincaré (CNRS/UPMC)
KINETIC THEORY [IV.25]

Jens Vygen, Professor, Research Institute for
Discrete Mathematics, University of Bonn
COMBINATORIAL OPTIMIZATION [IV.38], CHIP DESIGN [VILG6]

Charles W. Wampler, Technical Fellow,
General Motors Global Research and Development
ROBOTICS [VI.14]

Z. Jane Wang, Professor, Department of Physics,
Cornell University
INSECT FLIGHT [VL5]

Denis Weaire, Emeritus Professor, School of Physics,
Trinity College Dublin
FOAMS [VL3]

Karen Willcox, Professor of Aeronautics and Astronautics,
Massachusetts Institute of Technology
UNCERTAINTY QUANTIFICATION [I1.34]

Walter Willinger, Chief Scientist, NIKSUN, Inc.
COMMUNICATION NETWORKS [VIL.23]

Peter Winkler, William Morrill Professor of Mathematics and
Computer Science, Dartmouth College
APPLIED COMBINATORICS AND GRAPH THEORY [IV.37]

Stephen J. Wright, Professor, Department of Computer Sciences,
University of Wisconsin-Madison

CONTINUOUS OPTIMIZATION (NONLINEAR AND LINEAR
PROGRAMMING) [IV.11]

Lexing Ying, Professor of Mathematics, Stanford University
THE N-BODY PROBLEM AND THE FAST MULTIPOLE METHOD [VL.17]

Ya-xiang Yuan, Professor, Institute of Computational
Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences

MATHEMATICS AND POLICY [VIIL9]



Copyrighted material



Part 1
Introduction to

Applied Mathematics

I.1 What Is Applied Mathematics?
Nicholas J. Higham

1 The Big Picture

Applied mathematics is a large subject that interfaces
with many other fields. Trying to define it is problem-
atic, as noted by William Prager and Richard Courant,
who set up two of the first centers of applied mathemat-
ics in the United States in the first half of the twentieth
century, at Brown University and New York University,
respectively. They explained that:

Precisely to define applied mathematics is next to
impossible. It cannot be done in terms of subject mat-
ter: the borderline between theory and application is
highly subjective and shifts with time. Nor can it be
done in terms of motivation: to study a mathematical
problem for its own sake is surely not the exclusive
privilege of pure mathematicians. Perhaps the best I
can do within the framework of this talk is to describe
applied mathematics as the bridge connecting pure
mathematics with science and technology.

Prager (1972)

Applied mathematics is not a definable scientific field
but a human attitude. The attitude of the applied sci-
entist is directed towards finding clear cut answers
which can stand the test of empirical observation. To
obtain the answers to theoretically often insuperably
difficult problems, he must be willing to make com-
promises regarding rigorous mathematical complete-
ness; he must supplement theoretical reasoning by
numerical work, plausibility considerations and so on.

Courant (1965)

Garrett Birkhoff offered the following view in 1977,
with reference to the mathematician and physicist Lord
Rayleigh (John William Strutt, 1842-1919):

|
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Figure 1 The main steps in solving
a problem in applied mathematics.

Essentially, mathematics becomes “applied” when it is
used to solve real-world problems “neither seeking nor
avoiding mathematical difficulties” (Rayleigh).

Rather than define what applied mathematics is, one
can describe the methods used in it. Peter Lax stated of
these methods, in 1989, that:

Some of them are organic parts of pure mathemat-
ics: rigorous proofs of precisely stated theorems.
But for the greatest part the applied mathematician
must rely on other weapons: special solutions, asymp-
totic description, simplified equations, experimenta-
tion both in the laboratory and on the computer.

Here, instead of attempting to give our own definition
of applied mathematics we describe the various facets
of the subject, as organized around solving a problem.
The main steps are described in figure 1. Let us go
through each of these steps in turn.



Modeling a problem. Modeling is about taking a phys-
ical problem and developing equations—differential,
difference, integral, or algebraic—that capture the es-
sential features of the problem and so can be used
to obtain qualitative or quantitative understanding of
its behavior. Here, “physical problem” might refer to
a vibrating string, the spread of an infectious disease,
or the influence of people participating in a social net-
work. Modeling is necessarily imperfect and requires
simplifying assumptions. One needs to retain enough
aspects of the system being studied that the model
reproduces the most important behavior but not so
many that the model is too hard to analyze. Different
types of models might be feasible (continuous, discrete,
stochastic), and for a given type there can be many
possibilities. Not all applied mathematicians carry out
modeling; in fact, most join the process at the next step.

Analyzing the mathematical problem. The equations
formulated in the previous step are now analyzed and,
ideally, solved. In practice, an explicit, easily evalu-
ated solution usually cannot be obtained, so approxi-
mations may have to be made, e.g., by discretizing a dif-
ferential equation, producing a reduced problem. The
techniques necessary for the analysis of the equations
or reduced problem may not exist, so this step may
involve developing appropriate new techniques. If ana-
lytic or perturbation methods have been used then the
process may jump from here directly to validation of
the model.

Developing algorithms. It may be possible to solve
the reduced problem using an existing algorithm—a
sequence of steps that can be followed mechanically
without the need for ingenuity. Even if a suitable algo-
rithm exists it may not be fast or accurate enough, may
not exploit available structure or other problem fea-
tures, or may not fully exploit the architecture of the
computer on which it is to be run. It is therefore often
necessary to develop new or improved algorithms.

Writing software. In order to use algorithms on a
computer it is necessary to implement them in soft-
ware. Writing reliable, efficient software is not easy,
and depending on the computer environment being tar-
geted it can be a highly specialized task. The necessary
software may already be available, perhaps in a package
or program library. If it is not, software is ideally devel-
oped and documented to a high standard and made
available to others. In many cases the software stage
consists simply of writing short programs, scripts, or
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notebooks that carry out the necessary computations
and summarize the results, perhaps graphically.

Computational experiments. The software is now
run on problem instances and solutions obtained. The
computations could be numeric or symbolic, or a mix-
ture of the two.

Validation of the model. The final step is to take the
results from the experiments (or from the analysis, if
the previous three steps were not needed), interpret
them (which may be a nontrivial task), and see if they
agree with the observed behavior of the original sys-
tem. If the agreement is not sufficiently good then the
model can be modified and the loop through the steps
repeated. The validation step may be impossible, as the
system in question may not yet have been built (e.g., a
bridge or a building).

Other important tasks for some problems, which
are not explicitly shown in our outline, are to cali-
brate parameters in a model, to quantify the uncer-
tainty in these parameters, and to analyze the effect
of that uncertainty on the solution of the problem.
These steps fall under the heading of UNCERTAINTY
QUANTIFICATION [I1.34].

Once all the steps have been successfully completed
the mathematical model can be used to make predic-
tions, compare competing hypotheses, and so on. A
key aim is that the mathematical analysis gives new
insights into the physical problem, even though the
mathematical model may be a simplification of it.

A particular applied mathematician is most likely to
work on just some of the steps; indeed, except for rela-
tively simple problems it is rare for one person to have
the skills to carry out the whole process from modeling
to computer solution and validation.

In some cases the original problem may have been
communicated by a scientist in a different field. A sig-
nificant effort can be required to understand what the
mathematical problem is and, when it is eventually
solved, to translate the findings back into the language
of the relevant field. Being able to talk to people out-
side mathematics is therefore a valuable skill for the
applied mathematician.

It would be wrong to give the impression that all
applied mathematics is done in the context of model-
ing. Frequently, a mathematical problem will be tack-
led because of its inherent interest (see the quote from
Prager above) with the hope or expectation that a rel-
evant application will be found. Indeed some applied



L1. What Is Applied Mathematics?

mathematicians spend their whole careers working in
this way. There are many examples of mathemati-
cal results that provide the foundations for impor-
tant practical applications but were developed without
knowledge of those applications (sections 3.1 and 3.2
provide such examples).

Before the twentieth century, applied mathematics
was driven by problems in astronomy and mechan-
ics. In the twentieth century physics became the main
driver, with other areas such as biology, chemistry, eco-
nomics, engineering, and medicine also providing many
challenging mathematical problems from the 1950s
onward. With the massive and still-growing amounts
of data available to us in today’s digital society we can
expect information, in its many guises, to be an increas-
ingly important influence on applied mathematics in
the twenty-first century.

For more on the definition and history of applied
mathematics, including the development of the term
“applied mathematics,” see the article HISTORY OF
APPLIED MATHEMATICS [1.6].

2 Applied Mathematics and Pure Mathematics

The question of how applied mathematics compares
with pure mathematics is often raised and has been
discussed by many authors, sometimes in controversial
terms. We give a few highlights.

Paul Halmos wrote a 1981 paper provocatively titled
“Applied mathematics is bad mathematics.” However,
much of what Halmos says would not be disputed by
many applied mathematicians. For example:

Pure mathematics can be practically useful and applied
mathematics can be artistically elegant....

Just as pure mathematics can be useful, applied math-
ematics can be more beautifully useless than is some-
times recognized....

Applied mathematics is an intellectual discipline, not
a part of industrial technology....

Not only, as is universally admitted, does the applied
need the pure, but, in order to keep from becoming
inbred, sterile, meaningless, and dead, the pure needs
the revitalization and the contact with reality that only
the applied can provide.

G. H. Hardy’s book A Mathematician’s Apology (1940)
is well known as a defense of mathematics as a
subject that can be pursued for its own sake and
beauty. As such it contains some criticism of applied
mathematics:

But is not the position of an ordinary applied mathe-
matician in some ways a little pathetic? If he wants to
be useful, he must work in a humdrum way, and he can-
not give full play to his fancy even when he wishes to
rise to the heights. “Imaginary” universes are so much
more beautiful than this stupidly constructed “real”
one; and most of the finest products of an applied
mathematician’s fancy must be rejected, as soon as
they have been created, for the brutal but sufficient
reason that they do not fit the facts.

Halmos and Hardy were pure mathematicians. Ap-
plied mathematicians C. C. Lin and L. A. Segel offer
some insights in the introductory chapter of their clas-
sic 1974 book Mathematics Applied to Deterministic
Problems in the Natural Sciences:

The differences in motivation and objectives between
pure and applied mathematics—and the consequent
differences in emphasis and attitude—must be fully
recognized. In pure mathematics, one is often deal-
ing with such abstract concepts that logic remains the
only tool permitting judgment of the correctness of
a theory. In applied mathematics, empirical verifica-
tion is a necessary and powerful judge. However...in
some cases (e.g., celestial mechanics), rigorous theo-
rems can be proved that are also valuable for practical
purposes. On the other hand, there are many instances
in which new mathematical ideas and new mathemati-
cal theories are stimulated by applied mathematicians
or theoretical scientists.

They also opine that:

Much second-rate pure mathematics is concealed be-
neath the trappings of applied mathematics (and vice
versa). As always, knowledge and taste are needed if
quality is to be assured.

The applied versus pure discussion is not always
taken too seriously. Chandler Davis quotes the applied
mathematician Joseph Keller as saying, “pure mathe-
matics is a subfield of applied mathematics™

The discussion can also focus on where in the spec-
trum a particular type of mathematics lies. An inter-
esting story was told in 1988 by Clifford Truesdell
of his cofounding in 1952 of the Journal of Rational
Mechanics and Analysis (which later became Archive for
Rational Mechanics and Analysis). He explained that

In those days papers on the foundation of continuum
mechanics were rejected by journals of mathematics
as being applied, by journals of “applied” mathematics
as being physics or pure mathematics, by journals of
physics as being mathematics, and by all of them as too
long, too expensive to print, and of interest to no one.



3 Applied Mathematics in Everyday Life

We now give three examples of applied mathemat-
ics in use in everyday life. These examples were cho-
sen because they can be described without delving
into too many technicalities and because they illus-
trate different characteristics. Some of the terms used
in the descriptions are explained in THE LANGUAGE OF
APPLIED MATHEMATICS [L.2].

3.1 Searching Web Pages

In the early to mid-1990s—the early days of the World
Wide Web—search engines would find Web pages that
matched a user’s search query and would order the
results by a simple criterion such as the number of
times that the search query appears on a page. This
approach became unsatisfactory as the Web grew in
size and spammers learned how to influence the search
results. From the late 1990s onward, more sophisti-
cated criteria were developed, based on analysis of
the links between Web pages. One of these is Google’s
PAGERANK ALGORITHM [VL.9]. Another is the hyperlink-
induced topic search (HITS) algorithm of Kleinberg.

The HITS algorithm is based on the idea of deter-
mining hubs and authorities. Authorities are Web pages
with many links to them and for which the linking pages
point to many authorities. For example, the New York
Times home page or a Wikipedia article on a popular
topic might be an authority. Hubs are pages that point
to many authorities. An example might be a page on
a programming language that provides links to useful
pages about that language but that does not necessar-
ily contain much content itself. The authorities are the
pages that we would like to rank higher among pages
that match a search term. However, the definition of
hubs and authorities is circular, as each depends on
the other.

To resolve this circularity, associate an authority
weight x; and a hub weight y; with page i, with both
weights nonnegative. Let there be n pages to be con-
sidered (in practice this is a much smaller number than
the total number of pages that match the search term).
Define an n x n matrix A = (a;;) by a;; = 1 if there
is a hyperlink from page i to page j and by a;; = 0
otherwise. Let us make initial guesses x,fm = 1 and
yfo’ =1, fori=1,2,...,n. It is reasonable to update
the authority weight x; for page i by replacing it by the
sum of the weights of the hubs that point to it. Simi-
larly, the hub weight y; for page i can be replaced by
the sum of the weights of the authorities to which it
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points. In equations, these updates can be written as
x}” = Xa;40 yJ(-O) and y,-(” = Xa, 40 xJ‘-”; note that in
the latter equation we are using the updated author-
ity weights, and the sums are over those j for which
aj; or a;j is nonzero, respectively. This process can be

iterated:

(k+1) _ (k)
xi = 2y
k0 k=0,1,2
(k+1) _ (k+1) =Y hee...
Yi = Z Xj
ai;j#0

The circular definition of hubs and authorities has
been turned into an iteration. The iteration is best ana-
lyzed by rewriting it in matrix-vector form. Defining
the n-vectors

k) (k) (k)
xi = [, x50 xa T,
(k)
» Yn 1T

(k) (k)
yk:[yl 1y2 gy

and recalling that the elements of A are 0 or 1, we can

rewrite the iteration as

X1 = ATy

k=0,1,2,...,
Vi+1 = AXk+1

where AT = (a ji) is the transpose of A. Combining the
two formulas into one gives xy.; = ATy, = AT(Axy) =
(ATA)xy. Hence the xj are generated by repeatedly
multiplying by the matrix ATA. Each element of ATA is
either zero or a positive integer, so the powers of ATA
will usually grow without bound. In practice we should
therefore normalize the vectors xy and Yy so that the
largest element is 1; this avoids overflow and has no
effect on the relative sizes of the components, which is
all that matters. Our iteration is then

Xk = ¢ 'ATAxy,

where cx is the largest element of ATAx. If the
sequences xy and ¢ converge, say to X and ¢, respec-
tively, then ATAx, = cyx,. This equation says that x4
is an eigenvector of ATA with corresponding eigenvalue
Cx. A similar argument shows that, if the normalized
sequence of vectors y converges, then it must be to
an eigenvector of AAT,

This process of repeated multiplication by a matrix is
known as the POWER METHOD [IV.10 §5.5]. The PERRON-
FROBENIUS THEOREM [IV.10§11.1] can be used to show
that, provided the matrix ATA has a property called irre-
ducibility, it has a unique eigenvalue of largest magni-
tude and this eigenvalue is real and positive, with an
associated eigenvector x having positive entries. Con-
vergence theory for the power method then shows that
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Figure 3 Close-up of part of a metal sign with a hot spot from a reflection. (a) Original image showing source and target
regions. (b) The result of copying source to target. (c) The result of one application of Photoshop healing brush with same
target area. In practice, multiple applications of the healing brush would be used with smaller, overlapping target areas.

between different computers and an improved abil-
ity for mathematicians to understand the way algo-
rithms will behave when implemented in floating-point
arithmetic.

In IEEE double-precision arithmetic, numbers are rep-
resented to a precision equivalent to about sixteen
significant decimal digits. In many situations in life,
results are needed to far fewer figures and a final result
must be rounded. For example, a conversion from euros
to dollars producing an answer $110.89613 might be
rounded up to $110.90: the nearest amount in whole
cents. A bank paying the dollars into a customer’s
account might prefer to round down to $110.89 and
keep the remainder. However, deciding on the rules
for rounding was not so simple when the euro was
founded in 1997. A twenty-nine-page document was
needed to specify precisely how conversions among
the fifteen currencies of the member states and the
euro should be done. Its pronouncements included
how many significant figures each individual conver-
sion rate should have (six was the number that was cho-
sen), how rounding should be done (round to the near-
est six-digit number), and how ties should be handled
(always round up).

Even when rounding should be straightforward it
is often carried out incorrectly. In 1982 the Van-
couver Stock Exchange established an index with an
initial value of 1000. After twenty-two months the
index had been hitting lows in the 520s, despite the
exchange apparently performing well. The index was
recorded to three decimal places and it was discov-
ered that the computer program calculating the index
always rounded down, hence always underestimating
the index. Upon recalculation (presumably with round
to nearest) the index almost doubled.

In 2006 athlete Justin Gatlin was credited with a
new world record of 9.76 seconds for the 100 meters.
Almost a week after the race the time was changed to
9.77 seconds, meaning that he had merely equaled the
existing record held by Asafa Powell. The reason for the

change was that his recorded time of 9.766 had incor-
rectly been rounded down to the nearest hundredth of
a second instead of up as the International Association
of Athletics Federations rules require.

4 What Do Applied Mathematicians Do?

Applied mathematicians can work in academia, indus-
try, or government research laboratories. Their work
may involve research, teaching, and (especially for
more senior mathematicians) administrative tasks such
as managing teams of people. They usually spend only
part of their time doing mathematics in the traditional
sense of sitting with pen and paper scribbling formu-
las on paper and trying to solve equations or prove
theorems. Under the general heading of research, a lot
of time is spent writing papers, books, grant propos-
als, reports, lecture notes, and talks; attending semi-
nars, conferences, and workshops; writing and running
computer programs; reading papers in the research lit-
erature; refereeing papers submitted to journals and
grant proposals submitted to funding bodies; and com-
menting on draft papers and theses written by Ph.D.
students.

Mathematics can be a lonely endeavor: one may be
working on different problems from one’s colleagues or
may be the only mathematician in a company. Although
some applied mathematicians prefer to work alone,
many collaborate with others, often in faraway coun-
tries. Collaborations are frequently initiated through
discussions at conferences, though sometimes papers
are coauthored by people who have never met, thanks
to the ease of email communication.

Applied mathematics societies provide an impor-
tant source of identity and connectivity, as well as
opportunities for networking and professional devel-
opment. They mostly focus on particular countries or
regions, an exception being the Society for Industrial
and Applied Mathematics (SIAM), based in Philadelphia.
SIAM is the largest applied mathematics organization



in the world and has a strong international outlook,
with about one-third of its members residing outside
the United States. A mathematician’s activities are fre-
quently connected with societies, whether it be through
publishing in or editing their journals, attending their
conferences, or keeping up with news through their
magazines and newsletters. Most societies offer greatly
reduced membership fees (sometimes free member-
ship) for students.

Applied mathematicians can be part of multidisci-
plinary teams. Their skills in problem solving, thinking
logically, modeling, and programming are sought after
in other subjects, such as medical imaging, weather
prediction, and financial engineering.

In the business world, applied mathematics can be
invisible because it is called “analytics,” “modeling,” or
simply generic “research.” But whatever their job title,
applied mathematicians play a crucial role in today’s
knowledge-based economy.

5 What Is the Impact of Applied Mathematics?

The impact of applied mathematics is illustrated in
many articles in this volume, and in this section we pro-
vide just a brief overview, concentrating on the impact
outside mathematics itself.

Applied mathematics provides the tools and algo-
rithms to enable understanding and predictive model-
ing of many aspects of our planet, including WEATHER
[V.18] (for which the accuracy of forecasts has im-
proved greatly in recent decades), ATMOSPHERE AND
THE OCEANS [IV.30], TSUNAMIS [V.19], and SEA ICE
[V.17]. In many cases the models are used to inform
policy makers.

At least two mathematical algorithms are used by
most of us almost every day. The FAST FOURIER TRANS-
FORM [II.10] is found in any device that carries out sig-
nal processing, such as a smartphone. Photos that we
take on our cameras or view on a computer screen are
usually stored using JPEG COMPRESSION [VIL.7 §5].

X-ray tomography devices, ranging from AIRPORT
LUGGAGE SCANNERS [VIL.19] to HUMAN BODY SCANNERS
[VIL.9], rely on the fast and accurate solution of INVERSE
PROBLEMS [IV.15], which are problems in which we need
to recover information about the internals of a system
from (noisy) measurements taken outside the system.

Investments are routinely made on the basis of math-
ematical models, whether for individual options or col-
lections of assets (portfolios): see FINANCIAL MATHE-
MATICS [V.9] and PORTFOLIO THEORY [V.10].
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The clever use of mathematical modeling offers a
competitive advantage in sports, such as YACHT RAC-
ING [V.2], SWIMMING [V.2], and FORMULA ONE RACING
[V.3], where small improvements can be the difference
between success and failure.

1.2 The Language of Applied
Mathematics
Nicholas J. Higham

This article provides background on the notation, ter-
minology, and basic results and concepts of applied
mathematics. It therefore serves as a foundation for the
later articles, many of which cross-reference it.

In view of the limited space, the material has been
restricted to that common to many areas of applied
mathematics. A number of later articles provide their
own careful introduction to the language of their par-
ticular topic.

1 Notation

Table 1 lists the Greek alphabet, which is widely used
to denote mathematical variables. Note that almost
always 6 and ¢ are used to denote small quantities, and
1T is used as a variable as well as for T = 3.14159....

Mathematics has a wealth of notation to express com-
monly occurring concepts. But notation is both a bless-
ing and a curse. Used carefully, it can make mathe-
matical arguments easier to read and understand. If
overused it can have the opposite effect, and often
it is better to express a statement in words than in
symbols (see MATHEMATICAL WRITING [VIII.1]). Table 2
gives some notation that is common in informal con-
texts such as lectures and is occasionally encountered
in this book. Table 3 summarizes basic notation used
throughout the book.

2 Complex Numbers

Most applied mathematics takes place in the set of com-
plex numbers, C, or the set of real numbers, R. A com-
plex number z = x + iy has real and imaginary parts
x = Rez and ¥ = Imz belonging to R, and the imag-
inary unit i denotes +/—1. The imaginary unit is some-
times written as j, e.g., in electrical engineering and in
the programming language PYTHON [VIL11].

We can represent complex numbers geometrically in
the complex plane, in which a complex number a + ib
is represented by the point with coordinates (a,b)
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Table 1 The Greek alphabet. Where an uppercase Greek
letter is the same as the Latin letter it is not shown.

o alpha v nu
B beta L 4 xi
y, T gamma 0 omicron
5, A delta m,w, [l pi
€& epsilon p, 0 rho
C zeta 0,6, % sigma
n eta T tau
0,9%,0 theta v, Y upsilon
L iota ¢, @, ¢ phi
K kappa X chi
AA lambda y, ¥ psi
u mu w, 2 omega
Table 2 Other notation.
> Implies 3 There exists
< Implied by A There does not exist
< If and only if V  Forall
)}
b a+ib

0 a X

Figure 1 Complex plane with z = a +ib = rel?,

(see figure 1). The corresponding diagram is called the
Argand diagram. Important roles are played by the
right half-plane {z: Rez > 0} and the left half-plane
{z: Rez < 0}. If we exclude the pure imaginary num-
bers (Imz = 0) from these sets we obtain the open
half-planes. Euler’s formula, el = cosO +isin®, is
fundamental.

The polar form of a complex number is z = rei?,
where ¥ > 0 and the argument arg z = 0 are real, and
0 can be restricted to any interval of length 21, such as
[0, 27) or (-1, 1]. The complex conjugate of z = x +iy
is Z = x — iy, sometimes written z*. The modulus, or
absolute value, |z| = (22)1/2 = (x2 + y2)1/2 = r.

Figure 2 Spherical coordinates.

Complex arithmetic is defined in terms of real arith-
metic according to the following rules, for z; = x) +iy;
and z2 = x2 +iy2:

Z1+2zp =x1 X2 +1(1 £2),

2122 = X1X2 — Y12 +i(x1)2 + xX21),
21 _Xixe+1y2 X2yl — X1)2
2 X3+¥3 X3 + 3

+

In polar form multiplication and division become nota-
tionally simpler: if z; = 1re'® and z; = 12e!% then
212 = N1el@1+0) and z, /2y = (1 /12)el@1-02)

3 Coordinate Systems

We are used to specifying a point in two dimensions by
its x- and y-coordinates, and a point in three dimen-
sions by its x-, y-, and z-coordinates. These are called
Cartesian coordinates. In two dimensions we can also
use polar coordinates, which are as described in the pre-
vious section if we identify (x, v) with x +iy. Spherical
coordinates, illustrated in figure 2, are an extension of
polar coordinates to three dimensions. Here, (x,y, z)
is represented by (7, 0, ¢), where

x =rsinOcos¢, y=rsinOsing, z=1rcoso,

with nonnegative radius » and angles 0 and ¢ in the
ranges 0 < @ < mmand 0 < ¢ < 2m.

Cylindrical coordinates provide another three-dimen-
sional coordinate system. Here, polar coordinates are
used in the xy-plane and z is retained, so (x,y,z) is
represented by (v, 0, z).
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Table 3 Notation frequently used in this book.
Notation Meaning Example
R,C The real numbers, the complex numbers
R7, RMxn The real n-vectors and real m x n matrices; similarly for C" and C™*"
Rez,Imz Real and imaginary parts of the complex number z
Z,N The integers, {0, =1, +2,...}, and the positive integers, {1,2,...}
i=12,...,n The integer variable i takes on the values 1, 2, 3, and so on, up to n;
alsowritten 1l <i<nandi=1:n
= Approximately equal; also written = m=3.14
€ Belongs to xeRneZ
= Identically equal to f = 0 means that f is the zero function, that is,
f is zero for all values, not just some values, of its argument(s)
n! Factorial, n! =n(n-1)---1
i Tends to, or converges to n-— o
> Summation Z:f:l Xi=X] +X2+ X3
IT Product l'[,3=, Xi = X1X2X3
<, > Much less than, much greater than n>»10<ex1
6ij Kronecker delta: §;; = 1if i = jand §;; = 0if i # j

[a,b], (a,b), [a,b)

The closed interval {x: a < x < b}, the open interval {x: a < x < b},
and the half-closed, half-open interval {x: a < x < b}

f:P-Q The function f maps the set P to the set Q, that is, x € P implies
fix)eq
WA A Al First, second, third, and kth derivatives of the function f
i f First and second derivatives of the function f
Cla,b) Real-valued continuous functions on [a, b] fecCla,b]
C¥la,b] Real-valued functions with continuous derivatives of order 0,1,...,k  f € C?[a,b]
on [a,b]
L%[a,b] The functions f: R — R such that the Lebesgue integral f‘ff(x)2 dx
exists
Composition of functions: (f o g)(x) = f(g(x)) ¥’ = eX o x?

fo

I ©Q

=, =2 Definition of a variable or function, to distinguish from mathematical

equality

Y =1+yt=:f(y)

4 Functions

A function f is a rule that assigns for each value of x
a unique value f(x). It can be thought of as a black
box that takes an input x and produces an output y =
f(x). A function is sometimes called a mapping. If we
write ¥ = f(x) then y is the dependent variable and
x is the independent variable, also called the argument
of f.

For some functions there is not a unique value of
f(x) for a given x, and these multivalued functions are
not true functions unless restrictions are imposed. For
example, consider y = log x, which in general denotes
any solution of the equation e” = x. There are infinitely
many solutions, which can be written as y = yg + 2mik
for k € Z, where yy is the principal logarithm, defined

as the logarithm whose imaginary part lies in (-1, ].
The principal logarithm is often the one that is needed
in practice and is usually the one computed by soft-
ware. Multivalued functions of a complex variable can
be elegantly handled using RIEMANN SURFACES [IV.1 §2]
and BRANCH CUTS [IV.1 §2].

A function is linear if the independent variable
appears only to the first power. Thus the function
f(x) = ax + b, where a and b are constants, is lin-
ear in x. In some contexts, e.g., in convex optimization,
ax + b is called an affine function and the term linear is
reserved for f(x) = ax, for which f(tx) = tf(x) for
all t.

A function f is odd if f(x) = —f(—x) for all x and
it is even if f(x) = f(—x) for all x. For example, the
sine function is odd, whereas x2 and |x| are even.
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It is worth noting the distinction between the func-
tion f and its value f(x) at a particular point x. Some-
times this distinction is blurred; for example, one might
write “the function f(u,v),” in order to emphasize the
symbols being used for the independent variables.

Functions with more than one independent variable
are called multivariate functions. For ease of notation
the independent variables can be collected into a vec-
tor. For example, the multivariate function f(u,v) =
cosusinv can be written f(x) = cos x) sin x>, where
x = [x1,x2]T.

5 Limits and Continuity

The notion of a function converging to a limit as its
argument approaches a certain value seems intuitively
obvious. For example, the statement that x2 — 4 as
x — 2, where the symbol “—” means tends to or con-
verges to, is clearly true, as can be seen by consider-
ing the graph of x2. However, we need to make the
notion of convergence precise because a large number
of definitions are built on it.

Let f be areal function of a real variable. We say that
f(x) — £ as x — a, and we write limy_, f(x) = £, if
forevery € > O thereisad > Osuchthat0 < |x—al| <o
implies | f(x) — ¢| < &. In other words, by choosing x
close enough to a, f(x) can be made as close as desired
to £. Showing that the definition holds in a particular
case boils down to determining 6 as a function of &.

It is implicit in this definition that £ is finite. We say
that f(x) — « as x — a if for every p > 0 there is a
6 > 0 such that |x — a| < 6 implies f(x) > p.

In practice, mathematicians rarely prove existence of
a limit by exhibiting the appropriate 6 = (&) in these
definitions. For example, one would argue that tanx —
c as x — 1/2 because sinx — 1 and cosx — 0 as
x — /2. However, the definition might be used if f
is an implicitly defined function whose behavior is not
well understood.

We can also define one-sided limits, in which the lim-
iting value of x is approached from the right or the
left. For the right-sided limit limy_ 4+ f(x) = ¢, the def-
inition of limit is modified so that 0 < |x —a| < &
is replaced by a < x < a + 6, and the left-sided
limit limy_,- f(x) is defined analogously. The stan-
dard limit exists if and only if the right- and left-sided
limits exist and are equal.

The function f is continuous at x = a if f(a) exists
and limy ., f(x) = f(a).
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The definitions of limit and continuity apply equally
well to functions of a complex variable. Here, the con-
dition |x — a| < ¢ places x in a disk of radius less than
d in the complex plane instead of an open interval on
the real axis.

The function f is continuous on [a, b] if it is contin-
uous at every point in that interval. A more restricted
form of continuity is Lipschitz continuity. The function
f is Lipschitz continuous on |[a, b] if

[f(x) = f)<Llx -yl

for some constant L, which is called the Lipschitz con-
stant. This definition, which is quantitative as opposed
to the purely qualitative usual definition of continu-
ity, is useful in many settings in applied mathemat-
ics. A function may, however, be continuous without
being Lipschitz continuous, as f(x) = x!/2 on [0,1]
illustrates.

A sequence ai,az,as,... of real or complex num-
bers, written {a,}, has limit ¢ if for every ¢ > 0
there is a positive integer N such that |a, — ¢| < ¢
for all n > N. We write ¢ = lim, . an. An infinite
series Y-, a; converges if the sequence of partial sums
>, a; converges.

for all x,y € [a,b]

6 Bounds

In applied mathematics we are often concerned with
deriving bounds for quantities of interest. For example,
we might wish to find a constant u such that f(x) <u
for all x on a given interval. Such a u, if it exists, is
called an upper bound. Similarly, a lower bound is a con-
stant £ such that f(x) > £ for all x on the interval. Of
particular interest is the least upper bound, also called
the supremum or sup, which is the smallest possible
upper bound. The supremum might not actually be
attained, as illustrated by the function f(x) = x/(1+x)
on [0, o), which has supremum 1. The infimum, or inf,
is the greatest possible lower bound.

A function that has an upper (or lower) bound is said
to be bounded above (or bounded below). If the func-
tion is bounded both above and below it is said to be
bounded. A function that is not bounded is unbounded.

Determining whether a certain function, perhaps a
function of several variables or one defined in a FUNC-
TION SPACE [I.15], is bounded can be nontrivial and it is
often a crucial step in proving the convergence of a pro-
cess or determining the quality of an approximation.

Physical considerations sometimes imply that a func-
tion is bounded. For example, a function that repre-
sents energy must be nonnegative.
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conditions can usually be derived if necessary. Some-
times, when deriving or using results, it is not possible
to check smoothness conditions and one simply car-
ries on anyway (“making compromises,” as mentioned
in the quote by Courant on page 1). It may be possible
to verify by other means that an answer obtained in a
nonrigorous way is valid.

For a function f(x,y) of two variables, partial
derivatives with respect to each of the two variables are
defined by holding one variable constant and varying
the other:

fix+é&y) - f(x,y)

—— =lim
0 £~0 £
of Loy +e-flxy)
0y &0 3
Higher derivatives are defined recursively. For example,
2f . Lix+ey)-Lix,y
5 = lim ’
0x2  &-0 £
2f . Lix,y+re-Lixy)
= lim ,
0x0y &0 £
2f HFxrey-Loy
= lim .
0yox -0 £
Common abbreviations are fy = 0f/0x, fxy =

0°f1(0xdy), fyy = 9°f/3y?, and so on. As long as
they are continuous the two mixed second-order partial
derivatives are equal: fxy = fyx.

For a function of n variables, F: R" — R, a Taylor
series takes the form, for x,a € R",

F(x) = F(a) + VF(a)"(x —a)
+3(x—a)VF@) (x —a) + -,

where VF(x) = (0F/dx;) € R" is the gradient vector
and V2F(x) = (3°F/(dxi0x;)) € R™™ is the symmet-
ric Hessian matrix, with x ; denoting the jth component
of the vector x. The symbol V is called nabla. Stationary
points of F are zeros of the gradient and their nature
(maximum, minimum, or saddle point) is determined
by the eigenvalues of the Hessian (see CONTINUOUS
OPTIMIZATION [IV.11 §2]).

Now we return to functions of a single (real) vari-
able. The indefinite integral of f(x) is [ f(x)dx, while
integrating between limits a and b gives the definite
integral j,f f(x) dx. The definite integral can be inter-
preted as the area under the curve f(x) between a
and b. The inverse of differentiation is integration, as
shown by the fundamental theorem of calculus, which
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states that, if f is continuous on [a, b], then the func-
tion g(x) = L’f f(t)dt is differentiable on (a,b) and
g’ (x) = f(x). Generalizations of the fundamental the-
orem of calculus to functions of more than one variable
are given in section 24.

For functions of two or more variables there are
other kinds of integrals. When there are two variables,
x and y, we can integrate over regions in the xy-
plane (double integrals) or along curves in the plane
(line integrals). For functions of three variables, x, v,
and z, there are more possibilities. We can integrate
over volumes (triple integrals) or over surfaces or along
curves within xyz-space. As the number of variables
increases, so does the number of different kinds of inte-
grals. Multidimensional calculus shows how these dif-
ferent integrals can be calculated, used, and related.
The number of variables can be very large (e.g., in math-
ematical finance) and the CURSE OF DIMENSIONALITY
[I.3 §2] poses major challenges for numerical evalua-
tion. Numerical integration in more than one dimen-
sion is an active area of research, and Monte Carlo
methods and quasi-Monte Carlo methods are among
the methods in use.

The product rule gives a formula for the derivative of
a product of two functions:

%f(X)g(x) = f'(x)g(x) + f(x)g (x).

Integrating this equation gives the rule for integration
by parts:

Jf(x)g'(x)dx = f(x)g(x) - J'f'(x)g(x)dx.

In many problems functions are composed: the argu-
ment of a function is another function. Consider the
example f(x) = g(h(x)). We would hope to be able to
determine the derivative of f in terms of the deriva-
tives of g and h. The chain rule provides the necessary
formula: f'(x) = h'(x)g’ (h(x)). An equivalent formu-
lation is that, if f is a function of u, which is itself a
function of x, then

df _dfdu

dx  dudx’
For example, if f(x) = sinx? then with f(x) = sinu
and u = x? we have df/dx = 2x cos x2.

10 Ordinary Differential Equations

A differential equation is an equation containing one or
more derivatives of an unknown function. It provides a
relation among a function, its rate of change, and (pos-
sibly) higher-order rates of change. The independent
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variable usually represents a spatial coordinate (x) or
time (t). The differential equation may be accompanied
by additional information about the function, called
boundary conditions or initial conditions, that serve to
uniquely determine the solution. A solution to a differ-
ential equation is a function that satisfies the equation
for all values of the independent variables (perhaps in
some region) and also satisfies the required boundary
conditions or initial conditions. A differential equation
can express a law of motion, a conservation law, or con-
centrations of constituents of a chemical reaction, for
example.

Ordinary differential equations (ODEs) contain just
one independent variable. The simplest nontrivial ODE
isdy/dt = ay, where y = y(t) is a function of t. This
equation is linear in v and it is first order because only
the first derivative of y appears. The general solution
is y(t) = ce, where ¢ is an arbitrary constant. To
determine ¢, some value of y must be supplied, say
v(0) = ¥, whence ¢ = yy.

A general first-order ODE has the form v’ = f(t,y)
for some function f of two variables. The initial-value
problem supplies an initial condition and asks for y at
later times:

y' =ft,y), a<t<b, y(a)=ya.
A specific example is the Riccati equation
Y =tt+y% 0<t<l, ¥(0)=0,

which is nonlinear because of the appearance of y2.
For an example of a second-order ODE initial-value
problem, that is, one involving y"’, consider a mass m
attached to a vertical spring and to a damper, as shown
in figure 7. Let y = y(t) denote how much the spring
is stretched from its natural length at time t. Balancing
forces using Newton’s second law (force equals mass
times acceleration) and HOOKE'S LAW [III.15] gives

my"” =mg-ky -cy’,
where k is the spring constant, ¢ is the damping con-
stant, and g is the gravitational constant. With pre-
scribed values for y(0) and y’(0) this is an initial-
value problem. More generally, the spring might also

be subjected to an external force f(t), in which case
the equation of motion becomes

my" +cy +ky =mg+ f(t).

Second-order ODEs also arise in electrical networks.
Consider the flow of electric current I(t) in a simple
RLC circuit composed of an inductor with inductance
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Figure 7 A spring system with damping.

VSTC) —

L

Figure 8 A simple RLC electric circuit.

L, a resistor with resistance R, a capacitor with capac-
itance C, and a source with voltage vs, as illustrated
in figure 8. The Kirchhoff voltage law states that the
sum of the voltage drops around the circuit equals the
input voltage, vs. The voltage drops across the resis-
tor, inductor, and capacitor are RI, LdI/dt, and Q/C,
respectively, where Q (t) is the charge on the capacitor,
SO

L% + RI + % = vs(t).
Since I = dQ/dt, this equation can be rewritten as the
second-order ODE

2

L%T? + R‘(ij—? + éQ = vs(t).

The unknown function y may have more than one
component, as illustrated by the predator-prey model
derived by Lotka and Volterra in the 1920s. In a pop-
ulation of rabbits (the prey) and foxes (the predators)
let v (t) be the number of rabbits at time t and f(t) the
number of foxes at time t. The model is

dr
E:r—arf, r(0) = 7o,
‘:l—{=—f+¢xrf, f0) = fo.

The »f term represents an interaction between the
foxes and the rabbits (a fox eating a rabbit) and the
parameter « > 0 controls the amount of interaction.
For o« = 0 there is no interaction and the solution is
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r(t) = rpel, f(t) = foe t: the foxes die from starva-
tion and the rabbits go forth and multiply, unhindered.
The aim is to investigate the behavior of the solutions
for various parameters « and starting populations 7y
and fp.

As we have described it, the predator-prey model has
the apparent contradiction that » and f are integers by
definition yet the solutions to the differential equation
are real-valued. The way around this is to assume that
v and f are large enough for the error in representing
them by continuous variables to be small.

A boundary-value problem specifies the function at
more than one value of the independent variable, as in
the two-point boundary-value problem

y”=f(t-.)’yy/). a<t<ba y(a)=ya|y(h)=yb-
An example is the Thomas-Fermi equation
yu — t~1/2y3/2, _y(O) — 1‘

which arises in a semiclassical description of the charge
density in atoms of high atomic number. Another exam-
ple, this time of third order, is the BLASIUS EQUATION
[IV.28 §7.2]

29" +yy” =0, y(0)=y'(0)=0, y'(x)=1,

which describes the boundary layer in a fluid flow.
A special type of ODE boundary-value problem is the
Sturm-Liouville problem

y(o0) =0,

—(p(x)y (x)) +a(x)y(x) =Ar(x)y(x),
x € [a,b], y(a)=y(b)=0.

This is an eigenvalue problem, meaning that the aim
is to determine values of the parameter A for which
the boundary-value problem has a solution that is not
identically zero.

11 Partial Differential Equations

Many important physical processes are modeled by par-
tial differential equations (PDEs): differential equations
containing more than one independent variable. We
summarize a few key equations and basic concepts.
We write the equations in forms where the unknown u
has two space dimensions, u = u(x,y), or one space
dimension and one time dimension, u = u(x,t). Where
possible, the equations are given in parameter-free
form, a form that is obtained by the process of NON-
DIMENSIONALIZATION [IL9]. Recall the abbreviations
Ur = 0U/dt, Uxy = 0°U/3X>, etc.

LAPLACE’S EQUATION [II1.18] is

Uxx + Uyy = 0.
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The left-hand side of the equation is the Laplacian of
u, written Au. This equation is encountered in electro-
statics (for example), where u is the potential function.
The equation Au = f, for a given function f(x,y), is
known as Poisson’s equation.

To define a problem with a unique solution it is nec-
essary to augment the PDE with conditions on the solu-
tion: either boundary conditions for static problems
or, for time-dependent problems, initial conditions. In
the former class there are three main types of bound-
ary conditions, with the problem being to determine u
inside the boundary of a closed region.

e Dirichlet conditions, in which the function u is
specified on the boundary.

o Neumann conditions, where the inner product (see
section 19.1) of the gradient

Vu = [0u/dx,0u/oy]T

with the normal to the boundary is specified.
e Cauchy conditions, which comprise a combination
of Dirichlet and Neumann conditions.

For time-dependent problems, which are known as evo-
lution problems and represent equations of motion,
initial conditions at the starting time, usually taken to
be t = 0, are needed, the number of initial conditions
depending on the highest order of time derivative in
the PDE.

The WAVE EQUATION [II1.31] is

Ut = Uxx-

It describes linear, nondispersive propagation of a
wave, represented by the wave function u, e.g., a vibrat-
ing string. Two initial conditions, prescribing u(x,0)
and u;(x,0), for example, are needed to determine u.
The HEAT EQUATION [IIL.8] (diffusion equation) is

U = Uxx, (2)

which describes the diffusion of heat in a solid or the
spread of a disease in a population. An initial condition
prescribing u at t = 0 is usual. When a term f(x,t,u)
is added to the right-hand side of (2) the equation
becomes a reaction-diffusion equation.

The advection-diffusion equation is

Ut + VUx = Uxx,

where v is a given function of x and t. Again, u is usu-
ally given at t = 0. For v = 0 this is just the heat equa-
tion. This PDE models the convection (or transport) of
a quantity such as a pollutant in the atmosphere.
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The general linear second-order PDE
Auxx + 2buxe + cup = fOx, L, ux,u) - (3)

is classified into different types according to the (con-
stant) coefficients of the second derivatives. Let d =
ac — b2, which is the determinant of the symmetric
matrix [§2].

e If d > O the PDE is elliptic. These PDEs, of which
the Laplace equation is a particular case, are asso-
ciated with equilibrium or steady-state processes.
The independent variables are denoted by x and
7y instead of x and t.

e If d = 0 the PDE is parabolic. This is an evolution
problem governing a diffusion process. The heat
equation is an example.

o If d < 0 the PDE is hyperbolic. This is an evolution
problem, governing wave propagation. The wave
equation is an example.

Some elliptic PDEs and parabolic PDEs have maxi-
mum principles, which say that the solution must take
on its maximum value on the boundary of the domain
over which it is defined.

In (3) we took a, b, and ¢ to be constants, but they
may also be specified as functions of x and t, in which
case the nature of the PDE can change as x and t vary
in the domain. For example, the TRICOMI EQUATION
[II1.30]

Uxx + XUyy =0

is hyperbolic for x < 0, elliptic for x > 0, and parabolic
for x = 0.

The PDEs stated so far are all linear. Nonlinear PDEs,
in which the unknown function appears nonlinearly,
are of great practical importance. Examples are the
KORTEWEG-DE VRIES EQUATION [II1.16]

Ut + UUyx + Uxxx = 0,
the CAHN-HILLIARD EQUATION [IIL.5]
ur = Al—u +u? + £2Au),
and Fisher’s equation
U = Uxx + Ul —u),

a reaction-diffusion equation that describes PATTERN
FORMATION [IV.27] and the propagation of genes in a
population.

PDEs also occur in the form of eigenvalue prob-
lems. A famous example is the eigenvalue problem
corresponding to the Laplace equation:

Au+Au =0
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on a membrane 2, with boundary conditions that u
vanishes on the boundary of Q. A nonzero solution
u is called an eigenfunction and A is the correspond-
ing eigenvalue. In a 1966 paper titled “Can one hear
the shape of a drum?” Mark Kac asked the question of
whether one can determine Q2 given all the eigenvalues.
In other words, do the frequencies at which a drum
vibrates uniquely determine its shape? It was shown
in a 1992 paper by Gordon, Webb, and Wolpert that the
answer is no in general.

Higher-order PDEs also arise. For example, fluid
dynamics problems involving surface tension forces
are generally modeled by PDEs in space and time with
fourth-order derivatives in space. The same is true of
the Euler-Bernoulli equation for a beam, which has the
form ) .

aatlzl + EIZT'j = fx,b),
where u(x,t) is the vertical displacement of the beam
at time t and position x along the beam, p is the density
of the beam, A its cross-sectional area, E is Young's
modulus, I is the second moment of inertia, and f(x, t)
is an applied force.

pPA

12 Other Types of Differential Equations

Delay differential equations are differential equations
in which the derivative of the unknown function y at
time ¢ (in general, a vector function) depends on past
values of y and/or its derivatives. For example, ¥’ (t) =
Ay(t — 1) is a delay differential equation analogue of
the familiar y’(t) = Ay(t). Looking for a solution of
the form y(t) = e%! leads to the equation we¥ = A,
whose solutions are given by the LAMBERT W FUNCTION
[IL.17].

INTEGRAL EQUATIONS [IV.4] contain the unknown
function inside an integral. Examples are Fredholm
equations, which are of the form either

1
[ k& fody =g,

where K and g are given and the task is to find f, or

1
A L K(x, ) f(7) dy + g(x) = f(x),

where A is an eigenvalue and again f is unknown. These
two types of equations are analogous to a matrix lin-
ear system Kf = g and an eigenvalue problem (I —
AK)f = g, respectively. Integro-differential equations
involve both integrals and derivatives (see, for example,
MODELING A PREGNANCY TESTING KIT [VIL.18 §2]).



18

Fractional differential equations contain fractional
derivatives. For example, (d/dx)!/? is defined to be an
operator such that applying (d/dx)!/2 twice in succes-
sion to a function f(x) is the same as differentiating it
once (that is, applying d/dx).

Differential-algebraic equations (DAEs) are systems
of equations that contain both differential and alge-
braic equations. For example, the DAE

x" = -2Ax,
¥y =-2)y -g,
x24y?=1?

describes the coordinates of an infinitesimal ball of
mass 1 at the end of a pendulum of length L, where
g is the gravitational constant and A is the tension in
the rod. DAEs often arise in the form My’ = f(t,y),
where the matrix M is singular.

13 Recurrence Relations

Recurrence relations are the discrete counterpart of
differential equations. They define a sequence xg, x1,
X2,... recursively, by specifying x, in terms of ear-
lier terms in the sequence. Such equations are also
called difference equations, as they arise when deriva-
tives in differential equations are replaced by FINITE
DIFFERENCES [IL.11].

A famous recurrence is the three-term recurrence
that defines the Fibonacci numbers:

fnzfn—l+fn—2, f0=f1=1-

This recurrence has the explicit solution f, = (¢™ —
(—=¢p)~")//5, where ¢ = (1 + /5)/2 is the golden
ratio. An example of a two-term recurrence is f(n) =
nf(n — 1), with f(0) = 1, which defines the factorial
function f(n) = n!. Both the examples so far are linear
recurrences, but in some recurrences the earlier terms
appear nonlinearly, as in the LOGISTIC RECURRENCE
[ML19] X1 = pxp (1 = xp).

Although one can evaluate the terms in a recur-
rence one often needs an explicit formula for the gen-
eral solution of the recurrence. Recurrence relations
have a theory analogous to that of differential equa-
tions, though it is much less frequently encountered in
courses and textbooks than it was fifty years ago.

The elements in a recurrence can be functions as well
as numbers. Most transcendental functions that carry
subscripts satisfy a recurrence. For example, the BESSEL
FUNCTION [II1.2] J,,(x) of order n satisfies the three-
term recurrence

a1 (x) = Z?n.]n(x) T (%)

n=2,
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An important source of three-term recurrences is
ORTHOGONAL POLYNOMIALS [I1.29].

14 Polynomials

Polynomials are one of the simplest and most familiar
classes of functions and they find wide use in applied
mathematics. A degree-n polynomial

pn(x)=ap+a;x+---+apx"

is defined by its n + 1 coefficients ao, ...,an € C (with
an # 0). Addition of two polynomials is carried out by
adding the corresponding coefficients. Thus, if g, (x) =
by + b1x + + -+ + byx™ then py(x) + gn(x) = ap +
by + (a1 + b1)x + - - - + (an + by)x". Multiplication is
carried out by expanding the product term by term and
collecting like powers of x:

Pn(X)dn(x) = aobo + (aoby + a1bo)x + - - -
+ (agbn + a1bn-1 + - - - + anbo)x".

The coefficient of x", X" yaibn_i, is the convolu-
tion of the vectors a = [ag,ai,...,an]’ and b =
[bo, by, ..., by]". Polynomial division is also possible.
Dividing p» by @m with m < n results in

Pn(x) = qm(x)g(x) +r(x), (4)

where the quotient g and remainder » are polynomials
and the degree of v is less than that of gm.

The fundamental theorem of algebra says that a
degree-n polynomial p, has a root in C; that is, there
exists z; € C such that py(z1) = 0. If we take g (x) =
X —z; in (4) then we have p, (x) = (x—2z1)g(x) +7r(x),
where degr < 1, so r is a constant. But setting x = z;
we see that 0 = py(z1) = 71,50 pu(x) = (x — 21)g(x)
and g clearly has degree n — 1. Repeating this argu-
ment inductively on g, we end up with a factorization
pn(x) = (x — z1)(x — z2) - - - (x — zp), which shows
that p, has n roots in C (not necessarily distinct). If
the coefficients of p,, are real it does not follow that the
roots are real, and indeed there may be no real roots at
all, as the polynomial x2 + 1 shows; however, nonreal
roots must occur in complex conjugate pairs x; +iy;.

Three basic problems associated with polynomials
are as follows.

Evaluation: given the polynomial (specified by its coef-
ficients), find its value at a given point. A standard
way of doing this is HORNER’S METHOD [L.4 §6].

Interpolation: given the values of a degree-n polyno-
mial at a set of n + 1 distinct points, find its coeffi-
cients. This can be done by various INTERPOLATION
SCHEMES [L1.3 §3.1].
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cij = aij + bjj for all i and j. Multiplication by a scalar
is defined in the natural way, so C = xA means that
cij = «aij for all i and j. However, matrix multiplica-
tion is not defined element-wise. If A is m x v and B is
¥ X n then the product C = AB is m x n and is defined
by
r
Cij = z aikby;j.
k=1
This formula can be obtained as follows. Write B =
[b',b?,...,b"], where b/ is the jth column of B; this
is a partitioning of B into its columns. Then AB =
A[b',b?%,...,b"] = [Ab' Ab?,...,Ab™], where each
AbJ is a matrix-vector product. Matrix-vector products
Ax with x an » X 1 vector are in turn defined by
X1
X2

Ax =[a',a?,...,a"] =xia' +x2a%+- - -+xra”,

Xr
so that Ax is a linear combination of the columns of A.

Matrix multiplication is not commutative: AB # BA
in general, as is easily checked for 2 x 2 matrices. In
some contexts the commutator (or Lie bracket) [A,B] =
AB — BA plays a role.

A linear system Ax = b expresses the vector b as
a linear combination of the columns of A. When A is
square and of dimension n, this system provides n lin-
ear equations for the n components of x. The system
has a unique solution when A is nonsingular, that is,
when A has an inverse. An inverse of a square matrix
A is a matrix A~! such that AA~! = A=A = I, where
I is the identity matrix, which has ones on the diago-
nal and zeros everywhere else. We can write I = (§;;),
where 6;; is the Kronecker delta defined in table 3. The
inverse is unique when it exists. If A is nonsingular then
x = A~1b is the solution to Ax = b. While this formula
is useful mathematically, in practice one almost never
solves a linear system by inverting A and then multiply-
ing the right-hand side by the inverse. Instead, GAUSS-
IAN ELIMINATION [IV.10 §2] with some form of pivoting
is used.

Transposition turns an m xn matrix into an nxm one
by interchanging the rows and columns: C = AT
cij = aj; for all i and j. Conjugate transposition also
conjugates the elements: C = A* < ¢;j = aj; for all
i and j. The conjugate transpose of a product satisfies
a useful reverse-order law: (AB)* = B*A*.

Matrices can have a variety of different structures
that can be exploited both in theory and in computa-
tion. A matrix A € R"*" is upper triangular if a;; = 0
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fori > j, lower triangular if A" is upper triangular, and
diagonal if a;j = 0 for i # j. For n = 3, such matrices
have the forms

X X X x 0 0 d 0 0
0 x x|, x x 0f, 0 d» Of,
0 0 x X X X 0 0 dj

respectively, where x denotes a possibly nonzero entry;
the third matrix is abbreviated diag(d,,d>,d3). The
matrix A € R™" is symmetric if AT = A, while
A € C"™" is Hermitian if A* = A. If in addition
the quadratic form xTAx (or x*Ax) is always pos-
itive for nonzero vectors in R"™ (or C"), then A is
positive-definite. The term self-adjoint is sometimes
used instead of symmetric or Hermitian. Also funda-
mental is the notion of orthogonality: A € R" " is
orthogonal if ATA = I, and A € C"" is unitary if
A*A = I. These properties mean that the inverse of
A is its (conjugate) transpose, but deeper properties
of unitary matrices such as preservation of angles,
norms, etc., under multiplication are what make them
SO important.

Structures can correspond to the pattern of the ele-
ments. A Toeplitz matrix has constant diagonals, made
up from 2n — 1 parameters a;, i = —(n—-1),...,n— 1.
Thus a 5 x 5 Toeplitz matrix has the form

ao a) ar a3 as
a—) a a) ap as
a-z2 a- ao ay ap
a-3 a-» a- ago a)
a-4 a-3 a-2 a- aq

Toeplitz matrices arise in SIGNAL PROCESSING [IV.35].
A circulant matrix is a special type of Toeplitz matrix
in which each row is a cyclic permutation (one ele-
ment to the right) of the row above. Circulant matrices
have many special properties, including that an explicit
formula exists for their inverses and their eigenvalues.

A Hamiltonian matrix is a 2n x 2n matrix of the block

form
A F
G -A*|’

where A, F, and G are n X n matrices and F and G
are Hermitian. Hamiltonian matrices play an important
role in CONTROL THEORY [II1.25].

The determinant of an n X n matrix A is a scalar that
can be defined inductively by

n
det(A) = > (—1)"*/a;;det(A;j)
j=1
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foranyi e {1,2,...,n}, where A;j denotes the (n—1) x
(n — 1) matrix obtained from A by deleting row i and
column j, and det(a) = a for a scalar a. This formula
is called the expansion by minors because det(Ay;) is
a minor of A. The determinant is sometimes written
with vertical bars, as |A|. Although determinants came
before matrices historically, determinants have only a
minor role in applied mathematics.

The quantity obtained by modifying the definition
of determinant to remove the (—1)*/ term is the per-
manent, which is the sum of all possible products of
n elements of A in which exactly one is taken from
each row and each column. The permanent arises in
combinatorics and in quantum mechanics.

19 Vector Spaces and Norms

A vector space is a mathematical structure in which a
linear combination of elements can be taken, with the
result remaining in the vector space. A vector space V
has a binary operation, which we will write as addition,
that is associative, is commutative, and has an identity
(the “zero vector,” written 0) and additive inverses. In
other words, for any a,b,c € V we have (a + b) + ¢ =
a+((b+c),a+b=>b+a,a+0 = a, and there is a
d such that a + d = 0. There is also an underlying set
of scalars, R or C, such that V is closed under scalar
multiplication. Moreover, for all x,y € V and scalars
«, Bwe have x(x +y) = ax + xy, (x+ B)x = xx + Bx,
and x(Bx) = («xp)x.

A vector space can take many possible forms. For
example, the set of real-valued functions on an interval
[a,b] is a vector space over R, and the set of polyno-
mials of degree less than or equal to n with complex
coefficients is a vector space over C. Most importantly,
the sets of n-vectors with real or complex coefficients
are vector spaces over R and C, respectively.

An important concept is that of linear independence.
Vectors vy, V2,..., Uy in V are linearly independent if
no nontrivial linear combination of them is zero, that
is, if the equation oy vy + xpvp + - - - + &, vy, = 0 holds
only when the scalars «; are all zero. If a collection of
vectors is not linearly independent then it is linearly
dependent.

Given vectors vy, v2,...,V, in V we can form their
span, which is the set of all possible linear combina-
tions of them. A linearly independent collection of vec-
tors whose span is V is a basis for V, and any vector
in V can be written uniquely as a linear combination of
these vectors.
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The number of vectors in a basis for V is the dimen-
sion of V, written dimV, and it can be finite or infi-
nite. The vector space of functions mentioned above is
infinite dimensional, while the vector space of polyno-
mials of degree at most n has dimension n + 1, with
a basis being 1, x,x2,...,x" or any other sequence of
polynomials of degrees 0,1, 2,...,n.

A subspace of a vector space V is a subset of V that
is itself a vector space under the same operations of
addition and scalar multiplication.

19.1 Inner Products

Some vector spaces can be equipped with an inner prod-
uct, which is a function (x,y) of two arguments that
satisfies the conditions (i) (x,x) > 0 and (x,x) = 0
if and only if x = 0, (ii) (x + v,z) = (x,z) + (¥, 2),
(iii) (exx,¥) = a{x,y), and (iv) (x,y) = (y,x) for all
X,¥,z € V and scalars «. The usual (Euclidean) inner
product on R" is (x,y) = xTy; on C" the conjugate
transpose must be used: (x,y) = x*y. For the vector
space Cla,b] of real-valued continuous functions on
[a,b] an inner product is

b
(ﬁm=quwaqu ©)

where w(x) is some given, positive weight function,
while for the vector space of n-vectors of the form
[f(x1), f(x2),...,f(xn)]" for fixed points x; € [a, b]
and real-valued functions f an inner product is

n
(f,9) = D wif(xi)g(xi), 7)
i=1
where the w; are positive weights. Note that (7) is not an
inner product on the space of real-valued continuous
functions because (f, f) = 0 implies only that f(x;) =
0 for all i and not that f = 0.
The vector space R" with the Euclidean inner product
is known as n-dimensional Euclidean space.

19.2 Orthogonality

Two vectors u, v in an inner product space are orthog-
onal if (u,v) = 0. For R"™ and C" this is just the usual
notion of orthogonality: uTv = 0 and u*v = 0, respec-
tively. A set of vectors {u;} forms an orthonormal set
if (ui,uj) = 6,1,‘ fOI‘ all i and ]

For an inner product space with inner product (6)
or (7), useful examples of orthogonal functions are
ORTHOGONAL POLYNOMIALS [I1.29], which have the
important property that they satisfy a three-term recur-
rence relation. For example, the Chebyshev polynomials
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Ty satisfy To(x) = 1, T1 (x) = x, and
Tis1(x) =2xTi(x) — T—1(x), k=1, (8)

and they are orthogonal on [—1, 1] with respect to the
weight function (1 — x2)~1/2;

I] Ti(x)Tj(x)

1 (1= x2)l/2

Another commonly occurring class of orthogonal
polynomials is the Legendre polynomials Py, which are
orthogonal with respect to w(x) = 1 on [-1,1] and
satisfy the recurrence
K Lehix) - P, @)
with Po(x) = 1 and P;(x) = x, when they are normal-
ized so that P;(1) = 1.

Figure 10 plots some Chebyshev polynomials and
Legendre polynomials on [—1,1]. Both sets of poly-
nomials are odd for odd degrees and even for even
degrees. The values of the Chebyshev polynomials
oscillate between —1 and 1, which is explained by the
fact that Tx(x) = cos(k@), where 0 = cos™! x.

A beautiful theory surrounds orthogonal polyno-
mials and their relations to various other areas of
mathematics, including Padé approximation, spectral
theory, and matrix eigenvalue problems.

If ¢1, ¢2, ... is an orthogonal system, that is,
(i, ) = 0 for i # j, then the ¢; are necessarily
linearly independent. Moreover, in an expansion

dx =0, i#}j.

Pk+1(X) =

f(x) =D aipi(x) (10)
i=1
there is an explicit formula for the a;. To determine it,
we take the inner product of this equation with ¢; and
use the orthogonality:

(frp) =D ailbiby) = ajlbj, dj),
i=1
sothata; = (f,;)/ (), d;).

An important example of an orthogonal system of
functions that are not polynomials is 1, cosx, sinx,
cos(2x), sin(2x), cos(3x), ..., which are orthogonal
with respect to the weight function w(x) = 1 on
[—-m, ], and for this basis (10) is a Fourier series
expansion.

19.3 Norms

A common task is to approximate an element of a vec-
tor space V by the closest element in a subspace S. To
define “closest” we need a way to measure the size of
a vector. A norm provides such a measure.
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A norm is a mapping || - || from V to the nonnegative
real numbers such that ||x|| = O precisely when x = 0,
laex|| = || |lx]|| for all scalars « and x € V, and the
triangle inequality || x + y|| < |lx| + ||| holds for all
X,y € V. There are many possible norms, and on a
finite-dimensional vector space all are equivalent in the
sense that for any two norms || - || and || - ||” there are
positive constants ¢ and ¢ such that ¢; || x| < [l x]| <
c2||x||” for all x € V.

An example of a norm on Cla, b] is

[lflle = max |f(x)], (11)
x€la,b)

known as the L.-norm, the supremum norm, the max-
imum norm, or the uniform norm. For p € [1, o),

Iflly = (Ib lf(x)l”dx>”p

is the Ly-norm on the space L”[a,b] of functions
for which the (Lebesgue) integral is finite. Important
special cases are the L>-norm and the L;-norm.

In an inner product space the natural norm is || x|| =
(x,x)V2, and indeed the Ly-norm corresponds to the
inner product (6) with unit weight function. A very
useful inequality involving this norm is the Cauchy-
Schwarz inequality:

[(x, )12 < (x, x) (v, ) = [Ix]? ]y 1I?

for all x,y € V. This inequality shows that we can
define the angle 0 between two vectors x and y by
cos 0 = (x,V)|/(lx|l Iy € [-1,1]. Thus orthogonal-
ity corresponds to an angle 0 = +7r/2.

Several different norms are commonly used on the
vector spaces R" and C". The vector p-norm is defined
for real p by

n 1/p
Il = (3 1x?) T 1<p <o
i=1
It includes the important special cases

n
lxlly = > Ixil,
i=1

2

5 |xi|? v (x*x)12,
(Zmwr)

[Ixlleo = max |x;l.
1<i<n

[Ix1l2

The 2-norm is Fuclidean length. The 1-norm is some-
times called the “Manhattan” or “taxi cab” norm, as
when x,y € R? contain the coordinates of two loca-
tions in Manhattan (which has a regular grid of streets),
[[x = »[l1 measures the distance by taxi cab from x
to y. Figure 11 shows the boundaries of the unit balls
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(b)

Figure 10 Selected (a) Chebyshev polynomials Ty (x) and (b) Legendre polynomials Py (x) on [-1,1].
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Figure 11 The boundary of the unit ball
in B2 for the 1-, 2-, and co-norms.

{x € R": ||x|| = 1} for the latter three p-norms. The
very different shapes of the unit balls suggest that
the appropriate choice of norm will depend on the
problem, as is the case, for example, in DATA FITTING
[IV.9 §3.2].

Related to norms is the notion of a metric, defined
on a set M called a metric space. A metric on M is a
nonnegative function d such that d(x,y) = d(y,x)
(symmetry), d(x,z) < d(x,y) + d(y,z) (the triangle
inequality), and for all x,y,z € M, d(x,y) = 0 pre-
cisely when x = y. An example of a metric on the set
of positive real numbers is d(x, y) = |log(x/y)|. For a
normed vector space, the function d(x,y) = |[x — ¥
is always a metric, so a normed vector space is always
a metric space.

19.4 Convergence

We say that a sequence of points xi,x2,..., each
belonging to a normed vector space V, converges to a
limit x, € V, written lim;_.. X;j = X4 (Or xX; — X4 as
i — o), if for any € > 0 there exists a positive integer
N such that ||x4 — x|l < € forall i > N.

The sequence is a Cauchy sequence if for any € > 0
there exists a positive integer N such that [[x; — x|l < €
for all i,j > N. A convergent sequence is a Cauchy
sequence, but whether or not the converse is true
depends on the space V.

A normed vector space is complete if every Cauchy
sequence in V has a limit in V. A complete normed vec-
tor space is called a Banach space. In a Banach space we
can therefore prove convergence of a sequence with-
out knowing its limit by showing that it is a Cauchy
sequence.

A complete inner product space is called a Hilbert
space. The spaces R" and C" with the Fuclidean inner
product are standard examples of Hilbert spaces.

20 Operators

An operator is a mapping from one vector space, U, to
another, V (possibly the same one). A linear operator
(or linear transformation) A is an operator such that
A(xix1+a2x2) = 01 Axy + &2 Axo for all scalars oy, &2
and vectors x1, x» € U.For example, the differentiation
operator is a linear operator that maps the vector space
of polynomials of degree at most n to the vector space
of polynomials of degree at most n — 1.

A natural measure of the size of a linear operator A
mapping U to V is the induced norm (also called the
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operator norm or subordinate norm),

IIA]| =max{M:x ev, x;éo},
[l
where on the right-hand side || - || denotes both a norm

on U (in the denominator) and a norm on V (in the
numerator). For the rest of this section we assume that
U =V for simplicity. If [|A]| is finite then A is said to
be a bounded linear operator. On a finite-dimensional
vector space all linear operators are bounded.

The definition of an operator norm yields the inequal-
ities |[Ax|| < |lAllllx]| (immediate) and |[AB| <
[[A]l |B]l (using the previous inequality), both of which
are indispensable.

The operator A maps vectors in U to other vectors in
U, and it may change the norm by as much as ||A||. For
some vectors, called eigenvectors, it is only the norm,
and not the direction, that changes. A nonzero vec-
tor v is an eigenvector, with eigenvalue A, if Av =
Av. Eigenvalues and eigenvectors play an important
role in many areas of applied mathematics and appear
in many places in this book. For example, SPECTRAL
THEORY [IV.8] is about the eigenvalues and eigenvec-
tors of linear operators on appropriate function spaces.
The adjective spectral comes from spectrum, which is
a set that contains the eigenvalues of an operator.

On taking norms in the relation Av = Av and using
[[v] # 0 we obtain |A| < [|All. Thus all the eigenvalues
of the operator A lie in a disk of radius ||A|| centered at
the origin. This is an example of a localization result.

An invariant subspace of an operator A that maps a
vector space U to itself is a subspace X of U such that
AX is a subset of X, so that x € X implies Ax € X.
An eigenvector is the special case of a one-dimensional
invariant subspace.

For n X n matrices, the eigenvalue equation Av = Av
says that A — Al is a singular matrix, which is equiv-
alent to the condition p(A) = det(AI — A) = 0. The
polynomial p is the characteristic polynomial of A, and
since it has degree n it follows from the fundamen-
tal theorem of algebra (section 14) that it has n roots
in the complex plane, which are the eigenvalues of A.
Whether there are n linearly independent eigenvectors
associated with the eigenvalues depends on A and can
be elegantly answered in terms of the JORDAN CANONI-
CAL FORM [I1.22]. For real symmetric and complex Her-
mitian matrices, the eigenvalues are all real and there
is a set of n linearly independent eigenvectors, which
can be taken to be orthonormal. If A is in addition
positive-definite, then the eigenvalues are all positive.
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For matrices on C™*" the operator matrix norms cor-
responding to the 1, 2, and o vector norms have explicit
formulas:

m
Al = max > |a;;|l, “maxcolumn sum,”
I<jsn ;Z
i=1
n

Alle = max > laijl, “maxrow sum,”
lsismi:l

lAll2 = (p(A*A))Y/2,

]

spectral norm,
where the spectral radius
p(B) = max{|A|: A is an eigenvalue of B}.

Another useful formula is [|[All2 = Omax(A), where
Omax(A) is the largest SINGULAR VALUE [IL.32] of A.
A further matrix norm that is commonly used is the
Frobenius norm, given by

m n 1/2
IAllF = (z > Iaulz) = (trace(A*A))"/2,
i=1j=1

where the trace of a square matrix is the sum of its
diagonal elements. Note that ||A||r is just the 2-norm
of the vector obtained by stringing the columns of A
out into one long vector. The Frobenius norm is not
induced by any vector norm, as can be seen by taking
A as the identity matrix.

21 Linear Algebra

Associated with a matrix A € C™*" are four important
subspaces, two in C" and two in C": the ranges and
the nullspaces of A and A*. The range of A is the set
of all linear combinations of the columns: range(A) =
{Ax: x € C"}. The null space of A is the set of vectors
annihilated by A: null(A) = {x € C": Ax = 0}.

The two most important laws of linear algebra are

dimrange(A) = dimrange(A*),
dimrange(A) + dimnull(A) = n,

where dim denotes dimension. These equalities can
be proved in various ways, one of which is via the
SINGULAR VALUE DECOMPOSITION [I1.32].

Suppose x € null(A). Then x is orthogonal to every
row of A and hence is orthogonal to the subspace
spanned by the rows of A. Since the rows of A are the
columns of A*, it follows that null(A) is orthogonal to
range(A*), where two subspaces are said to be orthog-
onal if every vector in one of the subspaces is orthogo-
nal to every vector in the other. In fact, it can be shown
that null(A) and range(A*) together span C", and this
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a “black box” that takes a vector x as input and returns
the product Ax?

The problem of finding a minimum or maximum of
a scalar function f of n variables provides a good
example of a wide range of possible scenarios. At one
extreme, f has derivatives of all orders and we can com-
pute f and its first and second derivatives at any point
(most methods do not use derivatives of higher than
second order). At another extreme, f may be discon-
tinuous and only function values may be available. It
may even be that we are not able to evaluate f but only
to test whether, for a given x and vy, f(x) < f(y)
or vice versa. This is precisely the scenario for an
optometrist formulating a prescription for a patient.
The optometrist asks the patient to compare pairs of
lenses and say which one gives the better vision. By
suitably choosing the lenses the optometrist is able
to home in on a prescription within a few minutes.
In numerical optimization, DERIVATIVE-FREE METHODS
[IV.11 §4.3] use only function values and many of them
are based solely on comparisons of these values.

Another fundamental question is what is meant by a
solution. If the solution is a function, would we accept
its representation as an infinite series in some basis
functions, or as an integral, or would we accept values
of the function on a finite grid of points? If an inexact
representation is allowed, how accurate must it be and
what measure of error is appropriate?

2 Dimension Reduction

A common theme in many contexts is that of approx-
imating a problem by one of smaller dimension and
using the solution of the smaller problem to approx-
imate the solution of the original problem. The moti-
vation is that the large problem may be too expen-
sive to solve, but of course this approach is viable
only if the smaller problem can be constructed at low
cost. In some situations the smaller problem is solved
repeatedly, perhaps as some parameter varies, thereby
amortizing the cost of producing it.

A ubiquitous example of this general approach con-
cerns images displayed on Web pages. Modern dig-
ital cameras (even smartphones) produce images of
5 megapixels (million pixels) or more. Yet even a 27-
inch monitor with a resolution of 2560 x 1440 pixels
displays only about 3.7 megapixels. Since most images
on Web pages are displayed at a small size within a
page, it would be a great waste of storage and band-
width to deal with them at their original size. They
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are therefore interpolated down to smaller dimensions
appropriate for the intended usage (e.g., with longest
side 400 pixels for an image on a news site). Here,
dimension reduction is relatively straightforward and
error is not an issue.

Often, though, an image is of intrinsic interest and
we wish to keep it at its original dimensions and reduce
the required storage, with minimal loss of quality. This
is the more typical scenario for dimension reduction.
The reason that dimension reduction is possible is that
many images contain a high degree of redundancy.
The SINGULAR VALUE DECOMPOSITION [I1.32] (SVD) pro-
vides a way of capturing the important information in
an image in a small number of vectors, at least for
some images. A generally more effective reduction is
produced by JPEG COMPRESSION [VIL7 §5], which uses
two successive changes of basis in order to identify
information that can be discarded.

A dynamical system may have many parameters
but the behavior of interest may take place in a low-
dimensional subspace. In this case we can try to iden-
tify that subspace and work within it, gaining a reduc-
tion in computation and storage. The general term for
reducing dimension in a dynamical system is MODEL
REDUCTION [I1.26]. Model reduction has been an area of
intensive research in the last thirty years, with applica-
tions ranging from the design of very large scale inte-
gration circuits to data assimilation in modeling the
atmosphere.

Dimension reduction is fundamental to DATA ANALY-
s1s [IV.17 §4], where large data sets are transformed
via a change of basis into lower-dimensional spaces
that capture the behavior of the original data. Clas-
sic techniques are principal component analysis and
application of the SVD. In the context of linear matrix
equations such as the LYAPUNOV EQUATION [III.28],
an approximation to a dominant invariant subspace
of the solution (that is, an invariant subspace corre-
sponding to the k eigenvalues of largest magnitude, for
some k) can be as useful as an approximation to the
whole solution, and such an approximation can often
be computed at much lower cost.

A term often used in the context of dimension reduc-
tion is curse of dimensionality, which refers to the fact
that many problems become much harder in higher
dimensions and, more informally, that intuition gained
from two and three dimensions does not necessarily
translate to higher dimensions. A simple illustration is
given by an n-sphere, or hypersphere, of radius » in
R, which comprises all n-vectors of 2-norm (Euclidean
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norm) r. A hypersphere has volume
.n.n/BTn

T Ir(m/2+1)°

where I' is the GAMMA FUNCTION [IIL.13]. Since I'(x) ~
V21 /x(x/e)* (STIRLING'S APPROXIMATION [IV.7 §3]),
for any fixed r we find that S, tends to 0 as n tends
to oo, that is, the volume of the hypersphere tends to
zero, which is perhaps surprising. For a means of com-
parison, consider the n-cube, or hypercube, with sides
of length 27. It has volume

Hy = (2r)"

and therefore S,,/H, — 0 as n — oo. In other words,
most of the volume of a hypercube lies away from
the enclosed hypersphere, and hence “in the corners.”
For n = 2, the ratio S»/H> = 0.785 (see figure 11 in
THE LANGUAGE OF APPLIED MATHEMATICS [[.2 §19.3]),
which is already substantially less than 1. The sequence
Sn/H, continues 0.524, 0.308, 0.164, 0.081, .... This
behavior is not too surprising when one realizes that
any corner of the unit hypercube centered on the ori-
gin has coordinates [+1, +1,...,+1]T, and so is at dis-
tance /n from the origin, whereas any point on the
unit hypersphere centered on the origin is at distance
1 from the origin, so the latter distance divided by the
former tends to 0 as n — . The term curse of dimen-
sionality was introduced by Richard Bellman in 1961,
with reference to the fact that sampling a function of
n variables on a grid with a fixed spacing requires a
number of points that grows exponentially with n.

Sn

3 Approximation of Functions

We consider the problem of approximating a scalar
function f, which may be given either as an explicit
formula or implicitly, for example as the solution to an
algebraic or differential equation. How the problem is
solved depends on what is known about the function
and what is required of the solution. We summarize
some of the questions that must be answered before
choosing a method.

+ What form do we want the approximation to take:

power series, polynomial, rational, Fourier series,
?

« Do we want an approximation that has a desired
accuracy within a certain region? If so, what mea-
sure of error should be used?

« Do we want an approximation that has certain
qualitative features, such as convexity, monotonic-
ity, or nonnegativity?
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In this section we discuss a few examples of different
types of approximation, touching on all the questions
in this list. In the next three subsections f is assumed
to be real (its argument being written x), whereas in the
fourth subsection it can be complex (so its argument is
written z). We consider first approximations based on
polynomials.

3.1 Polynomials

Perhaps the simplest class of approximating functions
is the polynomials, p,(x) = ap + a1x + - - - + anpx™.
Polynomials are easy to add, multiply, differentiate,
and integrate, and their roots can be found by stan-
dard algorithms. Justification for the use of polyno-
mials comes from Weierstrass’s theorem of 1885, which
states that for any f € C[a,b] and any € > O there is
a polynomial p,(x) such that || f — pnlle < & where
the norm is the Lo-NORM [I.2 §19.3] given by || fll« =
Mmaxye(q,b] |f(x)]. Weierstrass’s theorem assures us
that any desired degree of accuracy in the maximum
norm can be obtained by polynomials, though it does
not bound the degree n, which may have to be high.
Here are some of the ways in which polynomial approx-
imations are constructed.

Truncated Taylor series. If f is sufficiently smooth
that it has a Taylor series expansion and its deriva-
tives can be evaluated, then a polynomial approxima-
tion can be obtained simply by truncating the Taylor
series. The Taylor series with remainder tells us that
we can write f(x) = pn(x) + En(x), where p,(x) =
FO)+ f(0)x + -+« + fM(0)x™/n! is a degree-n poly-
nomial and the remainder term has the form E,(x) =
FMED(E)x"* 1/ (n + 1)! for some £ on the interval with
endpoints 0 and x. The value of n and the range
of x for which the approximation f(x) = pn(x) is
applied will depend on f and the desired accuracy. Fig-
ure 1 shows the degree-1, degree-3, and degree-5 Taylor
approximants to the sine function.

Interpolation. We may require p,(x) to agree with
f(x) at certain specified points x; € [a,b]. Since py
contains n + 1 coefficients and each condition py (x;) =
f(x;) provides one equation, we need n + 1 points in
order to specify py. It can be shown that the n + 1 inter-
polation equations in n + 1 unknowns have a unique
solution provided that the interpolation points {x;}i",
are distinct, in which case there is a unique interpo-
lating polynomial. There is a variety of ways of repre-
senting p, (e.g., Lagrange form, barycentric form, and
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Figure 1 sinx ar_1d its Taylor approximants p1(x) = Xx,
p3(x) = x - x3/3), and p5(x) = x - x3/3!1 + x> /5L

divided difference form). An explicit formula is avail-
able for the error: if f has n + 1 continuous derivatives
on [a, b] then for any x € [a, b]

f(n+1)(§x)

n
f(x) = pn(x) = D! i]:!)(x - Xi),

where &, is some unknown point in the interval deter-
mined by xq, x1,...,Xn, and x. This error formula can
be used to obtain insight into how to choose the x;. It
turns out that equally spaced points are poor, whereas
points derived by rescaling to [a,b] the ZEROS OR
EXTREMA OF THE CHEBYSHEV POLYNOMIAL [IV.9 §2.2] of
degree n + 1 or n, respectively, are good.

Least-squares approximation. In least-squares ap-
proximation we fix the degree n and then choose the
polynomial p, to minimize the L>-norm

(Jb 10 — pu(x)12 dx)w,

where [a,b] is the interval of interest. It turns out
that there is a unique p, minimizing the error, and
its coefficients satisfy a linear system of equations
called the normal equations. The normal equations
tend to be ill-conditioned when p, is represented in
the monomial basis, {1,x,x?,...}, so in this context
it is usual to write p, = X' jaipi(x), where the
¢i are ORTHOGONAL POLYNOMIALS [I1.29] on [a, b]. In
this case the normal equations are diagonal and there
is an explicit expression for the optimal coefficients:
ai = J2 i) f(x)dx/ [¥ pi(x)? dx.

L. approximation. Instead of using the L,-norm we
can use the Ly-norm and so minimize || f — pnlle. A
best L. approximation always exists and is unique,
and there is a beautiful theory that characterizes the
solution in terms of equioscillation, whereby the error
achieves its maximum magnitude at a certain number
of points with alternating sign. An algorithm called
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-1.0 -0.5 0 0.5 1.0
Figure 2 Error in polynomial approximations to eX on
[-1,1]: solid line, L. approximation; dashed line, Cheby-
shev interpolant; dotted line, least squares (L, approxima-
tion).

the Remez algorithm is available for computing the
best L., approximation. One use of it is in EVALUATING
ELEMENTARY FUNCTIONS [VL11].

Figure 2 plots the absolute error | f — py (x)| in three
degree-10 polynomial approximations toe¥ on [—1,1]:
the least-squares approximation; the L. approxima-
tion; and a polynomial interpolant based on the Cheby-
shev points, cos(jmr/n), j = 0:n. Note that the L.
approximation has equioscillating error with maximum
error strictly less than that for the other two approx-
imations, and that the error of the Chebyshev inter-
polant is zero at the eleven points where it interpolates,
which include the endpoints. It is also clear that the
Chebyshev approximation is not much worse than the
L. one—something that is true in general.

3.2 Piecewise Polynomials

High-degree polynomials have a tendency to wiggle. A
degree-100 polynomial p has up to 100 points at which
it crosses the x-axis on a plot of y = p(x): the distinct
real zeros of p. This can make high-degree polynomials
unsatisfactory as approximating functions. Instead of
using one polynomial of large degree it can be better
to use many polynomials of low degree. This can be
done by breaking the interval of interest into pieces
and using a different low-degree polynomial on each
piece, with the polynomials joined together smoothly
to make up the complete approximating function. Such
piecewise polynomials can produce functions with high
approximating power while avoiding the oscillations
possible with high-degree polynomials.

A trivial example of a piecewise polynomial is the
absolute value function |x|, which is equal to —x for
x < 0 and x for x > O (see figure 4 on p. 13 in THE
LANGUAGE OF APPLIED MATHEMATICS [I.2]). More gen-
erally, a piecewise polynomial g defined on an interval
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Figure 3 A piecewise-linear function (spline).

[a,b] =: [x0,Xxn] that is the union of n subintervals
[x0,x1], [x1,x2],..., [Xn-1,xn]is defined by the prop-
erty that g(x) = pi(x) for x € [xi,xi+1], where each
pi is a polynomial. Thus on each interval g is a poly-
nomial, but each of these individual polynomials is
in general different and possibly of different degree.
Such a function is generally discontinuous, but we can
ensure continuity by insisting that p;—1(x;) = pi(xi),
i=1l:n-1.

Important examples of piecewise polynomials are
splines, which are piecewise polynomials g for which
each individual polynomial has degree k or less and
for which g has k — 1 continuous derivatives on the
interval. A spline therefore has the maximum possible
smoothness. The most commonly used splines are lin-
ear splines and cubic splines, and an important applica-
tion is in the FINITE-ELEMENT METHOD [IL.12]. Figure 3
shows an example of a linear spline. Splines are com-
monly used in plotting data, where they provide a way
of “joining up the dots,” e.g., by straight lines in the
case of a linear spline.

In computer-aided design the individual polynomials
in a piecewise polynomial are often constructed as
Bézier curves, which have the form
“ (n) (b —x)"i(x - a)

Bu(x) =D pi
" i-0 b-ay l

for an interval [a, b]. The p; are control points in the
plane that the user chooses via a graphical interface in
order to achieve a desired form of curve. Figure 4 shows
a cubic Bézier curve. The polynomials that multiply
the p; are called Bernstein polynomials, and they were
originally introduced by Bernstein in 1912 in order to
give a constructive proof of Weierstrass’s theorem. The
use of Bézier curves as a design tool to intuitively con-
struct and manipulate complex shapes was initiated at
the Citroén and Renault car companies in the 1960s.
Today, cubic Bézier curves are widely used, e.g., in the
design of fonts, in image manipulation programs such
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Figure 4 A cubic Bézier curve with four
control points p1, p2, p3, p4.

as Adobe Photoshop, and in the ISO standard for the
Portable Document Format (PDF).

3.3 Wavelets

FOURIER ANALYSIS [1.2 §19.2] decomposes a function
into a linear combination of trigonometric functions
(sines and cosines) with different frequencies and so is
a natural way to deal with periodic functions. Wavelet
analysis, which was first developed in the 1980s, is
designed to handle nonperiodic functions and does
so by using basis functions that are rough and local-
ized. Rather than varying the frequency as with the
Fourier basis, a wavelet basis is constructed by trans-
lation (f(x) — f(x — 1)) and dilation (f(x) — f(2x)).
Given a mother wavelet (x), which has compact sup-
port (that is, it is zero outside a bounded interval),
translations and dilations are created as ¢ (2"x — k)
with integer n and k. This leads to many different res-
olutions, and hence the term multiresolution analysis
is used in this context. Larger n correspond to finer
resolutions, and as k varies the support moves around.

The localized nature of the wavelet basis functions
makes wavelet representations of many functions and
data relatively sparse, which makes wavelets particu-
larly suitable for data compression, detection of fea-
tures in images (such as edges and other discontinu-
ities), and noise reduction. These are some of the rea-
sons for the success of wavelets in (for example) imag-
ing, where they are used in the JPEG2000 STANDARD
[VIL.7 §5].

3.4 Series Solution

We now turn to the development of explicit series
representations of a function. As an example we take
the Airy function w(z), which satisfies the differential
equation

w' —zw =0.
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We can look for a solution w(z) = 3¢, axzX, where
ap = w(0) and a; = w'(0) can be regarded as given.
For simplicity we will take ap = 1 and a; = 0. Dif-
ferentiating twice gives w’'(z) = Y p_» k(k — 1)axz*2.
Substituting the power series for w and w” into the
differential equation we obtain Y 5_, k(k — 1)azz¥2 -
Si_parzk*! = 0. Since this equation must hold for all
z we can equate coefficients of z°, z!, z2, ... on both
sides to obtain a sequence of equations that provide
recurrence relations for the ay, specifically (k + 1) (k +
2)ag+2 = ax-1 along with az = 0. We find that

3 6 9
z z z
w(z)=1+— +oeee

6 180 " 12960
The modulus of the ratio of successive nonzero terms
tends to zero as the index of the terms tends to infin-
ity, which ensures that the series is convergent for all
z. Since a power series can be differentiated term by
term within its radius of convergence, it follows that
our series does indeed satisfy the Airy equation.

Constructing a series expansion does not always
lead to a convergent series. Consider the exponential
integral

o L—t
Ei(z) = J eT dt.

V4
Integrating by parts repeatedly gives

eZ e? ® et
—_— —4 2 P
z z2 L t3 dt
e ? 2!

1 !
= (1=-=4+ =+ ... -1 .
2(1 z+zz+ +(-1) )+Rk

The remainder term, Ry = (=1)*k![;"(e~t/tk+1)dt,
does not tend to zero as k — oo for fixed z, so the series
is not convergent. Nevertheless, |Rx| does decrease
with k before it increases, and a reasonable approxi-
mation to E;(z) can be obtained by choosing a suit-
able value of k. For example, with z = 10 the remain-
der starts increasing at k = 11, and taking k = 10 we
obtain the approximation E; (10) = 4.156x10~6, which
is to be compared with E; (10) = 4.157 x 10~°, where
both results have been rounded to four significant fig-
ures. The series above is an example of an asymptotic
series. In general, we say that the series S¢_oaxz ¥ is
an asymptotic expansion of f as z — o if

o1 (k= 1)!
k-1

i k
lim z"( f(z) — axz %) =0
e ( k=0 )

for every n, and we write f(z) ~ 3¢y arz~¥, where the
symbol “~" is read as “is asymptotic to.” This condition
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can also be written as
n-1
f2)=> axz*+0(z™).
k=0
For the series for E; we have
k k * et
1ZKRy | = |2 k!‘ I S dt‘

k!
< —
= z|

JW e“dt‘ = ﬁle‘zl,
z |z]
and the latter bound tends to zero as |z| — oo if
argz € (—1/2,1/2), so the series is asymptotic under
this constraint on z.

By summing an appropriate number of terms, asymp-
totic series can deliver approximations of up to a cer-
tain, possibly good, accuracy, for large enough |z|, but
beyond a certain point the accuracy worsens.

Suppose we have the quadratic g:(x) = x% — x +
& = 0, where ¢ is a small parameter and we wish to
obtain a series expansion for x as a function of ¢. This
can be done by substituting x (&) = >;_, axe* into the
equation and setting the coefficients of each power of
€ to zero. This produces a system of equations that can
be used to express aj, az, ... in terms of ag. The two
solutions of g<(x) = 0 for € = 0 are 0 and 1, so we take
agp = 0,1 and obtain the series

e+l +283 4.0 ag =0,
x(g) = N 3 (1)
l-e-e-2+-+-, ap=1,

which describe how the roots 0 and 1 of gy (x) behave
for small €. Suppose now that it is the leading term
that is small and that we have the quadratic g.(x) =
ex? —x +1 = 0. If we repeat the process of looking for
an expansion of x (&), we obtain x (&) = 1 + & + 2&2 +
5&3+- - - describing the behavior of the root 1 of o (x).
But g is a quadratic and so has two roots. What has hap-
pened to the other one? There is a change of degree as
we go from € = 0 to € # 0, and this takes us into SINGU-
LAR PERTURBATION THEORY [IV.5 §3.2]. In this simple
case we can use the transformation y = 1/x to write
Ge(x) = ge(v)/y?, and so we obtain expansions for
x (&) by inverting those in (1). Indeed, inverting the sec-
ond expression in (1) and expanding in a power series
recovers the expansion we just derived.

4 Symbolic Solution

Sometimes a useful representation of a solution can
be obtained using a computer symbolic manipulation
package. Such packages are, for example, very good at
determining closed forms for indefinite integrals that
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problem

y'(x) = f(x,y), »(0)=y.

Integrating between 0 and x leads to the equivalent
problem

X
y(x) =y + JO fx,y(x))dx,

which is a type of equation known as an INTEGRAL
EQUATION [IV.4] because the unknown function occurs
within an integral. Applying the fixed-point iteration
idea we can make a guess ¢ for y, plugit into the right-
hand side of the integral equation, and call the result
¢1. The process can be iterated to produce a sequence
of functions ¢ defined by

X
bra1 (x) = yo + L Flxdr(x)dx, k>1.

In general, none of the ¢ will satisfy the differential
equation, but we might hope that the sequence has a
limit that does. Let us try out this idea on the problem

Y(0)=0

using first guess ¢o(x) = 0. Then ¢ (x) = I(f 2xdx =
x2and ¢2(x) = [ 2x(1 + x2) dx = x? +x*/2. Contin-
uing in this fashion yields ¢ (x) = x2 +x*/2!1+x/3!1+
<« + x2k/k!. The limit as k — oo exists and is X" — 1,
which is the required solution.

The procedure we have just carried out is known as
Picard iteration, or the method of successive approxi-
mation. Of course, in most cases it will not be possible
to evaluate the integrals in closed form, and so Picard
iteration is not a practical means for computing a solu-
tion. However, Picard iteration is the basis of the proof
of the standard result on existence and uniqueness of
solutions for ODEs. The result says that, if f(x,y) is
continuous for x € [a, b] and for all y and satisfies a
Lipschitz condition

[f(x,u) = f(x,v)| <Llu-v|

v =2x(1+y),

Vx € la,b], Vu,v,

with Lipschitz constant L, then for any yq there is
a unique continuously differentiable function y(x)
defined on [a,b] that satisfies ¥ = f(x,y) and
y(a) = yo.

7 Conversion to Another Problem

When we cannot solve a problem it can be useful to
convert it to a different problem that is more amenable
to attack. In this section we give several examples of
such conversions.
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We note first that it is not always obvious what is
meant by a solution to a problem. Consider the ODE
problem

dy
dx - 1-2xy,

The solution y can be written as

y(0) =0.

L X
y(x)=e* L et dt,

which is known as Dawson’s integral or Dawson’s func-
tion. Which representation of y is better? If we need
to obtain higher derivatives dXy/dx¥, the differen-
tial equation is more convenient. To evaluate y(x)
for a given x, numerical methods can be applied to
either representation. Both representations therefore
have their uses.

7.1 Uncoupling

When we are solving equations, of whatever type, a par-
ticularly favorable circumstance is when the first equa-
tion involves only one unknown and each successive
equation introduces only one new unknown. We can
then solve the equations from first to last. The simplest
example is a triangular system of linear equations, such
as

= by,
= b,

az1x) +asznXx; +az;xs = bs,

annxi

az1x) +azx»

which can be solved by finding x; from the first equa-
tion, then x» from the second, and finally x3 from the
third. This is the process known as substitution.

Most linear equation problems do not have this tri-
angular structure, but the process of GAUSSIAN ELIM-
INATION [IV.10 §2] converts an arbitrary linear system
into triangular form.

More generally we might have n nonlinear equations
in n unknowns, and a natural way to solve them is to try
to manipulate them into an analogous triangular form.
In computer algebra a way of doing this for polyno-
mial equations is provided by Buchberger’s algorithm
for computing a GROBNER BASIS [[V.39§2.1].

A triangular problem is partially uncoupled. In a fully
uncoupled system each equation contains only one
unknown. A linear system of ODEs ¥’ = Ay with an
n xn coefficient matrix A can be uncoupled if A is diag-
onalizable. Indeed, if A = XDX ! with X nonsingular
and D = diag(A;), then the transformation z = X1y
gives z' = Dz, which represents n uncoupled scalar
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equations z; = A;z;, i = 1:n. The behavior of the vec-
tor y can now be understood by looking at the behavior
of the n independent scalars z;.

7.2 Polynomial Roots and Matrix Eigenvalues

Consider the problem of finding the roots (zeros) of a
polynomial py, (X) = anx™ + an-1 X" ' + - - - + ag with
an # 0, that is, the values of x for which p,(x) = 0.
It is known from Galois theory that there is no explicit
formula for the roots when n > 5. Many methods are
available for computing polynomial roots, but not all
are able to compute all n roots reliably and software
might not be readily available. Consider the nxn matrix

—An-1/Gn —an-2/an —ao/an
1 0 e 0
C= 0 1 0
: .0 :
0 .. A 0

Let A be a root of py,. For the vector defined by y =
[An-1An-2 ... 1]T we have Cy = Ay, s0 A is an eigen-
value of C with eigenvector y. In fact, the set of roots
of p is the set of eigenvalues of C, so the polynomial
root problem has been converted into an eigenvalue
problem—albeit a specially structured one. The matrix
C is called a companion matrix. Of course, one can go
in the opposite direction: to find the eigenvalues of C
one might look for solutions of det(C — AI) = 0, and
the determinant is precisely (—=1)"pn(A)/an.

The eigenvector problem Ax = Ax can be converted
into a nonlinear system of equations F(v) = 0, where

(A—-Alx X
F(v)_[e;"x—l]' v—[/\].

The last component of F serves to normalize the eigen-
vector and here s is some fixed integer, with e; denot-
ing the sth column of the identity matrix. By solving
F(v) = 0 we obtain both an eigenvalue of A and the
corresponding eigenvector.

7.3 Dubious Conversions

Converting one problem to an apparently simpler one
is not always a good idea. The problem of solving the
scalar nonlinear equation f(x) = 0 can be converted to
the problem of minimizing the function g(x) = f(x)2.
Since the latter problem has a global minimum attained
when f(x) = 0, the conversion might look attractive.
However, it has a pitfall: since g’ (x) = 2f’(x) f(x), the
derivative of g is zero whenever f’(x) = 0, and this
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means that methods for minimizing g might converge
to points that are stationary points of g but not zeros
of f.

For another example, consider the generalized eigen-
problem in n x n matrices A and B, Ax = ABx, which
arises in problems in engineering and physics. It is nat-
ural to attempt to convert it to the standard eigenprob-
lem B-'Ax = Ax and then apply standard theory and
algorithms. However, if B is singular this transforma-
tion is not possible, and when B is nonsingular but
ILL-CONDITIONED [I.2 §22] the transformation is inad-
visable in floating-point arithmetic as it will be numeri-
cally unstable. A further drawback is that if B is SPARSE
[IV.10 §6] (has many zeros) then B! A can have many
more nonzeros than A or B.

7.4 High-Order Differential Equations

Methods of solution of differential equations have been
more extensively developed for first-order equations
than for higher-order ones, where order refers to the
highest derivative in the equation. Fortunately, higher-
order equations can always be converted to first-order
ones. Consider the gth-order ODE

Y= fit,y, ..,y )
with y,9’,...,y@D given at t = to. Define new
variables
z1 =, 22=y" ceey Zqzy(tl—l)_

Then we have the first-order system of equations

z) =z,

zy = z3,

r

Zq—l = Zq,

zy = f(t,z1,22,...,29),

with z1,22,...,2z4 given at t = tyo. We can write this
system in vector form:
Z' = f(t,2), z=[z1,22,...,24]". )

So we have traded high order for high dimension. For-
tunately, the theory and the numerical methods devel-
oped for scalar first-order ODEs generally carry over
straightforwardly to vector ODEs. We can go further
and remove the explicit time dependence from (4) to
put the system in autonomous form: with w = [t,z7]T,
we have

r_ 1 B 1 .
v [f(z)] N [f(WZ,---,wpz)] = gw).
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7.5 Continuation

Suppose we have a hard problem “solve f(x) = 0"
and another problem “solve g(x) = 0” that is triv-
ial to solve. Consider the parametrized problem “solve
hix,t) =tf(x)+ (1 -t)g(x) = 0.” We know the solu-
tion for t = 0 and wish to find it for t = 1. The idea
of continuation (also called homotopy, or incremental
loading in elasticity) is to traverse the interval from 0
to 1 in several steps: 0 < t; <ty < --- <t, = 1.0n
the kth step we use the solution xx_; of the problem
h(x,tyg—1) = 0 as the starting point for an iteration for
solving h(x, tx) = 0. We are therefore solving the orig-
inal problem by approaching it gradually from a trivial
problem. Continuation cannot be expected to work well
in all cases. It is particularly well suited to cases where
f already depends on a parameter and the problem is
simpler for some value of that parameter.
Continuation is a very general technique and has
close connections with BIFURCATION THEORY [IV.21].
A special case of it is the idea of SHRINKING [V.10 §2.2],
whereby a convex combination is taken of a given
object with another having more desirable properties.

8 Linearization

A huge body of mathematics is concerned with prob-
lems that are linear in the variables of interest, such as
a system Ax = b of n linear equations in n unknowns
or a system of ODEs dy/dt = A(t)y. For linear prob-
lems it is usually easy to analyze the existence of solu-
tions, to obtain an explicit formula for a solution, and
to derive practical methods of solution that exploit the
linearity. Unfortunately, many real-world processes are
inherently nonlinear. This means, first of all, that it
may not be easy to determine whether or not there is
a solution at all or, if a solution exists, whether it is
unique. Secondly, finding a solution is in general dif-
ficult. A general technique for solving nonlinear prob-
lems is to transform them into linear ones, thereby con-
verting a problem that we cannot solve into one that
we can. The transformation can rarely be done exactly,
so what is usually done is to approximate the nonlin-
ear problem by a linear one—the process of lineariza-
tion—and carry out some sort of iteration or refinement
process.

To illustrate the idea of linear approximations we
consider the quadratic equation

x2-10x+1=0. (5)
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Because the coefficient of the linear term, 10, is large
compared with that of the quadratic term, 1, we can
think of (5) as a linear equation with a small quadratic

perturbation: )
1 X
X = m + m. (6)

Indeed, if we solve the linear part we obtain x = 1/10,
which leaves a residual of just 1/100 when substituted
into the left-hand side of (5). We can therefore say that
X =~ 1/10 is a reasonable approximation to a root (in
fact, to the smallest root, since the product of the roots
must be 1). Note that this approximation is obtained by
putting x = 0 in the right-hand side of (6). To obtain
a better approximation we might try putting x = 1/10
into the right-hand side. Repeating this process leads
to the fixed-point iteration
1+ x}

10
which yields 0, 0.10, 0.101, .... After ten iterations we
have x19 = 0.101020514433644, which is correct to
the fifteen significant digits shown. Of course we could
have obtained this solution as x = 5 — /24 using the
quadratic formula, but the linearization approach gives
an instant approximation and provides insight. For the
equation x” —10x + 1 = 0, for which there is no explicit
formula for the roots, 1/10 is an even better approxi-
mation to the smallest root and the analogue of the
iteration above converges even more quickly.

Linearization is the key concept underlying NEw-
TON’S METHOD [II.28], which we discussed in section 6.
Suppose we wish to solve a nonlinear system f(x) = 0,
where f: R™ — R", and let x be an approximation to a
solution x . Writing x4 = x + h, for sufficiently smooth
fwehave 0 = f(x4) = f(x)+J(x)h+O(||h|?), where
J(x) = (0fi/dxj) € R™™" is the Jacobian matrix and
the big-oh term includes the second- and higher-order
terms from a multidimensional Taylor series. Newton'’s
method approximates f by the linear part of the series
and so solves the linear system J(x)h = —f(x) in
order to produce a new approximation x + h. The pro-
cess is iterated, yielding xx.1 = xx — J(xx) L f(xp).
Theorems are available that guarantee when the lin-
ear approximations of the Newton method are good
enough to ensure convergence to a solution. Indeed
the Newton-Kantorovich theorem even uses Newton’s
method itself to prove the existence of a solution under
certain conditions.

An equilibrium point (or critical point) of a nonlin-
ear autonomous system of ODEs y'(t) = f(y), where
f:R"™ — R" is a vector y¢ such that f(yy) = 0. For

Xk+1 = xo =0,
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such a point, y(t) = yp is a constant solution to the
differential equations. Linear stability analysis deter-
mines the effect of small perturbations away from the
equilibrium point. Let y(t) = yo + h(t) with h(0) =
ho small. We wish to determine the behavior of h(t)
as t — oo. A linear approximation to f at yg yields
h' (t) = y'(t) = f(yo)+J(yo)h = J(0)h. The solution
to this first-order system is h(t) = e/(30)thg, and so the
behavior of h depends on the behavior of the MATRIX
EXPONENTIAL [II.14] /00t In particular, whether or
not h(t) grows or decays as t — o« depends on the real
parts of the eigenvalues of J(yp). For the case where
v has two components (n = 2), it is possible to give
detailed classifications and plots (called phase-plane
portraits) of the different qualitative behaviors that can
occur. For more on the stability of ODEs see ORDINARY
DIFFERENTIAL EQUATIONS [IV.2 §§8, 9].

An example of a nonlinear problem that can be
linearized exactly, without any approximation, is the
QUADRATIC EIGENVALUE PROBLEM [IV.10 §5.8].

Many other uses of linearization can be found
throughout this book.

9 Recurrence Relations

A useful tactic for solving a problem whose solution is
a number or function depending on a parameter is to
try to derive a recurrence. For example, consider the
integral

1 4n
Xn = .[0 m dt.

It is easy to verify that x, satisfies the recurrence
Xn + 5xn-1 = 1/n and xo = log(6/5), so values of x
can easily be generated from the recurrence. However,
when evaluating a recurrence numerically, one always
needs to be aware of possible instability. Evaluating the
recurrence in IEEE double-precision arithmetic (corre-
sponding to about sixteen significant decimal digits) we
find that xX2; = —0.0159..., where the hat denotes the
computed result. But

1 1gn Ln 1
6(n+1) _.[o th<x"<jo S¥=5mD

for all n, so this result is clearly not even of the right
sign. The cause of the inaccuracy can be seen by con-
sidering the ideal case in which the only error, ¢, say,
occurs in evaluating xo. That error is multiplied by
—5 in computing x; and by a further factor of —5 on
each step of the recurrence; overall, x, will be con-
taminated by an error of (—5)"¢. This is an example
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of numerical instability and it is something that recur-
rences are prone to. We can obtain a more accurate
result by using the recurrence in the backward direc-
tion, which will result in errors being divided by -5, so
that they are damped out. From the inequalities above
we see that for large n, x, = 1/(5(n+1)). Let us simply
set yo0 = 1/105. Then, using the recurrence backward
in the form x,,-1 = (1/n-x5)/5, we find that xq is com-
puted with a relative error of order 10716, For similar
reasons, the recurrence relation in THE LANGUAGE OF
APPLIED MATHEMATICS [I.2 §13] for the Bessel functions
is also used in the backward direction for x < n.

10 Lagrange Multipliers

Optimization problems abound in applied mathemat-
ics because in many practical situations one wishes
to maximize a desirable attribute (e.g., profit, or the
strength of a structure) or minimize something that is
desired to be small (such as cost or energy). More often
than not, constraints impose limits on the variables and
help to balance conflicting requirements. For example,
in designing a tripod for cameras we may wish to mini-
mize the weight of the tripod subject to it being able to
support cameras up to a certain maximal weight, and
a constraint might be a lower bound on the maximal
height of the tripod.

Calculus enables us to characterize and find max-
ima and minima of functions. In the presence of con-
straints, though, the standard results are not so helpful.
Consider the problem in three variables

minimize f(x1,x2,x3)
subject to ¢(x1,x2,X3) = 0, @

where the objective function f and constraint function
¢ are scalars. We know that any minimizer of the uncon-
strained problem min f(x;, x2, x3) has to have a zero
gradient; that is, V.f(x) = [8f/0x1,0f/0x2,0f/dx3]T
must be the zero vector. How can we take account of
the constraint c(x1,x2,x3) = 0?

Let x4 € R3? be a feasible point, that is, a point sat-
isfying the constraint c(xy) = 0. Consider a smooth
curve z(t) with z(0) = x4 that remains on the con-
straint, that is, c(z(t)) = 0 for all sufficiently small .
Differentiating the latter equation and using the chain
rule gives (dz(t)/dt)TVe(z(t)) = 0. Setting t = 0 and
putting ps« = dz/dt|;-o gives

pive(xy) = 0. 8)
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For x, to be optimal, the rate of change of f along z
must be zero at x4, so, using the chain rule again,
> of dai

d
0= sfew)| - S

= Vf(xs)ps. (9)

Now assume that Vc(xy) # 0, which is known as a
constraint qualification. This assumption ensures that
every vector p. satisfying (8) is the tangent at t = 0 to
some curve z(t). It then follows that since (8) and (9)
hold for all ps,

Vf(xs) = A Velxy) (10)

for some scalar A,. The scalar Ay is called a Lagrange
multiplier. The constraint equation ¢(x) = 0 and (10)
together constitute four equations in four unknowns,
X1, X2, X3, and A. We have therefore reduced the orig-
inal constrained minimization problem to a nonlinear
system of equations. The latter system can be solved
by any means at our disposal, though being nonlinear
it is not necessarily an easy problem.

Another way to express our findings is in terms of
the Lagrangian function L(x,A) = f(x) — Ac(x). Since
ViL(x,A) = Vf(x) —AVc(x), the Lagrange multiplier
condition (10) says that the solution x is a stationary
point of L with respect to x when A = A,. Moreover,
VaL(x,A) = —c(x), so stationarity of L with respect to
A expresses the constraint c¢(x) = 0.

The development above was presented for a problem
with three variables and one constraint, but it gener-
alizes in a straightforward way to n variables and m
constraints, with A becoming an m-vector of Lagrange
multipliers.

Let us see how Lagrange multipliers help us to solve
the problem

t=0

. . x? 2 2
maximize 8xyz subject to 2t

which defines the maximum rectangular block that fits
inside the specified ellipsoid. Although our original
problem (7) is a minimization problem, there is nothing
in the development of (10) that is specific to minimiza-
tion, and in fact the latter equation must be satisfied
at any stationary point, so we can use it here. Setting
X =x/a,y = vy/b, Z=z/c, the problem simplifies to

maximize 8abcX ¥z subject to X% + 2 + 2% = 1.

The Lagrange multiplier condition is

3 2%
8abc | %z | =A |2y
2y 23

39

It is easily seen that these equations yield x = y = Z =
1//3 (and Ay = 4abc/+/3) and that the correspond-
ing volume is 8abc/(3./3). It is intuitively clear that
this is a maximum, though in general checking for opti-
mality requires further analysis involving inspection of
second derivatives.

Lagrange multipliers and the Lagrangian function are
widely used in applied mathematics in a variety of set-
tings, including the CALCULUS OF VARIATIONS [IV.6] and
LINEAR AND NONLINEAR OPTIMIZATION [IV.11]. One of
the reasons for the importance of Lagrange multipli-
ers is that they quantify the sensitivity of the optimal
value to perturbations in the constraints. We can check
this for our problem. If we perturb the constraint to
x%/a®+y?%/b?+z?/c? = 1+¢, thenit is easy to see that
the solution is V(&) = 8abc((1 + £)/3)Y/2, and hence
V'(0) = 4abc//3 = As.

11 Tricks and Techniques

As well as the general ideas and principles described in
this article, applied mathematicians have at their dis-
posal their own bags of tricks and techniques, which
they bring into play when experience suggests they
might be useful. Some will work only on very specific
problems. Others might be nonrigorous but able to give
useful insight. George Polya is quoted as saying, “A
trick used three times becomes a standard technique.”
Here are a few examples of tricks and techniques that
prove useful on many different occasions, along with a
very simple example in each case.

Use symmetry. When a problem has certain symme-
tries one can often argue that these must carry over into
the solution. For example, the maximization problem at
the end of the previous section is symmetric in X, 7,
and Z, so one can argue that we must have X = y = 2
at the solution.

Add and subtract a term, or multiply and divide by a
term. As a very simple example, if A and B are n x n
matrices with A nonsingular, then AB = AB - AA™! =
A(BA)A~!, which shows that AB and BA are similar and
that they therefore have the same eigenvalues. A com-
mon scenario is that X is an approximation to x whose
error cannot be directly estimated, but one can find
another approximation X whose relation to x and X is
understood. One then writes x — X = (x — X) + (X — X)
and thereby obtains, using the triangle inequality, the
bound [|x — X|| < |[x — X|| + [|[X — X||. For example, x
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problems. Of course, algorithm 1 does not cover all
the possibilities. Another way to compute the sum is
as Sy = log [1iL, e¥i. This formula has little to recom-
mend it, but it is not so different from the expression
exp(n-log 3" x;), which is a log-Euclidean mean of
the x; that has applications when the x; are structured
matrices or operators.

2 Bisection

The summation problem is unusual in that there is no
difficulty in seeing the correctness of algorithm 1 or
its computational cost. A slightly trickier algorithm is
the bisection algorithm for finding a zero of a contin-
uous function f(x). The bisection algorithm takes as
input an interval [a, b] such that f(a)f(b) < 0; the
intermediate-value theorem tells us that there must be
a zero of f on this interval. The bisection algorithm
repeatedly halves the interval and retains the half on
which f has different signs at the endpoints, that is,
the interval on which we can be sure there is a zero. To
make the algorithm finite we need a stopping criterion.
The following algorithm terminates once the interval is
of length at most tol, a given tolerance.

Algorithm 2 (bisection algorithm). This algorithm
finds a zero of a continuous function f(x) given an
interval [a,b] such that f(a)f(b) < 0 and an error
tolerance tol.

1 while b —a > tol

2 c=(a+b)/2

3 if f(¢) =0, quit, end
4 if f(c)f(b) <0

5 a=c

6 else

7 b=c

8 end

9 end

100 x=(a+b)/2

To show the correctness of this algorithm note first
that at the end of the while loop f(a)f(b) < 0 still
holds; in other words, this inequality is an invariant
of the loop. Therefore we have a sequence of intervals
each of length half the previous interval and all con-
taining a zero. This means that after k steps we have an
interval of length (b—a)/2¥ containing a zero. The algo-
rithm therefore terminates after [log,((|b — a|/tol))]
steps. Here, we are using the ceiling function [ x 1, which
is the smallest integer greater than or equal to x. In the
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next section we will also need the floor function | x|,
which is the largest integer less than or equal to x.

The algorithm returns as the approximate zero the
midpoint of the final interval, which has length at most
tol; since a zero lies in this interval, the absolute error
is at most tol/2.

Algorithm 2 needs a number of refinements to make
it more reliable and efficient for practical use. First,
testing whether f(c) and f(b) have opposite signs
should not be done by multiplying them, as the prod-
uct could overflow or underflow in floating-point arith-
metic. Instead, the signs should be directly compared.
Second, f(c) should not be computed twice, on lines 3
and 4, but rather computed once and its value reused.
Finally, the convergence test is an absolute one, so
is scale dependent. A better alternative is |b — a| >
tol(|a| + |b|), which is unaffected by scalings a — Oa,
b — 0b.

Bisection is a widely applicable technique. For exam-
ple, it can be used to search an ordered list to see if a
given element is contained in the list; here it is known as
binary search. It is also used for debugging. If the BTiX
source for this article fails to compile and I cannot spot
the error, I will move the \end{document} command
to the middle of the file and try again; I can thereby
determine in which half of the file the error lies and
can repeat the process to narrow the error down.

3 Divide and Conquer

The divide and conquer principle breaks a problem
down into two (or more) equally sized subproblems and
solves each subproblem recursively.

An example of how divide and conquer can be
exploited is in the computation of a large integer power
of a number. Computing x" in the obvious way takes
n — 1 multiplications. But x!3, for example, can be
written x8x%x, which can be evaluated in just five
multiplications instead of twelve by first forming x2,
x* = (x?2)2, and x® = (x*)2. Notice that 13 = (1101)»
in base 2, and in general the base 2 representation of
n tells us exactly how to break down the computation
of x™ into products of terms x2*, However, by express-
ing the computation using divide and conquer we can
avoid the need to compute the binary representation
of n. The idea is to write x™ = (x"/2)2 if n is even and
x" = x(x"/21)2 if n is odd. In either case the problem
is reduced to one of half the size. The resulting algo-
rithm is most elegantly expressed in recursive form, as
an algorithm that calls itself.
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Algorithm 3. This algorithm computes x" for a posi-
tive integer n.

1 function y = power(x,n)

2 ifn =1,y =x,return

3 if nis odd

4 v = xpower(x,(n—1)/2)2 % Recursive call
5 else

6 7y =power(x,n/2)? % Recursive call
7 end

The number of multiplications required by algo-
rithm 3 is bounded above by 2|log, n|.

Another example of how divide and conquer can
be used is for computing the inverse of a nonsingu-
lar upper triangular matrix, T € C"*", Write T in
partitioned form as

T T
T= [ 0 Tzz] ’ (1)
where T7; has dimension [n/2]. It is easy to check that
-1 = T ~Ti T Ty
0 T ’

This formula reduces the problem to the computation
of the inverses of two smaller matrices, namely, the
diagonal blocks T7; and T»2, and their inverses can be
expressed in the same way. The process can be repeated
until scalars are reached and the inversion is trivial.

Algorithm 4. This algorithm computes the inverse of
a nonsingular upper triangular matrix T by divide and
conquer.

function U = inv(T)

n = dimension of T

if n =1, u;; = t;}, return

Partition T according to (1), where T;; has
dimension [n/2].

=W =

5 Un =inv(Ti1) % Recursive call
6 Uz =inv(T22) % Recursive call
7 Uz = -UnTi2Uz.

Let us now work out the computational cost of this
algorithm, in flops, where a flop is a multiplication,
addition, subtraction, or division. Denote the cost of
calling inv for an n xn matrix by ¢, and assume for sim-
plicity that n = 2k, We then have ¢,, = 2¢y )2 +2(n/2)3,
where the second term is the cost of forming the
triangular-full-triangular product Uy T12U»2 of matri-
ces of dimension n/2. Solving this recurrence gives
cn = n3/3 + O(n?), which is the same as the cost of
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inverting a triangular matrix by standard techniques
such as solving TX = I by substitution.

As these examples show, recursion is a powerful way
to express algorithms. But it is not always the right tool.
To illustrate, consider the Fibonacci numbers, 1, 1, 2, 3,
5, ..., which satisfy the recurrence f,, = fn-1 + fn-2 for
n > 2, with fo = f1 = 1. The obvious way to express
the computation of the f; is as a loop:

1 fo=1, =1

2 fori=2:n

3 fi=fio1+ fi2
4 end

If just fy is required then an alternative is the recursive
function

1 function f = fib(n)

2 ifngl

3 f=1

4 else

5 f=fib(n-1)+fib(n-2)
6 end

The problem with this recursion is that it computes
fib(n — 1) and fib(n — 2) independently instead of
obtaining fib(n — 1) from fib(n — 2) with one addition
as in the previous algorithm. In fact, the evaluation of
fib(n) requires f), ~ 1.6™ operations, so the recursive
algorithm is exponential in cost versus the linear cost
of the first algorithm. It is possible to compute f,, with
only logarithmic cost. The idea is to write

PR R RS
[T

The matrix [!}]"" can be computed in O(log,n)
operations using the analogue for matrices of algo-
rithm 3.

A divide and conquer algorithm can break the prob-
lem into more than two subproblems. An example is the
Karatsuba algorithm for multiplying two n-digit inte-
gers x and y. Suppose n is a power of 2 and write
x = x110"2 + x5, y = y110"2 + y,, where x1, x2,
1, and y» are n/2-digit integers. Then

xy =x10110" + (x12 + x271)10™2 + x25.
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Computing xy has been reduced to computing three
half-sized products because x1y2 + x2y1 = (x1 +
x2)(v1 + ¥2) — x11 — x2¥2. This procedure can be
applied recursively. Denoting by C, the number of
arithmetic operations (on single-digit numbers) to form
the product of two n-digit integers by this algorithm,
we have Cy = 3Cn/2 + kn and C; = 1, where kn is the
cost of the additions. Then

Cn =3(3Cnja + kn/2) + kn
=3(3(3Cnss +kn/4) + kn/2) + kn
=kn(1+3/2+ (3/2)% + - - -+ (3/2)lo821)
~ 3kn'o8:3 =~ 3kn'-8,

where the approximation is obtained by assuming that
n is a power of 2. The cost is asymptotically less
than the O(n?) cost of forming x7y by the usual long
multiplication method taught in school.

4 Computational Complexity

The computational cost of an algorithm is usually
defined as the total number of arithmetic operations
it requires, though it can also be defined as the execu-
tion time, under some assumption on the time required
for each arithmetic operation. The cost is usually a
function of the problem size, n say, and since the
growth with n is of particular interest, the cost is
usually approximated by the highest-order term, with
lower-order terms ignored.

The algorithms considered so far all have the prop-
erty that their computational cost is straightforward
to evaluate and essentially independent of the data.
For many algorithms the cost can vary greatly with the
data. For example, an algorithm to sort a list of num-
bers might run more quickly when the list is nearly
sorted. In this case it is desirable to find a bound that
applies in all cases (a worst-case bound)—preferably
one that is attainable for some set of data. It is also use-
ful to have estimates of cost under certain assumptions
on the distribution of the data. In average-case analy-
sis, a probability distribution is assumed for the data
and the expected cost is determined. Smoothed analy-
sis, developed since 2000, interpolates between worst-
case analysis and average-case analysis by measuring
the expected performance of algorithms under small
random perturbations of worst-case inputs. A number
of algorithms are known for which the worst-case cost
is exponential in the problem dimension n whereas the
smoothed cost is polynomial in n, a prominent exam-
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ple being the sIMPLEX METHOD [IV.11 §3.1] for linear
programming.

A good example of a problem for which different
algorithms can have widely varying cost is the solution
of a linear system Ax = b, where A is an n X n matrix.
Cramer’s rule states that x; = det(A;(b))/det(A),
where A;(b) denotes A with its ith column replaced by
b. If the determinant is evaluated from the usual text-
book formula involving EXPANSION BY MINORS [1.2 §18],
the cost of computing x is about (n + 1)! operations,
making this method impractical unless n is very small.
By contrast, Gaussian elimination solves the system
in 2n3/3 + O(n?) operations, with mere polynomial
growth of the operation count with n. However, Gauss-
ian elimination is by no means of optimal complexity,
as we now explain.

The complexity of matrix inversion can be shown
to be the same as that of matrix multiplication, so it
suffices to consider the matrix multiplication problem
C = AB for n x n matrices A and B. The usual formula
for matrix multiplication yields C in 2n3 operations. In
a 1969 paper Volker Strassen showed that when n = 2
the product can be computed from the formulas

p1 = (an +az) (b1 + b22),

p2 = (a2 +az)bn, p3 = an (b2 — bp),

p4 = az (b2 — b11), ps = (an +ai2)b2,

pe = (a21 —an) (b1 + b12),
p7 = (@12 — a22) (b2 + b2),

C=[p1+m—ps+ﬂ7 pP3 +pPs ]
p2 + p4 pP1+p3—p2+ps

The evaluation requires seven multiplications and eigh-
teen additions instead of eight multiplications and
eight additions for the usual formulas. At first sight,
this does not appear to be an improvement. However,
these formulas do not rely on commutativity so are
valid when the a;; and b;; are matrices, in which case
for large dimensions the saving of one multiplication
greatly outweighs the extra ten additions. Assuming
n is a power of 2, we can partition A and B into
four blocks of size n/2, apply Strassen’s formulas
for the multiplication, and then apply the same for-
mulas recursively on the half-sized matrix products.
The resulting algorithm requires O (n!°8:7) = O (n2381)
operations. Strassen’s work sparked interest in finding
matrix multiplication algorithms of even lower com-
plexity. Since there are O (n?) elements of data, which
must each participate in at least one operation, the
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Table 1 The cost of solving an n x n linear system obtained
by discretizing the two-dimensional Poisson equation.

Year Method Cost Type
1948 Banded Cholesky n? Direct
1948  Jacobi, Gauss-Seidel n? Iterative
1950  SOR (optimal parameter)  n3/2  Iterative
1952  Conjugate gradients n3/2 Iterative
1965  Fast Fourier transform nlogn  Direct
1965  Block cyclic reduction nlogn Direct
1977  Multigrid n Iterative

exponent of n must be at least 2. The current world
record upper bound on the exponent is 2.3728639,
proved by Francois Le Gall in 2014. However, all
existing algorithms with exponent less than that of
Strassen’s algorithm are extremely complicated and not
of practical interest.

An area that has undergone many important algo-
rithmic developments over the years is the solution of
linear systems arising from the discretization of par-
tial differential equations (PDEs). Consider the POISSON
EQUATION [III.18] on a square with the unknown func-
tion specified on the boundary. When discretized on
an N x N grid by centered differences, a system of
n = N? equations in n unknowns is obtained with a
banded, symmetric positive-definite coefficient matrix
containing O(n) nonzeros. Table 1 gives the domi-
nant term in the operation count (ignoring the mul-
tiplicative constant) for different methods, some of
which are described in NUMERICAL LINEAR ALGEBRA
AND MATRIX ANALYSIS [IV.10]. For the iterative algo-
rithms it is assumed that the iteration is terminated
when the error is of order 1076, The year is the year
of first publication, or, for the first two methods, the
year that the first stored-program computer was opera-
tional. Since there are n elements in the solution vector
and at least one operation is required to compute each
element, a lower bound on the cost is O(n), and this
is achieved by the multigrid method. The algorithmic
speedups shown in the table are of a similar magni-
tude to the speedups in computer hardware over the
same period.

4.1 Complexity Classes

The algorithms we have described so far all have a cost
that is bounded by a polynomial in the problem dimen-
sion, n. For some problems the existence of algorithms
with polynomial complexity is unclear. In analyzing this
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NP-complete

Figure 2 Complexity classes. It is not known
whether the classes P and NP are equal.

question mathematicians and computer scientists use
a classification of problems that makes a distinction
finer than whether there is or is not an algorithm of
polynomial run time. This classification is phrased in
terms of decision problems: ones that have a yes or no
answer. The problem class P comprises those problems
that can be solved in polynomial time in the problem
dimension. The class NP comprises those problems for
which a yes answer can be verified in polynomial time.
An example of a problem in NP is a jigsaw puzzle: it
is easy to check that a claimed solution is a correctly
assembled puzzle, but solving the puzzle in the first
place appears to be much harder.

A problem is NP-complete if it is in NP and it is pos-
sible to reduce any other NP problem to it in polyno-
mial time. Hence if a polynomial-time algorithm exists
for an NP-complete problem then all NP problems can
be solved in polynomial time. Many NP-complete prob-
lems are known, including Boolean satisfiability, graph
coloring, choosing optimal page breaks in a document,
and the Battleship game or puzzle.

A problem (not necessarily a decision problem) is NP-
hard if it is at least as hard as any NP problem, in
the sense that there is an NP-complete problem that
is reducible to it in polynomial time. Thus the NP-hard
problems are even harder than the NP-complete prob-
lems. Examples of NP-hard problems are the TRAVEL-
ING SALESMAN PROBLEM [VL.18], SPARSE APPROXIMA-
TION [VIL.10], and nonconvex QUADRATIC PROGRAM-
MING [IV.11 §1.3]. Figure 2 shows the relation among
the classes.

An excellent example of the subtleties of computa-
tional complexity is provided by the determinant and
the permanent of a matrix. The permanent of an n x n
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matrix A is

n
perm(A) = > [ ] aig,
T =1
where the vector o ranges over all permutations of
the set of integers {1,2,...,n}. The determinant has
a similar expression differing only in that the product
term is multiplied by the sign (+1) of the permutation.
Yet while the determinant can be computed in O(n?)
operations, by Gaussian elimination, no polynomial-
time algorithm has ever been discovered for comput-
ing the permanent. Leslie Valiant gave insight into this
disparity when he showed in 1979 that the problem of
computing the permanent is complete for a complexity
class of counting problems called #P that extends NP.
The most famous open problem in computer science
is “is P equal to NP?” It was posed by Stephen Cook
in 1971 and is one of the seven Clay Institute Millen-
nium Problems, for each of which a $1 million prize
is available for a solution. Informally, the question is
whether the “easy to solve” problems are equal to the
“easy to check” problems. It is known that P < NP, so
the question is whether or not the inclusion is strict.

5 Trade-off between Speed and Accuracy

In designing algorithms that run in floating-point arith-
metic it frequently happens that an increase in speed
is accompanied by a decrease in accuracy. A classic
example is the computation of the sample variance of
n numbers xi,..., Xy, which is defined as

1 n

2 -

ST o - (xi — %), (2)
i=1

where the sample mean

n

> xi.

o1
nia

Computing s2 from this formula requires two passes
through the data, one to compute x and the other
to accumulate the sum of squares. A two-pass com-
putation is undesirable for large data sets or when
the sample variance is to be computed as the data is
generated. An alternative formula, found in statistics
textbooks (and implemented on many pocket calcula-
tors and spreadsheets over the years), uses about the
same number of operations but requires only one pass

through the data:
n 2
(Zx))- 3)
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However, this formula behaves badly in floating-point
arithmetic. For example, if n = 3 and x; = 10000,
x2 = 10001, and x3 = 10002, then, in IEEE single-
precision arithmetic (with unit roundoff u ~ 6 x 10-8),
the sample variance is computed as 1.0 by the two-pass
formula (relative error 0) but 0.0 by the one-pass for-
mula (relative error 1). The reason for the poor accu-
racy of the one-pass formula is that there is massive
SUBTRACTIVE CANCELATION [IL.13] in (3). The original
formula (2) always yields a computed result with error
O(nu). Is there a way of combining the speed of the
one-pass formula with the accuracy of the two-pass
one? Yes: the recurrence

M; = x,, Q1 =0,
Mic = Myoy + =Mt
k .
(k= 1) (xx — My_1)2 k=2:n
Qk = Qg1 + l;( k-1

calculates Q, which yields s2 = Qy/(n — 1) and pro-
duces an accurate result in floating-point arithmetic.

6 Choice of Algorithm

Much research in numerical analysis and scientific com-
puting is about finding the best algorithm for solving a
given problem, and for classic problems such as solv-
ing a PDE or finding the eigenvalues of a matrix there
are many possibilities, with improvements continually
being developed. However, even for some quite elemen-
tary problems there are several possible algorithms,
some of which are far from obvious.

A first example is the evaluation of a polynomial
p(x)=ap+aix +---+anx™. The most obvious way
to evaluate the polynomial is by directly forming the
powers of x.

1 p=ag+ax,w=Xx
2 fori=2:n

3 w=wx
4 p=pt+taw
5 end

This algorithm requires 2n multiplications and n addi-
tions (ignoring the constant term in the operation
count).

An alternative method is Horner’s method (nested
multiplication). It is derived by writing the polynomial
in nested form:

p(x)=(--((anx+an-1)x+an-2)x+---+a)x+aop.
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Table 2 Some algorithms mentioned in this book.

Algorithm Reference Key early figures

Gaussian elimination IV.10§2 Ancient Chinese (ca. 1 C.E.), Gauss (1809); formulated
as LU factorization by various authors from 1940s

Newton's method I1.28 Newton (1669), Raphson (1690)

Fast Fourier transform I.10 Gauss (1805), Cooley and Tukey (1965)

Cholesky factorization IV.10§2 Cholesky (1910)

Remez algorithm 1V.98§3.5, VI.11 §2 Remez (1934)

Simplex method IV.1183.1 Dantzig (1947)

(linear programming)

Conjugate gradient and IV.108§9 Hestenes and Stiefel (1952), Lanczos (1952)

Lanczos methods

Ford-Fulkerson algorithm IV.3787 Ford and Fulkerson (1956)

k-means algorithm 1V.178§5.3 Lloyd (1957), Steinhaus (1957)

OR factorization IV.10§2 Givens (1958), Householder (1958)

Dijkstra’s algorithm VL10 Dijkstra (1959)

Quasi-Newton methods IV.1184.2 Davidon (1959), Broyden, Fletcher, Goldfarb, Powell,
Shanno (early 1960s)

OR algorithm 1V.10§5.5 Francis (1961), Kublanovskaya (1962)

QZ algorithm IV.1085.8 Moler and Stewart (1973)

Singular value 11.32 Golub and Kahan (1965), Golub and Reinsch (1970)

decomposition

Strassen’s method 1.484 Strassen (1968)

Multigrid IV.1089, IV.13 §3, IV.16 Fedorenko (1964), Brandt (1973), Hackbusch (1977)

Interior point methods 1V.11§3.2 Karmarkar (1984)

Generalized minimal IV.10§9 Saad and Schulz (1986)

residual method

Fast multipole method VIL.17 Greengard and Rokhlin (1987)

JPEG VII.7 §5, VIL.8 Members of the Joint Photographic Experts Group (1992)

PageRank VL9 Brin and Page (1998)

HITS I.1 Kleinberg (1999)

existing mathematical ideas to practical problems: new
results are continually being developed, usually build-
ing on old ones. Applied mathematicians are always
innovating, and the constant arrival of new or modified
problems provides direction and motivation for their
research.

In this article we describe some goals of research
in applied mathematics from the perspectives of the
ancient problem of solving equations, the more con-
temporary theme of exploiting structure, and the prac-
tically important tasks of modeling and prediction. We
also discuss the strategy behind research.

1 Solving Equations

A large proportion of applied mathematics research
papers are about analyzing or solving equations. The

equations may be algebraic, such as linear or nonlin-
ear equations in one or more variables. They may be
ordinary differential equations (ODEs), partial differen-
tial equations (PDEs), integral equations, or differential-
algebraic equations.

The wide variety of equations reflects the many dif-
ferent ways in which one can attempt to capture the
behavior of the system being modeled. Whatever the
equation, an applied mathematician is interested in
answering a number of questions.

1.1 Does the Equation Have a Solution?

We are interested in whether there is a unique solu-
tion and, if there is more than one solution, how many
there are and how they are characterized. Existence of
solutions may not be obvious, and one occasionally
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hears tales of mathematicians who have solved equa-
tions for which a proof is later given that no solution
exists. Such a circumstance may sound puzzling: is it
not easy to check that a putative solution actually is
a solution? Unfortunately, checking satisfaction of the
equation may not be easy, especially if one is working
in a function space. Moreover, the problem specifica-
tion may require the solution to have certain proper-
ties, such as existence of a certain number of deriva-
tives, and the claimed solution might satisfy the equa-
tion but fail to have some of the required properties.
Instead of analyzing the problem in the precise form in
which it is given, it may be better to investigate what
additional properties must be imposed for an equation
to have a unique solution.

1.2 Is the Equation Well-Posed?

A problem is well-posed if it has a unique solution
and the solution changes continuously with the data
that define the problem. A problem that is not well-
posed is ill-posed. For an ill-posed problem an arbitrar-
ily small perturbation of the data can produce an arbi-
trarily large change in the solution, which is clearly an
unsatisfactory situation.

An example of a well-posed problem is to determine
the weight supported by each leg of a three-legged
table. Assuming that the table and its legs are perfectly
symmetric and the ground is flat, the answer is that
each leg carries one-third of the total weight. For a table
with four legs each leg supports one-quarter of the total
weight, but if one leg is shortened by a tiny amount then
it leaves the ground and the other three legs support
the weight of the table (a phenomenon many of us have
experienced in restaurants). For four-legged tables the
problem is therefore ill-posed.

For finite-dimensional problems, uniqueness of the
solution implies well-posedness. For example, a linear
system Ax = b of n equations in n unknowns with
a nonsingular coefficient matrix A is well-posed. Even
so, if A is nearly singular then a small perturbation of
A can produce a large change in the solution, albeit
not arbitrarily large: the CONDITION NUMBER [I.2 §22]
k(A) = ||A|lIA~Y| bounds the relative change. But
for infinite-dimensional problems the existence of a
unique solution does notimply that the problem is well-
posed; examples are given in the article on INTEGRAL
EQUATIONS [IV.4 §6].

The notion of well-posedness was introduced by
Jacques Hadamard at the beginning of the twentieth
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century. He believed that physically meaningful prob-
lems should be well-posed. Today it is recognized that
many problems are ill-posed, and they are routinely
solved by reformulating them so that they are well-
posed, typically by a process called REGULARIZATION
[IV.15 §2.6] (see also INTEGRAL EQUATIONS [IV.4 §7]).

An important source of ill-posed problems is INVERSE
PROBLEMS [IV.15]. Consider a mathematical model in
which the inputs are physical variables that can be
adjusted and the output variables are the result of an
experiment. The forward problem is to predict the out-
puts from a given set of inputs. The inverse problem is
to make deductions about the inputs that could have
produced a given set of outputs. In practice, the mea-
surements of the outputs may be subject to noise and
the model may be imperfect, SO UNCERTAINTY QUAN-
TIFICATION [I1.34] needs to be carried out in order
to estimate the uncertainty in the predictions and
deductions.

1.3 What Qualitative Properties Does a Solution
Have?

It may be of more interest to know the behavior of a
solution than to know the solution itself. One may be
interested in whether the solution, f(t) say, decays as
t — oo, whether it is monotonic in t, or whether it oscil-
lates and, if so, with what fixed or time-varying fre-
quency. If the problem depends on parameters, it may
be possible to answer these questions for a range of
values of the parameters.

1.4 Does an Iteration Converge?

As we saw in METHODS OF SOLUTION [I.3], solutions
are often computed from iterative processes, and we
therefore need to understand these processes. Various
facets of convergence may be of interest.

e Is the iteration always defined, or can it break
down (e.g., because of division by zero)?

e For what starting values, and for what class of
problems, does the iteration converge?

« Towhat does the iteration converge, and how does
this depend on the starting value (if it does at all)?

« How fast does the iteration converge?

e« How are errors (in the initial data, or round-
ing errors introduced during the iteration) prop-
agated? In particular, are they bounded?
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To illustrate some of these points we consider the
iteration

1 .
X = 5 [P = D +x, Pal, &)

with p a positive integer and a € C, which is Newton’s
method for computing a pthroot of a. We ask for which
a and which starting values xg the iteration converges
and to what root it converges. The analysis is simplified
by defining yx = 0~ xy, where 0 is a pth root of a, as
the iteration can then be rewritten

1 L .
yk+1=5[(p—1)yk+yi P, y=0"x, (2

which is Newton’s method for computing a pth root
of unity. The original parameters a and x( have been
combined into the starting value yy.

Figure 1 illustrates the convergence of the iteration
for p = 2,3, 5. For yp ranging over a 400 x400 grid with
Re yp,Im yy € [-2.5,2.5], it plots the root to which yi
from (2) converges, with each root denoted by a dif-
ferent grayscale from white (the principal root, 1) to
black. Convergence is declared if after fifty iterations
the iterate is within relative distance 103 of a root;
the relatively small number of points for which conver-
gence was not observed are plotted white. For p = 2
the figure suggests that the iteration converges to 1 if
started in the open right half-plane and —1 if started in
the open left half-plane, and this can be proved to be
true. But for p = 3,5 the regions of convergence have
a much more complicated structure, involving sectors
with petal-like boundaries.

The complexity of the convergence for p > 3 was
first noticed by Arthur Cayley in 1879, and an analy-
sis of convergence for all starting values requires the
theory of Julia sets of rational maps. However, for prac-
tical purposes it is usually principal roots that need to
be computed, so from a practical viewpoint the main
implication to be drawn from the figure is that for
p = 3,5 Newton's method converges to 1 for yg suf-
ficiently close to the positive real axis—and it can be
proved that this is true.

We see from this example that the convergence analy-
sis depends very much on the precise question that
is being asked. The iteration (1) generalizes in a nat-
ural way to matrices and operators, for which the
convergence results for the scalar case can be exploited.

2 Preserving Structure

Many mathematical problems have some kind of struc-
ture. An example with explicit structure is a linear sys-
tem Ax = b in which the n X n matrix A is a TOEPLITZ
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MATRIX [I.2 §18]. This system has n? + n numbers in A
and b but only 3n — 1 independent parameters. On the
other hand, if for the vector ODE y’ = f(t,y) there is
avector v such that v' f(t,y) = 0 for all t and y, then
(d/dtyvTy(t) = vTf(t,y) = 0,s0 vTy(t) is constant
for all t. This conservation or invariance property is a
form of structure, though one more implicit than for
the Toeplitz system.

An example of a nonlinear conservation property is
provided by the system of ODEs

u'(t) =v(t),
v (t) = —u(t).

For this system,
%(u2 +v¥) =2u+v'v) =2vu -uv) =0,

so there is a quadratic invariant. In particular, for the
initial values u(0) = 1 and v(0) = 0 the solution is
u(t) = cost and v(t) = —sint, which lies on the unit
circle centered at the origin in the uv-plane. If we solve
the system using a numerical method, we would like the
numerical solution also to lie on the circle. In fact, one
potential use of this differential equation is to provide
a method for plotting circles that avoids the relatively
expensive evaluation of sines and cosines. Consider the
following four standard numerical methods applied to
our ODE system. Here, uy = u(kh) and vy ~ v(kh),
where h is a given step size, and up = 1 and vo = 0:

{ukd = uy + hy,

Forward Euler
Vk+1 = Vk — hug,

U+ = Uk + AUk,

Backward Euler {
Uks1 = Vg — hug,,

Ugsy = Uk + h(Vg + Vri) /2,

Trapezium method
P {v:m = Uk — h(ug + Uk+1) /2,

Uk+1 = Uk + hvk,

Leapfrog method { Vit = Vi — Mt

Figure 2 plots the numerical solutions computed with
32 steps of length h = 2m/32. We see that the for-
ward Euler solution spirals outward while the backward
Euler solution spirals inward. The trapezium method
solution stays nicely on the unit circle. The leapfrog
method solution traces an ellipse. This behavior is easy
to explain if we write each method in the form

Uk
Zg+1 = Gzg, Zx = [vk],

where G = [ 4, "] for the Euler method, for example.
Then the behavior of the sequence z; depends on the
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Figure 1 Newton iteration for a pth root of unity. Each point y in the region is shaded according
to the root to which the iteration converges, with white denoting the principal root, 1.

eigenvalues of the matrix G. It turns out that the spec-
tral radius of G is greater than 1 for forward Euler
and less than 1 for backward Euler, which explains
the spiraling. For the trapezium rule G is orthogonal,
SO ||zk+1ll2 = ||zkll2 and the trapezium solutions stay
exactly on the unit circle. For the leapfrog method the
determinant of G is 1, which means that areas are pre-
served, but G is not orthogonal so the leapfrog solution
drifts slightly off the circle.

The subject of GEOMETRIC INTEGRATION [IV.12 §5] is
concerned more generally with methods for integrat-
ing nonlinear initial-value ODEs and PDEs in a way that
preserves the invariants of the system, while also pro-
viding good accuracy in the usual sense. This includes,
in particular, SYMPLECTIC INTEGRATORS [IV.12 §1.3] for
Hamiltonian systems.

3 Modeling and Prediction

AS WHAT IS APPLIED MATHEMATICS? [I.1 §1] explains,
modeling is the first step in solving a physical prob-
lem. Models are necessarily simplifications because it is
impractical to incorporate every detail. But simple mod-
els can still be useful as tools to explore the broad con-
sequences of physical laws. Moreover, the more com-
plex a model is the more parameters it has (all of which
need estimating) and the harder it is to analyze.

In their 1987 book Empirical Model-Building and
Response Surfaces, Box and Draper ask us to

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be
useful.

Road maps illustrate this statement. They are always a
simplified representation of reality due to representing
a three-dimensional world in two dimensions and dis-
playing wiggly roads as straight lines. But road maps

are very useful. Moreover, there is no single “correct”
map but rather many possibilities depending on reso-
lution and purpose. Another example is the approxima-
tion of 7r. The approximation m = 3.14 is a model for
1t that is wrong in that it is not exact, but it is good
enough for many purposes.

Itis difficult to give examples of the modeling process
because knowledge of the problem domain is usually
required and derivations can be lengthy. We will use for
illustration a very simple model of population growth,
based on the logistic equation

((jj—j:/ =rN (1 - %)
Here, N (t) is a representation in a continuous variable
of the number of individuals in a population at time ¢,
r > 0 is the growth rate of the population, and K > 0
is the carrying capacity. For K = o, the model says
that the rate of change of the population, dN/dt, is
rN; that is, it is proportional to the size of the popu-
lation through the constant 7, so the population grows
exponentially. For finite K, the model attenuates this
rate of growth by a subtractive term *N?2 /K, which can
be interpreted as representing the increasing effects
of competition for food as the population grows. The
logistic equation can be solved exactly for N(t) (see
ORDINARY DIFFERENTIAL EQUATIONS [IV.2 §2]). Labora-
tory experiments have shown that the model can pre-
dict reasonably well the growth of protozoa feeding on
bacteria. However, for some organisms the basic logis-
tic equation is not a good model because it assumes
instant responses to changes in population size and so
does not account for gestation periods, the time taken
for young to reach maturity, and other delays. A more
realistic model may therefore be
dN(t) 1_N(t—T))
dt K ’

=rN(t)(
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Backward Euler

Forward Euler

Trapezium method

Leapfrog method

Figure 2 Approximations to the unit circle computed by four different numerical integrators with
step size h = 211/32. The dotted line is the unit circle; asterisks denote numerical approximations.

where T > 0 is a delay parameter. At time t, part of
the quadratic term is now evaluated at an earlier time,
t — 7. This delay differential equation has oscillatory
solutions and has been found to model well the popu-
lation of lemmings in the Arctic. Note that in contrast to
the PREDATOR-PREY MODEL [L.2 §10], the delayed logis-
tic model can produce oscillations in a population with-
out the need for a second species acting as predator.
There is no suggestion that either of these logistic mod-
els is perfect, but with appropriate fitting of parame-
ters they can provide useful approximations to actual
populations and can be used to predict future behavior.

3.1 Errors

A lot of research is devoted to understanding the
errors that arise at the different stages of the modeling
process. These can broadly be categorized as follows.

Errors in the mathematical model. Setting up the
model introduces errors, since the model is never exact.
These are the hardest errors to estimate.

Approximation errors. These are the errors incurred
when infinite-dimensional equations are replaced by a
finite-dimensional system (that is, a continuous prob-
lem is replaced by a discrete one: the process of dis-
cretization), or when simpler approximations to the
equations are developed (e.g., by MODEL REDUCTION
[I1.26]). These errors include errors in replacing one
approximating space by another (e.g., replacing con-
tinuous functions by polynomials), errors in FINITE-
DIFFERENCE [II.11] approximations, and errors in trun-
cating power series and other expansions.

Rounding errors. Once the problem has been putin a
form that can be solved by an algorithm implemented
in a computer program, the effects of the rounding
errors introduced by working in finite-precision arith-
metic need to be determined.

Analysis of errors may include looking at the effects
of uncertainties in the model data, including in any
parameters in the model that must be estimated. This
might be tackled in a statistical sense using techniques
from UNCERTAINTY QUANTIFICATION [II.34]—indeed, if
the model has incompletely known data then proba-
bilistic techniques may already be in use to estimate
the missing data. Sensitivity of the solution of the
model may also be analyzed by obtaining worst-case
error bounds with the aid of CONDITION NUMBERS
[1.2§22].

3.2 Multiphysics and Multiscale Modeling

Scientists are increasingly tackling problems with one
or both of the following characteristics: (a) the sys-
tem has multiple components, each governed by its
own physical principles; and (b) the relevant processes
develop over widely different time and space scales.
These are called multiphysics and multiscale problems,
respectively. An example of both is the problem of mod-
eling how space weather affects the Earth, and in partic-
ular modeling the interaction of the solar wind (the flow
of charged particles emitted by the sun) with the Earth’s
magnetic field. Different physical models describe the
statistical distribution of the plasma, which consists
of charged particles, and the evolution of the electric
and magnetic fields, and these form a coupled non-
linear system of PDEs. The length scales range from
millions of kilometers (the Earth-sun distance) to hun-
dreds of meters, and the timescales range from hours
down to 10> seconds. Problems such as this pose chal-
lenges both for modeling and for computational solu-
tion of the models. The computations require HIGH-
PERFORMANCE COMPUTERS [VIL.12], and a particular
task is to present the vast quantities of data generated
in such a way that users, such as forecasters of space
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Not everyone will agree with Bonnor. Some take
a more methodological approach and almost equate
applied mathematics with “mathematical modeling.”
Others are of a more concrete, mathematical mind and
insist that there are parts of mathematics that are
per se more or less applicable than others. We find
Bonnor’s definition appealing because it stresses the
social dimension of the mathematical working process
and allows a historical understanding of the notion of
applied mathematics.

The importance of “attitudes” notwithstanding, by
any definition applied mathematics has to be “gen-
uine” mathematics in the sense that it aims at and/or
uses general statements (theorems) even if the piece of
mathematics in question has not yet been fully logically
established. In fact, the applicability of mathematics is
mainly based on its “generality,” which in relation to
fields of application often appears as “abstractness.”
This applies even to relatively elementary applications
such as the use of positional number systems.

Applications of mathematics, even on a nonelemen-
tary level, have been possible because certain prac-
tices and properties, such as algorithms for approxima-
tions or geometrical constructions, have always existed
within mathematics itself and have led to spontaneous
or deliberate applications. While, as the universal math-
ematician John von Neumann observed in 1947, in pure
mathematics many problems and methods are selected
for aesthetic reasons, in applied mathematics, prob-
lems considered at the time as urgent have priority, and
the choice of methods often has to be subordinated to
the goals in question. However, attitudes and values,
which often had and continue to have strong politi-
cal and economic overtones, have always been instru-
mental in deciding exactly which parts of mathematics
should be emphasized and developed. Since attitudes
have to be promoted through education, this puts a
great responsibility on teaching and training and makes
developments in that area an important topic for a
history of applied mathematics.

Of course, many modern and recent applications rely
on older mathematical ideas in differential equations,
topology, and discrete mathematics and on estab-
lished notation and symbolism (matrices, quaternions,
Laplace transforms, etc.), while important new develop-
ments in INTEGRAL EQUATIONS [IV.4], measure theory,
vector and tensor analysis, etc., at the turn of the
twentieth century have added to these ideas.

However, in the twentieth century, three major sci-
entific and technical innovations both changed and
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enlarged the notion of applied mathematics. In rough
chronological order, these are mathematical modeling
in a broad, modern sense, stochastics (modern proba-
bility and statistics), and the digital computer. These
three innovations have, through their interactions,
restructured applied mathematics. They were princi-
pally established after World War II, and it was also
only then that the term “mathematical modeling” came
to be more frequently used for activities that had hith-
erto usually been expressed by less concise words such
as “problem formulation and evaluation.” In addition
to these innovations, which are essentially concerned
with methodology, several totally new fields of applica-
tion, such as electrical engineering, economics, biology,
meteorology, etc., emerged in the twentieth century.

While in 1914 one of the pioneers of modern applied
mathematics, Carl Runge, still doubted whether “the
name of ‘applied mathematics’ was chosen appropri-
ately, because when applied to empirical sciences it
still remains pure mathematics,” the three major inno-
vations listed above would radically alter and extend
the notion of mathematics and, in particular, that of
applied mathematics. Due to these innovations, the
modern disciplines at the interface of mathematics and
engineering, such as cybernetics, control theory, com-
puter science, and optimization, were all able to emerge
in the 1940s and 1950s in the United States (Wiener,
Shannon, Dantzig) and the Soviet Union (Andronov,
Kolmogorov, Pontryagin, Kantorovich) independently,
and to a somewhat lesser degree in England (Tur-
ing, Southwell, Wilkinson), France (Couffignal), and
elsewhere. These innovations also gradually changed
“hybrid disciplines,” such as electrical engineering and
aerodynamics, that had originated at the turn of the
century. In the case of aerodynamics, not only were
statistical explanations of TURBULENCE [V.21] increas-
ingly proposed after World War II, but also CONFORMAL
MAPPINGS [II.5] gradually lost importance in favor of
computational FLUID DYNAMICS [IV.28]. Within opera-
tions research, with its various approaches and tech-
niques (linear programming, optimization methods,
statistical quality control, inventory control, queuing
analysis, network flow analysis), mathematical con-
cepts, especially mathematical models, acquired an
even stronger foothold than in the more traditional
industrial engineering.

One typical modern mathematical discipline that inti-
mately combines pure and applied aspects of the sub-
ject and that is intertwined with various other scientific
(physical and biological) and engineering disciplines
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is the theory of DYNAMICAL SYSTEMS [IV.20]. After
initial work in the field by Poincaré, Lyapunov, and
Birkhoff, the theory fell into oblivion until the 1960s.
This falling away can be explained by fashion (such
as the trend toward the mathematics of Bourbaki), by
new demands in applications connected to dissipative
systems, and by the partial invisibility of the Russian
school in the West. With the advent of modern com-
puting devices, the shape of the discipline changed
dramatically. Mathematicians were empowered com-
putationally and graphically, the visualization of new
objects such as fractals was made possible, and appli-
cations in fields such as CONTROL THEORY [IV.34] and
meteorology—quantitative applications as well as qual-
itative ones—began to proliferate. The philosophical
discussion about mathematics and applications has
also been enriched by this discipline, with the public
being confronted by catchwords such as cHAOS [I1.3],
catastrophe, and self-organization. However, the pro-
cess whereby the various streams of problems con-
verged and led to the subject’s modern incarnation is
complex:

In the 1930s, for example, what could the socio-
professional worlds of the mathematician Birkhoff
(professor at Harvard), the “grand old man of radio”
van der Pol (at the Philips Research Lab), and the
Soviet “physico [engineer] mathematician” Andronov
at Gorki have had in common? What, in the 1950s,
had Kolmogorov's school in common with Lefschetz’s?
It is precisely this manifold character of social and
epistemic landscapes that poses problem[s] in this
history.

Aubin and Dahan (2002)

The role played by the three major innovations
continues largely unabated today, as is evident, for
instance, from a 2012 report from the Society for Indus-
trial and Applied Mathematics (SIAM) on industrial
mathematics:

Roughly half of all mathematical scientists hired into
business and industry are statisticians. The second-
largest group by academic specialty is applied mathe-
matics. Compared to the 1996 survey, fewer graduates
reported “modeling and simulation” as an important
academic specialty for their jobs, and more reported
“statistics.” Programming and computer skills con-
tinue to be the most important technical skill that new
hires bring to their jobs.

By separating statistics from applied mathematics,
the SIAM report follows a certain tradition, caused in
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part by institutional boundaries, such as the existence
of separate statistics departments in universities. This
distinction is also partly followed in the present volume
and in this article, although there is no doubt about the
crucial role of probability and statistics in applications.
For example, one need only consider the Monte Carlo
method—notably developed at Los Alamos in the 1940s
by Stanislaw Ulam and von Neumann, and continued by
Nicholas Metropolis—which is now used in a wide vari-
ety of different contexts including numerical integra-
tion, optimization, and inverse problems. In addition,
the combination of stochastics and modeling in biolog-
ical and physical applications has had a philosophical
dimension, contributing to the abandonment of rigid
causality in science, e.g., through Karl Pearson’s corre-
lation coefficient and Werner Heisenberg’s uncertainty
principle. However, by the end of the 1960s the limi-
tations of stochastics in helping us to understand the
nature of disorder had become apparent, particularly
in connection with the study of complex (“chaotic”)
dynamical systems. Nevertheless, stochastics contin-
ues to play an important role in the development of
big theories with relevance for applications, including
statistical models for weather forecasting.

1.1 Further Themes and Some Limitations

Putting stochastics on the sidelines is but one of sev-
eral limitations of this article—limitations that are
the result of a lack of space, a lack of distance, and
more general methodological considerations. A fur-
ther thematic restriction concerns industrial mathe-
matics, which figures separately from applied mathe-
matics in the very name of SIAM, although there are
obvious connections between the two, in particular
with respect to training and in developing attitudes
toward applications. Knowing that industrial mathe-
matics has changed, and above all expanded, from its
origins in the early twentieth century to move beyond
its purely industrial context, these connections become
even clearer. Industrial mathematics is, today, an estab-
lished subdiscipline, loosely described as the modeling
of problems of direct and immediate interest to indus-
try, performed partly in industrial surroundings and
partly in academic ones.

The history of mathematical instruments, includ-
ing both numerical and geometrical devices, and their
underlying mathematical principles is another topic we
have had to leave out almost completely. Some dis-
cussion of the history of mathematical table projects
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is the farthest we reach in this respect. This limita-
tion also applies to the technological basis of mod-
ern computing and the development of software tech-
nology (covered by Cortada’s excellent bibliography),
which has provided, and continues to provide, an
important stimulus for the development (and fund-
ing) of applied mathematics. In 2000, in the Journal
of Computational and Applied Mathematics, it was esti-
mated that of the increase in computational power, half
should be attributed to improved algorithms and half
should be attributed to the increase in computational
hardware speeds. Computing technology has contin-
ued to advance rapidly, and companies are making
more and more aggressive use of HIGH-PERFORMANCE
COMPUTING [VII.12]

A detailed discussion of the fields of application
of mathematics themselves—be it in (pure) mathemat-
ics, the sciences, engineering, economics and finance,
industry, or the military—is absent from this article for
a number of reasons, both practical and methodologi-
cal, above all the huge variation of specific conditions
in these fields.

This particularly affects the role of mathematics in
the military, to which we will devote only scattered
remarks and no systematic discussion. While there are
still considerable lacunae in the literature on mathe-
matics during World War I (although some of these have
been filled by publications prepared for the centenary),
there is more to be found in print about mathematics
in World War II, not least because of the increased role
of that discipline in it. (We recommend BooR-Bavnbek
and Heyrup (2003) as a good place to start to find out
more than is covered in our article.)

Another topic that deserves broader coverage than
is possible here is the history of philosophical reflec-
tion about mathematical applications. This is particu-
larly true for the notion of “mathematical modeling”
taken in the sense of problem formulation. Accord-
ing to the Oxford Encyclopedic Dictionary (1996), the
new notion of a mathematical model was used first
in a statistical context in 1901. At about the same
time, the French physicist and philosopher Pierre
Duhem accused British physicists of still using the term
“model” only in the older and narrower sense of mate-
rial, mechanical, or visualizable models. Duhem there-
fore preferred the word “analogy” for expressing the
relationship between a theory and some other set of
statements. Particularly with the upswing of “math-
ematical modeling” since the 1980s, a broad litera-
ture, often with a philosophical bent, has discussed
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the specificity of mathematics as a language, as an
abstract unifier and a source of concepts and prin-
ciples for various scientific and societal domains of
application. Another (though not unrelated) develop-
ment in the philosophy of applied mathematics con-
cerns the growing importance of algorithmic aspects
within mathematics as a whole. It was no coincidence
that in the 1980s, with the rise of scientific comput-
ing, several “maverick” philosophers of mathematics,
such as Philip Kitcher and Thomas Tymosczko, entered
the scene. They introduced the notion of “mathematical
practice,” by which they meant more than simply appli-
cations. One of the features of the maverick tradition
was the polemic against the ambitions of mathematical
logic to be a canon for the philosophy of mathematics,
ambitions that have dominated much of the philosophy
of mathematics in the twentieth century. The change
was inspired by the work of both those mathemati-
cians (such as Philip Davis and Reuben Hersh) and those
philosophers (including Imre Lakatos and David Cor-
field) who were primarily interested in the actual work-
ing process of mathematicians, or what they sometimes
called “real mathematics.” Meanwhile, the philosophi-
cal discussion of mathematical practice has been pro-
fessionalized and reconnected to the foundationalist
tradition. It usually avoids premature discussion of “big
questions” such as “Why is mathematics applicable?”
or “Is the growth of mathematics rational?” restrict-
ing its efforts to themes of mathematical practice in
a broader sense, like visualization, explanation, purity
of methods, philosophical aspects of the uses of com-
puter science in mathematics, and so on. An overview
of the more recent developments in the philosophy of
mathematical practice is given in the introduction to
Mancosu (2008).

Unfortunately, there is also little space for biograph-
ical detail in this article, and thus no bow can be
given to the great historical heroes of applied math-
ematics, such as Archimedes, Ptolemy, Newton, Euler,
Laplace, and Gauss. Nor is there room to report on
the conversions of pure mathematicians into applied
mathematicians, such as those undergone by Alexan-
der Ostrowski, John von Neumann, Solomon Lefschetz,
Ralph Fowler, Garrett Birkhoff, and David Mumford, all
personal trajectories that paralleled the global devel-
opment of mathematics. In any case, any systematic
inclusion of biographies could not be restricted to
mathematicians, considering the term in its narrow-
est sense. In an influential report on industrial math-
ematics in the American Mathematical Monthly of
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1941, Thornton Fry spoke about a “contrast between
the ubiquity of mathematics and the fewness of the
mathematicians.” Indeed, historically, engineers such
as Theodore von Karman, Richard von Mises, Lud-
wig Prandtl, and Oliver Heaviside; physicists such as
Walter Ritz, Aleksandr Andronov, Cornelius Lanczos,
and Werner Romberg; and industrial mathematicians
such as Balthasar van der Pol have, by any measure,
made significant contributions to applied mathemat-
ics. In addition, several pioneers of applied mathemat-
ics, such as Gaspard Monge, Felix Klein, Mauro Picone,
Vladimir Steklov, Vannevar Bush, and John von Neu-
mann, actively used political connections. The actions
of nonscientists, and particularly politicians, have also
therefore played a part in the development of the sub-
ject. For a full history of applied mathematics the
concrete interplay of the interests of mathematicians,
physicists, engineers, the military, industrialists, politi-
cians, and other appliers of mathematics would have to
be analyzed, but this is a task that goes well beyond the
scope of this article.

In general, the historical origin of individual notions
or methods of applied mathematics, which often have
a history spanning several centuries, will not be traced
here; pertinent historical information is often included
in the specialized articles elsewhere in this volume. By
and large, then, this article will focus on the broader
methodological trends and the institutional advances
that have occurred in applied mathematics since the
early nineteenth century.

1.2 Periodization

From the point of view of applications, the history
of mathematics can be roughly divided into five main
periods that reveal five qualitatively different levels
of applied mathematics, the first two of which can
be considered as belonging to the prehistory of the
subject.

(1) ca.4000 B.C.E.-1400 C.E. Emergence of mathemat-
ical thinking, and establishment of theoretical math-
ematics with spontaneous applications.

(2) ca. 1400-1800. Period of “mixed mathematics” cen-
tered on the Scientific Revolution of the seventeenth
century and including “rational mechanics” of the
eighteenth century (dominated by Euler).

(3) 1800-1890. Applied mathematics between the In-
dustrial Revolution and the start of what is often
called the second industrial (or scientific-technical)
revolution. Gradual establishment of both the term

59

and the notion of “applied mathematics.” France
and Britain dominate applied mathematics, while
Germany focuses more on pure.

(4) 1890-1945. The so-called resurgence of applica-
tions and increasing internationalization of mathe-
matics. The rise of new fields of application (elec-
trical communication, aviation, economics, biology,
psychology), and the development of new methods,
particularly those related to mathematical modeling
and statistics.

(5) 1945-2000. Modern internationalized applied math-
ematics after World War II, inextricably linked with
industrial mathematics and high-speed digital com-
puting, led largely by the United States and the Soviet
Union, the new mathematical superpowers.

Arguably, one could single out at least two additional
subperiods of applied mathematics: the eighteenth cen-
tury, with Euler’s “rational mechanics,” and the tech-
nological revolution of the present age accompanied
by the rise of computer science since the 1980s. How-
ever, in the first of these subperiods, which will be
described in some detail below, mathematics as a dis-
cipline was still not yet fully established, either institu-
tionally or with respect to its goals and values, so dis-
tinguishing between her pure and applied aspects is not
straightforward. As to the second of the two subperi-
ods, we believe that these events are so recent that they
escape an adequate historical description. Moreover,
World War II had such strong repercussions on math-
ematics as a whole—particularly on institutionaliza-
tion (journals, institutes, professionalization), on mate-
rial underpinning (state funding, computers, industry),
and not least on the massive migration of mathemati-
cians to the United States—that it can be considered
a watershed in the worldwide development of both
pure and applied mathematics. However, the dramatic
prediction by James C. Frauenthal—in an editorial of
SIAM News in 1980 on what he considered the “rev-
olutionary” change in applied mathematics brought
about by the invention of the computer—that by 2025
“in only a few places will there remain centers for
research in pure mathematics as we know it today”
seems premature.

2 Mathematics before
the Industrial Revolution

Since the emergence of mathematical thinking around
4000 B.C.E., through antiquity and up to the start of the
Renaissance (ca. 1400 C.E.), and embracing the cultures
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of Mesopotamia, Egypt, and ancient Greece, as well as
those of China, India, the Americas, and the Islamic-
Arabic world, applications arose as a result of various
societal, technical, philosophical, and religious needs.
Well before the emergence of the Greek notion of a
mathematical proof around 500 B.C.E., areas of appli-
cation of mathematics in various cultures included
accountancy, agricultural surveying, teaching at scribal
schools, religious ceremonies, and (somewhat later)
astronomy. Among the methods used were practical
arithmetic, basic geometry, elementary combinatorics,
approximations (e.g., 1), and solving quadratic equa-
tions. Instruments included simple measuring and cal-
culation devices: measuring rods, compasses, scales,
knotted ropes, counting rods, abaci, etc.

The six classical sciences—geometry, arithmetic, as-
tronomy, music, statics, and optics—existed from the
time of Greek antiquity and were based on math-
ematical theory, with the Greek word “mathemata”
broadly referring to anything teachable and learnable.
The first four of the classical sciences constituted the
quadrivium within the Pythagorean-Platonic tradition.
The theories of musical harmony (as applied arith-
metic) and astronomy (as applied geometry) can thus
be considered the two historically earliest branches
of applied mathematics. The two outstanding applied
mathematicians of Greek antiquity were Archimedes
(statics, hydrostatics, mechanics) and Ptolemy (astron-
omy, optics, geography). Since the early Middle Ages,
the Computus (Latin for computation)—the calculation
of the date of Easter in terms of first the Julian calendar
and later the Gregorian calendar—was considered to be
the most important computation in Europe. In medieval
times, particularly from the seventh century, the devel-
opment of algebraic and calculative techniques and
of trigonometry in the hands of Islamic and Indian
mathematicians constituted considerable theoretical
progress and a basis for further applications, with sig-
nificant consequences for European mathematics. Par-
ticularly notable was the Liber Abaci (1202) of Leonardo
of Pisa (Fibonacci), which heralded the gradual intro-
duction of the decimal positional system into Europe,
one of the broadest and most important applications
of mathematics during the period. Chinese mathemat-
ics remained more isolated from other cultures at the
time and is in need of further historical investigation,
as are some developments within Christian scholastics.
In spite of their relative fewness and their thematic
restrictions, we consider the early applications to be a
deep and historically important root for the emergence
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of theoretical mathematics and not as a mere follow-up
of the latter.

From the beginning of the fifteenth century to the
end of the eighteenth century, applications of mathe-
matics were successively based on the dissemination
of the decimal system, the rise of symbolic algebra,
the theory of perspective, functional thinking (Des-
cartes’s coordinates), the calculus, and natural philos-
ophy (physics). The teaching of practical arithmetic,
including the decimal system, by professional “reck-
oning masters,” such as the German Adam Ries in the
sixteenth century, remained on the agenda for several
centuries. Meanwhile, the first systematic discussion
of decimal fractions appeared in a book by the Dutch
engineer Simon Stevin in 1585.

During this period, and connected to the new de-
mands of society, there emerged various hybrid disci-
plines combining elements of mathematics and engi-
neering: architecture, ballistics, navigation, dynamics,
hydraulics, and so on. Their origins can be traced back,
at least in part, to medieval times. For example, partly
as a result of fourteenth-century scholastic analysis,
the subject of local motion was separated from the tra-
ditional philosophical problem of general qualitative
change, thus becoming a subject of study in its own
right.

The term “mixed mathematics” as a catch-all for the
various hybrid disciplines seems to have been intro-
duced by the Italian Marsilio Ficino during the fifteenth
century in his commentary on Plato’s Republic. It was
first used in English by Francis Bacon in 1605. In his
Mathematicall Preeface to the first English translation
of Euclid’s Elements (1570), John Dee set out a “ground-
plat” or plan of the “sciences and artes mathematicall,”
which included astronomy and astrology. Due to the
broad meaning of the original Greek word, the Latin
name “mathematicus” was used for almost every Euro-
pean practitioner or artisan within one of these hybrid
disciplines. As late as 1716, the loose use of “math-
ematicus” was deplored by the philosopher Christian
Wolff (a follower of Leibniz) in his Mathematisches Lex-
icon, an influential dictionary of mathematics, because
in his opinion it diminished the role of mathematics.

The emergence of the new Baconian sciences (magne-
tism, electricity, chemistry, etc.)—which went beyond
mixed mathematics and were even partially opposed
to the mathematical spirit of the classical sciences
(Bacon’s acknowledgment of the future of mixed math-
ematics, as expressed in the epigraph, was coupled
with a certain distrust of pure mathematics)—signaled
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In our opinion (deviating slightly from Truesdell),
rational mechanics, in hindsight, bears almost all the
characteristics of applied mathematics in the mod-
ern sense. At the time, however, in a predominantly
utilitarian environment, it was the pinnacle of math-
ematics. It was then rarely counted as mixed mathe-
matics, notwithstanding some occasional remarks by
d’Alembert. The term mixed mathematics was more
frequently used for the mathematically less advanced
engineering mechanics (Bernard Forest de Bélidor and
Charles-Augustin de Coulomb, etc.) of the time and for
other fields of application.

Toward the end of the eighteenth century rational
mechanics was somewhat narrowed down, both the-
matically and with respect to possible applications
(although still including continuum mechanics), by fur-
ther mathematical formalization, particularly at the
hands of Lagrange, Euler’s successor in Berlin, whose
Méchanique Analitique first appeared in 1788. The tow-
ering figure of Pierre Simon Laplace in Paris—with
his pioneering work since the late 1770s in celestial
and terrestrial mechanics and in probability theory—
foreshadowed much of the important French work
in applied mathematics, such as that done by Pois-
son, Fourier, Cauchy, and others in the century that
followed. To Laplace (generating functions, difference
equations) and to his great younger contemporary Carl
Friedrich Gauss in Gottingen (numerical integration,
elimination, least-squares method) we owe much of
the foundations of future numerical analysis. Parts
of their work overlapped (interpolation), while parts
were supplemented by Adrien-Marie Legendre (least-
squares method), details of which can be traced from
Goldstine’s A History of Numerical Analysis.

3 Applied Mathematics in the
Nineteenth Century

Around 1800, in the age of the Industrial Revolution
and of continued nation building, state funding and
political and ideological support (revolution in France,
Neo-Humanism in Germany) led (mainly through teach-
ing and journals) to a new level of recognition for
mathematics as a discipline. The older bifurcation of
pure/mixed mathematics was replaced in France and
Germany (although not yet in England) by that of
pure/applied. The difference was mainly that before
1800 only mixed mathematics together with rational
mechanics had the support of patrons, while now,
around 1800, the whole of mathematics was beginning
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to be supported and recognized. Somewhat paradox-
ically, then, in spite of the general importance of the
Industrial Revolution as a historical background, it is
pure mathematics that increasingly gets systematic
public support for the first time. Indeed, for most
of the nineteenth century, mathematics would not be
strongly represented in either engineering or industrial
environments.

The foundation of the Ecole Polytechnique (EP) in
Paris in 1794 is a good point of reference for the begin-
ning of our third period. The EP, where military and civil
engineers were trained, became the leading and “most
mathematical” institution within a system of techni-
cal education. This included several “schools of appli-
cations,” such as the Ecole des Mines and the Ecole
Nationale des Ponts et Chaussées, to which the stu-
dents of the EP proceeded. The EP became an exam-
ple to be emulated by many technical colleges, par-
ticularly in German-speaking regions, throughout the
nineteenth century. The most influential mathemati-
cian in the early history of the EP was Gaspard Monge,
and it was in accordance with his ideas that mathemat-
ics became one of the bases of the EP curriculum. In
1795, in the introduction to his lectures on descriptive
geometry, the theory that became the “language of the
engineer” for more than a century, Monge wrote:

In order to reduce the dependence of the French nation
on foreign industry one has to direct public education
to those subjects which require precision.

Monge's aspirations for a use of higher mathematics
in industrial production remained largely unfulfilled at
the time, except for the use of descriptive geometry.
However, developments in industry and in educational
systems led to a stronger focus on the criteria for pre-
cision and exactitude in the sciences (most notably in
academic physics) and in engineering, preparing the
ground for an increased use of mathematics in these
fields of application at the beginning of the twenti-
eth century. In fact, it could be argued that it required
a logical consolidation and a more theoretical phase
of the development of mathematical analysis before a
new phase of more sophisticated applied mathematics
could set in.

The first concrete institutional confirmation of the
notion of “applied mathematics” was the appearance
of the term in the names of journals. Again, the Ger-
mans were quicker than the French here. Two short-
lived journals cofounded by the influential combina-
torialist Carl Friedrich Hindenburg were the Leipziger
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Figure 4 Gergonne's Annales de Mathématiques
Pures et Appliquées (1810-11).

Magazin fiir reine und angewandte Mathematik (1786-
89) and the Archiv fiir reine und angewandte Mathe-
matik (1795-99). A somewhat longer career was had
by Annales de Mathématiques Pures et Appliquées,
founded by Joseph Diaz Gergonne in 1810 (figure 4).
While this journal survived only until 1832, the Ger-
man Journal fiir die reine und angewandte Mathe-
matik (which, according to the preface by its founder
August Leopold Crelle in 1826, was largely modeled
after Gergonne’s journal) is still extant today. This is
true too of the French Journal de Mathématiques Pures
et Appliquées, founded by Joseph Liouville in 1836,
and of the Italian Annali di Matematica Pura ed Appli-
cata, launched by Francesco Brioschi and Barnaba Tor-
tolini in Italy in 1858 as an immediate successor to the
Annali di Scienze Matematiche e Fisiche. On the other
hand, James Joseph Sylvester’s Quarterly Journal of
Pure and Applied Mathematics, which was founded in
1855, survived only until 1927.

The inclusion of “applied mathematics” in the names
of these nineteenth-century journals did not necessar-
ily guarantee a strong representation of applied topics,
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however, either in the journals themselves or in the
mathematical culture at large. But neither were these
journals the only outlets for articles on applied topics.
Journals associated with national academies, such as
the Philosophical Transactions of the Royal Society, car-
ried articles on applied topics, while the Philosophical
Magazine (launched in 1798) was the journal of choice
for several leading nineteenth-century British applied
mathematicians.

This was also the period in which positions explic-
itly devoted to applications were created at universities.
In Norway, which had just introduced a constitution
and was emancipating itself from Danish rule, Christo-
pher Hansteen’s position as “lecturer for applied math-
ematics” (“Lector i den anvendte Mathematik”) at the
newly founded university in Christiania was expressly
justified in May 1814 by “the broad scope of applied
mathematics and its importance for Norway.” In 1815
Hansteen was promoted to “Professor Matheseos appli-
catae.”

Throughout the nineteenth century, the mathema-
tization of mechanics continued largely in the tradi-
tion of Lagrange’s analytical mechanics, with a division
of labor between physicists and mathematicians such
as William Rowan Hamilton and Carl Jacobi, arguably
neglecting some of the topics and insights of Euler’s
rational mechanics, particularly in continuum mechan-
ics. However, from the 1820s, although the EP still gave
preference to analytical mechanics in its courses, there
were efforts among the professors there, and at the
more practically oriented French engineering schools
(“écoles d’application”), to develop a mechanics for
the special needs of engineers, a discipline that would
today be called technical mechanics. The latter drew
strongly on traditions in mixed mathematics, such as
the work of de Bélidor in hydraulics from the 1730s to
the 1750s and that of de Coulomb in mechanics and
electromagnetism from the 1780s onward. It found its
first energetic proponents in Claude Navier, Jean Victor
Poncelet, and Gaspard Gustave de Coriolis.

Around 1820, Poncelet separately developed his pro-
jective geometry, which became part of the mathemati-
cally rather sophisticated engineering education at sev-
eral continental technical colleges. It led to methods
such as graphical statics, founded by the German-Swiss
Carl Culmann in the middle of the century, with appli-
cations in crystallography and civil engineering, the lat-
ter exemplified by the construction of the Eiffel Tower
in 1889. Also in the 1820s, influenced by Euler’s hydro-
dynamics and possibly by Navier’s work in engineering,
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Augustin-Louis Cauchy was the first to base the theory
of elasticity on a general definition of internal stresses.
The work of Cauchy, who was at the same time known
for his efforts to introduce rigor into analysis, under-
scores the dominance of the French in both pure and
applied mathematics during the early nineteenth cen-
tury, with the singular work of Gauss in Gottingen being
the only notable exception.

In England the development of both pure and applied
mathematics during the nineteenth century showed
marked differences from that in Continental Europe.
One of the goals of the short-lived Analytical Society
(1812-19), founded in Cambridge by Charles Babbage
and others, was to promote Leibnizian calculus over
Newtonian calculus, or, in Babbage’s words, to promote
“The Principles of pure D-ism in opposition to the Dot-
age of the University.” The members of the Analytical
Society were impressed by the new rigor in analysis
achieved in France, especially in the work of Lagrange,
and lobbied for a change in teaching and research in
Cambridge mathematics, and in particular in the exam-
inations of the Mathematical Tripos, which were very
much based on traditional mixed and physical math-
ematics, as well as on Euclid’s Elements. If anything,
though, this aspect of the French influence led away
from applications and toward a gradual purification of
British mathematics.

Babbage was impressed by the French mathematical
tables project directed by Gaspard de Prony at the end
of the eighteenth century. In a similar vein to Monge
before him, Babbage pointed to increased competition
between nations in the age of industrialization, and
he stressed the need for the development of calculat-
ing techniques. In On the Economy of Machinery and
Manufactures (1832) he wrote:

It is the science of calculation,—which becomes con-
tinually more necessary at each step of our progress,
and which must ultimately govern the whole of the
applications of science to the arts of life.

Another (at least indirect) impact of the Industrial
Revolution on mathematics was the Russian Pafnuty
Lvovich Chebyshev's study of James Watt's steam
engine, in particular of the “governor,” the theory of
which proved to be a stimulus for the notion of feed-
back in control theory, and the modern theory of ser-
vomechanisms. Chebyshev’s interest in the technical
mechanics of links was also one of the stimuli for
his studies concerning mathematical approximation
theory in the 1850s. In addition, he was impressed with
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Poncelet’s technical mechanics. As a result, and due
to Chebyshev's great influence within Russian mathe-
matics, applied mathematics remained much more part
of mainstream mathematics in Russia during the latter
half of the nineteenth century than it was in other parts
of Europe, especially in Germany.

In the middle of the nineteenth century, the French
engineering schools, in particular the EP, lost their
predominant position in mathematics, due to slow
industrial development in France and problems with
the overcentralized and elitist educational system. The
lead was taken by the German-speaking technical col-
leges (“Technische Hochschulen”) in Prague, Vienna,
Karlsruhe, and Zurich, in particular with respect to
the mathematization of the engineering sciences. This
was true for their emulation of the general axiomatic
spirit of mathematics even more than for their con-
cern for the actual mathematical details. Ferdinand
Redtenbacher (in his analytical machine theory (1852))
and Franz Reuleaux (in his kinematics (1875)) aimed at
“designing invention and construction deductively.” So
convinced of the important future role of mathematics
were leading engineers at the Technische Hochschulen
that they supported the appointment of academi-
cally trained mathematicians from the classical uni-
versities. In this way pure mathematicians, such as
Richard Dedekind, Alfred Clebsch, and later Felix Klein,
assumed positions at Technische Hochschulen in which
they were responsible for the education of engineers.

In parallel, and also from the middle of the nine-
teenth century, mathematics at the leading German uni-
versities that did not have engineering departments
increasingly developed into a pure science, detached
from practical applications. Supported by the ideol-
ogy of “Neo-Humanism” within a politically unmod-
ernized environment, the discipline’s educational goal
(and its legitimation in society) was the training of
high school teachers, who during their studies were
often introduced to the frontiers of recent (pure) math-
ematical research. The result of this was that profes-
sors at the Technische Hochschulen who were hired
from the traditional universities were not really pre-
pared for training engineers. In the long run, the strat-
egy of appointing university mathematicians backfired
and this, together with general controversies about the
social status of technical schools, led to the so-called
anti-mathematical movement of engineers in Germany
in the 1890s.

British and Irish applied mathematics, in the sense
of mathematical physics, remained strong through the
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nineteenth century, with work by George Green, George
Stokes, William Rowan Hamilton, James Clerk Maxwell,
William Thomson (Lord Kelvin), Lord Rayleigh, William
Rankine, Oliver Heaviside, Karl Pearson, and others,
while in the works of James Joseph Sylvester and
Arthur Cayley in the 1850s, the foundations of mod-
ern matrix theory were laid. That being said, there was
no systematic, state-supported technical or engineer-
ing education in the British system until late in the
nineteenth century. What was taught in this respect
at schools and traditional universities was increasingly
questioned by engineers such as John Perry (see below),
particularly with respect to the mathematics involved.
In England the term “mixed mathematics” was occa-
sionally used interchangeably with “applied mathemat-
ics” up until the end of the century, a prominent exam-
ple of this being the tribute by Richard Walker (then
president of the London Mathematical Society) to Lord
Rayleigh on winning the society’s De Morgan Medal in
1890.

Applications of mathematics also featured among
the activities of the British Association for the Advance-
ment of Science, which, in 1871, formed a Mathematical
Tables Committee for both cataloguing and producing
numerical tables; the committee lasted, with varying
levels of intensity, until 1948, when the Royal Society
took over. A prime example of joint enterprise between
pure and applied mathematicians—the original com-
mittee consisted of Cayley, Henry Smith, Stokes, and
Thomson—the project catered for all tastes, its prod-
ucts including both factor tables and Bessel function
tables, among others. As J. W. L. Glaisher, the project
secretary, wrote in 1873: “one of the most valuable uses
of numerical tables is that they connect mathematics
and physics, and enable the extension of the former
to bear fruit practically in aiding the advance of the
latter.” The project was finally dissolved in 1965, with
some of the greatest British mathematicians, both pure
and applied, having been active in its work.

With the upswing of electrical engineering, more
sophisticated mathematics (operational calculus, com-
plex numbers, vectors) finally entered industry in
around 1890, e.g., through the work of Heaviside in
England and of the German immigrant Charles P. Stein-
metz in the United States. Mechanical engineering, on
the other hand, e.g., in the construction of turbines,
remained free of advanced mathematics until well into
the twentieth century.

It was also not until the end of the nineteenth cen-
tury that applied mathematics finally began to lose its
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almost exclusive bond to mathematical physics and
mechanics; new fields of application, new methods
such as statistics, and new professions such as actuar-
ial and industrial mathematicians were largely matters
for the twentieth century.

This change is nicely captured through the exam-
ple of the English applied mathematician Karl Pearson.
In his philosophical book Grammar of Science (1892),
Pearson, who at the time was mainly known for his work
on elasticity, defined as the “topic of Applied Mathe-
matics... the process of analyzing inorganic phenom-
ena by aid of ideal elementary motions.” At the time
Pearson was already working on biometrics, the sub-
ject that would lead him to found, together with Fran-
cis Galton, the journal Biometrika in 1901. Therefore,
although Pearson was effectively extending the realm
of applications of mathematics to the statistical analy-
sis of biological (i.e., organic) phenomena, he appar-
ently did not consider what he was doing to be applied
mathematics.

4 The “Resurgence of Applications” and
New Developments up to World War II

From the 1890s, the University of Gottingen (pure)
mathematician Felix Klein saw the importance of tak-
ing the diverging interests of the engineering profes-
sors at technical colleges and those of German univer-
sity mathematicians into account. Not only did differ-
ent professions (teaching and engineering) require dif-
ferent education, but the gradual emergence of indus-
trial mathematics had to be considered as well. Klein
recognized the need for reform, including in teach-
ing at high school level, and he developed Gottingen
into a center of mathematics and the exact sciences
(figure 5). Chairs for applied mathematics and applied
mechanics were created there in 1904, with Carl Runge
and Ludwig Prandtl being the first appointees. Mean-
while, from 1901, and under the editorship of Runge,
the transformation of Zeitschrift fiir Mathematik und
Physik into a journal exclusively for applied mathe-
matics had begun. These events in Germany, contrast-
ing with those of the period before, led to talk about
a “resurgence of applications” (“Wiederhervorkommen
der Anwendungen”).

From 1898 and for several decades afterward, the
famous German multivolume Encyclopedia of the Math-
ematical Sciences including Their Applications was
edited by Klein together with Walther von Dyck and
Arnold Sommerfeld, both from Munich, and others.
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FELIX KLEIN

ELEMENTARMATHEMATIK

VOM HOHEREN STANDPUNKTE AUS

DRITTE AUFLAGE

DRITTER BAND
PRAZISIONS- UND
APPROXIMATIONSMATHEMATIK

AUSGEARBEITET VON

C. H. MULLER

FOR DEN DRUCK FERTIG GEMACHT
UND MIT ZUSKTZEN VERSEHEN VON

FR. SEYFARTH

MIT 156 ABBILDUNGEN

BERLIN
VERLAG VON JULIUS SPRINGER
1928

Figure 5 F. Klein, Prdzisions- und Approximationsmathe-
matik (1928). Posthumous publication of Klein's 1901 lec-
tures in Gottingen where he tried to differentiate between
a mathematics of precision and one of approximation.

The articles in it, all written in German but includ-
ing authors from France and Britain, such as Paul
Painlevé and Edmund Taylor Whittaker, contain valu-
able historical references that are still worth consult-
ing today. “Applications” as emphasized in the title
and in the program of the Encyclopedia meant areas
of application, such as mechanics, electricity, optics,
and geodesy. The articles were assigned to volumes IV-
VI, which were in themselves divided into several
voluminous books each. There were also articles on
mechanical engineering, such as those by von Mises and
von Karman. However, topics that would today be clas-
sified as core subjects of applied mathematics—such
as numerical calculation (Rudolph Mehmke), differ-
ence equations (Dmitri Seliwanoff), and interpolation
and error compensation (both by Julius Bauschinger)—
appeared as appendices within volume I, which was
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devoted to pure mathematics (arithmetic, algebra, and
probability). Runge’s contribution on “separation and
approximation of roots” (1899) was subsumed under
“algebra.”

Klein also succeeded in introducing a state examina-
tion in applied mathematics for mathematics teachers,
which focused on numerical methods, geodesy, statis-
tics, and astronomy. In addition, he inspired educa-
tional reform of mathematics in high schools that he
designed around the notions of “functional thinking”
and “intuition,” thereby trying to counteract the overly
logical and arithmetical tendencies that had until then
permeated mathematics education. Klein and his allies
insisted on taking into account international develop-
ments in teaching and research, for instance by ini-
tiating a series of comparative international reports
on mathematical education; these reports in turn led
to the creation of what has now become the Interna-
tional Commission on Mathematical Instruction (ICMI).
The Encyclopedia also provided evidence of the increas-
ing significance of the international dimension. In his
“introductory report” in 1904, von Dyck stressed the
importance for the project of securing foreign authors
in applied mathematics. Later, a French translation
of the Encyclopedia began to appear in a consider-
ably enlarged version, although the project was never
completed due to the outbreak of World War 1.

Around 1900, reform movements reacting to prob-
lems in mathematics education similar to those in
Germany existed in almost all industrialized nations.
In England, the engineer John Perry had initiated a
reform of engineering education in the 1890s, and this
reform played into the ongoing critical discussions of
the antiquated Cambridge Mathematical Tripos exam-
inations and their traditional reliance on Euclid. The
“Perry Movement” was noticed in Germany and in the
United States. On the pages of Science in 1903, the
founding father of modern American mathematics, Eli-
akim Hastings Moore, himself very much a pure math-
ematician, declared himself to be in “agreement with
Perry” and proposed a “laboratory method of instruc-
tion in mathematics and physics.” At about the same
time (1905), similar ideas “de créer de vrais labora-
toires de Mathématiques” were proposed by Emile Borel
in France. In Edinburgh, Whittaker instituted a “Math-
ematical Laboratory” in 1913 and later, together with
George Robinson, published the influential The Calcu-
lus of Observations: A Treatise on Numerical Mathe-
matics (1924), which derived from Whittaker’s lectures
given in the Mathematical Laboratory. In Germany, the
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Research Council’s National Institute for the Applica-
tion of the Calculus under Mauro Picone in Naples and
later in Rome.

In contrast, Britain created no new institutes for
mathematics. Even G. H. Hardy, who had left Cambridge
for Oxford shortly after the war, was unable to per-
suade his new university to build one. Nevertheless,
the war left a tangible legacy for applied mathematics.
Imperial College received a substantial grant to finance
its Department of Aeronautics, while Cambridge estab-
lished a new chair in aeronautical engineering. As a
result of increased funding after the war, establish-
ments such as the Royal Aircraft Establishment and the
National Physical Laboratory were able to retain a num-
ber of their wartime staff, several of whom were math-
ematicians. Notable inclusions were Hermann Glauert,
who made a career in aerodynamics at the Royal Air-
craft Establishment, and Robert Frazer, who worked on
wing flutter at the National Physical Laboratory. In the
1930s Frazer and his colleagues W. J. Duncan and A. R.
Collar were “the first to use matrices in applied math-
ematics.” In addition, theoreticians and practitioners
who were brought together because of the war worked
together afterward. Sometimes, as in the case of the
Cambridge mathematician Arthur Berry and the aero-
nautical engineer Leonard Bairstow, the end of hostili-
ties meant only the end of working in the same location,
it did not mean the end of collaboration.

In the interwar period the degree of industrialization
in a particular country was without doubt one of the
defining factors in that country’s support of applied
mathematics. This is well exemplified by the solid
development of applied mathematics in industrialized
Czechoslovakia compared with the strong tradition in
pure mathematics in less industrialized Poland.

Indeed, it became increasingly obvious after the war
that engineering mathematics and insurance mathe-
matics, both of which corresponded to the develop-
ing needs of the new professions and industries, had
become legitimate parts of applied mathematics. Not
only were they the most promising areas of the sub-
ject, but they were economically the most rewarding.
Students trained at von Mises’s institute in Berlin and
at Prandtl’s institute in Gottingen found jobs in vari-
ous aerodynamic laboratories and proving grounds, as
well as in industry. Von Mises himself both undertook
governmental assignments and acted as an advisor for
industry. At Siemens, AEG, and Zeiss (all in Germany),
the General Electric Company (in Britain), Philips (in the
Netherlands), and General Electric and Bell Laboratories
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(in the United States) (Millman 1984), industrial labo-
ratories (mainly in electrical engineering but also, for
instance, in the optical and aviation industries) devel-
oped a demand for trained mathematicians. It was the
study of the propagation of radio waves and of the elec-
trical devices required to generate them that led in 1920
to the Dutchman van der Pol working out the equation
that is to this day considered as the prototype of the
nonlinear feedback oscillator. VAN DER POL’S EQUATION
[IV.2 §10]) and his modeling approach have repeatedly
been cited as exemplars for modern applied mathemat-
ics. Van der Pol’s contribution, together with theoret-
ical work by Henri Poincaré on limit cycles, strongly
influenced Russian work on nonlinear mechanics. Its
mathematical depth gained the approval (albeit some-
what reluctant approval) even of André Weil, a foremost
member of the Bourbaki group of French mathemati-
cians, who in 1950 called it “one of the few interesting
problems which contemporary physics has suggested
to mathematics.” Van der Pol, who worked at the Philips
Laboratories in Eindhoven from 1922, also contributed
to the justification of the Heaviside operational cal-
culus in electrical engineering. Around 1929 he used
integral transformation methods similar to those devel-
oped before him by the English mathematician Thomas
Bromwich and the American engineer John Carson at
Bell Laboratories, who in 1926 wrote the influential
book Electric Circuit Theory and the Operational Cal-
culus. Somewhat later, the German Gustav Doetsch pro-
vided a more systematic justification of Heaviside’s cal-
culus based on the theory of the Laplace transform
in his well-received book Theorie und Anwendung der
Laplace-Transformation (1937). In another influential
book, Economic Control of Quality of Manufactured
Product (1931), the physicist Walter Shewart, a col-
league of Carson'’s at Bell Laboratories, was one of the
first to promote statistics for industrial quality control
using so-called control charts.

However, many of these developments in applied
and industrial mathematics, both in Europe and Amer-
ica, occurred outside their national academic institu-
tions, notwithstanding the beginnings of systematic
academic training in applied mathematics in new insti-
tutes such as the one led by von Mises. A number of aca-
demically trained mathematicians and physicists were
impressed by the spectacular and revolutionary ideas
of relativity theory and quantum theory, but they were
slow to recognize the importance of those new appli-
cations, often in engineering, that relied on classical
mechanics.
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This aloofness of academic scientists prevailed in
the United States. The undisputed leader of American
mathematicians, George Birkhoff, was aware of that
when he addressed the American Mathematical Society
at its semicentennial in 1938 with the following words:

The field of applied mathematics always will remain of
the first order of importance inasmuch as it indicates
those directions of mathematical effort to which nature
herself has given approval.

Unfortunately, American mathematicians have shown
in the last fifty years a disregard for this most authen-
tically justified field of all.

There were exceptions, such as Norbert Wiener at the
Massachusetts Institute of Technology, who was based
in the mathematics department but interacted with
the electrical engineering department run by Vannevar
Bush (the inventor of the “differential analyzer,” an ana-
logue computer) and through it with Bell Laboratories,
and there were also the individual efforts of a number
of mathematicians with a European background. One of
the most successful of the latter was Harry Bateman,
Professor of Aeronautical Research and Mathematical
Physics at Caltech in Pasadena, who became a champion
of special functions during the 1930s and 1940s, and
who had earlier (immediately prior to his emigration
from England in 1910) discussed the Laplace transform
and applications to differential equations. However,
American academia was late in recognizing applied
mathematics, as exemplified by the abovementioned
report on Numerical Integration of Differential Equa-
tions (1933), in which the authors write that the report
was produced “without special grant for relief from
teaching from any of the institutions represented.”
Mathematical physicist Warren Weaver (who later, in
World War II, would lead the Applied Mathematics Panel
within the American war effort) was surprised, as late
as 1930, “at the emphasis given, in the discussion [on
a planned journal for applied mathematics], to the
field between mathematics and engineering.” During
the 1920s and 1930s, Rockefeller money had primarily
been geared toward supporting pure academic mathe-
matical and physical research, leaving applied research
in the hands of industry. It was left to the clever nego-
tiations of Richard Courant (Gottingen’s adherent to
applied mathematics) to win Rockefeller fellowships
for the applied candidates under his tutelage, such as
Wilhelm Cauer and Alwin Walther.

The 1920s and 1930s were also a time in which math-
ematical modeling came to the fore, although the term
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“mathematical modeling” was rarely used before World
War II. In a 1993 article on the emergence of biomath-
ematics in Science in Context, the author Giorgio Israel
emphasizes the increasing role of mathematical mod-
eling in the nonphysical sciences:

Another important characteristic of the new trends of
mathematical modeling and applied mathematics is
interest in the mathematization of the nonphysical sci-
ences. The 1920s offer in fact an extraordinary concen-
tration of new research in these fields, which is devel-
oped from points of view more or less reflecting the
modeling approach. So the systematic use of math-
ematics in economics (both in the context of micro-
economics and game theory) is found in the work of K.
Menger, J. Von Neumann, O. Morgenstern, and A. Wald,
starting from 1928. The basic mathematical model of
the spread of an epidemic (following the research of
R. Ross on malaria) was published in 1927 [by W. O.
Kermack and A. G. McKendrick]; the first papers by S.
Wright, R. A. Fisher and J. B. S. Haldane on mathemati-
cal theory of population genetics appeared in the early
twenties; the first contributions of Volterra and Lotka
to population dynamics and the mathematical theory
of the struggle for existence were published in 1925
and 1926; and many isolated contributions (such as
van der Pol’s model) also appeared in these years.

Moreover, during the twentieth century there was a
certain tendency for mathematicians to be less inspired
by physics and to resort instead to less rigorous or less
complete models from other sciences, including engi-
neering. In 1977 Garrett Birkhoff, George Birkhoff’s son,
wrote:

Engineers and physicists create and adopt mathemat-
ical models for very different purposes. Physicists are
looking for universal laws (of “natural philosophy”),
and want their models to be exact, universally valid,
and philosophically consistent. Engineers, whose com-
plex artifacts are usually designed for a limited range
of operating conditions, are satisfied if their models
are reasonably realistic under those conditions. On the
other hand, since their artifacts do not operate in ster-
ilized laboratories, they must be “robust” with respect
to changes in many variables. This tends to make engi-
neering models somewhat fuzzy yet kaleidoscopic. In
fluid mechanics, Prandtl’s “mixing length” theory and
von Karman’s theory of “vortex streets” are good exam-
ples; the “jet streams” and “fronts” of meteorologists
are others.

The same author, himself a convert from abstract
algebra to hydrodynamics, explains resistance to math-
ematical models in economics, pointing to the fact
that they did not fit well into Bourbaki’s “conventional
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framework of pure mathematics.” The latter has often
been described as in some respects being inimical to
applications and (since the “New Math” of the 1960s)
as being pedagogically disastrous. However, as detailed
by Israel in the paper quoted above, the relationship
between Bourbaki and the new practices in modeling
has not necessarily been negative. Some mathemati-
cians considered Bourbaki’s notion of mathematics as
an “abstract scheme of possible realities” to be the right
way to liberate mathematics from the classical reduc-
tionist mechanistic approach that had often relied on
linearization methods. There have even been efforts,
for instance by logicians, to introduce “planned arti-
ficial language” into the sciences, as exemplified in
J.H. Woodger’s The Axiomatic Method in Biology (1937).
However, these efforts seem to have had limited suc-
cess. It took another step in the development of com-
puters in the 1980s before necessarily simplified mod-
els of biological processes could be abandoned, and
investigations of cellular automata, membrane com-
puting, simulation of ecological systems, and simi-
lar tasks from modern mathematical biology could be
undertaken.

During the 1920s and 1930s, many further results
in different fields of application were obtained. Well-
known examples include Alan Turing’s work during
the 1930s on the theory of algorithms and computabil-
ity, and the Russian Leonid Kantorovich’s work on lin-
ear programming within an economic context (1939),
which escaped the attention of Western scholars for
several decades.

This was also a period in which some of the foun-
dations were laid for what would, from the late 1940s
on, be called numerical analysis. In 1928 Courant and
his students Kurt Friedrichs and Hans Lewy, all three of
whom eventually emigrated to the United States, pub-
lished “On the partial difference equations of mathe-
matical physics” in Mathematische Annalen. The paper
was translated in the IBM Journal of Research and
Development as late as 1967 on the grounds that it was
“one of the most prophetically stimulating develop-
ments in numerical analysis... before the appearance
of electronic digital computers.... The ideas exposed
still prevail.” In the history of numerical analysis,
the paper gained special importance because it con-
tains the germ of the notion of numerical stability
and involves the problem of well-posedness of par-
tial differential equations (as proposed by Hadamard
in 1902).
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5 Applied Mathematics during and
after World War II

World War II, like World War I, was not a mathemati-
cians’ war. Indeed, in early 1942 the chemist, and Har-
vard president, James Conant said: “The last was a war
of chemistry but this one is a war of physics.” This of
course partially reflected the increasing role of math-
ematics in World War II, revealed by the use of ballis-
tics, operations research, statistics, and cryptography
throughout the conflict. In fact, the president of the
American National Academy of Sciences, the physicist
Frank B. Jewett, responded to Conant with the words:
“It may be a war of physics but the physicists say it
is a war of mathematics.” However, at the time, due
to lingering tradition, mathematics was not given the
same high priority as the other sciences either in the
preparation for warfare nor in war-related research. In
the early 1940s within the leading research organiza-
tions in the United States, in Germany, and in other
countries, mathematics was still subordinate to other
fields, such as engineering and physics. In addition,
the mathematicians themselves were not prepared for
a new and broader social role, e.g., as professionals in
industry, such as might be demanded by the war. When
considering the future of their field during and after
the war, many pure mathematicians were worried that
mathematics would suffer from a too utilitarian point
of view. This is exemplified by the well-known essay A
Mathematician’s Apology written by the leading English
mathematician G. H. Hardy in 1940.

But not long after Hardy’s essay was written, another
Cambridge mathematician, Alan Turing, demonstrated
the potential of sophisticated mathematics—a mix of
logic, number theory, and Bayesian statistics—for war-
fare, when he and his collaborators at Bletchley Park
broke the code of the German Enigma machine.

In Germany, the Diplommathematiker (mathematics
degree with diploma), which was designed for careers in
industry and the civil service, was officially introduced
in 1942, and teaching as a career for mathematicians
began to lose its monopoly.

The entry of the United States into World War II in
December 1941 brought with it deep changes in the
way mathematicians worked together with industry,
the military, and government. In the American Math-
ematical Monthly, rich memoirs on the state of indus-
trial mathematics and (academic) applied mathematics
in the United States by Thornton Fry (1941) and Roland
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Richardson (1943), respectively, were published. Prob-
ably the most spectacular development in communica-
tions mathematics took place in the 1940s at Bell Labo-
ratories with the formulation of information theory by
Claude Shannon.

Based on their European experiences, immigrants
to the United States such as von Karman, Jerzy Ney-
man, von Neumann, and Courant contributed substan-
tially to a new kind of collaboration between math-
ematicians and users of mathematics. In the math-
ematical war work organized by the Applied Mathe-
matics Panel, where the leading positions were occu-
pied by Americans, with Warren Weaver at the head,
the applied mathematicians cooperated with mathe-
maticians of an originally purer persuasion, natives of
the United States (Oswald Veblen, Marston Morse) and
immigrants (von Neumann) alike.

As well as their political and administrative expe-
rience, the immigrants brought to their new environ-
ment European research traditions from engineering
mathematics, classical analysis, and discrete mathe-
matics. Ideas, such as those of von Neumann in theoret-
ical computing, could gradually mature and material-
ize within the industrial infrastructure of the United
States (Bell Laboratories, etc.), aided during the war by
seemingly unlimited public money (Los Alamos, etc.).
In March 1945, while the war was still on, von Neu-
mann sent a famous memo on the “Use of variational
methods in hydrodynamics” to Veblen. Von Neumann
recommended the “great virtue of Ritz’s method” and
deplored that before, and even during, the war mathe-
matical work had not been sufficiently centralized for a
systematic attack on the nonlinear equations occurring
in fluid mechanics and related fields. In the same memo
von Neumann pointed to the “increasing availability
of high-power computing devices,” a development to
which he had of course contributed substantially. As
mentioned in the introduction to the SIAM “History
of numerical analysis and scientific computing” Web
pages:

Modern numerical analysis can be credibly said to
begin with the 1947 paper by John von Neumann and
Herman Goldstine, “Numerical inverting of matrices of
high order” (Bulletin of the AMS, Nov. 1947). It is one
of the first papers to study rounding error and include
discussion of what today is called scientific computing.

Von Neumann and Goldstine’s results were soon fol-
lowed up and critically discussed by English mathe-
maticians (Leslie Fox and James Wilkinson, as well as
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Alan Turing) at the National Physical Laboratory at
Teddington.

After the war, the increased level of U.S. federal fund-
ing for mathematics was maintained. Although partly
fueled by the beginning of the Cold War, it was nev-
ertheless no longer restricted to applications. Much of
it was channeled through the department of defense
(e.g., by the Office of Naval Research) and the new
National Science Foundation (NSF), which was founded
in 1950. The NSF was initiated by the electrical engineer
Vannevar Bush, who had led the Office for Scientific
Research and Development, the American war-research
organization. The concerns about exaggerated utilitar-
ianism that were harbored by pure mathematicians
before the war therefore turned out to be groundless.

As George Dantzig, the creator of the SIMPLEX METH-
oD [IV.1183.1], observed, the outpouring of papers
in linear programming between 1947 and 1950 coin-
cided with the building of the first digital computers,
which made applications in the field possible. Mathe-
matical approaches to logistics, warehousing, and facil-
ity location were practiced from at least the 1950s,
with early results in optimization by Dantzig, William
Karush, Harold Kuhn, and Albert Tucker being enthu-
siastically received by (and utilized in the logistics pro-
grams of) the United States Air Force and the Office of
Naval Research. These optimization techniques are still
highly relevant to industry today.

The papers of the 1950 Symposium on Electromag-
netic Waves, sponsored by the United States Air Force
and published in the new journal Communications on
Pure and Applied Mathematics, summarized the war
effort in the field. Richard Courant, by then at New
York University, pointed to the importance of a new
approach to classical electromagnetism, where “a great
number of new problems were suggested by engineers.”
This strengthened the feeling, already evident before
the war, that the predominance of academic mathe-
matical physics as the main source of inspiration for
mathematical applications had begun to wane. Ironi-
cally, Courant’s paper of 1943 on variational methods
for the solution of problems of equilibrium and vibra-
tions, which would later be widely considered to be one
of the starting points for the FINITE-ELEMENT METHOD
[II.12] (the name being coined by R. W. Clough in 1960),
lay in obscurity for many years because Courant, not
being an engineer, did not link the idea to networks of
discrete elements. Another reason for the later break-
through was a development of variational methods of
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approximation in the theory of partial differential equa-
tions, which would ultimately prove to be vital to the
development of finite-element methods in the 1960s
(see J. T. Oden’s chapter in Nash (1990)). A thought-
ful historical look at the different ways mathematicians
and engineers use finite-element methods is given in
Babuska (1994).

New institutions for mathematical research, both
pure and applied, were created after the war. Among
them the institute under Richard Courant at New York
University developed the most strongly. In a 1954 gov-
ernment report it was stated that Courant’s institute
had an

enrollment of over 400 graduate students in mathe-
matics of which about half have a physics or engineer-
ing background.... The next largest figure, reported
from Brown University, is a whole order of magni-
tude smaller! In the way of a rough estimate this
means that New York University alone provides about
one third of this country’s annual output of applied
mathematicians with graduate training.

The figures are based on a questionnaire prepared
in connection with a conference organized in 1953 at
Columbia University in New York by F. Joachim Weyl,
the son of Hermann Weyl, as part of a Survey of Train-
ing and Research in Applied Mathematics sponsored by
the American Mathematical Society and by the National
Research Council under contract with the NSF. The con-
ference proceedings and the report both included dis-
cussions on not only the training of applied mathemati-
cians (particularly for industry, and including inter-
national comparisons) but also the increasing use of
electronic computing; a summary was published in the
Bulletin of the American Mathematical Society in 1954.

Between 1947 and 1954 the Institute for Numerical
Analysis at the University of California, Los Angeles,
sponsored by the National Bureau of Standards, played
a special role in training university staff in numerical
analysis and computer operations. The institute was
closed in 1954, a victim of McCarthyism.

Brown University’s summer school of applied me-
chanics, which were organized by Richardson from
1941 onward, had relied heavily on the contributions
of immigrants. This is also partly true of the first
American journal of applied mathematics, the Quar-
terly of Applied Mathematics, which began in 1943, and
of Mathematical Tables and Other Aids to Computation,
another Brown journal, which started the same year
under Raymond Archibald.
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Figure 6 M. Abramowitz and I. A. Stegun, eds,
Handbook of Mathematical Functions (1964).

Various projects on mathematical tables and special
functions that had their origins early in the twentieth
century in various countries (the United Kingdom, Ger-
many, and the United States) received a boost from
the war. At Caltech, Arthur Erdélyi, with financial sup-
port from the Office of Naval Research, oversaw the
Bateman Manuscript Project—the collation and publi-
cation of material collected by Harry Bateman, who had
died in 1946—which led to the three-volume Higher
Transcendental Functions (1953-55).

The Mathematical Tables Project, which had been ini-
tiated by the Works Progress Administration in New
York in 1938, with Gertrude Blanch as its technical
director, was disbanded after the war but many of its
members moved to Washington in 1947 to become part
of the new National Applied Mathematics Laboratories
of the National Bureau of Standards. The latter’s confer-
ence of 1952 resulted in one of the best-selling applied
mathematics books of all time, Handbook of Mathe-
matical Functions with Formulas, Graphs and Mathe-
matical Tables (1964) by Milton Abramowitz and Irene
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the Abel Prize in Mathematics “for his groundbreak-
ing contributions to the theory and application of par-
tial differential equations and to the computation of
their solutions”—signaled a new level of acceptance for
applied mathematics in his widely distributed paper in
SIAM Review on “The flowering of applied mathematics
in America”:

Whereas in the not so distant past a mathematician
asserting “applied mathematics is bad mathematics”
or “the best applied mathematics is pure mathemat-
ics” could count on a measure of assent and applause,
today a person making such statements would be
regarded as ignorant.

The publication of articles by working applied math-
ematicians in Metropolis et al. (1980) and Nash (1990),
and the extensive seven-volume historical project un-
dertaken by the Journal of Computational and Applied
Mathematics (2000), which was republished in Brezin-
ski and Wuytack (2001), seem to testify to a growing
self-confidence of applied mathematics within math-
ematics more widely. Some efforts, such as the pub-
lication of the “Top ten algorithms” in Computing in
Science and Engineering in 2000 (six of which are con-
tained in [L.5, table 2]), provoked controversial discus-
sions. Many practitioners of applied mathematics in
these and other publications reveal awareness of prob-
lems regarding the rigor and reliability of their meth-
ods, showing that the links between pure and applied
mathematics exist and continue to stimulate the field.
However, the standard philosophical approaches to
mathematics—circling repetitively around formalism,
logicism, and intuitionism, with no consideration of
applications and doing no justice to the ever-increasing
range of mathematical practice—are no longer satisfy-
ing either to mathematicians or to the public.

The unabated loyalty to pure mathematics as the
mother discipline sometimes leads to overcautious
reflection on the part of the applied mathematician.
A nice example is provided by Trefethen (again in
The Princeton Companion to Mathematics) in the con-
text of rounding errors and the problem of numerical
stability:

These men, including von Neumann, Wilkinson, For-
sythe, and Henrici, took great pains to publicize the
risks of careless reliance on machine arithmetic. These
risks are very real, but the message was communicated
all too successfully, leading to the current widespread
impression that the main business of numerical analy-
sis is coping with rounding errors. In fact, the main
business of numerical analysis is designing algorithms
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that converge quickly; rounding-error analysis, while
often a part of the discussion, is rarely the central
issue. If rounding errors vanished, 90% of numerical
analysis would remain.

But it is not only these methodological concerns
that hold back applied mathematics. For example, Lax
(1989) mentions persisting problems in education and
the need to maintain training in classical analysis:

The applied point of view is essential for the much-
needed reform of the undergraduate curriculum, espe-
cially its sorest spot, calculus. The teaching of calculus
has been in the doldrums ever since research math-
ematicians gave up responsibility for undergraduate
courses.

The education and training of applied mathematicians
remains a central concern, and it is not even clear
whether the situation has changed significantly since
the Columbia University Conference of 1953. At that
time the applied mathematician and statistician John
Wilder Tukey, best known for the development of the
FFT algorithm and the box plot, declared with reference
to what is now called modeling:

Formulation is the most important part of applied
mathematics, yet no one has started to work on the
theory of formulation—if we had one, perhaps we
could teach applied mathematics.

A 1998 report by the NSF states that:

Careers in mathematics have become less attractive
to U.S. students. [Several]... factors contribute to this
change: (i) students mistakenly believe that the only
jobs available are collegiate teaching jobs, a job mar-
ket which is saturated (more than 1,100 new Ph.D.s
compete for approximately 600 academic tenure-track
openings each year); (ii) academic training in the
mathematical sciences tends to be narrow and to
leave students poorly prepared for careers outside
academia; (iii) neither students nor faculty understand
the kinds of positions available outside academia to
those trained in the mathematical sciences.

The same report underscores the undiminished depen-
dence of American pure and applied mathematics on
immigration from Europe and (now) from Asia, South
America, and elsewhere:

Although the United States is the strongest national
community in the mathematical sciences, this strength
is somewhat fragile. If one took into account only
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home-grown experts, the United States would be weak-
er than Western Europe. Interest by native-born Amer-
icans in the mathematical sciences has been steadily
declining. Many of the strongest U.S. mathematicians
were trained outside the United States and even more
are not native born. A very large number of them
emigrated from the former Soviet Union following its
collapse. (Russia’s strength in mathematics has been
greatly weakened with the disappearance of research
funding and the exodus of most of its leading mathe-
maticians.) Western Europe is nearly as strong in math-
ematics as the United States, and leads in important
areas. It has also benefited by the presence of émigré
Soviet mathematical scientists.

The Fields Medals for Pierre-Louis Lions (son of
Jacques-Louis Lions) (1994), Jean-Christophe Yoccoz
(1994), Stanislav Smirnov (2010), and Cédric Villani
(2010) testify to the growing strength of European
applied mathematics and to the changed status of the
field within mathematics. Likewise, the awarding of the
Abel Prize of the Norwegian Academy of Science and
Letters to Peter Lax (2005), Srinivasa Varadhan (2007),
and Endre Szemerédi (2012) for predominantly applied
topics is a further indication of this shift. In addi-
tion, prestigious prizes devoted specifically to applica-
tions, with particular emphasis on connections to tech-
nological developments, have been founded in recent
decades. The fact that several of these prizes have been
named for mathematicians of outstanding theoretical
ability—the ACM A. M. Turing Award (starting in 1966),
the IMU Rolf Nevanlinna Prize (1981), the DMV and
IMU Carl Friedrich Gauss Prize (2006)—underscores the
unity of mathematics in its pure and applied aspects.

Meanwhile, problems remain in the academic-indus-
trial relationship and, connected to it, in the profession-
al image of the applied mathematician, as described in
the two most recent reports on “Mathematics in Indus-
try” (1996 and 2012) published by SIAM. The report for
2012 summarizes the situation:

Industrial mathematics is a specialty with a curious
case of double invisibility. In the academic world,
it is invisible because so few academic mathemati-
cians actively engage in work on industrial problems.
Research in industrial mathematics may not find its
way into standard research journals, often because the
companies where it is conducted do not want it to.
(Some companies encourage publication and others do
not; policies vary widely.) And advisors of graduates
who go into industry may not keep track of them as
closely as they keep track of their students who stay in
academia.
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However, most of the problems mentioned in this
article with respect to academic applied mathematics
(research funding, the lack of applications in math-
ematics education, the need for migration between
national cultures) concern pure and applied math-
ematics alike. On the purely cognitive and theoret-
ical level, the difference between the two aspects of
mathematics—for all its interesting and important his-
torical and sociological dimensions—hardly exists, as
the above-quoted NSF report of 1998 underscores:

Nowadays all mathematics is being applied, so the term
applied mathematics should be viewed as a different
cross cut of the discipline.
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Part 11
Concepts

II.1 Asymptotics
P. A. Martin

When sketching the graph of a function, y = f(x),
we may notice (or look for) lines that the graph
approaches, often as x — +oo. For example, the graph
of ¥ = x2/(x? + 1) approaches the straight line y = 1
as x — o (and as x — —o0). This line is called an asymp-
tote. Asymptotes need not be horizontal or straight,
and they may be approached as x — xq for some
finite xo. For example, y = x*/(x? + 1) approaches the
parabola y = x? as x — +o0, and ¥ = log x approaches
the vertical line x = 0 as x — 0 through positive val-
ues. Another example is that sinhx = %(ex +e™¥)
approaches %e" as x — oco: we say that sinhx grows
exponentially with x.

The qualitative notions exemplified above can be
made much more quantitative. One feature that we
want to retain when we say something like “y = f(x)
approaches y = g(x) as x — «” is that, to be use-
ful, g(x) should be simpler than f(x), where “simpler”
will depend on the context. This is a familiar idea; for
example, we can approximate a smooth curve near a
chosen point on the curve by the tangent line through
that point.

When limy_.x,[f(x)/g(x)] = 1, we write f(x) ~
g(x) as x — xp, and we say that g(x) is an asymp-
totic approximation to f(x) as x — xo. For example,
sinhx ~ x as x — 0 and tanhx ~ 1 as x — o0. A
famous asymptotic approximation of this kind is Stir-
ling’s formula from 1730: n! ~ (2mn)'/2(n/e)" as
n — o,

According to our definition, we have e¥ ~ 1,e¥ ~ 1+
x,and e¥ ~ 1 + 2x, all as x — 0. On the other hand, we
have the Maclaurin expansion, e¥ = 1 + x + %xz +oeeey,
which converges for all x; truncating this infinite series
gives good approximations to e* near x = 0, and these
approximations improve if we take more terms in the
series. This suggests that we should select 1 +x and not

1 + 2x, so our definition of “~” is too crude. We want
asymptotic approximations to be approximations, and
we want to be able to improve them by taking more
terms, if possible. With this in mind, suppose we have
a sequence of functions, ¢,(x), n = 0,1,2,..., with
the property that ¢ui1(x)/pn(x) — 0 as x — xyo.
Standard examples are ¢y,(x) = x™ as x — 0 and
$n(x) = x ™ as x — co. Let Ry(x) = Sn_gancpn(x)
for some coefficients a,. We write

0

f(x)~ D anpn(x) asx — xo,

n=0
and say that the series is an asymptotic expansion of
f(x) as x — xo when, foreach N =0,1,2,...,
[f(x)=Rn(x)]/pNn(x) =0 asx —xg. (1)

In words, the “error” f — Ry is comparable to the first
term omitted, the one with n = N + 1. Note that the
definition does not require the infinite series to be con-
vergent (so that Ry (x) may not have a limit as N — o
for fixed x). Instead, for each fixed N, we impose a
requirement on the error as x — xg, namely (1).

Asymptotic approximations may be convergent. For
example, we have e¥ ~ 1 +x+ %xz +---asx — 0.How-
ever, many interesting and useful asymptotic expan-
sions are divergent. As an example, the complementary
error function

I e
erfc(x) = it L et dt

e o Wl-3--2n-1)
vl 2D ST
as x — oo, where the series is obtained by repeated inte-
gration by parts of the defining integral. The series is
divergent, but taking a few terms gives a good approxi-
mation to erfc x, an approximation that improves as x
becomes larger.

Many techniques have been devised for obtaining
asymptotic expansions. Some are designed for func-
tions defined by integrals (such as erfcx), others for
functions that solve differential equations. Asymptotic
methods can also be used to estimate the complexity
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It is often hard to do much more than numerical sim-
ulations to determine the behavior of systems, lead-
ing to a somewhat limited phenomenological descrip-
tion of their behavior. There are two central meth-
ods in the study of complex systems that go further
than this, though again with limited concrete predic-
tive power. These are graph theory to characterize
how components influence each other, and dimension
reduction methods to capture (where applicable) any
lower-dimensional approximations that determine the
evolution of the system.

If the system has real variables x;, i = 1,...,N, then
each variable can be identified with the node of a graph
labeled by i, with an edge from i to j if the dynamics
of x; is directly influenced by x; (see GRAPH THEORY
[II.16]). For example, if the evolution is determined by a
differential equation then x; = f;(x1,x2,...,Xn), but
not every variable need appear explicitly in the argu-
ment of fj, so there is an edge from x; to x; only if
d.fi/ox;j is not identically zero. This graph can be rep-
resented by an adjacency matrix (a;;) with a;; = 1 if
there is an edge from i to j and a;; = 0 otherwise. The
degree of a node is the number of edges at the node
(this can be split into the in-degree (respectively, out-
degree) if only edges ending (respectively, starting) at
the node are counted). The proportion of nodes with
degree k is the degree distribution of the network. Prop-
erties of the degree distribution are often used to char-
acterize the network. For example, if the degree dis-
tribution obeys a power law, the network is said to be
scale free (the Internet is supposedly of this type; see
NETWORK ANALYSIS [IV.18]).

By analyzing subgraphs of biological models it was
found that some subgraphs appear in examples much
more often than would be expected on the basis of a
statistical analysis. This has led to the conjecture that
these motifs may have associated functional properties.

In many complex systems the individual components
of the system behave according to very simple, though
often nonlinear, rules. For example, a bird in a flock may
change its direction of flight as a function of the aver-
age direction of flight of nearby birds. Although this is
alocal rule, the effect across the entire flock of birds is
to produce coherent movement of the flock as a whole.
This effect, whereby simple local rules lead to inter-
esting global results, is called emergent behavior. The
emergent behavior resulting from given local rules is
often unclear until the system is simulated numerically.

In some cases the dimension of the problem can be
reduced, so fewer variables need to be considered, mak-
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ing the system easier to simulate and more amenable
to analysis. The methods of dimension reduction often
rely on SINGULAR VALUE DECOMPOSITION [I.32] tech-
niques to identify the more dynamically active direc-
tions in phase space, and then an attempt is made to
project the system onto these directions and analyze
the resulting system.

In some systems the mean-field theory of theoretical
physics can be used to understand collective behavior.

Since complexity theory encompasses so many dif-
ferent models, the range of possible dynamic phenom-
ena is vast, even before further complications such as
stochastic effects or network evolution are included.
Complex systems describing neuron interactions in
the brain can model pattern recognition and memory
(see MATHEMATICAL NEUROSCIENCE [VIL.21]). Numeri-
cal models of partial differential equations are com-
plex systems, and the dynamical behavior can include
synchronization, in which all components lock on to
a similar pattern of behavior, and PATTERN FORMA-
TION [IV.27]. Different parts of the system may behave
in dynamically different ways, with regions of frus-
tration (or fronts) separating them. Interactions may
have different strengths, leading to different timescales
in the problem. This is particularly true of many bio-
logical models and adds to the difficulty of modeling
phenomena accurately.
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IL5 Conformal Mapping
Darren Crowdy

1 What Is a Conformal Mapping?

Conformal mapping is the name given to the idea of
interpreting an analytic function of a complex variable
in a geometric fashion. Let z = x +1iy and suppose that
another complex variable w is defined by

w = f(z2) = p(x,y) +ip(x,y),

where ¢ and  are, respectively, the real and imagi-
nary parts of some function f(z), an analytic function
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of z. One can think of this relation as assigning a cor-
respondence between points in the complex z-plane
and points in the complex w-plane. Under this func-
tion a designated region of the z-plane is transplanted,
or “mapped,” to some region in the w-plane, as illus-
trated in figure 1. The shape of the image will depend
on f. The fact that f is an analytic function implies
certain special properties of this mapping of regions. If
the mapping is to be one-to-one, then a necessary, but
not sufficient, condition is that the derivative f'(z) =
df/dz does not vanish in the z-region of interest.
A simple example is the Cayley mapping
1+z
w=f(z) = =2

This maps the interior of the unit disk |z| < 1 in the
z-plane to the right half w-plane Rew > 0. The point
z=1mapstow = o, and z = —1 maps to w = 0.
The unit circle |z| = 1 maps to the imaginary w-axis.
Conformal mappings clearly preserve neither area nor
perimeters; their principal geometrical feature is that
they locally preserve angles. To see this, note that since
f(z) is analytic at a point zg, it has a local Taylor
expansion there:

w = f(zo) + f'(z0)(z = 20) +--- .
If 6z = z—Zz is an infinitesimal line element through z,

in the z-plane, its image dw under the mapping defined
as dw = w—wop, where wo = f(zp), is, to leading order,

Sw = f'(z9)6z.

But f’(zp) is just a nonzero complex number so, under
a conformal mapping, all infinitesimal line elements
through z( are transplanted to line elements through
wy in the w-plane that are simply rescaled by the mod-
ulus of f’(zp) and rotated by its argument. In particu-
lar, the angle between two given line elements through
z( is preserved by the mapping.

2 The Riemann Mapping Theorem

The Riemann mapping theorem is considered by many
to be the pinnacle of achievement of nineteenth-cen-
tury mathematics. It is an existence theorem: it states
that there exists a conformal mapping from the unit z-
disk to any given simply connected region (no holes) in
the w-plane, so long as it is not the entire plane.

3 Conformal Invariance

One reason why conformal mappings are an impor-
tant tool in applied mathematics is the property of con-
formal invariance of certain boundary-value problems
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w = f(2)

Figure 1 A conformal mapping from a region in a
complex z-plane to a region in a complex w-plane.

arising in applications. An example is the boundary-
value problem determining Green’s function G(z;zg)
for the Laplace equation in a region D in R? with
boundary dD, which can be written as

V3G =6%(z—-29) inD with G =0onaD,

where z( is some point inside D and ‘® is the two-
dimensional DIRAC DELTA FUNCTION [III.7]. The Green
function for the unit disk |z| < 1 is known to be

. _ 1 zZ -2

G(zi20) = Im[ﬁlog(uouz - 1/%))]‘
where Z( is the complex conjugate of zp. Now if D is any
other simply connected region of a complex w-plane,
the corresponding Green function in D is nothing other
than G(f " (w); f~"(wp)), where f~1 (w) is the inverse
function of the conformal mapping taking the unit z-
disk to D. Geometrically, f~!(w) is just the inverse
conformal mapping transplanting D to the unit disk
|z| < 1. The Green function in any simply connected
region D is therefore known immediately provided the
conformal mapping between D and the unit disk can
be found.

4 Schwarz-Christoffel Mappings

The Riemann mapping theorem is nonconstructive and,
while the existence of a conformal mapping between
given simply connected regions is guaranteed, the prac-
tical matter of actually constructing it is another story.
One of the few general constructions often used in
applications is the Schwarz-Christoffel mapping. This
is a conformal mapping from a standard region such as
the unit z-disk |z| < 1 to the region interior or exterior
to an N-sided polygon. At the preimage of any vertex
of the polygon (a prevertex), the local argument out-
lined earlier demonstrating the preservation of angles
between infinitesimal line elements must fail. Indeed, at
any such prevertex it can be argued that the derivative
f'(z) of the conformal mapping must have a simple
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z-plane

Wy

Figure 2 A Schwarz-Christoffel mapping from the unit
z-disk to the interior of a square in a w-plane. A function
of the form (1) with N = 4 identifies a point w with a point
z. Here, By = B2 = B3 = By =1/2.

zero, a simple pole, or a branch point singularity. The
general formula for a mapping from |z| < 1 to the
interior of a bounded polygon in a w-plane is

z N z’ (Br/m=1)
w=f(z)=A+BI ﬂ(]-—)
k=1

dz', (1)

Zk
while the formula for a mapping from [z| < 1 to the
exterior of a bounded polygon in a w-plane, with z = 0
mapping to w = oo, is

—- (2

z' (ﬂk/ﬂ—l)dzl
( ) z'2°

The parameters {Bfx | k = 1,2,...,N} are the turn-
ing angles shown in figure 2; the points {zx | k =
1,2,...,N} are the prevertices. A and B are complex
constants. These so-called accessory parameters are
usually computed numerically by fixing geometrical
features such as ensuring that the sides of the poly-
gon have the required length. A famous mapping of
Schwarz-Christoffel type known for its use in aerody-
namics is the Joukowski mapping,

s ).

which maps the unit disk |z| < 1 to the infinite region
exterior to a flat plate, or airfoil, lying on the real w-
axis between w = —1 and w = 1. It is a simple mat-
ter to derive it from (2) with the prevertices z; = 1,
z> = —1 and turning angles B, = B, = 2. Since it is
natural, given any two-dimensional shape, to approxi-
mate it by taking a set of points on the boundary and
joining them with straight line segments to form a poly-
gon, the Schwarz-Christoffel formula has found many
uses in applied mathematics. Versatile numerical soft-
ware to compute the accessory parameters has also
been developed.

II. Concepts

Further Reading

Courant, R. 1950. Dirichlet’s Principle, Conformal Mapping
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II.6 Conservation Laws
Barbara Lee Keyfitz

1 Quasilinear Hyperbolic Partial
Differential Equations

A system of first-order partial differential equations
(PDEs) in the form

d

ur+ > Ai(x, t,wuy, + b(x,t,u) =0, 1)

i=1
where u € R", b € R", the A; are n X n matrices, and
u; = ou/ot and uy, = 0u/ox;, is said to be quasilinear;
the system is nonlinear as defined in the article PARTIAL
DIFFERENTIAL EQUATIONS [IV.3], but the terms contain-
ing derivatives of u appear only in linear combination.
Identifying t as a time variable and x = (xj,...,x4) asa
space variable, the Cauchy problem asks for a solution
to (1) for t > 0 with the initial condition

u(x,0) = up(x). (2)

By analogy with the theory of linear PDEs, one expects
this problem to be well-posed only if the system is
hyperbolic, which means that all the roots 7(&§) (known
as characteristics) of the polynomial equation

d
det (TI + A,-Ei) =0 (3)
i=1
are real for all £ € R4 and, as eigenvalues of the matrix
Z‘f:l A&, each has equal ALGEBRAIC AND GEOMETRIC
MULTIPLICITIES [IL.22].

In 1974 Fritz John showed that if d = 1, and the sys-
tem is genuinely nonlinear (meaning that Vgt; - 7; # 0
for each root T; of (3) and corresponding eigenvector
ri), then for smooth Cauchy data at least one com-
ponent of Vu tends to infinity in finite time, exactly
as in the BURGERS EQUATION [IIL.4] (see also PARTIAL
DIFFERENTIAL EQUATIONS [IV.3 §3.6]).

Characteristics in hyperbolic systems define the
speed of propagation of signals in specific directions
(normal to &), so genuine nonlinearity says that this
speed is a nontrivial function of the state u. This has
physical significance as a description of the phenomena
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modeled by conservation laws, and it has mathemati-
cal implications for the existence of smooth solutions.
Specifically, the behavior seen in solutions of the Burg-
ers equation typifies solutions of genuinely nonlinear
hyperbolic systems.

Furthermore, despite the fact that DISTRIBUTION
SOLUTIONS [IV.3 §5.2] are well defined for linear hyper-
bolic equations, the concept fails for quasilinear sys-
tems since, in the first place, A; and A;uy, are not
defined if u lacks sufficient smoothness, and, in the sec-
ond, the standard procedure of creating the weak form
of an equation (multiply by a smooth test function and
integrate by parts) does not usually succeed in eliminat-
ing Vu from the system when A = A(u) depends in a
nontrivial way on u. The exception is when each A;uy,
is itself a derivative: Ajuy, = 0y, fi(u). This happens
if each row of each A; is a gradient, and that happens
only if the requisite mixed partial derivatives are equal.
In this case, we have a system of balance laws:

d
u + > (filx,t,u))y, + b(x,t,u) = 0. (4)
i=1
In the important case in which b = 0, we have a system
of conservation laws. The weak form of (4) is

H [uqm + i(f,’(x.t,u))q)x, - b(x,t,u)q)] dxdt =0.

i=1
(5)
Since this is the only case in which solutions to (1) can
be unambiguously defined, the subject of quasilinear
hyperbolic systems is often referred to as “conserva-
tion laws.”

A mathematical challenge in conservation laws is to
find spaces of functions that are inclusive enough to
admit weak solutions for general classes of conserva-
tion laws but regular enough that solutions and their
approximations can be analyzed. At this time, there is
a satisfactory well-posedness theory only in a single
space dimension.

2 How Conservation Laws Arise

Problems of importance in physics, engineering, and
technology lead to systems of conservation laws; a
sample selection of these problems follows.

2.1 Compressible Flow

The basic equations of compressible fluid flow, derived
from the principles of conservation of mass, momen-
tum, and energy, along with constitutive equations
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relating thermodynamic quantities, take the form
pt +div(pu) =0,
(pu) + div(pu®u) + Vp =0, (6)

(pE); + div(puH) =0,

where p represents density, u velocity, p pressure, E
energy, and H enthalpy, with
1p
y-1p’
and y a constant that depends on the fluid (y = 1.4
for air). To obtain the first equation in (6), one notes
that the total amount of mass in an arbitrary control
volume D is the integral over D of the density, and this
changes in time if there is flux through the boundary I
of D. Furthermore, the flux is precisely the product of
the density and the velocity normal to that boundary,
from which we obtain

d
at JDpdV-—Irpu~vdA. (7)

E=}lul®+ H = yE,

(The negative sign will remind the reader of the conven-
tion that v is the outward normal, and flow out of D will
decrease the mass contained in D.) Interchanging dif-
ferentiation and integration on the left in (7), along with
an application of the DIVERGENCE THEOREM [1.2 §24] on
the right, immediately yields

JJ'D(p, +div(pu))dV = 0. (8)

Finally, the observation that D is an arbitrary domain
in the region allows one to pass to the infinitesimal
version in (6). The integral version (8) also justifies the
weak form (5), since if (8) holds on arbitrary domains
then it is possible to form weighted averages with arbi-
trary differentiable functions @ and to integrate by
parts, which produces (5).

In compressible flow, the speed of sound is finite; in
(6) it is one of the characteristics. Steady flow at speeds
that exceed the speed of sound also gives a hyperbolic
system of conservation laws (6) with the time deriva-
tives absent. In this case, the hyperbolic direction (the
time-like variable) is given by the flow direction.

Conservation principles also lead to equations for
ELASTICITY [IV.26 §3.3] and MAGNETOHYDRODYNAMICS
[IV.29]. Industrial applications include continuum mod-
els for multiphase flow (e.g., water mixed with steam
in nuclear reactor cooling systems, or multicomponent
flows in oil reservoirs).

The necessity of solving, or at least approximating,
conservation laws for many of these applications has
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resulted in extensive techniques for numerical simu-
lation of solutions, even when existence of solutions
remains an open question.

2.2 Chromatography

Chromatography is a widely used industrial process for
separating chemical components of a mixture by differ-
ential adsorption on a substrate. Modeling a chromato-
graphic column leads to a system of conservation laws
in a single space variable that takes the form

cx + (f(e)) =0,

where ¢ = (c1,...,cn) is a vector of component con-
centrations and f is the equilibrium column isotherm.
A common model for f uses the Langmuir isotherm
and gives, with positive parameters «; measuring the
relative adsorption rates,

XCi
fi=c -1

i+ =, 1<i<n.
W S

2.3 Other Models

Many other physical phenomena lead naturally to con-
servation laws. For example, a continuum model for
vehicular traffic on a one-way road is the scalar equa-
tion

ur +q(u)x =0,

where u represents the linear density of traffic and
q(u) = uv(u) the flux, where v is velocity. As in (7),
this equation is a conservation law, the “law of con-
servation of cars.” This model assumes that the veloc-
ity at which traffic moves depends only on the traffic
density. Although this model is too simple to be of
much practical use, itis appealing as a pedagogical tool.
Adaptations of it are of interest in current research.
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II.7 Control

A system is a collection of objects that interact and pro-
duce various outputs in response to different inputs.
Systems arise in a wide variety of situations and include
chemical plants, cars, the human body, and a coun-
try’s economy. Control problems associated with these
systems include the production of a chemical, control
of self-driving cars, the regulation of bodily functions
such as temperature and heartbeat, and the control of
debt. In each case one wants to have a way of con-
trolling these processes automatically without direct
human intervention.

A general control system is depicted in figure 1. The
state of the system is described by n state variables x;,
and these span the state space. In general, the x; cannot
be observed or measured directly, but p output vari-
ables yi, which depend on the x;, are known. The sys-
tem is controlled by manipulating m control variables
Uj.

The system might be expressed as a system of dif-
ference equations (discrete time) or differential equa-
tions (continuous time). In the latter case a linear,
time-invariant control problem takes the form

dx
at - Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where A, B, C, and D are n x n, n X m, p X n, and
p X m matrices, respectively. This is known as a state-
space system. In some cases an additional n X n matrix
E, which is usually singular, premultiplies the dx/dt
term; these so-called descriptor systems or generalized
State-space systems lead to DIFFERENTIAL-ALGEBRAIC
EQUATIONS [1.2 §12].

A natural question is whether, given a starting value
x(0), the input u can be chosen so that x takes a given
value at time t. Questions of this form are fundamental
in classical control theory.

If feedback occurs from the outputs or state variables
to the controller, then the system is called a closed-loop
system. In output feedback, illustrated in figure 1, u
depends on y, while in state feedback u depends on x.
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physical quantities defining a model. In order to explain
how this works, we need to introduce some definitions
and establish the notation that will be used below.
Consider a system that contains n physical quanti-
ties, q1,42,...,4qn, that we believe to be relevant for
describing the system'’s behavior, the quantities being
expressed using » fundamental units, or dimensions,
denoted by dj,d>2,...,d,. The generally accepted SI
unit system consists of ¥ = 7 basic dimensions and
numerous derived dimensions. More precisely, d; is the
meter (m), d> the second (s), d3 the kilogram (kg), d4
the ampere (A), ds the mole (mol), dg the kelvin (K), and
d7 the candela (cd). The number r can be smaller, since
not all units are always needed. The physical dimension
of a quantity g is denoted by [q].

A meaningful mathematical relation between the
quantities q; should obey the principle of dimensional
homogeneity, which can be summarized as follows:
summing up quantities is meaningful only if all the
terms have the same dimension. Furthermore, any func-
tional relation of the type

f(q1,q2,---,q;1)=0 (1)

should remain valid if expressed in different units.
In other words, since dimensional scaling must not
change the equation, it is natural to seek to express
the relations in terms of dimensionless quantities. It
is therefore not a surprise that dimensionless quanti-
ties, known as IT-numbers, have a central role in dimen-
sional analysis. A canonical example of a IT-number
is 1, the invariant ratio of the circumference and the
diameter of circles of all sizes.

Given a system described by the physical quanti-
ties qi1,42,...,q4n, we will define a IT-number, or a
dimensionless group, to be any combination of those
quantities of the form

R=a{"a5 ---an", ()
where the p; are rational numbers, not all equal to zero,
and R is dimensionless. If, in such a system, we are able
to identify k IT-numbers, Ry,..., Rk, that characterize
it, we can describe it with a dimensionless version of
(1) of the form

@(R1,R2,...,Ry) = 0.

The advantage of the latter formulation is that it auto-
matically satisfies the dimensional homogeneity; more-
over, it does not change with any scaling of the model
that leaves the values of the IT-numbers invariant.
These points are best clarified by a classical example
of dimensional analysis.
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Consider steady fluid flow in a pipe of constant diam-
eter D. The fluid is assumed to be incompressible, hav-
ing density p and viscosity u. By denoting the pres-
sure drop across a distance L by Ap and the (average)
velocity by v, we may assume that there is an algebraic
relation between the quantities:

f(L-D:P-IJ,U-AP)=0- (3)

In SI units, the dimensions of the variables involved are

=ol=m (=% =L,
) (4)
wi=2 [apl- %,
s e

In his classic paper of 1883, Osborne Reynolds sug-
gested a scaling law of the form
»L (pvD

ap = vt pF(702). ©)
where F is some function; Reynolds himself considered
the power law F(R) = cR™™ with different values of
n and experimentally validated it. Equation (5) can be
seen as a dimensionless version of (3),

@(Ry1,R2,R3) =0,

where
Ry = M, R = A_pz Rz = £-
M pv D
The quantities R; and Ry are known as the Reynolds
number and the Euler number, respectively, and it is
a straightforward matter to check that Ry, Ry, and R3
are dimensionless. The scaling law (5) has been experi-
mentally validated in a range of geometric settings. An
example of its use is the design of miniature models.
If the dimensions are scaled by a factor «, L — «L,
D — «D, we may assume that the flow in the minia-
ture model gives a good prediction for the actual sys-
tem if we scale the velocity and pressure as v — v/«x
and Ap — Ap/a?, leaving the dimensionless quantities
intact.

In view of the above example it is natural to ask how
many IT-numbers characterize a given system and if
there is a systematic way of finding them. To address
these questions it is important to identify possible
redundancy among the physical quantities, on the one
hand, and the dimensions, on the other. With this in
mind we introduce the concepts of independency and
relevance of the dimensions.

The dimensions di,...,d, are independent if none
can be expressed as a rational product of the others,
that is,

ANdse ... d% =1 ©6)
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if and only if &¢; = a2 = - - - = & = 0. The dimensions
dj may be the fundamental dimensions of the SI unit
system or derived dimensions, such as the newton (N =
kg/m - s2).

It is not a coincidence that this definition strongly
resembles that of linear independency in linear algebra,
as will become evident later.

Let a system be described by n quantities, q1,...,qn,
and r dimensions, d;,...,d,, with the dimensional
dependency

[qj]=di"ady” .. .ddr, 1<j<n (7)

We say that the dimensions di, 1 < k < v, are relevant
if for each dy there are rational coefficients «; such
that

dr = [q11%[q2]% - - - [@n ], (8)

In other words, the dimensions dj are relevant if they
can be expressed in terms of the dimensions of the vari-
ables gy. It follows immediately that, if the quantities g;
can be measured, then there must exist an operational
description of all units in terms of the measurements.
Identifying relevant quantities may be more subtle than
it seems.

For the sake of definiteness, assume that we adhere
to the SI system, and denote the seven basic SI units by
ey, ez,...,ez, the ordering being unimportant. We now
proceed to define an associated dimension space: to
each e; we associate a vector e; € R7, where e; is the
ith unit coordinate vector. Further, we define a group
homomorphism between the @Q-moduli of dimensions
and vectors; since any dimension d can be represented
in the SI system in terms of the seven basic units e; as

—_ V1 vz

d = el A e7 y
we associate d with a vector d, where
d=v1e| + -+ V7ey.

Along these lines, we associate with a quantity g with
dimensions

lal = ay' - - - dy
the vector
q=u1d1 +oee +I—lrdr-
It is straightforward to verify that the representation of
q in terms of the basis vectors e; is unambiguous.
We are now ready to revisit independency of units in

the light of the associated vectors. In linear algebraic
terms, condition (6) is equivalent to saying that

ocdy + -+ opdy =0,

II. Concepts

and therefore the independency of dimensions is equiv-
alent to the linear independency of the corresponding
dimension vectors.

Next we look for a connection with linear algebra
to help us reinterpret the concept of relevance. In the
dimension space, condition (7) can be expressed as

;
aj = pjdy+ -+ pirdy = > pikds,
k=1

which implies that every q; is in the subspace spanned
by the vectors dy, while the linear algebraic formulation

of condition (8),
n

dy = gy +++ + OCknn = . Kppdp,
=1

states that the vectors di are in the subspace spanned
by the vectors q,. We therefore conclude that the rel-
evance of dimensions is equivalent to the condition
that

span{qi,...,qn} = spani{dy,...,d,}.
It is obvious that when n > 7, there must be redun-
dancy among the quantities because the subspace can
be spanned by fewer than n vectors. This redundancy
is indeed the key to the theory of IT-numbers.

Let us take a second look at the definition of IT-num-
ber, (2). In order for a quantity to be dimensionless, the
coefficients of the dimension vectors must all vanish,
which, in the new formalism, is equivalent to the cor-
responding dimension vector being the zero vector. In
other words, equation (2) is equivalent to

H1q1 + p2q2 + -+ - + Upndn = R=0.
If we now define the dimension matrix of the quantities
q1,---,qn to be

Q=(a a an) € R,

we can immediately verify that the vector y € R™ with
entries pj must satisfy Qu = 0, so g must be in the null
space of Q, N (Q).

We can now restate the definition of IT-number in
the language of linear algebra: R = g{" - - - q" is a II-
number if and only if y € N (Q).

It is a central question in dimensional analysis how
many essentially different IT-numbers can be found
that correspond to a given system. If R; and R, are
two IT-numbers, their product and ratio are also II-
numbers, yet they are not independent. To find out
how to determine which IT-numbers are independent,
assume that Ry and R» correspond to vectors p and v
in the null space of Q. From the observation that

Hn H1+Vy Hn+Vn
n ’

Ry xRy =ay" -+ -an" xay' - -ay" =ay""™ -+ -q
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it follows that multiplication of two IT-numbers cor-
responds to addition of the corresponding vectors in
the null space of the dimension vector. This naturally
leads to the definition that the IT-numbers {R;,..., Ry}
are essentially different if the corresponding coefficient
vectors in N (Q) are linearly independent. In particu-
lar, the number of essentially different IT-numbers is
equal to the dimension of N (Q), and a maximal set of
essentially different IT-numbers corresponds to a basis
for N (Q).

It is now easy to state the following central theorem
of dimensional analysis, which is a corollary of the the-
orem about the dimensions of the FOUR FUNDAMENTAL
SUBSPACES [.2 §21] of a dimension matrix.

Buckingham’s IT theorem. If a physical problem is
described by n variables, with every variable expressed
in terms of v independent and relevant dimensions,
the number of essentially different I1-numbers (dimen-
sionless groups whose numerical values depend on the
properties of the system) is at most n —r.

It is important to stress that the number of essen-
tially different IT-numbers is “at most” n — ¥ because
the system may actually admit fewer. It is a nice corol-
lary that the IT-numbers of a system can be found by
computing a basis for the null space of the dimen-
sion matrix by Gaussian elimination, which results in
rational coefficients.

Returning to our example from fluid dynamics, let a
system be described by the five quantities length (L),
a characteristic scalar velocity (vg), density (p), viscos-
ity (u), and pressure (p), the dimensions of which were
given in (4). We characterize the system with three SI
units, m, s, and kg. The dimension matrix in this case
is

1 1 -3 -1 -1
Q=10 -1 0 -1 =2
0 0 1 1 1

To find a basis of the null space we reduce the matrix
to its row echelon form by Gauss-Jordan elimination,
which shows that its rank is three. This implies that the
null space is two dimensional, with a basis consisting
of the two vectors
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corresponding to the Reynolds number and the Euler
number, respectively:

Ry =L'v{p'u~'p® Ry =L¢p 'upt.
To appreciate the usefulness of finding these II-
numbers, consider the nondimensionalization of the
NAVIER-STOKES EQUATION [II1.23],

p(%—tt’ +v- Vv) =-Vp + pAv,

where A = V . V. Assuming that a characteristic
speed vy (e.g., an asymptotic value) and a characteris-
tic length scale L are given, first we nondimensionalize
the velocity and the spatial variable, writing

v =109, x =LE,

and then we define a dimensionless pressure field
based on the nondimensionality of the Euler number
Ra,

m(E) = —5p(LE),
PG

arriving at the scaled version of the equation:

2 2
va(Las ) PVG o Mg
— 4+ 8.V'8) ="V + =AY,
L \ppar t? L e
where V' = Vg and A" = V' - V', By going further
and defining the time in terms of the characteristic
timescale L/ vy,

L

t=—1,

Vo
the nondimensional version of the Navier-Stokes equa-
tion ensues:

09 1
—+9-V'9=-Vm+ A9

oT T R
This form provides a natural justification for the dif-
ferent approximations corresponding to, for example,
nonviscous fluid flow (R; large) or nonturbulent flow

(R; small).
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II.10 The Fast Fourier Transform
Daniel N. Rockmore

In 1965 James Cooley and John Tukey wrote a brief
article (a note, really) that laid out an efficient method
for computing the various trigonometric sums neces-
sary for computing or approximating the Fourier trans-
form of a function on the real line. While theirs was
not the first such article (it was later discovered that
the algorithm'’s fundamental step was first sketched in
papers of Gauss), what was very different was the con-
text. Newly invented analog-to-digital converters had
now enabled the accumulation of (for the time) extraor-
dinarily large data sets of sampled time series, whose
analysis required the computation of the underlying
signal’s Fourier transform. In this new world of 1960s
“big data,” a clever reduction in computational com-
plexity (a term not yet widely in use) could make a
tremendous difference.’

While the Cooley-Tukey approach is what is usually
associated with the phrase “fast Fourier transform” (or
“FFT”), this term more correctly refers to a family of
algorithms designed to accomplish the efficient calcu-
lation of the FOURIER TRANSFORM [II.19] (or an approx-
imation thereof) of a real-valued function f sampled at
points x; (on either the real line, the unit interval, or
the unit circle): samples go in and Fourier coefficients
are returned. The discrete sums of interest

n-1
Fy = fiiwl )

j=0
computed for each k = 0,...,n — 1, where w, = €™/
is a primitive nth root of unity and f(j) = f(x;),
make up what is usually called the “discrete Fourier
transform” (DFT). This can be written succinctly as the

outcome of the matrix-vector multiplication

f=f, (2)

where the (j, k) element of Q is w{,k.

1 The Cooley-Tukey FFT

If computed directly, the DFT requires n® multiplica-
tions and n(n—1) additions, or 2n?—n arithmetic oper-
ations (assuming the f(j) values and the powers of the

1. Many years later Cooley told me that he believed that the fast
Fourier transform could be thought of as one of the inspirations for
asymptotic algorithmic analysis and the study of computational com-
plexity, as previous to the publication of his paper with Tukey very few
people had considered data sets large enough to suggest the utility of
an asymptotic analysis.

II. Concepts

root of unity have been precomputed and stored). Note
that this is approximately 2n? (and, asymptotically,
0(n?)) operations. The “classical” FFT (i.e., the Cooley-
Tukey FFT) can be employed in the case in which n can
be factored, n = pq, whereupon we can take advan-
tage of a concomitant factorization of the calculation
(which, in turn, is a factorization of the matrix ) that
can be cast as a DIVIDE AND CONQUER ALGORITHM
[I.4 §3], writing the DFT of order n as p DFTs of order
q (or g DFTs of order p). More explicitly, in this case we
can write

<4,

j=jla,b)=aq+b, 0<a<p,0<b
<c<q,0<d<p,

k=k(c,d)=cp+d, O
so that (1) can be rewritten as

-1

p-1
fe,d) =Y wn”* Py fla,pwit  (3)

b=0 a=0
using the fact that w29 = wid.

Computation of f is now performed in two steps.
First, compute for each b the inner sums (for all d)

p-1
fb,d) =3 fla,b)wid, ()
a=0
which have the form of DFTs of length p equispaced
among multiples of g. In engineering language, (4)
would be called “a subsampled DFT of length p.”
Direct calculation of all the f (b,d) requires pqlp +
(p — 1)] arithmetic operations. Step two is to then
compute an additional pgq transforms of length g,

q-1
fle,dy = wh " fb,a),
b=0

requiring at most an additional pq[q + (q — 1)] opera-
tions to complete the calculation. Thus, instead of the
approximately 2n? = 2(pq)? operations required by
direct computation, the above algorithm uses approx-
imately 2(pq)(p + q) operations. If n can be factored
further, this approach works even better. When n is a
power of two, the successive splittings of the calcula-
tion give the well-known O (nlog, n) complexity result
(in comparison to O (n?)).

Since 2*Q = nl, from (2) we have f = n“.()*f,
so the discretized function f = (f(0),...,f(n — 1))
(sample values) can be recovered from its Fourier coef-
ficients via

fom) = LS Faowpm,
ny
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a so-called inverse transform. The inverse transform
expresses f as a superposition of (sampled) exponen-
tials or, equivalently, sines and cosines of frequencies
that are multiples of 2717 /n, so that if we think of f as a
function of time, the DFT is a change of basis from the
“time domain” to the “frequency domain.”

In the case in which n = 2N — 1 and the f(x;) rep-
resent equispaced samples of a bandlimited function
on the circle (or, equivalently, on the unit interval),
so that x; = j/n, and of bandlimit N (i.e., f(k) =0
for all k > N), then (up to a normalization) the sums
exactly compute the Fourier coefficients of the func-
tion f (suitably indexed). The form of the inverse trans-
form can itself be restated as a DFT, so that an FFT
enables the efficient change of basis between the time
and frequency domains.

The utility of an efficient algorithm for computing
these sums cannot be overstated—occupying as it does
a central position in the world of SIGNAL PROCESSING
[IV.35], IMAGE PROCESSING [VIL8], and INFORMATION
PROCESSING [IV.36]—not only for the intrinsic inter-
est in the Fourier coefficients (say, in various forms of
spectral analysis, especially for time series) but also
for their use in effecting an efficient convolution of
data sequences via the relation (for two functions on
n points)

F* 9) (k) = (k)G k),

where
n-1

(f*g) (k)= > flk-m)g(m). (5)
m=0

If computed directly for all k, (5) requires n[n + (n —
1)] = O(n?) operations. An efficient FFT-based convo-
lution is effected by first computing f and g, then using
n operations for pointwise multiplication of the trans-
formed sequences, and then using another FFT for the

efficient inverse transform back to the time domain.
This relationship is the key to FFTs that work for
data streams of prime length p. The best-known ideas
make use of rewriting the DFT at nonzero frequencies
in terms of a convolution of length p — 1 and then com-
puting the DFT at the zero frequency directly. One well-
known example is Rader’s prime FFT, which uses the
fact that we can find a generator g of Z/pZ*, a cyclic
group (under multiplication) of order p — 1, to write

f(g7b) as
p-2

F@™) = f0)+ Y flgherma™ir. (6

a=0
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The summation in (6) has the form of a convolution of
length p — 1 of the sequence f’'(a) = f(g®) with the
function z(a) = e2mig"/p,

Through the use of these kinds of reductions—con-
tributions by various members of the “FFT family”—we
achieve a general O(nlog, n) algorithm.
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II.11 Finite Differences

In the definition of the derivative of a real function f
of a real variable, f'(x) = lims~o(f(x + &) — f(x))/e,
we can take a small positive ¢ = h > 0 and form the

approximation
' (x+h) - f(x
f(X)zf—( ’1 A ).
This process is called discretization and the approxima-
tion is called a forward difference because we evaluate
f at a point to the right of x. We could instead take a
small negative ¢, so that with h = —¢ we have
, x-h)-f(x x)-f(x—-h
f(x)=f( ) f()=f() S ).
-h h

The latter approximation is a backward difference.
Higher derivatives can be approximated in a similar
fashion. An example is the centered second difference
approximation

£ () ~ flx+h) —ZJ;(ZX) +f(x—h)'

The term finite differences is used to describe such
approximations to derivatives by linear combinations
of function values. One way to derive finite-difference
approximations, and also to analyze their accuracy, is
by manipulating TAYLOR SERIES [I.2 §9] expansions. A
more systematic approach is through the calculus of
finite differences, which is based on operators such as
the forward difference operator Af(x) = f(x + h) —
f(x) and its powers: A2f(x) = A(Af(x)) = f(x +
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e?ef holds if A and B commute, but it does not hold in
general.

More generally, for any function with a Taylor series
expansion the scalar argument can be replaced by a
square matrix as long as the eigenvalues of the matrix
are within the radius of convergence of the Taylor
series. Thus we have

A2 A4 A6
COS(A)=I_E+$~E+”"
. Al A AT
s1n(A)=A—¥+H_7+...l
A2 A3 A4
lOg(I+A)—A—7+?_T+...! p(A) <1,

where p denotes the SPECTRAL RADIUS [1.2 §20]. The
series for log raises two questions: does X = log(I + A)
satisfy eX = I + A and, if so, which of the many matrix
logarithms is produced (note that if eX = I + A then
eX+2kmil _ oXe2kmil — | 4 A for any integer k)? The
answer to the first question is yes. The answer to the
second question is that the logarithm produced is the
principal logarithm, which for a matrix with no eigen-
values lying on the nonpositive real axis is the unique
logarithm all of whose eigenvalues have imaginary
parts lying in the interval (—7r, ).

Defining f(A) via a power series may specify the
function only for a certain range of A, as for the log-
arithm, and moreover, some functions do not have a
(convenient) power series. For more general functions
a different approach is needed.

If f is analytic on and inside a closed contour I that
encloses the spectrum of A, then we can define

1 -1
f(A) := i Jrf(z)(zl A) hdz,

which is a generalization to matrices of the cAucHYy
INTEGRAL FORMULA [IV.1 §7]. Another definition can be
given in terms of the JORDAN CANONICAL FORM [I1.22]
Z7YAZ = J = diag(J1, J2,-..,Jp), where Ji is an my x
my Jordan block with eigenvalue Ay. The definition is

F(A) :=Zf(NZ " = zdiag(F(Jr))Z7 !,

where
, S (Ag)
FQAr) - f(Ax) TR
FU) = F(Ax) :
S (Ag)
SF(Ax)

This definition does not require f to be analytic
but merely requires the existence of the derivatives
FY(Ag) for j up to one less than the size of the largest

II. Concepts

block in which Ay appears. Note that when A is diag-
onalizable, that is, A = ZDZ"! for D = diag(A;), the
definition is simply f(A) = Zf(D)Z~!, where f(D) =
diag(f(A;)).

The Cauchy integral and Jordan canonical form defi-
nitions are equivalent when f is analytic.

Some key properties that follow from the defini-
tions are that f(A) commutes with A, f(X 'AX) =
X"1f(A)X for any nonsingular X, and f(A) is upper
(lower) triangular if A is. It can also be shown that
certain forms of identity carry over from the scalar
case to the matrix case, under assumptions that ensure
that all the relevant matrices are defined. Examples are
exp(iA) = cos(A) +isin(A) and cos?(A) + sin(A) =
I. However, care is needed when dealing with multi-
valued functions; for example, for the principal loga-
rithm, log(e#) cannot be guaranteed to equal A without
restrictions on the spectrum of A.

Another important class of functions is the pthroots:
the solutions of X? = A, where p is a positive integer.
For nonsingular A there are many pth roots. The one
usually required in practice is the principal pth root,
defined for A with no eigenvalues lying on the nonpos-
itive real axis as the unique pth root whose eigenvalues
lie strictly within the wedge making an angle 1r/p with
the positive real axis, and denoted by A7, Thus Al/2
is the square root whose eigenvalues all lie in the open
right half-plane.

The function sign(A) = A(A?)~1/2 defined for any
A having no pure imaginary eigenvalues, is the matrix
sign function. It has applications in control theory, in
particular for solving ALGEBRAIC RICCATI EQUATIONS
[II1.25], and corresponds to the scalar function mapping
complex numbers in the open left and right half-planes
to —1 and 1, respectively.

Matrix functions provide one-line solutions to many
problems. For example, the second-order ordinary dif-
ferential equation initial-value problem

dzy
dt2
with y an n-vector and A an n X n matrix, has solution

+Ay =0, y(0) =y, ¥'(0) =,

¥ (t) = cos(vAt) yo + (VA) ! sin(VAL) g,

where /A denotes any square root of A. Alternatively,
by writing z = [, | we can convert the problem into
two first-order differential equations:

1 B
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from which follows the formula

l-eo([i ST

There is an explicit formula for a function of a 2 x 2
triangular matrix:

f([/\l a])z[f(/\l) O(f[Al,Az]]
0 A 0 f2) |’
where
fi(/\z)_f({\l). A1 # A,
fIALA] =1 A2-A
f(A2), A1 = Az,

is a first-order divided difference. This formula extends
to n X n triangular matrices T, although the formula
for the (i, j) element contains up to 2" terms and so is
not computationally useful unless n is very small. It is
nevertheless possible to compute F = f(T) forannxn
triangular matrix in n3/3 operations using the Parlett
recurrence, which is obtained by equating elements in
the equation TF = FT.

Further Reading

Higham, N. J. 2008. Functions of Matrices: Theory and
Computation. Philadelphia, PA: SIAM.

Higham, N. J., and A. H. Al-Mohy. 2010. Computing matrix
functions. Acta Numerica 19:159-208.

II.15 Function Spaces
Hans G. Feichtinger

While in the early days of mathematics each function
was treated individually, it became appreciated that it
was more appropriate to make collective statements
for all continuous functions, all integrable functions, or
all continuously differentiable ones. Fortunately, most
of these collections of functions (fx) are closed under
addition and allow the formation of linear combina-
tions Zf=l cr.frx for real or complex coefficients cy,
1 < k € K. They are, therefore, vector spaces. In addi-
tion, most of these spaces are endowed with a suit-
able NORM [1.2§19.3] f — ||f]l, allowing one to mea-
sure the size of their members and hence to intro-
duce concepts of closeness by looking at the distance
a(fi, f2) := |l fi—f21l. One can therefore say that a func-
tion space is a normed space consisting of (generalized)
functions on some domain.

For the vector space C,(D) of bounded and continu-
ous functions on some domain D ¢ R4, the sup-norm
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[l flle := sup,ep |f(2)| is the appropriate norm. With
this norm, C, (D) is a Banach space (that is, a complete
normed space), i.e., every CAUCHY SEQUENCE [.2 §19.4]
with respect to this norm is convergent to a unique
limit element in the space. Hence, such Banach spaces
of functions share many properties with the Euclidean
spaces of vectors in R4, with the important distinction
that they are not finite dimensional.

1 Lebesgue Spaces L? (R4)

The completeness of the Lebesgue space L' (R4), con-
sisting of all (measurable) functions with || f][; :=
Jpa | f(2)|dz < oo, is the reason why the Lebesgue inte-
gral is preferred over the Riemann integral. Note that
in order to ensure the property that || f|l; = 0 implies
f = 0 (the null function), one has to regard two func-
tions f) and f> as equal if they are equal up to a set
of measure zero, i.e., if the set {z | f1(z) # f>(z)} has
Lebesgue measure zero.

Another norm that is important for many appli-
cations is the L?morm, |fll2 := (Jza |f(2)1*)V2. Tt
is related to an inner product defined as (f,g) :=
Jea f(2)g(z)dz via the formula || fl2 := (f,f)V2
(L2(R4), ||-1I2) is a Hilbert space, and one can talk about
orthogonality and unitary linear mappings, comparable
with the situation of the Euclidean space R4 with its
standard inner product.

Having these three norms, namely || - ||y, || - |2, and
|| - |le, it is natural to look for norms “in between.”
This leads to the L?-spaces, defined by the finiteness
of [Ifllp := [ga|f(2)|Pdz for 1 < p < . The limit-
ing case for p — o is the space L®(R%) of essentially
bounded functions.

Since these spaces are not finite dimensional, it is
necessary to work with the set of all bounded linear
functionals, the so-called dual space, which is often, but
not always, a function space. For 1 < p < o the dual
space to L? is L9, with 1/p + 1/q = 1, meaning that any
continuous linear functional on L? (R4) has the form
f = [z f(2)g(z) dz for a unique function g € L4 (R%).

L(R4) also appears as the natural domain for the
Fourier transform, given for s € R4 by

. d
Fif = f(s)= J-Rdf(t)exp{ —2mi )y sjtj} dt,
Jj=1

while (L2(R4), | - ) allows us to describe F as a
unitary (and hence isometric) automorphism.
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2 Related Function Spaces

The Lebesgue spaces are prototypical for a much larger
class of Banach function spaces or Banach lattices, a
class that also includes Lorentz spaces L(p, q) or Orlicz
spaces L?, which are all rearrangement invariant. This
means that for any transformation o: R4 — R4 that has
the property that it preserves the (Lebesgue) measure
M| of a set, i.e.,, with |&x(M)| = |M]|, one has | f|| =
llec* (), where oc* (f)(2) := f(x(2)).

In contrast, weighted spaces such as L%, (R4), charac-
terized by || fllpw = Il fwllp < o, allow us to capture
the decay of f at infinity using some strictly positive
weight function w. For applications in the theory of par-
tial differential equations (PDEs), polynomial weights
such as ws(x) = (1 + |x|%)%/2 are important. For s >
0, Sobolev spaces H;(R?) can be defined as inverse
images of L';",j (R4) under the Fourier transform. For
s € N they consist of those functions that have (in a dis-
tributional sense) s derivatives in L2(R4). Mixed norm
L? spaces (using different p-norms in different direc-
tions) are also not invariant in this sense, but they are
still very useful.

A large variety of function spaces arose out of
the attempt to characterize smoothness, including
fractional differentiability. Examples are Besov spaces
B;, ,(R4) and Triebel-Lizorkin spaces Fj, ,(R%); the clas-
sical Sobolev spaces are the only function spaces that
belong to both families. The origin of this theory is
in the theory of Lipschitz spaces Lip(«), where the
range « € (0,1) allows us to express the degree of
smoothness (differentiability corresponds intuitively to
the case « = 1).

3 Wavelets and Modulation Spaces

Many of the spaces mentioned above are highly rel-
evant for PDEs, e.g., the description of elliptic PDEs.
Their characterization using Paley-Littlewood (dyadic
Fourier) decompositions has ignited wavelet theory. For
1 < p < o they can be characterized via (weighted)
summability conditions of their wavelet coefficients
with respect to (sufficiently “good”) mother wavelets.
In the limiting case, one obtains the real Hardy space
H'(R?) and its dual, the BMO-space, which consists
of functions of bounded mean oscillation. Both spaces
are important for the study of Calderon-Zygmund
operators or the Hardy-Littlewood maximal operator.
Wavelets provide unconditional bases for these spaces,
including Besov and potential spaces.

II. Concepts

For the affine “ax + b”-group acting on the space
L2(R4), function spaces are defined using the contin-
uous wavelet transform, and atomic characterizations
(involving Banach frames) of the above smoothness
spaces are obtained. Alternatively, the Schrodinger rep-
resentation of the Heisenberg group, again on L% (R4)
via time-frequency shifts, gives rise to the family
of modulation spaces M}, ;. They were introduced as
Wiener amalgam spaces on the Fourier transform side,
using uniform partitions of unity (instead of dyadic
ones).

Using engineering terminology, the now-classical
spaces M;,‘q(]Rd ) are characterized by the behavior
of the short-time Fourier transform of their members
(replacing the continuous wavelet transform). They
play an important role in time-frequency analysis, and
their atomic characterizations use Gabor expansions.

A variety of Banach spaces of analytic or polyana-
lytic functions play an important role in complex analy-
sis. Again, integrability conditions over their domain
are typically used to define these spaces. The corre-
sponding L?-spaces are typically reproducing kernel
Hilbert spaces, with good localization of these kernels
allowing one to view them as continuous mappings on
(weighted, mixed-norm) L”-spaces as well. We mention
some of the spaces that are important in the context of
complex analysis or Toeplitz operators: Fock spaces,
Bergman spaces, and Segal-Bargmann spaces.

4 Variations of the Theme

One of the first important examples of a Banach space
of functions was the space BV of functions of bounded
variation. One simple characterization of functions of
this type (the so-called Jordan decomposition) is that
they are the difference of two bounded and nonde-
creasing functions (the ascending part of the function
minus the descending part of it). Via Fourier-Stieltjes
integrals, F. Riesz showed that there is a one-to-one cor-
respondence between the dual space of (C[0,11], |- ls)
and BV[0, 1] endowed with the variation norm. More
recently, total variation in a two-dimensional setting
has been fundamental to IMAGE RESTORATION ALGO-
RITHMS [VIL8]. Another family of function spaces that
captures variation at different scales are the Morrey-
Campanato spaces.

In addition to Banach spaces of functions there are
also topological vector spaces and Fréchet spaces of
functions, among them the spaces of test functions that
are used in distribution theory. Generalized functions
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consist of the continuous linear functionals on such
spaces. The “theory of function spaces” as developed
by Hans Triebel includes a large variety of Banach
spaces of such generalized functions (or distributions).
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I.16 Graph Theory
Timothy A. Davis and Yifan Hu

At the back of most airline magazines you will find
a map of airports and the airline routes that connect
them. This is just one example of a graph, a widely
used mathematical entity that represents relationships
between discrete objects. More precisely, a graph G =
(V,E) consists of a set of nodes V and a set of edges
E < {(i,j) | i,j € V} that connect them. A graph is not
a diagram but it can be drawn, as illustrated in figure 1.

Graphs arise in a vast array of applications, includ-
ing social networks (a node is a person and an edge is a
relationship between two people), computational fluid
dynamics (a node is an unknown such as the pressure
at a certain point and an edge is the physical connec-
tion between two unknowns), finding things on the web
(anode is a web page and an edge is a link), circuit sim-
ulation (the wires are the edges), economics (a node is a
financial entity and the edges represent trade between
two entities), and many others.

In some problems, an edge connects in both direc-
tions, and in this case the graph is undirected. For exam-
ple, friendship is mutual, so if Alice and Bob are friends,
the edges (Alice, Bob) and (Bob, Alice) are the same. In
other cases, the direction of the edge is important. If
Alice follows Bob on Twitter, this does not mean that
Bob follows Alice. In this directed graph, the edge (Alice,
Bob) is not the same as the edge (Bob, Alice).
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(a) (b)

g0 G

Figure 1 Two example graphs:
(a) undirected and (b) directed.

In a simple graph, an edge (i, j) can appear just once,
but in a multigraph it can appear multiple times (E
becomes a multiset). Simple graphs do not have self-
edges (i, 1), but a pseudograph can have multiple edges
and self-edges. The airline route map in the back of
the magazine is an example of a simple undirected
graph. Representing each flight for a whole airline
would require a directed multigraph: the flight from
Philadelphia to New York is not the same as the flight
in the opposite direction, and there are many flights
each day between the two airports. If sightseeing tours
are added (self-edges), then a pseudograph would be
needed.

The adjacency set of a node i, also called its neigh-
bors, is the set of nodes j where edge (i, j) is in the
graph. For a directed graph, this is the out-adjacency;
the in-adjacency of node i is the set {j | (j,i) € E}. A
graph can be represented as a binary adjacency matrix,
with entries a;j = 1if (i, j) € E, and a;j = 0 otherwise.
The degree of a node is the size of its adjacency set.

Graphs can contain infinite sets of nodes and edges.
Consider the directed graph on the natural numbers
N with the edges (i,j), where j is an integer multi-
ple of i. A prime number j > 1 in this graph has in-
adjacency {1, j} and an in-degree of 2 (including the
self-edge (j, j)); a composite number j > 1 has a larger
in-degree.

Nodes i and j are incident on the edge (i, j) and,
likewise, the edge (i,j) is incident on its two nodes.
A subgraph of G consists of a subset of its nodes and
edges, G = (V,E), where V < V and E < E. If an edge
(i,j) appears in E, then its two incident nodes must
also appear in V, but the opposite need not hold. Two
special kinds of subgraphs are node-induced and edge-
induced subgraphs. A node-induced subgraph starts
with a subset of nodes V; the edges E are all those
edges whose two incident nodes are both in V. An edge-
induced subgraph starts with a subset of edges E and
then V consists of all nodes incident on those edges. A
graph is completely connected if it has an edge between
every pair of nodes. A clique is a completely connected
subgraph.
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A path from i to j is a list of nodes (i,...,j) with
edges between adjacent pairs of nodes. The path can-
not traverse a directed edge backward. The length of
the path is the number of nodes in the list minus one.
In a simple path, a node can appear only once. If there is
a path from i to j, then node j is reachable from node
i. The set of all nodes reachable from i is the reach of
i. Among all paths from i to j, one with the shortest
length is a shortest path, its length the (geodesic) dis-
tance from i to j. The diameter of a graph is the length
of the longest possible shortest path. In a small-world
graph, each node is a small distance (logarithmic in the
number of nodes) away from any other node.

An undirected graph is connected if there is a path
between each pair of nodes, but there are two kinds
of connectivity in a directed graph. If a path exists
between every pair of nodes, then a directed graph
is strongly connected. A directed graph is weakly con-
nected if its underlying undirected graph is connected;
to obtain such a graph, all edge directions are dropped.

A cycleis a path that starts and ends at the same node
i; the cycle is simple if no node is repeated (except for
node i itself). There are no cycles in an acyclic graph.
The acronym DAG is often used for a directed acyclic
graph.

The undirected graph in figure 1(a) is connected.
Nodes {2, 3,4} form a clique, as do {2,4,6}. The path
(1,2,4,3,2,6) has length 5 and is not simple. A sim-
ple path from 1 to 6 is (1,2,4,6) of length 3, but the
shortest path is (1,2,6) of length 2, which traverses
the edges (1,2) and (2,6). The path (2,3,4,2) is a
cycle of length 3. Node 2 has degree 4, with neighbors
{1,3,4,6}. The diameter of the graph is 3. Since the
graph is connected, the reach of node 2 is the whole
graph. This graph is the underlying undirected graph
of the directed graph in part (b) of the figure.

The largest clique in this directed graph has only two
nodes: {2,4}. The out-adjacency of node 2 is the set
{3,4} and its in-adjacencyis {1,4, 6}. The reach of node
2 is {2,3,4,6}. The graph is not strongly connected
since there is no path from 1 to 5, but it is weakly
connected since its underlying undirected graph is
connected.

Figure 2 illustrates a bipartite graph. The nodes of
a bipartite graph are partitioned into two sets, and
no edge in the graph is incident on a pair of nodes
in the same partition. Bipartite graphs arise naturally
when modeling a relationship between two very dif-
ferent sets. For example, in term/document analysis,
a bipartite graph of m terms and n documents has an
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Figure 3 A tree of height 4, with node 1 as the root.

edge (i,j) if term i appears in document j. No edge
connects two terms, nor two documents. An undirected
bipartite graph is often represented as a rectangular
m x n adjacency matrix, where a;; = 1if the edge (i, j)
appears in the graph and a;; = 0 otherwise.

An undirected acyclic graph is a forest. An important
special case is a tree, which is a connected forest. In a
tree, there is a unique simple path between each pair
of nodes. In a rooted tree, one node is designated as
the root. The ancestors of node i are all the nodes on
the path from i to the root (excluding i itself). The first
node after i in this path is the parent of i, and node
i is its child. The length of this path is the level of the
node (the root has level zero). The height of a tree is
the maximum level of its nodes.

In a tree, all nodes except the root have a single par-
ent. Nodes can have any number of children, and a node
with no children is a leaf. Internal nodes have at least
one child. In a binary tree, nodes have at most two chil-
dren, and in a full binary tree, all internal nodes have
exactly two children. Node i is a descendant of all nodes
in the path from i to the root (excluding i itself). The
subtree rooted at node i is the subgraph induced by
node i and its descendants.

In the example in figure 3, the parent of node 5 is
2, its descendants are {8,9,10,11}, its ancestors are
{1, 2}, and its children are {8, 9}. Since node 2 has three
children, the tree is not binary.

Sometimes a graph with its nodes and edges is not
enough to fully represent a problem. Edges in a graph
do not have a length, but this is useful for the airline
route map, and thus nodes and edges are often aug-
mented with additional data. Attaching a single numer-
ical value to each node and/or edge is common; this
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and the Laplace transform
(LF)(s) = I Flbest dt.
0

This definition of £ is standard, but the definition of
F is one of many; for example, some authors insert an
extra factor (271)"1/2, and some use e 5!, Always check
the author’s definition when reading a book or article
in which Fourier transforms are used!

Many integral transforms have an associated convo-
lution; given two functions of a real variable, f and
g, their convolution is another function of a real vari-
able, denoted by f * g. It is defined so that J(f *
g) = (Jf)(Jg); the transform of the convolution is the
product of the transforms. For the Fourier transform

(f*xg)(t) = J_ ft—-s)g(s)ds,

while for the Laplace transform

t
(f % 9)(t) = JO £t - $)g(s) ds.

It is easy to see that, in both cases, f x g = g * f. Con-
volution is an important operation in SIGNAL PROCESS-
ING [IV.35] and in many applications involving Fourier
analysis and INTEGRAL EQUATIONS [IV.4].

There are also discrete versions of integral trans-
forms in which the integral is replaced by a finite sum
of terms. The discrete Fourier transform is especially
important because it can be computed rapidly using
the FAST FOURIER TRANSFORM [I1.10] (FFT).

I.20 Interval Analysis
Warwick Tucker

Interval analysis is a calculus based on set-valued math-
ematics. In its simplest (and by far most popular) form,
it builds upon interval arithmetic, which is a natural
extension of real-valued arithmetic. Despite its sim-
plicity, this kind of set-valued mathematics has a very
wide range of applications in computer-aided proofs
for continuous problems. In a nutshell, interval arith-
metic enables us to bound the range of a continuous
function, i.e., it produces a set enclosing the range of
a given function over a given domain. This, in turn,
enables us to prove mathematical statements that use
open conditions, such as strict inequalities, fixed-point
theorems, etc.

1 Interval Arithmetic

In this section we will briefly describe the fundamentals
of interval arithmetic. Let IR denote the set of closed
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intervals of the real line. For any element a € IR, we
use the notation a = [a, a]. If x is one of the operators
+, —, X, /, we define arithmetic on elements of a, b € IR
by

axb={axb.:aca,becbhb}, (1)

except that a/b is undefined if 0 € b. Working exclu-
sively with closed intervals, the resulting interval can be
expressed in terms of the endpoints of the arguments.
This makes the arithmetic very easy to implement in
software.

Note that a generic element in IR has no addi-
tive or multiplicative inverse. For example, we have
[1,2] - [1,2] = [-1,1] # [0,0], and [1,2]/[1,2] =
[5,2] # [1,1]. This is known as the dependency prob-
lem, and it can cause large overestimations. In prac-
tice, however, the use of high-order (e.g., Taylor series)
representations greatly mitigates this problem.

A key feature of interval arithmetic is that it is inclu-
sion monotonic; i.e.,ifa < a’ and b < b’, then by (1) we
have

axbca ~b'.

This is of fundamental importance: it says that, if we
can enclose the arguments, we can enclose the result.

More generally, when we extend a real-valued func-
tion f to an interval-valued one F, we demand that it
satisfies the inclusion principle

range(f;x) = {f(x): x € x} € F(x). (2)

If this can be arranged for a finite set of standard func-
tions, then the inclusion principle will also hold for
any elementary function constructed by arithmetic and
composition applied to the set of standard functions.

Multivariate functions can be handled by work-
ing componentwise on interval vectors (boxes) x =
(xl,...,xn).

When implementing interval arithmetic on a com-
puter, the endpoints must be FLOATING-POINT NUM-
BERS [II.13]. This introduces rounding errors, which
must be properly dealt with. As an example, interval
addition becomes

a+b=[V(a+b),A@+Db)].

Here, V(x) is the largest floating-point number no
greater than x, and A(x) = —V(-x). The IEEE stan-
dard for floating-point computations guarantees that
this type of outward rounding preserves the inclusion
principle for +, —, %, and /. For other operations (such
as trigonometric functions) there are no such assur-
ances; interval extensions of these functions must be
built from scratch.
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Figure 1 Successively tighter enclosures of a graph.

2 Interval Analysis

The inclusion principle (2) enables us to capture contin-
uous properties of a function, using only a finite num-
ber of operations. Its most important use is to explic-
itly bound discretization errors that naturally arise in
numerical algorithms.

As an example, consider the function f(x) = cos3 x+
sinx on the domain x = [-5,5]. For any decompo-
sition of the domain x into a finite set of subinter-
vals x = U?:l xi, we can form the set-valued graph
consisting of the pairs (x1,F(x1)),..., (Xn,F(xn)). As
the partition is made finer (that is, as max; diam(x;) is
made smaller), the set-valued graph tends to the graph
of f (see figure 1). And, most importantly, every such
set-valued graph contains the graph of f.

This way of incorporating the discretization errors
is extremely useful for quadrature, optimization, and
equation solving. As one example, suppose we wish to
compute the definite integral I = fg sin(x + e¥) dx.

A MATLAB function simpson that implements a sim-
ple textbook adaptive Simpson quadrature algorithm
produces the following result.

% Compute integral I with tolerance le-6.
>> I = simpson(@(x) sin(x + exp(x)), 0, 8)
I-=

0.251102722027180

A (very naive) set-valued approach to quadrature is to
enclose the integral I via

n
I'e > F(x;)diam(x;),

i=1
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which, for a sufficiently fine partition, produces the
integral enclosure

I € 0.347400172685.

Thus, it turns out that the result from simpson was
completely wrong! This is one example of the impor-
tance of rigorous computations.

3 Recent Developments

There is currently an ongoing effort within the IEEE
community to standardize the implementation of inter-
val arithmetic. The hope is that we will enable com-
puter manufacturers to incorporate these types of com-
putations at the hardware level. This would remove
the large computational penalty incurred by repeat-
edly having to switch rounding modes—a task that
central processing units were not designed to perform
efficiently.
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II.21 Invariants and Conservation
Laws
Mark R. Dennis

As important as the study of change in the mathemati-
cal representation of physical phenomena is the study
of invariants. Physical laws often depend only on the
relative positions and times between phenomena, so
certain physical quantities do not change; i.e., they are
invariant, under continuous translation or rotation of
the spatial axes. Furthermore, as the spatial configura-
tion of a system evolves with time, quantities such as
total energy may remain unchanged; that is, they are
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conserved. The study of invariants has been a remark-
ably successful approach to the mathematical formu-
lation of physical laws, and the study of continuous
symmetries and conservation laws—which are related
by the result known as Noether’s theorem—has become
a systematic part of our description of physics over the
last century, from the atomic scale to the cosmic scale.

As an example of so-called Galilean invariance, New-
ton’s force law keeps the same form when the velocity
of the frame of reference (i.e., the coordinate system
specified by x-, y-, and z-axes) is changed by adding
a constant; this is equivalent to adding the same con-
stant velocity to all the particles in a mechanical sys-
tem. Other quantities do change under such a veloc-
ity transformation, such as the kinetic energy %mlvl2
(for a particle of mass m and velocity v); however, for
an evolving, nondissipative system such as a bouncing,
perfectly elastic rubber ball, the total energy is constant
in time—that is, energy is conserved.

The development of our understanding of fundamen-
tal laws of dynamics can be interpreted by progres-
sively more sophisticated and general representations
of space and time themselves: ancient Greek physi-
cal science assumed absolute space with a privileged
spatial point (the center of the Earth), through static
Euclidean space where all spatial points are equiv-
alent, through CLASSICAL MECHANICS [IV.19] where
all inertial frames, moving at uniform velocity with
respect to each other, are equivalent according to
Newton's first law, to the modern theories of spe-
cial and general relativity. The theory of relativity
(both general and special) is motivated by Einstein's
principle of covariance, which is described below.
In this theory, space and time in different frames
of reference are treated as coordinate systems on a
four-dimensional pseudo-Riemannian manifold (whose
mathematical background is described in TENSORS AND
MANIFOLDS [I1.33]), which manifestly combines conser-
vation laws and continuous geometric symmetries of
space and time. In special relativity (described in some
detail in this article), this manifold is flat Minkowski
space-time, generalizing Euclidean space to include
time in a physically natural way. In general relativity,
described in detail in GENERAL RELATIVITY AND COS-
MOLOGY [IV.40], this manifold may be curved, depend-
ing in part on the distribution of matter and energy
according to EINSTEIN'S FIELD EQUATIONS [II1.10].

In quantum physics, the description of a system in
terms of a complex vector in Hilbert space gives rise
to new symmetries. An important example is the fact
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that physical phenomena do not depend on the overall
phase (argument) of this vector. Extension of Noether’s
theorem here leads to the conservation of electric
charge, and extension to Yang-Mills theories provides
other conserved quantities associated with the nuclear
forces studied in contemporary fundamental particle
physics. Other phenomena, such as the Higgs mecha-
nism (leading to the Higgs boson recently discovered
in high-energy experiments), are a consequence of the
breaking of certain quantum symmetries in certain low-
energy regimes. Symmetry and symmetry breaking in
quantum theory are discussed briefly at the end of this
article.

Spatial vectors, such as r = (x,y,z), represent the
spatial distance between a chosen point and the ori-
gin, and of course the vector between two such points
r; — ry is independent of translations of this origin.
Similarly, the scalar product 7> - #; is unchanged under
rotation of the coordinate system by an orthogonal
matrix R, under which » — Rr.

Continuous groups of transformations such as trans-
lation and rotation, and their matrix representations,
are an important tool used in calculations of invari-
ants. For example, the set of two-dimensional matrices
(Cs‘i’lfg ‘cgis“e" ), representing rotations through angles 0,
may be considered as a continuous one-parameter Abe-
lian group of matrices generated by the MATRIX EXPO-
NENTIAL [IL.14] e?4, where A is the generator (9 }).
The generator itself is found as the derivative of the
original matrix with respect to 0, evaluated at @ = 0.
Translations are less obviously represented by matri-
ces; one approach is to append an extra dimension to
the position vector with unit entry, such as (1, x) spec-
ifying one-dimensional position x; a translation by X is
thus represented by

) A

When a physical system is invariant under a one-
parameter group of transformations, the correspond-
ing generator plays a role in determining the associated
conservation law.

1 Mechanics in Euclidean Space

It is conventional in classical mechanics to define the
positions of a set of interacting particles in a vector
space. However, we do not observe any unique origin
to the three-dimensional space we inhabit, which we
therefore take to be the Euclidean space E3; only rela-
tive positions between different interacting subsystems
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(i.e., positions relative to the common center of mass)
enter the equations of motion. The entire system may
be translated in space without any effect on the phe-
nomena.

Of course, external forces acting on the system may
prevent this, such as a rubber ball in a linear gravity
field. (In such situations the source of the force, such
as the Earth as the source of gravity, is not considered
part of the system.) The gravitational force may be rep-
resented by a potential V = gz for height z and gravita-
tional acceleration g; the ball’s mass m times the nega-
tive gradient, —-m VYV, gives the downward force acting
on the ball. The contours of V, given by z = const.,
nevertheless have a symmetry: they are invariant to
translations of the horizontal coordinates x and y.
Since the gradient of the potential is proportional to
the gravitational force—which, by virtue of Newton’s
law equals the rate of change of the particle’s linear
momentum—the horizontal component of momentum
does not change and is therefore conserved even when
the particle bounces due to an impulsive, upward force
from the floor. The continuous, horizontal translational
symmetry of the system therefore leads to conserva-
tion of linear momentum in the horizontal plane. In a
similar argument employing Newton'’s laws in cylindri-
cal polar coordinates, the invariance of the potential to
rotations about the z-axis leads to the conservation of
the vertical component a body’s angular momentum,
as observed for tops spinning frictionlessly.

2 Noether’s Theorem

The Lagrangian framework for mechanics (CLASSICAL
MECHANICS [IV.19 §2]), which describes systems acting
under forces defined by gradients of potentials (as in
the previous section), is a natural mathematical setting
in which to explore the connection between a system'’s
symmetries and its conservation laws. Here, a mechan-
ical system evolving in time ¢ is described by n gener-
alized coordinates gq;(t) and their time derivatives 4,
for j = 1,...,n, where the initial values g;(to) at time
to and final values q;(t;) at t; are fixed. The action of
the system is the functional

131
S[{q,-}]=j[ L({a;}, td;h,0) dt,

where L({q;}, {q;},t) is the Lagrangian; this is a func-
tion of the coordinates, their corresponding velocities,
and maybe time, specified here by the total kinetic
energy minus the total potential energy of the system
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(thereby capturing the forces as gradients of the poten-
tial energy). Using the CALCULUS OF VARIATIONS [IV.6],
the functions g;(t) that satisfy the laws of mechanics
are those that make the action stationary, and these
satisfy Lagrange’s equations of motion

2220, j=1,...,n )

The argument of the time derivative in this expression,
0L/0qj, is called the canonical momentum p; for each
Jj- The set of equations (2) involves the combination
of partial derivatives of the Lagrangian with respect to
the coordinates and velocities, together with the total
derivative with respect to time. By the chain rule, this
total derivative affects explicit time dependence in L
and the implicit time dependence in each q; and 4;.
Many of the conservation laws involving Lagrangians
involve such an interplay of explicit and implicit time
dependence.

Any transformation of the coordinates q; that does
not change the Lagrangian is a symmetry of the system.
If L does not have explicit dependence on a coordinate
q;, then the first term in (2) vanishes: dp;/dt = 0, i.e.,
the corresponding canonical momentum is conserved
in time. In the example from the last section of a par-
ticle in a linear gravitational field, the coordinates can
be chosen to be Cartesian x, y, z, or cylindrical polars
v, ¢, z; L is independent of x and y, leading to con-
servation of horizontal momentum, and also ¢, lead-
ing to conservation of angular momentum about the
z-axis. The theorem is proved for symmetries of this
type in CLASSICAL MECHANICS [IV.19 §2.3]: if a system
is homogeneous in space (translation invariant), then
linear momentum is conserved, and if it is isotropic
(independent of rotations, such as the Newtonian gravi-
tational potential around a massive point particle exert-
ing a central force), then angular momentum is con-
served (equivalent to Kepler’s second law of planetary
motion for gravity).

Since it is the equations (2) that represent the phys-
ical laws rather than the form of L or S, the system
may admit a more general kind of symmetry whose
transformation adds a time-dependent function to the
Lagrangian L. If, under the transformation, the Lagran-
gian transforms L — L + dA/dt involving the total time
derivative of some function A, the action transforms
S — S+ A(t;) — A(tp). Thus the transformed action
is still made stationary by functions satisfying (2), so
transformations of this kind are symmetries of the sys-
tem, which are also continuous if A also depends on a
continuous parameter s so that its time derivative is
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zero when s = 0. It is not then difficult to see that the

quantity
n

0q;
,gl Pige
defined in terms of the generators of the transforma-
tion on each coordinate and the Lagrangian, is con-
stant in time. This is Noether’'s theorem for classical
mechanics.

An important example is when the Lagrangian has
no explicit dependence on time, dL/dt = 0. In this
case, under an infinitesimal time translation t — t + dt,
L — L+d6tdL/dt, so here A is Ldt, with L evaluated at t,
and 6t plays the role of s. Under the same infinitesimal
transformation, q; — q; + 6tq;, so the relevant con-
served quantity (3) is 3 ; pjq, — L, which is the Hamil-
tonian of the system, which is equal to the total energy
in many systems of interest. It is apparently a funda-
mental law of physics that the total energy in physical
processes is conserved in time; energy can be in other
forms such as electromagnetic, gravitational, or heat,
as well as mechanical. Noether’s theorem states that
the law of conservation of energy is equivalent to the
fact that the physical laws of the system, characterized
by their Lagrangian, do not change with time.

The vanishing of the action functional’s integrand
(i.e., the Lagrangian L) is equivalent to the existence
of a first integral for the system of Lagrange equa-
tions, which is interpreted in the mechanical setting
as a constant of the motion of the system. In this
sense, Noether's theorem may be applied more gener-
ally in other physical situations described by function-
als whose physical laws are given by the corresponding
Euler-Lagrange equations. In the case of the Lagran-
gian approach applied to fields (i.e., functions of space
and time), Noether's theorem generalizes to give a con-
tinuous density p (such as mass or charge density)
and a flux vector J satisfying the continuity equation
p + V . J =0 at every point in space and time.

_oA
5=0 0s

(3)

,
s=0

3 Galilean Relativity

Newton’s first law of motion can be paraphrased as “all
inertial frames, traveling at uniform linear velocity with
respect to each other, are equivalent for the formula-
tion of mechanics”—that is, without action of external
forces, a system will behave in the same way regardless
of the motion of its center of mass. The behavior of a
mechanical system is therefore independent of its over-
all velocity; this is a consequence of Newton’s second
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law, that force is proportional to acceleration. Accord-
ing to pre-Newtonian physics, forces were thought to be
proportional to velocity (as the effect of friction was not
fully appreciated), and it was not until Galileo’s thought
experiments in friction-free environments that the pro-
portionality of force to acceleration was appreciated. In
spite of Galilean invariance, problems involving circu-
lar motion do in fact seem to require a privileged frame
of reference, called absolute space. One example due to
Newton himself is the problem of explaining, without
absolute space, the meniscus formed by the surface of
water in a spinning bucket; such problems are properly
overcome only in general relativity.

With Galilean relativity, absolute position is no longer
defined: events occurring at the same position but at
different times in one frame (such as a moving train car-
riage) occur at different positions in other frames (such
as the frame of the train track). However, changes to the
state of motion, i.e., accelerations, have physical conse-
quences and are related to forces. This is an example of
a covariance principle, whose importance for physical
theories was emphasized by Einstein. According to this
principle, from the statement of physical laws in one
frame of reference (such as the laws of motion), one
can derive their statement in a different frame of refer-
ence from the application of the appropriate transfor-
mation rule between reference frames. The statement
in the new frame should have the same mathematical
form as in the previous frame, although quantities may
not take the same values in different frames.

Transformations between different inertial frames
are represented mathematically in a similar way to the
translations of (1); events are labeled by their positions
in space and time, such as (t,x) in one frame and
(t,x") in another moving at velocity v with respect to
the first. Since x’ = x — vt, the transformation from
(t,x) to (t,x’) is represented by the matrix (!, 7).
This Galilean transformation (or Galilean boost) differs
from (1) in that time t is here appended to the posi-
tion vector, since the translation from the boost is time-
dependent. Galilean boosts in three spatial dimensions,
together with regular translations and rotations, define
the Galilean group. It can be shown that the Lagrangian
of a free particle follows directly from the covariance
of the corresponding action under the Galilean group.

Infinitesimal velocity boosts generate a Noetherian
symmetry on systems of particles interacting via forces
that depend only on the positions of the others. Con-
sider N point particles of mass mj and position 7y such
that V depends only on vy —#; fork, £ = 1,...,N.Under
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II.22 The Jordan Canonical Form
Nicholas J. Higham

A canonical form for a class of matrices is a form of
matrix—usually chosen to be as simple as possible—
to which all members of the class can be reduced by
transformations of a specified kind. The Jordan canon-
ical form (JCF) is associated with similarity transforma-
tions on n X n matrices. A similarity transformation of
amatrix A is a transformation from A to X' AX, where
X is nonsingular. The JCF is the simplest form that can
be achieved by similarity transformations, in the sense
that it is the closest to a diagonal matrix.

The JCF of a complex n x n matrix A can be writ-
ten A = ZJZ~!, where Z is nonsingular and the Jordan
matrix J is a block-diagonal matrix

N
J2
Jp

with diagonal blocks of the form

Ay 1

Ak

Je = Jk(Ax) =

1
Ak

Here, blanks denote zero blocks or zero entries. The
matrix J is unique up to permutation of the diago-
nal blocks, but Z is not. Each Ay is an eigenvalue of
A and may appear in more than one Jordan block. All
the EIGENVALUES [I.2 §20] of the Jordan block Ji are
equal to Ag. By definition, an eigenvector of Ji is a
nonzero vector x satisfying Jyx = Axx, and all such x
are nonzero multiples of the vector x = [10 --- 0]T.
Therefore Jx has only one linearly independent eigen-
vector. Expand x to a vector X with n components by
padding it with zeros in positions corresponding to
each of the other Jordan blocks J;, i # k. The vec-
tor X has a single 1, in the rth component, say. A
corresponding eigenvector of A is Zx, since A(ZX) =
ZJZ Y (Zx) = ZJX = AxZX; this eigenvector is the rth
column of Z.
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If every block Ji is 1 x 1 then J is diagonal and A is
similar to a diagonal matrix; such matrices A are called
diagonalizable. For example, real symmetric matrices
are diagonalizable—and moreover the eigenvalues are
real and the matrix Z in the JCF can be taken to be
orthogonal. A matrix that is not diagonalizable is defec-
tive; such matrices do not have a complete set of lin-
early independent eigenvectors or, equivalently, their
Jordan form has at least one block of dimension 2 or

greater.
To give a specific example, the matrix
1 3 1 1
A= 2 -1 1 0 (1)
0 0 1
has a JCF with
0 5 1 3o o
Z=|-1 -5 o|, J=|o[1 1
1 0 o0 00 1

As the partitioning of J indicates, there are two Jor-
dan blocks: a 1 x 1 block with eigenvalue  and a 2 x 2
block with eigenvalue 1. The eigenvalue % of A has an
associated eigenvector equal to the first column of Z.
For the double eigenvalue 1 there is only one linearly
independent eigenvector, namely the second column,
z», of Z. The third column, z3, of Z is a generalized
eigenvector: it satisfies Az3 = z + z3.

The JCF provides complete information about the
eigensystem. The geometric multiplicity of an eigen-
value, defined as the number of associated linearly
independent eigenvectors, is the number of Jordan
blocks in which that eigenvalue appears. The algebraic
multiplicity of an eigenvalue, defined as its multiplic-
ity as a zero of the characteristic polynomial q(t) =
det(tI — A), is the number of copies of the eigenvalue
among all the Jordan blocks. For the matrix (1) above,
the geometric multiplicity of the eigenvalue 1 is 1 and
the algebraic multiplicity is 2, while the eigenvalue %
has geometric and algebraic multiplicities both equal
to 1.

The minimal polynomial of a matrix is the unique
monic polynomial ¢ of lowest degree such that ¢/(A) =
0. The degree of y is certainly no larger than n
because the CAYLEY-HAMILTON THEOREM [IV.10§5.3]
states that q(A) = 0. The minimal polynomial of an
m x m Jordan block Jx(Ag) is (t — Ag)™. The minimal
polynomial of A is therefore given by

w(t) =[] -rom,

i=1
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where Ay,..., A are the distinct eigenvalues of A and
m; is the dimension of the largest Jordan block in
which A; appears. An n X n matrix is derogatory if
the minimal polynomial has degree less than n. This is
equivalent to some eigenvalue appearing in more than
one Jordan block. The matrix A in (1) is defective but
not derogatory. The n x n identity matrix is derogatory
for n > 1:it has characteristic polynomial (t — 1)" and
minimal polynomial t — 1.

Two questions that arise in many situations are, “Do
the powers of the matrix A converge to zero?” and “Are
the powers of A bounded?” The answers to both ques-
tions are easily obtained using the JCF. If A = ZJZ~!
then A2 = Zjz~' . zjz7' = ZJ?Z~! and, in general,
Ak = 7Jk7-1. Therefore the powers of A converge to
zero precisely when the powers of J converge to zero,
and this in turn holds when the powers of each indi-
vidual Jordan block converge to zero. The powers of
a 1 x1 Jordan block J; = (A;) obviously converge to
zero when |A;| < 1. In general, since J;(A;)¥ has diago-
nal elements /\{-‘, for the powers of Jy(Ag) to converge
to zero it is necessary that |Ax| < 1, and this condition
turns out to be sufficient. Therefore A¥ — 0 as k — «
precisely when p(A) < 1, where p is the spectral radius,
defined as the largest absolute value of any eigenvalue
of A.

Turning to the question of whether the powers of
A are bounded, by the argument in the previous para-
graph it suffices to consider an individual Jordan block.
The powers of Ji(Ay) are clearly bounded when |A;| <
1, as we have just seen, and unbounded when |[Ag| > 1.
When |Ag| = 1 the powers are bounded if the block
is 1 x 1, but they are unbounded for larger blocks. For
example, [ } 11 = [} ¥], which is unbounded as k — co.
The conclusion is that the powers of A are bounded as
long as p(A) < 1 and any eigenvalues of modulus 1 are
in Jordan blocks of size 1. Thus the powers of A in (1)
are not bounded.

In one sense, defective matrices—those with nontriv-
ial Jordan structure—are very rare because the diago-
nalizable matrices are dense in the set of all matrices.
Therefore if you generate matrices randomly you will
be very unlikely to generate one that is not diagonal-
izable (this is true even if you generate matrices with
random integer entries). But in another sense, defective
matrices are quite common. Certain types of BIFURCA-
TIONS [IV.21] in dynamical systems are characterized
by the presence of nontrivial Jordan blocks in the Jaco-
bian matrix, while in problems where some function of
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the eigenvalues of a matrix is optimized the optimum
often occurs at a defective matrix.

While the JCF provides understanding of a variety of
matrix problems, it is not suitable as a computational
tool. The JCF is not a continuous function of the entries
of the matrix and can be very sensitive to perturbations.
For example, for € # 0, [§{] (one Jordan block) and

391 (two Jordan blocks) have different Jordan struc-
tures, even though the matrices can be made arbitrar-
ily close by taking ¢ sufficiently small. In practice, it
is very difficult to compute the JCF in floating-point
arithmetic due to the unavoidable perturbations caused
by rounding errors. As a general principle, the SCHUR
DECOMPOSITION [IV.10 §5.5] is preferred for practical
computations.

I1.23 Krylov Subspaces
Valeria Simoncini

1 Definition and Properties

The mth Krylov subspace of the matrix A € C"*" and
the vector v € C" is

Km(A,v) = span{v, Av,..., A" v},

The dimension of X;,(A,v) is at most m, and it is
less if an invariant subspace of A with respect to v is
obtained for some my < m. In general, K,y (A,v) <
Km+1(A,v) (the spaces are nested); if my = n, then
Kn(A,v) spans the whole of C".

Let v1 = v/llvlz, with [vllz = (v*v)1/? the 2-
norm, and let {vy, va,..., vy} be an orthonormal basis
of Km (A, v). Setting Vy, = [v1,V2,...,VUm], from the
nesting property it follows that the next basis vec-
tor v;m+1 can be computed by the following Arnoldi
relation:

AV = [V, Um+1]Hm+1,m,

where Hpi1m € CMHDXM jg an upper Hessenberg
matrix (upper triangular plus nonzero entries imme-
diately below the diagonal) whose columns contain the
coefficients that make v,,+; orthogonal to the already
available basis vectors vy,..., Vp,.

Suppose we wish to approximate a vector y by a vec-
tor x € K (A, v), measuring error in the 2-norm. Any
such x can be written as a polynomial in A of degree
at most m — 1 times v: x = >";' a;Aiv. If A is Her-
mitian, then by using a spectral decomposition we can
reduce A to diagonal form by unitary transformations,
which do not change the 2-norm, and it is then clear
that the eigenvalues of A and the decomposition of v
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in terms of the eigenvectors of A drive the approxima-
tion properties of the space. For non-Hermitian A the
approximation error is harder to analyze, especially for
highly nonnormal or nondiagonalizable matrices.

By replacing v by an n x s matrix V, with s > 1,
spaces of dimension at most ms can be obtained. An
immediate matrix counterpart is

m-1
Km(A,V) = { S yiAiV:y; € Cforall i}.
i=0
A richer version is obtained by working with linear
combinations of all the available vectors:

KL (A, V) = range([V,AV,..., A" 1V]).

Methods based on this latter space are called “block”
methods, since all matrix structure properties are gen-
eralized to blocks (e.g., Hm+1,m Will be block upper
Hessenberg, with s x s blocks). Block spaces are appro-
priate, for instance, in the presence of multiple eigen-
values or if the original application requires using the
same A and different vectors v.

2 Applications and Generalizations

Krylov subspaces are used in projection methods for
solving large algebraic linear systems, eigenvalue prob-
lems, and matrix equations; for approximating a wide
range of matrix functions (analytic functions, trace,
determinant, transfer functions, etc.); and in model
order reduction.

The general idea is to project the original problem of
size n onto the Krylov subspace of dimension m < n
and then solve the smaller m x m reduced problem
with a more direct method (one that would be too
computationally expensive if applied to the original
n X n problem). If the Krylov subspace is good enough,
then the projected problem retains sufficient informa-
tion from the original problem that the sought after
quantities are well approximated.

When equations are involved, Krylov subspaces usu-
ally play a role as approximation spaces, as well as
test spaces. The actual test space used determines
the resulting method and influences the convergence
properties.

Generalized spaces have emerged as second-gener-
ation Krylov subspaces. In the eigenvalue context, the
“shift-and-invert” Krylov subspace K, ((A - oI)"1,v)
is able to efficiently approximate eigenvalues in a neigh-
borhood of a fixed scalar o € C; here I is the iden-
tity matrix of size n. In matrix function evaluations
and matrix equations, the extended space K, (A,v) +

II. Concepts

Km(A™1, A-1v) has shown some advantages over the
classical space, while for o, ..., 0, € C, the use of the
more general rational space

span{(A — o) 'v,..., (A= o) v}

has recently received a lot of attention for its potential
in a variety of advanced applications beyond eigenvalue
problems, where it was first introduced in the 1980s. All
these generalized spaces require solving systems with
some shifted forms of A, so that they are in general
more expensive to build than the classical one, depend-
ing on the computational cost involved in solving these
systems. However, the computed space is usually richer
in spectral information, so that a much smaller space
dimension is required to satisfactorily approximate the
requested quantities. The choice among these variants
thus depends on the spectral and sparsity properties
of the matrix A.

Further Reading

Freund, R. W. 2003. Model reduction methods based on
Krylov subspaces. Acta Numerica 12:126-32.

Liesen, J., and Z. Strako$. 2013. Krylov Subspace Methods:
Principles and Analysis. Oxford: Oxford University Press.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems,
2nd edn. Philadelphia, PA: SIAM.

Watkins, D. S. 2007. The Matrix Eigenvalue Problem: GR and
Krylov Subspace Methods. Philadelphia, PA: SIAM.

II.24 The Level Set Method
Fadil Santosa

1 The Basic Idea

The level set method is a numerical method for repre-
senting a closed curve or surface. [t uses an implicit rep-
resentation of the geometrical object in question. It has
found widespread use in problems where the closed
curve evolves or needs to be recomputed often. A main
advantage of the method is that such a representation
is very flexible and calculation can be done on a regular
grid. In computations where surfaces evolve, changes in
the topology of the surface are easily handled.
Consider an example in two dimensions in the (x, y)-
plane. Suppose one is interested in the motion of a
curve under external forcing terms. Let C(t) denote the
curve as a function of time t. One method for solv-
ing this problem is to track the curve, which can be
done by choosing marker points, (x;(t), y;i(t)) € C(t),
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Figure 1 The graphs of a level set function z = @(x, y,t)
for three values of t are shown at the bottom of the figure.
The plane z = 0 intersects these functions. The domains
D(t) = {(x,¥): @(x,y,t) > 0} are shown above. Note that,

in this example, D (t) has gone through a topological change
as t varies.

i=1,...,n,whose motions are determined by the forc-
ing. The curve itself may be recovered at any time t by
a prescribed spline interpolation.

The level set method takes a different approach; it
represents the curve as the zero level set of a function
@(x,y,t). That is, the curve is given by

C(t) = {(x,y): @(x,y,t) =0}

One can set up the function so that the interior of the
curve C(t) is the set

D(t) = {(x,¥): @(x,¥,t) > 0}.
In figure 1 the level set function z = @(x, y,t) can be
seen to intersect the plane z = 0 at various times t. The
sets of D(t) (not up to the same scale) are shown above
each three-dimensional figure.

An advantage of the level set method is demon-
strated in the figure. One can see that a topological
change in D(t) has occurred as t is varied. The level
set method allows for such a change without the need
to redefine the representation, as would be the case for
the front-tracking method described previously.

2 Discretization

One of the attractive features of the level set method
is that calculations are done on a regular Cartesian
grid. Suppose we have discretized the computational
domain and the nodes are at coordinates (x;,y;) for
i=1,...,mand j = 1,...,n. The values of the level set
function @ (x, y, t) are then stored at coordinate points
x = xj and y = y;. At any time, if one is interested in
the curve C(t), the zero level set, the set

C(t) = {(X.J’): (p(xvy,t) = 0}
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needs to be approximated from the data @ (x;, y;,t).
One is typically interested in such quantities as the
normal to the curve and the curvature at a point on
the curve. These quantities are easily calculated by
evaluating finite-difference approximations of

Vo
V=——
IVl
and
k=V-v,

where the gradient operator V = [3/dx 9/0y]".

In practice, it is not necessary to keep all values of the
level set function on the nodes. Since one is often inter-
ested only in the motion of the curve C(t), the zero level
set, one needs only the values of the level set function in
the neighborhood of the curve. Such approaches have
been dubbed “narrow-band methods” and can poten-
tially reduce the amount of computation in a problem
involving complex evolution of surfaces.

It must be noted that, in the two-dimensional exam-
ple here, C(t) is a one-dimensional object, whereas
the level set function @(x,y,t) is a two-dimensional
function. Thus, one might say that the ability to track
topological changes is made at the cost of increased
computational complexity.

3 Applications

A simple problem one may pose is that of tracking the
motion of a curve for which every point on the curve
is moving in the direction normal to the curve with a
given velocity. If the velocity is v, then the equation for
the level sets is given by

op
— =v|Vp]|.
3t Vol
If one is interested in tracking the motion of the zero

level set C(t), then one must specify an initial condition
@(x,5,0) = @olx,»),
where the initial zero level set is given by
C(0) = {(x,¥): @o(x,¥) = 0}.

This evolution of such a curve may be very compli-
cated and go through topological changes. The power
of the level set method is demonstrated here because
all one needs to do is solve the initial-value problem for
@(x,y,t).

Another simple problem is the classical motion by
mean curvature. In this “flow,” one is interested in
tracking the motion of a curve for which every point on
the curve is moving normal to the curve at a velocity
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proportional to the curvature. The evolution equation
is given by

op Ve

ot Vel
A numerical solution of this evolution equation can
be used to demonstrate the classical Grayson theo-
rem, which asserts that, if the closed curve starts
out without self-intersections, then it will never form
self-intersections and it will become convex in finite
time.

Significant problems arising from applications from
diverse fields have benefited from the level set treat-
ment. The following is an incomplete list meant to give
a sense of the range of applications.

Image processing. The level set method can be used
for segmentation of objects in a two-dimensional
scene. It has also been demonstrated to be effective
in modeling surfaces from point clouds.

Fluid dynamics. Two-phase flows, which involve inter-
faces separating the two phases, can be approached
by the level set method. It is particularly effective for
problems in which one of the phases is dispersed in
bubbles.

Inverse problems. Inverse problems exist in which the
unknown that one wishes to reconstruct from data is
the boundary of an object. Examples include inverse
scattering.

Optimal shape design. When the object is to design
a shape that maximizes certain attributes (design
objectives), it is often very convenient to represent
the shape by a level set function.

Computer animation. The need for physically based
simulations in the animation industry has been par-
tially met by solving equations of physics using
the level set method to represent surfaces that are
involved in the simulation.

Current research areas include improved accuracy in
the numerical schemes employed and in applying the
method to ever more complex physics.

Further Reading

Osher, S., and R. Fedkiw. 2003. Level Set Methods and
Dynamic Implicit Surfaces. New York: Springer.

Osher, S., and J. A. Sethian. 1988. Fronts propagating
with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations. Journal of Computational
Physics 79:12-49.

Sethian, J. A. 1999. Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Geometry,
Fluid Mechanics, Computer Vision, and Materials Science.
Cambridge: Cambridge University Press.
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II.25 Markov Chains
Beatrice Meini

A Markov chain is a type of random process whose
behavior in the future is influenced only by its current
state and not by what happened in the past. A simple
example is a random walk on Z, where a particle moves
among the integers of the real line and is allowed to
move one step forward with probability 0 < p < 1 and
one step backward with probability g = 1 — p (see fig-
ure 1). The position of the particle at time n + 1 (in the
future) depends on the position of the particle at time n
(at the present time), and what happened before time n
(in the past) is irrelevant.

To give a precise definition of a Markov chain we will
need some notation. Let E be a countable set represent-
ing the states, and let 2 be a set that represents the
sample space. Let X,Y: Q — E be two random vari-
ables. We denote by P[X = j] the probability that X
takes the value j, and we denote by P[X = j | Y = i]
the probability that X takes the value j given that the
random variable Y takes the value i. A discrete stochas-
tic process is a family (Xy)nen of random variables
Xn:Q —E.

A stochastic process (X,)nen is called a Markov
chain if

P[Xn+1 = 1n+1 | Xo = 10,...,Xn = 1n]
= IP[X'HI =1in+1 | Xn = in]

at any time n > 0 and for any states ig,...,in+1 € E.
This means that the state X, at time n is sufficient to
determine which state X,,,1 might be occupied at time
n + 1, and we may forget the past history Xo,..., Xn-1.

It is often required that the laws that govern the
evolution of the system be time invariant. The Markov
chain is said to be homogeneous if the transitions from
one state to another state are independent of the time
n, ie., if

P Xn1=J | Xn=1] = Pij

at any time n > 0 and for any states i, j € E. The num-
ber p;j represents the probability of passing from state
i to state j in one time step. The matrix P = (pij)i,jer
is called the transition matrix of the Markov chain. The
matrix P is a stochastic matrix: that is, it has nonneg-
ative entries and unit row sums (3 jcg pij = 1 for all
i € E). The dynamic behavior of the Markov chain
is governed by the transition matrix P. In particular,
the problem of computing the probability that, after n
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of (1), which in the linear time-invariant case is obtained
by taking Laplace transforms and inserting the trans-
formed equation (1a) into the transformed (1c). The
transfer function represents the mapping of inputs u
to outputs y. As a rational matrix-valued function of
a complex variable, it can be approximated in differ-
ent ways. In rational interpolation methods, V, W are
computed so that

%G(sk) = %C(sk), T (-
for K interpolation points sx and derivatives up to order
Jk at each point. Here, G denotes the transfer function
of (2) and (3), defined by A = WTAV, B = WTB, and
C=CV:

In the nonlinear case, a further question is how to
obtain functions f and g allowing for fast evaluation.
Simply setting f(t,x,u,p) = WTf(t,VX,u,p) obvi-
ously does not lead to faster simulation in general.
Therefore, dedicated methods, such as (discrete) empir-
ical interpolation, are needed to obtain a “reduced” f
and g.

K, j=0)-~-|1kr

2 An Example

As an example consider the mathematical model of a
microgyroscope: a device used in stability control of
vehicles. Finite-element discretization of this particu-
lar model leads to a linear time-invariant system of
n = 34722 linear ordinary differential equations with
d = 4 parameters, m = 1 input, and g = 12 outputs.
Using a reduced-order model of size v = 289, a param-
eter study involving two parameters (defining x- and
y-axes in figure 1) and the excitation frequency w (i.e.,
the parametric transfer function G(s,p) is evaluated
for s = iw with varying w) could be accelerated by a
factor of approximately 90 without significant loss of
accuracy. The output y was computed with an error
of less than 0.01% in the whole frequency and param-
eter domain. Figure 1 shows the response surfaces of
the full and reduced-order models at one frequency for
variations of two parameters.

Further Reading

Antoulas, A. 2005. Approximation of Large-Scale Dynamical
Systems. Philadelphia, PA: SIAM.

Benner, P., M. Hinze, and E. J. W. ter Maten, eds. 2011.
Model Reduction for Circuit Simulation. Lecture Notes in
Electrical Engineering, volume 74. Dordrecht: Springer.
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Figure 1 The parametric transfer function of a microde-
vice (at w = 0.025): results from (a) the full model with
dimension 34722 and (b) the reduced-order model with
dimension 289. (Computations and graphics by L. Feng and
T. Breiten.)

Benner, P., V. Mehrmann, and D. C. Sorensen, eds. 2005.
Dimension Reduction of Large-Scale Systems. Lecture
Notes in Computational Science and Engineering, vol-
ume 45. Berlin: Springer.
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2008. Model Order Reduction: Theory, Research Aspects
and Applications. Mathematics in Industry, volume 13.
Berlin: Springer.

I1.27 Multiscale Modeling
Fadil Santosa

To accurately model physical, biological, and other
phenomena, one is often confronted with the need
to capture complex interactions occurring at distinct
temporal and spatial scales. In the language of multi-
scale modeling, temporal scales are usually differenti-
ated by slow, medium, and fast timescales. Spatially,
the phenomena are separated into micro-, meso-, and
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macroscales. In modeling the deformation of solids, for
instance, the microscale phenomena could be atomistic
interactions occurring on a femtosecond (10> sec-
ond) timescale. At the mesoscopic scale, one could be
interested in the behavior of the constituent macro-
molecules, e.g., a tangled bundle of polymers. Finally,
at the macroscopic scale, one might be interested in
how a body, whose size could be in meters, deforms
under an applied force. The challenge in multiscale
modeling is that the interactions at one scale com-
municate with interactions at other scales. Thus, in
the example given, the question we wish to answer is
how the applied forces affect the atomistic interactions,
and how those interactions impact the behavior of the
macromolecules, which in turn affects how the overall
shape of the body deforms.

Multiscale modeling is a rapidly developing field
because of its enormous importance in applications.
The range of applications is staggering. It has been
applied in geophysics, biology, chemistry, meteorology,
materials science, and physics.

We give another concrete example that arises in solid
mechanics. Suppose we have a block of pure aluminum
whose crystalline structure is known. How can we cal-
culate its elastic properties, i.e., its Lamé modulus and
Poisson ratio, ab initio from knowledge of its atomistic
structure? Such a calculation would start by consid-
ering Schrodinger’s equation for the multiparticle sys-
tem. By solving for the ground states of the system, one
can then extract the desired macroscopic properties of
the bulk aluminum.

A classical example of multiscale modeling in applied
mathematics is the HOMOGENIZATION METHOD [IL.17],
which allows for extraction of effective properties of
composite materials. Consider the steady-state distri-
bution of temperature in a rod of length £ made up of a
material with rapidly oscillating conductivity. The con-
ductivity is described by a periodic function a(y) > 0,
such that a(y + 1) = a(y). A small-scale ¢ is intro-
duced to denote the actual period in the medium. The
governing equation for temperature u(x) is

(a(%)u’) =f, 0<x<{,

where a prime denotes differentiation with respect
to x. Here, f is the heat source distribution, with x
measuring distance along the rod. To solve the prob-
lem, the solution u is developed in powers of €. The
macroscopic behavior of u is identified with the zeroth
order. This solution will be smooth as the small rapid
oscillations are ignored.

II. Concepts

Current research in multiscale modeling focuses
on bridging the phenomena at the different scales
and developing efficient numerical methods. There are
efforts to develop rigorous multiscale models that
agree with their continuum counterparts. CONTINUUM
MODELS [IV.26] are macroscale models derived from
first principles and where the material properties are
usually measured. Other efforts concentrate more on
developing accurate simulations, such as modeling the
properties of Kevlar starting from the polymers in the
resin and the carbon fibers used. All research in this
area involves some numerical analysis and scientific
computing.

I1.28 Nonlinear Equations and
Newton’s Method
Marcos Raydan

Nonlinear equations appear frequently in the mathe-
matical modeling of real-world processes. They are usu-
ally written as a zero-finding problem: find x; € R, for
j=1,2,...,n, such that

Sfilxy,..

where the f; are given functions of n variables. This
system of equations is nonlinear if at least one of the
functions f; depends nonlinearly on at least one of the
variables. Using vector notation, the problem can also
be written as find x = [x1,...,x,]T € R" such that

F(x) = [fi(x),...,fax)]T = 0.

If every function f; depends linearly on all the vari-
ables, then it is usually written as a linear system of
equations Ax = b, where b € R" and Aisan nxn
matrix.

The existence and uniqueness of solutions for non-
linear systems of equations is more complicated than
for linear systems of equations. For solving Ax = b,
the number of solutions must be either zero, infinity, or
one (when A is nonsingular), whereas F(x) = 0 can have
zero, infinitely many, or any finite number of solutions.
Fortunately, in practice, it is usually sufficient to find a
solution of the nonlinear system for which a reasonable
initial approximation is known.

Even in the simple one-dimensional case (n = 1),
most nonlinear equations cannot be solved by a closed
formula, i.e., using a finite number of operations. A
well-known exception is the problem of finding the
roots of polynomials of degree less than or equal to
four, for which closed formulas have been known for

Xn)=0 fori=1,2,...,n,
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Figure 1 One iteration of Newton’s method
in one dimension for f(x) = 0.

centuries. As a consequence, in general iterative meth-
ods must be used to produce increasingly accurate
approximations to the solution. One of the oldest iter-
ative schemes, which has played an important role in
the numerical methods literature for solving F(x) = 0,
is Newton’s method.

1 Newton’s Method

Newton’s method for solving nonlinear equations was
born in one dimension. In that case, the problem is find
x € R such that f(x) = 0, where f: R — R is differ-
entiable in the neighborhood of a solution x. Starting
from a given xg, on the kth iteration Newton's method
constructs the tangent line passing through the point
(XK, f (XK)),

My(x) = fxx) + f (x) (x — xx),

and defines the next iterate, xx+1, as the root of the
equation My (x) = 0 (see figure 1). Hence, from a given
xo € R, Newton's method generates the sequence {xy}
of approximations to x, given by

X1 = Xk — FOx) [ f (xp).

Notice that the tangent line or linear model My (x) is
equal to the first two terms of the Taylor series of f
around xy.

Newton’s idea in one dimension can be extended to
n-dimensional problems. In R" the method approxi-
mates the solution of a square nonlinear system of
equations by solving a sequence of square linear sys-
tems. As in the one-dimensional case, on the kth iter-
ation the idea is to define xy.; as a zero of the linear
model given by

My (x) = F(xy) + J(xp) (x — xi),
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where the map F: R" — R" is assumed to be dif-
ferentiable in a neighborhood of a solution x, and
where J(xy) is the n x n Jacobian matrix with entries
Jij(xx) = dfi/oxj(xk) for 1 < i,j < n. Therefore,
starting at a given xo € R", Newton's method carries
out for k = 1,2,... the following two steps.

o Solve J(xk)sk = —F(xy) for sg.
o Set Xg+1 = Xk + Sk.

Notice that Newton's method is scale invariant: if the
method is applied to the nonlinear system AF(x) =
0, for any nonsingular n x n matrix A, the sequence
of iterates is identical to the ones obtained when it
is applied to F(x) = 0. Another interesting theoret-
ical feature is its impressively fast local convergence.
Under some standard assumptions—namely that J(x)
is nonsingular, J(x) is Lipschitz continuous in a neigh-
borhood of x4, and the initial guess xq is sufficiently
close to x4 —the sequence {xy} generated by Newton’s
method converges q-quadratically to xx; i.e., there
exist ¢ > 0 and k > 0 such that for all k > k,

2
[Ixre1 — x5l < cllxg — xx1°.

Hence Newton's method is theoretically attractive, but
it may be difficult to use in practice for various rea-
sons, including the need to calculate the derivatives,
the need to have a good initial guess to guarantee con-
vergence, and the cost of solving an n x n linear system
per iteration.

2 Practical Variants

If the derivatives are not available, or are too expen-
sive to compute, they can be approximated by finite
differences. A standard option is to approximate the
Jjth column of J(xy) by a forward difference quotient:
(F(xk + hyej) — F(xx))/hk, where e; denotes the jth
unit vector and hy > 0 is a suitable small number.
Notice that, when using this finite-difference variant,
the map F needs to be evaluated n + 1 times per itera-
tion, once for each column of the Jacobian and one for
the vector x. Therefore, this variant is attractive when
the evaluation of F is not expensive.

Another option is to extend the well-known one-
dimensional secant method to the n-dimensional prob-
lem F(x) = 0. The main idea, in these so-called secant
or QUASI-NEWTON METHODS [IV.11 §4.2], is to generate
not only a sequence of iterates {x,} but also a sequence
of matrices {By } that approximate J(xy) and satisfy the
secant equation BySg_1 = Vg1, where sp_; = Xp — Xx_1
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and yx-1 = F(xk) — F(xk-1). In this case, an initial
matrix By =~ J(xp) must be supplied. Clearly, infinitely
many n X n matrices satisfy the secant equation. As a
consequence, a wide variety of quasi-Newton methods
(e.g., Broyden’s method) with different properties have
been developed.

When using Newton’s method, or any of its deriva-
tive-free variants, a linear system needs to be solved
at each iteration. This linear system can be solved by
direct methods (e.g., LU or QR factorization), but if n
is large and the Jacobian matrix has a sparse struc-
ture, it may be preferable to use an iterative method
(e.g., a KRYLOV SUBSPACE METHOD [IV.10 §9]). For that,
note that x; can be used as the initial guess for the
solution at iteration k + 1. One of the important fea-
tures of these so-called inexact variants of Newton’s
method is that modern iterative linear solvers do not
require explicit knowledge of the Jacobian; instead,
they require only the matrix-vector product J(xy)z for
any given vector z. This product can be approximated
using a forward finite difference:

J(xx)z = (F(xg + hgz) — F(xy))/hg.

Hence, inexact variants of Newton’s method are also
suitable when derivatives are not available. In all the
discussed variants, the local g-quadratic convergence is
in general lost, but g-superlinear convergence can nev-
ertheless be obtained, i.e., || xg+1 — X« /I xx — x|l — 0.
Finally, in general Newton's method converges only
locally, so it requires globalization strategies to be prac-
tically effective. The two most popular and best-studied
options are line searches and trust regions. In any case,
a merit function f: R"™ — R* must be used to eval-
uate the quality of all possible iterates. When solving
F(x) = 0, the natural choice is f(x) = F(x)TF(x).
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I1.29 Orthogonal Polynomials

Polynomials po(x), p1(x), ..., where p; has degree i,
are orthogonal polynomials on an interval [a,b] with

II. Concepts

Table 1 Parameters in the three-term recurrence (1) for
some classical orthogonal polynomials.

Polynomial [a,b] w(x) a; b; Cj
Chebyshev [-1,1] (1 -x2)"1/2 2 0

- 2j+1 j
Legendre [-1,1] 1 I 0 j—+ ]
Hermite  (—oo0, ) e X’ 2 0 2j
Laguerre [0, 00) e X Lol g

T+l g+l j+1

respect to a nonnegative weight function w(x) if

b
I w(xX)pi(x)pj(x)dx =0, i#]j,
a

that is, if all distinct pairs of polynomials are orthogo-
nal on [a, b] with respect to w. For a given weight func-
tion and interval, the orthogonality conditions deter-
mine the polynomials p; uniquely up to a constant
factor.

An important property of orthogonal polynomials is
that they satisfy a three-term recurrence relation

Jj=1. (1)

The weight functions, interval, and recurrence coeffi-
cients for some classical orthogonal polynomials are
summarized in table 1, in which is assumed the normal-
ization po(x) = 1, with p;(x) = x for the Chebyshev
and Legendre polynomials, p;(x) = 2x for the Her-
mite polynomials, and p;(x) = 1 — x for the Laguerre
polynomials.

Orthogonal polynomials have many interesting prop-
erties and find use in many different settings, e.g., in
numerical integration, Krylov subspace methods, and
the theory of continued fractions. In this volume they
arise in LEAST-SQUARES APPROXIMATION [IV.9§3.3],
NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUA-
TIONS [IV.13 §6], RANDOM-MATRIX THEORY [IV.24], and
as SPECIAL FUNCTIONS [IV.7 §7]. See SPECIAL FUNCTIONS
[IV.7 §7] for more information.

pj+1(x) = (ajx +bj)p;(x) —cjpj-1(x),

IL.30 Shocks
Barbara Lee Keyfitz

1 What Are Shocks?

“Shocks” (or “shock waves”) is another name for the
field of quasilinear hyperbolic PDEs, or CONSERVATION
LAWS [II.6]. When the mathematical theory of super-
sonic flow was in its infancy, the first text on the subject
named it this way; and the first modern monograph to
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focus on the mathematical theory of quasilinear hyper-
bolic PDEs also used this terminology. Shocks are a
dominant feature of the subject, for, as noted with ref-
erence to the BURGERS EQUATION [II.4] (see also PAR-
TIAL DIFFERENTIAL EQUATIONS [IV.3 §3.6]), solutions to
initial-value problems, even with smooth data, are not
likely to remain smooth for all time. We return to the
derivation to see what happens when solutions are not
differentiable.

In the derivation of a system in one space dimension,

ur + f(u)xy =0, (1)

one typically invokes the conservation of each compo-
nent u; of u. The rate of change of u; over a control
length [x, x + h] is the net flux across the endpoints:

x+h
BtI ui(y,t)dy = fitu(x,t)) - filu(x+h,t)). (2)

X
Under the assumption that u is differentiable, the
mean value theorem of calculus yields (1) in the limit
h — 0. However, (2) is also useful in a different case.
If u approaches two different limits, uy (X (t),t) and
ugr(X(t),t), on the left and right sides of a curve of
discontinuity, x = X(t), then taking the limit h — 0 in
(2) with x and x + h straddling the curve X (t) yields
a relationship among u;, ug, and the derivative of the
curve:

X' () (ur(X(t),t) — ur(X(t),t))
= fur(X(t), 1)) = fu (X(©),1). 3)

This is known as the (generalized) Rankine-Hugoniot
relation. The quantity X’(t) measures the speed of
propagation of the discontinuity at X (t).

Because solutions of conservation laws are not ex-
pected to be continuous for all time, even when the ini-
tial data are smooth, it is necessary to allow shocks in
any formulation of what is meant by a “solution” of
(1). Conservation law theory states that a solution of
(1) may contain countably many shocks, the functions
X(t) may be no smoother than Lipschitz continuous,
and there may be countably many points in physical
(x, t)-space at which shock curves intersect. In the case
of conservation laws in more than one space dimen-
sion, the notion of a “shock curve” can be generalized to
that of a “shock surface” by supposing that the solution
is piecewise differentiable on each side of such a sur-
face. One obtains an equation similar to (3) that relates
the states on either side of the surface to the normal
to the surface at each point. However, as distinct from
the case in a single space dimension, it is not known
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whether all solutions have this structure, or whether
more singular behavior is possible.

2 Entropy, Admissibility, and Uniqueness

Although allowing for weak solutions, in the form of
solutions containing shocks, is forced upon us by both
mathematical considerations (they arise from almost
all data) and physical considerations (they are seen in
all the fluid systems modeled by conservation laws), a
new difficulty arises: if shocks are admitted as solu-
tions to a conservation law system, there may be too
many solutions (this is also known, somewhat illogi-
cally, as “lack of uniqueness”). Here is a simple exam-
ple, involving the Burgers equation. If at t = 0 we are
given

0, x<0,

u(x,0) = {1’ x>0,

then

0, x<1it,
u(x,t) = :
l, X > Qt,

is a shock solution in the sense of (3). But

0, x <0,
u(x,t) =1x/t, 0<x<t,
1, X > t,

is also a solution, and in fact it is the latter, which
is described as a “rarefaction wave,” that is correct,
while the former, known as a “RAREFACTION SHOCK
[V.20 §2.2],” can be ruled out on both mathematical and
physical grounds. A fluid that is rarefying (that is, one
in which the force of pressure is decreasing), be it a gas
or traffic, spreads out gradually and erases the initial
discontinuity, while a fluid that is being compressed
forms a shock.

Another mode of reasoning, which has both a math-
ematical and a physical basis, goes as follows. Suppose
n is a convex function of u for which another function
q(u) exists such that

nu) +qu)y =0 (4)
whenever u is a smooth solution of (1). When this is the
case, we say that (1) “admits a convex entropy.” A cal-
culation (easy for the Burgers equation and true in gen-
eral) shows that we should not expect (4) to be satisfied
(in the weak sense, as an additional Rankine-Hugoniot
relation like (3)) in regions containing shocks. But since
n is convex, imposing the requirement that n decrease
in time when shocks are present forces a bound on
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II.32 The Singular Value
Decomposition
Nicholas J. Higham

One of the most useful matrix factorizations is the sin-
gular value decomposition (SVD), which is defined for
an arbitrary rectangular matrix A € C™*" It takes the
form

A=UIV*, .., 0p) ER™M (1)

where p = min(m, n), ¥ is a diagonal matrix with diag-
onal elements 0y > 02 > --- 2 0p 2 0,and U € C"*™
and V € C™" are unitary. The o; are the singular val-
ues of A, and they are the nonnegative square roots
of the p largest eigenvalues of A*A. The columns of
U and V are the left and right singular vectors of A,
respectively.

Postmultiplying (1) by V gives AV = UX since V¥V =
I, which shows that the ith columns of U and V are
related by Av; = oju; for i = 1:p. Similarly, A*u; =
ojv; for i = 1:p. A geometrical interpretation of
the former equation is that the singular values of A
are the lengths of the semiaxes of the hyperellipsoid
{Ax: |Ix]l2 = 1}.

Assuming that m > n for notational simplicity, from
(1) we have

X = diag(oy, 02,.

A*A =V (Z*Z)V*, (2)

with £*¥ = diag(of, 03,...,02), which shows that the
columns of V are eigenvectors of the matrix A* A with
corresponding eigenvalues the squares of the singular
values of A. Likewise, the columns of U are eigenvectors
of the matrix AA*.

The SVD reveals a great deal about the matrix A and
the key subspaces associated with it. The rank, », of A
is equal to the number of nonzero singular values, and
the range and the null space of A are spanned by the
first » columns of U and the last n — ¥ columns of V,
respectively.

The SVD reveals not only the rank but also how close
A is to a matrix of a given rank, as shown by a classic
1936 theorem of Eckart and Young.

Theorem 1 (Eckart-Young). Let A € C™*" have the
SVD (1). If k < v = rank(A), then for the 2-norm and
the Frobenius norm,

Ok+1s 2-norm,
IEIBr)l k||A-B||=||A-Ak||= i =
rank = z
> of, F-norm,
i=k+1
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Figure 1 Photo of a blackboard, inverted so that white
and black are interchanged in order to show more clearly
the texture of the board: (a) original 1067 x 1600 image;
(b) image compressed using rank-40 approximation Ajo
computed from SVD.

where

Ag = UDyV*, Dy = diag(oy,...,0%,0,...,0).

In many situations the matrices that arise are nec-
essarily of low rank but errors in the underlying data
make the matrices actually obtained of full rank. The
Eckart-Young result tells us that in order to obtain a
lower-rank matrix we are justified in discarding (i.e.,
setting to zero) singular values that are of the same
order of magnitude as the errors in the data.

The SVD (1) can be written as an outer product
expansion

P

A= Z (r,-u,'v,»* ;

i=1
and Ay in the Eckart-Young theorem is given by the
same expression with p replaced by k. If k < p then
Ay requires much less storage than A and so the SVD
can provide data compression (or data reduction). As
an example, consider the monochrome image in fig-
ure 1(a) represented by a 1067 x 1600 array of RGB
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values (R = G = B since the image is monochrome).
Let A € R1067x1600 contain the values from any one of
the three channels. The singular values of A range from
8.4x10* down to 1.3x10!. If we retain only the singular
values down to the 40th, o4 = 2.1 x 103 (a somewhat
arbitrary cutoff since there is no pronounced gap in
the singular values), we obtain the image in figure 1(b).
The reduced SVD requires only 6% of the storage of
the original matrix. Some degradation is visible in the
compressed image (and more can be seen when it is
viewed at 100% size on screen), but it retains all the
key features of the original image. While this example
illustrates the power of the SVD, image compression
is in general done much more effectively by the JPEG
SCHEME [VIL.7 §5].

A pleasing feature of the SVD is that the singular val-
ues are not unduly affected by perturbations. Indeed,
if A is perturbed to A + E then no singular value of A
changes by more than || E||>.

The SVD is a valuable tool in applications where
two-sided orthogonal transformations can be carried
out without “changing the problem,” as it allows the
matrix of interest to be diagonalized. Foremost among
such problems is the LINEAR LEAST-SQUARES PROBLEM
[IV.108§7.1] minyecn ||b — Ax]||>.

The SVD was first derived by Beltrami in 1873. The
first reliable method for computing it was published
by Golub and Kahan in 1965; this method applies two-
sided unitary transformations to A and does not form
and solve the equation (2), or its analogue for AA*.
Once software for computing the SVD became readily
available, in the 1970s, the use of the SVD proliferated.
Among the wide variety of uses of the SVD are for TEXT
MINING [VII.24], deciphering encrypted messages, and
image deblurring.
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I1.33 Tensors and Manifolds
Mark R. Dennis

We know that the surface of the Earth is curved, despite
the fact that it appears flat. This is easily understood
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from the fact that the Earth’s radius of curvature
is over 6000 km, vast on a human scale. This pic-
ture motivates the mathematical definition of a man-
ifold (properly a Riemannian manifold): a space that
appears to be Euclidean locally in a neighborhood of
each point (or pseudo-Euclidean, as defined below) but
globally may have curvature, such as the surface of a
sphere.

Manifolds are most simply defined in terms of the
coordinate systems on them, and of course there are
uncountably many such systems. Tensors are mathe-
matical objects defined on manifolds, such as vector
fields, which are in a natural sense independent of the
coordinate system used to define them and their com-
ponents. The importance of tensors in physics stems
from the fact that the description of physical phenom-
ena ought to be independent of any coordinate system
we choose to impose on space and hence should be
tensorial.

Our description of manifolds and tensors will be
rather informal. For instance, we will picture vector
or tensor fields as defining a vector or tensor at
each point of the manifold itself rather than more
abstractly as a section of the appropriate tangent
bundle. In applications, tensors are frequently used
in the study of GENERAL RELATIVITY AND COSMOL-
0GY [IV.40], which involves describing the dynam-
ics of matter and fields using any reference frame
(coordinate system), assuming space-time is a four-
dimensional pseudo-Riemannian curved manifold, as
described below.

An n-dimensional manifold is a topological space
such that a neighborhood around each point is equiva-
lent (i.e., homeomorphic) to a neighborhood of a point
in n-DIMENSIONAL EUCLIDEAN SPACE [1.2 §19.1]. More
formally, it can be defined as the set of smooth coordi-
nate systems that can be defined on the space, together
with transformation rules between them. In a neigh-
borhood around each point, a coordinate system can
always be found that looks locally Cartesian, regardless
of any global curvature (which can cause the system to
fail to be Cartesian at other points).

In practice, each coordinate system on a Rieman-
nian manifold has a metric, defined below, which is
possibly position dependent. This enables inner prod-
ucts between pairs of vectors at each point in the
space to be defined. The situation is complicated by the
fact that, at each point, most coordinate systems are
oblique, as in figure 1. The following description uses
“index notation,” which suggests the explicit choice of
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force on the body. The conventional way to overcome
the paradox is to bring back viscosity but only inside a
thin BOUNDARY LAYER [II.2] attached to the body (see
also FLUID MECHANICS [IV.28 §7.2]).

IlI.12 The Euler-Lagrange Equations
Paul Glendinning

The function y(x) with derivative »' = dy/dx that
maximizes or minimizes the integral

JF(y,y',x)dx

with given endpoints satisfies the Euler-Lagrange equa-
tion
L(E)-E <o )
dx \oy’ oy
There are many variants of this equation to deal with
further complications, e.g., if y or x or both are vectors,
and more details are given in CALCULUS OF VARIATIONS
[IV.6], but this simple version is sufficient to demon-
strate the power and ubiquity of variational problems
of this form.

If F = F(y,»") has no explicit x-dependence (x is
said to be absent), then the Euler-Lagrange equations
can be simplified by finding a first integral. Using (1) it
is straightforward to show that

d [, oF .\ _
&(y dy’ F) =0,
, OF

y ay!
for some constant A.

and hence that

-F=A (2)

Application 1: Potential Forces

Classical mechanics can be formulated as a problem of
minimizing the integral of a function called the Lagran-
gian, £, which is the kinetic energy minus the potential
energy. For a particle moving in one dimension with
position g (so the dependent variable g plays the role
of y above and time t plays the role of the indepen-
dent variable x) in a potential V(q), the Lagrangian
is L = %ma’l2 — V(q) and the Euler-Lagrange equa-
tion (1) is simply Newton’s law for the acceleration,
mg = —V'(q) (where the prime denotes differenti-
ation with respect to g), while the autonomous ver-
sion (2) shows that %qu + V(q) is constant, which is
the conservation of energy (see CLASSICAL MECHANICS
[IV.19]).

147

The power of this approach (and a related version
due to Hamilton) is such that much of modern theoret-
ical physics revolves round a generalization called an
action.

Application 2: The Catenary

The problem of determining the curve describing the
rest state of a heavy chain or cable with fixed end-
points can also be solved using the Euler-Lagrange
formulation, although the original seventeenth-century
solution uses simple mechanics. In the rest state the
chain will assume a shape y = y(x) that minimizes
the potential energy g [y ds, where g is the accelera-
tion due to gravity and s is the arc length along the
chain. The length of the chain is [ds, and since this
length is assumed to be constant, L say, [ ds = L. This
acts as a constraint on the solutions of the energy-
minimization problem and so the full problem can be
approached by introducing a LAGRANGE MULTIPLIER
[I.3§10], A. Scaling out the constant g and noting that
ds = /1 + y'2dx, the shape of the curve minimizes

Jy 1+y’3dx—A(J 1+y’2dx—L). (3)

(The second term represents the constraint and is zero
when the constraint is satisfied.) The Euler-Lagrange
equation with

F(y,y',A) = \/l +y2 - ,\\/1 + 2

can now be used since the AL term of (3) is constant
with respect to variations in y. The Euler-Lagrange
equation is supplemented by an additional equation
obtained by extremizing with respect to the Lagrange
multiplier, i.e., setting the derivative of (3) with respect
to A to zero, but this is just the length constraint again.
Since x is absent, (2) implies that

(y - A)(L -1 +y’2) - A

\J1+y2
Tidying up the left-hand side and rearranging gives
A%(1+y'?) = (¥ — A)2. Rewriting this as an expression
for y’ gives a differential equation that can be solved
by separation of variables to give

X - B
y—/\—Acosh(—A )

where B is a further constant of integration. This is the
catenary curve, and the constants are determined by
the endpoints of the chain and the constraint that the
total length is L.



