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intellectual applications of pure mathematics. Never-
theless, the scope is narrower than it could be. At one
stage it was suggested that a more accurate title would
be “The Princeton Companion to Pure Mathematics™:
the only reason for rejecting this title was that it does
not sound as good as the actual title.

Another thought behind the decision to concentrate
on pure mathematics was that it would leave open the
possibility of a similar book, a companion Companion
so to speak, about applied mathematics and theoretical
physics. Until such a book appears, The Road to Real-
ity, by Roger Penrose (Knopf, New York, 2005), covers
a very wide variety of topics in mathematical physics,
written at a level fairly similar to that of this book, and
Elsevier has recently brought out a five-volume Ency-
clopedia of Mathematical Physics (Elsevier, Amsterdam,
2006).

3 The Companion Is Not an Encyclopedia

The word “companion” is significant. Although this
book is certainly intended as a useful work of reference,
you should not expect too much of it. If there is a par-
ticular mathematical concept that you want to find out
about, you will not necessarily be able to find out about
it here, even if it is important; though the more impor-
tant it is, the more likely it is to be included. In this
respect, the book is like a human companion, complete
with gaps in its knowledge and views on some topics
that may not be universally shared. Having said that, we
have atleast aimed at some sort of balance: many topics
are not covered, but those that are covered range very
widely (much more so than one could reasonably expect
of any single human companion). In order to achieve
this kind of balance, we have been guided to some
extent by “objective” indicators such as the American
Mathematical Society’s classification of mathematical
topics, or the way that mathematics is divided into sec-
tions at the four-yearly International Congress of Math-
ematicians. The broad areas, such as number theory,
algebra, analysis, geometry, combinatorics, logic, prob-
ability, theoretical computer science, and mathematical
physics, are all represented, even if not all their sub-
areas are. Inevitably, some of the choices about what
to include, and at what length, were not the result of
editorial policy, but were based on highly contingent
factors such as who agreed to write, who actually sub-
mitted after having agreed, whether those who submit-
ted stuck to their word limit, and so on. Consequently,
there are some areas that are not as fully represented as
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we would have liked, but the point came where it was
better to publish an imperfect volume than to spend
several more years striving for perfect balance. We hope
that there will be future editions of The Companion: if
so, there will be a chance to remedy any defects that
there might be in this one.

Another respect in which this book differs from
an encyclopedia is that it is arranged thematically
rather than alphabetically. The advantage of this is
that, although the articles can be enjoyed individually,
they can also be regarded as part of a coherent whole.
Indeed, the structure of the book is such that it would
not be ridiculous to read it from cover to cover, though
it would certainly be time-consuming.

4 The Structure of The Companion

What does it mean to say that The Companion is
“arranged thematically”? The answer is that it is divided
into eight parts, each with a different general theme
and a different purpose. Part I consists of introductory
material, which gives a broad overview of mathemat-
ics and explains, for the benefit of readers with less of
a background in mathematics, some of the basic con-
cepts of the subject. A rough rule of thumb is that a
topic belongs in part I if it is part of the necessary back-
ground of all mathematicians rather than belonging to
one specific area. GROUPS [.3 §2.1] and VECTOR SPACES
[I.3 §2.3] belong in this category, to take two obvious
examples.

Part Il is a collection of essays of a historical nature.
Its aim is to explain how the distinctive style of mod-
ern mathematics came into being. What, broadly speak-
ing, are the main differences between the way mathe-
maticians think about their subject now and the way
they thought about it 200 years ago (or more)? One is
that there is a universally accepted standard for what
counts as a proof. Closely related to this is the fact
that mathematical analysis (calculus and its later exten-
sions and developments) has been put on a rigorous
footing. Other notable features are the extension of
the concept of number, the abstract nature of alge-
bra, and the fact that most modern geometers study
non-Euclidean geometry rather than the more familiar
triangles, circles, parallel lines, and the like.

Part IIl consists of fairly short articles, each one deal-
ing with an important mathematical concept that has
not appeared in part I. The intention is that this part
of the book will be a very good place to look if there
is a concept you do not know about but have often
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heard mentioned. If another mathematician, perhaps
a colloquium speaker, assumes that you are familiar
with a definition—for example, that of a SYMPLECTIC
FORM [II1.88], or the INCOMPRESSIBLE EULER EQUATION
[IIL.23], or a SOBOLEV SPACE [III.29 §2.4], or the IDEAL
CLASS GROUP [IV.1 §7]—and if you are too embarrassed
to admit that in fact you are not, then you now have
the alternative of looking these concepts up in The
Companion.

The articles in part III would not be much use if all
they gave was formal definitions: to understand a con-
cept one wants to know what it means intuitively, why
it is important, and why it was first introduced. Above
all, if it is a fairly general concept, then one wants to
know some good examples—ones that are not too sim-
ple and not too complicated. Indeed, it may well be that
providing and discussing a well-chosen example is all
that such an article needs to do, since a good exam-
ple is much easier to understand than a general defini-
tion, and more experienced readers will be able to work
out a general definition by abstracting the important
properties from the example.

Another use of part IIl is to provide backup for
part IV, which is the heart of the book. Part IV consists
of twenty-six articles, considerably longer than those of
part III, about different areas of mathematics. A typical
part IV article explains some of the central ideas and
important results of the area it treats, and does so as
informally as possible, subject to the constraint that it
should not be too vague to be informative. The original
hope was for these articles to be “bedtime reading,”
that is, clear and elementary enough that one could
read and understand them without continually stop-
ping to think. For that reason, the authors were chosen
with two priorities in mind, of equal importance: exper-
tise and expository skill. But mathematics is not an easy
subject, and in the end we had to regard the complete
accessibility we originally hoped for as an ideal that we
would strive toward, even if it was not achieved in every
last subsection of every article. But even when the arti-
cles are tough going, they discuss what they discuss
in a clearer and less formal way than a typical text-
book, often with remarkable success. As with part III,
several authors have achieved this by looking at illu-
minating examples, which they sometimes follow with
more general theory and sometimes leave to speak for
themselves.

Many part IV articles contain excellent descriptions
of mathematical concepts that would otherwise have
had articles devoted to them in part Ill. We originally
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planned to avoid duplication completely, and instead
to include cross-references to these descriptions in
part IIl. However, this risked irritating the reader, so
we decided on the following compromise. Where a
concept is adequately explained elsewhere, part III
does not have a full article, but it does have a short
description together with a cross-reference. This way,
if you want to look a concept up quickly, you can use
part IIl, and only if you need more detail will you be
forced to follow the cross-reference to another part of
the book.

Part V is a complement to part Ill. Again, it consists
of short articles on important mathematical topics, but
now these topics are the theorems and open problems
of mathematics rather than the basic objects and tools
of study. As with the book as a whole, the choice of
entries in part V is necessarily far from comprehensive,
and has been made with a number of criteria in mind.
The most obvious one is mathematical importance, but
some entries were chosen because it is possible to dis-
cuss them in an entertaining and accessible way, oth-
ers because they have some unusual feature (an exam-
ple is the FOUR-COLOR THEOREM [V.12], though this
might well have been included anyway), some because
the authors of closely related part IV articles felt that
certain theorems should be discussed separately, and
some because authors of several other articles wanted
to assume them as background knowledge. As with
part III, some of the entries in part V are not full arti-
cles but short accounts with cross-references to other
articles.

Part VI is another historical section, about famous
mathematicians. It consists of short articles, and the
aim of each article is to give very basic biographical
information (such as nationality and date of birth),
together with an explanation of why the mathemati-
cian in question is famous. Initially, we planned to
include living mathematicians, but in the end we came
to the conclusion that it would be almost impossible to
make a satisfactory selection of mathematicians work-
ing today, so we decided to restrict ourselves to math-
ematicians who had died, and moreover to mathemati-
cians who were principally known for work carried out
before 1950. Later mathematicians do of course feature
in the book, since they are mentioned in other articles.
They do not have their own entries, but one can get
some idea of their achievements by looking them up in
the index.

After six parts mainly about pure mathematics and
its history, part VII finally demonstrates the great
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external impact that mathematics has had, both prac-
tically and intellectually. It consists of longer articles,
some written by mathematicians with interdisciplinary
interests and others by experts from other disciplines
who make considerable use of mathematics.

The final part of the book contains general reflections
about the nature of mathematics and mathematical life.
The articles in this part are on the whole more accessi-
ble than the longer articles earlier in the book, so even
though part VIII is the final part, some readers may wish
to make it one of the first parts they look at.

The order of the articles within the parts is alphabet-
ical in parts IIl and V and chronological in part VI. The
decision to organize the articles about mathematicians
in order of their dates of birth was carefully considered,
and we made it for several reasons: it would encourage
the reader to get a sense of the history of the subject
by reading the part right through rather than just look-
ing at individual articles; it would make it much clearer
which mathematicians were contemporaries or near
contemporaries; and after the slight inconvenience of
looking up a mathematician by guessing his or her
date of birth relative to those of other mathemati-
cians, the reader would learn something small but
valuable.

In the other parts, some attempt has been made to
arrange the articles thematically. This applies in partic-
ular to part IV, where the ordering attempts to follow
two basic principles: first, that articles about closely
related branches of mathematics should be close to
each other in the book; and second, that if it makes
obvious sense to read article A before article B, then
article A should come before article B in the book. This
is easier said than done, since some branches are hard
to classify: for instance, should arithmetic geometry
count as algebra, geometry, or number theory? A case
could be made for any of the three and it is artificial
to decide on just one. So the ordering in part IV should
not be taken as a classification scheme, but just as the
best linear ordering we could think of.

As for the order of the parts themselves, the aim has
been to make it the most natural one from a pedagog-
ical point of view and to give the book some sense of
direction. Parts I and II are obviously introductory, in
different ways. Part IIIl comes before part IV because
in order to understand an area of mathematics one
tends to start by grappling with new definitions. But
part IV comes before part V because in order to appre-
ciate a theorem it is a good idea to know how it fits
into an area of mathematics. Part VI is placed after
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parts III-V because one can better appreciate the contri-
bution of a famous mathematician after knowing some
mathematics. Part VII is near the end for a similar rea-
son: to understand the influence of mathematics, one
should understand mathematics first. And the reflec-
tions of part VIII are a sort of epilogue, and therefore
an appropriate way for the book to sign off.

5 Cross-References

From the start, it was planned that The Companion
would have a large number of cross-references. One or
two have even appeared in this preface, signalled by
THIS FONT, together with an indication of where to find
the relevant article. For example, the reference to a sym-
PLECTIC FORM [II1.88] indicated that symplectic forms
are discussed in article number 88 of part IIl, and the
reference to the IDEAL CLASS GROUP [IV.1 §7] pointed
the reader to section 7 of article number 1 in part IV.

We have tried as hard as possible to produce a book
that is a pleasure to read, and the aim is that cross-
references should contribute to this pleasure. This may
seem a rather strange thing to say, since it can be
annoying to interrupt what one is reading in a book
in order to spend a few seconds looking something
up elsewhere. However, we have also tried to keep the
articles as self-contained as is feasible. Thus, if you
do not want to pursue the cross-references, then you
will usually not have to. The main exception to this is
that authors have been allowed to assume some know-
ledge of the concepts discussed in part I. If you do not
know any university mathematics, then you would be
well-advised to start by reading part I in full, as this
will greatly reduce your need to look things up while
reading later articles.

Sometimes a concept is introduced in an article and
then explained in that article. The usual convention in
mathematical writing is to italicize a term when it is
being defined. We have stuck to something like that
convention, but in an informal article it is not always
clear what constitutes the moment of definition of a
new or unfamiliar term. Our rough policy has been to
italicize a term the first time it is used if that use is
followed by a discussion that gives some kind of expla-
nation of the term. We have also italicized terms that
are not subsequently explained: this should be taken as
a signal that the reader is not required to understand
the term in order to understand the rest of the article in
question. In more extreme cases of this kind, quotation
marks may be used instead.
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Many of the articles end with brief “Further Reading”
sections. These are exactly that: suggestions for further
reading. They should not be thought of as full-scale bib-
liographies such as one might find at the end of a sur-
vey article. Related to this is the fact that it is not a
major concern of The Companion to give credit to all
the mathematicians who made the discoveries that it
discusses or to cite the papers where those discover-
ies appeared. The reader who is interested in original
sources should be able to find them from the books
and articles in the further reading sections, or from the
Internet.

6 Who Is The Companion Aimed At?

The original plan for The Companion was that all of
it should be accessible to anybody with a good back-
ground in high school mathematics (including calcu-
lus). However, it soon became apparent that this was
an unrealistic aim: there are branches of mathematics
that are so much easier to understand when one knows
at least some university-level mathematics that it does
not make good sense to attempt to explain them at a
lower level. On the other hand, there are other parts of
the subject that decidedly can be explained to readers
without this extra experience. So in the end we aban-
doned the idea that the book should have a uniform
level of difficulty.

Accessibility has, however, remained one of our high-
est priorities, and throughout the book we have tried
to discuss mathematical ideas at the lowest level that
is practical. In particular, the editors have tried very
hard not to allow any material into the book that they
do not themselves understand, which has turned out
to be a very serious constraint. Some readers will find
some articles too hard and other readers will find other
articles too easy, but we hope that all readers from
advanced high school level onwards will find that they
enjoy a substantial proportion of the book.

What can readers of different levels hope to get out of
The Companion? If you have embarked on a university-
level mathematics course, you may find that you are
presented with a great deal of difficult and unfamiliar
material without having much idea why it is important
and where it is all going. Then you can use The Compan-
ion to provide yourself with some perspective on the
subject. (For example, many more people know what
a ring is than can give a good reason for caring about
rings. But there are very good reasons, which you can
read about in RINGS, IDEALS, AND MODULES [III.81] and
ALGEBRAIC NUMBERS [IV.1].)
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If you are coming to the end of the course, you may be
interested in doing research in mathematics. But under-
graduate courses typically give you very little idea of
what research is actually like. So how do you decide
which areas of mathematics truly interest you at the
research level? It is not easy, but the decision can make
the difference between becoming disillusioned and ulti-
mately not getting a Ph.D., and going on to a successful
career in mathematics. This book, especially part IV,
tells you what mathematicians of many different kinds
are thinking about at the research level, and may help
you to make a more informed decision.

If you are already an established research mathe-
matician, then your main use for this book will prob-
ably be to understand better what your colleagues are
up to. Most nonmathematicians are very surprised to
learn how extraordinarily specialized mathematics has
become. Nowadays it is not uncommon for a very good
mathematician to be completely unable to understand
the papers of another mathematician, even from an
area that appears to be quite close. This is not a healthy
state of affairs: anything that can be done to improve
the level of communication among mathematicians is
a good idea. The editors of this book have learned a
huge amount from reading the articles carefully, and
we hope that many others will avail themselves of the
same opportunity.

7 What Does The Companion Offer
That the Internet Does Not Offer?

In some ways the character of The Companion is sim-
ilar to that of a large mathematical Web site such as
the mathematical part of Wikipedia or Eric Weisstein's
“Mathworld” (http://mathworld.wolfram.com/). In par-
ticular, the cross-references have something of the feel
of hyperlinks. So is there any need for this book?

At the moment, the answer is yes. If you have ever
tried to use the Internet to find out about a mathe-
matical concept, then you will know that it is a hit-
and-miss affair. Sometimes you find a good explanation
that gives you the information you were looking for.
But often you do not. The Web sites just mentioned are
certainly useful, and recommended for material that is
not covered here, but at the time of writing most of the
online articles are written in a different style from the
articles in this book: drier, and more concerned with
giving the basic facts in an economical way than with
reflecting on those facts. And one does not find long
essays of the kind contained in parts I, II, IV, VII, and
VIII of this book.
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Some people will also find it advantageous to have
a large collection of material in book form. As has
already been mentioned, this book is organized not
as a collection of isolated articles but as a carefully
ordered sequence that exploits the linear structure that
all books necessarily have and that Web sites do not
have. And the physical nature of a book makes brows-
ing through it a completely different experience from
browsing a Web site: after reading the list of contents
one can get a feel for the entire book, whereas with
a large Web site one is somehow conscious only of the
page one is looking at. Not everyone will agree with this
or find it a significant advantage, but many undoubt-
edly will and it is for them that the book has been writ-
ten. For now, therefore, The Princeton Companion to
Mathematics does not have a serious online competi-
tor: rather than competing with the existing Web sites,
it complements them.

8 How The Companion Came into Being

The Princeton Companion to Mathematics was first con-
ceived by David Ireland in 2002, who was at the time
employed in the Oxford office of Princeton University
Press. The most important features of the book—its
title, its organization into sections, and the idea that
one of these sections should consist of articles about
major branches of mathematics—were all part of his
original conception. He came to visit me in Cambridge
to discuss his proposal, and when the moment came (it
was clearly going to) for him to ask whether | would
be prepared to edit it, I accepted more or less on
the spot.

What induced me to make such a decision? It was
partly because he told me that [ would not be expected
to do all the work on my own: not only would there
be other editors involved, but also there would be con-
siderable technical and administrative support. But a
more fundamental reason was that the idea for the
book was very similar to one that I had had myself in
an idle moment as a research student. It would be won-
derful, I thought then, if somewhere one could find a
collection of well-written essays that presented for you
the big themes of mathematical research in different
areas of mathematics. Thus a little fantasy had been
born, and suddenly I had the chance to turn it into a
reality.

We knew from the outset that we wanted the book
to contain a certain amount of historical reflection,
and soon after this meeting David Ireland asked June
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Barrow-Green whether she was prepared to be another
editor, with particular responsibility for the histori-
cal parts. To our delight, she accepted, and with her
remarkable range of contacts she gave us access to
more or less all the mathematical historians in the
world.

There then began several meetings to plan the more
detailed content of the volume, ending in a formal pro-
posal to Princeton University Press. They sent it out to
a team of expert advisers, and although some made the
obvious point that it was a dauntingly huge project, all
were enthusiastic about it. This enthusiasm was also
evident at the next stage, when we began to find con-
tributors. Many of them were very encouraging and said
how glad they were that such a book was being pro-
duced, confirming what we already thought: that there
was a gap in the market. During this stage, we bene-
fited greatly from the advice and experience of Alison
Latham, editor of The Oxford Companion to Music.

In the middle of 2003, David Ireland left Princeton
University Press, and with it this project. This was a big
blow, and we missed his vision and enthusiasm for the
book: we hope that what we have finally produced is
something like what he originally had in mind. How-
ever, there was a positive development at around the
same time, when Princeton University Press decided to
employ a small company called TgT' Productions Ltd.
The company was to be responsible for producing a
book out of the files submitted by the contributors,
as well as for doing a great deal of the day-to-day
work such as sending out contracts, reminding contrib-
utors that their deadlines were approaching, receiving
files, keeping a record of what had been done, and so
on. Most of this work was done by Sam Clark, who is
extraordinarily good at it and manages to be mirac-
ulously good-humored at the same time. In addition,
he did a great deal of copy-editing as well, where that
did not need too great a knowledge of mathematics
(though as a former chemist he knows more than most
people). With Sam’s help we have not just a carefully
edited book but one that is beautifully designed as well.
Without him, I do not see how it would have ever been
completed.

We continued to have regular meetings, to plan the
book in more detail and to discuss progress on it.
These meetings were now ably organized and chaired
by Richard Baggaley, also from the Oxford office of
Princeton University Press. He continued to do this
until the summer of 2004, when Anne Savarese, Prince-
ton’s new reference editor, took over. Richard and
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Anne have also been immensely useful, asking the edi-
tors the right awkward questions when we have been
tempted to forget about the parts of the book that were
not quite going to plan, and forcing on us a level of
professionalism that, to me at least, does not come
naturally.

In early 2004, at what we naively thought was a late
stage in the preparation of the book, but which we now
understand was actually near the beginning, we real-
ized that, even with June’s help, I had far too much to
do. One person immediately sprang to mind as an ideal
coeditor: Imre Leader, who I knew would understand
what the book was trying to achieve and would have
ideas about how to achieve it. He agreed, and quickly
became an indispensable member of the editorial team,
commissioning and editing several articles.

By the second half of 2007, we really were at a late
stage, and by that time it had become clear that addi-
tional editorial help would make it much easier to com-
plete the tricky tasks that we had been postponing and
actually get the book finished. Jordan Ellenberg and
Terence Tao agreed to help, and their contribution was
invaluable. They edited some of the articles, wrote oth-
ers, and enabled me to write several short articles on
subjects that were outside my area of expertise, safe in
the knowledge that they would stop me making seri-
ous errors. (I would have made several without their
help, but take full responsibility for any that may have
slipped through the net.) Articles by the editors have
been left unattributed, but a note at the end of the con-
tributor list explains which ones were written by which
editor.

9 The Editorial Process

It is not always easy to find mathematicians with the
patience and understanding to explain what they are
doing to nonexperts or colleagues from other areas: too
often they assume you know something that you do
not, and it is embarrassing to admit that you are com-
pletely lost. However, the editors of this book have tried
to help you by taking this burden of embarrassment
on themselves. An important feature of the book has
been that the editorial process has been a very active
one: we have not just commissioned the articles and
accepted whatever we have been sent. Some drafts have
had to be completely discarded and new articles written
in the light of editorial comments. Others have needed
substantial changes, which have sometimes been made
by the authors and sometimes by the editors. A few
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articles were accepted with only trivial changes, but
these were a very small minority.

The tolerance, even gratitude, with which almost all
authors have allowed themselves to be subjected to
this treatment has been a very welcome surprise and
has helped the editors maintain their morale during
the long years of preparation of this volume. We would
like to express our gratitude in return, and we hope that
they agree that the whole process has been worthwhile.
To us it seems inconceivable that this amount of work
could go into the articles without a substantial payoff.
It is not my place to say how successful I think the out-
come has been, but, given the number of changes that
were made in the interests of accessibility, and given
that interventionist editing of this type is rare in math-
ematics, I do not see how the book can fail to be unusual
in a good way.

A sign of just how long everything has taken, and also
of the quality of the contributors, is that a significant
number of contributors have received major awards
and distinctions since being invited to contribute. At
least three babies have been born to authors in the mid-
dle of preparing articles. Two contributors, Benjamin
Yandell and Graham Allan, have sadly not lived to see
their articles in print, but we hope that in a small way
this book will be a memorial to them.

10 Acknowledgments

An early part of the editorial process was of course
planning the book and finding authors. This would have
been impossible without the help and advice of several
people. Donald Albers, Michael Atiyah, Jordan Ellen-
berg, Tony Gardiner, Sergiu Klainerman, Barry Mazur,
Curt McMullen, Robert O’Malley, Terence Tao, and Avi
Wigderson all gave advice that in one way or another
had a beneficial effect on the shape of the book. June
Barrow-Green has been greatly helped in her task by
Jeremy Gray and Reinhard Siegmund-Schultze. In the
final weeks, Vicky Neale very Kindly agreed to proof-
read certain sections of the book and help with the
index; she was amazing at this, picking up numer-
ous errors that we would never have spotted ourselves
and are very pleased to have corrected. And there is a
long list of mathematicians and mathematical histori-
ans who have patiently answered questions from the
editors: we would like to thank them all.

I am grateful to many people for their encourage-
ment, including virtually all the contributors to this
volume and many members of my immediate family,



Xvi

particularly my father, Patrick Gowers: this support has
kept me going despite the mountainous appearance of
the task ahead. I would also like to thank Julie Barrau
for her less direct but equally essential help. During the
final months of preparation of the book, she agreed to

Preface

take on much more than her fair share of our domestic
duties. Given that a son was born to us in November
2007, this made a huge difference to my life, as has
she.

Timothy Gowers



Contributors

Graham Allan, late Reader in Mathematics,
University of Cambridge
THE SPECTRUM [I11.86]

Noga Alon, Baumritter Professor of Mathematics and
Computer Science, Tel Aviv University
EXTREMAL AND PROBABILISTIC COMBINATORICS [IV.19]

George Andrews, Evan Pugh Professor in the Department of
Mathematics, The Pennsylvania State University
SRINIVASA RAMANUJAN [VIL.82]

Tom Archibald, Professor, Department of Mathematics,

Simon Fraser University

THE DEVELOPMENT OF RIGOR IN MATHEMATICAL ANALYSIS [IL5],
CHARLES HERMITE [V1.47]

Sir Michael Atiyah, Honorary Professor,
School of Mathematics, University of Edinburgh
WILLIAM VALLANCE DOUGLAS HODGE [VI.90],
ADVICE TO A YOUNG MATHEMATICIAN [VIIL6]

David Aubin, Assistant Professor,
Institut de Mathématiques de Jussieu
NICOLAS BOURBAKI [VL.96]

Joan Bagaria, ICREA Research Professor,
University of Barcelona
SET THEORY [IV.22]

Keith Ball, Astor Professor of Mathematics,

University College London

THE EUCLIDEAN ALGORITHM AND CONTINUED FRACTIONS [II1.22],
OPTIMIZATION AND LAGRANGE MULTIPLIERS [I11.64],
HIGH-DIMENSIONAL GEOMETRY AND ITS

PROBABILISTIC ANALOGUES [IV.26]

Alan F. Beardon, Professor of Complex Analysis,
University of Cambridge
RIEMANN SURFACES [II1.79]

David D. Ben-Zvi, Associate Professor of Mathematics,
University of Texas, Austin
MODULI SPACES [IV.8]

Vitaly Bergelson, Professor of Mathematics,
The Ohio State University
ERGODIC THEOREMS [V.9]

Nicholas Bingham, Professor, Mathematics Department,
Imperial College London
ANDREI NIKOLAEVICH KOLMOGOROV [VI.88]

Béla Bollobas, Professor of Mathematics,

University of Cambridge and University of Memphis
GODFREY HAROLD HARDY [VL.73],

JOHN EDENSOR LITTLEWOOD [VL.79],

ADVICE TO A YOUNG MATHEMATICIAN [VIIL6]

Henk Bos, Honorary Professor, Department of Science Studies,
Aarhus University; Professor Emeritus, Department of
Mathematics, Utrecht University

RENE DESCARTES [VI.11]

Bodil Branner, Emeritus Professor, Department of Mathematics,
Technical University of Denmark
DYNAMICS [IV.14]

Martin R. Bridson, Whitehead Professor of Pure Mathematics,
University of Oxford
GEOMETRIC AND COMBINATORIAL GROUP THEORY [IV.10]

John P. Burgess, Professor of Philosophy, Princeton University
ANALYSIS, MATHEMATICAL AND PHILOSOPHICAL [VIL.12]

Kevin Buzzard, Professor of Pure Mathematics,
Imperial College London
L-FUNCTIONS [I11.47], MODULAR FORMS [I11.59]

Peter J. Cameron, Professor of Mathematics,
Queen Mary, University of London
DESIGNS [I11.14], GODEL'S THEOREM [V.15]

Jean-Luc Chabert, Professor, Laboratoire Amiénois de
Mathématique Fondamentale et Appliquée, Université de Picardie
ALGORITHMS [I1.4]

Eugenia Cheng, Lecturer, Department of Pure Mathematics,
University of Sheffield
CATEGORIES [I11.8]

Clifford Cocks, Chief Mathematician,
Government Communications Headquarters, Cheltenham
MATHEMATICS AND CRYPTOGRAPHY [VIL7]

Alain Connes, Professor,
Collége de France, IHES, and Vanderbilt University
ADVICE TO A YOUNG MATHEMATICIAN [VIIL6]

Leo Corry, Director, The Cohn Institute for History and
Philosophy of Science and Ideas, Tel Aviv University
THE DEVELOPMENT OF THE IDEA OF PROOF [IL.6]

Wolfgang Coy, Professor of Computer Science,
Humboldt-Universitdt zu Berlin
JOHN VON NEUMANN [VIL.91]

Tony Crilly, Emeritus Reader in Mathematical Sciences,
Department of Economics and Statistics, Middlesex University
ARTHUR CAYLEY [VI.46]

Serafina Cuomo, Lecturer in Roman History, School of History,
Classics and Archaeology, Birkbeck College

PYTHAGORAS [VL.1], EUCLID [VI.2], ARCHIMEDES [VL3],
APOLLONIUS [VI.4]

Mihalis Dafermos, Reader in Mathematical Physics,
University of Cambridge
GENERAL RELATIVITY AND THE EINSTEIN EQUATIONS [IV.13]



xviii

Partha Dasgupta, Frank Ramsey Professor of Economics,
University of Cambridge
MATHEMATICS AND ECONOMIC REASONING [VII.8]

Ingrid Daubechies, Professor of Mathematics,
Princeton University
WAVELETS AND APPLICATIONS [VIL3]

Joseph W. Dauben, Distinguished Professor,
Herbert H. Lehman College and City University of New York
GEORG CANTOR [VL.54], ABRAHAM ROBINSON [VL.95]

John W. Dawson Jr., Professor of Mathematics, Emeritus,
The Pennsylvania State University
KURT GODEL [V1.92]

Francois de Gandt, Professeur d’Histoire des Sciences et
de Philosophie, Universite Charles de Gaulle, Lille
JEAN LE ROND D'ALEMBERT [VI1.20]

Persi Diaconis, Mary V. Sunseri Professor of Statistics and
Mathematics, Stanford University
MATHEMATICAL STATISTICS [VIL.10]

Jordan S. Ellenberg, Associate Professor of Mathematics,
University of Wisconsin

ELLIPTIC CURVES [II1.21], SCHEMES [II1.82],

ARITHMETIC GEOMETRY [IV.5]

Lawrence C. Evans, Professor of Mathematics,
University of California, Berkeley
VARIATIONAL METHODS [I11.94]

Florence Fasanelli, Program Director,
American Association for the Advancement of Science
MATHEMATICS AND ART [VII.14]

Anita Burdman Feferman, Independent Scholar and Writer,
ALFRED TARSKI [VI.87]

Solomon Feferman, Patrick Suppes Family Professor of
Humanities and Sciences and Emeritus Professor of Mathematics
and Philosophy, Department of Mathematics, Stanford University
ALFRED TARSKI [VL.87]

Charles Fefferman, Professor of Mathematics,
Princeton University

THE EULER AND NAVIER-STOKES EQUATIONS [II1.23],
CARLESON’S THEOREM [V.5]

Della Fenster, Professor, Department of Mathematics and
Computer Science, University of Richmond, Virginia
EMIL ARTIN [VI.86]

José Ferreiros, Professor of Logic and Philosophy of Science,
University of Seville

THE CRISIS IN THE FOUNDATIONS OF MATHEMATICS [IL.7],
JULIUS WILHELM RICHARD DEDEKIND [VI.50],

GIUSEPPE PEANO [VL.62]

David Fisher, Associate Professor of Mathematics,
Indiana University, Bloomington
MOSTOW'S STRONG RIGIDITY THEOREM [V.23]

Terry Gannon, Professor,
Department of Mathematical Sciences, University of Alberta
VERTEX OPERATOR ALGEBRAS [IV.17]

A. Gardiner, Reader in Mathematics and Mathematics Education,
University of Birmingham
THE ART OF PROBLEM SOLVING [VIIL. 1]

Charles C. Gillispie, Dayton-Stockton Professor of
History of Science, Emeritus, Princeton University
PIERRE-SIMON LAPLACE [VI.23]

Contributors

Oded Goldreich, Professor of Computer Science,
Weizmann Institute of Science, Israel
COMPUTATIONAL COMPLEXITY [IV.20]

Catherine Goldstein, Directeur de Recherche,
Institut de Mathématiques de Jussieu, CNRS, Paris
PIERRE FERMAT [VI.12]

Fernando Q. Gouvéa, Carter Professor of Mathematics,
Colby College, Waterville, Maine

FROM NUMBERS TO NUMBER SYSTEMS [II.1],

LOCAL AND GLOBAL IN NUMBER THEORY [II1.51]

Andrew Granville, Professor, Department of
Mathematics and Statistics, Université de Montréal
ANALYTIC NUMBER THEORY [IV.2]

Ivor Grattan-Guinness, Emeritus Professor of the

History of Mathematics and Logic, Middlesex University
ADRIEN-MARIE LEGENDRE [VI.24], JEAN-BAPTISTE JOSEPH
FOURIER [VL.25], SIMEON-DENIS POISSON [VI.27], AUGUSTIN-LOUIS
CAUCHY [VL.29], BERTRAND ARTHUR WILLIAM RUSSELL [VL.71],
FRIGYES (FREDERIC) RIESZ [V1.74]

Jeremy Gray, Professor of History of Mathematics,

The Open University

GEOMETRY [IL.2], FUCHSIAN GROUPS [I11.28],

CARL FRIEDRICH GAUSS [VI.26], AUGUST FERDINAND
MOBIUS [VI.30], NICOLAI IVANOVICH LOBACHEVSKII [VL.31],
JANOS BOLYAI [VL.34], GEORG BERNHARD FRIEDRICH
RIEMANN [VI.49], WILLIAM KINGDON CLIFFORD [VL.55],

ELIE JOSEPH CARTAN [VI.69], THORALF SKOLEM [VI.81]

Ben Green, Herchel Smith Professor of Pure Mathematics,
University of Cambridge

THE GAMMA FUNCTION [II1.31], IRRATIONAL AND
TRANSCENDENTAL NUMBERS [[I.41], MODULAR
ARITHMETIC [II1.58], NUMBER FIELDS [I11.63],

QUADRATIC FORMS [II.73], TOPOLOGICAL SPACES [II1.90],
TRIGONOMETRIC FUNCTIONS [I11.92]

Ian Grojnowski, Professor of Pure Mathematics,
University of Cambridge
REPRESENTATION THEORY [IV.9]

Niccolo Guicciardini, Associate Professor of History of Science,
University of Bergamo
ISAAC NEWTON [VI.14]

Michael Harris, Professor of Mathematics,
Université Paris 7—Denis Diderot
“WHY MATHEMATICS?” YOU MIGHT ASK [VIIL2]

Ulf Hashagen, Doctor, Munich Center for the History of Science
and Technology, Deutsches Museum, Munich
PETER GUSTAV LEJEUNE DIRICHLET [V].36]

Nigel Higson, Professor of Mathematics,
The Pennsylvania State University
OPERATOR ALGEBRAS [IV.15],

THE ATIYAH-SINGER INDEX THEOREM [V.2]

Andrew Hodges, Tutorial Fellow in Mathematics,
Wadham College, University of Oxford
ALAN TURING [VIL.94]

F. E. A. Johnson, Professor of Mathematics,
University College London
BRAID GROUPS [I11.4]

Mark Joshi, Associate Professor,
Centre for Actuarial Studies, University of Melbourne
THE MATHEMATICS OF MONEY [VIL9]



Contributors

Kiran S. Kedlaya, Associate Professor of Mathematics,
Massachusetts Institute of Technology
FROM QUADRATIC RECIPROCITY TO CLASS FIELD THEORY [V.28]

Frank Kelly, Professor of the Mathematics of Systems and
Master of Christ's College, University of Cambridge
THE MATHEMATICS OF TRAFFIC IN NETWORKS [VIL.4]

Sergiu Klainerman, Professor of Mathematics,
Princeton University
PARTIAL DIFFERENTIAL EQUATIONS [IV.12]

Jon Kleinberg, Professor of Computer Science, Cornell University
THE MATHEMATICS OF ALGORITHM DESIGN [VIL5]

Israel Kleiner, Professor Emeritus,
Department of Mathematics and Statistics, York University
KARL WEIERSTRASS [VI.44]

Jacek Klinowski, Professor of Chemical Physics,
University of Cambridge
MATHEMATICS AND CHEMISTRY [VIL1]

Eberhard Knobloch, Professor, Institute for Philosophy, History
of Science and Technology, Technical University of Berlin
GOTTFRIED WILHELM LEIBNIZ [VL.15]

Janos Kollar, Professor of Mathematics, Princeton University
ALGEBRAIC GEOMETRY [IV.4]

T. W. Korner, Professor of Fourier Analysis,
University of Cambridge

SPECIAL FUNCTIONS [II1.85], TRANSFORMS [IIL.91],
THE BANACH-TARSKI PARADOX [V.3],

THE UBIQUITY OF MATHEMATICS [VIIL.3]

Michael Krivelevich, Professor of Mathematics,
Tel Aviv University
EXTREMAL AND PROBABILISTIC COMBINATORICS [IV.19]

Peter D. Lax, Professor, Courant Institute of
Mathematical Sciences, New York University
RICHARD COURANT [VI.83]

Jean-Francois Le Gall, Professor of Mathematics,
Université Paris-Sud, Orsay
STOCHASTIC PROCESSES [IV.24]

W. B. R. Lickorish, Emeritus Professor of Geometric Topology,
University of Cambridge
KNOT POLYNOMIALS [I11.44]

Martin W. Liebeck, Professor of Pure Mathematics,
Imperial College London

PERMUTATION GROUPS [II.68], THE CLASSIFICATION OF
FINITE SIMPLE GROUPS [V.7], THE INSOLUBILITY OF
THE QUINTIC [V.21]

Jesper Liitzen, Professor, Department of Mathematical Sciences,
University of Copenhagen
JOSEPH LIOUVILLE [VI.39]

Des MacHale, Associate Professor of Mathematics,
University College Cork
GEORGE BOOLE [V1.43]

Alan L. Mackay, Professor Emeritus,
School of Crystallography, Birkbeck College
MATHEMATICS AND CHEMISTRY [VIL1]

Shahn Majid, Professor of Mathematics,
Queen Mary, University of London
QUANTUM GROUPS [II1.75]

Xix

Lech Maligranda, Professor of Mathematics,
Lulea University of Technology, Sweden
STEFAN BANACH [V1.84]

David Marker, Head of the Department of Mathematics,
Statistics, and Computer Science, University of Illinois at Chicago
LOGIC AND MODEL THEORY [IV.23]

Jean Mawhin, Professor of Mathematics,
Université Catholique de Louvain
CHARLES-JEAN DE LA VALLEE POUSSIN [VL.67]

Barry Mazur, Gerhard Gade University Professor,
Mathematics Department, Harvard University
ALGEBRAIC NUMBERS [IV.1]

Dusa McDuff, Professor of Mathematics,
Stony Brook University and Barnard College
ADVICE TO A YOUNG MATHEMATICIAN [VIIL6]

Colin McLarty, Truman P. Handy Associate Professor of
Philosophy and of Mathematics, Case Western Reserve University
EMMY NOETHER [VI.76]

Bojan Mohar, Canada Research Chair in Graph Theory,
Simon Fraser University; Professor of Mathematics,
University of Ljubljana

THE FOUR-COLOR THEOREM [V.12]

Peter M. Neumann, Fellow and Tutor in Mathematics,

The Queen’s College, Oxford; University Lecturer in
Mathematics, University of Oxford

NIELS HENRIK ABEL [VI.33], EVARISTE GALOIS [V1.41],

FERDINAND GEORG FROBENIUS [VL.58], WILLIAM BURNSIDE [VI.60]

Catherine Nolan, Associate Professor of Music,
The University of Western Ontario
MATHEMATICS AND MUSIC [VII.13]

James Norris, Professor of Stochastic Analysis,
Statistical Laboratory, University of Cambridge
PROBABILITY DISTRIBUTIONS [IT.71]

Brian Osserman, Assistant Professor, Department of
Mathematics, University of California, Davis
THE WEIL CONJECTURES [V.35]

Richard S. Palais, Professor of Mathematics,
University of California, Irvine
LINEAR AND NONLINEAR WAVES AND SOLITONS [II1.49]

Marco Panza, Directeur de Recherche, CNRS, Paris
JOSEPH LOUIS LAGRANGE [V1.22]

Karen Hunger Parshall, Professor of History and Mathematics,
University of Virginia

THE DEVELOPMENT OF ABSTRACT ALGEBRA [I1.3],

JAMES JOSEPH SYLVESTER [VI.42]

Gabriel P. Paternain, Reader in Geometry and Dynamics,
University of Cambridge
SYMPLECTIC MANIFOLDS [I11.88]

Jeanne Peiffer, Directeur de Recherche,
CNRS, Centre Alexandre Koyré, Paris
THE BERNOULLIS [VI.18]

Birgit Petri, Ph.D. Candidate,
Fachbereich Mathematik, Technische Universitdt Darmstadt
LEOPOLD KRONECKER [VI.48], ANDRE WEIL [VI.93]

Carl Pomerance, Professor of Mathematics, Dartmouth College
COMPUTATIONAL NUMBER THEORY [IV.3]

Helmut Pulte, Professor, Ruhr-Universitdit Bochum
CARL GUSTAV JACOB JACOBI [VI.35]



XX

Bruce Reed, Canada Research Chair in Graph Theory,
McGill University
THE ROBERTSON-SEYMOUR THEOREM [V.32]

Michael C. Reed, Bishop-MacDermott Family Professor of
Mathematics, Duke University
MATHEMATICAL BIOLOGY [VIL2]

Adrian Rice, Associate Professor of Mathematics,
Randolph-Macon College, Virginia
A CHRONOLOGY OF MATHEMATICAL EVENTS [VIIL.7]

Eleanor Robson, Senior Lecturer, Department of History and
Philosophy of Science, University of Cambridge
NUMERACY [VIIL4]

Igor Rodnianski, Professor of Mathematics, Princeton University
THE HEAT EQUATION [I11.36]

John Roe, Professor of Mathematics,

The Pennsylvania State University
OPERATOR ALGEBRAS [IV.15],

THE ATIYAH-SINGER INDEX THEOREM [V.2]

Mark Ronan, Professor of Mathematics, University of
Illinois at Chicago; Honorary Professor of Mathematics,
University College London

BUILDINGS [IIL.5], LIE THEORY [II1.48]

Edward Sandifer, Professor of Mathematics,
Western Connecticut State University
LEONHARD EULER [VI.19]

Peter Sarnak, Professor, Princeton University and
Institute for Advanced Study, Princeton
ADVICE TO A YOUNG MATHEMATICIAN [VIIL6]

Tilman Sauer, Doctor, Einstein Papers Project,
California Institute of Technology
HERMANN MINKOWSKI [VI.64]

Norbert Schappacher, Professor, Institut de Recherche
Mathématique Avancée, Strasbourg
LEOPOLD KRONECKER [VI.48], ANDRE WEIL [V].93]

Andrzej Schinzel, Professor of Mathematics,
Polish Academy of Sciences
WACLAW SIERPINSKI [VI.77]

Erhard Scholz, Professor of History of Mathematics, Department
of Mathematics and Natural Sciences, Universitat Wuppertal
FELIX HAUSDORFF [VL.68], HERMANN WEYL [VL.80]

Reinhard Siegmund-Schultze, Professor,
Faculty of Engineering and Science, University of Agder, Norway
HENRI LEBESGUE [VL.72], NORBERT WIENER [VI.85]

Gordon Slade, Professor of Mathematics,
University of British Columbia
PROBABILISTIC MODELS OF CRITICAL PHENOMENA [IV.25]

David J. Spiegelhalter, Winton Professor of the Public
Understanding of Risk, University of Cambridge
MATHEMATICS AND MEDICAL STATISTICS [VIL.11]

Jacqueline Stedall, Junior Research Fellow in Mathematics,
The Queen’s College, Oxford
FRANCOIS VIETE [VL.9]

Arild Stubhaug, Freelance Writer, Oslo
SOPHUS LIE [VI.53]

Madhu Sudan, Professor of Computer Science and Engineering,
Massachusetts Institute of Technology
RELIABLE TRANSMISSION OF INFORMATION [VIL6]

Contributors

Terence Tao, Professor of Mathematics,

University of California, Los Angeles

COMPACTNESS AND COMPACTIFICATION [I1.9], DIFFERENTIAL
FORMS AND INTEGRATION [II1.16], DISTRIBUTIONS [II1.18],

THE FOURIER TRANSFORM [II.27], FUNCTION SPACES [II1.29],
HAMILTONIANS [II1.35], R1CCI FLOW [II.78], THE SCHRODINGER
EQUATION [II1.83], HARMONIC ANALYSIS [IV.11]

Jamie Tappenden, Associate Professor of Philosophy,
University of Michigan
GOTTLOB FREGE [VI.56]

C. H. Taubes, William Petschek Professor of Mathematics,
Harvard University
DIFEERENTIAL TOPOLOGY [IV.7]

Rudiger Thiele, Privatdozent, Universitdt Leipzig
CHRISTIAN FELIX KLEIN [VL.57]

Burt Totaro, Lowndean Professor of Astronomy and Geometry,
University of Cambridge
ALGEBRAIC TOPOLOGY [IV.6]

Lloyd N. Trefethen, Professor of Numerical Analysis,
University of Oxford
NUMERICAL ANALYSIS [IV.21]

Dirk van Dalen, Professor,
Department of Philosophy, Utrecht University
LUITZEN EGBERTUS JAN BROUWER [VL.75]

Richard Weber, Churchill Professor of Mathematics for
Operational Research, University of Cambridge
THE SIMPLEX ALGORITHM [I11.84]

Dominic Welsh, Professor of Mathematics,
Mathematical Institute, University of Oxford
MATROIDS [I11.54]

Avi Wigderson, Professor in the School of Mathematics,
Institute for Advanced Study, Princeton
EXPANDERS [I11.24], COMPUTATIONAL COMPLEXITY [IV.20]

Herbert S. Wilf, Thomas A. Scott Professor of Mathematics,
University of Pennsylvania
MATHEMATICS: AN EXPERIMENTAL SCIENCE [VIIL5]

David Wilkins, Lecturer in Mathematics, Trinity College, Dublin
WILLIAM ROWAN HAMILTON [VL.37]

Benjamin H. Yandell, Pasadena, California (deceased)
DAVID HILBERT [VL.63]

Eric Zaslow, Professor of Mathematics, Northwestern University
CALABI-YAU MANIFOLDS [II[.6], MIRROR SYMMETRY [IV.16]

Doron Zeilberger, Board of Governors Professor of Mathematics,
Rutgers University
ENUMERATIVE AND ALGEBRAIC COMBINATORICS [IV.18]

Unattributed articles were written by the editors. In part III,
Imre Leader wrote the articles THE AXIOM OF CHOICE [IIL.1], THE
AXIOM OF DETERMINACY [II.2], CARDINALS [lIl.7], COUNTABLE
AND UNCOUNTABLE SETS [I11.11], GRAPHS [I1.34], JORDAN NORMAL
FORM [I11.43], MEASURES [III.55], MODELS OF SET THEORY [II.57],
ORDINALS [II1.66], THE PEANO AXIOMS [IIl.67], RINGS, IDEALS, AND
MODULES [II1.81], and THE ZERMELO-FRAENKEL AXIOMS [I11.99].
In part V, THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS
[V.18] is by Imre Leader and THE THREE-BODY PROBLEM [V.33]
is by June Barrow-Green. In part VI, June Barrow-Green wrote
all of the unattributed articles. All other unattributed articles
throughout the book were written by Timothy Gowers.



The Princeton Companion to Mathematics



Copyrighted material



Part 1
Introduction

I.1 What Is Mathematics About?

It is notoriously hard to give a satisfactory answer to
the question, “What is mathematics?” The approach of
this book is not to try. Rather than giving a definition
of mathematics, the intention is to give a good idea of
what mathematics is by describing many of its most
important concepts, theorems, and applications. Nev-
ertheless, to make sense of all this information it is
useful to be able to classify it somehow.

The most obvious way of classifying mathematics is
by its subject matter, and that will be the approach of
this brief introductory section and the longer section
entitled SOME FUNDAMENTAL MATHEMATICAL DEFINI-
TIONS [L1.3]. However, it is not the only way, and not
even obviously the best way. Another approach is to
try to classify the kinds of questions that mathemati-
cians like to think about. This gives a usefully different
view of the subject: it often happens that two areas of
mathematics that appear very different if you pay atten-
tion to their subject matter are much more similar if
you look at the kinds of questions that are being asked.
The last section of part I, entitled THE GENERAL GOALS
OF MATHEMATICAL RESEARCH [[.4], looks at the subject
from this point of view. At the end of that article there
is a brief discussion of what one might regard as a third
classification, not so much of mathematics itself but of
the content of a typical article in a mathematics jour-
nal. As well as theorems and proofs, such an article will
contain definitions, examples, lemmas, formulas, con-
jectures, and so on. The point of that discussion will
be to say what these words mean and why the different
kinds of mathematical output are important.

1 Algebra, Geometry, and Analysis

Although any classification of the subject matter of
mathematics must immediately be hedged around with
qualifications, there is a crude division that undoubt-
edly works well as a first approximation, namely the

division of mathematics into algebra, geometry, and
analysis. So let us begin with this, and then qualify it
later.

1.1 Algebra versus Geometry

Most people who have done some high school mathe-
matics will think of algebra as the sort of mathemat-
ics that results when you substitute letters for num-
bers. Algebra will often be contrasted with arithmetic,
which is a more direct study of the numbers them-
selves. So, for example, the question, “What is 3 x 72"
will be thought of as belonging to arithmetic, while the
question, “If x + y = 10 and xy = 21, then what is the
value of the larger of x and y?” will be regarded as a
piece of algebra. This contrast is less apparent in more
advanced mathematics for the simple reason that it is
very rare for numbers to appear without letters to keep
them company.

There is, however, a different contrast, between alge-
bra and geometry, which is much more important at an
advanced level. The high school conception of geom-
etry is that it is the study of shapes such as circles, tri-
angles, cubes, and spheres together with concepts such
as rotations, reflections, symmetries, and so on. Thus,
the objects of geometry, and the processes that they
undergo, have a much more visual character than the
equations of algebra.

This contrast persists right up to the frontiers of
modern mathematical research. Some parts of mathe-
matics involve manipulating symbols according to cer-
tain rules: for example, a true equation remains true
if you “do the same to both sides.” These parts would
typically be thought of as algebraic, whereas other parts
are concerned with concepts that can be visualized, and
these are typically thought of as geometrical.

However, a distinction like this is never simple. If
you look at a typical research paper in geometry, will
it be full of pictures? Almost certainly not. In fact, the
methods used to solve geometrical problems very often
involve a great deal of symbolic manipulation, although



good powers of visualization may be needed to find and
use these methods and pictures will typically under-
lie what is going on. As for algebra, is it “mere” sym-
bolic manipulation? Not at all: very often one solves an
algebraic problem by finding a way to visualize it.

As an example of visualizing an algebraic problem,
consider how one might justify the rule that if a and
b are positive integers then ab = ba. It is possible to
approach the problem as a pure piece of algebra (per-
haps proving it by induction), but the easiest way to
convince yourself that it is true is to imagine a rectangu-
lar array that consists of a rows with b objects in each
row. The total number of objects can be thought of as
a lots of b, if you count it row by row, or as b lots of a,
if you count it column by column. Therefore, ab = ba.
Similar justifications can be given for other basic rules
suchasa(b + ¢) = ab + ac and a(bc) = (ab)c.

In the other direction, it turns out that a good way of
solving many geometrical problems is to “convert them
into algebra.” The most famous way of doing this is to
use Cartesian coordinates. For example, suppose that
you want to know what happens if you reflect a circle
about a line L through its center, then rotate it through
40° counterclockwise, and then reflect it once more
about the same line L. One approach is to visualize the
situation as follows.

Imagine that the circle is made of a thin piece of
wood. Then instead of reflecting it about the line you
can rotate it through 180° about L (using the third
dimension). The result will be upside down, but this
does not matter if you simply ignore the thickness of
the wood. Now if you look up at the circle from below
while it is rotated counterclockwise through 40°, what
you will see is a circle being rotated clockwise through
40°. Therefore, if you then turn it back the right way
up, by rotating about L once again, the total effect will
have been a clockwise rotation through 40°.

Mathematicians vary widely in their ability and will-
ingness to follow an argument like that one. If you
cannot quite visualize it well enough to see that it is
definitely correct, then you may prefer an algebraic
approach, using the theory of linear algebra and matri-
ces (which will be discussed in more detail in [1.3 §3.2]).
To begin with, one thinks of the circle as the set of all
pairs of numbers (x, y) such that x2 +y2 < 1. The two
transformations, reflection in a line through the center
of the circle and rotation through an angle 6, can both
be represented by 2 x 2 matrices, which are arrays of
numbers of the form (‘C‘g). There is a slightly compli-
cated, but purely algebraic, rule for multiplying matri-
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ces together, and it is designed to have the property
that if matrix A represents a transformation R (such
as a reflection) and matrix B represents a transforma-
tion T, then the product AB represents the transforma-
tion that results when you first do T and then R. There-
fore, one can solve the problem above by writing down
the matrices that correspond to the transformations,
multiplying them together, and seeing what transfor-
mation corresponds to the product. In this way, the
geometrical problem has been converted into algebra
and solved algebraically.

Thus, while one can draw a useful distinction be-
tween algebra and geometry, one should not imagine
that the boundary between the two is sharply defined.
In fact, one of the major branches of mathematics is
even called ALGEBRAIC GEOMETRY [IV.4]. And as the
above examples illustrate, it is often possible to trans-
late a piece of mathematics from algebra into geometry
or vice versa. Nevertheless, there is a definite differ-
ence between algebraic and geometric methods of think-
ing—one more symbolic and one more pictorial-—and
this can have a profound influence on which subjects a
mathematician chooses to pursue.

1.2 Algebra versus Analysis

The word “analysis,” used to denote a branch of math-
ematics, is not one that features at high school level.
However, the word “calculus” is much more familiar,
and differentiation and integration are good examples
of mathematics that would be classified as analysis
rather than algebra or geometry. The reason for this
is that they involve limiting processes. For example, the
derivative of a function f at a point x is the limit of the
gradients of a sequence of chords of the graph of f, and
the area of a shape with a curved boundary is defined
to be the limit of the areas of rectilinear regions that
fill up more and more of the shape. (These concepts
are discussed in much more detail in [1.3 §5].)

Thus, as a first approximation, one might say that a
branch of mathematics belongs to analysis if it involves
limiting processes, whereas it belongs to algebra if you
can get to the answer after just a finite sequence of
steps. However, here again the first approximation is
so crude as to be misleading, and for a similar reason:
if one looks more closely one finds that it is not so much
branches of mathematics that should be classified into
analysis or algebra, but mathematical techniques.

Given that we cannot write out infinitely long proofs,
how can we hope to prove anything about limiting pro-
cesses? To answer this, let us look at the justification
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for the simple statement that the derivative of x? is
3x2. The usual reasoning is that the gradient of the
chord of the line joining the two points (x,x3) and
((x + h),(x + h)?) is

(x + h)3 —x3

x+h-x

which works out as 3x2 + 3xh + h%. As h “tends to
zero,” this gradient “tends to 3x<,” so we say that the
gradient at x is 3x2. But what if we wanted to be a bit
more careful? For instance, if x is very large, are we
really justified in ignoring the term 3xh?

Toreassure ourselves on this point, we do a small cal-
culation to show that, whatever x is, the error 3xh + h?
can be made arbitrarily small, provided only that h is
sufficiently small. Here is one way of going about it.
Suppose we fix a small positive number €, which rep-
resents the error we are prepared to tolerate. Then if
|h| < €/6x, we know that |3xh]| is at most €/2. If in
addition we know that |h| < \/€/2, then we also know
that h? < €/2. So, provided that |h| is smaller than
the minimum of the two numbers €/6x and +€/2, the
difference between 3x?2 + 3xh + h? and 3x?2 will be at
most €.

There are two features of the above argument that
are typical of analysis. First, although the statement we
wished to prove was about a limiting process, and was
therefore “infinitary,” the actual work that we needed to
do to prove it was entirely finite. Second, the nature of
that work was to find sufficient conditions for a certain
fairly simple inequality (the inequality |3xh + h?| < €)
to be true.

Let us illustrate this second feature with another
example: a proof that x* — x? — 6x + 10 is positive
for every real number x. Here is an “analyst’s argu-
ment.” Note first that if x < —1 then x* > x? and
10—-6x > 0, so the result is certainly true in this case. If

1 < x <1, then |[x* -~ x%2 — 6x| cannot be greater than

x4+ x2+6|x|, which is at most 8, so x* —x2 - 6x > -8,
which implies that x* — x%2 - 6x +10> 2. If 1 < x < %,
then x* > x2 and 6x < 9,s0 x* — x2 — 6x + 10 > 1.

If g < x €2, then x? > 3,sox" x2=x%(x*-1)>
3 . Z > 2. Also, 6x < 12,s0 10 — 6x > —2. There-
fore, x* — x2 — 6x + 10 > 0. Finally, if x > 2, then
x*-x? = x%(x?-1) > 3x? > 6x, from which it follows
that x* — x2 —6x + 10 > 10.

The above argument is somewhat long, but each step
consists in proving a rather simple inequality—this
is the sense in which the proof is typical of analy-

sis. Here, for contrast, is an “algebraist’s proof.” One

simply points out that x* — x2 — 6x + 10 is equal to
(x2 = 1)2 + (x — 3)?, and is therefore always positive.

This may make it seem as though, given the choice
between analysis and algebra, one should go for alge-
bra. After all, the algebraic proof was much shorter,
and makes it obvious that the function is always pos-
itive. However, although there were several steps to
the analyst’s proof, they were all easy, and the brevity
of the algebraic proof is misleading since no clue has
been given about how the equivalent expression for
x% — x2 — 6x + 10 was found. And in fact, the gen-
eral question of when a polynomial can be written as
a sum of squares of other polynomials turns out to be
an interesting and difficult one (particularly when the
polynomials have more than one variable).

There is also a third, hybrid approach to the prob-
lem, which is to use calculus to find the points where
x*-x2-6x+10 is minimized. The idea would be to cal-
culate the derivative 4x3 — 2x — 6 (an algebraic process,
justified by an analytic argument), find its roots (alge-
bra), and check that the values of x* —x2—6x +10 at the
roots of the derivative are positive. However, though
the method is a good one for many problems, in this
case it is tricky because the cubic 4x3 — 2x — 6 does not
have integer roots. But one could use an analytic argu-
ment to find small intervals inside which the minimum
must occur, and that would then reduce the number
of cases that had to be considered in the first, purely
analytic, argument.

As this example suggests, although analysis often
involves limiting processes and algebra usually does
not, a more significant distinction is that algebraists
like to work with exact formulas and analysts use esti-
mates. Or, to put it even more succinctly, algebraists
like equalities and analysts like inequalities.

2 The Main Branches of Mathematics

Now that we have discussed the differences between
algebraic, geometrical, and analytical thinking, we are
ready for a crude classification of the subject matter of
mathematics. We face a potential confusion, because
the words “algebra,” “geometry,” and “analysis” refer
both to specific branches of mathematics and to ways
of thinking that cut across many different branches.
Thus, it makes sense to say (and it is true) that some
branches of analysis are more algebraic (or geometri-
cal) than others; similarly, there is no paradox in the
fact that algebraic topology is almost entirely algebraic
and geometrical in character, even though the objects



it studies, topological spaces, are part of analysis. In
this section, we shall think primarily in terms of subject
matter, but it is important to keep in mind the distinc-
tions of the previous section and be aware that they are
in some ways more fundamental. Our descriptions will
be very brief: further reading about the main branches
of mathematics can be found in parts II and IV, and
more specific points are discussed in parts Il and V.

2.1 Algebra

The word “algebra,” when it denotes a branch of math-
ematics, means something more specific than manipu-
lation of symbols and a preference for equalities over
inequalities. Algebraists are concerned with number
systems, polynomials, and more abstract structures
such as groups, fields, vector spaces, and rings (dis-
cussed in some detail in SOME FUNDAMENTAL MATH-
EMATICAL DEFINITIONS [I.3]). Historically, the abstract
structures emerged as generalizations from concrete
instances. For instance, there are important analo-
gies between the set of all integers and the set of all
polynomials with rational (for example) coefficients,
which are brought out by the fact that both sets are
examples of algebraic structures known as Euclidean
domains. If one has a good understanding of Euclidean
domains, one can apply this understanding to integers
and polynomials.

This highlights a contrast that appears in many
branches of mathematics, namely the distinction be-
tween general, abstract statements and particular, con-
crete ones. One algebraist might be thinking about
groups, say, in order to understand a particular rather
complicated group of symmetries, while another might
be interested in the general theory of groups on the
grounds that they are a fundamental class of math-
ematical objects. The development of abstract alge-
bra from its concrete beginnings is discussed in THE
ORIGINS OF MODERN ALGEBRA [IL.3].

A supreme example of a theorem of the first kind is
THE INSOLUBILITY OF THE QUINTIC [V.21]—the result
that there is no formula for the roots of a quintic poly-
nomial in terms of its coefficients. One proves this
theorem by analyzing symmetries associated with the
roots of a polynomial, and understanding the group
that these symmetries form. This concrete example of
a group (or rather, class of groups, one for each polyno-
mial) played a very important part in the development
of the abstract theory of groups.

As for the second kind of theorem, a good example
is THE CLASSIFICATION OF FINITE SIMPLE GROUPS [V.7],
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which describes the basic building blocks out of which
any finite group can be built.

Algebraic structures appear throughout mathemat-
ics, and there are many applications of algebra to other
areas, such as number theory, geometry, and even
mathematical physics.

2.2 Number Theory

Number theory is largely concerned with properties of
the set of positive integers, and as such has a consid-
erable overlap with algebra. But a simple example that
illustrates the difference between a typical question in
algebra and a typical question in number theory is pro-
vided by the equation 13x — 7y = 1. An algebraist
would simply note that there is a one-parameter fam-
ily of solutions: if » = A then x = (1 + 7A)/13, so the
general solution is (x,y) = ((1 + 7A)/13,A). A num-
ber theorist would be interested in integer solutions,
and would therefore work out for which integers A the
number 1 + 7A is a multiple of 13. (The answer is that
1 + 7A is a multiple of 13 if and only if A has the form
13m + 11 for some integer m.)

However, this description does not do full justice
to modern number theory, which has developed into
a highly sophisticated subject. Most number theorists
are not directly trying to solve equations in integers;
instead they are trying to understand structures that
were originally developed to study such equations but
which then took on a life of their own and became
objects of study in their own right. In some cases,
this process has happened several times, so the phrase
“number theory” gives a very misleading picture of
what some number theorists do. Nevertheless, even the
most abstract parts of the subject can have down-to-
earth applications: a notable example is Andrew Wiles's
famous proof of FERMAT’S LAST THEOREM [V.10].

Interestingly, in view of the discussion earlier, num-
ber theory has two fairly distinct subbranches, known
as ALGEBRAIC NUMBER THEORY [IV.1] and ANALYTIC
NUMBER THEORY [IV.2]. As a rough rule of thumb, the
study of equations in integers leads to algebraic num-
ber theory, while analytic number theory has its roots
in the study of prime numbers, but the true picture is
of course more complicated.

2.3 Geometry

A central object of study is the manifold, which is dis-
cussed in [I.3 §6.9]. Manifolds are higher-dimensional
generalizations of shapes like the surface of a sphere: a
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small portion of a manifold looks flat, but the manifold
as a whole may be curved in complicated ways. Most
people who call themselves geometers are studying
manifolds in one way or another. As with algebra, some
will be interested in particular manifolds and others in
the more general theory.

Within the study of manifolds, one can attempt a
further classification, according to when two mani-
folds are regarded as “genuinely distinct.” A topolo-
gist regards two objects as the same if one can be
continuously deformed, or “morphed,” into the other;
thus, for example, an apple and a pear would count
as the same for a topologist. This means that rela-
tive distances are not important to topologists, since
one can change them by suitable continuous stretches.
A differential topologist asks for the deformations to
be “smooth” (which means “sufficiently differentiable”).
This results in a finer classification of manifolds and a
different set of problems. At the other, more “geomet-
rical,” end of the spectrum are mathematicians who are
much more interested in the precise nature of the dis-
tances between points on a manifold (a concept that
would not make sense to a topologist) and in auxiliary
structures that one can associate with a manifold. See
RIEMANNIAN METRICS [I.3 §6.10] and rRiccI FLOW [II1.78]
for some indication of what the more geometrical side
of geometry is like.

2.4 Algebraic Geometry

As its name suggests, algebraic geometry does not have
an obvious place in the above classification, so it is eas-
ier to discuss it separately. Algebraic geometers also
study manifolds, but with the important difference that
their manifolds are defined using polynomials. (A sim-
ple example of this is the surface of a sphere, which
can be defined as the set of all (x,y,z) such that
x%+y2+2z% = 1.) This means that algebraic geometry is
algebraic in the sense that it is “all about polynomials”
but geometric in the sense that the set of solutions of
a polynomial in several variables is a geometric object.

An important part of algebraic geometry is the study
of singularities. Often the set of solutions to a system of
polynomial equations is similar to a manifold, but has a
few exceptional, singular points. For example, the equa-
tion x2 = y? + z2 defines a (double) cone, which has
its vertex at the origin (0,0, 0). If you look at a small
enough neighborhood of a point x on the cone, then,
provided x is not (0, 0, 0), the neighborhood will resem-
ble a flat plane. However, if x is (0,0,0), then no mat-
ter how small the neighborhood is, you will still see the

vertex of the cone. Thus, (0,0,0) is a singularity. (This
means that the cone is not actually a manifold, but a
“manifold with a singularity.”)

The interplay between algebra and geometry is part
of what gives algebraic geometry its fascination. A fur-
ther impetus to the subject comes from its connections
to other branches of mathematics. There is a particu-
larly close connection with number theory, explained in
ARITHMETIC GEOMETRY [IV.5]. More surprisingly, there
are important connections between algebraic geom-
etry and mathematical physics. See MIRROR SYMMETRY
[IV.16] for an account of some of these.

2.5 Analysis

Analysis comes in many different flavors. A major
topic is the study of PARTIAL DIFFERENTIAL EQUATIONS
[IV.12]. This began because partial differential equa-
tions were found to govern many physical processes,
such as motion in a gravitational field, for example.
But partial differential equations arise in purely mathe-
matical contexts as well—particularly in geometry—so
they give rise to a big branch of mathematics with many
subbranches and links to many other areas.

Like algebra, analysis has an abstract side as well. In
particular, certain abstract structures, such as BANACH
SPACES [II1.62], HILBERT SPACES [II1.37], C*-ALGEBRAS
[IV.15 §3], and VON NEUMANN ALGEBRAS [IV.15 §2], are
central objects of study. These four structures are all
infinite-dimensional VECTOR SPACES [1.3 §2.3], and the
last two are “algebras,” which means that one can multi-
ply their elements together as well as adding them and
multiplying them by scalars. Because these structures
are infinite dimensional, studying them involves limit-
ing arguments, which is why they belong to analysis.
However, the extra algebraic structure of C*-algebras
and von Neumann algebras means that in those areas
substantial use is made of algebraic tools as well. And
as the word “space” suggests, geometry also has a very
important role.

DYNAMICS [IV.14] is another significant branch of
analysis. It is concerned with what happens when you
take a simple process and do it over and over again.
For example, if you take a complex number zj, then
let z; = 2(2, + 2, and then let z, = zf + 2, and so
on, then what is the limiting behavior of the sequence
Z0,21,22,...7Does ithead off to infinity or stay in some
bounded region? The answer turns out to depend in
a complicated way on the original number z(. Exactly
how it depends on zp is a question in dynamics.



Sometimes the process to be repeated is an “infinites-
imal” one. For example, if you are told the positions,
velocities, and masses of all the planets in the solar
system at a particular moment (as well as the mass of
the Sun), then there is a simple rule that tells you how
the positions and velocities will be different an instant
later. Later, the positions and velocities have changed,
so the calculation changes; but the basic rule is the
same, so one can regard the whole process as applying
the same simple infinitesimal process infinitely many
times. The correct way to formulate this is by means
of partial differential equations and therefore much of
dynamics is concerned with the long-term behavior of
solutions to these.

2.6 Logic

The word “logic” is sometimes used as a shorthand
for all branches of mathematics that are concerned
with fundamental questions about mathematics itself,
notably SET THEORY [IV.22], CATEGORY THEORY [IIL.8],
MODEL THEORY [IV.23], and logic in the narrower sense
of “rules of deduction.” Among the triumphs of set
theory are GODEL'S INCOMPLETENESS THEOREMS [V.15]
and Paul Cohen’s proof of THE INDEPENDENCE OF THE
CONTINUUM HYPOTHESIS [V.18]. Godel's theorems in
particular had a dramatic effect on philosophical per-
ceptions of mathematics, though now that it is under-
stood that not every mathematical statement has a
proof or disproof most mathematicians carry on much
as before, since most statements they encounter do
tend to be decidable. However, set theorists are a dif-
ferent breed. Since Godel and Cohen, many further
statements have been shown to be undecidable, and
many new axioms have been proposed that would make
them decidable. Thus, decidability is now studied for
mathematical rather than philosophical reasons.

Category theory is another subject that began as
a study of the processes of mathematics and then
became a mathematical subject in its own right. It dif-
fers from set theory in that its focus is less on math-
ematical objects themselves than on what is done to
those objects—in particular, the maps that transform
one to another.

A model for a collection of axioms is a mathematical
structure for which those axioms, suitably interpreted,
are true. For example, any concrete example of a group
is a model for the axioms of group theory. Set theorists
study models of set-theoretic axioms, and these are
essential to the proofs of the famous theorems men-
tioned above, but the notion of a model is more widely
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applicable and has led to important discoveries in fields
well outside set theory.

2.7 Combinatorics

There are various ways in which one can try to define
combinatorics. None is satisfactory on its own, but
together they give some idea of what the subject is like.
A first definition is that combinatorics is about count-
ing things. For example, how many ways are there of
filling an n X n square grid with Os and 1s if you are
allowed at most two 1s in each row and at most two 1s
in each column? Because this problem asks us to count
something, it is, in arather simple sense, combinatorial.

Combinatorics is sometimes called “discrete math-
ematics” because it is concerned with “discrete” struc-
tures as opposed to “continuous” ones. Roughly speak-
ing, an object is discrete if it consists of points that
are isolated from each other, and continuous if you
can move from one point to another without making
sudden jumps. (A good example of a discrete struc-
ture is the integer lattice Z*, which is the grid con-
sisting of all points in the plane with integer coordin-
ates, and a good example of a continuous one is the
surface of a sphere.) There is a close affinity between
combinatorics and theoretical computer science (which
deals with the quintessentially discrete structure of
sequences of 0Os and 1s), and combinatorics is some-
times contrasted with analysis, though in fact there are
several connections between the two.

A third view of combinatorics is that it is con-
cerned with mathematical structures that have “few
constraints.” This idea helps to explain why number
theory, despite the fact that it studies (among other
things) the distinctly discrete set of all positive inte-
gers, is not considered a branch of combinatorics.

In order to illustrate this last contrast, here are
two somewhat similar problems, both about positive
integers.

(i) Is there a positive integer that can be written in a
thousand different ways as a sum of two squares?

(ii) Let ay,az,as,... be a sequence of positive inte-
gers, and suppose that each a, lies between n?
and (n +1)2. Will there always be a positive integer
that can be written in a thousand different ways as
a sum of two numbers from the sequence?

The first question counts as number theory, since it
concerns a very specific sequence—the sequence of
squares—and one would expect to use properties of
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this special set of numbers in order to determine the
answer, which turns out to be yes.!

The second question concerns a far less structured
sequence. All we know about a,, is its rough size—it is
fairly close to n°—but we know nothing about its more
detailed properties, such as whether it is a prime, or a
perfect cube, or a power of 2, etc. For this reason, the
second problem belongs to combinatorics. The answer
is not known. If the answer turns out to be yes, then
it will show that, in a sense, the number theory in the
first problem was an illusion and that all that really
mattered was the rough rate of growth of the sequence
of squares.

2.8 Theoretical Computer Science

This branch of mathematics is described at consider-
able length in part IV, so we shall be brief here. Broadly
speaking, theoretical computer science is concerned
with efficiency of computation, meaning the amounts
of various resources, such as time and computer mem-
ory, needed to perform given computational tasks.
There are mathematical models of computation that
allow one to study questions about computational effi-
ciency in great generality without having to worry about
precise details of how algorithms are implemented.
Thus, theoretical computer science is a genuine branch
of pure mathematics: in theory, one could be an excel-
lent theoretical computer scientist and be unable to
program a computer. However, it has had many notable
applications as well, especially to cryptography (see
MATHEMATICS AND CRYPTOGRAPHY [VIL7] for more on
this).

2.9 Probability

There are many phenomena, from biology and eco-
nomics to computer science and physics, that are so
complicated that instead of trying to understand them
in complete detail one tries to make probabilistic state-
ments instead. For example, if you wish to analyze how
a disease is likely to spread, you cannot hope to take
account of all the relevant information (such as who will
come into contact with whom) but you can build a math-
ematical model and analyze it. Such models can have

1. Here is a quick hint at a proof. At the beginning of ANALYTIC
NUMBER THEORY [IV.2] you will find a condition that tells you pre-
cisely which numbers can be written as sums of two squares. From
this criterion it follows that “most” numbers cannot. A careful count
shows that if N is a large integer, then there are many more expres-
sions of the form m? + n? with both m? and n? less than N than there
are numbers less than 2N that can be written as a sum of two squares.
Therefore there is a lot of duplication.

unexpectedly interesting behavior with direct practical
relevance. For example, it may happen that there is a
“critical probability” p with the following property: if
the probability of infection after contact of a certain
kind is above p then an epidemic may very well result,
whereas if it is below p then the disease will almost
certainly die out. A dramatic difference in behavior
like this is called a phase transition. (See PROBABILIS-
TIC MODELS OF CRITICAL PHENOMENA [IV.25] for further
discussion.)

Setting up an appropriate mathematical model can
be surprisingly difficult. For example, there are physical
circumstances where particles travel in what appears to
be a completely random manner. Can one make sense
of the notion of a random continuous path? It turns
out that one can—the result is the elegant theory of
BROWNIAN MOTION [IV.24]—but the proof that one can
is highly sophisticated, roughly speaking because the
set of all possible paths is so complex.

2.10 Mathematical Physics

The relationship between mathematics and physics has
changed profoundly over the centuries. Up to the eigh-
teenth century there was no sharp distinction drawn
between mathematics and physics, and many famous
mathematicians could also be regarded as physicists,
at least some of the time. During the nineteenth cen-
tury and the beginning of the twentieth century this
situation gradually changed, until by the middle of the
twentieth century the two disciplines were very sepa-
rate. And then, toward the end of the twentieth cen-
tury, mathematicians started to find that ideas that had
been discovered by physicists had huge mathematical
significance.

There is still a big cultural difference between the
two subjects: mathematicians are far more interested
in finding rigorous proofs, whereas physicists, who use
mathematics as a tool, are usually happy with a con-
vincing argument for the truth of a mathematical state-
ment, even if that argument is not actually a proof. The
result is that physicists, operating under less stringent
constraints, often discover fascinating mathematical
phenomena long before mathematicians do.

Finding rigorous proofs to back up these discoveries
is often extremely hard: it is far more than a pedan-
tic exercise in certifying the truth of statements that
no physicist seriously doubted. Indeed, it often leads
to further mathematical discoveries. The articles VER-
TEX OPERATOR ALGEBRAS [IV.17], MIRROR SYMMETRY



[IV.16], GENERAL RELATIVITY AND THE EINSTEIN EQUA-
TIONS [IV.13], and OPERATOR ALGEBRAS [IV.15] describe
some fascinating examples of how mathematics and
physics have enriched each other.

I.2 The Language and Grammar of
Mathematics

1 Introduction

It is a remarkable phenomenon that children can learn
to speak without ever being consciously aware of the
sophisticated grammar they are using. Indeed, adults
too can live a perfectly satisfactory life without ever
thinking about ideas such as parts of speech, subjects,
predicates, or subordinate clauses. Both children and
adults can easily recognize ungrammatical sentences,
at least if the mistake is not too subtle, and to do this
it is not necessary to be able to explain the rules that
have been violated. Nevertheless, there is no doubt that
one’s understanding of language is hugely enhanced by
a knowledge of basic grammar, and this understanding
is essential for anybody who wants to do more with
language than use it unreflectingly as a means to a
nonlinguistic end.

The same is true of mathematical language. Up to
a point, one can do and speak mathematics without
knowing how to classify the different sorts of words
one is using, but many of the sentences of advanced
mathematics have a complicated structure that is much
easier to understand if one knows a few basic terms
of mathematical grammar. The object of this section
is to explain the most important mathematical “parts
of speech,” some of which are similar to those of nat-
ural languages and others quite different. These are
normally taught right at the beginning of a university
course in mathematics. Much of The Companion can be
understood without a precise knowledge of mathemat-
ical grammar, but a careful reading of this article will
help the reader who wishes to follow some of the later,
more advanced parts of the book.

The main reason for using mathematical grammar is
that the statements of mathematics are supposed to
be completely precise, and it is not possible to achieve
complete precision unless the language one uses is free
of many of the vaguenesses and ambiguities of ordinary
speech. Mathematical sentences can also be highly com-
plex: if the parts that made them up were not clear and
simple, then the unclarities would rapidly accumulate
and render the sentences unintelligible.
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To illustrate the sort of clarity and simplicity that is
needed in mathematical discourse, let us consider the
famous mathematical sentence “Two plus two equals
four” as a sentence of English rather than of mathemat-
ics, and try to analyze it grammatically. On the face of it,
it contains three nouns (“two,” “two,” and “four”), a verb
(“equals”) and a conjunction (“plus”). However, looking
more carefully we may begin to notice some oddities.
For example, although the word “plus” resembles the
word “and,” the most obvious example of a conjunc-
tion, it does not behave in quite the same way, as is
shown by the sentence “Mary and Peter love Paris.” The
verb in this sentence, “love,” is plural, whereas the verb
in the previous sentence, “equals,” was singular. So the
word “plus” seems to take two objects (which happen
to be numbers) and produce out of them a new, sin-
gle object, while “and” conjoins “Mary” and “Peter” in
a looser way, leaving them as distinct people.

Reflecting on the word “and” a bit more, one finds
that it has two very different uses. One, as above, is to
link two nouns, whereas the other is to join two whole
sentences together, as in “Mary likes Paris and Peter
likes New York.” If we want the basics of our language
to be absolutely clear, then it will be important to be
aware of this distinction. (When mathematicians are at
their most formal, they simply outlaw the noun-linking
use of “and”—a sentence such as “3 and 5 are prime
numbers” is then paraphrased as “3 is a prime number
and 5 is a prime number.”)

This is but one of many similar questions: anybody
who has tried to classify all words into the standard
eight parts of speech will know that the classification is
hopelessly inadequate. What, for example, is the role of
the word “six” in the sentence “This section has six sub-
sections”? Unlike “two” and “four” earlier, it is certainly
not a noun. Since it modifies the noun “subsection” it
would traditionally be classified as an adjective, but
it does not behave like most adjectives: the sentences
“My car is not very fast” and “Look at that tall build-
ing” are perfectly grammatical, whereas the sentences
“My car is not very six” and “Look at that six building”
are not just nonsense but ungrammatical nonsense. So
do we classify adjectives further into numerical adjec-
tives and nonnumerical adjectives? Perhaps we do, but
then our troubles will be only just beginning. For exam-
ple, what about possessive adjectives such as “my” and
“your”? In general, the more one tries to refine the clas-
sification of English words, the more one realizes how
many different grammatical roles there are.
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2 Four Basic Concepts

Another word that famously has three quite distinct
meanings is “is.” The three meanings are illustrated in
the following three sentences.

(1) 5 is the square root of 25.
(2) 5 is less than 10.
(3) 5 is a prime number.

In the first of these sentences, “is” could be replaced
by “equals”: it says that two objects, 5 and the square
root of 25, are in fact one and the same object, just as
it does in the English sentence “London is the capital of
the United Kingdom.” In the second sentence, “is” plays
a completely different role. The words “less than 10"
form an adjectival phrase, specifying a property that
numbers may or may not have, and “is” in this sentence
is like “is” in the English sentence “Grass is green.” As
for the third sentence, the word “is” there means “is an
example of,” as it does in the English sentence “Mercury
is a planet.”

These differences are reflected in the fact that the
sentences cease to resemble each other when they are
written in a more symbolic way. An obvious way to write
(1) is 5 = /25. As for (2), it would usually be written
5 < 10, where the symbol “<” means “is less than.” The
third sentence would normally not be written symbol-
ically because the concept of a prime number is not
quite basic enough to have universally recognized sym-
bols associated with it. However, it is sometimes useful
to do so, and then one must invent a suitable symbol.
One way to do it would be to adopt the convention that
if n is a positive integer, then P(n) stands for the sen-
tence “n is prime.” Another way, which does not hide
the word “is,” is to use the language of sets.

2.1 Sets

Broadly speaking, a set is a collection of objects, and in
mathematical discourse these objects are mathematical
ones such as numbers, points in space, or even other
sets. If we wish to rewrite sentence (3) symbolically,
another way to do it is to define P to be the collection,
or set, of all prime numbers. Then we can rewrite it
as “5 belongs to the set P.” This notion of belonging
to a set is sufficiently basic to deserve its own symbol,
and the symbol used is “€.” So a fully symbolic way of
writing the sentence is 5 € P.

The members of a set are usually called its elements,
and the symbol “€” is usually read “is an element of.”
So the “is” of sentence (3) is more like “€” than “=.”

Although one cannot directly substitute the phrase “is
an element of” for “is,” one can do so if one is prepared
to modify the rest of the sentence a little.

There are three common ways to denote a specific
set. One is to list its elements inside curly brackets:
12,3,5,7,11,13,17,19}, for example, is the set whose
elements are the eight numbers 2, 3, 5,7, 11, 13, 17,
and 19. The majority of sets considered by mathemati-
cians are too large for this to be feasible—indeed, they
are often infinite—so a second way to denote sets is
to use dots to imply a list that is too long to write
down: for example, the expressions {1,2,3,...,100}
and {2,4,6,8,...} can be used to represent the set of
all positive integers up to 100 and the set of all positive
even numbers, respectively. A third way, and the way
that is most important, is to define a set via a property:
an example that shows how this is done is the expres-
sion {x : x is prime and x < 20}. To read an expres-
sion such as this, one first reads the opening curly
bracket as “The set of.” Next, one reads the symbol
that occurs before the colon. The colon itself one reads
as “such that.” Finally, one reads what comes after the
colon, which is the property that determines the ele-
ments of the set. In this instance, we end up saying,
“The set of x such that x is prime and x is less than 20,”
which is in fact equal to the set {2,3,5,7,11,13,17,19}
considered earlier.

Many sentences of mathematics can be rewritten in
set-theoretic terms. For example, sentence (2) earlier
could be written as 5 € {n : n < 10}. Often there is
no point in doing this (as here, where it is much eas-
ier to write 5 < 10) but there are circumstances where
it becomes extremely convenient. For example, one of
the great advances in mathematics was the use of Carte-
sian coordinates to translate geometry into algebra
and the way this was done was to define geometrical
objects as sets of points, where points were themselves
defined as pairs or triples of numbers. So, for exam-
ple, the set {(x,y) : x2 + y2 = 1} is (or represents)
a circle of radius 1 with its center at the origin (0, 0).
That is because, by the Pythagorean theorem, the dis-
tance from (0, 0) to (x, ¥) is Vx? + ¥?, so the sentence
“x%+ 2% = 1” can be reexpressed geometrically as “the
distance from (0,0) to (x,y) is 1.” If all we ever cared
about was which points were in the circle, then we could
make do with sentences such as “x? + y% = 1,” but in
geometry one often wants to consider the entire cir-
cle as a single object (rather than as a multiplicity of
points, or as a property that points might have), and
then set-theoretic language is indispensable.
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A second circumstance where it is usually hard to do
without sets is when one is defining new mathematical
objects. Very often such an object is a set together with
a mathematical structure imposed on it, which takes the
form of certain relationships among the elements of the
set. For examples of this use of set-theoretic language,
see sections 1 and 2, on number systems and alge-
braic structures, respectively, in SOME FUNDAMENTAL
MATHEMATICAL DEFINITIONS [L.3].

Sets are also very useful if one is trying to do meta-
mathematics, that is, to prove statements not about
mathematical objects but about the process of math-
ematical reasoning itself. For this it helps a lot if one
can devise a very simple language—with a small vocab-
ulary and an uncomplicated grammar—into which it
is in principle possible to translate all mathematical
arguments. Sets allow one to reduce greatly the num-
ber of parts of speech that one needs, turning almost
all of them into nouns. For example, with the help
of the membership symbol “€” one can do without
adjectives, as the translation of “5 is a prime number”
(where “prime” functions as an adjective) into “5 € P”
has already suggested.! This is of course an artificial
process—imagine replacing “roses are red” by “roses
belong to the set R"—but in this context it is not impor-
tant for the formal language to be natural and easy to
understand.

2.2 Functions

Let us now switch attention from the word “is” to some
other parts of the sentences (1)-(3), focusing first on
the phrase “the square root of” in sentence (1). If we
wish to think about this phrase grammatically, then we
should analyze what sort of role it plays in a sentence,
and the analysis is simple: in virtually any mathematical
sentence where the phrase appears, it is followed by
the name of a number. If the number is n, then this
produces the slightly longer phrase, “the square root
of n,” which is a noun phrase that denotes a number
and plays the same grammatical role as a number (at
least when the number is used as a noun rather than as
an adjective). For instance, replacing “5” by “the square
root of 25” in the sentence “5 is less than 7" yields a
new sentence, “The square root of 25 is less than 7,”
that is still grammatically correct (and true).

One of the most basic activities of mathematics is
to take a mathematical object and transform it into

1. For another discussion of adjectives see ARITHMETIC GEOMETRY
[IV.583.1].
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another one, sometimes of the same kind and some-
times not. “The square root of” transforms numbers
into numbers, as do “four plus,” “two times,” “the
cosine of,” and “the logarithm of.” A nonnumerical
example is “the center of gravity of,” which transforms
geometrical shapes (provided they are not too exotic or
complicated to have a center of gravity) into points—
meaning that if § stands for a shape, then “the center of
gravity of §” stands for a point. A function is, roughly
speaking, a mathematical transformation of this kind.

It is not easy to make this definition more precise. To
ask, “What is a function?” is to suggest that the answer
should be a thing of some sort, but functions seem to
be more like processes. Moreover, when they appear in
mathematical sentences they do not behave like nouns.
(They are more like prepositions, though with a definite
difference that will be discussed in the next subsec-
tion.) One might therefore think it inappropriate to ask
what kind of object “the square root of” is. Should one
not simply be satisfied with the grammatical analysis
already given?

As it happens, no. Over and over again, through-
out mathematics, it is useful to think of a mathemati-
cal phenomenon, which may be complex and very un-
thinglike, as a single object. We have already seen a sim-
ple example: a collection of infinitely many points in the
plane or space is sometimes better thought of as a sin-
gle geometrical shape. Why should one wish to do this
for functions? Here are two reasons. First, it is conve-
nient to be able to say something like, “The derivative
of sin is cos,” or to speak in general terms about some
functions being differentiable and others not. More gen-
erally, functions can have properties, and in order to
discuss those properties one needs to think of func-
tions as things. Second, many algebraic structures are
most naturally thought of as sets of functions. (See,
for example, the discussion of groups and symmetry
in [I.3 §2.1]. See also HILBERT SPACES [II[.37], FUNCTION
SPACES [II.29], and VECTOR SPACES [1.3 §2.3].)

If f is a function, then the notation f(x) = y means
that f turns the object x into the object y. Once one
starts to speak formally about functions, it becomes
important to specify exactly which objects are to be
subjected to the transformation in question, and what
sort of objects they can be transformed into. One of
the main reasons for this is that it makes it possible to
discuss another notion that is central to mathematics,
that of inverting a function. (See [I.4 §1] for a discussion
of why it is central.) Roughly speaking, the inverse of a
function is another function that undoes it, and that it
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undoes; for example, the function that takes a number
n ton — 4 is the inverse of the function that takes n to
n + 4, since if you add four and then subtract four, or
vice versa, you get the number you started with.

Here is a function f that cannot be inverted. It takes
each number and replaces it by the nearest multiple
of 100, rounding up if the number ends in 50. Thus,
f(113) = 100, f£(3879) = 3900, and f(1050) = 1100.
It is clear that there is no way of undoing this process
with a function g. For example, in order to undo the
effect of f on the number 113 we would need g(100)
to equal 113. But the same argument applies to every
number that is at least as big as 50 and smaller than
150, and g(100) cannot be more than one number at
once.

Now let us consider the function that doubles a num-
ber. Can this be inverted? Yes it can, one might say:
just divide the number by two again. And much of the
time this would be a perfectly sensible response, but
not, for example, if it was clear from the context that
the numbers being talked about were positive integers.
Then one might be focusing on the difference between
even and odd numbers, and this difference could be
encapsulated by saying that odd numbers are precisely
those numbers n for which the equation 2x = n does
not have a solution. (Notice that one can undo the dou-
bling process by halving. The problem here is that the
relationship is not symmetrical: there is no function
that can be undone by doubling, since you could never
get back to an odd number.)

To specify a function, therefore, one must be care-
ful to specify two sets as well: the domain, which is
the set of objects to be transformed, and the range,
which is the set of objects they are allowed to be trans-
formed into. A function f from a set A to a set Bis a
rule that specifies, for each element x of A, an element
v = f(x) of B. Not every element of the range needs
to be used: consider once again the example of “two
times” when the domain and range are both the set of
all positive integers. The set {f(x) : x € A} of values
actually taken by f is called the image of f. (Slightly
confusingly, the word “image” is also used in a differ-
ent sense, applied to the individual elements of A: if
x € A, then its image is f(x).)

The following symbolic notation is used. The expres-
sion f : A — B means that f is a function with domain
A and range B. If we then write f(x) = y, we know that
x must be an element of A and y must be an element
of B. Another way of writing f(x) = y that is some-
times more convenient is f : x — y. (The bar on the
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arrow is to distinguish it from the arrow in f : A — B,
which has a very different meaning.)

If we want to undo the effect of a function f: A — B,
then we can, as long as we avoid the problem that
occurred with the approximating function discussed
earlier. That is, we can do it if f(x) and f(x') are dif-
ferent whenever x and x’ are different elements of A.
If this condition holds, then f is called an injection. On
the other hand, if we want to find a function g that is
undone by f, then we can do so as long as we avoid the
problem of the integer-doubling function. That is, we
can do it if every element y of B is equal to f(x) for
some element x of A (so that we have the option of set-
ting g(y) = x). If this condition holds, then f is called
a surjection. If f is both an injection and a surjection,
then f is called a bijection. Bijections are precisely the
functions that have inverses.

It is important to realize that not all functions have
tidy definitions. Here, for example, is the specifica-
tion of a function from the positive integers to the
positive integers: f(n) = n if n is a prime number,
f(n) = k if n is of the form 2¥ for an integer k greater
than 1, and f(n) = 13 for all other positive integers n.
This function has an unpleasant, arbitrary definition
but it is nevertheless a perfectly legitimate function.
Indeed, “most” functions, though not most functions
that one actually uses, are so arbitrary that they can-
not be defined. (Such functions may not be useful as
individual objects, but they are needed so that the set of
all functions from one set to another has an interesting
mathematical structure.)

2.3 Relations

Let us now think about the grammar of the phrase “less
than” in sentence (2). As with “the square root of,” it
must always be followed by a mathematical object (in
this case a number again). Once we have done this we
obtain a phrase such as “less than n,” which is impor-
tantly different from “the square root of n" because it
behaves like an adjective rather than a noun, and refers
to a property rather than an object. This is just how
prepositions behave in English: look, for example, at
the word “under” in the sentence “The cat is under the
table.”

At a slightly higher level of formality, mathemati-
cians like to avoid too many parts of speech, as we have
already seen for adjectives. So there is no symbol for
“less than”: instead, it is combined with the previous
word “is” to make the phrase “is less than,” which is
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Figure 1 Similar shapes.

denoted by the symbol “<.” The grammatical rules for
this symbol are once again simple. To use “<” in a sen-
tence, one should precede it by a noun and follow it
by a noun. For the resulting grammatically correct sen-
tence to make sense, the nouns should refer to numbers
(or perhaps to more general objects that can be put in
order). A mathematical “object” that behaves like this
is called a relation, though it might be more accurate
to call it a potential relationship. “Equals” and “is an
element of” are two other examples of relations.

As with functions, it is important, when specifying
a relation, to be careful about which objects are to be
related. Usually a relation comes with a set A of objects
that may or may not be related to each other. For exam-
ple, the relation “<” might be defined on the set of all
positive integers, or alternatively on the set of all real
numbers; strictly speaking these are different relations.
Sometimes relations are defined with reference to two
sets A and B. For example, if the relation is “€,” then
A might be the set of all positive integers and B the set
of all sets of positive integers.

There are many situations in mathematics where one
wishes to regard different objects as “essentially the
same,” and to help us make this idea precise there is
a very important class of relations known as equiva-
lence relations. Here are two examples. First, in elemen-
tary geometry one sometimes cares about shapes but
not about sizes. Two shapes are said to be similar if
one can be transformed into the other by a combina-
tion of reflections, rotations, translations, and enlarge-
ments (see figure 1); the relation “is similar to” is an
equivalence relation. Second, when doing ARITHMETIC
MODULO m [IIL.59], one does not wish to distinguish
between two whole numbers that differ by a multiple
of m: in this case one says that the numbers are con-
gruent (mod m); the relation “is congruent (mod m)
to” is another equivalence relation.
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What exactly is it that these two relations have in
common? The answer is that they both take a set (in
the first case the set of all geometrical shapes, and in
the second the set of all whole numbers) and split it into
parts, called equivalence classes, where each part con-
sists of objects that one wishes to regard as essentially
the same. In the first example, a typical equivalence
class is the set of all shapes that are similar to some
given shape; in the second, it is the set of all integers
that leave a given remainder when you divide by m (for
example, if m = 7 then one of the equivalence classes
is the set {...,-16,-9,-2,5,12,19,...}).

An alternative definition of what it means for a rela-
tion ~, defined on a set A, to be an equivalence relation
is that it has the following three properties. First, it is
reflexive, which means that x ~ x for every x in A. Sec-
ond, it is symmetric, which means that if x and y are
elements of A and x ~ y, then it must also be the case
that y ~ x. Third, it is transitive, meaning that if x, y,
and z are elements of A such that x ~ y and y ~ z,
then it must be the case that x ~ z. (To get a feel for
these properties, it may help if you satisfy yourself that
the relations “is similar to” and “is congruent (mod m)
to” both have all three properties, while the relation
“<,” defined on the positive integers, is transitive but
neither reflexive nor symmetric.)

One of the main uses of equivalence relations is to
make precise the notion of QUOTIENT [I.3 §3.3] con-
structions.

2.4 Binary Operations

Let us return to one of our earlier examples, the sen-
tence “Two plus two equals four.” We have analyzed
the word “equals” as a relation, an expression that sits
between the noun phrases “two plus two” and “four”
and makes a sentence out of them. But what about
“plus”? That also sits between two nouns. However, the
result, “two plus two,” is not a sentence but a noun
phrase. That pattern is characteristic of binary opera-
tions. Some familiar examples of binary operations are
“plus,” “minus,” “times,” “divided by,” and “raised to
the power.”

" o«

As with functions, it is customary, and convenient,
to be careful about the set to which a binary operation
is applied. From a more formal point of view, a binary
operation on a set A is a function that takes pairs of
elements of A and produces further elements of A from
them. To be more formal still, it is a function with the
set of all pairs (x,y) of elements of A as its domain
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and with A as its range. This way of looking at it is
not reflected in the notation, however, since the symbol
for the operation comes between x and y rather than
before them: we write x + y rather than +(x, y).

There are four properties that a binary operation may
have that are very useful if one wants to manipulate
sentences in which it appears. Let us use the symbol *
to denote an arbitrary binary operation on some set A.
The operation * is said to be commutative if x x y is
always equal to y * x, and associative if x * (y * z) is
always equal to (x % y) * z. For example, the opera-
tions “plus” and “times” are commutative and associa-
tive, whereas “minus,” “divided by,” and “raised to the
power” are neither (for instance, 9 — (5 — 3) = 7 while
(9—-5)—3 = 1). These last two operations raise another
issue: unless the set A is chosen carefully, they may not
always be defined. For example, if one restricts one’s
attention to the positive integers, then the expression
3 — 5 has no meaning. There are two conventions one
could imagine adopting in response to this. One might
decide not to insist that a binary operation should be
defined for every pair of elements of A, and to regard
it as a desirable extra property of an operation if it
is defined everywhere. But the convention actually in
force is that binary operations do have to be defined
everywhere, so that “minus,” though a perfectly good
binary operation on the set of all integers, is not a
binary operation on the set of all positive integers.

An element e of A is called an identity for * if e x x =
x * e = x for every element x of A. The two most obvi-
ous examples are 0 and 1, which are identities for “plus”
and “times,” respectively. Finally, if * has an identity e
and x belongs to A, then an inverse for x is an element
v such that x * ¥ = y % x = e. For example, if * is
“plus” then the inverse of x is —x, while if * is “times”
then the inverse is 1/x.

These basic properties of binary operations are fun-
damental to the structures of abstract algebra. See
FOUR IMPORTANT ALGEBRAIC STRUCTURES [I.3 §2] for
further details.

3 Some Elementary Logic
3.1 Logical Connectives

A logical connective is the mathematical equivalent of a
conjunction. That is, it is a word (or symbol) that joins
two sentences to produce a new one. We have already
discussed an example, namely “and” in its sentence-
linking meaning, which is sometimes written by the
symbol “A,” particularly in more formal or abstract
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mathematical discourse. If P and Q are statements
(note here the mathematical habit of representing not
just numbers but any objects whatsoever by single let-
ters), then P A Q is the statement that is true if and only
if both P and Q are true.

Another connective is the word “or,” a word that has
a more specific meaning for mathematicians than it
has for normal speakers of the English language. The
mathematical use is illustrated by the tiresome joke of
responding, “Yes please,” to a question such as, “Would
you like your coffee with or without sugar?” The sym-
bol for “or,” if one wishes to use a symbol, is “v,” and
the statement P v Q is true if and only if P is true or
Q is true. This is taken to include the case when they
are both true, so “or,” for mathematicians, is always the
so-called inclusive version of the word.

A third important connective is “implies,” which is
usually written “=.” The statement P = (Q means,
roughly speaking, that Q is a consequence of P, and
is sometimes read as “if P then Q.” However, as with
“or,” this does not mean quite what it would in English.
To get a feel for the difference, consider the following
even more extreme example of mathematical pedantry.
At the supper table, my young daughter once said, “Put
your hand up if you are a girl.” One of my sons, to tease
her, put his hand up on the grounds that, since she had
not added, “and keep it down if you are a boy,” his doing
so was compatible with her command.

Something like this attitude is taken by mathemati-
cians to the word “implies,” or to sentences containing
the word “if.” The statement P = Q is considered to
be true under all circumstances except one: it is not
true if P is true and Q is false. This is the definition
of “implies.” It can be confusing because in English
the word “implies” suggests some sort of connection
between P and Q, that P in some way causes Q or is
at least relevant to it. If P causes Q then certainly P
cannot be true without Q being true, but all a mathe-
matician cares about is this logical consequence and
not whether there is any reason for it. Thus, if you
want to prove that P = Q, all you have to do is rule
out the possibility that P could be true and Q false
at the same time. To give an example: if n is a posi-
tive integer, then the statement “n is a perfect square
with final digit 7” implies the statement “n is a prime
number,” not because there is any connection between
the two but because no perfect square ends in a 7. Of
course, implications of this kind are less interesting
mathematically than more genuine-seeming ones, but
the reward for accepting them is that, once again, one
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avoids being confused by some of the ambiguities and
subtle nuances of ordinary language.

3.2 Quantifiers

Yet another ambiguity in the English language is ex-
ploited by the following old joke that suggests that our
priorities need to be radically rethought.

(4) Nothing is better than lifelong happiness.

(5) But a cheese sandwich is better than nothing.

(6) Therefore, a cheese sandwich is better than life-
long happiness.

Let us try to be precise about how this play on words
works (a good way to ruin any joke, but not a tragedy
in this case). It hinges on the word “nothing,” which is
used in two different ways. The first sentence means
“There is no single thing that is better than lifelong
happiness,” whereas the second means “It is better to
have a cheese sandwich than to have nothing at all.” In
other words, in the second sentence, “nothing” stands
for what one might call the null option, the option of
having nothing, whereas in the first it does not (to have
nothing is not better than to have lifelong happiness).
Words like “all,” “some,” “any,” “every,” and “noth-
ing” are called quantifiers, and in the English language
they are highly prone to this kind of ambiguity. Math-
ematicians therefore make do with just two quanti-
fiers, and the rules for their use are much stricter. They
tend to come at the beginning of sentences, and can be
read as “for all” (or “for every”) and “there exists” (or
“for some”). A rewriting of sentence (4) that renders it
unambiguous (but less like real English) is

(4") For all x, lifelong happiness is at least as good
as x.

The second sentence cannot be rewritten in these
terms because the word “nothing” is not playing the
role of a quantifier. (Its nearest mathematical equiva-
lent is something like the empty set, that is, the set with
no elements.)

Armed with “for all” and “there exists,” we can be
clear about the difference between the beginnings of
the following sentences.

(7) Everybody likes at least one drink, namely water.
(8) Everybody likes at least one drink; I myself go for
red wine.

The first sentence makes the point (not necessarily cor-
rectly) that there is one drink that everybody likes,
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whereas the second claims merely that we all have
something we like to drink, even if that something
varies from person to person. The precise formulations
that capture the difference are as follows.

(7") There exists a drink D such that, for every person
P, P likes D.

(8') For every person P there exists a drink D such
that P likes D.

This illustrates an important general principle: if you
take a sentence that begins “for every x there exists
v such that...” and interchange the two parts so that
it now begins “there exists y such that, for every x,
...," then you obtain a much stronger statement, since
v is no longer allowed to depend on x. If the second
statement is still true—that is, if you really can choose
a y that works for all the x at once—then the first
statement is said to hold uniformly.

The symbols V and 3 are often used to stand for “for
all” and “there exists,” respectively. This allows us to
write quite complicated mathematical sentences in a
highly symbolic form if we want to. For example, sup-
pose we let P be the set of all primes, as we did earlier.
Then the following symbols make the claim that there
are infinitely many primes, or rather a slightly different
claim that is equivalent to it.

9) Vnidm (m>n) A (meP).

In words, this says that for every n we can find some
m that is both bigger than n and a prime. If we wish to
unpack sentence (9) further, we could replace the part
m € P by

(10) Va,b ab=m= ((a=1) v (b=1)).

There is one final important remark to make about the
quantifiers “V” and “3.”  have presented them as if they
were freestanding, but actually a quantifier is always
associated with a set (one says that it quantifies over
that set). For example, sentence (10) would not be a
translation of the sentence “m is prime” if @ and b were
allowed to be fractions: if a = 3 and b = % then ab =7
without either a or b equaling 1, but this does not show
that 7 is not a prime. Implicit in the opening symbols
Va,b is the idea that a and b are intended to be positive
integers. If this had not been clear from the context,
then we could have used the symbol N (which stands for
the set of all positive integers) and started sentence (10)
with Va, b € N instead.
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3.3 Negation

The basic idea of negation in mathematics is very sim-
ple: there is a symbol, “—,” which means “not,” and if
P is any mathematical statement, then —P stands for
the statement that is true if and only if P is not true.
However, this is another example of a word that has
a slightly more restricted meaning to mathematicians
than it has in ordinary speech.

To illustrate this phenomenon once again, let us take
A to be a set of positive integers and ask ourselves what
the negation is of the sentence “Every number in the set
A is odd.” Many people when asked this question will
suggest, “Every number in the set A is even.” However,
this is wrong: if one thinks carefully about what exactly
would have to happen for the first sentence to be false,
one realizes that all that is needed is that at least one
number in A should be even. So in fact the negation
of the sentence is, “There exists a number in A that is
even.”

What explains the temptation to give the first, incor-
rect answer? One possibility emerges when one writes
the sentence more formally, thus:

(I11) Vne A nis odd.

The first answer is obtained if one negates just the last
part of this sentence, “n is odd”; but what is asked for
is the negation of the whole sentence. That is, what is
wanted is not

(12) vne A —(nis odd),

but rather

(13) =(Vne A nisodd),
which is equivalent to

(14) 3n€ A nis even.

A second possible explanation is that one is inclined
(for psycholinguistic reasons) to think of the phrase
“every element of A” as denoting something like a sin-
gle, typical element of A. If that comes to have the feel
of a particular number n, then we may feel that the
negation of “n is odd” is “n is even.” The remedy is not
to think of the phrase “every element of A” on its own:
it should always be part of the longer phrase, “for every
element of A.”
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3.4 Free and Bound Variables

Suppose we say something like, “At time t the speed of
the projectile is v.” The letters t and v stand for real
numbers, and they are called variables, because in the
back of our mind is the idea that they are changing.
More generally, a variable is any letter used to stand
for a mathematical object, whether or not one thinks of
that object as changing through time. Let us look once
again at the formal sentence that said that a positive
integer m is prime:

(10) Ya,b ab=m= ((a=1) v (b=1)).

In this sentence, there are three variables, a, b, and m,
but there is a very important grammatical and semantic
difference between the first two and the third. Here are
two results of that difference. First, the sentence does
not really make sense unless we already know what m
is from the context, whereas it is important that a and b
do not have any prior meaning. Second, while it makes
perfect sense to ask, “For which values of m is sen-
tence (10) true?” it makes no sense at all to ask, “For
which values of a is sentence (10) true?” The letter m
in sentence (10) stands for a fixed number, not speci-
fied in this sentence, while the letters a and b, because
of the initial Va, b, do not stand for numbers—rather,
in some way they search through all pairs of positive
integers, trying to find a pair that multiply together to
give m. Another sign of the difference is that you can
ask, “What number is m?” but not, “What number is
a?” A fourth sign is that the meaning of sentence (10)
is completely unaffected if one uses different letters for
a and b, as in the reformulation

(10") Ve,d cd=m= ((c=1) v (d=1)).

One cannot, however, change m to n without estab-
lishing first that n denotes the same integer as m. A
variable such as m, which denotes a specific object, is
called a freevariable. It sort of hovers there, free to take
any value. A variable like a and b, of the kind that does
not denote a specific object, is called a bound variable,
or sometimes a dummy variable. (The word “bound”
is used mainly when the variable appears just after a
quantifier, as in sentence (10).)

Yet another indication that a variable is a dummy
variable is when the sentence in which it occurs can
be rewritten without it. For instance, the expression
S 190 £(n) is shorthand for £(1)+ f(2)+ - - - + £(100),
and the second way of writing it does not involve the
letter n, so n was not really standing for anything in
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the first way. Sometimes, actual elimination is not pos-
sible, but one feels it could be done in principle. For
instance, the sentence “For every real number x, x is
either positive, negative, or zero” is a bit like putting
together infinitely many sentences such as “t is either
positive, negative, or zero,” one for each real number t,
none of which involves a variable.

4 Levels of Formality

It is a surprising fact that a small number of set-theo-
retic concepts and logical terms can be used to provide
a precise language that is versatile enough to express
all the statements of ordinary mathematics. There are
some technicalities to sort out, but even these can often
be avoided if one allows not just sets but also num-
bers as basic objects. However, if you look at a well-
written mathematics paper, then much of it will be
written not in symbolic language peppered with sym-
bols such as V and 3, but in what appears to be ordi-
nary English. (Some papers are written in other lan-
guages, particularly French, but English has established
itself as the international language of mathematics.)
How can mathematicians be confident that this ordi-
nary English does not lead to confusion, ambiguity, and
even incorrectness?

The answer is that the language typically used is a
careful compromise between fully colloquial English,
which would indeed run the risk of being unacceptably
imprecise, and fully formal symbolism, which would be
a nightmare to read. The ideal is to write in as friendly
and approachable a way as possible, while making sure
that the reader (who, one assumes, has plenty of experi-
ence and training in how to read mathematics) can see
easily how what one writes could be made more for-
mal if it became important to do so. And sometimes it
does become important: when an argument is difficult
to grasp it may be that the only way to convince oneself
that it is correct is to rewrite it more formally.

Consider, for example, the following reformulation
of the principle of mathematical induction, which un-
derlies many proofs:

(15) Every nonempty set of positive integers has a
least element.

If we wish to translate this into a more formal lan-
guage we need to strip it of words and phrases such as
“nonempty” and “has.” But this is easily done. To say
that a set A of positive integers is nonempty is simply
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to say that there is a positive integer that belongs to A.
This can be stated symbolically:

(16) Ine N n € A.

What does it mean to say that A has a least element?
It means that there exists an element x of A such that
every element y of A is either greater than x or equal to
x itself. This formulation is again ready to be translated
into symbols:

(17) 3Ixe€ A VyeA (y>x) VvV (y =x).

Statement (15) says that (16) implies (17) for every set A
of positive integers. Thus, it can be written symbolically
as follows:

(18) VACN
[(AneN neA)

> (3xecAVyecA (y>x) Vv (y=x))]

Here we have two very different modes of presenta-
tion of the same mathematical fact. Obviously (15) is
much easier to understand than (18). But if, for exam-
ple, one is concerned with the foundations of math-
ematics, or wishes to write a computer program that
checks the correctness of proofs, then it is better to
work with a greatly pared-down grammar and vocabu-
lary, and then (18) has the advantage. In practice, there
are many different levels of formality, and mathemati-
cians are adept at switching between them. It is this
that makes it possible to feel completely confident in
the correctness of a mathematical argument even when
it is not presented in the manner of (18)—though it is
also this that allows mistakes to slip through the net
from time to time.

1.3 Some Fundamental Mathematical
Definitions

The concepts discussed in this article occur throughout
so much of modern mathematics that it would be inap-
propriate to discuss them in part Ill-they are too basic.
Many later articles will assume at least some acquain-
tance with these concepts, so if you have not met them,
then reading this article will help you to understand
significantly more of the book.

1 The Main Number Systems

Almost always, the first mathematical concept that a
child is exposed to is the idea of numbers, and num-
bers retain a central place in mathematics at all levels.
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However, it is not as easy as one might think to say
what the word “number” means: the more mathemat-
ics one learns, the more uses of this word one comes
to know, and the more sophisticated one’s concept of
number becomes. This individual development paral-
lels a historical development that took many centuries
(see FROM NUMBERS TO NUMBER SYSTEMS [IL.1]).

The modern view of numbers is that they are best
regarded not individually but as parts of larger wholes,
called number systems; the distinguishing features of
number systems are the arithmetical operations-—such
as addition, multiplication, subtraction, division, and
extraction of roots—that can be performed on them.
This view of numbers is very fruitful and provides a
springboard into abstract algebra. The rest of this sec-
tion gives a brief description of the five main number
systems.

1.1 The Natural Numbers

The natural numbers, otherwise known as the positive
integers, are the numbers familiar even to young chil-
dren: 1, 2, 3, 4, and so on. It is the natural numbers
that we use for the very basic mathematical purpose
of counting. The set of all natural numbers is usually
denoted N. (Some mathematicians prefer to include 0
as a natural number as well: for instance, this is the
usual convention in logic and set theory. Both conven-
tions are to be found in this book, but it should always
be clear which one is being used.)

Of course, the phrase “1, 2, 3, 4, and so on” does not
constitute a formal definition, but it does suggest the
following basic picture of the natural numbers, one that
we tend to take for granted.

(i) Given any natural number n there is another, n+1,
that comes next—known as the successor of n.

(ii) A list that starts with 1 and follows each number
by its successor will include every natural number
exactly once and nothing else.

This picture is encapsulated by THE PEANO AXIOMS
[IL.67].

Given two natural numbers m and n one can add
them together or multiply them, obtaining in each case
a new natural number. By contrast, subtraction and
division are not always possible. If we want to give
meaning to expressions such as 8 — 13 or %, then we
must work in a larger number system.
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1.2 The Integers

The natural numbers are not the only whole numbers,
since they do not include zero or negative numbers,
both of which are indispensable to mathematics. One
of the first reasons for introducing zero was that it
is needed for the normal decimal notation of positive
integers—how else could one conveniently write 1005?
However, it is now thought of as much more than just
a convenience, and the property that makes it signif-
icant is that it is an additive identity, which means
that adding zero to any number leaves that number
unchanged. And while it is not particularly interest-
ing to do to a number something that has no effect,
the property itself is interesting and distinguishes zero
from all other numbers. An immediate illustration of
this is that it allows us to think about negative numbers:
if n is a positive integer, then the defining property of
—n is that when you add it to n you get zero.

Somebody with little mathematical experience may
unthinkingly assume that numbers are for counting
and find negative numbers objectionable because the
answer to a question beginning “How many” is never
negative. However, simple counting is not the only use
for numbers, and there are many situations that are
naturally modeled by a number system that includes
both positive and negative numbers. For example, neg-
ative numbers are sometimes used for the amount of
money in a bank account, for temperature (in degrees
Celsius or Fahrenheit), and for altitude compared with
sea level.

The set of all integers—positive, negative, and zero—
is usually denoted Z (for the German word “Zahlen,”
meaning “numbers”). Within this system, subtraction
is always possible: that is, if m and n are integers, then
sois m — n.

1.3 The Rational Numbers

So far we have considered only whole numbers. If we
form all possible fractions as well, then we obtain the
rational numbers. The set of all rational numbers is
denoted Q (for “quotients”).

One of the main uses of numbers besides counting is
measurement, and most quantities that we measure are
ones that can vary continuously, such as length, weight,
temperature, and velocity. For these, whole numbers
are inadequate.

A more theoretical justification for the rational num-
bers is that they form a number system in which
division is always possible—except by zero. This fact,
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together with some basic properties of the arithmetical
operations, means that @ is a field. What fields are and
why they are important will be explained in more detail
later (section 2.2).

1.4 The Real Numbers

A famous discovery of the ancient Greeks, often attrib-
uted, despite very inadequate evidence, to the school
of PYTHAGORAS [VI.1], was that the square root of 2 is
not a rational number. That is, there is no fraction p/q
such that (p/q)? = 2. The Pythagorean theorem about
right-angled triangles (which was probably known at
least a thousand years before Pythagoras) tells us that
if a square has sides of length 1, then the length of
its diagonal is v/2. Consequently, there are lengths that
cannot be measured by rational numbers.

This argument seems to give strong practical reasons
for extending our number system still further. How-
ever, such a conclusion can be resisted: after all, we
cannot make any measurements with infinite precision,
so in practice we round off to a certain number of dec-
imal places, and as soon as we have done so we have
presented our measurement as a rational number. (This
point is discussed more fully in NUMERICAL ANALYSIS
[IV.21].)

Nevertheless, the theoretical arguments for going
beyond the rational numbers are irresistible. If we
want to solve polynomial equations, take LOGARITHMS
[II1.25 §4], do trigonometry, or work with the GAUSs-
IAN DISTRIBUTION [IIL.71 §5], to give just four exam-
ples from an almost endless list, then irrational num-
bers will appear everywhere we look. They are not used
directly for the purposes of measurement, but they are
needed if we want to reason theoretically about the
physical world by describing it mathematically. This
necessarily involves a certain amount of idealization:
it is far more convenient to say that the length of the
diagonal of a unit square is /2 than it is to talk about
what would be observed, and with what degree of cer-
tainty, if one tried to measure this length as accurately
as possible.

The real numbers can be thought of as the set of
all numbers with a finite or infinite decimal expansion.
In the latter case, they are defined not directly but by
a process of successive approximation. For example,
the squares of the numbers 1, 1.4, 1.41, 1.414, 1.4142,
1.41421, ..., get as close as you like to 2, if you go far
enough along the sequence, which is what we mean by
saying that the square root of 2 is the infinite decimal
1.41421....
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The set of all real numbers is denoted R. A more
abstract view of R is that it is an extension of the
rational number system to a larger field, and in fact the
only one possible in which processes of the above kind
always give rise to numbers that themselves belong
to R.

Because real numbers are intimately connected with
the idea of limits (of successive approximations), a true
appreciation of the real number system depends on an
understanding of mathematical analysis, which will be
discussed in section 5.

1.5 The Complex Numbers

Many polynomial equations, such as the equation x? =

2, do not have rational solutions but can be solved in R.
However, there are many other equations that cannot
be solved even in R. The simplest example is the equa-
tion x2 = —1, which has no real solution since the
square of any real number is positive or zero. In order
to get around this problem, mathematicians introduce
a symbol, i, which they treat as a number, and they sim-
ply stipulate that i® is to be regarded as equal to —1.
The complex number system, denoted C, is the set of all
numbers of the form a+ bi, where a and b are real num-
bers. To add or multiply complex numbers, one treats i
as a variable (like x, say), but any occurrences of i are
replaced by —1. Thus,

(a+bi)+ (c+di)=(a+c)+(b+d)i

and

(a + bi)(c + di) = ac + bci + adi + bdi®
(ac — bd) + (bc + ad)i.

There are several remarkable points to note about
this definition. First, despite its apparently artificial
nature, it does not lead to any inconsistency. Secondly,
although complex numbers do not directly count or
measure anything, they are immensely useful. Thirdly,
and perhaps most surprisingly, even though the num-
ber i was introduced to help us solve just one equa-
tion, it in fact allows us to solve all polynomial equa-
tions. This is the famous FUNDAMENTAL THEOREM OF
ALGEBRA [V.13].

One explanation for the utility of complex numbers
is that they provide a concise way to talk about many
aspects of geometry, via Argand diagrams. These rep-
resent complex numbers as points in the plane, the
number a + bi corresponding to the point with coordin-
ates (a,b). If r = Va? + b? and 6 = tan"!(b/a), then
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a = rcos@ and b = rsin0. It turns out that multi-
plying a complex number z = x + yi by a + bi cor-
responds to the following geometrical process. First,
you associate z with the point (x,y) in the plane.
Next, you multiply this point by 7, obtaining the point
(rx,ry). Finally, you rotate this new point counter-
clockwise about the origin through an angle of 0. In
other words, the effect on the complex plane of multi-
plication by a + bi is to dilate it by » and then rotate it
by 6. In particular, if a® + b? = 1, then multiplying by
a + bi corresponds to rotating by 6.

For this reason, polar coordinates are at least as
good as Cartesian coordinates for representing com-
plex numbers: an alternative way to write a + bi is rel?,
which tells us that the number has distance r from
the origin and is positioned at an angle 0 around from
the positive part of the real axis (in a counterclockwise
direction). If z = rel? with » > 0, then r is called the
modulus of z, denoted by |z|, and 0 is the argument
of z. (Since adding 27 to 0 does not change el it is
usually understood that 0 < 6 < 27T, or sometimes that
—1 < 0 < 1.) One final useful definition: if z = x + iy
is a complex number, then its complex conjugate, writ-
ten z, is the number x — yi. It is easy to check that
zz =x%+y?% = |z|°.

2 Four Important Algebraic Structures

In the previous section it was emphasized that num-
bers are best thought of not as individual objects but
as members of number systems. A number system con-
sists of some objects (numbers) together with opera-
tions (such as addition and multiplication) that can be
performed on those objects. As such, it is an example
of an algebraic structure. However, there are many very
important algebraic structures that are not number
systems, and a few of them will be introduced here.

2.1 Groups

If S is a geometrical shape, then a rigid motion of S
is a way of moving S in such a way that the distances
between the points of S are not changed-—squeezing
and stretching are not allowed. A rigid motion is a sym-
metry of S if, after it is completed, S looks the same as
it did before it moved. For example, if S is an equilateral
triangle, then rotating S through 120° about its center
is a symmetry; so is reflecting S about a line that passes
through one of the vertices of S and the midpoint of the
opposite side.
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More formally, a symmetry of S is a function f from S
to itself such that the distance between any two points
x and y of S is the same as the distance between the
transformed points f(x) and f(y).

This idea can be hugely generalized: if S is any math-
ematical structure, then a symmetry of S is a func-
tion from S to itself that preserves its structure. If S
is a geometrical shape, then the mathematical struc-
ture that should be preserved is the distance between
any two of its points. But there are many other math-
ematical structures that a function may be asked to
preserve, most notably algebraic structures of the kind
that will soon be discussed. It is fruitful to draw an
analogy with the geometrical situation and regard any
structure-preserving function as a sort of symmetry.

Because of its extreme generality, symmetry is an all-
pervasive concept within mathematics; and wherever
symmetries appear, structures known as groups fol-
low close behind. To explain what these are and why
they appear, let us return to the example of an equi-
lateral triangle, which has, as it turns out, six possible
symmetries.

Why is this? Well, let f be a symmetry of an equi-
lateral triangle with vertices A, B, and C and suppose
for convenience that this triangle has sides of length 1.
Then f(A), f(B), and f(C) must be three points of the
triangle and the distances between these points must
all be 1. It follows that f(A), f(B), and f(C) are dis-
tinct vertices of the triangle, since the furthest apart
any two points can be is 1 and this happens only when
the two points are distinct vertices. So f(A), f(B), and
f(C) are the vertices A, B, and C in some order. But the
number of possible orders of A, B, and C is 6. It is not
hard to show that, once we have chosen f(A), f(B), and
f(C), therest of what f does is completely determined.
(For example, if X is the midpoint of A and C, then f(X)
must be the midpoint of f(A) and f(C) since there is
no other point at distance % from f(A) and f(C).)

Let us refer to these symmetries by writing down in
order what happens to the vertices A, B, and C. So, for
instance, the symmetry ACB is the one that leaves the
vertex A fixed and exchanges B and C, which is achieved
by reflecting the triangle in the line that joins A to the
midpoint of B and C. There are three reflections like
this: ACB, CBA, and BAC. There are also two rotations:
BCA and CAB. Finally, there is the “trivial” symmetry,
ABC, which leaves all points where they were originally.
(The “trivial” symmetry is useful in much the same way
as zero is useful for the algebra of integer addition.)
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What makes these and other sets of symmetries into
groups is that any two symmetries can be composed,
meaning that one symmetry followed by another pro-
duces a third (since if two operations both preserve a
structure then their combination clearly does too). For
example, if we follow the reflection BAC by the reflec-
tion ACB, then we obtain the rotation CAB. To work
this out, one can either draw a picture or use the fol-
lowing kind of reasoning: the first symmetry takes A
to B and the second takes B to C, so the combination
takes A to C, and similarly B goes to A, and C to B.
Notice that the order in which we perform the sym-
metries matters: if we had started with the reflection
ACB and then done the reflection BAC, then we would
have obtained the rotation BCA. (If you try to see this by
drawing a picture, it is important to think of A, B, and
C as labels that stay where they are rather than moving
with the triangle—they mark positions that the vertices
can occupy.)

We can think of symmetries as “objects” in their
own right, and of composition as an algebraic oper-
ation, a bit like addition or multiplication for num-
bers. The operation has the following useful proper-
ties: it is ASSOCIATIVE, the trivial symmetry is an IDEN-
TITY ELEMENT, and every symmetry has an INVERSE
[I.2 §2.4]. (For example, the inverse of a reflection is
itself, since doing the same reflection twice leaves the
triangle where it started.) More generally, any set with
a binary operation that has these properties is called
a group. It is not part of the definition of a group that
the binary operation should be commutative, since, as
we have just seen, if one is composing two symmetries
then it often makes a difference which one goes first.
However, if it is commutative then the group is called
Abelian, after the Norwegian mathematician NIELS HEN-
RIK ABEL [VL.33]. The number systems Z, @, R, and C
all form Abelian groups with the operation of addition,
or under addition, as one usually says. If you remove
zero from @, R, and C, then they form Abelian groups
under multiplication, but Z does not because of a lack
of inverses: the reciprocal of an integer is not usually an
integer. Further examples of groups will be given later
in this section.

2.2 Fields

Although several number systems form groups, to
regard them merely as groups is to ignore a great
deal of their algebraic structure. In particular, whereas
a group has just one binary operation, the standard
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number systems have two, namely addition and multi-
plication (from which further ones, such as subtraction
and division, can be derived). The formal definition of
a field is quite long: it is a set with two binary oper-
ations and there are several axioms that these opera-
tions must satisfy. Fortunately, there is an easy way to
remember these axioms. You just write down all the
basic properties you can think of that are satisfied by
addition and multiplication in the number systems Q,
R, and C.

These properties are as follows. Both addition and
multiplication are commutative and associative, and
both have identity elements (0 for addition and 1 for
multiplication). Every element x has an additive inverse
—x and a multiplicative inverse 1/x (except that 0 does
not have a multiplicative inverse). It is the existence
of these inverses that allows us to define subtraction
and division: x — y means x + (—y) and x/y means
x - (1/y).

That covers all the properties that addition and mul-
tiplication satisfy individually. However, a very general
rule when defining mathematical structures is that if
a definition splits into parts, then the definition as a
whole will not be interesting unless those parts interact.
Here our two parts are addition and multiplication, and
the properties mentioned so far do not relate them in
any way. But one final property, known as the distribu-
tive law, does this, and thereby gives fields their special
character. This is the rule that tells us how to multiply
out brackets: x(y+2z) = xy +xz for any three numbers
X, y,and z.

Having listed these properties, one may then view the
whole situation abstractly by regarding the properties
as axioms and saying that a field is any set with two
binary operations that satisfy all those axioms. How-
ever, when one works in a field, one usually thinks of
the axioms not as a list of statements but rather as a
general license to do all the algebraic manipulations
that one can do when talking about rational, real, and
complex numbers.

Clearly, the more axioms one has, the harder it is to
find a mathematical structure that satisfies them, and
it is indeed the case that fields are harder to come by
than groups. For this reason, the best way to under-
stand fields is probably to concentrate on examples.
In addition to @, R, and C, one other field stands out
as fundamental, namely Fj,, which is the set of inte-
gers modulo a prime p, with addition and multiplica-
tion also defined modulo p (see MODULAR ARITHMETIC
[1I1.58]).
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What makes fields interesting, however, is not so
much the existence of these basic examples as the fact
that there is an important process of extension that
allows one to build new fields out of old ones. The idea
is to start with a field F, find a polynomial P that has
no roots in F, and “adjoin” a new element to F with
the stipulation that it is a root of P. This produces an
extended field F', which consists of everything that one
can produce from this root and from elements of F
using addition and multiplication.

We have already seen an important example of this
process: in the field B, the polynomial P(x) = x2 + 1
has no root, so we adjoined the element i and let C be
the field of all combinations of the form a + bi.

We can apply exactly the same process to the field 3,
in which again the equation x? + 1 = 0 has no solution.
If we do so, then we obtain a new field, which, like C,
consists of all combinations of the form a + bi, but now
a and b belong to F3. Since F3 has three elements, this
new field has nine elements. Another example is the
field Q@(+/2), which consists of all numbers of the form
a + b+/2, where now a and b are rational numbers. A
slightly more complicated example is Q(y), where y is
a root of the polynomial x3 — x — 1. A typical element
of this field has the form a + by + cy?, with a, b, and ¢
rational. If one is doing arithmetic in Q(y), then when-
ever y3 appears, it can be replaced by y + 1 (because
y3 —y —1 = 0), just as i% can be replaced by —1 in the
complex numbers. For more on why field extensions
are interesting, see the discussion of AUTOMORPHISMS
in section 4.1.

A second very significant justification for introducing
fields is that they can be used to form vector spaces,
and it is to these that we now turn.

2.3 Vector Spaces

One of the most convenient ways to represent points
in a plane that stretches out to infinity in all directions
is to use Cartesian coordinates. One chooses an origin
and two directions X and Y, usually at right angles to
each other. Then the pair of numbers (a, b) stands for
the point you reach in the plane if you go a distance a
in direction X and a distance b in direction Y (where if
a is a negative number such as -2, this is interpreted
as going a distance +2 in the opposite direction to X,
and similarly for b).

Another way of saying the same thing is this. Let x
and y stand for the unit vectors in directions X and Y,
respectively, so their Cartesian coordinates are (1,0)
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and (0, 1). Then every point in the plane is a so-called
linear combination ax + by of the basis vectors x and
y. To interpret the expression ax + by, first rewrite
it as a(1,0) + b(0,1). Then a times the unit vector
(1,0) is (a,0) and b times the unit vector (0,1) is
(0,b) and when you add (a,0) and (0,b) coordinate
by coordinate you get the vector (a, b).

Here is another situation where linear combinations
appear. Suppose you are presented with the differential
equation (d%y/dx?) + y = 0, and happen to know (or
notice) that y = sinx and y = cosx are two possible
solutions. Then you can easily check that y = asinx +
b cos x is a solution for any pair of numbers a and b.
That is, any linear combination of the existing solutions
sin x and cos x is another solution. It turns out that all
solutions are of this form, so we can regard sin x and
cos x as “basis vectors” for the “space” of solutions of
the differential equation.

Linear combinations occur in many many contexts
throughout mathematics. To give one more example,
an arbitrary polynomial of degree 3 has the form
ax? 4+ bx? + cx + d, which is a linear combination of
the four basic polynomials 1, x, x2, and x?.

A vector space is a mathematical structure in which
the notion of linear combination makes sense. The
objects that belong to the vector space are usually
called vectors, unless we are talking about a specific
example and are thinking of them as concrete objects
such as polynomials or solutions of a differential equa-
tion. Slightly more formally, a vector space is a set V
such that, given any two vectors v and w (that is, ele-
ments of V) and any two real numbers a and b, we can
form the linear combination av + bw.

Notice that this linear combination involves objects
of two different kinds, the vectors v and w and the
numbers a and b. The latter are known as scalars. The
operation of forming linear combinations can be bro-
ken up into two constituent parts: addition and scalar
multiplication. To form the combination av + bw, first
multiply the vectors v and w by the scalars a and
b, obtaining the vectors av and bw, and then add
these resulting vectors to obtain the full combination
av + bw.

The definition of linear combination must obey cer-
tain natural rules. Addition of vectors must be commu-
tative and associative, with an identity (the zero vector)
and an inverse for each v (written —v). Scalar multipli-
cation must obey a sort of associative law, namely that
a(bv) and (ab)v are always equal. We also need two
distributive laws: (a + b)v = av + bv and a(v + w) =
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av + aw for any scalars a and b and any vectors v
and w.

Another context in which linear combinations arise,
one that lies at the heart of the usefulness of vector
spaces, is the solution of simultaneous equations. Sup-
pose one is presented with the two equations 3x +2y =
6 and x — y = 7. The usual way to solve such a pair of
equations is to try to eliminate either x or y by adding
an appropriate multiple of one of the equations to the
other: that is, by taking a certain linear combination
of the equations. In this case, we can eliminate y by
adding twice the second equation to the first, obtain-
ing the equation 5x = 20, which tells us that x = 4 and
hence that y = —3. Why were we allowed to combine
equations like this? Well, let us write L; and R, for the
left- and right-hand sides of the first equation, and sim-
ilarly L, and R for the second. If, for some particular
choice of x and y, it is true that L, = Ry and Ly = Ry,
then clearly Ly + 2L, = R} + 2R3, as the two sides of
this equation are merely giving different names to the
same numbers.

Given a vector space V, a basis is a collection of vec-
tors vi,v2,...,v, with the following property: every
vector in V can be written in exactly one way as a
linear combination a v, + axv2 + - -+ + anvy,. There
are two ways in which this can fail: there may be a
vector that cannot be written as a linear combination
of vy,vy,...,v, or there may be a vector that can be
so expressed, but in more than one way. If every vec-
tor is a linear combination then we say that the vec-
tors vy, v2,...,vy, span V, and if no vector is a linear
combination in more than one way then we say that
they are independent. An equivalent definition is that
v1,v2,...,v, are independent if the only way of writ-
ing the zero vector as ajv; + axv + -+ - + anvy is by
takinga; =az =---=an =0.

The number of elements in a basis is called the dimen-
sion of V. It is not immediately obvious that there could
not be two bases of different sizes, but it turns out
that there cannot, so the concept of dimension makes
sense. For the plane, the vectors x and y defined ear-
lier formed a basis, so the plane, as one would hope,
has dimension 2. If we were to take more than two
vectors, then they would no longer be independent:
for example, if we take the vectors (1,2), (1,3), and
(3,1), then we can write (0,0) as the linear combina-
tion 8(1,2)—5(1,3)—(3,1).(To work this out one must
solve some simultaneous equations—this is typical of
calculations in vector spaces.)
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The most obvious n-dimensional vector space is the
space of all sequences (xi,...,xn) of n real num-
bers. To add this to a sequence (y1,...,¥n) one sim-
ply forms the sequence (x;+ ¥1,..., Xn+ ¥n) and
to multiply it by a scalar ¢ one forms the sequence
(cxy,...,cxy). This vector space is denoted R". Thus,
the plane with its usual coordinate system is B2 and
three-dimensional space is B3.

It is not in fact necessary for the number of vectors
in a basis to be finite. A vector space that does not have
a finite basis is called infinite dimensional. This is not
an exotic property: many of the most important vec-
tor spaces, particularly spaces where the “vectors” are
functions, are infinite dimensional.

There is one final remark to make about scalars. They
were defined earlier as real numbers that one uses to
make linear combinations of vectors. But it turns out
that the calculations one does with scalars, in particu-
lar solving simultaneous equations, can all be done in a
more general context. What matters is that they should
belong to a field, so @, R, and C can all be used as sys-
tems of scalars, as indeed can more general fields. If
the scalars for a vector space V come from a field F,
then one says that V is a vector space over F. This gen-
eralization is important and useful: see, for example,
ALGEBRAIC NUMBERS [IV.1 §17].

2.4 Rings

Another algebraic structure that is very important is
a ring. Rings are not quite as central to mathematics
as groups, fields, or vector spaces, so a proper discus-
sion of them will be deferred to RINGS, IDEALS, AND
MODULES [II.81]. However, roughly speaking, a ring is
an algebraic structure that has most, but not necessar-
ily all, of the properties of a field. In particular, the
requirements of the multiplicative operation are less
strict. The most important relaxation is that nonzero
elements of a ring are not required to have multiplica-
tive inverses; but sometimes multiplication is not even
required to be commutative. If it is, then the ring itself
is said to be commutative—a typical example of a com-
mutative ring is the set Z of all integers. Another is
the set of all polynomials with coefficients in some
field F.

3 Creating New Structures Out of Old Ones

An important first step in understanding the definition
of some mathematical structure is to have a supply of
examples. Without examples, a definition is dry and
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abstract. With them, one begins to have a feeling for
the structure that its definition alone cannot usually
provide.

One reason for this is that it makes it much easier
to answer basic questions. If you have a general state-
ment about structures of a given type and want to know
whether it is true, then it is very helpful if you can test
it in a wide range of particular cases. If it passes all
the tests, then you have some evidence in favor of the
statement. If you are lucky, you may even be able to see
why it is true; alternatively, you may find that the state-
ment is true for each example you try, but always for
reasons that depend on particular features of the exam-
ple you are examining. Then you will know that you
should try to avoid these features if you want to find a
counterexample. If you do find a counterexample, then
the general statement is false, but it may still happen
that a modification to the statement is true and useful.
In that case, the counterexample will help you to find
an appropriate modification.

The moral, then, is that examples are important. So
how does one find them? There are two completely dif-
ferent approaches. One is to build them from scratch.
For example, one might define a group G to be the
group of all symmetries of an icosahedron. Another,
which is the main topic of this section, is to take some
examples that have already been constructed and build
new ones out of them. For instance, the group 72,
which consists of all pairs of integers (x, y), with addi-
tion defined by the obvious rule (x,y) + (x',y') =
(x +x',y + '), is a “product” of two copies of the
group Z. As we shall see, this notion of product is very
general and can be applied in many other contexts. But
first let us look at an even more basic method of finding
new examples.

3.1 Substructures

As we saw earlier, the set C of all complex numbers,
with the operations of addition and multiplication,
forms one of the most basic examples of a field. It
also contains many subfields: that is, subsets that them-
selves form fields. Take, for example, the set Q(i) of all
complex numbers of the form a + bi for which a and
b are rational. This is a subset of C and is also a field.
To show this, one must prove that Q(i) is closed under
addition, multiplication, and the taking of inverses.
That is, if z and w are elements of Q(i), then z + w
and zw must be as well, as must —z and 1/z (this
last requirement applying only when z # 0). Axioms
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such as the commutativity and associativity of addition
and multiplication are then true in Q(i) for the simple
reason that they are true in the larger set C.

Even though Q(i) is contained in C, it is a more inter-
esting field in some important ways. But how can this
be? Surely, one might think, an object cannot become
move interesting when most of it is taken away. But a
moment’s further thought shows that it certainly can:
for example, the set of all prime numbers contains fas-
cinating mysteries of a kind that one does not expect
to encounter in the set of all positive integers. As for
fields, THE FUNDAMENTAL THEOREM OF ALGEBRA [V.13]
tells us that every polynomial equation has a solution
in C. This is very definitely not true in @(i). So in Q(i),
and in many other fields of a similar kind, we can ask
which polynomial equations have solutions. This turns
out to be a deep and important question that simply
does not arise in the larger field C.

In general, given an example X of an algebraic struc-
ture, a substructure of X is a subset Y that has rel-
evant closure properties. For instance, groups have
subgroups, vector spaces have subspaces, rings have
subrings (and also IDEALS [II1.81]), and so on. If the
property defining the substructure Y is a sufficiently
interesting one, then Y may well be significantly differ-
ent from X and may therefore be a useful addition to
one's stock of examples.

This discussion has focused on algebra, but interest-
ing substructures abound in analysis and geometry as
well. For example, the plane R? is not a particularly
interesting set, but it has subsets, such as the MANDEL-
BROT SET [IV.14 §2.8], to give just one example, that are
still far from fully understood.

3.2 Products

Let G and H be two groups. The product group G x H
has as its elements all pairs of the form (g, h) such
that g belongs to G and h belongs to H. This definition
shows how to build the elements of G X H out of the
elements of G and the elements of H. But to define a
group we need to do more: we are given binary oper-
ations on G and H and we must use them to build a
binary operation on G x H. If g; and g; are elements of
G,letus write gy g» for the result of applying G’s binary
operation to them, as is customary, and let us do the
same for H. Then there is an obvious binary operation
we can define on the pairs, namely

(g1,h1)(g2,h2) = (9192, h1h2).
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That is, one applies the binary operation from G to the
first coordinate and the binary operation from H to the
second.

One can form products of vector spaces in a very sim-
ilar way. If V and W are two vector spaces, then the ele-
ments of V x W are all pairs of the form (v, w) with
v in V and w in W. Addition and scalar multiplication
are defined by the formulas

(v, wy) + (v2,w2) = (V) + vz, w + wp)
and

Alv,w) = (Av,Aw).

The dimension of the resulting space is the sum of the
dimensions of V and W. (It is actually more usual to
denote this space by V@ W and call it the direct sum of
V and W. Nevertheless, it is a product construction.)

It is not always possible to define product structures
in this simple way. For example, if F and F' are two
fields, we might be tempted to define a “product field”
F x F" using the formulas

(x1,71) + (x2,¥2) = (x1 +x2,¥1 +2)
and

(x1, 1) (x2,¥2) = (x1x2,¥1)2).

However, this definition does not give us a field. Most
of the axioms hold, including the existence of additive
and multiplicative identities—they are (0,0) and (1, 1),
respectively—but the nonzero element (1,0) does not
have a multiplicative inverse, since the product of (1, 0)
and (x, y) is (x,0), which can never equal (1,1).

Occasionally we can define more complicated binary
operations that do make the set F x [’ into a field. For
instance, if F = F’ = R, then we can define addition as
above but define multiplication in a less obvious way
as follows:

(x1,71)(x2,¥2) = (x1X2 — Y12, X1 Y2 + X2)1).

Then we obtain C, the field of complex numbers, since
the pair (x, ¥) can be identified with the complex num-
ber x + iy. However, this is not a product field in the
general sense we are discussing.

Returning to groups, what we defined earlier was the
direct product of G and H. However, there are other,
more complicated products of groups, which can be
used to give a much richer supply of examples. To illus-
trate this, let us consider the dihedral group D4, which
is the group of all symmetries of a square, of which
there are eight. If we let R stand for one of the reflec-
tions and T for a counterclockwise quarter turn, then
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every symmetry can be written in the form T'R/, where
1is 0,1, 2, or 3 and j is O or 1. (Geometrically, this says
that you can produce any symmetry by either rotat-
ing through a multiple of 90° or reflecting and then
rotating.)

This suggests that we might be able to regard D4 as
a product of the group {I, T, T2, T3}, consisting of four
rotations, with the group {I, R}, consisting of the iden-
tity I and the reflection R. We could even write (T, R7)
instead of T'R/. However, we have to be careful. For
instance, (TR)(TR) does not equal T°R? = T2 but I.
The correct rule for multiplication can be deduced from
the fact that RTR = T~ ! (which in geometrical terms is
saying that if you reflect the square, rotate it counter-
clockwise through 90°, and reflect back, then the result
is a clockwise rotation through 90°). It turns out to be

(T, RI)(TY RV = (T OV RITT),

For example, the product of (T,R) with (T3,R) is
T-2R?, which equals T2.

This is a simple example of a “semidirect product” of
two groups. In general, given two groups G and H, there
may be several interesting ways of defining a binary
operation on the set of pairs (g,h), and therefore
several potentially interesting new groups.

3.3 Quotients

Let us write Q[x] for the set of all polynomials in the
variable x with rational coefficients: that is, expres-
sions like 2x4 — %x + 6. Any two such polynomials
can be added, subtracted, or multiplied together and
the result will be another polynomial. This makes Q[x]
into a commutative ring, but not a field, because if you
divide one polynomial by another then the result is not
(necessarily) a polynomial.

We will now convert Q[x] into a field in what may at
first seem a rather strange way: by regarding the poly-
nomial x3 — x — 1 as “equivalent” to the zero polyno-
mial. To put this another way, whenever a polynomial
involves x3 we will allow ourselves to replace x3 by
x+1,and we will regard the new polynomial that results
as equivalent to the old one. For example, writing “~"
for “is equivalent to":

x° =x3x% ~ (x + Dx? = x? + x?
~x+1+x?=x%+x+1.

Notice that in this way we can convert any polynomial
into one of degree at most 2, since whenever the degree
is higher, you can reduce it by taking out x? from the
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term of highest degree and replacing it by x + 1, just
as we did above.

Notice also that whenever we do such a replacement,
the difference between the old polynomial and the new
one is a multiple of x3 — x — 1. For example, when we
replaced x3x2 by (x + 1)x? the difference was (x?
x — 1)x2. Therefore, what our process amounts to is
this: two polynomials are equivalent if and only if their
difference is a multiple of the polynomial x3 — x — 1.

Now the reason Q[ x ] was not a field was that noncon-
stant polynomials do not have multiplicative inverses.
For example, it is obvious that one cannot multiply x?
by a polynomial and obtain the polynomial 1. However,
we can obtain a polynomial that is equivalent to 1 if we
multiply by 1 + x — x2. Indeed, the product of the two
is
4

x?+x3 - x ~x%dx+1-(x+1)x=1.

It turns out that all polynomials that are not equivalent
to zero (that is, are not multiples of x* —x —1) have mul-
tiplicative inverses in this generalized sense. (To find an
inverse for a polynomial P one applies the generalized
EUCLID ALGORITHM [III.22] to find polynomials Q and R
such that PQ + R(x? —x —1) = 1. The reason we obtain
1 on the right-hand side is that x3 — x — 1 cannot be
factorized in Q[x] and P is not a multiple of x3 —x —1,
so their highest common factor is 1. The inverse of P
is then Q.)

In what sense does this mean that we have a field?
After all, the product of x2 and 1 + x — x2 was not 1: it
was merely equivalent to 1. This is where the notion
of quotients comes in. We simply decide that when
two polynomials are equivalent, we will regard them as
equal, and we denote the resulting mathematical struc-
ture by Q[x]/(x3 — x — 1). This structure turns out
to be a field, and it turns out to be important as the
smallest field that contains @ and also has a root of
the polynomial X3 — X — 1. What is this root? It is sim-
ply x. This is a slightly subtle point because we are
now thinking of polynomials in two different ways: as
elements of Q[x]/(x3 — x — 1) (at least when equiv-
alent ones are regarded as equal), and also as func-
tions defined on Q[x]/(x® — x — 1). So the polyno-
mial X3 — X — 1 is not the zero polynomial, since for
example it takes the value 5 when X = 2 and the value
x0-x2 -1 ~(x+1)2-x%2-1~2x when X = x2,

You may have noticed a strong similarity between the
discussion of the field Q[x]/(x3® — x — 1) and the dis-
cussion of the field Q(y) at the end of section 2.2. And
indeed, this is no coincidence: they are two different
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ways of describing the same field. However, thinking of
the field as Q@[x]/(x3 — x — 1) brings significant advan-
tages, as it converts questions about a mysterious set
of complex numbers into more approachable questions
about polynomials.

What does it mean to “regard two mathematical
objects as equal” when they are not equal? A formal
answer to this question uses the notion of equivalence
relations and equivalence classes (discussed in THE
LANGUAGE AND GRAMMAR OF MATHEMATICS [I.2 §2.3]):
one says that the elements of Q[x]/(x? —x — 1) are not
in fact polynomials but equivalence classes of polyno-
mials. However, to understand the notion of a quotient
it is much easier to look at an example with which we
are all familiar, namely the set @ of rational numbers. If
we are trying to explain carefully what a rational num-
ber is, then we may start by saying that a typical rational
number has the form a/b, where a and b are integers
and b is not 0. And it is possible to define the set of
rational numbers to be the set of all such expressions,
with the rules

E+£:ad+bc

b d bd
and

ac _ ac

bd bd’

However, there is one very important further remark
we must make, which is that we do not regard all such
expressions as different: for example, % and % are sup-
posed to be the same rational number. So we define two
expressions % and f; to be equivalent if ad = bc and
we regard equivalent expressions as denoting the same
number. Notice that the expressions can be genuinely
different, but we think of them as denoting the same
object.

If we do this, then we must be careful whenever we
define functions and binary operations. For example,
suppose we tried to define a binary operation “c” on @
by the natural-looking formula

a ¢ a+c

p’d b+d
This definition turns out to have a very serious flaw. To
see why, let us apply it to the fractions % and % Then
it gives us the answer % Now let us replace ;— by the
equivalent fraction % and apply the formula again. This
time it gives us the answer :5‘, which is different. Thus,
although the formula defines a perfectly good binary
operation on the set of expressions of the form ;—:, it
does not make any sense as a binary operation on the
set of rational numbers.
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In general, it is essential to check that if you put
equivalent objects in then you get equivalent objects
out. For example, when defining addition and multipli-
cation for the field Q[x]/(x® — x — 1), one must check
that if P and P’ differ by a multiple of x* — x — 1, and
Q and Q' also differ by a multiple of x? — x — 1, then
sodoP +Q and P’ + Q’, and so do PQ and P'Q’. This
is an easy exercise.

An important example of a quotient construction is
that of a quotient group. If G is a group and H is a
subgroup of G, then it is natural to try to do what we did
for polynomials and define g; and g» to be equivalent if
g]’lgz (the obvious notion of the “difference” between
g1 and g»2) belongs to H. The equivalence class of an
element g is easily seen to be the set of all elements
gh such that h € H, which is usually written gH. (It is
called a left coset of H.)

There is a natural candidate for a binary operation
* on the set of all left cosets: g1H * goH = g1g2H.
In other words, given two left cosets, pick elements g,
and g» from each, form the product g; g2, and take the
left coset g1g2H. Once again, it is important to check
that if you pick different elements from the original
cosets, then you will still get the coset g;g2H. It turns
out that this is not always the case: one needs the addi-
tional assumption that H is a normal subgroup, which
means that if h is any element of H, then ghg ! is
an element of H for every element g of G. Elements
of the form ghg ! are called conjugates of h; thus, a
normal subgroup is a subgroup that is “closed under
conjugation.”

If H is a normal subgroup, then the set of left cosets
forms a group under the binary operation just defined.
This group is written G/H and is called the quotient
of G by H. One can regard G as a product of H and
G /H (though it may be a somewhat complicated prod-
uct), so if you understand both H and G/H, then for
many purposes you understand G. Therefore, groups
G that do not have normal subgroups (other than G
itself and the subgroup that consists of just the iden-
tity element) have a special role, a bit like the role of
prime numbers in number theory. They are called sim-
ple groups. (See THE CLASSIFICATION OF FINITE SIMPLE
GROUPS [V.7].)

Why is the word “quotient” used? Well, a quotient is
normally what you get when you divide one number
by another, so to understand the analogy let us think
about dividing 21 by 3. We can think of this as divid-
ing up twenty-one objects into sets of three objects
each and asking how many sets we get. This can be
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described in terms of equivalence as follows. Let us call
two objects equivalent if they belong to the same one of
the seven sets. Then there can be at most seven inequiv-
alent objects. So when we regard equivalent objects as
the same, we “divide out by the equivalence,” obtaining
a “quotient set” that has seven elements.

A rather different use of quotients leads to an elegant
definition of the mathematical shape known as a torus:
that is, the shape of the surface of a doughnut (of the
kind that has a hole). We start with the plane, B2, and
define two points (x, y) and (x’,y') to be equivalent
if x — x" and y — ' are both integers. Suppose that we
regard any two equivalent points as the same and that
we start at a point (x, y) and move right until we reach
the point (x + 1, y). This point is “the same” as (x, y),
since the difference is (1,0). Therefore, it is as though
the entire plane has been wrapped around a vertical
cylinder of circumference 1 and we have gone around
this cylinder once. If we now apply the same argument
to the y-coordinate, noting that (x, y) is always “the
same” point as (x, y +1), then we find that this cylinder
is itself “folded around” so that if you go “upwards” by
a distance of 1 then you get back to where you started.
But that is what a torus is: a cylinder that is folded back
into itself. (This is not the only way of defining a torus,
however. For example, it can be defined as the product
of two circles.)

Many other important objects in modern geometry
are defined using quotients. It often happens that the
object one starts with is extremely big, but that at the
same time the equivalence relation is very generous, in
the sense that it is easy for one object to be equivalent
to another. In that case the number of “genuinely dis-
tinct” objects can be quite small. This is a rather loose
way of talking, since it is not really the number of dis-
tinct objects that is interesting so much as the complex-
ity of the set of these objects. It might be better to say
that one often starts with a hopelessly large and com-
plicated structure but “divides out most of the mess”
and ends up with a quotient object that has a structure
that is simple enough to be manageable while still con-
veying important information. Good examples of this
are the FUNDAMENTAL GROUP [IV.6 §2] and the HOMOL-
OGY AND COHOMOLOGY GROUPS [IV.6 §4] of a topolog-
ical space; an even better example is the notion of a
MODULI SPACE [IV.8].

Many people find the idea of a quotient somewhat
difficult to grasp, but it is of major importance through-
out mathematics, which is why it has been discussed at
some length here.
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4 Functions between Algebraic Structures

One rule with almost no exceptions is that mathemat-
ical structures are not studied in isolation: as well as
the structures themselves one looks at certain functions
defined on those structures. In this section we shall see
which functions are worth considering, and why. (For a
discussion of functions in general, see THE LANGUAGE
AND GRAMMAR OF MATHEMATICS [I.2 §2.2].)

4.1 Homomorphisms, Isomorphisms, and
Automorphisms

If X and Y are two examples of a particular mathemat-
ical structure, such as a group, field, or vector space,
then, as was suggested in the discussion of symme-
try in section 2.1, there is a class of functions from X
to Y of particular interest, namely the functions that
“preserve the structure.” Roughly speaking, a function
f X — Y is said to preserve the structure of X if,
given any relationship between elements of X that is
expressed in terms of that structure, there is a corre-
sponding relationship between the images of those ele-
ments that is expressed in terms of the structure of Y.
For example, if X and Y are groups and a, b, and c are
elements of X such that ab = c, then, if f is to preserve
the algebraic structure of X, f(a)f(b) must equal f(c)
in Y. (Here, as is usual, we are using the same notation
for the binary operations that make X and Y groups
as is normally used for multiplication.) Similarly, if X
and Y are fields, with binary operations that we shall
write using the standard notation for addition and mul-
tiplication, then a function f : X — Y will be interest-
ing only if f(a) + f(b) = f(c) whenever a + b = ¢
and f(a)f(b) = f(c) whenever ab = c. For vector
spaces, the functions of interest are ones that preserve
linear combinations: if V and W are vector spaces, then
f(av + bw) should always equal af(v) + b f(w).

A function that preserves structure is called a ho-
momorphism, though homomorphisms of particular
mathematical structures often have their own names:
for example, a homomorphism of vector spaces is
called a linear map.

There are some useful properties that a homomor-
phism may have if we are lucky. To see why further
properties can be desirable, consider the following
example. Let X and Y be groups and let f : X — Y be the
function that takes every element of X to the identity
element e of Y. Then, according to the definition above,
f preserves the structure of X, since whenever ab = ¢,
we have f(a)f(b) = ee = e = f(c). However, it seems
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more accurate to say that f has collapsed the struc-
ture. One can make this idea more precise: although
f(a)f(b) = f(c) whenever ab = ¢, the converse does
not hold: it is perfectly possible for f(a)f(b) to equal
f(c) without ab equaling ¢, and indeed that happens
in the example just given.

An isomorphism between two structures X and Y
is a homomorphism f : X — Y that has an inverse
g 'Y — X that is also a homomorphism. For most
algebraic structures, if f has an inverse g, then g is
automatically a homomorphism; in such cases we can
simply say that an isomorphism is a homomorphism
that is also a BIJECTION [I.2 §2.2]. That is, f is a one-to-
one correspondence between X and Y that preserves
structure.!

If X and Y are fields, then these considerations are
less interesting: it is a simple exercise to show that
every homomorphism f : X — Y that is not identically
zero is automatically an isomorphism between X and
its image f(X), that is, the set of all values taken by
the function f. So structure cannot be collapsed with-
out being lost. (The proof depends on the fact that the
zero in Y has no multiplicative inverse.)

In general, if there is an isomorphism between two
algebraic structures X and Y, then X and Y are said
to be isomorphic (coming from the Greek words for
“same” and “shape”). Loosely, the word “isomorphic”
means “the same in all essential respects,” where what
counts as essential is precisely the algebraic structure.
What is absolutely not essential is the nature of the
objects that have the structure: for example, one group
might consist of certain complex numbers, another of
integers modulo a prime p, and a third of rotations of
a geometrical figure, and they could all turn out to be
isomorphic. The idea that two mathematical construc-
tions can have very different constituent parts and yet
in a deeper sense be “the same” is one of the most
important in mathematics.

An automorphism of an algebraic structure X is an
isomorphism from X to itself. Since it is hardly sur-
prising that X is isomorphic to itself, one might ask
what the point is of automorphisms. The answer is that
automorphisms are precisely the algebraic symmetries

1. Let us see how this claim is proved for groups. If X and Y are
groups, f : X — Y is a homomorphism with inverse g : Y — X, and
u, v, and w are elements of Y with uv = w, then we must show that
glu)g(v) = g(w). To do this, leta = g(u), b = g(v),and d = g(w).
Since f and g are inverse functions, f(a) = u, f(b) = v, and f(d) =
w. Now let ¢ = ab. Then w = uv = f(a)f(b) = f(c), since f is a
homomorphism. But then f(c¢) = f(d), which implies that ¢ = d (just
apply the function g to f(c¢) and f(d)). Therefore ab = d, which tells
us that g(u)g(v) = g(w), as we needed to show.
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alluded to in our discussion of groups. An automor-
phism of X is a function from X to itself that preserves
the structure (which now comes in the form of state-
ments like ab = c). The composition of two automor-
phisms is clearly a third, and as a result the automor-
phisms of a structure X form a group. Although the
individual automorphisms may not be of much inter-
est, the group certainly is, as it often encapsulates what
one really wants to know about a structure X thatis too
complicated to analyze directly.

A spectacular example of this is when X is a field.
To illustrate, let us take the example of Q(/2). If f :
Q(v/2) — Q(+/2) is an automorphism, then f(1) = 1.
(This follows easily from the fact that 1 is the only mul-
tiplicative identity.) It follows that f(2) = f(1 +1) =
f() + f(1) = 1+ 1 = 2. Continuing like this, we
can show that f(n) = n for every positive integer n.
Then f(n) + f(-n) = f(n+ (-n)) = f(0) = 0, so
f(-n) = —f(n) = —n.Finally, f(p/q) = f(p)/f(q) =
p/q when p and q are integers with g # 0. So f takes
every rational number to itself. What can we say about
fF(V2)? Well, f(V2)f(V2) = fF(V2-V2) = f(2) = 2,
but this implies only that f(+/2) is /2 or —+/2. It turns
out that both choices are possible: one automorphism
is the “trivial” one, f(a+b+/2) = a+b+/2, and the other
is the more interesting one, f(a + b\/2) = a — b/2.
This observation demonstrates that there is no alge-
braic difference between the two square roots; in this
sense, the field Q(v/2) does not know which square root
of 2 is positive and which negative. These two automor-
phisms form a group, which is isomorphic to the group
consisting of the elements 1 under multiplication, or
the group of integers modulo 2, or the group of sym-
metries of an isosceles triangle that is not equilateral,
or.... The list is endless.

The automorphism groups associated with certain
field extensions are called Galois groups, and are a vital
component of the proof of THE INSOLUBILITY OF THE
QUINTIC [V.21], as well as large parts of ALGEBRAIC
NUMBER THEORY [IV.1].

An important concept associated with a homomor-
phism ¢ between algebraic structures is that of a ker-
nel. This is defined to be the set of all elements x of X
such that ¢(x) is the identity element of Y (where this
means the additive identity if X and Y are structures
that involve both additive and multiplicative binary
operations). The kernel of a homomorphism tends to
be a substructure of X with interesting properties. For
instance, if G and K are groups, then the kernel of a
homomorphism from G to K is a normal subgroup of
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G; and conversely, if H is a normal subgroup of G, then
the quotient map, which takes each element g to the
left coset gH, is a homomorphism from G to the quo-
tient group G /H with kernel H. Similarly, the kernel of
any ring homomorphism is an IDEAL [IIL.81], and every
ideal I in a ring R is the kernel of a “quotient map”
from R to R/I. (This quotient construction is discussed
in more detail in RINGS, IDEALS, AND MODULES [II[.81].)

4.2 Linear Maps and Matrices

Homomorphisms between vector spaces have a dis-
tinctive geometrical property: they send straight lines
to straight lines. For this reason they are called lin-
ear maps, as was mentioned in the previous subsec-
tion. From a more algebraic point of view, the struc-
ture that linear maps preserve is that of linear combi-
nations: a function f from one vector space to another
is a linear map if f(au + bv) = af(u) + bf(v) for
every pair of vectors u, v € V and every pair of scalars
a and b. From this one can deduce the more general
assertion that f(a vy + - -+ + anvy) is always equal to
ayf(vy) + .- anf(vn).

Suppose that we wish to define a linear map from V
to W. How much information do we need to provide? In
order to see what sort of answer is required, let us begin
with a similar but slightly easier question: how much
information is needed to specify a point in space? The
answer is that, once one has devised a sensible coordi-
nate system, three numbers will suffice. If the point is
not too far from Earth’s surface then one might wish
to use its latitude, its longitude, and its height above
sea level, for instance. Can a linear map from V to W
similarly be specified by just a few numbers?

The answer is that it can, atleast if V and W are finite
dimensional. Suppose that V has a basis vy,..., v,, that
W has a basis wy,...,wy, and that f : V — W is the lin-
ear map we would like to specify. Since every vector in
V can be written in the form a; v +- - - +a, v, and since
flajvi+- - -+anvy)isalways equal toa; f(vy)+-- -+
anf(vy), once we decide what f(vy),..., f(vy,) are we
have specified f completely. But each vector f(v;) is
a linear combination of the basis vectors wy,..., wy:
that is, it can be written in the form

Sj) =ajjw; + -+ amjwn.

Thus, to specify an individual f(v;) needs m numbers,
the scalars aj,..., am;. Since there are n different vec-
tors v, the linear map is determined by the mn num-
bers a;j, where i runs from 1 to m and j from 1 to n.
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These numbers can be written in an array, as follows:
ap a2z - Ain
az a2 e azn

amn)

An array like this is called a matrix. It is important to
note that a different choice of basis vectors for V and
W would lead to a different matrix, so one often talks
of the matrix of f relative to a given pair of bases (a
basis for V and a basis for W).

Now suppose that f is a linear map from V to W and
that g is a linear map from U to V. Then fg stands for
the linear map from U to W obtained by doing first g,
then f. If the matrices of f and g, relative to certain
bases of U, V, and W, are A and B, then what is the
matrix of fg? Towork it out, one takes a basis vector uy
of U and applies to it the function g, obtaining a linear
combination by, v + - - - + by Uy, of the basis vectors of
V. To this linear combination one applies the function
f, obtaining a rather complicated linear combination
of linear combinations of the basis vectors wy,...,w,,
of W.

Pursuing this idea, one can calculate that the entry in
row i and column j of the matrix P of fg is a;byj +
aipbyj+- - +aiyby;. This matrix P is called the product
of A and B and is written AB. If you have not seen this
definition then you will find it hard to grasp, but the
main point to remember is that there is a way of calcu-
lating the matrix for fg from the matrices A and B of f
and g, and that this matrix is denoted AB. Matrix mul-
tiplication of this kind is associative but not commuta-
tive. That is, A(BC) is always equal to (AB)C but AB is
not necessarily the same as BA. The associativity fol-
lows from the fact that composition of the underlying
linear maps is associative: if A, B, and C are the matrices
of f, g, and h, respectively, then A(BC) is the matrix
of the linear map “do h-then-g, then f” and (AB)C is
the matrix of the linear map “do h, then g-then-f,” and
these are the same linear map.

Let us now confine our attention to automorphisms
from a vector space V to itself. These are linear maps
f :V — V that can be inverted; that is, for which there
exists a linear map g : V — V such that fg(v) =
gf(v) = v for every vector v in V. These we can think
of as “symmetries” of the vector space V, and as such
they form a group under composition. If V is n dimen-
sional and the scalars come from the field F, then this
group is called GL,, (F). The letters “G” and “L” stand for
“general” and “linear”; some of the most important and
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difficult problems in mathematics arise when one tries
tounderstand the structure of the general linear groups
(and related groups) for certain interesting fields FF (see
REPRESENTATION THEORY [IV.9 §§5,6]).

While matrices are very useful, many interesting
linear maps are between infinite-dimensional vector
spaces, and we close this section with two examples
for the reader who is familiar with elementary calcu-
lus. (There will be a brief discussion of calculus later in
this article.) For the first, let V be the set of all func-
tions from R to R that can be differentiated and let W
be the set of all functions from R to R. These can be
made into vector spaces in a simple way: if f and g
are functions, then their sum is the function h defined
by the formula h(x) = f(x) + g(x), and if a is a real
number then af is the function k defined by the for-
mula k(x) = af(x). (So, for example, we could regard
the polynomial x2 + 3x + 2 as a linear combination of
the functions x2, x, and the constant function 1.) Then
differentiation is a linear map (from V to W), since the
derivative (af + bg)' is af’ + bg'. This is clearer if we
write D f for the derivative of f: then we are saying that
D(af + bg) =aDf + bDg.

A second example uses integration. Let V be another
vector space of functions, and let u be a function of two
variables. (The functions involved have to have certain
properties for the definition to work, but let us ignore
the technicalities.) Then we can define a linear map T
on the space V by the formula

(Tf)(x) = ju(x.y)f(y) dy.

Definitions like this one can be hard to take in, because
they involve holding in one’s mind three different lev-
els of complexity. At the bottom we have real numbers,
denoted by x and y. In the middle are functions like f,
u, and T f, which turn real numbers (or pairs of them)
into real numbers. At the top is another function, T, but
the “objects” that it transforms are themselves func-
tions: it turns a function like f into a different func-
tion T f. This is just one example where it is important
to think of a function as a single, elementary “thing”
rather than as a process of transformation. (See the dis-
cussion of functions in THE LANGUAGE AND GRAMMAR
OF MATHEMATICS [I.2 §2.2].) Another remark that may
help to clarify the definition is that there is a very close
analogy between the role of the two-variable function
u(x,y) and the role of a matrix a;; (which can itself
be thought of as a function of the two integer vari-
ables i and j). Functions like u are sometimes called
kernels (which should not be confused with kernels of
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homomorphisms). For more about linear maps between
infinite-dimensional spaces, see OPERATOR ALGEBRAS
[IV.15] and LINEAR OPERATORS [II.50].

4.3 Eigenvalues and Eigenvectors

Let V be a vector space and let S : V — V be a lin-
ear map from V to itself. An eigenvector of S is a
nonzero vector v in V such that Sv is proportional to
v; that is, Sv = Av for some scalar A. The scalar in
question is called the eigenvalue corresponding to v.
This simple pair of definitions is extraordinarily impor-
tant: it is hard to think of any branch of mathemat-
ics where eigenvectors and eigenvalues do not have a
major part to play. But what is so interesting about Sv
being proportional to v? A rather vague answer is that
in many cases the eigenvectors and eigenvalues associ-
ated with a linear map contain all the information one
needs about the map, and in a very convenient form.
Another answer is that linear maps occur in many dif-
ferent contexts, and questions that arise in those con-
texts often turn out to be questions about eigenvec-
tors and eigenvalues, as the following two examples
illustrate.

First, imagine that you are given a linear map T
from a vector space V to itself and want to understand
what happens if you perform the map repeatedly. One
approach would be to pick a basis of V, work out the
corresponding matrix A of T, and calculate the pow-
ers of A by matrix multiplication. The trouble is that
the calculation will be messy and uninformative, and it
does not really give much insight into the linear map.

However, it often happens that one can pick a very
special basis, consisting only of eigenvectors, and in
that case understanding the powers of T becomes easy.
Indeed, suppose that the basis vectors are vy, v2,..., Uy
and that each v; is an eigenvector with corresponding
eigenvalue A;. That is, suppose that T(v;) = A;v; for
every i. If w is any vector in V, then there is exactly
one way of writing it in the form a vy + - -+ + apvy,
and then

T(w) =Aia1vy + -+ + Apanvy.

Roughly speaking, this says that T stretches the part of
w in direction v; by a factor of A;. But now it is easy
to say what happens if we apply T not just once but m
times to w. The result will be

T™(w) = Al'a vy + - - -+ Ata, vy,

In other words, now the amount by which we stretch in
the v; direction is A}", and that is all there is to it.
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Why should one be interested in doing linear maps
over and over again? There are many reasons: one fairly
convincing one is that this sort of calculation is exactly
what Google does in order to put Web sites into a useful
order. Details can be found in THE MATHEMATICS OF
ALGORITHM DESIGN [VIL5].

The second example concerns the interesting prop-
erty of the EXPONENTIAL FUNCTION [lI.25] e*: that
its derivative is the same function. In other words, if
f(x) = e¥, then f'(x) = f(x). Now differentiation,
as we saw earlier, can be thought of as a linear map,
and if f'(x) = f(x) then this map leaves the func-
tion f unchanged, which says that f is an eigenvec-
tor with eigenvalue 1. More generally, if g(x) = e’\x,
then g'(x) = AeM = Ag(x), so g is an eigenvector of
the differentiation map, with eigenvalue A. Many linear
differential equations can be thought of as asking for
eigenvectors of linear maps defined using differentia-
tion. (Differentiation and differential equations will be
discussed in the next section.)

5 Basic Concepts of Mathematical Analysis

Mathematics took a huge leap forward in sophistication
with the invention of calculus, and the notion that one
can specify a mathematical object indirectly by means
of better and better approximations. These ideas form
the basis of a broad area of mathematics known as
analysis, and the purpose of this section is to help the
reader who is unfamiliar with them. However, it will not
be possible to do full justice to the subject, and what is
written here will be hard to understand without at least
some prior knowledge of calculus.

5.1 Limits

In our discussion of real numbers (section 1.4) there
was a brief discussion of the square root of 2. How
do we know that 2 has a square root? One answer
is the one given there: that we can calculate its dec-
imal expansion. If we are asked to be more precise,
we may well end up saying something like this. The
real numbers 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...,
which have terminating decimal expansions (and are
therefore rational), approach another real number x =
1.4142135.... We cannot actually write down x prop-
erly because it has an infinite decimal expansion but we
can at least explain how its digits are defined: for exam-
ple, the third digit after the decimal point is a 4 because
1.414 is the largest multiple of 0.001 that squares to
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less than 2. It follows that the squares of the origi-
nal numbers, 1, 1.96, 1.9881, 1.999396, 1.99996164,
1.9999899241,..., approach 2, and this is why we are
entitled to say that x2 = 2.

Suppose that we are asked to determine the length
of a curve drawn on a piece of paper, and that we
are given a ruler to help us. We face a problem: the
ruler is straight and the curve is not. One way of tack-
ling the problem is as follows. First, draw a few points
Po,P1,P2,..., P, along the curve, with Py at one end and
P, at the other. Next, measure the distance from Py
to Py, the distance from P; to P2, and so on up to P,.
Finally, add all these distances up. The result will not
be an exactly correct answer, but if there are enough
points, spaced reasonably evenly, and if the curve does
not wiggle too much, then our procedure will give us a
good notion of the “approximate length” of the curve.
Moreover, it gives us a way to define what we mean by
the “exact length”: suppose that, as we take more and
more points, we find that the approximate lengths, in
the sense just defined, approach some number [. Then
we say that [ is the length of the curve.

In both these examples there is a number that we
reach by means of better and better approximations.
I used the word “approach” in both cases, but this is
rather vague, and it is important to make it precise. Let
ap,ap,as,... beasequence of real numbers. What does
it mean to say that these numbers approach a specified
real number [?

The following two examples are worth bearing in
mind. The first is the sequence é , %, 3, ;, ....In asense,
the numbers in this sequence approach 2, since each
one is closer to 2 than the one before, but it is clear
that this is not what we mean. What matters is not so
much that we get closer and closer, but that we get arbi-
trarily close, and the only number that is approached in
this stronger sense is the obvious “limit,” 1.

A second sequence illustrates this in a different way:
1,0, %,O, %.0, _11,0,.... Here, we would like to say that
the numbers approach 0, even though it is not true that
each one is closer than the one before. Nevertheless, it
is true that eventually the sequence gets as close as you
like to 0 and remains at least that close.

This last phrase serves as a definition of the mathe-
matical notion of a limit: the limit of the sequence of
numbers a,a,,as,... is l if eventually the sequence
gets as close as you like to | and remains that close.
However, in order to meet the standards of precision
demanded by mathematics, we need to know how to
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translate English words like “eventually” into mathe-
matics, and for this we need QUANTIFIERS [L.2 §3.2].

Suppose ¢ is a positive number (which one usually
imagines as small). Let us say that a, is -close to [ if
|a, — 1, the difference between a,, and [, is less than &.
What would it mean to say that eventually the sequence
gets d-close to | and stays there? It means that from
some point onwards, all the a, are §-close to [. And
what is the meaning of “from some point onwards”?
It is that there is some number N (the point in ques-
tion) with the property that a, is 6-close to [ from N
onwards—that is, for every n that is greater than or
equal to N. In symbols:

N ¥n >N a,is d-close tol.

It remains to capture the idea of “as close as you like.”
What this means is that the above sentence is true for
any 6 you might wish to specify. In symbols:

Vé6>0 AN Vn>=N ayisd-close tol.

Finally, let us stop using the nonstandard phrase “6-
close™:

Vé6>0 3IN Vn>=N |a, -1 <6.

This sentence is not particularly easy to understand.
Unfortunately (and interestingly in the light of the dis-
cussion in [.2 §4]), using a less symbolic language does
not necessarily make things much easier: “Whatever
positive 6 you choose, there is some number N such
that for all bigger numbers n the difference between
an and [ is less than 6.”

The notion of limit applies much more generally than
just to real numbers. If you have any collection of math-
ematical objects and can say what you mean by the dis-
tance between any two of those objects, then you can
talk of a sequence of those objects having a limit. Two
objects are now called 6-close if the distance between
them is less than 6, rather than the difference. (The
idea of distance is discussed further in METRIC SPACES
[IT.56].) For example, a sequence of points in space can
have a limit, as can a sequence of functions. (In the
second case it is less obvious how to define distance—
there are many natural ways to do it.) A further example
comes in the theory of fractals (see DYNAMICS [IV.14]):
the very complicated shapes that appear there are best
defined as limits of simpler ones.

Two other ways of saying “the limit of the sequence
ay,az,... is " are “a, converges to 1" and “a,, tends
to I.” One sometimes says that this happens as n tends
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to infinity. Any sequence that has a limit is called con-
vergent. If a, converges to | then one often writes
a, — L

5.2 Continuity

Suppose you want to know the approximate value of
2. Perhaps the easiest thing to do is to press a 1
button on a calculator, which displays 3.1415927, and
then an x?2 button, after which it displays 9.8696044.
Of course, one knows that the calculator has not actu-
ally squared 7r: instead it has squared the number
3.1415927. (If it is a good one, then it may have secretly
used a few more digits of m without displaying them,
but not infinitely many.) Why does it not matter that
the calculator has squared the wrong number?

A first answer is that it was only an approximate value
of 2 that was required. But that is not quite a complete
explanation: how do we know that if x is a good approx-
imation to 7t then x? is a good approximation to 1m2?
Here is how one might show this. If x is a good approx-
imation to 1, then we can write x = 1 + d for some
very small number § (which could be negative). Then
x2 = w2 4+ 28 + &2, Since & is small, so is 261 + 62,
so x2 is indeed a good approximation to 2.

What makes the above reasoning work is that the
function that takes a number x to its square is continu-
ous. Roughly speaking, this means that if two numbers
are close, then so are their squares.

To be more precise about this, let us return to the cal-
culation of 12, and imagine that we wish to work it out
to a much greater accuracy—so that the first hundred
digits after the decimal point are correct, for example.
A calculator will not be much help, but what we might
do is find a list of the digits of 7t (on the Internet you
can find sites that tell you atleast the first fifty million),
use this to define a new x that is a much better approx-
imation to 1, and then calculate the new x? by getting
a computer to do the necessary long multiplication.

How close to 1m do we need x to be for x? to be within
10 190 of 7122 To answer this, we can use our earlier
argument. Let x = 7+ 6 again. Then x2 -2 = 25 +62,
and an easy calculation shows that this has modulus
less than 107190 if § has modulus less than 1071°1, So
we will be all right if we take the first 101 digits of
after the decimal point.

More generally, however accurate we wish our esti-
mate of w2 to be, we can achieve this accuracy if we are
prepared to make x a sufficiently good approximation
to 7r. In mathematical parlance, the function f(x) = x?
is continuous at .
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Let us try to say this more symbolically. The state-
ment “x2 = 12 to within an accuracy of €” means that
|x? — %] < €. To capture the phrase “however accu-
rate,” we need this to be true for every positive €, so we
should start by saying Ve > 0. Now let us think about
the words “if we are prepared to make x a sufficiently
good approximation to m.” The thought behind them
is that there is some & > 0 for which the approxima-
tion is guaranteed to be accurate to within € as long
as x is within 6 of . That is, there exists a § > 0
such that if |x — 1| < & then it is guaranteed that
|[x2 — 12| < €. Putting everything together, we end up
with the following symbolic sentence:

VYe>0 35>0 (Ix -] <d=|x2—-12 <e).

To put that in words: “Given any positive number €
there is a positive number § such that if |x — 7| is less
than & then |x2 — 12| is less than €.” Earlier, we found
a & that worked when € was chosen to be 107 1%0: it was
lo—l()] .

What we have just shown is that the function f(x) =
x? is continuous at the point x = 1. Now let us gener-
alize this idea: let f be any function and let a be any

real number. We say that f is continuous at a if
Ve>0 35>0 (|x—al<d=|f(x)-fla)l <e).

This says that however accurate an estimate for f(a)
you wish f(x) to be, you can achieve this accuracy if
you are prepared to make x a sufficiently good approx-
imation to a. The function f is said to be continuous if
it is continuous at every a. Roughly speaking, what this
means is that f has no “sudden jumps.” (It also rules
out certain kinds of very rapid oscillations that would
also make accurate estimates difficult.)

As with limits, the idea of continuity applies in much
more general contexts, and for the same reason. Let
f be a function from a set X to a set Y, and sup-
pose that we have two notions of distance, one for ele-
ments of X and the other for elements of Y. Using the
expression d(x,a) to denote the distance between x
and a, and similarly for d(f(x), f(a)), one says that f
is continuous at a if

Ve>0 36>0 (d(x,a)<d=d(f(x), f(a)) <e€)

and that f is continuous if it is continuous at every a in
X. In other words, we replace differences such as |x —a|
by distances such as d(x, a).

Like homomorphisms (which are discussed in sec-
tion 4.1 above), continuous functions can be regarded
as preserving a certain sort of structure. It can be shown
that a function f is continuous if and only if, whenever
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a, — x,we also have f(a,) — f(x). That is, continu-
ous functions are functions that preserve the structure
provided by convergent sequences and their limits.

5.3 Differentiation

The derivative of a function f at a value a is usually pre-
sented as a number that measures the rate of change of
f(x) as x passes through a. The purpose of this sec-
tion is to promote a slightly different way of regarding
it, one that is more general and that opens the door
to much of modern mathematics. This is the idea of
differentiation as linear approximation.

Intuitively speaking, to say that f'(a) = m is to say
that if one looks through a very powerful microscope
at the graph of f in a tiny region that includes the
point (a, f(a)), then what one sees is almost exactly
a straight line of gradient m. In other words, in a suffi-
ciently small neighborhood of the point a, the function
f is approximately linear. We can even write down a
formula for the linear function g that approximates f:

g(x) = f(a) + m(x —a).

This is the equation of the straight line of gradient m
that passes through the point (a, f(a)). Another way
of writing it, which is a little clearer, is

gla+ h) = f(a)+ mh,

and to say that g approximates f in a small neighbor-
hood of a is to say that f(a + h) is approximately equal
to f(a) + mh when h is small.

One must be a little careful here: after all, if f does
not jump suddenly, then, when h is small, f(a + h)
will be close to f(a) and mh will be small, so f(a +
h) is approximately equal to f(a) + mh. This line of
reasoning seems to work regardless of the value of m,
and yet we wanted there to be something special about
the choice m = f'(a). What singles out that particular
value is that f(a +h) is not just close to f(a)+mh, but
so close that the difference e(h) = f(a+h)—f(a)—-mh
is small compared with h. That is, e(h)/h — 0 as h —
0. (This is a slightly more general notion of limit than
the one discussed in section 5.1. It means that you can
make €(h)/h as small as you like if you make h small
enough.)

The reason these ideas can be generalized is that the
notion of a linear map is much more general than sim-
ply a function from R to R of the form g(x) = mx + c.
Many functions that arise naturally in mathematics—
and also in science, engineering, economics, and many
other areas—are functions of several variables, and can
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therefore be regarded as functions defined on a vec-
tor space of dimension greater than 1. As soon as we
look at them this way, we can ask ourselves whether, in
a small neighborhood of a point, they can be approxi-
mated by linear maps. It is very useful if they can: a gen-
eral function can behave in very complicated ways, but
if it can be approximated by a linear function, then at
least in small regions of n-dimensional space its behav-
ior is much easier to understand. In this situation one
can use the machinery of linear algebra and matrices,
which leads to calculations that are feasible, especially
if one has the help of a computer.

Imagine, for instance, a meteorologist interested in
how the direction and speed of the wind change as
one looks at different parts of some three-dimensional
region above Earth’s surface. Wind behaves in compli-
cated, chaotic ways, but to get some sort of handle on
this behavior one can describe it as follows. To each
point (x, ¥, z) in the region (think of x and y as hori-
zontal coordinates and z as a vertical one) one can asso-
ciate a vector (u, v, w) representing the velocity of the
wind at that point: u, v, and w are the components of
the velocity in the x-, y-, and z-directions.

Now let us change the point (x, y, z) very slightly by
choosing three small numbers h, k, and [ and looking
at (x + h,y + k,z + ). At this new point, we would
expect the wind vector to be slightly different as well,
so let us write it (u + p,v + q,w + v). How does the
small change (p, gq,7) in the wind vector depend on the
small change (h, k, 1) in the position vector? Provided
the wind is not too turbulent and h, k, and [ are small
enough, we expect the dependence to be roughly linear:
that is how nature seems to work. In other words, we
expect there to be some linear map T such that (p, q,7)
is roughly T(h, k,l) when h, k, and [ are small. Notice
that each of p, q, and » depends on each of h, k, and [,
so nine numbers will be needed in order to specify this
linear map. In fact, we can express it in matrix form:

14 ajp ap a3\ (h
q|=|axn azxx azs||k
r asy as2 asz) \l

The matrix entries a;; express individual dependen-
cies. For example, if x and z are held fixed, then we are
setting h = | = 0, from which it follows that the rate
of change of u as just y varies is given by the entry
ay2. That is, a, is the partial derivative 0u [d7y at the
point (x,y, z).

This tells us how to calculate the matrix, but from
the conceptual point of view it is easier to use vector
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notation. Write x for (x, y, z), u(x) for (u,v,w), h for
(h,k,1), and p for (p,q,r). Then what we are saying is
that

p = T(h) + €(h)

for some vector €(h) that is small relative to h. Alter-
natively, we can write

u(x + h) =u(x) + T(h) + €(h),

a formula that is closely analogous to our earlier for-
mula g(x + h) = g(x) + mh + €(h). This tells us that
if we add a small vector h to x, then u(x) will change
by roughly T'(h).

More generally, let u be a function from R"™ to R™.
Then u is defined to be differentiable at a point x € R"
if there is a linear map T : R™ — R™ such that, once
again, the formula

u(x+h) =u(x)+ T(h)+ e(h)

holds, with €(h) small relative to h. The linear map T
is the derivative of u at x.

An important special case of this is when m = 1. If
f : R™ — R is differentiable at x, then the derivative
of f at x is a linear map from R" to R. The matrix of
T is a row vector of length n, which is often denoted
V f(x) and referred to as the gradient of f at x. This
vector points in the direction in which f increases most
rapidly and its magnitude is the rate of change in that
direction.

5.4 Partial Differential Equations

Partial differential equations are of immense impor-
tance in physics, and have inspired a vast amount of
mathematical research. Three basic examples will be
discussed here, as an introduction to more advanced
articles later in the volume (see, in particular, PARTIAL
DIFFERENTIAL EQUATIONS [IV.12]).

The first is the heat equation, which, as its name sug-
gests, describes the way the distribution of heat in a
physical medium changes with time:

oT 2T  2°T  2°T

ot (ax_2 Yozt E)'
Here, T(x,y,z,t) is a function that specifies the tem-
perature at the point (x, y, z) at time t.

It is one thing to read an equation like this and under-
stand the symbols that make it up, but quite another
to see what it really means. However, it is important to
do so, since of the many expressions one could write
down that involve partial derivatives, only a minority
are of much significance, and these tend to be the ones
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that have interesting interpretations. So let us try to
interpret the expressions involved in the heat equation.

The left-hand side, 0T /dt, is quite simple. It is the
rate of change of the temperature T(x,y,z,t) when
the spatial coordinates x, y, and z are kept fixed and
t varies. In other words, it tells us how fast the point
(x,y,z) is heating up or cooling down at time t. What
would we expect this to depend on? Well, heat takes
time to travel through a medium, so although the tem-
perature at some distant point (x',y’,z") will even-
tually affect the temperature at (x, y, z), the way the
temperature is changing right now (that is, at time t)
will be affected only by the temperatures of points very
close to (x,y, z): if points in the immediate neighbor-
hood of (x, y, z) are hotter, on average, than (x,y, z)
itself, then we expect the temperature at (x, y,z) to be
increasing, and if they are colder then we expect it to
be decreasing.

The expression in brackets on the right-hand side
appears so often that it has its own shorthand. The
symbol A, defined by

Af = aZ_f t al_f 1 a2_f

ox2  0oy? 0z?
is known as the Laplacian. What information does Af
give us about a function f? The answer is that it cap-
tures the idea in the last paragraph: it tells us how the
value of f at (x,y,z) compares with the average value
of f in a small neighborhood of (x, y, z), or, more pre-
cisely, with the limit of the average value in a neigh-
borhood of (x, y,z) as the size of that neighborhood
shrinks to zero.

This is not immediately obvious from the formula,
but the following (not wholly rigorous) argument in
one dimension gives a clue about why second deriva-
tives should be involved. Let f be a function that takes
real numbers to real numbers. Then to obtain a good
approximation to the second derivative of f at a point
x, one can look at the expression (f'(x)—f'(x —h))/h
for some small h. (If one substitutes —h for h in the
above expression, one obtains the more usual formula,
but this one is more convenient here.) The derivatives
f'(x) and f'(x — h) can themselves be approximated
by (f(x+h)-f(x))/hand (f(x)-f(x—h))/h,respec-
tively, and if we substitute these approximations into
the earlier expression, then we obtain

l(f(x th)— f(x)  f(x)-flx - h))

h h h '
which equals (f(x+h)—2f(x)+f(x —h))/h? Dividing
the top of this last fraction by 2, we obtain %(f(x + h)+
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f(x — h)) — f(x): that is, the difference between the
value of f at x and the average value of f at the two
surrounding points x + h and x — h.

In other words, the second derivative conveys just
the idea we want—a comparison between the value at
x and the average value near x. It is worth noting that
if f is linear, then the average of f(x —h) and f(x +h)
will be equal to f(x), which fits with the familiar fact
that the second derivative of a linear function f is zero.

Just as, when defining the first derivative, we have
to divide the difference f(x + h) — f(x) by h so that
it is not automatically tiny, so with the second deriva-
tive it is appropriate to divide by h?. (This is appropri-
ate, since, whereas the first derivative concerns linear
approximations, the second derivative concerns quad-
ratic ones: the best quadratic approximation for a func-
tion f near a value x is f(x + h) = f(x) + hf'(x) 4
;hzf"(x), an approximation that one can check is
exact if f was a quadratic function to start with.)

It is possible to pursue thoughts of this kind and
show that if f is a function of three variables then the
value of Af at (x,y,z) does indeed tell us how the
value of f at (x, ¥, z) compares with the average values
of f at points nearby. (There is nothing special about
the number 3 here—the ideas can easily be generalized
to functions of any number of variables.) All that is left
to discuss in the heat equation is the parameter k. This
measures the conductivity of the medium. If k is small,
then the medium does not conduct heat very well and
AT has less of an effect on the rate of change of the
temperature; if it is large then heat is conducted better
and the effect is greater.

A second equation of great importance is the Laplace
equation, Af = 0. Intuitively speaking, this says of a
function f that its value at a point (x, y, z) is always
equal to the average value at the immediately surround-
ing points. If f is a function of just one variable x,
this says that the second derivative of f is zero, which
implies that f is of the form ax + b. However, for two
or more variables, a function has more flexibility—it
can lie above the tangent lines in some directions and
below it in others. As a result, one can impose a variety
of boundary conditions on f (that is, specifications of
the values f takes on the boundaries of certain regions),
and there is a much wider and more interesting class
of solutions.

A third fundamental equation is the wave equation.
In its one-dimensional formulation it describes the
motion of a vibrating string that connects two points
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A and B. Suppose that the height of the string at dis-
tance x from A and at time t is written h(x,t). Then
the wave equation says that
1 2%h B 2°h
v2 3t ox?’
Ignoring the constant 1/v? for a moment, the left-hand
side of this equation represents the acceleration (in a
vertical direction) of the piece of string at distance x
from A. This should be proportional to the force acting
on it. What will govern this force? Well, suppose for a
moment that the portion of string containing x were
absolutely straight. Then the pull of the string on the
left of x would exactly cancel out the pull on the right
and the net force would be zero. So, once again, what
matters is how the height at x compares with the aver-
age height on either side: if the string lies above the
tangent line at x, then there will be an upwards force,
and if it lies below, then there will be a downwards one.
This is why the second derivative appears on the right-
hand side once again. How much force results from this
second derivative depends on factors such as the den-
sity and tautness of the string, which is where the con-
stant comes in. Since h and x are both distances, v?
has dimensions of (distance/time)?, which means that
v represents a speed, which is, in fact, the speed of
propagation of the wave.
Similar considerations yield the three-dimensional
wave equation, which is, as one might now expect,
1 2°h  9*h  3°h  3°h
v2 3t2  ox2  oy? oz’
or, more concisely,
1 %h
v2 o2
One can be more concise still and write this equation
as 0%h = 0, where (%h is shorthand for
1 9°h
v2 ot2"
The operation % is called the d’Alembertian, after
D'ALEMBERT [VL.20], who was the first to formulate the
wave equation.

= Ah.

Ah —

5.5 Integration

Suppose that a car drives down a long straight road for
one minute, and that you are told where it starts and
what its speed is during that minute. How can you work
out how far it has gone? If it travels at the same speed
for the whole minute then the problem is very simple
indeed—for example, if that speed is thirty miles per
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hour then we can divide by sixty and see that it has
gone half a mile—but the problem becomes more inter-
esting if the speed varies. Then, instead of trying to give
an exact answer, one can use the following technique to
approximate it. First, write down the speed of the car at
the beginning of each of the sixty seconds that it is trav-
eling. Next, for each of those seconds, do a simple cal-
culation to see how far the car would have gone during
that second if the speed had remained exactly as it was
at the beginning of the second. Finally, add up all these
distances. Since one second is a short time, the speed
will not change very much during any one second, so
this procedure gives quite an accurate answer. More-
over, if you are not satisfied with this accuracy, then
you can improve it by using intervals that are shorter
than a second.

If you have done a first course in calculus, then you
may well have solved such problems in a completely
different way. In a typical question, one is given an
explicit formula for the speed at time t —something like
at + u, for example—and in order to work out how far
the car has gone one “integrates” this function to obtain
the formula %at2 + ut for the distance traveled at time
t.Here, integration simply means the opposite of differ-
entiation: to find the integral of a function f is to find
a function g such that g'(t) = f(t). This makes sense,
because if g(t) is the distance traveled and f(t) is the
speed, then f(t) is indeed the rate of change of g(t).

However, antidifferentiation is not the definition of
integration. To see why not, consider the following
question: what is the distance traveled if the speed at
time ¢ is e ¢“? It is known that there is no nice function
(which means, roughly speaking, a function built up out
of standard ones such as polynomials, exponentials,
logarithms, and trigonometric functions) with et as
its derivative, yet the question still makes good sense
and has a definite answer. (It is possible that you have
heard of a function ¢ (t) that differentiates to e t'/2,
from which it follows that ¢ (t/2)/+/2 differentiates to
et However, this does not remove the difficulty, since
@ (t) is defined as the integral of e t°/2))

In order to define integration in situations like this
where antidifferentiation runs into difficulties, we must
fall back on messy approximations of the kind dis-
cussed earlier. A formal definition along such lines was
given by RIEMANN [VI.49] in the mid nineteenth cen-
tury. To see what Riemann’s basic idea is, and to see
also that integration, like differentiation, is a procedure
that can usefully be applied to functions of more than
one variable, let us look at another physical problem.

I. Introduction

Suppose that you have a lump of impure rock and
wish to calculate its mass from its density. Suppose also
that this density is not constant but varies rather irreg-
ularly through the rock. Perhaps there are even holes
inside, so that the density is zero in places. What should
you do?

Riemann's approach would be this. First, you enclose
the rock in a cuboid. For each point (x,y,z) in this
cuboid there is then an associated density d(x,y,z)
(which will be zero if (x, y, z) lies outside the rock or
inside a hole). Second, you divide the cuboid into a large
number of smaller cuboids. Third, in each of the small
cuboids you look for the point of lowest density (if any
point in the cuboid is not in the rock, then this density
will be zero) and the point of highest density. Let C be
one of the small cuboids and suppose that the lowest
and highest densities in C are a and b, respectively, and
that the volume of C is V. Then the mass of the part of
the rock that lies in C must lie between aV and bV.
Fourth, add up all the numbers aV that are obtained
in this way, and then add up all the numbers bV. If
the totals are M; and M3, respectively, then the total
mass of rock has to lie between M; and M>. Finally,
repeat this calculation for subdivisions into smaller and
smaller cuboids. As you do this, the resulting numbers
M, and M; will become closer and closer to each other,
and you will have better and better approximations to
the mass of the rock.

Similarly, his approach to the problem about the car
would be to divide the minute up into small intervals
and look at the minimum and maximum speeds during
those intervals. For each interval, this would give him
a pair of numbers a and b for which he could say that
the car had traveled a distance of at least a and at most
b. Adding up these sets of numbers, he could then say
that over the full minute the car must have traveled a
distance of at least D (the sum of the as) and at most
D> (the sum of the bs).

With both these problems we had a function (den-
sity/speed) defined on a set (the cuboid/a minute of
time) and in a certain sense we wanted to work out the
“total amount” of the function. We did so by dividing
the set into small parts and doing simple calculations
in those parts to obtain approximations to this amount
from below and above. This process is what is known as
(Riemann) integration. The following notation is com-
mon: if S is the set and f is the function, then the
total amount of f in S, known as the integral, is written
J¢ f(x)dx. Here, x denotes a typical element of S. If,
as in the density example, the elements of S are points
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(x,y,z), then vector notation such as ,fs f(x)dx can
be used, though often it is not and the reader is left to
deduce from the context that an ordinary “x” denotes
a vector rather than a real number.

We have been at pains to distinguish integration from
antidifferentiation, but a famous theorem, known as
the fundamental theorem of calculus, asserts that the
two procedures do, in fact, give the same answer, at
least when the function in question has certain continu-
ity properties that all “sensible” functions have. So it is
usually legitimate to regard integration as the opposite
of differentiation. More precisely, if f is continuous and
F(x) is defined to be I: f(t)dt for some a, then F can
be differentiated and F'(x) = f(x). That is, if you inte-
grate a continuous function and differentiate it again,
you get back to where you started. Going the other way
around, if F has a continuous derivative f and a < x,
then I: f(t)ydt = F(x) — F(a). This almost says that if
you differentiate F and then integrate it again, you get
back to F. Actually, you have to choose an arbitrary
number a and what you get is the function F with the
constant F(a) subtracted.

To get an idea of the sort of exceptions that arise if
one does not assume continuity, consider the so-called
Heaviside step function H(x), which is 0 when x < 0
and 1 when x > 0. This function has a jump at 0 and
is therefore not continuous. The integral J(x) of this
function is 0 when x < 0 and x when x > 0, and for
almost all values of x we have J'(x) = H(x). However,
the gradient of J suddenly changes at 0, so J is not
differentiable there and one cannot say that J'(0) =
H(0) = 1.

5.6 Holomorphic Functions

One of the jewels in the crown of mathematics is com-
plex analysis, which is the study of differentiable func-
tions that take complex numbers to complex numbers.
Functions of this kind are called holomorphic.

At first, there seems to be nothing special about such
functions, since the definition of a derivative in this
context is no different from the definition for functions
of a real variable: if f is a function then the derivative
f"(z) at a complex number z is defined to be the limit
as h tends to zero of (f(z + h) — f(z))/h. However, if
we look at this definition in a slightly different way (one
that we saw in section 5.3), we find that it is not alto-
gether easy for a complex function to be differentiable.
Recall from that section that differentiation means lin-
ear approximation. In the case of a complex function,
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this means that we would like to approximate it by func-
tions of the form g(w) = Aw + u, where A and p are
complex numbers. (The approximation near z will be
gw) = f(z) + f'(z)(w — z), which gives A = f'(z2)
and p = f(z) - zf'(2).)

Let us regard this situation geometrically. If A # 0
then the effect of multiplying by A is to expand z
by some factor » and to rotate it by some angle 6.
This means that many transformations of the plane
that we would ordinarily consider to be linear, such
as reflections, shears, or stretches, are ruled out. We
need two real numbers to specify A (whether we write
it in the form a + bi or rel?), but to specify a gen-
eral linear transformation of the plane takes four (see
the discussion of matrices in section 4.2). This reduc-
tion in the number of degrees of freedom is expressed
by a pair of differential equations called the Cauchy-
Riemann equations. Instead of writing f(z) let us write
u(x +iy) + iv(x + iy), where x and y are the real
and imaginary parts of z and u(x +1iy) and v(x +1iy)
are the real and imaginary parts of f(x +1iy). Then the
linear approximation to f near z has the matrix

ou oJu
ox oy
dv  ov
ax  dy

The matrix of an expansion and rotation always has the
form ( 9, Z ), from which we deduce that
ou _ v ou

an v
ox Jy oy

ox '

These are the Cauchy-Riemann equations. One conse-
quence of these equations is that

2%2u  2%u B 2%v 2%v

ax2 ' W B m N 0yox
(It is not obvious that the necessary conditions hold
for the symmetry of the mixed partial derivatives, but
when f is holomorphic they do.) Therefore, u sat-
isfies the Laplace equation (which was discussed in
section 5.4). A similar argument shows that v does
as well.

These facts begin to suggest that complex differen-
tiability is a much stronger condition than real differen-
tiability and that we should expect holomorphic func-
tions to have interesting properties. For the remainder
of this subsection, let us look at a few of the remarkable
properties that they do indeed have.

The first is related to the fundamental theorem of cal-
culus (discussed in the previous subsection). Suppose
that F is a holomorphic function and that we are given
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its derivative f and the value of F(u) for some complex
number u. How can we reconstruct F? An approximate
method is as follows. Let w be another complex num-
ber and let us try to work out F(w ). We take a sequence
of points z9,z;,...,zn with zop = u and z, = w, and
with the differences |z; — zol,|z2 — z1l,...,1zZn — Zn-1l
all small. We can then approximate F(z;,) — F(z;) by
(zi+1 — zi) f(zi). It follows that F(w) — F(u), which
equals F(zy,) — F(zp), is approximated by the sum of
all the (z;+1 — z;)f(z;). (Since we have added together
many small errors, it is not obvious that this approx-
imation is a good one, but it turns out that it is.) We
can imagine a number z that starts at u and follows a
path P to w by jumping from one z; to another in small
steps of 6z = z;,1 — z;. In the limit as n goes to infinity
and the steps 6z go to zero we obtain a so-called path
integral, which is denoted fp f(z)dz.

The above argument has the consequence that if the
path P begins and ends at the same point u, then the
path integral Ipf(z)dz is zero. Equivalently, if two
paths Py and P> have the same starting point u and the
same endpoint w, then the path integrals Ipl f(z)dz
and J'p2 f(z)dz are the same, since they both give the
value F(w) — F(u).

Of course, in order to establish this, we made the
big assumption that f was the derivative of a function
F. Cauchy’s theorem says that the same conclusion is
true if f is holomorphic. That is, rather than requiring
f to be the derivative of another function, it asks for
f itself to have a derivative. If that is the case, then
any path integral of f depends only on where the path
begins and ends. What is more, these path integrals
can be used to define a function F that differentiates
to f, so a function with a derivative automatically has
an antiderivative.

It is not necessary for the function f to be defined
on the whole of C for Cauchy’s theorem to be valid:
everything remains true if we restrict attention to a
simply connected domain, which means an OPEN SET
[II1.90] with no holes in it. If there are holes, then
two path integrals may differ if the paths go around
the holes in different ways. Thus, path integrals have
a close connection with the topology of subsets of
the plane, an observation that has many ramifications
throughout modern geometry. For more on topology,
see section 6.4 of this article and ALGEBRAIC TOPOLOGY
[IV.6].

A very surprising fact, which can be deduced from
Cauchy’s theorem, is that if f is holomorphic then it can
be differentiated twice. (This is completely untrue of
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real-valued functions: consider, for example, the func-
tion f where f(x) = 0 when x < 0 and f(x) = x?
when x > 0.) It follows that f’ is holomorphic, so it
too can be differentiated twice. Continuing, one finds
that f can be differentiated any number of times. Thus,
for complex functions differentiability implies infinite
differentiability. (This property is what is used to estab-
lish the symmetry, and even the existence, of the mixed
partial derivatives mentioned earlier.)

A closely related fact is that wherever a holomorphic
function is defined it can be expanded in a power series.
That is, if f is defined and differentiable everywhere on
an open disk of radius R about w, then it will be given
by a formula of the form

o
f(2)= 3 an(z—w)",
n=0
valid everywhere in that disk. This is called the Taylor
expansion of f.

Another fundamental property of holomorphic func-
tions, one that shows just how “rigid” they are, is that
their entire behavior is determined just by what they
do in a small region. That is, if f and g are holomor-
phic and they take the same values in some tiny disk,
then they must take the same values everywhere. This
remarkable fact allows a process of analytic continua-
tion. If it is difficult to define a holomorphic function
f everywhere you want it defined, then you can sim-
ply define it in some small region and say that else-
where it takes the only possible values that are consis-
tent with the ones that you have just specified. This is
how the famous RIEMANN ZETA FUNCTION [IV.2 §3] is
conventionally defined.

Finally, we mention a theorem of LIOUVILLE [VL39],
which states that if f is a holomorphic function defined
on the whole complex plane, and if f is bounded (that
is, if there is some constant C such that |f(z)| < C
for every complex number z), then f must be constant.
Once again, this is obviously false for real functions.
For example, the function sin(x) has no difficulty com-
bining boundedness with very good behavior: it can be
expanded in a power series that converges everywhere.
(However, if you use the power series to define an exten-
sion of the function sin(x) to the complex plane, then
the function you obtain is unbounded, as Liouville's
theorem predicts.)

6 What Is Geometry?

It is not easy to do justice to geometry in this arti-
cle because the fundamental concepts of the subject
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are either too simple to need explaining—for exam-
ple, there is no need to say here what a circle, line,
or plane is—or sufficiently advanced that they are bet-
ter discussed in parts IIl and IV of the book. However,
if you have not met the advanced concepts and have
no idea what modern geometry is like, then you will
get much more out of this book if you understand
two basic ideas: the relationship between geometry and
symmetry, and the notion of a manifold. These ideas
will occupy us for the rest of the article.

6.1 Geometry and Symmetry Groups

Broadly speaking, geometry is the part of mathemat-
ics that involves the sort of language that one would
conventionally regard as geometrical, with words such
as “point,” “line,” “plane,” “space,” “curve,” “sphere,”
“cube,” “distance,” and “angle” playing a prominent
role. However, there is a more sophisticated view, first
advocated by KLEIN [VL.57], that regards transforma-
tions as the true subject matter of geometry. So, to
the above list one should add words like “reflection,”
translation,” “stretch,” “shear,” and “pro-
jection,” together with slightly more nebulous con-
cepts such as “angle-preserving map” or “continuous
deformation.”

"o« " o«

“rotation,

As was discussed in section 2.1, transformations go
hand in hand with groups, and for this reason there is
an intimate connection between geometry and group
theory. Indeed, given any group of transformations,
there is a corresponding notion of geometry, in which
one studies the phenomena that are unaffected by
transformations in that group. In particular, two shapes
are regarded as equivalent if one can be turned into the
other by means of one of the transformations in the
group. Different groups will of course lead to differ-
ent notions of equivalence, and for this reason mathe-
maticians frequently talk about geometries, rather than
about a single monolithic subject called geometry. This
subsection contains brief descriptions of some of the
most important geometries and their associated groups
of transformations.

6.2 Euclidean Geometry

Euclidean geometry is what most people would think of
as “ordinary” geometry, and, not surprisingly given its
name, it includes the basic theorems of Greek geom-
etry that were the staple of geometers for over two
millennia. For example, the theorem that the three
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angles of a triangle add up to 180° belongs to Euclidean
geometry.

To understand Euclidean geometry from a transfor-
mational viewpoint, we need to say how many dimen-
sions we are working in, and we must of course spec-
ify a group of transformations. The appropriate group
is the group of rigid transformations. These can be
thought of in two different ways. One is that they are
the transformations of the plane, or of space, or more
generally of R" for some n, that preserve distance. That
is, T is a rigid transformation if, given any two points x
and y, the distance between Tx and Ty is always the
same as the distance between x and y. (In dimensions
greater than 3, distance is defined in a way that natu-
rally generalizes the Pythagorean formula. See METRIC
SPACES [II1.56] for more details.)

It turns out that every such transformation can be
realized as a combination of rotations, reflections, and
translations, and this gives us a more concrete way to
think about the group. Euclidean geometry, in other
words, is the study of concepts that do not change
when you rotate, reflect, or translate, and these include
points, lines, planes, circles, spheres, distance, angle,
length, area, and volume. The rotations of R" form an
important group, the special orthogonal group, known
as SO(n). The larger orthogonal group O(n) includes
reflections as well. (It is not quite obvious how to define
a “rotation” of n-dimensional space, but it is not too
hard to do. An orthogonal map of R™ is a linear map T
that preserves distances, in the sense that d(Tx, Ty) is
always the same as d(x, y). It is a rotation if its DETER-
MINANT [IIL.15] is 1. The only other possibility for the
determinant of a distance-preserving map is —1. Maps
with determinant —1 are like reflections in that they
turn space “inside out.”)

6.3 Affine Geometry

There are many linear maps besides rotations and
reflections. What happens if we enlarge our group from
SO(n) or O(n) to include as many of them as possi-
ble? For a transformation to be part of a group it must
be invertible and not all linear maps are, so the natural
group to look at is the group GL,, (R) of all invertible lin-
ear transformations of R", a group that we first met in
section 4.2. These maps all leave the origin fixed, but if
we want we can incorporate translations and consider
a larger group that consists of all transformations of
the form x — Tx + b, where b is a fixed vector and T
is an invertible linear map. The resulting geometry is
called affine geometry.
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Since linear maps include stretches and shears, they
preserve neither distance nor angle, so these are not
concepts of affine geometry. However, points, lines,
and planes remain as points, lines, and planes after an
invertible linear map and a translation, so these con-
cepts do belong to affine geometry. Another affine con-
cept is that of two lines being parallel. (That is, although
angles in general are not preserved by linear maps,
angles of zero are.) This means that although there is no
such thing as a square or a rectangle in affine geometry,
one can still talk about a parallelogram. Similarly, one
cannot talk of circles but one can talk of ellipses, since
a linear map transformation of an ellipse is another
ellipse (provided that one regards a circle as a special
kind of ellipse).

6.4 Topology

The idea that the geometry associated with a group
of transformations “studies the concepts that are pre-
served by all the transformations” can be made more
precise using the notion of EQUIVALENCE RELATIONS
[I.2 §2.3]. Indeed, let G be a group of transformations
of B"™. We might think of an n-dimensional “shape” as
being a subset S of R", but if we are doing G-geometry,
then we do not want to distinguish between a set S and
any other set we can obtain from it using a transforma-
tion in G. So in that case we say that the two shapes
are equivalent. For example, two shapes are equiva-
lent in Euclidean geometry if and only if they are con-
gruent in the usual sense, whereas in two-dimensional
affine geometry all parallelograms are equivalent, as
are all ellipses. One can think of the basic objects
of G-geometry as equivalence classes of shapes rather
than the shapes themselves.

Topology can be thought of as the geometry that
arises when we use a particularly generous notion of
equivalence, saying that two shapes are equivalent, or
homeomorphic, to use the technical term, if each can
be “continuously deformed” into the other. For exam-
ple, a sphere and a cube are equivalent in this sense, as
figure 1 illustrates.

Because there are very many continuous deforma-
tions, it is quite hard to prove that two shapes are not
equivalent in this sense. For example, it may seem obvi-
ous that a sphere (this means the surface of a ball rather
than the solid ball) cannot be continuously deformed
into a torus (the shape of the surface of a doughnut of
the kind that has a hole in it), since they are fundamen-
tally different shapes—one has a “hole” and the other
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Figure 1 A sphere morphing into a cube.

does not. However, it is not easy to turn this intuition
into arigorous argument. For more on this kind of prob-
lem, see INVARIANTS [1.4§2.2], ALGEBRAIC TOPOLOGY
[IV.6], and DIFFERENTIAL TOPOLOGY [IV.7].

6.5 Spherical Geometry

We have been steadily relaxing our requirements for
two shapes to be equivalent, by allowing more and
more transformations. Now let us tighten up again and
look at spherical geometry. Here the universe is no
longer R" but the n-dimensional sphere S™, which is
defined to be the surface of the (n + 1)-dimensional
ball of radius 1, or, to put it more algebraically, the
set of all points (x1,x2,...,Xn+1) in R?**! such that
x? + x5+ -+ + x5, = 1. Just as the surface of a
three-dimensional ball is two dimensional, so this set
is n dimensional. We shall discuss the case n = 2
here, but it is easy to generalize the discussion to
larger n.

The appropriate group of transformations is SO(3):
the group that consists of all rotations about axes
that go through the origin. (One could allow reflections
as well and take O(3).) These are symmetries of the
sphere $2, and that is how we regard them in spherical
geometry, rather than as transformations of the whole
of R3.

Among the concepts that make sense in spherical
geometry are line, distance, and angle. It may seem odd
to talk about a line if one is confined to the surface of
a ball, but a “spherical line” is not a line in the usual
sense. Rather, it is a subset of S? obtained by intersect-
ing $% with a plane through the origin. This produces
a great circle, that is, a circle of radius 1, which is as
large as it can be given that it lives inside a sphere of
radius 1.

The reason that a great circle deserves to be thought
of as some sort of line is that the shortest path between
any two points x and y in S? will always be along a
great circle, provided that the path is confined to S°.
This is a very natural restriction to make, since we are
regarding S2 as our “universe.” It is also a restriction
of some practical relevance, since the shortest sensible
route between two distant points on Earth’s surface will
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not be the straight-line route that burrows hundreds of
miles underground.

The distance between two points x and y is defined
to be the length of the shortest path from x to y that
lies entirely in S2. (If x and 7y are opposite each other,
then there are infinitely many shortest paths, all of
length 1, so the distance between x and y is 1.) How
about the angle between two spherical lines? Well, the
lines are intersections of §2 with two planes, so one can
define it to be the angle between these two planes in
the Euclidean sense. A more aesthetically pleasing way
to view this, because it does not involve ideas exter-
nal to the sphere, is to notice that if you look at a very
small region about one of the two points where two
spherical lines cross, then that portion of the sphere
will be almost flat, and the lines almost straight. So you
can define the angle to be the usual angle between the
“limiting” straight lines inside the “limiting” plane.

Spherical geometry differs from Euclidean geometry
in several interesting ways. For example, the angles of
a spherical triangle always add up to more than 180°.
Indeed, if you take as the vertices the North Pole, a point
on the equator, and a second point a quarter of the way
around the equator from the first, then you obtain a
triangle with three right angles. The smaller a triangle,
the flatter it becomes, and so the closer the sum of its
angles comes to 180°. There is a beautiful theorem that
gives a precise expression to this: if we switch to radi-
ans, and if we have a spherical triangle with angles «,
B, and y, then its area is o« + f + y — 1. (For example,
this formula tells us that the triangle with three angles
of %rr has area %TI', which indeed it does as the sur-
face area of a ball of radius 1 is 41t and this triangle
occupies one-eighth of the surface.)

6.6 Hyperbolic Geometry

So far, the idea of defining geometries with refer-
ence to sets of transformations may look like nothing
more than a useful way to view the subject, a unified
approach to what would otherwise be rather different-
looking aspects. However, when it comes to hyperbolic
geometry, the transformational approach becomes in-
dispensable, for reasons that will be explained in a
moment.

The group of transformations that produces hyper-
bolic geometry is called PSL, (R), the projective special
linear group in two dimensions. One way to present this
group is as follows. The special linear group SL>(R) is
the set of all matrices (? Z) with DETERMINANT [III.15]

41

ad — bc equal to 1. (These form a group because the
product of two matrices with determinant 1 again has
determinant 1.) To make this “projective,” one then
regards each matrix A as equivalent to —A: for example,
the matrices ( % ') and (2 %) are equivalent.

To get from this group to the geometry one must first
interpret it as a group of transformations of some two-
dimensional set of points. Once we have done this, we
have what is called a model of two-dimensional hyper-
bolic geometry. The subtlety is that there is no single
model of hyperbolic geometry that is clearly the most
natural in the way that the sphere is the most natural
model of spherical geometry. (One might think that the
sphere was the only sensible model of spherical geom-
etry, but this is not in fact the case. For example, there
is a natural way of associating with each rotation of R3
a transformation of R? with a “point at infinity” added,
so the extended plane can be used as a model of spher-
ical geometry.) The three most commonly used models
of hyperbolic geometry are called the half-plane model,
the disk model, and the hyperboloid model.

The half-plane model is the one most directly asso-
ciated with the group PSLz(R). The set in question is
the upper half-plane of the complex numbers C, that
is, the set of all complex numbers z = x + iy such that
y > 0. Given a matrix (‘C'Z), the corresponding trans-
formation is the one that takes the point z to the point
(az + b)/(cz + d). (Notice that if we replace a, b, c,
and d by their negatives, then we get the same trans-
formation.) The condition ad — bc = 1 can be used
to show that the transformed point will still lie in the
upper half-plane, and also that the transformation can
be inverted.

What this does not yet do is tell us anything about dis-
tances, and it is here that we need the group to “gener-
ate” the geometry. If we are to have a notion of distance
d that is sensible from the perspective of our group
of transformations, then it is important that the trans-
formations should preserve it. That is, if T is one of
the transformations and z and w are two points in the
upper half-plane, then d(T(z), T(w)) should always be
the same as d(z, w). It turns out that there is essentially
only one definition of distance that has this property,
and that is the sense in which the group defines the
geometry. (One could of course multiply all distances
by some constant factor such as 3, but this would be
like measuring distances in feet instead of yards, rather
than a genuine difference in the geometry.)

This distance has some properties that at first seem
odd. For example, a typical hyperbolic line takes the
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form of a semicircular arc with endpoints on the real
axis. However, it is semicircular only from the point of
view of the Euclidean geometry of C: from a hyperbolic
perspective it would be just as odd to regard a Euclid-
ean straight line as straight. The reason for the discrep-
ancy is that hyperbolic distances become larger and
larger, relative to Euclidean ones, the closer you get to
the real axis. To get from a point z to another point w,
it is therefore shorter to take a “detour” away from the
real axis, and the best detour turns out to be along an
arc of the circle that goes through z and w and cuts the
real axis at right angles. (If z and w are on the same ver-
tical line, then one obtains a “degenerate circle,” namely
that vertical line.) These facts are no more paradoxical
than the fact that a flat map of the world involves dis-
tortions of spherical geometry, making Greenland very
large, for example. The half-plane model is like a “map”
of a geometric structure, the hyperbolic plane, that in
reality has a very different shape.

One of the most famous properties of two-dimen-
sional hyperbolic geometry is that it provides a geom-
etry in which Euclid’s parallel postulate fails to hold.
That is, it is possible to have a hyperbolic line L,
a point x not on the line, and two different hyper-
bolic lines through x, neither of which meets L. All
the other axioms of Euclidean geometry are, when
suitably interpreted, true of hyperbolic geometry as
well. It follows that the parallel postulate cannot be
deduced from those axioms. This discovery, associ-
ated with GAauss [VL.26], BOLYAI [VL.34], and LOBA-
CHEVSKII [VI.31], solved a problem that had bothered
mathematicians for over two thousand years.

Another property complements the result about the
angle sums of spherical and Euclidean triangles. There
is a natural notion of hyperbolic area, and the area of a
hyperbolic triangle with angles «, B, and y is m — « —
B — y. Thus, in the hyperbolic plane « + f + y is always
less than 1T, and it almost equals 7™ when the triangle is
very small. These properties of angle sums reflect the
fact that the sphere has positive CURVATURE [III.13], the
Euclidean plane is “flat,” and the hyperbolic plane has
negative curvature.

The disk model, conceived in a famous moment of
inspiration by POINCARE [VL.61] as he was getting into
a bus, takes as its set of points the open unit disk in C,
that is, the set D of all complex numbers with mod-
ulus less than 1. This time, a typical transformation
takes the following form. One takes a real number 0,
and a complex number a from inside D, and sends
each z in D to the point ¢?(z — a)/(1 — az). It is not
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Figure 2 A tessellation of the hyperbolic disk.

completely obvious that these transformations form a
group, and still less that the group is isomorphic to
PSL2(R). However, it turns out that the function that
takes z to —(iz + 1)/(z + i) maps the unit disk to the
upper half-plane and vice versa. This shows that the
two models give the same geometry and can be used to
transfer results from one to the other.

As with the half-plane model, distances become larg-
er, relative to Euclidean distances, as you approach the
boundary of the disk: from a hyperbolic perspective,
the diameter of the disk is infinite and it does not
really have a boundary. Figure 2 shows a tessellation
of the disk by shapes that are congruent in the sense
that any one can be turned into any other by means of
a transformation from the group. Thus, even though
they do not look identical, within hyperbolic geometry
they all have the same size and shape. Straight lines
in the disk model are either arcs of (Euclidean) circles
that meet the unit circle at right angles, or segments of
(Euclidean) straight lines that pass through the center
of the disk.

The hyperboloid modelis the model that explains why
the geometry is called hyperbolic. This time the set is
the hyperboloid consisting of all points (x,y,z) € R3?
such that z > 0 and x? + y2 + 1 = z2. This is the hyper-
boloid of revolution about the z-axis of the hyperbola
x2+1 = z% in the plane y = 0. A general transformation
in the group is a sort of “rotation” of the hyperboloid,
and can be built up from genuine rotations about the z-
axis, and “hyperbolic rotations” of the xz-plane, which
have matrices of the form

(cosh 0 sinh 9)

sinh @ cosh@

Just as an ordinary rotation preserves the unit circle,
one of these hyperbolic rotations preserves the hyper-
bola x? +1 = z?, moving points around inside it. Again,
it is not quite obvious that this gives the same group
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of transformations, but it does, and the hyperboloid
model is equivalent to the other two.

6.7 Projective Geometry

Projective geometry is regarded by many as an old-fash-
ioned subject, and it is no longer taught in schools, but
it still has an important role to play in modern mathe-
matics. We shall concentrate here on the real projective
plane, but projective geometry is possible in any num-
ber of dimensions and with scalars in any field. This
makes it particularly useful to algebraic geometers.

Here are two ways of regarding the projective plane.
The first is that the set of points is the ordinary plane,
together with a “line at infinity.” The group of transfor-
mations consists of functions known as projections. To
understand what a projection is, imagine two planes P
and P’ in space, and a point x that is not in either of
them. We can “project” P onto P’ as follows. If a is a
point in P, then its image ¢ (a) is the point where the
line joining x to a meets P’. (If this line is parallel to P’,
then ¢(a) is a point on the line at infinity of P’.) Thus,
if you are at x and a picture is drawn on the plane P,
then its image under the projection ¢ will be the picture
drawn on P’ that to you looks exactly the same. In fact,
however, it will have been distorted, so the transforma-
tion ¢ has made a difference to the shape. To turn ¢
into a transformation of P itself, one can follow it by a
rigid transformation that moves P’ back to where P is.

Such projections clearly do not preserve distances,
but they do preserve other interesting concepts, such
as points, lines, quantities known as cross-ratios, and,
most famously, conic sections. A conic section is the
intersection of a plane with a cone, and it can be a circle,
an ellipse, a parabola, or a hyperbola. From the point of
view of projective geometry, these are all the same kind
of object (just as, in affine geometry, one can talk about
ellipses but there is no special ellipse called a circle).

A second view of the projective plane is that it is the
set of all lines in R3 that go through the origin. Since a
line is determined by the two points where it intersects
the unit sphere, one can regard this set as a sphere, but
with the significant difference that opposite points are
regarded as the same—because they correspond to the
same line.

Under this view, a typical transformation of the pro-
jective plane is obtained as follows. Take any invertible
linear map, and apply it to R. This takes lines through
the origin to lines through the origin, and can there-
fore be thought of as a function from the projective
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plane to itself. If one invertible linear map is a multiple
of another, then they will have the same effect on all
lines, so the resulting group of transformations is like
GL3(R), except that all nonzero multiples of any given
matrix are regarded as equivalent. This group is called
the projective special linear group PSL3(R), and it is
the three-dimensional equivalent of PSL, (R), which we
have already met. Since PSL3(R) is bigger than PSL; (R),
the projective plane comes with a richer set of transfor-
mations than the hyperbolic plane, which is why fewer
geometrical properties are preserved. (For example, we
have seen that there is a useful notion of hyperbolic
distance, but there is no obvious notion of projective
distance.)

6.8 Lorentz Geometry

This is a geometry used in the theory of special rel-
ativity to model four-dimensional spacetime, other-
wise known as Minkowski space. The main difference
between it and four-dimensional Euclidean geometry is
that, instead of the usual notion of distance between
two points (t,x,y,z) and (t',x’, ', z’), one considers
the quantity
(-t (x-x)Vr(y-y)r(z-2)°

which would be the square of the Euclidean distance
were it not for the all-important minus sign before
(t — t")2. This reflects the fact that space and time are
significantly different (though intertwined).

A Lorentz transformation is a linear map from R? to
R* that preserves these “generalized distances.” Let-
ting g be the linear map that sends (t,x,y,z) to
(—t,x,y,z) and letting G be the corresponding matrix
(which has —1,1,1,1 down the diagonal and 0O every-
where else), we can define a Lorentz transformation
abstractly as one whose matrix A satisfies ATGA = G,
where [ is the 4 x 4 identity matrix and AT is the trans-
pose of A. (The transpose of a matrix A is the matrix B
defined by B;; = Aji.)

A point (t,x,y,z) is said to be spacelike if t2 4
x% + y%2 4+ z2 > 0, and timelike if —t% + x? + y? 4
z% < 0. If —t%2 + x? + y2 + z2 = 0, then the point
lies in the light cone. All these are genuine concepts
of Lorentzian geometry because they are preserved by
Lorentz transformations.

Lorentzian geometry is also of fundamental impor-
tance to general relativity, which can be thought of as
the study of Lorentzian manifolds. These are closely
related to Riemannian manifolds, which are discussed
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in section 6.10. For a discussion of general relativ-
ity, see GENERAL RELATIVITY AND THE EINSTEIN EQUA-
TIONS [IV.13].

6.9 Manifolds and Differential Geometry

To somebody who has not been taught otherwise, it is
natural to think that Earth is flat, or rather that it con-
sists of a flat surface on top of which there are build-
ings, mountains, and so on. However, we now know that
it is in fact more like a sphere, appearing to be flat only
because it is so large. There are various kinds of evi-
dence for this. One is that if you stand on a cliff by
the sea then you can see a definite horizon, not too far
away, over which ships disappear. This would be hard
to explain if Earth were genuinely flat. Another is that
if you travel far enough in what feels like a straight line
then you eventually get back to where you started. A
third is that if you travel along a triangular route and
the triangle is a large one, then you will be able to detect
that its three angles add up to more than 180°.

Itis also very natural to believe that the geometry that
best models that of the universe is three-dimensional
Euclidean geometry, or what one might think of as “nor-
mal” geometry. However, this could be just as much of
a mistake as believing that two-dimensional Euclidean
geometry is the best model for Earth’s surface.

Indeed, one can immediately improve on it by con-
sidering Lorentzian geometry as a model of spacetime,
but even if there were no theory of special relativity,
our astronomical observations would give us no par-
ticular reason to suppose that Euclidean geometry was
the best model for the universe. Why should we be so
sure that we would not obtain a better model by tak-
ing the three-dimensional surface of a very large four-
dimensional ball? This might feel like “normal” space in
just the way that the surface of Earth feels like a “nor-
mal” plane unless you travel large distances. Perhaps if
you traveled far enough in a rocket without changing
your course then you would end up where you started.

It is easy to describe “normal” space mathematically:
one just associates with each point in space a triple of
coordinates (x,y,z) in the usual way. How might we
describe a huge “spherical” space? It is slightly harder,
but not much: one can give each point four coordinates
(x,¥,z,w) but add the condition that these must sat-
isfy the equation x2 + y2 + z2 + w? = R? for some
fixed R that we think of as the “radius” of the uni-
verse. This describes the three-dimensional surface of
a four-dimensional ball of radius R in just the same
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way that the equation x? + y? + z2 = R? describes the
two-dimensional surface of a three-dimensional ball of
radius R.

A possible objection to this approach is that it seems
to rely on the rather implausible idea that the uni-
verse lives in some larger unobserved four-dimensional
space. However, this objection can be answered. The
object we have just defined, the 3-sphere S3, can also
be described in what is known as an intrinsic way: that
is, without reference to some surrounding space. The
easiest way to see this is to discuss the 2-sphere first,
in order to draw an analogy.

Let us therefore imagine a planet covered with calm
water. If you drop a large rock into the water at the
North Pole, a wave will propagate out in a circle of ever-
increasing radius. (At any one moment, it will be a circle
of constant latitude.) In due course, however, this circle
will reach the equator, after which it will start to shrink,
until eventually the whole wave reaches the South Pole
at once, in a sudden burst of energy.

Now imagine setting off a three-dimensional wave in
space—it could, for example, be a light wave caused
by the switching on of a bright light. The front of
this wave would now be not a circle but an ever-
expanding spherical surface. It is logically possible that
this surface could expand until it became very large and
then contract again, not by shrinking back to where it
started, but by turning itself inside out, so to speak,
and shrinking to another point on the opposite side
of the universe. (Notice that in the two-dimensional
example, what you want to call the inside of the cir-
cle changes when the circle passes the equator.) With
a bit of effort, one can visualize this possibility, and
there is no need to appeal to the existence of a fourth
dimension in order to do so. More to the point, this
account can be turned into a mathematically coher-
ent and genuinely three-dimensional description of the
3-sphere.

A different and more general approach is to use what
is called an atlas. An atlas of the world (in the nor-
mal, everyday sense) consists of a number of flat pages,
together with an indication of their overlaps: that is, of
how parts of some pages correspond to parts of others.
Now, although such an atlas is mapping out an exter-
nal object that lives in a three-dimensional universe,
the spherical geometry of Earth’s surface can be read
off from the atlas alone. It may be much less conve-
nient to do this but it is possible: rotations, for exam-
ple, might be described by saying that such-and-such a
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part of page 17 moved to a similar but slightly distorted
part of page 24, and so on.

Not only is this possible, but one can define a sur-
face by means of two-dimensional atlases. For example,
there is a mathematically neat “atlas” of the 2-sphere
that consists of just two pages, both of them circular.
One is a map of the Northern Hemisphere plus a lit-
tle bit of the Southern Hemisphere near the equator (to
provide a small overlap) and the other is a map of the
Southern Hemisphere with a bit of the Northern Hemi-
sphere. Because these maps are flat, they necessarily
involve some distortion, but one can specify what this
distortion is.

The idea of an atlas can easily be generalized to three
dimensions. A “page” now becomes a portion of three-
dimensional space. The technical term is not “page” but
“chart,” and a three-dimensional atlas is a collection of
charts, again with specifications of which parts of one
chart correspond to which parts of another. A possible
atlas of the 3-sphere, generalizing the simple atlas of
the 2-sphere just discussed, consists of two solid three-
dimensional balls. There is a correspondence between
points toward the edge of one of these balls and points
toward the edge of the other, and this can be used to
describe the geometry: as you travel toward the edge
of one ball you find yourself in the overlapping region,
so you are also in the other ball. As you go further, you
are off the map as far as the first ball is concerned, but
the second ball has by that stage taken over.

The 2-sphere and the 3-sphere are basic examples of
manifolds. Other examples that we have already met
in this section are the torus and the projective plane.
Informally, a d-dimensional manifold, or d-manifold, is
any geometrical object M with the property that every
point x in M is surrounded by what feels like a portion
of d-dimensional Euclidean space. So, because small
parts of a sphere, torus, or projective plane are very
close to planar, they are all 2-manifolds, though when
the dimension is two the word surface is more usual.
(However, it is important to remember that a “surface”
need not be the surface of anything.) Similarly, the
3-sphere is a 3-manifold.

The formal definition of a manifold uses the idea
of atlases: indeed, one says that the atlas is a mani-
fold. This is a typical mathematician’'s use of the word
“is,” and it should not be confused with the normal
use. In practice, it is unusual to think of a manifold
as a collection of charts with rules for how parts of
them correspond, but the definition in terms of charts
and atlases turns out to be the most convenient when
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one wishes to reason about manifolds in general rather
than discussing specific examples. For the purposes of
this book, it may be better to think of a d-manifold
in the “extrinsic” way that we first thought about
the 3-sphere: as a d-dimensional “hypersurface” living
in some higher-dimensional space. Indeed, there is a
famous theorem of Nash that states that all manifolds
arise in this way. Note, however, that it is not always
easy to find a simple formula for defining such a hyper-
surface. For example, while the 2-sphere is described by
the simple formula x2 + y2+z2 = 1 and the torus by the
slightly more complicated and more artificial formula
(r —2)% + z% = 1, where 7 is shorthand for Vx? + 2, it
is not easy to come up with a formula that describes a
two-holed torus. Even the usual torus is far more easily
described using quotients, as we did in section 3.3. Quo-
tients can also be used to define a two-holed torus (see
FUCHSIAN GROUPS [III.28]), and the reason one is con-
fident that the result is a manifold is that every point
has a small neighborhood that looks like a small part of
the Euclidean plane. In general, a d-dimensional man-
ifold can be thought of as any construction that gives
rise to an object that is “locally like Euclidean space of
d dimensions.”

An extremely important feature of manifolds is that
calculus is possible for functions defined on them.
Roughly speaking, if M is a manifold and f is a function
from M to R, then to see whether f is differentiable at a
point x in M you first find a chart that contains x (or a
representation of it), and regard f as a function defined
on the chart instead. Since the chart is a portion of the
d-dimensional Euclidean space B4 and we can differ-
entiate functions defined on such sets, the notion of
differentiability now makes sense for f. Of course, for
this definition to work for the manifold, it is important
that if x belongs to two overlapping charts, then the
answer will be the same for both. This is guaranteed
if the function that gives the correspondence between
the overlapping parts (known as a transition function)
is itself differentiable. Manifolds with this property are
called differentiable manifolds: manifolds for which the
transition functions are continuous but not necessar-
ily differentiable are called topological manifolds. The
availability of calculus makes the theory of differen-
tiable manifolds very different from that of topological
manifolds.

The above ideas generalize easily from real-valued
functions to functions from M to R4, or from M to
M', where M’ is another manifold. However, it is eas-
ier to judge whether a function defined on a manifold
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is differentiable than it is to say what the derivative is.
The derivative at some point x of a function from R" to
R™ is a linear map, and so is the derivative of a function
defined on a manifold. However, the domain of the lin-
ear map is not the manifold itself, which is not usually
a vector space, but rather the so-called tangent space
at the point x in question.

For more details on this and on manifolds in general,
see DIFFERENTIAL TOPOLOGY [IV.7].

6.10 Riemannian Metrics

Suppose you are given two points P and Q on a sphere.
How do you determine the distance between them? The
answer depends on how the sphere is defined. If it is
the set of all points (x, y,z) such that x2 + y2 +z2 = 1
then P and Q are points in R3. One can therefore use the
Pythagorean theorem to calculate the distance between
them. For example, the distance between the points
(1,0,0) and (0,1,0) is /2.

However, do we really want to measure the length of
the line segment PQ? This segment does not lie in the
sphere itself, so to use it as a means of defining length
does not sit at all well with the idea of a manifold as
an intrinsically defined object. Fortunately, as we saw
earlier in the discussion of spherical geometry, there is
another natural definition that avoids this problem: we
can define the distance between P and Q as the length
of the shortest path from P to Q thatlies entirely within
the sphere.

Now let us suppose that we wish to talk more gener-
ally about distances between points in manifolds. If the
manifold is presented to us as a hypersurface in some
bigger space, then we can use lengths of shortest paths
as we did in the sphere. But suppose that the mani-
fold is presented differently and all we have is a way of
demonstrating that every point is contained in a chart—
that is, has a neighborhood that can be associated with
a portion of d-dimensional Euclidean space. (For the
purposes of this discussion, nothing is lost if one takes
d to be 2 throughout, in which case there is a corre-
spondence between the neighborhood and a portion of
the plane.) One idea is to define the distance between
the two points to be the distance between the corre-
sponding points in the chart, but this raises at least
three problems.

The firstis that the points P and Q that we are looking
at might belong to different charts. This, however, is
not too much of a problem, since all we actually need
to do is calculate lengths of paths, and that can be done
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provided we have a way of defining distances between
points that are very close together, in which case we
can find a single chart that contains them both.

The second problem, which is much more serious,
is that for any one manifold there are many ways of
choosing the charts, so this idea does not lead to a sin-
gle notion of distance for the manifold. Worse still, even
if one fixes one set of charts, these charts will over-
lap, and it may not be possible to make the notions of
distance compatible where the overlap occurs.

The third problem is related to the second. The sur-
face of a sphere is curved, whereas the charts of any
atlas (in either the everyday or the mathematical sense)
are flat. Therefore, the distances in the charts cannot
correspond exactly to the lengths of shortest paths in
the sphere itself.

The single most important moral to draw from the
above problems is that if we wish to define a notion of
distance for a given manifold, we have a great deal of
choice about how to do so. Very roughly, a Riemannian
metric is a way of making such a choice.

A little less roughly, a metric means a sensible no-
tion of distance (the precise definition can be found
in [II1.56]). A Riemannian metric is a way of determining
infinitesimal distances. These infinitesimal distances
can be used to calculate lengths of paths, and then
the distance between two points can be defined as the
length of the shortest path between them. To see how
this is done, let us first think about lengths of paths
in the ordinary Euclidean plane. Suppose that (x,y)
belongs to a path and (x + dx, ¥ + dy) is another point
on the path, very close to (x,y). Then the distance
between the two points is Vx? + §y2. To calculate the
length of a sufficiently smooth path, one can choose a
large number of points along the path, each one very
close to the next, and add up their distances. This gives
a good approximation, and one can make it better and
better by taking more and more points.

In practice, it is easier to work out the length using
calculus. A path itself can be thought of as a moving
point (x(t),y(t)) that starts when t = 0 and ends
when t = 1. If 6t is very small, then x(t + &t) is
approximately x (t) + x’(t)dt and y (t + &t) is approxi-
mately y(t)+ y'(t)St. Therefore, the distance between
(x(t),y(t)) and (x(t + o6t),y(t + 6t)) is approxi-
mately StvVx'(t)2 + ¥'(t)?, by the Pythagorean theo-
rem. Therefore, letting 6t go to zero and integrating
all the infinitesimal distances along the path, we obtain
the formula

]
L VX(6)2 + y' ()2 dt
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for the length of the path. Notice that if we write
x'(t) and y'(t) as dx/dt and dy/dt, then we can
rewrite Vx'(t)? + y'(t)*dt as Vdx? + dy?, which is
the infinitesimal version of the expression vox? + §y?
that we had earlier. We have just defined a Rieman-
nian metric, which is usually denoted by dx? + dy?.
This can be thought of as the square of the distance
between the point (x,y) and the infinitesimally close
point (x + dx,y +dy).

If we want to, we can now prove that the shortest path
between two points (xp, o) and (x1, Y1) is a straight
line, which will tell us that the distance between them
is V(x1 —x0)2+ (¥1 — ¥0)% (A proof can be found
in VARIATIONAL METHODS [II1.94].) However, since we
could have just used this formula to begin with, this
example does not really illustrate what is distinctive
about Riemannian metrics. To do that, let us give a
more precise definition of the disk model for hyper-
bolic geometry, which was discussed in section 6.6.
There it was stated that distances become larger, rela-
tive to Euclidean distances, as one approaches the edge
of the disk. A more precise definition is that the open
unit disk is the set of all points (x,y) such that x? +
¥? < 1 and that the Riemannian metric on this disk is
given by the expression (dx2+dy?)/(1-x2—y?). This
is how we define the square of the distance between
(x,») and (x + dx,y + dy). Equivalently, the length
of a path (x(t), y(t)) with respect to this Riemannian
metric is defined as

Jl [ X7 ()2 + y' ()2 dt
o V1-x(t)2-yt)2

More generally, a Riemannian metric on a portion of
the plane is an expression of the form

E(x,y)dx? + 2F(x,y)dxdy + G(x,y)dy?

that is used to calculate infinitesimal distances and
hence lengths of paths. (In the disk model we took
E(x,y)and G(x,y) tobe 1/(1 — x? — y?) and F(x,y)
to be 0.) It is important for these distances to be
positive, which will turn out to be the case provided
that E(x,y)G(x,y) F(x,y)2 is always positive. One
also needs the functions E, F, and G to satisfy certain
smoothness conditions.

This definition generalizes straightforwardly to more
dimensions. In n dimensions we must use an expres-
sion of the form

n
> Fij(x1,...,xp) dx; dx;.
ij=1
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to specify the squared distance between the points
(x1,...,xn) and (x; +dxq, ..., xn +dxy). The num-
bers Fij(x1,...,xy) form an n X n matrix that depends
on the point (x1,...,x5). This matrix is required to be
symmetric and positive definite: that is, F;;(x1,...,xn)
should always equal F;i(x1,...,Xx5), and the expression
that determines the squared distance should always be
positive. It should also depend smoothly on the point
(X1,...,Xn).

Finally, now that we know how to define many differ-
ent Riemannian metrics on portions of Euclidean space,
we have many potential ways to define metrics on the
charts that we use to define a manifold. A Riemannian
metric on a manifold is a way of choosing compatible
Riemannian metrics on the charts, where “compatible”
means that wherever two charts overlap the distances
should be the same. As mentioned earlier, once one
has done this, one can define the distance between two
points to be the length of a shortest path between them.

Given a Riemannian metric on a manifold, it is pos-
sible to define many other concepts, such as angles
and volumes. It is also possible to define the impor-
tant concept of curvature, which is discussed in RICCI
FLOW [III.78]. Another important definition is that of a
geodesic, which is the analogue for Riemannian geom-
etry of a straight line in Euclidean geometry. A curve C
is a geodesic if, given any two points P and Q on C that
are sufficiently close, the shortest path from P to Q is
part of C. For example, the geodesics on the sphere are
the great circles.

As should be clear by now from the above discussion,
on any given manifold there is a multitude of possi-
ble Riemannian metrics. A major theme in Riemannian
geometry is to choose one that is “best” in some way.
For example, on the sphere, if we take the obvious defi-
nition of the length of a path, then the resulting metric
is particularly symmetric, and this is a highly desirable
property. In particular, with this Riemannian metric
the curvature of the sphere is the same everywhere.
More generally, one searches for extra conditions to
impose on Riemannian metrics. Ideally, these condi-
tions should be strong enough that there is just one
Riemannian metric that satisfies them, or at least that
the family of such metrics should be very small.

I.4 The General Goals of
Mathematical Research

The previous article introduced many concepts that
appear throughout mathematics. This one discusses
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what mathematicians do with those concepts, and the
sorts of questions they ask about them.

1 Solving Equations

As we have seen in earlier articles, mathematics is full
of objects and structures (of a mathematical kind), but
they do not simply sit there for our contemplation: we
also like to do things to them. For example, given a num-
ber, there will be contexts in which we want to dou-
ble it, or square it, or work out its reciprocal; given
a suitable function, we may wish to differentiate it;
given a geometrical shape, we may wish to transform
it; and so on.

Transformations like these give rise to a never-end-
ing source of interesting problems. If we have defined
some mathematical process, then a rather obvious
mathematical project is to invent techniques for car-
rying it out. This leads to what one might call direct
questions about the process. However, there is also a
deeper set of inverse questions, which take the follow-
ing form. Suppose you are told what process has been
carried out and what answer it has produced. Can you
then work out what the mathematical object was that
the process was applied to? For example, suppose I tell
you that I have just taken a number and squared it,
and that the result was 9. Can you tell me the original
number?

In this case the answer is more or less yes: it must
have been 3, except that if negative numbers are al-
lowed, then another solution is —3.

If we want to talk more formally, then we say that
we have been examining the equation x? = 9, and have
discovered that there are two solutions. This example
raises three issues that appear again and again.

* Does a given equation have any solutions?

« If so, does it have exactly one solution?

e What is the set in which solutions are required to
live?

The first two concerns are known as the existence and
the uniqueness of solutions. The third does not seem
particularly interesting in the case of the equation x? =
9, but in more complicated cases, such as partial dif-
ferential equations, it can be a subtle and important
question.

To use more abstract language, suppose that f is a
FUNCTION [.2 §2.2] and that we are faced with a state-
ment of the form f(x) = y. The direct question is to
work out y given what x is. The inverse question is
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to work out x given what y is: this would be called
solving the equation f(x) = y. Not surprisingly, ques-
tions about the solutions of an equation of this form
are closely related to questions about the invertibility
of the function f, which were discussed in [I.2]. Because
x and y can be very much more general objects than
numbers, the notion of solving equations is itself very
general, and for that reason it is central to mathematics.

1.1 Linear Equations

The very first equations a schoolchild meets will typi-
cally be ones like 2x +3 = 17. To solve simple equations
like this, one treats x as an unknown number that obeys
the usual rules of arithmetic. By exploiting these rules
one can transform the equation into something much
simpler: subtracting 3 from both sides we learn that
2x = 14, and dividing both sides of this new equation
by 2 we then discover that x = 7. If we are very careful,
we will notice that all we have shown is that if there is
some number x such that 2x + 3 = 17 then x must be
7. What we have not shown is that there is any such x.
So strictly speaking there is a further step of checking
that 2 x 7 + 3 = 17. This will obviously be true here,
but the corresponding assertion is not always true for
more complicated equations so this final step can be
important.

The equation 2x + 3 = 17 is called “linear” because
the function f we have performed on x (to multiply it
by 2 and add 3)is a linear one, in the sense that its graph
is a straight line. As we have just seen, linear equa-
tions involving a single unknown x are easy to solve,
but matters become considerably more sophisticated
when one starts to deal with more than one unknown.
Let us look at a typical example of an equation in two
unknowns, the equation 3x + 2y = 14. This equation
has many solutions: for any choice of y you can set
x = (14 - 2y)/3 and you have a pair (x, y) that sat-
isfies the equation. To make it harder, one can take a
second equation as well, 5x + 3y = 22, say, and try to
solve the two equations simultaneously. Then, it turns
out, there is just one solution, namely x = 2 and y = 4.
Typically, two linear equations in two unknowns have
exactly one solution, just as these two do, which is easy
to see if one thinks about the situation geometrically.
An equation of the form ax + by = c is the equation
of a straight line in the xy-plane. Two lines normally
meet in a single point, the exceptions being when they
are identical, in which case they meet in infinitely many
points, or parallel but not identical, in which case they
do not meet at all.
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If one has several equations in several unknowns, it
can be conceptually simpler to think of them as one
equation in one unknown. This sounds impossible, but
it is perfectly possible if the new unknown is allowed
to be a more complicated object. For example, the two
equations 3x+2y = 14 and 5x+3y = 22 can be rewrit-
ten as the following single equation involving matrices

and vectors:
(3 2) <X) (14)
5 3 y 22)°

If we let A stand for the matrix, x for the unknown col-
umn vector, and b for the known one, then this equa-
tion becomes simply Ax = b, which looks much less
complicated, even if in fact all we have done is hidden
the complication behind our notation.

There is more to this process, however, than sweep-
ing dirt under the carpet. While the simpler notation
conceals many of the specific details of the problem,
it also reveals very clearly what would otherwise be
obscured: that we have a linear map from R? to R? and
we want to know which vectors x, if any, map to the
vector b. When faced with a particular set of simul-
taneous equations, this reformulation does not make
much difference—the calculations we have to do are
the same—but when we wish to reason more generally,
either directly about simultaneous equations or about
other problems where they arise, it is much easier to
think about a matrix equation with a single unknown
vector than about a collection of simultaneous equa-
tions in several unknown numbers. This phenomenon
occurs throughout mathematics and is a major reason
for the study of high-dimensional spaces.

1.2 Polynomial Equations

We have just discussed the generalization of linear
equations from one variable to several variables. An-
other direction in which one can generalize them is to
think of linear functions as polynomials of degree 1
and consider functions of higher degree. At school, for
example, one learns how to solve quadratic equations,
such as x2 — 7x + 12 = 0. More generally, a polynomial
equation is one of the form

anx™+ anx" Vo v axx®+aix +ap =0.

To solve such an equation means to find a value of x
for which the equation is true (or, better still, all such
values). This may seem an obvious thing to say until
one considers a very simple example such as the equa-
tion x? — 2 = 0, or equivalently x? = 2. The solution to
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this is, of course, x = +./2. What, though, is /2? It is
defined to be the positive number that squares to 2, but
it does not seem to be much of a “solution” to the equa-
tion x? = 2 to say that x is plus or minus the positive
number that squares to 2. Neither does it seem entirely
satisfactory to say that x = 1.4142135..., since this is
just the beginning of a calculation that never finishes
and does not result in any discernible pattern.

There are two lessons that can be drawn from this
example. One is that what matters about an equation
is often the existence and properties of solutions and
not so much whether one can find a formula for them.
Although we do not appear to learn anything when we
are told that the solutions to the equation x% = 2 are
x = ++/2, this assertion does contain within it a fact
that is not wholly obvious: that the number 2 has a
square root. This is usually presented as a consequence
of the intermediate value theorem (or another result of
a similar nature), which states that if f is a continuous
real-valued function and f(a) and f(b) lie on either
side of 0, then somewhere between a and b there must
be a ¢ such that f(c) = 0. This result can be applied
to the function f(x) = x? — 2, since f(1) = —1 and
f(2) = 2. Therefore, there is some x between 1 and 2
such that x2 -2 = 0, thatis, x? = 2. For many purposes,
the mere existence of this x is enough, together with its
defining properties of being positive and squaring to 2.

A similar argument tells us that all positive real num-
bers have positive square roots. But the picture changes
when we try to solve more complicated quadratic equa-
tions. Then we have two choices. Consider, for exam-
ple, the equation x* — 6x + 7 = 0. We could note that
x? —6x +71is —1 when x = 4 and 2 when x = 5 and
deduce from the intermediate value theorem that the
equation has some solution between 4 and 5. However,
we do not learn as much from this as if we complete the
square, rewriting x% — 6x + 7 as (x —3)2 — 2. This allows
us to rewrite the equation as (x —3)2 = 2, which has the
two solutions x = 3 + /2. We have already established
that +/2 exists and lies between 1 and 2, so not only do
we have a solution of x? — 6x + 7 = 0 that lies between
4 and 5, but we can see that it is closely related to,
indeed built out of, the solution to the equation x? = 2.
This demonstrates a second important aspect of equa-
tion solving, which is that in many instances the explicit
solubility of an equation is a relative notion. If we are
given a solution to the equation x2 = 2, we do not need
any new input from the intermediate value theorem to
solve the more complicated equation x? — 6x + 7 = 0:
all we need is some algebra. The solution, x = 3++/2, is
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given by an explicit expression, but inside that expres-
sion we have /2, which is not defined by means of
an explicit formula but as a real number, with certain
properties, that we can prove to exist.

Solving polynomial equations of higher degree is
markedly more difficult than solving quadratics, and
raises fascinating questions. In particular, there are
complicated formulas for the solutions of cubic and
quartic equations, but the problem of finding corre-
sponding formulas for quintic and higher-degree equa-
tions became one of the most famous unsolved prob-
lems in mathematics, until ABEL [VI.33] and GALOIS
[VI.41] showed that it could not be done. For more
details about these matters see THE INSOLUBILITY OF
THE QUINTIC [V.21]. For another article related to poly-
nomial equations see THE FUNDAMENTAL THEOREM OF
ALGEBRA [V.13].

1.3 Polynomial Equations in Several Variables

Suppose that we are faced with an equation such as
x3+ y3 +23 = 3x2y + 3y22 +6xyz.

We can see straight away that there will be many solu-
tions: if you fix x and y, then the equation is a cubic
polynomial in z, and all cubics have at least one (real)
solution. Therefore, for every choice of x and y there
is some z such that the triple (x, y, z) is a solution of
the above equation.

Because the formula for the solution of a general
cubic equation is rather complicated, a precise speci-
fication of the set of all triples (x, y, z) that solve the
equation may not be very enlightening. However, one
can learn a lot by regarding this solution set as a geo-
metric object—a two-dimensional surface in space, to
be precise—and asking qualitative questions about it.
One might, for instance, wish to understand roughly
what shape it is. Questions of this kind can be made
precise using the language and concepts of TOPOLOGY
[1.3 §6.4].

One can of course generalize further and consider
simultaneous solutions to several polynomial equa-
tions. Understanding the solution sets of such systems
of equations is the province of ALGEBRAIC GEOMETRY
[IV.4].

1.4 Diophantine Equations

As has been mentioned, the answer to the question
of whether a particular equation has a solution varies
according to where the solution is allowed to be. The
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equation x2 + 3 = 0 has no solution if x is required
to be real, but in the complex numbers it has the two
solutions x = +i/3. The equation x2 + y2 = 11 has
infinitely many solutions if we are looking for x and y
in the real numbers, but none if they have to be integers.

This last example is a typical Diophantine equation,
the name given to an equation if one is looking for
integer solutions. The most famous Diophantine equa-
tion is the Fermat equation x™ + y™ = z", which is
now known, thanks to Andrew Wiles, to have no pos-
itive integer solutions if n is greater than 2. (See FER-
MAT’S LAST THEOREM [V.10]. By contrast, the equation
x? + y? = z° has infinitely many solutions.) A great
deal of modern ALGEBRAIC NUMBER THEORY [IV.1] is
concerned with Diophantine equations, either directly
or indirectly. As with equations in the real and com-
plex numbers, it is often fruitful to study the struc-
ture of sets of solutions to Diophantine equations: this
investigation belongs to the area known as ARITHMETIC
GEOMETRY [IV.5].

A notable feature of Diophantine equations is that
they tend to be extremely difficult. It is therefore nat-
ural to wonder whether there could be a systematic
approach to them. This question was the tenth in a
famous list of problems asked by HILBERT [VL63] in
1900. It was not until 1970 that Yuri Matiyasevitch,
building on work by Martin Davis, Julia Robinson, and
Hilary Putnam, proved that the answer was no. (This is
discussed further in THE INSOLUBILITY OF THE HALTING
PROBLEM [V.20].)

An important step in the solution was taken in 1936,
by cHURCH [VL.89] and TURING [VL.94]. This was to
make precise the notion of a “systematic approach,”
by formalizing (in two different ways) the notion of
an algorithm (see ALGORITHMS [I.4 §3] and COMPUTA-
TIONAL COMPLEXITY [IV.20 §1]). It was not easy to do
this in the pre-computer age, but now we can restate
the solution of Hilbert’s tenth problem as follows: there
is no computer program that can take as its input any
Diophantine equation, and without fail print “YES” if it
has a solution and “NO” otherwise.

What does this tell us about Diophantine equations?
We can no longer dream of a final theory that will
encompass them all, so instead we are forced to restrict
our attention to individual equations or special classes
of equations, continually developing different methods
for solving them. This would make them uninteresting
after the first few, were it not for the fact that specific
Diophantine equations have remarkable links with very
general questions in other parts of mathematics. For
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example, equations of the form y? = f(x), where f(x)
is a cubic polynomial in x, may look rather special, but
in fact the ELLIPTIC CURVES [II[.21] that they define are
central to modern number theory, including the proof
of Fermat’s last theorem. Of course, Fermat’s last theo-
rem is itself a Diophantine equation, but its study has
led to major developments in other parts of number
theory. The correct moral to draw is perhaps this: solv-
ing a particular Diophantine equation is fascinating and
worthwhile if, as is often the case, the result is more
than a mere addition to the list of equations that have
been solved.

1.5 Differential Equations

So far, we have looked at equations where the unknown
is either a number or a point in n-dimensional space
(that is, a sequence of n numbers). In order to generate
these equations, we took various combinations of the
basic arithmetical operations and applied them to our
unknowns.

Here, for comparison, are two well-known differential
equations, the first “ordinary” and the second “partial”:

d?x
F +
oT 0°T  9°T  0°T
F (ax_2 Tyt ﬁ)'
The first is the equation for simple harmonic motion,
which has the general solution x(t) = Asinkt +
B cos kt; the second is the heat equation, which was
discussed in SOME FUNDAMENTAL MATHEMATICAL DEF-
INITIONS [L.3 §5.4].

For many reasons, differential equations represent a
jump in sophistication. One is that the unknowns are
functions, which are much more complicated objects
than numbers or n-dimensional points. (For example,
the first equation above asks what function x of t has
the property that if you differentiate it twice then you
get —k? times the original function.) A second is that
the basic operations one performs on functions include
differentiation and integration, which are considerably
less “basic” than addition and multiplication. A third is
that differential equations that can be solved in “closed
form,” that is, by means of a formula for the unknown
function f, are the exception rather than the rule, even
when the equations are natural and important.

Consider again the first equation above. Suppose
that, given a function f, we write ¢ (f) for the function
(d2f/dt?) + k°f. Then ¢ is a linear map, in the sense
that p(f + g) = ¢(f) + $(g) and p(af) = adp(f) for

k2x = 0,
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any constant a. This means that the differential equa-
tion can be regarded as something like a matrix equa-
tion, but generalized to infinitely many dimensions.
The heat equation has the same property: if we define
Y (T) to be

or K(OQT N 2T N 627’)

ot ox2  oy?2 9z )
then ¢ is another linear map. Such differential equa-
tions are called linear, and the link with linear algebra
makes them markedly easier to solve. (A very useful
tool for this is THE FOURIER TRANSFORM [I11.27].)

What about the more typical equations, the ones that
cannot be solved in closed form? Then the focus shifts
once again toward establishing whether or not solu-
tions exist, and if so what properties they have. As with
polynomial equations, this can depend on what you
count as an allowable solution. Sometimes we are in the
position we were in with the equation x2 = 2: it is not
too hard to prove that solutions exist and all that is left
to do is name them. A simple example is the equation
dy/dx = e **.In a certain sense, this cannot be solved:
it can be shown that there is no function built out of
polynomials, EXPONENTIALS [II.25], and TRIGONOMET-
RIC FUNCTIONS [II1.92] that differentiates to e X’ How-
ever, in another sense the equation is easy to solve—
all you have to do is integrate the function e . The
resulting function (when divided by +/27r) is the NOR-
MAL DISTRIBUTION [III.71 §5] function. The normal dis-
tribution is of fundamental importance in probability,
so the function is given a name, .

In most situations, there is no hope of writing down
a formula for a solution, even if one allows oneself to
integrate “known” functions. A famous example is the
so-called THREE-BODY PROBLEM [V.33]: given three bod-
ies moving in space and attracted to each other by grav-
itational forces, how will they continue to move? Using
Newton's laws, one can write down some differential
equations that describe this situation. NEWTON [VI.14]
solved the corresponding equations for two bodies,
and thereby explained why planets move in elliptical
orbits around the Sun, but for three or more bodies
they proved very hard indeed to solve. It is now known
that there was a good reason for this: the equations
can lead to chaotic behavior. (See DYNAMICS [IV.14] for
more about chaos.) However, this opens up a new and
very interesting avenue of research into questions of
chaos and stability.

Sometimes there are ways of proving that solutions
exist even if they cannot be easily specified. Then
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one may ask not for precise formulas, but for general
descriptions. For example, if the equation has a time
dependence (as, for instance, the heat equation and
wave equations have), one can ask whether solutions
tend to decay over time, or blow up, or remain roughly
the same. These more qualitative questions concern
what is known as asymptotic behavior, and there are
techniques for answering some of them even when a
solution is not given by a tidy formula.

As with Diophantine equations, there are some spe-
cial and important classes of partial differential equa-
tions, including nonlinear ones, that can be solved
exactly. This gives rise to a very different style of
research: again one is interested in properties of solu-
tions, but now these properties may be more algebraic
in nature, in the sense that exact formulas will play
a more important role. See LINEAR AND NONLINEAR
WAVES AND SOLITONS [I1.49].

2 Classifying

If one is trying to understand a new mathematical struc-
ture, such as a GROUP [1.3 §2.1] or a MANIFOLD [I.3 §6.9],
one of the first tasks is to come up with a good supply
of examples. Sometimes examples are very easy to find,
in which case there may be a bewildering array of them
that cannot be put into any sort of order. Often, how-
ever, the conditions that an example must satisfy are
quite stringent, and then it may be possible to come up
with something like an infinite list that includes every
single one. For example, it can be shown that any VEC-
TOR SPACE [1.3 §2.3] of dimension n over a field F is iso-
morphic to . This means that just one positive inte-
ger, n, is enough to determine the space completely. In
this case our “list” will be {0}, F, F2,F? F*,.... In such
a situation we say that we have a classification of the
mathematical structure in question.

Classifications are very useful because if we can clas-
sify a mathematical structure then we have a new way
of proving results about that structure: instead of de-
ducing a result from the axioms that the structure is
required to satisfy, we can simply check that it holds
for every example on the list, confident in the know-
ledge that we have thereby proved it in general. This
is not always easier than the more abstract, axiomatic
approach, but it certainly is sometimes. Indeed, there
are several results proved using classifications that
nobody knows how to prove in any other way. More gen-
erally, the more examples you know of a mathematical
structure, the easier it is to think about that structure—
testing hypotheses, finding counterexamples, and so
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on. If you know all the examples of the structure, then
for some purposes your understanding is complete.

2.1 Identifying Building Blocks and Families

There are two situations that typically lead to inter-
esting classification theorems. The boundary between
them is somewhat blurred, but the distinction is clear
enough to be worth making, so we shall discuss them
separately in this subsection and the next.

As an example of the first kind of situation, let us
look at objects called regular polytopes. Polytopes are
polygons, polyhedra, and their higher-dimensional gen-
eralizations. The regular polygons are those for which
all sides have the same length and all angles are equal,
and the regular polyhedra are those for which all faces
are congruent regular polygons and every vertex has
the same number of edges coming out of it. More gener-
ally, a higher-dimensional polytope is regular if it is as
symmetrical as possible, though the precise definition
of this is somewhat complicated. (Here, in three dimen-
sions, is a definition that turns out to be equivalent to
the one just given but easier to generalize. A flag is a
triple (v, e, f) where v is a vertex of the polyhedron, e
is an edge containing v, and f is a face containing e. A
polyhedron is regular if for any two flags (v, e, f) and
(v, e, f") there is a symmetry of the polyhedron that
takes v tov’, e to e, and f to f’.)

It is easy to see what the regular polygons are in two
dimensions: for every k greater than 2 there is exactly
one regular k-gon and that is all there is. In three dimen-
sions, the regular polyhedra are the famous Platonic
solids, that is, the tetrahedron, the cube, the octahe-
dron, the dodecahedron, and the icosahedron. It is not
too hard to see that there cannot be any more regu-
lar polyhedra, since there must be at least three faces
meeting at each vertex, and the angles at that vertex
must add up to less than 360°. This constraint means
that the only possibilities for the faces at a vertex are
three, four, or five triangles, three squares, or three
pentagons. These give the tetrahedron, the octahe-
dron, the icosahedron, the cube, and the dodecahedron,
respectively.

Some of the polygons and polyhedra just defined
have natural higher-dimensional analogues. For exam-
ple, if you take n + 1 points in R" all at the same dis-
tance from one another, then they form the vertices
of a regular simplex, which is an equilateral triangle
or regular tetrahedron when n = 2 or 3. The set of
all points (x1,x2,...,x,) with 0 < x; < 1 for every i



L4. The General Goals of Mathematical Research

forms the n-dimensional analogue of a unit square or
cube. The octahedron can be defined as the set of all
points (x,y,z) in B3 such that |x| + |y| + |z| < 1, and
the analogue of this in n dimensions is the set of all
points (x1,x2,...,xp) such that x| +--- + |xn| < 1.

It is not obvious how the dodecahedron and icosa-
hedron would lead to infinite families of regular poly-
topes, and it turns out that they do not. In fact, apart
from three more examples in four dimensions, the
above polytopes constitute a complete list. These three
examples are quite remarkable. One of them has 120
“three-dimensional faces,” each of which is a regular
dodecahedron. It has a so-called dual, which has 600
regular tetrahedra as its “faces.” The third example
can be described in terms of coordinates: its vertices
are the sixteen points of the form (x1,+1,%1,%1),
together with the eight points (+2,0,0,0), (0, +2,0,0),
(0,0,+2,0), and (0,0,0, +2).

The theorem that these are all the regular polytopes
is significantly harder to prove than the result sketched
above for three dimensions. The complete list was
obtained by Schafli in the mid nineteenth century; the
first proof that there are no others was given by Donald
Coxeter in 1969.

We therefore know that the regular polytopes in di-
mensions three and higher fall into three families—the
n-dimensional versions of the tetrahedron, the cube,
and the octahedron—together with five “exceptional”
examples—the dodecahedron, the icosahedron, and the
three four-dimensional polytopes just described. This
situation is typical of many classification theorems. The
exceptional examples, often called “sporadic,” tend to
have a very high degree of symmetry—it is almost as
if we have no right to expect this degree of symmetry
to be possible, but just occasionally by a happy chance
it is. The families and sporadic examples that occur in
different classification results are often closely related,
and this can be a sign of deep connections between
areas that do not at first appear to be connected at all.

Sometimes, instead of trying to classify all mathe-
matical structures of a given kind, one identifies a cer-
tain class of “basic” structures out of which all the
others can be built in a simple way. A good analogy
for this is the set of primes, out of which all other
integers can be built as products. Finite groups, for
example, are all “products” of certain basic groups that
are called simple. THE CLASSIFICATION OF FINITE SIM-
PLE GROUPS [V.7], one of the most famous theorems of
twentieth-century mathematics, is discussed in part V.
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For more on this style of classification theorem, see
also LIE THEORY [II1.48].

2.2 Equivalence, Nonequivalence, and Invariants

There are many situations in mathematics where two
objects are, strictly speaking, different, but where we
are not interested in the difference. In such situations
we want to regard the objects as “essentially the same,”
or “equivalent.” Equivalence of this kind is expressed
formally by the notion of an EQUIVALENCE RELATION
[1.2 §2.3].

For example, a topologist regards two shapes as
essentially the same if one is a continuous deforma-
tion of the other, as we saw in [I.3 §6.4]. As pointed out
there, a sphere is the same as a cube in this sense, and
one can also see that the surface of a doughnut, that
is, a torus, is essentially the same as the surface of a
teacup. (To turn the teacup into a doughnut, let the han-
dle expand while the cup part is gradually swallowed up
into it.) It is equally obvious, intuitively speaking, that
a sphere is not essentially the same as a torus, but this
is much harder to prove.

Why should nonequivalence be harder to prove than
equivalence? The answer is that in order to show that
two objects are equivalent, all one has to do is find a sin-
gle transformation that demonstrates this equivalence.
However, to show that two objects are not equivalent,
one must somehow consider all possible transforma-
tions and show that not one of them works. How can
one rule out the existence of some wildly complicated
continuous deformation that is impossible to visualize
but happens, remarkably, to turn a sphere into a torus?

Here is a sketch of a proof. The sphere and the torus
are examples of compact orientable surfaces, which
means, roughly speaking, two-dimensional shapes that
occupy a finite portion of space and have no boundary.
Given any such surface, one can find an equivalent sur-
face that is built out of triangles and is topologically
the same. Here is a famous theorem of EULER [VI.19].

Let P be a polyhedron that is topologically the same as
a sphere, and suppose that it has V vertices, E edges,
and F faces. ThenV —E + F = 2.

For example, if P is an icosahedron, then it has twelve
vertices, thirty edges, and twenty faces, and 12 -30+20
is indeed equal to 2.

For this theorem, it is not in fact important that the
triangles are flat: we can draw them on the original
sphere, except that now they are spherical triangles. It
is just as easy to count vertices, edges, and faces when
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we do this, and the theorem is still valid. A network of
triangles drawn on a sphere is called a triangulation of
the sphere.

Euler’s theorem tells us that V — E + F = 2 regardless
of what triangulation of the sphere we take. Moreover,
the formula is still valid if the surface we triangulate
is not a sphere but another shape that is topologically
equivalent to the sphere, since triangulations can be
continuously deformed without V, E, or F changing.

More generally, one can triangulate any surface, and
evaluate V — E + F. The result is called the Euler charac-
teristic of that surface. For this definition to make sense,
we need the following fact, which is a generalization of
Euler’s theorem (and which is not much harder to prove
than the original result).

(i) Although a surface can be triangulated in many
ways, the quantity V. — E + F will be the same for
all triangulations.

If we continuously deform the surface and continu-
ously deform one of its triangulations at the same
time, we can deduce that the Euler characteristic of
the new surface is the same as that of the old one. In
other words, fact (i) above has the following interesting
consequence.

(ii) If two surfaces are continuous deformations of each
other, then they have the same Euler characteristic.

This gives us a potential method for showing that sur-
faces are not equivalent: if they have different Euler
characteristics then we know from the above that they
are not continuous deformations of each other. The
Euler characteristic of the torus turns out to be 0 (as
one can show by calculating V — E + F for any triangu-
lation), and that completes the proof that the sphere
and the torus are not equivalent.

The Euler characteristic is an example of an invari-
ant. This means a function ¢, the domain of which is
the set of all objects of the kind one is studying, with
the property that if X and Y are equivalent objects,
then ¢(X) = ¢(Y). To show that X is not equivalent
to Y, it is enough to find an invariant ¢ for which
¢(X) and ¢p(Y) are different. Sometimes the values ¢
takes are numbers (as with the Euler characteristic), but
often they will be more complicated objects such as
polynomials or groups.

It is perfectly possible for ¢(X) to equal ¢(Y) even
when X and Y are not equivalent. An extreme example
would be the invariant ¢ that simply took the value 0
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for every object X. However, sometimes it is so hard to
prove that objects are not equivalent that invariants can
be considered useful and interesting even when they
work only part of the time.

There are two main properties that one looks for in
an invariant ¢, and they tend to pull in opposite direc-
tions. One is that it should be as fine as possible: that
is, as often as possible ¢(X) and ¢(Y) are different if
X and Y are not equivalent. The other is that as often as
possible one should actually be able to establish when
¢ (X) is different from ¢ (Y). There is not much use in
having a fine invariant if it is impossible to calculate.
(An extreme example would be the “trivial” invariant
that simply mapped each X to its equivalence class. It
is as fine as possible, but unless we have some indepen-
dent means of specifying it, then it does not represent
an advance on the original problem of showing that two
objects are not equivalent.) The most powerful invari-
ants therefore tend to be ones that can be calculated,
but not very easily.

In the case of compact orientable surfaces, we are
lucky: not only is the Euler characteristic an invariant
that is easy to calculate, but it also classifies the com-
pact orientable surfaces completely. To be precise, k is
the Euler characteristic of a compact orientable surface
if and only if it is of the form 2 — 2g for some nonnega-
tive integer g (so the possible Euler characteristics are
2,0,-2,-4,...), and two compact orientable surfaces
with the same Euler characteristic are equivalent. Thus,
if we regard equivalent surfaces as the same, then the
number g gives us a complete specification of a sur-
face. It is called the genus of the surface, and can be
interpreted geometrically as the number of “holes” the
surface has (so the genus of the sphere is 0 and that of
the torus is 1).

For other examples of invariants, see ALGEBRAIC
TOPOLOGY [IV.6] and KNOT POLYNOMIALS [I1.44].

3 Generalizing

When an important mathematical definition is formu-
lated, or theorem proved, that is rarely the end of the
story. However clear a piece of mathematics may seem,
it is nearly always possible to understand it better, and
one of the most common ways of doing so is to present
it as a special case of something more general. There
are various different kinds of generalization, of which
we discuss a few here.
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3.1 Weakening Hypotheses and Strengthening
Conclusions

The number 1729 is famous for being expressible as the
sum of two cubes in two different ways: itis 13+123 and
also 9% + 103. Let us now try to decide whether there is
a number that can be written as the sum of four cubes
in ten different ways.

At first this problem seems alarmingly difficult. It is
clear that any such number, if it exists, must be very
large and would be extremely tedious to find if we sim-
ply tested one number after another. So what can we
do that is better than this?

The answer turns out to be that we should weaken
our hypotheses. The problem we wish to solve is of
the following general kind. We are given a sequence
a,az,as,... of positive integers and we are told that it
has a certain property. We must then prove that there
is a positive integer that can be written as a sum of
four terms of the sequence in ten different ways. This
is perhaps an artificial way of thinking about the prob-
lem since the property we assume of the sequence is
the property of “being the sequence of cubes,” which
is so specific that it is more natural to think of it as
an identification of the sequence. However, this way of
thinking encourages us to consider the possibility that
the conclusion might be true for a much wider class of
sequences. And indeed this turns out to be the case.

There are a thousand cubes less than or equal to
1000000 000. We shall now see that this property alone
is sufficient to guarantee that there is a number that
can be written as the sum of four cubes in ten different
ways. That is, if a;, a2, as,... is any sequence of pos-
itive integers, and if none of the first thousand terms
exceeds 1000000000, then some number can be writ-
ten as the sum of four terms of the sequence in ten
different ways.

To prove this, all we have to do is notice that the num-
ber of different ways of choosing four distinct terms
from the sequence ay,az,...,aioo0is 1000x999x998x
997 /24, which is greater than 40 x 1 000000 000. The
sum of any four terms of the sequence cannot exceed
4x1000000000. It follows that the average number of
ways of writing one of the first 4000000 000 numbers
as the sum of four terms of the sequence is at least ten.
But if the average number of representations is at least
ten, then there must certainly be numbers that have at
least this number of representations.

Why did it help to generalize the problem in this
way? One might think that it would be harder to prove
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a result if one assumed less. However, that is often
not true. The less you assume, the fewer options you
have when trying to use your assumptions, and that
can speed up the search for a proof. Had we not gen-
eralized the problem above, we would have had too
many options. For instance, we might have found our-
selves trying to solve very difficult Diophantine equa-
tions involving cubes rather than noticing the easy
counting argument. In a way, it was only once we had
weakened our hypotheses that we understood the true
nature of the problem.

We could also think of the above generalization as a
strengthening of the conclusion: the problem asks for
a statement about cubes, and we prove not just that
but much more besides. There is no clear distinction
between weakening hypotheses and strengthening con-
clusions, since if we are asked to prove a statement
of the form P = Q, we can always reformulate it as
—Q = —P. Then, if we weaken P we are weakening the
hypotheses of P = Q but strengthening the conclusion
of =Q = —P.

3.2 Proving a More Abstract Result

A famous result in modular arithmetic, known as FER-
MAT’S LITTLE THEOREM [IIL.58], states that if p is a
prime and a is not a multiple of p, then a? ! leaves
a remainder of 1 when you divide by p. That is, a?~! is
congruent to 1 mod p.

There are several proofs of this result, one of which
is a good illustration of a certain kind of generalization.
Here is the argument in outline. The first step is to show
that the numbers 1,2,...,p — 1 form a GROUP [1.3 §2.1]
under multiplication mod p. (This means multiplica-
tion followed by taking the remainder on division by p.
For example, if p = 7 then the “product” of 3 and 6 is 4,
since 4 is the remainder when you divide 18 by 7.) The
next step is tonote thatif 1 < a < p—1 then the powers
of a (mod p) form a subgroup of this group. Moreover,
the size of the subgroup is the smallest positive inte-
ger m such that a™ is congruent to 1 mod p. One then
applies Lagrange’s theorem, which states that the size
of a group is always divisible by the size of any of its
subgroups. In this case, the size of the group is p — 1,
from which it follows that p — 1 is divisible by m. But
then, since a™ = 1, it follows that a? ! = 1.

This argument shows that Fermat’s little theorem is,
when viewed appropriately, just one special case of
Lagrange’s theorem. (The word “just” is, however, a lit-
tle misleading, because it is not wholly obvious that the
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integers mod p form a group in the way stated. This fact
is proved using EUCLID’S ALGORITHM [II1.22].)

Fermat could not have viewed his theorem in this
way, since the concept of a group had not been invented
when he proved it. Thus, the abstract concept of a
group helps one to see Fermat’s little theorem in a com-
pletely new way: it can be viewed as a special case of
a more general result, but a result that cannot even
be stated until one has developed some new, abstract
concepts.

This process of abstraction has many benefits. Most
obviously, it provides us with a more general theo-
rem, one that has many other interesting particular
cases. Once we see this, then we can prove the gen-
eral result once and for all rather than having to prove
each case separately. A related benefit is that it enables
us to see connections between results that may origi-
nally have seemed quite different. And finding surpris-
ing connections between different areas of mathemat-
ics almost always leads to significant advances in the
subject.

3.3 Identifying Characteristic Properties

There is a marked contrast between the way one defines
V2 and the way one defines +/—1, or i as it is usually
written. In the former case one begins, if one is being
careful, by proving that there is exactly one positive real
number that squares to 2. Then /2 is defined to be this
number.

This style of definition is impossible for i since there
is no real number that squares to —1. So instead one
asks the following question: if there were a number that
squared to —1, what could one say about it? Such a
number would not be a real number, but that does not
rule out the possibility of extending the real number
system to a larger system that contains a square root
of —1.

At first it may seem as though we know precisely one
thing about i: that i° = —1. But if we assume in addition
that i obeys the normal rules of arithmetic, then we can
do more interesting calculations, such as

(A+1)2=i2+2i+1=-1+2i+1=2i

which implies that (i + 1)//2 is a square root of i.
From these two simple assumptions—that i2 = —1
and that i obeys the usual rules of arithmetic—we
can develop the entire theory of COMPLEX NUMBERS
[I.3 §1.5] without ever having to worry about what i
actually is. And in fact, once you stop to think about it,
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the existence of /2, though reassuring, is not in prac-
tice anything like as important as its defining proper-
ties, which are very similar to those of i: it squares to 2
and obeys the usual rules of arithmetic.

Many important mathematical generalizations work
in a similar way. Another example is the definition of
x% when x and a are real numbers with x positive. It is
difficult to make sense of this expression in a direct way
unless a is a positive integer, and yet mathematicians
are completely comfortable with it, whatever the value
of a. How can this be? The answer is that what really
matters about x4 is not its numerical value but its char-
acteristic properties when one thinks of it as a function
of a. The most important of these is the property that
xath — yaxb Together with a couple of other simple
properties, this completely determines the function x4.
More importantly, it is these characteristic properties
that one uses when reasoning about x4. This example
is discussed in more detail in THE EXPONENTIAL AND
LOGARITHMIC FUNCTIONS [II1.25].

There is an interesting relationship between abstrac-
tion and classification. The word “abstract” is often
used to refer to a part of mathematics where it is
more common to use characteristic properties of an
object than it is to argue directly from a definition of
the object itself (though, as the example of /2 shows,
this distinction can be somewhat hazy). The ultimate
in abstraction is to explore the consequences of a sys-
tem of axioms, such as those for a group or a vector
space. However, sometimes, in order to reason about
such algebraic structures, it is very helpful to clas-
sify them, and the result of classification is to make
them more concrete again. For instance, every finite-
dimensional real vector space V is isomorphic to R" for
some nonnegative integer n, and it is sometimes help-
ful to think of V as the concrete object R™, rather than
as an algebraic structure that satisfies certain axioms.
Thus, in a certain sense, classification is the opposite
of abstraction.

3.4 Generalization after Reformulation

Dimension is a mathematical idea that is also a familiar
part of everyday language: for example, we say that a
photograph of a chair is a two-dimensional represen-
tation of a three-dimensional object, because the chair
has height, breadth, and depth, but the image just has
height and breadth. Roughly speaking, the dimension
of a shape is the number of independent directions
one can move about in while staying inside the shape,
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and this rough conception can be made mathematically
precise (using the notion of a VECTOR SPACE [1.3 §2.3]).
If we are given any shape, then its dimension, as one
would normally understand it, must be a nonnegative
integer: it does not make much sense to say that one can
move about in 1.4 independent directions, for example.
And yet there is a rigorous mathematical theory of frac-
tional dimension, in which for every nonnegative real
number d you can find many shapes of dimension d.
How do mathematicians achieve the seemingly im-
possible? The answer is that they reformulate the con-
cept of dimension and only then do they generalize it.
What this means is that they give a new definition of
dimension with the following two properties.

(i) For all “simple” shapes the new definition agrees
with the old one. For example, under the new defi-
nition a line will still be one dimensional, a square
two dimensional, and a cube three dimensional.

(ii) With the new definition it is no longer obvious that
the dimension of every shape must be a positive
integer.

There are several ways of doing this, but most of them
focus on the differences between length, area, and vol-
ume. Notice that a line segment of length 2 can be
expressed as a union of two nonoverlapping line seg-
ments of length 1, a square of side-length 2 can be
expressed as a union of four nonoverlapping squares
of side-length 1, and a cube of side-length 2 can be
expressed as a union of eight nonoverlapping cubes of
side-length 1.1t is because of this that if you enlarge a d-
dimensional shape by a factor r, then its d-dimensional
“volume” is multiplied by »9. Now suppose that you
would like to exhibit a shape of dimension 1.4. One way
of doing it is to let » = 25/7, so that 14 = 2, and find
a shape X such that if you expand X by a factor of »,
then the expanded shape can be expressed as a union
of two disjoint copies of X. Two copies of X ought to
have twice the “volume” of X itself, so the dimension
d of X ought to satisfy the equation 4 = 2. By our
choice of 7, this tells us that the dimension of X is 1.4.
For more details, see DIMENSION [III.17].

Another concept that seems at first to make no sense
is noncommutative geometry. The word “commutative”
applies to BINARY OPERATIONS [I.2 §2.4]| and therefore
belongs to algebra rather than geometry, so what could
“noncommutative geometry” possibly mean?

By now the answer should not be a surprise: one
reformulates part of geometry in terms of a certain
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algebraic structure and then generalizes the algebra.
The algebraic structure involves a commutative binary
operation, so one can generalize the algebra by allowing
the binary operation not to be commutative.

The part of geometry in question is the study of
MANIFOLDS [I.3 §6.9]. Associated with a manifold X is
the set C(X) of all continuous complex-valued func-
tions defined on X. Given two functions f, g in C(X),
and two complex numbers A and u, the linear combi-
nation Af + pg is another continuous complex-valued
function, so it also belongs to C(X). Therefore, C(X)
is a vector space. However, one can also multiply f
and g to form the continuous function fg (defined by
(fg)(x) = f(x)g(x)). This multiplication has various
natural properties (for instance, f(g + h) = fg + fh
for all functions f, g, and h) that make C(X) into an
algebra, and even a C*-ALGEBRA [IV.15 §3]. It turns out
that a great deal of the geometry of a compact mani-
fold X can be reformulated purely in terms of the cor-
responding C*-algebra C(X). The word “purely” here
means that it is not necessary to refer to the manifold
X in terms of which the algebra C(X) was originally
defined—all one uses is the fact that C(X) is an alge-
bra. This raises the possibility that there might be alge-
bras that do not arise geometrically, but to which the
reformulated geometrical concepts nevertheless apply.

An algebra has two binary operations: addition and
multiplication. Addition is always assumed to be com-
mutative, but multiplication is not: when multiplica-
tion is commutative as well, one says that the alge-
bra is commutative. Since fg and gf are clearly the
same function, the algebra C(X) is a commutative
C*-algebra, so the algebras that arise geometrically are
always commutative. However, many geometrical con-
cepts, once they have been reformulated in algebraic
terms, continue to make sense for noncommutative C*-
algebras, and that is why the phrase “noncommuta-
tive” geometry is used. For more details, see OPERATOR
ALGEBRAS [IV.15 §5].

This process of reformulating and then generalizing
underlies many of the most important advances in
mathematics. Let us briefly look at a third example. THE
FUNDAMENTAL THEOREM OF ARITHMETIC [V.14] s, as its
name suggests, one of the foundation stones of number
theory: it states that every positive integer can be writ-
ten in exactly one way as a product of prime numbers.
However, number theorists like to look at enlarged
number systems, and for most of these the obvious
analogue of the fundamental theorem of arithmetic is
no longer true. For example, in the RING [II1.81 §1] of
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numbers of the form a + b/~5 (where a and b are
required to be integers), the number 6 can be writ-
ten either as 2 x 3 or as (1 ++/~5) x (1 —+/=5). Since
none of the numbers 2, 3,1+ /=5, or 1 — /=5 can be
decomposed further, the number 6 has two genuinely
different prime factorizations in this ring.

There is, however, a natural way of generalizing
the concept of “number” to include IDEAL NUMBERS
[I11.81 §2] that allow one to prove a version of the fun-
damental theorem of arithmetic in rings such as the
one just defined. First, we must reformulate: we asso-
ciate with each number y the set of all its multiples
dy, where 6 belongs to the ring. This set, which is
denoted (y), has the following closure property: if «
and B belong to (y) and 6 and € are any two elements
of the ring, then S« + € belongs to (y).

A subset of a ring with that closure property is called
an ideal. If the ideal is of the form (y) for some num-
ber y, then it is called a principal ideal. However, there
are ideals that are not principal, so we can think of the
set of ideals as generalizing the set of elements of the
original ring (once we have reformulated each element
y as the principal ideal (y)). It turns out that there are
natural notions of addition and multiplication that can
be applied to ideals. Moreover, it makes sense to define
an ideal I to be “prime” if the only way of writing I as
a product JK is if one of J and K is a “unit.” In this
enlarged set, unique factorization turns out to hold.
These concepts give us a very useful way to measure
“the extent to which unique factorization fails” in the
original ring. For more details, see ALGEBRAIC NUMBERS
[IV.187].

3.5 Higher Dimensions and Several Variables

We have already seen that the study of polynomial
equations becomes much more complicated when one
looks not just at single equations in one variable,
but at systems of equations in several variables. Sim-
ilarly, we have seen that PARTIAL DIFFERENTIAL EQUA-
TIONS [L.3 §5.4], which can be thought of as differen-
tial equations involving several variables, are typically
much more difficult to analyze than ordinary differen-
tial equations, that is, differential equations in just one
variable. These are two notable examples of a process
that has generated many of the most important prob-
lems and results in mathematics, particularly over the
last century or so: the process of generalization from
one variable to several variables.

Suppose one has an equation that involves three real
variables, x, y, and z. It is often useful to think of
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Figure 1 The densest possible
packing of circles in the plane.

the triple (x, ¥, z) as an object in its own right, rather
than as a collection of three numbers. Furthermore,
this object has a natural interpretation: it represents
a point in three-dimensional space. This geometrical
interpretation is important, and goes a long way toward
explaining why extensions of definitions and theorems
from one variable to several variables are so interest-
ing. If we generalize a piece of algebra from one vari-
able to several variables, we can also think of what we
are doing as generalizing from a one-dimensional set-
ting to a higher-dimensional setting. This idea leads
to many links between algebra and geometry, allowing
techniques from one area to be used to great effect in
the other.

4 Discovering Patterns

Suppose that you wish to fill the plane as densely as
possible with nonoverlapping circles of radius 1. How
should you do it? This question is an example of a so-
called packing problem. The answer is known, and it
is what one might expect: you should arrange the cir-
cles so that their centers form a triangular lattice, as
shown in figure 1. In three dimensions a similar result
is true, but much harder to prove: until recently it was
a famous open problem known as the Kepler conjec-
ture. Several mathematicians wrongly claimed to have
solved it, but in 1998 a long and complicated solution,
obtained with the help of a computer, was announced
by Thomas Hales, and although his solution has proved
very hard to check, the consensus is that it is probably
correct.

Questions about packing of spheres can be asked in
any number of dimensions, but they become harder
and harder as the dimension increases. Indeed, it is
likely that the best density for a ninety-seven-dimen-
sional packing, say, will never be known. Experience
with similar problems suggests that the best arrange-
ment will almost certainly not have a simple structure
such as one sees in two dimensions, so that the only
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which is astonishingly close to an integer. Again it is
initially tempting to dismiss this as a coincidence, but
one should think twice before yielding to the tempta-
tion. After all, there are not all that many numbers that
can be defined as simply as e"\’m, and each one has
a probability of less than one in a million million of
being as close to an integer as e™163 jg In fact, it is not
a coincidence at all: for an explanation see ALGEBRAIC
NUMBERS [IV.1 §8].

6 Counting and Measuring

How many rotational symmetries are there of a regular
icosahedron? Here is one way to work it out. Choose
a vertex v of the icosahedron and let v’ be one of its
neighbors. An icosahedron has twelve vertices, so there
are twelve places where v could end up after the rota-
tion. Once we know where v goes, there are five possi-
bilities for v’ (since each vertex has five neighbors and
v’ must still be a neighbor of v after the rotation). Once
we have determined where v and v’ go, there is no fur-
ther choice we can make, so the number of rotational
symmetries is 5 X 12 = 60.

This is a simple example of a counting argument, that
is, an answer to a question that begins “How many.”
However, the word “argument” is at least as important
as the word “counting,” since we do not put all the sym-
metries in a row and say “one, two, three, ..
we might if we were counting in real life. What we do
instead is come up with a reason for the number of
rotational symmetries being 5 x 12. At the end of the
process, we understand more about those symmetries
than merely how many there are. Indeed, it is possible
to go further and show that the group of rotations of
the icosahedron is As, the ALTERNATING GROUP [II1.68]
on five elements.

., sixty,” as

6.1 Exact Counting

Here is a more sophisticated counting problem. A one-
dimensional random walk of n steps is a sequence
.,an, such that for each i the
difference a; — a;_; is either 1 or —1. For example,
0,1,2,1,2,1,0, -1 is a seven-step random walk. The
number of n-step random walks that start at 0 is clearly
2" since there are two choices for each step (either you
add 1 or you subtract 1).

Now let us try a slightly harder problem. How many
walks of length 2n are there that start and end at 0?
(We look at walks of length 2n since a walk that starts

of integers ag,a,az,..
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and ends in the same place must have an even number
of steps.)

In order to think about this problem, it helps to use
the letters R and L (for “right” and “left”) to denote
adding 1 and subtracting 1, respectively. This gives
us an alternative notation for random walks that start
at 0: for example, the walk 0,1,2,1,2,1,0, —~1 would be
rewritten as RRLRLLL. Now a walk will end at O if and
only if the number of Rs is equal to the number of Ls.
Moreover, if we are told the set of steps where an R
occurs, then we know the entire walk. So what we are
counting is the number of ways of choosing n of the
2n steps as the steps where an R will occur. And this is
well-known to be (2n)!/(n!)2.

Now let us look at a related quantity that is consider-
ably less easy to determine: the number W(n) of walks
of length 2n that start and end at O and are never neg-
ative. Here, in the notation introduced for the previous
problem, is a list of all such walks of length 6: RRRLLL,
RRLRLL, RRLLRL, RLRRLL, and RLRLRL.

Now three of these five walks do not just start and
end at 0 but visit it in the middle: RRLLRL visits it after
four steps, RLRRLL after two, and RLRLRL after two and
four. Suppose we have a walk of length 2n that is never
negative and visits O for the first time after 2k steps.
Then the remainder of the walk is a walk of length
2(n — k) that starts and ends at 0 and is never nega-
tive. There are W (n — k) of these. As for the first 2k
steps of such a walk, they must begin with R and end
with L, and in between must never visit 0. This means
that between the initial R and the final L they give a
walk of length 2(k — 1) that starts and ends at 1 and is
never less than 1. The number of such walks is clearly
the same as W (k — 1). Therefore, since the first visit to
0 must take place after 2k steps for some k between
1 and n, W satisfies the following slightly complicated
recurrence relation:

Wn)=wO)Wm-1)+---+W(n-1)W(0).

Here, W(0) is taken to be equal to 1.

This allows us to calculate the first few values of
W. We have W(l1) = W(0)W(0) = 1, which is eas-
ier to see directly: the only possibility is RL. Then
W(2) =W(0)W()+ W(O)W(1) = 2, and W(3), which
counts the number of such walks of length 6, equals
W)W (2) + W(L)W(1) + W(2)W(0) = 5, confirming
our earlier calculation.

Of course, it would not be a good idea to use the
recurrence relation directly if one wished to work out
W(n) for large values of n such as 10!°. However,
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the recurrence is of a sufficiently nice form that it
is amenable to treatment by GENERATING FUNCTIONS
[IV.18 §§2.4, 3], as is explained in ENUMERATIVE AND
ALGEBRAIC COMBINATORICS [IV.18 §3]. (To see the con-
nection with that discussion, replace the letters R and
L by the square brackets [ and ], respectively. A legal
bracketing then corresponds to a walk that is never
negative.)

The argument above gives an efficient way of calcu-
lating W (n) exactly. There are many other exact count-
ing arguments in mathematics. Here is a small further
sample of quantities that mathematicians know how to
count exactly without resorting to “brute force.” (See
the introduction to [IV.18] for a discussion of when one
regards a counting problem as solved.)

(i) The number ¥ (n) of regions that a plane is cut into
by n lines if no two of the lines are parallel and no three
concurrent. The first four values of »(n) are 2,4, 7, and
11. It is not hard to prove that »(n) = r(n — 1) + n,
which leads to the formula »(n) = ;(n2 + n + 2). This
statement, and its proof, can be generalized to higher
dimensions.

(ii) The number s(n) of ways of writing n as a sum of
four squares. Here we allow zero and negative numbers
and we count different orderings as different (so, for
example, 124+ 32442422 32 442 112422 124 (-3)%+
42 4+ 22 and 0% + 1% + 22 + 52 are considered to be four
different ways of writing 30 as a sum of four squares).
It can be shown that s(n) is equal to 8 times the sum
of all the divisors of n that are not multiples of 4. For
example, the divisors of 12 are 1, 2, 3, 4, 6, and 12, of
which 1, 2, 3, and 6 are not multiples of 4. Therefore
s(12) = 8(1 + 2+ 3 + 6) = 96. The different ways are
12412+1%2432,0+22+2%2422 and the other expressions
that can be obtained from these ones by reordering and
replacing positive integers by negative ones.

(iii) The number of lines in space that meet a given
four lines Lj, L2, L3, and Ly when those four are in “gen-
eral position.” (This means that they do not have special
properties such as two of them being parallel or inter-
secting each other.) It turns out that for any three such
lines, there is a subset of R? known as a quadric surface
that contains them, and this quadric surface is unique.
Let us take the surface for L;, L2, and L3 and call it S.

The surface S has some interesting properties that
allow us to solve the problem. The main one is that
one can find a continuous family of lines (that is, a col-
lection of lines L(t), one for each real number ¢, that
varies continuously with t) that, between them, make
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up the surface S and include each of the lines Ly, Ly,
and L3. But there is also another such continuous fam-
ily of lines M (s), each of which meets every line L(t) in
exactly one point. In particular, every line M (s) meets
all of Ly, L2, and L3, and in fact every line that meets all
of L, L2, and L3 must be one of the lines M (s).

It can be shown that Ly intersects the surface S in
exactly two points, P and Q. Now P lies in some line
M (s) from the second family, and Q lies in some other
line M(s") (which must be different, or else Ly would
equal M(s) and intersect L;, Ly, and L3, contradicting
the fact that the lines L; are in general position). There-
fore, the two lines M (s) and M(s') intersect all four of
the lines L;. But every line that meets all the L; has to
be one of the lines M(s) and has to go through either
P or Q (since the lines M (s) lie in S and Ly meets S at
only those two points). Therefore, the answer is 2.

This question can be generalized very considerably,
and answered by means of a technique known as
Schubert calculus.

(iv) The number p (n) of ways of expressing a positive
integer n as a sum of positive integers. When n = 6 this
numberis 11,since6 =1+1+1+1+1+1=2+1+1+
141 =242+141=2+42+2=3+1+141=3+2+1=
3+43=4+41+1=4+2=5+1 = 6. The function p(n)
is called the partition function. A remarkable formula,
due to HARDY [VL.73] and RAMANUJAN [VL.82], gives an
approximation «(n) to p(n) that is so accurate that
p(n) is always the nearest integer to «x(n).

6.2 Estimates

Once we have seen example (ii) above, it is natural to
ask whether it can be generalized. Is there a formula
for the number t(n) of ways of writing n as a sum of
ten sixth powers, for example? It is generally believed
that the answer to this question is no, and certainly no
such formula has been discovered. However, as with
packing problems, even if an exact answer does not
seem to be forthcoming, it is still very interesting to
obtain estimates. In this case, one can try to define an
easily calculated function f such that f(n) is always
approximately equal to t(n). If even that is too hard,
one can try to find two easily calculated functions L
and U such that L(n) < t(n) < U(n) for every n. If
we succeed, then we call L a lower bound for t and U
an upper bound. Here are a few examples of quanti-
ties that nobody knows how to count exactly, but for
which there are interesting approximations, or at least
interesting upper and lower bounds.
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(i) Probably the most famous approximate counting
problem in all of mathematics is to estimate 1 (n), the
number of prime numbers less than or equal to n. For
small values of n, we can of course compute 1(n)
exactly: for example, m(20) = 8 since the primes less
than or equal to 20 are 2, 3, 5, 7,11, 13, 17, and 19.
However, there does not seem to be a useful formula for
mm(n), and although it is easy to think of a brute-force
algorithm for computing ™ (n)—Ilook at every number
up to n, test whether it is prime, and keep count as you
go along—such a procedure takes a prohibitively long
time if n is at all large. Furthermore, it does not give us
much insight into the nature of the function mw(n).

If, however, we modify the question slightly, and ask
roughly how many primes there are up to n, then we
find ourselves in the area known as ANALYTIC NUMBER
THEORY [IV.2], a branch of mathematics with many fas-
cinating results. In particular, the famous PRIME NUM-
BER THEOREM [V.26], proved by HADAMARD [VIL.65] and
DE LA VALLEE POUSSIN [VL.67] at the end of the nine-
teenth century, states that 7t (n) is approximately equal
to n/logn, in the sense that the ratio of m(n) to
n/logn converges to 1 as n tends to infinity.

This statement can be refined. It is believed that the
“density” of primes close to n is about 1/log n, in the
sense that a randomly chosen integer close to n has a
probability of about 1/log n of being prime. This would
suggest that 1 (n) should be about [ dt/logt, a func-
tion of n that is known as the logarithmic integral of n,
or li(n).

How accurate is this estimate? Nobody knows, but
the RIEMANN HYPOTHESIS [V.26], perhaps the most
famous unsolved problem in mathematics, is equiva-
lent to the statement that m(n) and li(n) differ by at
most c¢/nlogn for some constant c. Since nlogn is
much smaller than 1r(n), this would tell us that li(n)
was an extremely good approximation to 1(n).

(i) A self-avoiding walk of length n in the plane
is a sequence of points (ag, bgo),(a1,by),(az,b2),...,
(an, bn) with the following properties.

e The numbers a; and b; are all integers.

« For each i, one obtains (a;, b;) from (a; 1,bi 1)
by taking a horizontal or vertical step of length 1.
That is, either a; = a; 1 and b; = bj 1 £ 1 ora; =
aij1+1and b; = b; 1.

* No two of the points (a;, b;) are equal.

The first two conditions tell us that the sequence forms
a two-dimensional walk of length n, and the third says
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that this walk never visits any point more than once—
hence the term “self-avoiding.”

Let S(n) be the number of self-avoiding walks of
length n that start at (0, 0). There is no known formula
for S(n), and it is very unlikely that such a formula
exists. However, quite a lot is known about the way the
function S(n) grows as n grows. For instance, it is fairly
easy to prove that S(n)!/" converges to a limit c. The
value of ¢ is not known, but it has been shown (with the
help of a computer) to lie between 2.62 and 2.68.

(iii) Let C(t) be the number of points in the plane
with integer coordinates contained in a circle of radius
t about the origin. That is, C(t) is the number of pairs
(a,b) of integers such that a? + b? < t2. A circle of
radius t has area mt?, and the plane can be tiled by
unit squares, each of which has a point with integer
coordinates at its center. Therefore, when t is large it is
fairly clear (and not hard to prove) that C(t) is approx-
imately mrt2. However, it is much less clear how good
this approximation is.

To make this question more precise, let us set €(t) to
equal |C(t) — mt?|. That is, €(t) is the error in wt? as
an estimate for C(t). It was shown in 1915, by Hardy
and Landau, that e(t) must be at least ¢/t for some
constant ¢ > 0, and this estimate, or something very
similar, probably gives the right order of magnitude
for e(t). However, the best upper bound known, which
was proved by Huxley in 2003 (the latest in a long line
of successive improvements), is that e(t) is at most
At131/208(10g +)2:26 for some constant A.

6.3 Averages

So far, our discussion of estimates and approximations
has been confined to problems where the aim is to
count mathematical objects of a given kind. However,
that is by no means the only context in which estimates
can be interesting. Given a set of objects, one may wish
to know not just how large the set is, but also what a
typical object in the set looks like. Many questions of
this kind take the form of asking what the average value
is of some numerical parameter that is associated with
each object. Here are two examples.

(i) What is the average distance between the start-
ing point and the endpoint of a self-avoiding walk of
length n? In this instance, the objects are self-avoiding
walks of length n that start at (0, 0), and the numerical
parameter is the end-to-end distance.

Surprisingly, this is a notoriously difficult problem,
and almost nothing is known. It is obvious that n is
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an upper bound for §(n), but one would expect a typ-
ical self-avoiding walk to take many twists and turns
and end up traveling much less far than n away from
its starting point. However, there is no known upper
bound for S(n) that is substantially better than n.

In the other direction, one would expect the end-
to-end distance of a typical self-avoiding walk to be
greater than that of an ordinary walk, to give it room
to avoid itself. This would suggest that S(n) is signifi-
cantly greater than /n, but it has not even been proved
that it is greater.

This is not the whole story, however, and the problem
will be discussed further in section 8.

(ii) Let n be a large randomly chosen positive integer
and let w(n) be the number of distinct prime factors of
n.On average, how large will w (n) be? As it stands, this
question does not quite make sense because there are
infinitely many positive integers, so one cannot choose
one randomly. However, one can make the question
precise by specifying a large integer m and choosing
a random integer n between m and 2m. It then turns
out that the average size of w(n) is around loglog n.

In fact, much more is known than this. If all you
know about a RANDOM VARIABLE [III.71 §4] is its aver-
age, then a great deal of its behavior is not determined,
so for many problems calculating averages is just the
beginning of the story. In this case, Hardy and Ramanu-
jan gave an estimate for the STANDARD DEVIATION
[1I.71 §4] of w(n), showing that it is about y/loglog n.
Then Erdos and Kac went even further and gave a pre-
cise estimate for the probability that w (n) differs from
loglogn by more than cy/loglogn, proving the sur-
prising fact that the distribution of w is approximately
GAUSSIAN [IIL.71 §5].

To put these results in perspective, let us think about
the range of possible values of w(n). At one extreme,
n might be a prime itself, in which case it obviously
has just one prime factor. At the other extreme, we can
write the primes in ascending order as pp, p2,p3,...
and take numbers of the form n = pyp2 - - - px. With
the help of the prime number theorem, one can show
that the order of magnitude of k is logn/loglogn,
which is much bigger than loglogn. However, the
results above tell us that such numbers are exceptional:
a typical number has a few distinct prime factors, but
nothing like as many as log n/loglog n.

6.4 Extremal Problems

There are many problems in mathematics where one
wishes to maximize or minimize some quantity in
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the presence of various constraints. These are called
extremal problems. As with counting questions, there
are some extremal problems for which one can realis-
tically hope to work out the answer exactly, and many
more for which, even though an exact answer is out
of the question, one can still aim to find interesting
estimates. Here are some examples of both kinds.

(i) Let n be a positive integer and let X be a set with
n elements. How many subsets of X can be chosen if
none of these subsets is contained in any other?

A simple observation one can make is that if two dif-
ferent sets have the same size, then neither is contained
in the other. Therefore, one way of satisfying the con-
straints of the problem is to choose all the sets of some
particular size k. Now the number of subsets of X of
size k is n!/k!(n — k)!, which is usually written (Z) (or
"Ck), and it is not hard to show that (;") is largest when
k =n/2if nis even and whenk = (n+1)/2 if n is odd.
For simplicity let us concentrate on the case when n is
even. What we have just proved is that it is possible to
pick (n’;'z) subsets of an n-element set in such a way
that none of them contains any other. That is, (n';z)
is a lower bound for the problem. A result known as
Sperner’s theorem states that it is an upper bound as
well. That is, if you choose more than (n';Z) subsets
of X, then, however you do it, one of these subsets
will be contained in another. Therefore, the question
is answered exactly, and the answer is ("';2). (When n
is odd, then the answer is ((" .'1)/2 , as one might now
expect.)

(ii) Suppose that the two ends of a heavy chain are
attached to two hooks on the ceiling and that the chain
is not supported anywhere else. What shape will the
hanging chain take?

At first, this question does not look like a maximiza-
tion or minimization problem, but it can be quickly
turned into one. That is because a general principle
from physics tells us that the chain will settle in the
shape that minimizes its potential energy. We there-
fore find ourselves asking a new question: let A and B
be two points at distance d apart, and let € be the set
of all curves of length [ that have A and B as their two
endpoints. Which curve C € € has the smallest poten-
tial energy? Here one takes the mass of any portion of
the curve to be proportional to its length. The poten-
tial energy of the curve is equal to mgh, where m is
the mass of the curve, g is the gravitational constant,
and h is the height of the center of gravity of the curve.
Since m and g do not change, another formulation of
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the question is: which curve C € € has the smallest
average height?

This problem can be solved by means of a technique
known as the calculus of variations. Very roughly, the
idea is this. We have a set, €, and a function h defined
on C that takes each curve C € € to its average height.
We are trying to minimize h, and a natural way to
approach that task is to define some sort of derivative
and look for a curve C at which this derivative is 0.
Notice that the word “derivative” here does not refer
to the rate of change of height as you move along the
curve. Rather, it means the (linear) way that the average
height of the entire curve changes in response to small
perturbations of the curve. Using this kind of deriva-
tive to find a minimum is more complicated than look-
ing for the stationary points of a function defined on R,
since € is an infinite-dimensional set and is therefore
much more complicated than R. However, the approach
can be made to work, and the curve that minimizes
the average height is known. (It is called a catenary,
after the Latin word for chain.) Thus, this is another
minimization problem that has been answered exactly.

For a typical problem in the calculus of variations,
one is trying to find a curve, or surface, or more gen-
eral kind of function, for which a certain quantity is
minimized or maximized. If a minimum or maximum
exists (which is by no means automatic when one is
working with an infinite-dimensional set, so this can
be an interesting and important question), the object
that achieves it satisfies a system of PARTIAL DIFFEREN-
TIAL EQUATIONS [I.3 §5.4] known as the Euler-Lagrange
equations. For more about this style of minimization
or maximization, see VARIATIONAL METHODS [II1.94]
(and also OPTIMIZATION AND LAGRANGE MULTIPLIERS
[T1IL.64]).

(iili) How many numbers can you choose between 1
and n if no three of them are allowed to lie in an arith-
metic progression? If n = 9 then the answer is 5. To
see this, note first that no three of the five numbers
1,2,4,8,9 lie in an arithmetic progression. Now let us
see if we can find six numbers that work.

If we make one of our numbers 5, then we must leave
out either 4 or 6, or else we would have the progression
4,5, 6. Similarly, we must leave out one of 3 and 7, one
of 2 and 8, and one of 1 and 9. But then we have left
out four numbers. It follows that we cannot choose 5
as one of the numbers.

We must leave out one of 1, 2, and 3, and one of 7, 8,
and 9, so if we leave out 5 then we must include 4 and
6. But then we cannot include 2 or 8. But we must also
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leave out at least one of 1, 4, and 7, so we are forced to
leave out at least four numbers.

An ugly case-by-case argument of this kind is feasi-
ble when n = 9, but as soon as n is at all large there
are far too many cases for it to be possible to con-
sider them all. For this problem, there does not seem
to be a tidy answer that tells us exactly which is the
largest set of integers between 1 and »n that contains
no arithmetic progression of length 3. So instead one
looks for upper and lower bounds on its size. To prove
a lower bound, one must find a good way of construct-
ing a large set that does not contain any arithmetic
progressions, and to prove an upper bound one must
show that any set of a certain size must necessarily
contain an arithmetic progression. The best bounds to
date are very far apart. In 1947, Behrend found a set
of size n/eV 18" that contains no arithmetic progres-
sion, and in 1999 Jean Bourgain proved that every set
of size Cn+/loglog n/log n contains an arithmetic pro-
gression. (If it is not obvious to you that these num-
bers are far apart, then consider what happens when
n = 1019, say. Then eV1°87 is about 4000000, while
JTlog n/loglogn is about 6.5.)

(iv) Theoretical computer science is a source of many
minimization problems: if one is programming a com-
puter to perform a certain task, then one wants it to do
so in as short a time as possible. Here is an elementary-
sounding example: how many steps are needed to
multiply two n-digit numbers together?

Even if one is not too precise about what is meant
by a “step,” one can see that the traditional method,
long multiplication, takes at least n? steps since, dur-
ing the course of the calculation, each digit of the
first number is multiplied by each digit of the sec-
ond. One might imagine that this was necessary, but
in fact there are clever ways of transforming the prob-
lem and dramatically reducing the time that a computer
needs to perform a multiplication of this kind. The
fastest known method uses THE FAST FOURIER TRANS-
FORM [II1.26] to reduce the number of steps from n?
to Cnlognloglogn. Since the logarithm of a number
is much smaller than the number itself, one thinks of
Cnlognloglogn as being only just worse than a bound
of the form Cn. Bounds of this form are called linear,
and for a problem like this are clearly the best one can
hope for, since it takes 2n steps even to read the digits
of the two numbers.

Another question that is similar in spirit is whether
there are fast algorithms for matrix multiplication. To
multiply two n X n matrices using the obvious method
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whose standard forms are different are themselves dif-
ferent, so in fact G has exactly 2k elements (where k is
the size of a minimal set of generators).

Now let us ask what happens if n is some integer
greater than 2 and x™ = e for every element x. That
is, if G is finitely generated and x™ = e for every x,
must G be finite? This turns out to be a much harder
question, originally asked by BURNSIDE [VL.60]. Burn-
side himself showed that G must be finite if n = 3, but
it was not until 1968 that his problem was solved, when
Adian and Novikov proved the remarkable result that
if n > 4381 then G does not have to be finite. There is
of course a big gap between 3 and 4381, and progress
in bridging it has been slow. It was only in 1992 that
this was improved to n > 13, by Ivanov. And to give an
idea of how hard the Burnside problem is, it is still not
known whether a group with two generators such that
the fifth power of every element is the identity must be
finite.

8 Working with Arguments That
Are Not Fully Rigorous

A mathematical statement is considered to be estab-
lished when it has a proof that meets the high stan-
dards of rigor that are characteristic of the subject.
However, nonrigorous arguments have an important
place in mathematics as well. For example, if one wishes
to apply a mathematical statement to another field,
such as physics or engineering, then the truth of the
statement is often more important than whether one
has proved it.

However, this raises an obvious question: if one has
not proved a statement, then what grounds could there
be for believing it? There are in fact several different
kinds of nonrigorous justification, so let us look at
some of them.

8.1 Conditional Results

As was mentioned earlier in this article, the Riemann
hypothesis is the most famous unsolved problem in
mathematics. Why is it considered so important? Why,
for example, is it considered more important than the
twin prime conjecture, another problem to do with the
behavior of the sequence of primes?

The main reason, though not the only one, is that it
and its generalizations have a huge number of interest-
ing consequences. In broad terms, the Riemann hypoth-
esis tells us that the appearance of a certain degree of

I. Introduction

“randomness” in the sequence of primes is not mislead-
ing: in many respects, the primes really do behave like
an appropriately chosen random set of integers.

If the primes behave in a random way, then one might
imagine that they would be hard to analyze, but in
fact randomness can be an advantage. For example,
it is randomness that allows me to be confident that
at least one girl was born in London on every day of
the twentieth century. If the sex of babies were less
random, I would be less sure: there could be some
strange pattern such as girls being born on Mondays
to Thursdays and boys on Fridays to Sundays. Simi-
larly, if I know that the primes behave like a random
sequence, then I know a great deal about their aver-
age behavior in the long term. The Riemann hypothesis
and its generalizations formulate in a precise way the
idea that the primes, and other important sequences
that arise in number theory, “behave randomly.” That
is why they have so many consequences. There are
large numbers of papers with theorems that are proved
only under the assumption of some version of the Rie-
mann hypothesis. Therefore, anybody who proves the
Riemann hypothesis will change the status of all these
theorems from conditional to fully proved.

How should one regard a proof if it relies on the Rie-
mann hypothesis? One could simply say that the proof
establishes that such and such a result is implied by
the Riemann hypothesis and leave it at that. But most
mathematicians take a different attitude. They believe
the Riemann hypothesis, and believe that it will one day
be proved. So they believe all its consequences as well,
even if they feel more secure about results that can be
proved unconditionally.

Another example of a statement that is generally
believed and used as a foundation for a great deal of
further research comes from theoretical computer sci-
ence. As was mentioned in section 6.4 (iv), one of the
main aims of computer science is to establish how
quickly certain tasks can be performed by a computer.
This aim splits into two parts: finding algorithms that
work in as few steps as possible, and proving that every
algorithm must take at least some particular number
of steps. The second of these tasks is notoriously dif-
ficult: the best results known are far weaker than what
is believed to be true.

There is, however, a class of computational prob-
lems, called NP-complete problems, that are known to
be of equivalent difficulty. That is, if there were an effi-
cient algorithm for one of these problems, then it could
be converted into an efficient algorithm for any other.
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However, largely for this very reason it is almost univer-
sally believed that there is in fact no efficient algorithm
for any of the problems, or, as it is usually expressed,
that “P does not equal NP.” Therefore, if you want to
demonstrate that no quick algorithm exists for some
problem, all you have to do is prove that it is at least
as hard as some problem that is already known to be
NP-complete. This will not be a rigorous proof, but it
will be a convincing demonstration, since most mathe-
maticians are convinced that P does not equal NP. (See
COMPUTATIONAL COMPLEXITY [IV.20] for much more on
this topic.)

Some areas of research depend on several conjec-
tures rather than just one. It is as though researchers
in such areas have discovered a beautiful mathematical
landscape and are impatient to map it out despite the
fact that there is a great deal that they do not under-
stand. And this is often a very good research strategy,
even from the perspective of finding rigorous proofs.
There is far more to a conjecture than simply a wild
guess: for it to be accepted as important, it should have
been subjected to tests of many kinds. For example,
does it have consequences that are already known to
be true? Are there special cases that one can prove? If
it were true, would it help one solve other problems?
Is it supported by numerical evidence? Does it make
a bold, precise statement that would probably be easy
to refute if it were false? It requires great insight and
hard work to produce a conjecture that passes all these
tests, but if one succeeds, one has not just an isolated
statement, but a statement with numerous connections
to other statements. This increases the chances that
it will be proved, and greatly increases the chances
that the proof of one statement will lead to proofs
of others as well. Even a counterexample to a good
conjecture can be extraordinarily revealing: if the con-
jecture is related to many other statements, then the
effects of the counterexample will permeate the whole
area.

One area that is full of conjectural statements is
ALGEBRAIC NUMBER THEORY [IV.1]. In particular, the
Langlands program is a collection of conjectures, due
to Robert Langlands, that relate number theory to
representation theory (it is discussed in REPRESEN-
TATION THEORY [IV.9 §6]). Between them, these con-
jectures generalize, unify, and explain large numbers
of other conjectures and results. For example, the
Shimura-Taniyama-Weil conjecture, which was central
to Andrew Wiles’s proof of FERMAT'S LAST THEOREM
[V.10], forms one small part of the Langlands program.
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The Langlands program passes the tests for a good con-
jecture supremely well, and has for many years guided
the research of a large number of mathematicians.

Another area of a similar nature is known as MIR-
ROR SYMMETRY [IV.16]. This is a sort of DUALITY [II1.19]
that relates objects known as CALABI-YAU MANIFOLDS
[I11.6], which arise in ALGEBRAIC GEOMETRY [IV.4] and
also in STRING THEORY [IV.17 §2], to other, dual mani-
folds. Just as certain differential equations can become
much easier to solve if one looks at the FOURIER TRANS-
FORMS [II1.27] of the functions in question, so there are
calculations arising in string theory that look impos-
sible until one transforms them into equivalent calcu-
lations in the dual, or “mirror,” situation. There is at
present no rigorous justification for the transforma-
tion, but this process has led to complicated formulas
that nobody could possibly have guessed, and some of
these formulas have been rigorously proved in other
ways. Maxim Kontsevich has proposed a precise con-
jecture that would explain the apparent successes of
mirror symmetry.

8.2 Numerical Evidence

The GOLDBACH CONJECTURE [V.27] states that every
even number greater than or equal to 4 is the sum of
two primes. It seems to be well beyond what anybody
could hope to prove with today’s mathematical machin-
ery, even if one is prepared to accept statements such
as the Riemann hypothesis. And yet it is regarded as
almost certainly true.

There are two principal reasons for believing Gold-
bach’s conjecture. The first is a reason we have already
met: one would expect it to be true if the primes are
“randomly distributed.” This is because if n is a large
even number, then there are many ways of writing
n = a + b, and there are enough primes for one to
expect that from time to time both a and b would
be prime.

Such an argument leaves open the possibility that
for some value of n that is not too large one might be
unlucky, and it might just happen that n — a was com-
posite whenever a was prime. This is where numerical
evidence comes in. It has now been checked that every
even number up to 10'% can be written as a sum of
two primes, and once n is greater than this, it becomes
extremely unlikely that it could “just happen,” by a
fluke, to be a counterexample.

This is perhaps rather a crude argument, but there is
a way to make it even more convincing. If one makes
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more precise the idea that the primes appear to be ran-
domly distributed, one can formulate a stronger ver-
sion of Goldbach’s conjecture that says not only that
every even number can be written as a sum or two
primes, but also roughly how many ways there are of
doing this. For instance, if a and n — a are both prime,
then neither is a multiple of 3 (unless one of them is
equal to 3 itself). If n is a multiple of 3, then this merely
says that a is not a multiple of 3, but if n is of the form
3m + 1 then a cannot be of the form 3k + 1 either (or
n — a would be a multiple of 3). So, in a certain sense,
it is twice as easy for n to be a sum of two primes if it
is a multiple of 3. Taking this kind of information into
account, one can estimate in how many ways it “ought”
to be possible to write n as a sum of two primes. It
turns out that, for every even n, there should be many
such representations. Moreover, one’s predictions of
how many are closely matched by the numerical evi-
dence: that is, they are true for values of n that are
small enough to be checked on a computer. This makes
the numerical evidence much more convincing, since
it is evidence not just for Goldbach’s conjecture itself,
but also for the more general principles that led us to
believe it.

This illustrates a general phenomenon: the more pre-
cise the predictions that follow from a conjecture, the
more impressive it is when they are confirmed by later
numerical evidence. Of course, this is true not just of
mathematics but of science more generally.

8.3 “Illegal” Calculations

In section 6.3 it was stated that “almost nothing is
known” about the average end-to-end distance of an n-
step self-avoiding walk. That is a statement with which
theoretical physicists would strongly disagree. Instead,
they would tell you that the end-to-end distance of a
typical n-step self-avoiding walk is somewhere in the
region of n3/4, This apparent disagreement is explained
by the fact that, although almost nothing has been rig-
orously proved, physicists have a collection of nonrig-
orous methods that, if used carefully, seem to give cor-
rect results. With their methods, they have in some
areas managed to establish statements that go well
beyond what mathematicians can prove. Such results
are fascinating to mathematicians, partly because if
one regards the results of physicists as mathematical
conjectures then many of them are excellent conjec-
tures, by the standards explained earlier: they are deep,
completely unguessable in advance, widely believed to
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be true, backed up by numerical evidence, and so on.
Another reason for their fascination is that the effort to
provide them with a rigorous underpinning often leads
to significant advances in pure mathematics.

To give an idea of what the nonrigorous calcula-
tions of physicists can be like, here is a rough descrip-
tion of a famous argument of Pierre-Gilles de Gennes,
which lies behind some of the results (or predictions,
if you prefer to call them that) of physicists. In statis-
tical physics there is a model known as the n-vector
model, closely related to the Ising and Potts models
described in PROBABILISTIC MODELS OF CRITICAL PHE-
NOMENA [IV.25]. At each point of 74 one places a unit
vector in R". This gives rise to a random configuration
of unit vectors, with which one associates an “energy”
that increases as the angles between neighboring vec-
tors increase. De Gennes found a way of transform-
ing the self-avoiding-walk problem so that it could be
regarded as a question about the n-vector model in
the case n = 0. The 0O-vector problem itself does not
make obvious sense, since there is no such thing as
a unit vector in R?, but de Gennes was nevertheless
able to take parameters associated with the n-vector
model and show that if you let n converge to zero
then you obtained parameters associated with self-
avoiding walks. He proceeded to choose other parame-
ters in the n-vector model to derive information about
self-avoiding walks, such as the expected end-to-end
distance.

To a pure mathematician, there is something very
worrying about this approach. The formulas that arise
in the n-vector model do not make sense when n = 0,
so instead one has to regard them as limiting values
when n tends to zero. But n is very clearly a positive
integer in the n-vector model, so how can one say that it
tends to zero? Is there some way of defining an n-vector
model for more general n? Perhaps, but nobody has
found one. And yet de Gennes’s argument, like many
other arguments of a similar kind, leads to remarkably
precise predictions that agree with numerical evidence.
There must be a good reason for this, even if we do not
understand what it is.

The examples in this section are just a few illus-
trations of how mathematics is enriched by nonrigor-
ous arguments. Such arguments allow one to penetrate
much further into the mathematical unknown, open-
ing up whole areas of research into phenomena that
would otherwise have gone unnoticed. Given this, one
might wonder whether rigor is important: if the results
established by nonrigorous arguments are clearly true,
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then is that not good enough? As it happens, there are
examples of statements that were “established” by non-
rigorous methods and later shown to be false, but the
most important reason for caring about rigor is that the
understanding one gains from a rigorous proof is fre-
quently deeper than the understanding provided by a
nonrigorous one. The best way to describe the situation
is perhaps to say that the two styles of argument have
profoundly benefited each other and will undoubtedly
continue to do so.

9 Finding Explicit Proofs and Algorithms

There is no doubt that the equation x> — x — 13 = 0 has
a solution. After all, if we set f(x) = x° — x — 13, then
f(1) = =13 and f(2) = 17, so somewhere between 1
and 2 there will be an x for which f(x) = 0.

That is an example of a pure existence argument—in
other words, an argument that establishes that some-
thing exists (in this case, a solution to a certain equa-
tion), without telling us how to find it. If the equa-

2 x — 13 = 0, then we could have

tion had been x
used an argument of a very different sort: the for-
mula for quadratic equations tells us that there are pre-
cisely two solutions, and it even tells us what they are
(theyare (1 + +/53)/2 and (1 — +/53)/2). However, there
is no similar formula for quintic equations. (See THE
INSOLUBILITY OF THE QUINTIC [V.21].)

These two arguments illustrate a fundamental di-
chotomy in mathematics. If you are proving that a
mathematical object exists, then sometimes you can
do so explicitly, by actually describing that object, and
sometimes you can do so only indirectly, by showing
that its nonexistence would lead to a contradiction.

There is also a spectrum of possibilities in between.
As it was presented, the argument above showed mere-
ly that the equation x® — x — 13 = 0 has a solution
between 1 and 2, but it also suggests a method for cal-
culating that solution to any desired accuracy. If, for
example, you want to know it to two decimal places,
then run through the numbers 1,1.01,1.02,...,1.99,2
evaluating f at each one. You will find that f(1.71)
is approximately —0.0889 and that f(1.72) is approx-
imately 0.3337, so there must be a solution between
the two (which the calculations suggest will be closer
to 1.71 than to 1.72). And in fact there are much better
ways, such as NEWTON'S METHOD [I1.4 §2.3], of approxi-
mating solutions. For many purposes, a pretty formula
for a solution is less important than a method of cal-
culating or approximating it. (See NUMERICAL ANALYSIS
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[IV.21 §1] for a further discussion of this point.) And if
one has a method, its usefulness depends very much
on whether it works quickly.

Thus, at one end of the spectrum one has simple for-
mulas that define mathematical objects and can easily
be used to find them, at the other one has proofs that
establish existence but give no further information, and
in between one has proofs that yield algorithms for
finding the objects, algorithms that are significantly
more useful if they run quickly.

Just as, all else being equal, a rigorous argument is
preferable to a nonrigorous one, so an explicit or algo-
rithmic argument is worth looking for even if an indi-
rect one is already established, and for similar reasons:
the effort to find an explicit argument very often leads
to new mathematical insights. (Less obviously, as we
shall soon see, finding indirect arguments can also lead
to new insights.)

One of the most famous examples of a pure exis-
tence argument concerns TRANSCENDENTAL NUMBERS
[II.41], which are real numbers that are not roots of
any polynomial with integer coefficients. The first per-
son to prove that such numbers existed was LIOUVILLE
[VL.39], in 1844. He proved that a certain condition was
sufficient to guarantee that a number was transcen-
dental and demonstrated that it is easy to construct
numbers satisfying his condition (see LIOUVILLE'S THE-
OREM AND ROTH'S THEOREM [V.22]). After that, vari-
ous important numbers such as e and 1 were proved
to be transcendental, but these proofs were difficult.
Even now there are many numbers that are almost cer-
tainly transcendental but which have not been proved
to be transcendental. (See IRRATIONAL AND TRANSCEN-
DENTAL NUMBERS [I[1.41] for more information about
this.)

All the proofs mentioned above were direct and
explicit. Then in 1873 CANTOR [VI.54] provided a com-
pletely different proof of the existence of transcenden-
tal numbers, using his theory of cOUNTABILITY [IIL.11].
He proved that the algebraic numbers were countable
and the real numbers uncountable. Since countable
sets are far smaller than uncountable sets, this showed
that almost every real number (though not necessar-
ily almost every real number you will actually meet)
is transcendental.

In this instance, each of the two arguments tells
us something that the other does not. Cantor’s proof
shows that there are transcendental numbers, but it
does not provide us with a single example. (Strictly
speaking, this is not true: one could specify a way of
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listing the algebraic numbers and then apply Cantor’s
famous diagonal argument to that particular list. How-
ever, the resulting number would be virtually devoid of
meaning.) Liouville's proof is much better in that way,
as it gives us amethod of constructing several transcen-
dental numbers with fairly straightforward definitions.
However, if one knew only the explicit arguments such
as Liouville's and the proofs that e and 7t are transcen-
dental, then one might have the impression that tran-
scendental numbers are numbers of a very special kind.
The insight that is completely missing from these argu-
ments, but present in Cantor’s proof, is that a typical
real number is transcendental.

For much of the twentieth century, highly abstract
and indirect proofs were fashionable, but in more
recent years, especially with the advent of the com-
puter, attitudes have changed. (Of course, this is a very
general statement about the entire mathematical com-
munity rather than about any single mathematician.)
Nowadays, more attention is often paid to the question
of whether a proof is explicit, and, if so, whether it leads
to an efficient algorithm.

Needless to say, algorithms are interesting in them-
selves, and not just for the light they shed on mathe-
matical proofs. Let us conclude this section with a brief
description of a particularly interesting algorithm that
has been developed by several authors over the last
few years. It gives a way of computing the volume of
a high-dimensional convex body.

A shape K is called convex if, given any two points x
and y in K, the line segment joining x to y lies entirely
inside K. For example, a square or a triangle is convex,
but a five-pointed star is not. This concept can be gen-
eralized straightforwardly to n dimensions, for any n,
as can the notions of area and volume.

Now let us suppose that an n-dimensional convex
body K is specified for us in the following sense: we
have a computer program that runs quickly and tells us,
for each point (x1,...,x,), whether or not that point
belongs to K. How can we estimate the volume of K?
One of the most powerful methods for problems like
this is statistical: you choose points at random and see
whether they belong to K, basing your estimate of the
volume of K on the frequency with which they do. For
example, if you wanted to estimate 7, you could take a
circle of radius 1, enclose it in a square of side-length
2, and choose a large number of points randomly from
the square. Each point has a probability 7t /4 (the ratio
of the area 1 of the circle to the area 4 of the square)
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of belonging to the circle, so we can estimate 1 by tak-
ing the proportion of points that fall in the circle and
multiplying it by 4.

This approach works quite easily for very low dimen-
sions but as soon as n is at all large it runs into a severe
difficulty. Suppose for example that we were to try to
use the same method for estimating the volume of an
n-dimensional sphere. We would enclose that sphere
in an n-dimensional cube, choose points at random
in the cube, and see how often they belonged to the
sphere as well. However, the ratio of the volume of an
n-dimensional sphere to that of an n-dimensional cube
that contains it is exponentially small, which means
that the number of points you have to pick before
even one of them lands in the sphere is exponen-
tially large. Therefore, the method becomes hopelessly
impractical.

All is not lost, though, because there is a trick for
getting around this difficulty. You define a sequence
of convex bodies, Ko, K, ..., K, each contained in the
next, starting with the convex body whose volume you
want to know, and ending with the cube, in such a way
that the volume of K; is always at least half that of K; ;.
Then for each i you estimate the ratio of the volumes of
K; | and K;. The product of all these ratios will be the
ratio of the volume of K to that of K,,. Since you know
the volume of K,,, this tells you the volume of Kj.

How do you estimate the ratio of the volumes of K; |
and K;? You simply choose points at random from K;
and see how many of them belong to K; . However, it is
just here that the true subtlety of the problem arises:
how do you choose points at random from a convex
body K; that you do not know much about? Choosing a
random point in the n-dimensional cube is easy, since
all you need to do is independently choose n random
numbers x1,..., Xy, each between —1 and 1. But for a
general convex body it is not easy at all.

There is a wonderfully clever idea that gets around
this problem. It is to design carefully a random walk
that starts somewhere inside the convex body and at
each step moves to another point, chosen at random
from just a few possibilities. The more random steps
of this kind that are taken, the less can be said about
where the point is, and if the walk is defined prop-
erly, it can be shown that after not too many steps,
the point reached is almost purely random. However,
the proof is not at all easy. (It is discussed further in
HIGH-DIMENSIONAL GEOMETRY AND ITS PROBABILISTIC
ANALOGUES [IV.26 §6].)
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to time find that a good definition can have a major
effect on their problem-solving prowess.

This brings us to mathematical problems. The main
aim of an article in mathematics is usually to prove the-
orems, but one of the reasons for reading an article is
to advance one’s own research. It is therefore very wel-
come if a theorem is proved by a technique that can
be used in other contexts. It is also very welcome if an
article contains some good unsolved problems. By way
of illustration, let us look at a problem that most math-
ematicians would not take all that seriously, and try to
see what it lacks.

A number is called palindromic if its representation
in base 10 is a palindrome: some simple examples
are 22, 131, and 548 845. Of these, 131 is interesting
because it is also a prime. Let us try to find some more
prime palindromic numbers. Single-digit primes are of
course palindromic, and two-digit palindromic num-
bers are multiples of 11, so only 11 itself is also a prime.
So let us move quickly on to three-digit numbers. Here
there turn out to be several examples: 101, 131, 151,
181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919,
and 929. It is not hard to show that every palindromic
number with an even number of digits is a multiple of
11, but the palindromic primes do not stop at 929—for
example, 10301 is the next smallest.

And now anybody with a modicum of mathematical
curiosity will ask the question: are there infinitely many
palindromic primes? This, it turns out, is an unsolved
problem. It is believed (on the combined grounds that
the primes should be sufficiently random and that
palindromic numbers with an odd number of digits
do not seem to have any particular reason to be fac-
torizable) that there are, but nobody knows how to
prove it.

This problem has the great virtue of being easy to
understand, which makes it appealing in the way that
FERMAT'S LAST THEOREM [V.10] and GOLDBACH’S CON-
JECTURE [V.27] are appealing. And yet, it is not a cen-
tral problem in the way that those two are: most math-
ematicians would put it into a mental box marked
“recreational” and forget about it.

What is the reason for this dismissive attitude? Are
the primes not central objects of study in mathematics?
Well, yes they are, but palindromic numbers are not.
And the main reason they are not is that the definition
of “palindromic” is extremely unnatural. If you know
that a number is palindromic, what you know is less a
feature of the number itself and more a feature of the
particular way that, for accidental historical reasons,
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we choose to represent it. In particular, the property
depends on our choice of the number 10 as our base.
For example, if we write 131 in base 3, then it becomes
11212, which is no longer the same when written back-
wards. By contrast, a prime number is prime however
you write it.

Though persuasive, this is not quite a complete expla-
nation, since there could conceivably be interesting
properties that involved the number 10, or at least
some artificial choice of number, in an essential way.
For example, the problem of whether there are infinitely
many primes of the form 2™ — 1 is considered interest-
ing, despite the use of the particular number 2. How-
ever, the choice of 2 can be justified here: a™ — 1 has
a factor a — 1, so for any larger integer the answer
would be no. Moreover, numbers of the form 2" — 1
have special properties that make them more likely to
be prime. (See COMPUTATIONAL NUMBER THEORY [IV.3]
for an explanation of this point.)

But even if we replace 10 by the “more natural” num-
ber 2 and look at numbers that are palindromic when
written in binary, we still do not obtain a property that
would be considered a serious topic for research. Sup-
pose that, given an integer n, we define »(n) to be the
reverse of n—that is, the number obtained if you write
n in binary and then reverse its digits. Then a palin-
dromic number, in the binary sense, is a number n such
that n = »(n). But the function »(n) is very strange
and “unmathematical.” For instance, the reverses of the
numbers from 1 to20are1,1,3,1,5,3,7,1,9,5,13, 3,
11,7,15,1,17,9, 25, and 5, which gives us a sequence
with no obvious pattern. Indeed, when one calculates
this sequence, one realizes that it is even more artifi-
cial than it at first seemed. One might imagine that the
reverse of the reverse of a number is the number itself,
but that is not so. If you take the number 10, for exam-
ple, it is 1010 in binary, so its reverse is 0101, which
is the number 5. But this we would normally write as
101, so the reverse of 5 is not 10 but 5. But we cannot
solve this problem by deciding to write 5 as 0101, since
then we would have the problem that 5 was no longer
palindromic, when it clearly ought to be.

Does this mean that nobody would be interested in
a proof that there were infinitely many palindromic
primes? Not at all. It can be shown quite easily that
the number of palindromic numbers less than n is in
the region of \/n, which is a very small fraction indeed.
It is notoriously hard to prove results about primes in
sparse sets like this, so a solution to this conjecture
would be a big breakthrough. However, the definition
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of “palindromic” is so artificial that there seems to be
no way of using it in a detailed way in a mathematical
proof. The only realistic hope of solving this problem
would be to prove a much more general result, of which
this would be just one of many consequences. Such a
result would be wonderful, and undeniably interesting,
but you will not discover it by thinking about palin-
dromic numbers. Instead, you would be better off either
trying to formulate a more general question, or else
looking at a more natural problem of a similar kind. An
example of the latter is this: are there infinitely many
primes of the form m? + 1 for some positive integer m?

Perhaps the most important feature of a good prob-
lem is generality: the solution to a good problem should
usually have ramifications beyond the problem itself. A
more accurate word for this desirable quality is “gen-
eralizability,” since some excellent problems may look
rather specific. For example, the statement that /2 is
irrational looks as though it is about just one number,
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but once you know how to prove it, you will have no
difficulty in proving that /3 is irrational as well, and in
fact the proof can be generalized to a much wider class
of numbers (see ALGEBRAIC NUMBERS [IV.1 §14]). It is
quite common for a good problem to look uninterest-
ing until you start to think about it. Then you realize
that it has been asked for a reason: it might be the “first
difficult case” of a more general problem, or it might
be just one well-chosen example of a cluster of prob-
lems, all of which appear to run up against the same
difficulty.

Sometimes a problem is just a question, but fre-
quently the person who asks a mathematical question
has a good idea of what the answer is. A conjecture is a
mathematical statement that the author firmly believes
but cannot prove. As with problems, some conjectures
are better than others: as we have already discussed in
section 8.1, the very best conjectures can have a major
effect on the direction of mathematical research.



Part 11
The Origins of

Modern Mathematics

II.1 From Numbers to
Number Systems
Fernando Q. Gouvéa

People have been writing numbers down for as long as
they have been writing. In every civilization that has
developed a way of recording information, we also find
a way of recording numbers. Some scholars even argue
that numbers came first.

Itis fairly clear that numbers first arose as adjectives:
they specified how many or how much of something
there was. Thus, it was possible to talk about three
apricots, say, long before it was possible to talk about
the number 3. But once the concept of “threeness” is
on the table, so that the same adjective specifies three
fish and three horses, and once a written symbol such
as “3” is developed that can be used in all of those
instances, the conditions exist for 3 itself to emerge
as an independent entity. Once it does, we are doing
mathematics.

This process seems to have repeated itself many
times when new kinds of numbers have been intro-
duced: first a number is used, then it is represented
symbolically, and finally it comes to be conceived as a
thing in itself and as part of a system of similar entities.

1 Numbers in Early Mathematics

The earliest mathematical documents we know about
go back to the civilizations of the ancient Middle East,
in Egypt and in Mesopotamia. In both cultures, a scribal
class developed. Scribes were responsible for keeping
records, which often required them to do arithmetic
and solve simple mathematical problems. Most of the
mathematical documents we have from those cultures
seem to have been created for the use of young scribes
learning their craft. Many of them are collections of

problems, provided with either answers or brief solu-
tions: twenty-five problems about digging trenches in
one tablet, twelve problems requiring the solution of
a linear equation in another, problems about squares
and their sides in a third.

Numbers were used both for counting and for mea-
suring, so a need for fractional numbers must have
come up fairly early. Fractions are complicated to write
down, and computing with them can be difficult. Hence,
the problem of “broken numbers” may well have been
the first really challenging mathematical problem. How
does one write down fractions? The Egyptians and
the Mesopotamians came up with strikingly different
answers, both of which are also quite different from
the way we write them today.

In Egypt (and later in Greece and much of the Mediter-
ranean world), the fundamental notion was “the nth
part,” as in “the third part of six is two.” In this lan-
guage, one would express the idea of dividing 7 by 3
as, “What is the third part of seven?” The answer is,
“Two and the third.” The process was complicated by an
additional restriction: one never recorded a final result
using more than one of the same kind of part. Thus, the
number we would want to express as “two fifth parts”
would have to be given as “the third and the fifteenth.”

In Mesopotamia, we find a very different idea, which
may have arisen to allow easy conversion between dif-
ferent kinds of units. First of all, the Babylonians had a
way to generate symbols for all the numbers from 1 to
59. For larger numbers, they used a positional system
much like the one we use today, but based on 60 rather
than 10. So something like 1,20 means one sixty and
twenty units, that is, 1 x 60+ 20 = 80. The same system
was then extended to fractions, so that one half was
represented as thirty sixtieths. It is convenient to mark
the beginning of the fractional part with a semicolon,
though this and the comma are a modern convention
that has no counterpart in the original texts. Then, for
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example, 1;24,36 means 1 + % | (7‘"30%* which we would
more usually write as :%, or 1.41. The Mesopotamian
way of writing numbers is called a sexagesimal place-
value system by analogy with the system we use today,
which is, of course, a decimal place-value system.

Neither of these systems is really equipped to deal
well with complicated numbers. In Mesopotamia, for
example, only finite sexagesimal expressions were em-
ployed, so the scribes were not able to write down an
exact value for the reciprocal of 7 because there is no
finite sexagesimal expression for % In practice, this
meant that to divide by 7 required finding an approxi-
mate answer. The Egyptian “parts” system, on the other
hand, can represent any positive rational number, but
doing so may require a sequence of denominators that
to our eyes looks very complicated. One of the sur-
viving papyri includes problems that look designed to
produce just such complicated answers. One of these
answers is “14, the 4th, the 56th, the 97th, the 194th,
the 388th, the 679th, the 776th,” which in modern nota-
tion is the fraction 14%. It seems that the joy of com-
putation for its own sake became well-established very
early in the development of mathematics.

Mediterranean civilizations preserved both of these
systems for a while. Most everyday numbers were spec-
ified using the system of “parts.” On the other hand,
astronomy and navigation required more precision, so
the sexagesimal system was used in those fields. This
included measuring time and angles. The fact that we
still divide an hour into sixty minutes and a minute into
sixty seconds goes back, via the Greek astronomers,
to the Babylonian sexagesimal fractions; almost four
thousand years later, we are still influenced by the
Babylonian scribes.

2 Lengths Are Not Numbers

Things get more complicated with the mathematics
of classical Greek and Hellenistic civilizations. The
Greeks, of course, are famous for coming up with
the first mathematical proofs. They were the first to
attempt to do mathematics in a rigorously deductive
way, using clear initial assumptions and careful state-
ments. This, perhaps, is what led them to be very
careful about numbers and their relations to other
magnitudes.

Sometime before the fourth century B.C.E., the Greeks
made the fundamental discovery of “incommensurable
magnitudes.” That is, they discovered that it is not
always possible to express two given lengths as (inte-
ger) multiples of a third length. It is not just that lengths
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and numbers are conceptually distinct things (though
this was important too). The Greeks had found a proof
that one cannot use numbers to represent lengths.

Suppose, they argued, you have two line segments.
If their lengths are both given by numbers, then those
numbers will at worst involve some fractions. By chang-
ing the unit of length, then, we can make sure that both
of the lengths correspond to whole numbers. In other
words, it must be possible to choose a unit length so
that each of our segments consists of a whole number
multiple of the unit. The two segments, then, could be
“measured together,” i.e., would be “commensurable.”

Now here’s the catch: the Greeks could prove that this
was not always the case. Their standard example had to
do with the side and the diagonal of a square. We do not
know exactly how they first established that these two
segments are not commensurable, but it might have
been something like this: if you subtract the side from
the diagonal, you will get a segment shorter than either
of them; if both side and diagonal are measured by a
common unit, then so is the difference. Now repeat the
argument: take the remainder and subtract it from the
side until we get a second remainder smaller than the
first (it can be subtracted twice, in fact). The second
remainder will also be measured by the common unit.
It turns out to be quite easy to show that this process
will never terminate; instead, it will produce smaller and
smaller remainder segments. Eventually, the remainder
segment will be smaller than the unit that supposedly
measures it a whole number of times. That is impossi-
ble (no whole number is smaller than 1, after all), and
hence we can conclude that the common unit does not,
in fact, exist.

Of course, the diagonal does in fact have a length.
Today, we would say that if the length of the side is
one unit, then the length of the diagonal is /2 units,
and we would interpret this argument as showing that
the number /2 is not a fraction. The Greeks did not
quite see in what sense /2 could be a number. Instead,
it was a length, or, even better, the ratio between the
length of the diagonal and the length of the side. Sim-
ilar arguments could be applied to other lengths; for
example, they knew that the side of a square of area 1
and a square of area 10 are incommensurable.

The conclusion, then, is that lengths are not numbers:
instead, they are some other kind of magnitude. But
now we are faced with a proliferation of magnitudes:
numbers, lengths, areas, angles, volumes, etc. Each of
these must be taken as a different kind of quantity, not
comparable with the others.
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This is a problem for geometry, particularly if we
want to measure things. The Greeks solved this prob-
lem by relying heavily on the notion of a ratio. Two
quantities of the same type have a ratio, and this ratio
was allowed to be equal to the ratio of two quantities of
another type: equality of two ratios was defined using
Eudoxus’s theory of proportion, the latter being one of
the most important and deep ideas of Greek geometry.
So, for example, rather than talking about a number
called 7r, which to them would not be a number at all,
they would say that “the ratio of the circle to the square
on its radius is the same as the ratio of the circumfer-
ence to the diameter.” Notice that one of the two ratios
is between two areas, the other between two lengths.
The number 7t itself had no name in Greek mathemat-
ics, but the Greeks did compare it with ratios between
numbers: ARCHIMEDES [VI.3] showed that it was just a
little bit less than the ratio of 22 to 7 and just a little
bit more than the ratio of 223 to 71.

Doing things this way seems ungainly to us, but it
worked very well. Furthermore, it is philosophically sat-
isfying to conceive of a great variety of magnitudes
organized into various kinds (segments, angles, sur-
faces, etc.). Magnitudes of the same kind can be related
to one another by ratios, and ratios can be compared
with each other because they are relations perceived by
our minds. In fact, the word for ratio, both in Greek and
in Latin, is the same as the word for “reason” or “expla-
nation” (logos in Greek, ratio in Latin). From the begin-
ning, “irrational” (alogos in Greek) could mean both
“without a ratio” and “unreasonable.”

Inevitably, this austere theoretical system was some-
what disconnected from the everyday needs of people
who needed to measure things such as lengths and
angles. Astronomers kept right on using sexagesimal
approximations, as did mapmakers and other scien-
tists. There was some “leakage” of course: in the first
century C.E., Heron of Alexandria wrote a book that
reads like an attempt to apply the theoreticians’ dis-
coveries to practical measurement. It is to him, for
example, that we owe the recommendation to use 272
as an approximation for . (Presumably, he chose
Archimedes’ upper bound because it was the simpler
number.) In theoretical mathematics, however, the dis-
tinction between numbers and other kinds of magni-
tudes remained firm.

The history of numbers in the West over the fifteen
hundred years that followed the classical Greek period
can be seen as having two main themes: first, the Greek
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compartmentalization between different kinds of quan-
tities was slowly demolished; second, in order to do this
the notion of number had to be generalized over and
over again.

3 Decimal Place Value

Our system for representing whole numbers goes back,
ultimately, to the mathematicians of the Indian subcon-
tinent. Sometime before (probably well before) the fifth
century C.E., they created nine symbols to designate
the numbers from one to nine and used the position
of these symbols to indicate their actual value. So a 3
in the units position meant three, and a 3 in the tens
position meant three tens, i.e., thirty. This, of course, is
what we still do; the symbols themselves have changed,
but not the principle. At about the same time, a place
marker was developed to indicate an unoccupied space;
this eventually evolved into our zero.

Indian astronomy made extensive use of sines, which
are almost never whole numbers. To represent these,
a Babylonian-style sexagesimal system was used, with
each “sexagesimal unit” being represented using the
decimal system. So “thirty-three and a quarter” might
be represented as 33 15, i.e., 33 units and 15 “minutes”
(sixtieths).

Decimal place-value numeration was passed on from
India to the Islamic world fairly early. In the ninth cen-
tury C.E. in Baghdad, the recently established capital
of the caliphate, one finds AL-KHWARIZMI [VL5] writ-
ing a treatise on numeration in the Indian style, “using
nine symbols.” Several centuries later, al-Khwarizmi’s
treatise was translated into Latin. It was so popular
and influential in late-medieval Europe that decimal
numeration was often referred to as “algorism.”

It is worth noting that in al-Khwarizmi's writing zero
still had a special status: it was a place holder, not
a number. But once we have a symbol, and we start
doing arithmetic using these symbols, the distinction
quickly disappears. We have to know how to add and
multiply numbers by zero in order to multiply multi-
digit numbers. In this way, “nothing” slowly became a
number.

4 What People Want Is a Number

As Greek culture was displaced by other influences, the
practical tradition became more important. One can see
this in al-Khwarizmi's other famous book, whose title
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of real numbers) vastly simplified plane geometry. He
set out to find a similar way to parametrize three-
dimensional space. This turned out to be impossible,
but led Hamilton to a four-dimensional system, which
he called the QUATERNIONS [IIl.76]. These behaved
much like numbers, with one crucial difference: mul-
tiplication was not commutative, that is, if g and q" are
quaternions, qq’ and q’q are usually not the same.

The quaternions were the first system of “hyper-
complex numbers,” and their appearance generated
lots of new questions. Were there other such systems?
What counts as a number system? If certain “numbers”
can fail to satisfy the commutative law, can we make
numbers that break other rules?

In the long run, this intellectual ferment led math-
ematicians to let go of the vague notion of “number”
or “quantity” and to hold on, instead, to the more for-
mal notion of an algebraic structure. Each of the num-
ber systems, in the end, is simply a set of entities on
which we can do operations. What makes them inter-
esting is that we can use them to parametrize, or coor-
dinatize, systems that interest us. The whole numbers
(or integers, to give them their latinized formal name),
for example, formalize the notion of counting, while
the real numbers parametrize the line and serve as the
basis for geometry.

By the beginning of the twentieth century, there were
many well-known number systems. The integers had
pride of place, followed by a nested hierarchy con-
sisting of the rational numbers (i.e., the fractions), the
real numbers (Stevin’s decimals, now carefully formal-
ized), and the complex numbers. Still more general
than the complex numbers were the quaternions. But
these were by no means the only systems around.
Number theorists worked with several different fields
of algebraic numbers, subsets of the complex num-
bers that could be understood as autonomous sys-
tems. Galois had introduced finite systems that obeyed
the usual rules of arithmetic, which we now call finite
fields. Function theorists worked with fields of func-
tions; they certainly did not think of these as numbers,
but their analogy to number systems was known and
exploited.

Early in the twentieth century, Kurt Hensel intro-
duced the p-adic numbers [III.51], which were built
from the rational numbers by giving a special role to a
prime number p. (Since p can be chosen at will, Hensel
in fact created infinitely many new number systems.)
These too “obeyed the usual rules of arithmetic,” in
the sense that addition and multiplication behaved as
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expected; in modern language, they were fields. The
p-adics provided the first system of things that were
recognizably numbers but that had no visible relation
to the real or complex numbers—apart from the fact
that both systems contained the rational numbers. As
a result, they led Ernst Steinitz to create an abstract
theory of fields.

The move to abstraction that appears in Steinitz’s
work had also occurred in other parts of mathemat-
ics, most notably the theory of groups and their repre-
sentations and the theory of algebraic numbers. All of
these theories were brought together into conceptual
unity by NOETHER [VL.76], whose program came to be
known as “abstract algebra.” This left numbers behind
completely, focusing instead on the abstract structure
of sets with operations.

Today, it is no longer that easy to decide what counts
as a “number.” The objects from the original sequence
of “integer, rational, real, and complex” are certainly
numbers, but so are the p-adics. The quaternions are
rarely referred to as “numbers,” on the other hand,
though they can be used to coordinatize certain math-
ematical notions. In fact, even stranger systems can
show up as coordinates, such as Cayley’s OCTONIONS
[[I1.76]. In the end, whatever serves to parametrize or
coordinatize the problem at hand is what we use. If the
requisite system turns out not to exist yet, well, one
just has to invent it.
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II.2 Geometry
Jeremy Gray

1 Introduction

The modern view of geometry was inspired by the novel
geometrical theories of HILBERT [VL.63] and Einstein in
the early years of the twentieth century, which built in
their turn on other radical reformulations of geometry
in the nineteenth century. For thousands of years, the
geometrical knowledge of the Greeks, as set out most
notably in EUCLID’s [VL.2] Elements, was held up as a
paradigm of perfect rigor, and indeed of human know-
ledge. The new theories amounted to the overthrow of
an entire way of thinking. This essay will pursue the his-
tory of geometry, starting from the time of Euclid, con-
tinuing with the advent of non-Euclidean geometry, and
ending with the work of RIEMANN [VL.49], KLEIN [VL.57],
and POINCARE [VL.61]. Along the way, we shall exam-
ine how and why the notions of geometry changed so
remarkably. Modern geometry itself will be discussed
in later parts of this book.

2 Naive Geometry

Geometry generally, and Euclidean geometry in partic-
ular, is informally and rightly taken to be the math-
ematical description of what you see all around you:
a space of three dimensions (left-right, up-down, for-
wards-backwards) that seems to extend indefinitely
far. Objects in it have positions, they sometimes move
around and occupy other positions, and all of these
positions can be specified by measuring lengths along
straight lines: this object is twenty meters from that
one, it is two meters tall, and so on. We can also mea-
sure angles, and there is a subtle relationship between
angles and lengths. Indeed, there is another aspect
to geometry, which we do not see but which we rea-
son about. Geometry is a mathematical subject that is
full of theorems—the isosceles triangle theorem, the
Pythagorean theorem, and so on—which collectively
summarize what we can say about lengths, angles,
shapes, and positions. What distinguishes this aspect
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of geometry from most other kinds of science is its
highly deductive nature. It really seems that by tak-
ing the simplest of concepts and thinking hard about
them one can build up an impressive, deductive body
of knowledge about space without having to gather
experimental evidence.

But can we? Is it really as simple as that? Can we have
genuine knowledge of space without ever leaving our
armchairs? It turns out that we cannot: there are other
geometries, also based on the concepts of length and
angle, that have every claim to be useful, but that dis-
agree with Euclidean geometry. This is an astonishing
discovery of the early nineteenth century, but, before it
could be made, a naive understanding of fundamental
concepts, such as straightness, length, and angle, had
to be replaced by more precise definitions—a process
that took many hundreds of years. Once this had been
done, first one and then infinitely many new geometries
were discovered.

3 The Greek Formulation

Geometry can be thought of as a set of useful facts
about the world, or else as an organized body of know-
ledge. Either way, the origins of the subject are much
disputed. It is clear that the civilizations of Egypt and
Babylonia had at least some knowledge of geometry—
otherwise, they could not have built their large cities,
elaborate temples, and pyramids. But not only is it dif-
ficult to give a rich and detailed account of what was
known before the Greeks, it is difficult even to make
sense of the few scattered sources that we have from
before the time of Plato and Aristotle. One reason for
this is the spectacular success of the later Greek writer,
and author of what became the definitive text on geom-
etry, Euclid of Alexandria (ca.300 B.C.E.). One glance at
his famous Elements shows that a proper account of
the history of geometry will have to be about some-
thing much more than the acquisition of geometrical
facts. The Elements is a highly organized, deductive
body of knowledge. It is divided into a number of dis-
tinct themes, but each theme has a complex theoret-
ical structure. Thus, whatever the origins of geom-
etry might have been, by the time of Euclid it had
become the paradigm of a logical subject, offering a
kind of knowledge quite different from, and seemingly
higher than, knowledge directly gleaned from ordinary
experience.

Rather, therefore, than attempt to elucidate the early
history of geometry, this essay will trace the high road
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of geometry’s claim on our attention: the apparent cer-
tainty of mathematical knowledge. It is exactly this
claim to a superior kind of knowledge that led even-
tually to the remarkable discovery of non-Euclidean
geometry: there are geometries other than Euclid’s that
are every bit as rigorously logical. Even more remark-
ably, some of these turn out to provide better models
of physical space than Euclidean geometry.

The Elements opens with four books on the study
of plane figures: triangles, quadrilaterals, and circles.
The famous theorem of Pythagoras is the forty-seventh
proposition of the first book. Then come two books on
the theory of ratio and proportion and the theory of
similar figures (scale copies), treated with a high degree
of sophistication. The next three books are about whole
numbers, and are presumably a reworking of much
older material that would now be classified as elemen-
tary number theory. Here, for example, one finds the
famous result that there are infinitely many prime num-
bers. The next book, the tenth, is by far the longest,
and deals with the seemingly specialist topic of lengths
of the form Va + Vb (to write them as we would). The
final three books, where the curious lengths studied in
Book X play a role, are about three-dimensional geom-
etry. They end with the construction of the five regular
solids and a proof that there are no more. The discov-
ery of the fifth and last had been one of the topics that
excited Plato. Indeed, the five regular solids are crucial
to the cosmology of Plato’s late work the Timaeus.

Most books of the Elements open with a number
of definitions, and each has an elaborate deductive
structure. For example, to understand the Pythagorean
theorem, one is driven back to previous results, and
thence to even earlier results, until finally one comes
to rest on basic definitions. The whole structure is
quite compelling: reading it as an adult turned the
philosopher Thomas Hobbes from incredulity to last-
ing belief in a single sitting. What makes the Elements
so convincing is the nature of the arguments employed.
With some exceptions, mostly in the number-theoretic
books, these arguments use the axiomatic method.
That is to say, they start with some very simple axioms
that are intended to be self-evidently true, and proceed
by purely logical means to deduce theorems from them.

For this approach to work, three features must be
in place. The first is that circularity should be care-
fully avoided. That is, if you are trying to prove a state-
ment P and you deduce it from an earlier statement,
and deduce that from a yet earlier statement, and so
on, then at no stage should you reach the statement
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P again. That would not prove P from the axioms,
but merely show that all the statements in your chain
were equivalent. Euclid did a remarkable job in this
respect.

The second necessary feature is that the rules of
inference should be clear and acceptable. Some geomet-
rical statements seem so obvious that one can fail to
notice that they need to be proved: ideally, one should
use no properties of figures other than those that have
been clearly stated in their definitions, but this is a diffi-
cult requirement to meet. Euclid’s success here was still
impressive, but mixed. On the one hand, the Elements
is a remarkable work, far outstripping any contempo-
rary account of any of the topics it covers, and capable
of speaking down the millennia. On the other, it has
little gaps that from time to time later commentators
would fill. For example, it is neither explicitly assumed
nor proved in the Elements that two circles will meet
if their centers lie outside each other and the sum of
their radii is greater than the distance between their
centers. However, Euclid is surprisingly clear that there
are rules of inference that are of general, if not indeed
universal, applicability, and others that apply to math-
ematics because they rely on the meanings of the terms
involved.

The third feature, not entirely separable from the
second, is adequate definitions. Euclid offered two, or
perhaps three, sorts of definition. Book I opens with
seven definitions of objects, such as “point” and “line,”
that one might think were primitive and beyond def-
inition, and it has recently been suggested that these
definitions are later additions. Then come, in Book I
and again in many later books, definitions of familiar
figures designed to make them amenable to mathemat-
ical reasoning: “triangle,” “quadrilateral,” “circle,” and
so on. The postulates of Book I form the third class of
definition and are rather more problematic.

Book I states five “common notions,” which are rules
of inference of a very general sort. For example, “If
equals be added to equals, the wholes are equals.” The
book also has five “postulates,” which are more nar-
rowly mathematical. For example, the first of these
asserts that one may draw a straight line from any point
to any point. One of these postulates, the fifth, became
notorious: the so-called parallel postulate. It says that
“If a straight line falling on two straight lines make the
interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than two
right angles.”
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Parallel lines, therefore, are straight lines that do not
meet. A helpful rephrasing of Euclid’s parallel postulate
was introduced by the Scottish editor, Robert Simson. It
appears in his edition of Euclid’s Elements from 1806.
There he showed that the parallel postulate is equiva-
lent, if one assumes those parts of the Elements that
do not depend on it, to the following statement: given
any line m in a plane, and any point P in that plane that
does not lie on the line m, there is exactly one line n
in the plane that passes through the point P and does
not meet the line m. From this formulation it is clear
that the parallel postulate makes two assertions: given
aline and a point as described, a parallel line exists and
it is unique.

It is worth noting that Euclid himself was probably
well aware that the parallel postulate was awkward. It
asserts a property of straight lines that seems to have
made Greek mathematicians and philosophers uncom-
fortable, and this may be why its appearance in the Ele-
ments is delayed until proposition 29 of Book I. The
commentator Proclus (fifth century C.E.), in his exten-
sive discussion of Book I of the Elements, observed that
the hyperbola and asymptote get closer and closer as
they move outwards, but they never meet. If aline and a
curve can do this, why not two lines? The matter needs
further analysis. Unfortunately, not much of the Ele-
ments would be left if mathematicians dropped the par-
allel postulate and retreated to the consequences of the
remaining definitions: a significant body of knowledge
depends on it. Most notably, the parallel postulate is
needed to prove that the angles in a triangle add up to
two right angles—a crucial result in establishing many
other theorems about angles in figures, including the
Pythagorean theorem.

Whatever claims educators may have made about
Euclid’'s Elements down the ages, a significant number
of experts knew that it was an unsatisfactory compro-
mise: a useful and remarkably rigorous theory could be
had, but only at the price of accepting the parallel pos-
tulate. But the parallel postulate was difficult to accept
on trust: it did not have the same intuitively obvious
feel of the other axioms and there was no obvious way
of verifying it. The higher one's standards, the more
painful this compromise was. What, the experts asked,
was to be done?

One Greek discussion must suffice here. In Proclus’s
view, if the truth of the parallel postulate was not obvi-
ous, and yet geometry was bare without it, then the only
possibility was that it was true because it was a theo-
rem. And so he gave it a proof. He argued as follows. Let
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two lines m and n cross a third line k at P and Q, respec-
tively, and make angles with it that add up to two right
angles. Now draw a line I that crosses m at P and enters
the space between the lines m and n. The distance
between I and m as one moves away from the point P
continually increases, said Proclus, and therefore line 1
must eventually cross line n.

Proclus’s argument is flawed. The flaw is subtle, and
sets us up for what is to come. He was correct that
the distance between the lines 1 and m increases indef-
initely. But his argument assumes that the distance
between lines m and n does not also increase indefi-
nitely, and is instead bounded. Now Proclus knew very
well that if the parallel postulate is granted, then it can
be shown that the lines m and n are parallel and that
the distance between them is a constant. But until the
parallel postulate is proved, nothing prevents one say-
ing that the lines m and n diverge. Proclus’s proof does
not therefore work unless one can show that lines that
do not meet also do not diverge.

Proclus’s attempt was not the only one, but it is typi-
cal of such arguments, which all have a standard form.
They start by detaching the parallel postulate from
Euclid’s Elements, together with all the arguments and
theorems that depend on it. Let us call what remains
the “core” of the Elements. Using this core, an attempt
is then made to derive the parallel postulate as a the-
orem. The correct conclusion to be derived from Pro-
clus’s attempt is not that the parallel postulate is a the-
orem, but rather that, given the core of the Elements,
the parallel postulate is equivalent to the statement
that lines that do not meet also do not diverge. Aganis,
a writer of the sixth century C.E. about whom almost
nothing is known, assumed, in a later attempt, that par-
allel lines are everywhere equidistant, and his argument
showed only that, given the core, the Euclidean defini-
tion of parallel lines is equivalent to defining them to
be equidistant.

Notice that one cannot even enter this debate unless
one is clear which properties of straight lines belong to
them by definition, and which are to be derived as the-
orems. If one is willing to add to the store of “common-
sense” assumptions about geometry as one goes along,
the whole careful deductive structure of the Elements
collapses into a pile of facts.

This deductive character of the Elements is clearly
something that Euclid regarded as important, but one
can also ask what he thought geometry was about. Was
it meant, for example, as a mathematical description
of space? No surviving text tells us what he thought
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about this question, but it is worth noting that the most
celebrated Greek theory of the universe, developed by
Aristotle and many later commentators, assumed that
space was finite, bounded by the sphere of the fixed
stars. The mathematical space of the Elements is infi-
nite, and so one has at least to consider the possibility
that, for all these writers, mathematical space was not
intended as a simple idealization of the physical world.

4 Arab and Islamic Commentators

What we think of today as Greek geometry was the
work of a handful of mathematicians, mostly concen-
trated in a period of less than two centuries. They were
eventually succeeded by a somewhat larger number of
Arabic and Islamic writers, spread out over a much
greater area and a longer time. These writers tend to be
remembered as commentators on Greek mathematics
and science, and for transmitting them to later West-
ern authors, but they should also be remembered as
creative, innovative mathematicians and scientists in
their own right. A number of them took up the study
of Euclid’s Elements, and with it the problem of the par-
allel postulate. They too took the view that it was not
a proper postulate, but one that could be proved as a
theorem using the core alone.

Among the first to attempt a proof was Thabit ibn
Qurra. He was a pagan from near Aleppo who lived and
worked in Baghdad, where he died in 901. Here there
is room to describe only his first approach. He argued
that if two lines m and n are crossed by a third, k, and
if they approach each other on one side of the line k,
then they diverge indefinitely on the other side of k. He
deduced that two lines that make equal alternate angles
with a transversal (the marked angles in figure 1) can-
not approach each other on one side of a transversal:
the symmetry of the situation would imply that they
approached on the other side as well, but he had shown
that they would have to diverge on the other side. From
this he deduced the Euclidean theory of parallels, but
his argument was also flawed, since he had not consid-
ered the possibility that two lines could diverge in both
directions.

The distinguished Islamic mathematician and scien-
tist ibn al-Haytham was born in Basra in 965 and died
in Egyptin 1041. He took a quadrilateral with two equal
sides perpendicular to the base and dropped a perpen-
dicular from one side to the other. He now attempted
to prove that this perpendicular is equal to the base,
and to do so he argued that as one of two original per-
pendiculars is moved toward the other, its tip sweeps
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Figure 1 The lines m and n make equal alternate
angles a and b with the transversal k.

1 Oc

Figure 2 AB and CD are equal, the angle ADC is a right
angle, A’B’ is an intermediate position of AB as it moves
toward CD.

out a straight line, which will coincide with the per-
pendicular just dropped (see figure 2). This amounts
to the assumption that the curve everywhere equidis-
tant from a straight line is itself straight, from which
the parallel postulate easily follows, and so his attempt
fails. His proof was later heavily criticized by Omar
Khayyam for its use of motion, which he found fun-
damentally unclear and alien to Euclid’s Elements. It
is indeed quite distinct from any use Euclid had for
motion in geometry, because in this case the nature
of the curve obtained is not clear: it is precisely what
needs to be analyzed.

The last of the Islamic attempts on the parallel pos-
tulate is due to Nasir al-Din al-Tasi. He was born in Iran
in 1201 and died in Baghdad in 1274. His extensive
commentary is also one of our sources of knowledge
of earlier Islamic mathematical work on this subject.
Al-Tusi focused on showing that if two lines begin to
converge, then they must continue to do so until they
eventually meet. To this end he set out to show that

(%) if ] and m are two lines that make an angle of less
than a right angle, then every line perpendicular
to I meets the line m.
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a small degree of doubt, and certainly never devel-
oped the mathematical theory required to describe
non-Euclidean geometry adequately.

One theory available to Gauss from the early 1820s
was that of differential geometry. Gauss eventually
published one of his masterworks on this subject,
his Disquisitiones Generales circa Superficies Curvas
(1827). In it he showed how to describe geometry on
any surface in space, and how to regard certain fea-
tures of the geometry of a surface as intrinsic to the sur-
face and independent of how the surface was embed-
ded into three-dimensional space. It would have been
possible for Gauss to consider a surface of constant
negative CURVATURE [II.78], and to show that triangles
on such a surface are described by hyperbolic trigono-
metric formulas, but he did not do this until the 1840s.
Had he done so, he would have had a surface on which
the formulas of a geometry satisfying case L apply.

A surface, however, is not enough. We accept the
validity of two-dimensional Euclidean geometry be-
cause it is a simplification of three-dimensional Euclid-
ean geometry. Before a two-dimensional geometry sat-
isfying the hypotheses of case L can be accepted, it is
necessary to show that there is a plausible three-dimen-
sional geometry analogous to case L. Such a geometry
has to be described in detail and shown to be as plau-
sible as Euclidean three-dimensional geometry. This
Gauss simply never did.

7 Bolyai and Lobachevskii

The fame for discovering non-Euclidean geometry goes
to two men, BOLYAI [VI.34] in Hungary and LOBACHEV-
ski1I [VI.31]in Russia, who independently gave very sim-
ilar accounts of it. In particular, both men described a
system of geometry in two and three dimensions that
differed from Euclid’s but had an equally good claim to
be the geometry of space. LobachevsKii published first,
in 1829, but only in an obscure Russian journal, and
then in French in 1837, in German in 1840, and again
in French in 1855. Bolyai published his accountin 1831,
in an appendix to a two-volume work on geometry by
his father.

It is easiest to describe their achievements together.
Both men defined parallels in a novel way, as follows.
Given a point P and a line m there will be some lines
through P that meet m and others that do not. Sepa-
rating these two sets will be two lines through P that
do not quite meet m but which might come arbitrarily
close, one to the right of P and one to the left. This situ-
ation is illustrated in figure 3: the two lines in question
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Figure 3 The lines n” and n” through P separate the lines
through P that meet the line m from those that do not.

Figure 4 A curve perpendicular to a family of parallels.

are n’ and n”’. Notice that lines on the diagram appear
curved. This is because, in order to represent them on
a flat, Euclidean page, it is necessary to distort them,
unless the geometry is itself Euclidean, in which case
one can put n’ and n”’ together and make a single line
that is infinite in both directions.

Given this new way of talking, it still makes sense to
talk of dropping the perpendicular from P to the line m.
The left and right parallels to m through P make equal
angles with the perpendicular, called the angle of par-
allelism. If the angle is a right angle, then the geometry
is Euclidean. However, if it is less than a right angle,
then the possibility arises of a new geometry. It turns
out that the size of the angle depends on the length
of the perpendicular from P to m. Neither Bolyai nor
Lobachevskii expended any effort in trying to show that
there was not some contradiction in taking the angle of
parallelism to be less than a right angle. Instead, they
simply made the assumption and expended a great deal
of effort on determining the angle from the length of
the perpendicular.

They both showed that, given a family of lines all par-
allel (in the same direction) to a given line, and given
a point on one of the lines, there is a curve through
that point that is perpendicular to each of the lines
(figure 4).

In Euclidean geometry the curve defined in this way
is the straight line that is at right angles to the fam-
ily of parallel lines and that passes through the given
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Figure 5 A curve perpendicular to
a family of Euclidean parallels.

Figure 6 A curve perpendicular to
a family of Euclidean lines through a point.

point (figure 5). If, again in Euclidean geometry, one
takes the family of all lines through a common point Q
and chooses another point P, then there will be a curve
through P that is perpendicular to all the lines: the circle
with center Q that passes through P (figure 6).

The curve defined by Bolyai and Lobachevskii has
some of the properties of both these Euclidean con-
structions: it is perpendicular to all the parallels, but it
is curved and not straight. Bolyai called such a curve
an L-curve. Lobachevskii more helpfully called it a
horocycle, and the name has stuck.

Their complicated arguments took both men into
three-dimensional geometry. Here Lobachevskii's argu-
ments were somewhat clearer than Bolyai's, and both
men notably surpassed Gauss. If the figure defining a
horocycle is rotated about one of the parallel lines, the
lines become a family of parallel lines in three dimen-
sions and the horocycle sweeps out a bowl-shaped sur-
face, called the F-surface by Bolyai and the horosphere
by Lobachevskii. Both men now showed that something
remarkable happens. Planes through the horosphere
cut it either in circles or in horocycles, and if a triangle
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is drawn on a horosphere whose sides are horocycles,
then the angle sum of such a triangle is two right angles.
To put this another way, although the space that con-
tains the horosphere is a three-dimensional version of
case L, and is definitely not Euclidean, the geometry you
obtain when you restrict attention to the horosphere is
(two-dimensional) Euclidean geometry!

Bolyai and Lobachevskii also knew that one can draw
spheres in their three-dimensional space, and they
showed (though in this they were not original) that the
formulas of spherical geometry hold independently of
the parallel postulate. Lobachevskii now used an inge-
nious construction involving his parallel lines to show
that a triangle on a sphere determines and is deter-
mined by a triangle in the plane, which also deter-
mines and is determined by a triangle on the horo-
sphere. This implies that the formulas of spherical
geometry must determine formulas that apply to the
triangles on the horosphere. On checking through the
details, Lobachevskii, and in more or less the same way
Bolyai, showed that the triangles on the horosphere are
described by the formulas of hyperbolic trigonometry.

The formulas for spherical geometry depend on the
radius of the sphere in question. Similarly, the formu-
las of hyperbolic trigonometry depend on a certain real
parameter. However, this parameter does not have a
similarly clear geometrical interpretation. That defect
apart, the formulas have a number of reassuring prop-
erties. In particular, they closely approximate the famil-
iar formulas of plane geometry when the sides of the
triangles are very small, which helps to explain how
this geometry could have remained undetected for so
long—it differs very little from Euclidean geometry in
small regions of space. Formulas for length and area
can be developed in the new setting: they show that
the area of a triangle is proportional to the amount by
which the angle sum of the triangle falls short of two
right angles. Lobachevskii, in particular, seems to have
felt that the very fact that there were neat and plausible
formulas of this kind was enough reason to accept the
new geometry. In his opinion, all geometry was about
measurement, and theorems in geometry were unfail-
ing connections between measurements expressed by
formulas. His methods produced such formulas, and
that, for him, was enough.

Bolyai and Lobachevskii, having produced a descrip-
tion of a novel three-dimensional geometry, raised the
question of which geometry is true: is it Euclidean
geometry or is it the new geometry for some value of
the parameter that could presumably be determined
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experimentally? Bolyai left matters there, but Loba-
chevskii explicitly showed that measurements of stellar
parallax might resolve the question. Here he was unsuc-
cessful: such experiments are notoriously delicate.

By and large, the reaction to Bolyai and Lobachev-
skii's ideas during their lifetimes was one of neglect
and hostility, and they died unaware of the success
their discoveries would ultimately have. Bolyai and his
father sent their work to Gauss, who replied in 1832
that he could not praise the work “for to do so would be
to praise myself,” adding, for extra measure, a simpler
proof of one of Janos Bolyai's opening results. He was,
he said, nonetheless delighted that it was the son of his
old friend who had taken precedence over him. Janos
Bolyai was enraged, and refused to publish again, thus
depriving himself of the opportunity to establish his
priority over Gauss by publishing his work as an article
in a mathematics journal. Oddly, there is no evidence
that Gauss knew the details of the young Hungarian's
work in advance. More likely, he saw at once how the
theory would go once he appreciated the opening of
Bolyai's account.

A charitable interpretation of the surviving evidence
would be that, by 1830, Gauss was convinced of the
possibility that physical space might be described by
non-Euclidean geometry, and he surely knew how to
handle two-dimensional non-Euclidean geometry using
hyperbolic trigonometry (although no detailed account
of this survives from his hand). But the three-dimen-
sional theory was known first to Bolyai and Lobachev-
skii, and may well not have been known to Gauss until
he read their work.

Lobachevskii fared little better than Bolyai. His ini-
tial publication of 1829 was savaged in the press by
Ostrogradskii, a much more established figure who
was, moreover, in St Petersburg, whereas Lobachevskii
was in provincial Kazan. His account in Journal fiir die
reine und angewandte Mathematik (otherwise known
as Crelle’s Journal) suffered grievously from referring
to results proved only in the Russian papers from
which it had been adapted. His booklet of 1840 drew
only one review, of more than usual stupidity. He did,
however, send it to Gauss, who found it excellent and
had Lobachevskii elected to the Gottingen Academy of
Sciences. But Gauss’s enthusiasm stopped there, and
Lobachevskii received no further support from him.

Such a dreadful response to a major discovery invites
analysis on several levels. It has to be said that the defi-
nition of parallels upon which both men depended was,
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as it stood, inadequate, but their work was not crit-
icized on that account. It was dismissed with scorn,
as if it were self-evident that it was wrong: so wrong
that it would be a waste of time finding the error it
surely contained, so wrong that the right response was
to heap ridicule upon its authors or simply to dismiss
them without comment. This is a measure of the hold
that Euclidean geometry still had on the minds of most
people at the time. Even Copernicanism, for example,
and the discoveries of Galileo drew a better reception
from the experts.

8 Acceptance of Non-Euclidean Geometry

When Gauss died in 1855, an immense amount of un-
published mathematics was found among his papers.
Among it was evidence of his support for Bolyai and
Lobachevskii, and his correspondence endorsing the
possible validity of non-Euclidean geometry. As this
was gradually published, the effect was to send peo-
ple off to look for what Bolyai and Lobachevskii had
written and to read it in a more positive light.

Quite by chance, Gauss had also had a student at
Gottingen who was capable of moving the matter deci-
sively forward, even though the actual amount of con-
tact between the two was probably quite slight. This
was RIEMANN [VL.49]. In 1854 he was called to defend
his Habilitation thesis, the postdoctoral qualification
that was a German mathematician's license to teach
in a university. As was the custom, he offered three
titles and Gauss, who was his examiner, chose the one
Riemann least expected: “On the hypotheses that lie at
the foundation of geometry.” The paper, which was to
be published only posthumously, in 1867, was nothing
less than a complete reformulation of geometry.

Riemann proposed that geometry was the study of
what he called MANIFOLDS [I.3 §§6.9,6.10]. These were
“spaces” of points, together with a notion of distance
that looked like Euclidean distance on small scales but
which could be quite different at larger scales. This kind
of geometry could be done in a variety of ways, he sug-
gested, by means of the calculus. It could be carried
out for manifolds of any dimension, and in fact Rie-
mann was even prepared to contemplate manifolds for
which the dimension was infinite.

A vital aspect of Riemann’s geometry, in which he
followed the lead of Gauss, was that it was concerned
only with those properties of the manifold that were
intrinsic, rather than properties that depended on some
embedding into a larger space. In particular, the dis-
tance between two points x and y was defined to be
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the length of the shortest curve joining x and y that
lay entirely within the surface. Such curves are called
geodesics. (On a sphere, for example, the geodesics are
arcs of great circles.)

Even two-dimensional manifolds could have differ-
ent, intrinsic curvatures—indeed, a single two-dimen-
sional manifold could have different curvatures in dif-
ferent places—so Riemann's definition led to infinitely
many genuinely distinct geometries in each dimension.
Furthermore, these geometries were best defined with-
out reference to a Euclidean space that contained them,
so the hegemony of Euclidean geometry was broken
once and for all.

As the word “hypotheses” in the title of his thesis
suggests, Riemann was not at all interested in the sorts
of assumptions needed by Euclid. Nor was he much
interested in the opposition between Euclidean and
non-Euclidean geometry. He made a small reference
at the start of his paper to the murkiness that lay at
the heart of geometry, despite the efforts of Legendre,
and toward the end he considered the three different
geometries on two-dimensional manifolds for which
the curvature is constant. He noted that one was spheri-
cal geometry, another was Euclidean geometry, and the
third was different again, and that in each case the angle
sums of all triangles could be calculated as soon as one
knew the sum of the angles of any one triangle. But
he made no reference to Bolyai or Lobachevskii, merely
noting that if the geometry of space was indeed a three-
dimensional geometry of constant curvature, then to
determine which geometry it was would involve tak-
ing measurements in unfeasibly large regions of space.
He did discuss generalizations of Gauss’s curvature to
spaces of arbitrary dimension, and he showed what
METRICS [III.56] (that is, definitions of distance) there
could be on spaces of constant curvature. The formula
he wrote down is very general, but as with Bolyai and
Lobachevskii it depended on a certain real parameter—
the curvature. When the curvature is negative, his defi-
nition of distance gives a description of non-Euclidean
geometry.

Riemann died in 1866, and by the time his thesis was
published an Italian mathematician, Eugenio Beltrami,
had independently come to some of the same ideas.
He was interested in what the possibilities were if one
wished to map one surface to another. For example, one
might ask, for some particular surface S, whether it is
possible to find a map from S to the plane such that
the geodesics in S are mapped to straight lines in the
plane. He found that the answer was yes if and only if
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the space has constant curvature. There is, for example,
a well-known map from the hemisphere to a plane with
this property. Beltrami found a simple way of modify-
ing the formula so that now it defined a map from a
surface of constant negative curvature onto the inte-
rior of a disk, and he realized the significance of what
he had done: his map defined a metric on the interior
of the disk, and the resulting metric space obeyed the
axioms for non-Euclidean geometry; therefore, those
axioms would not lead to a contradiction.

Some years earlier, Minding, in Germany, had found a
surface, sometimes called the pseudosphere, that had
constant negative curvature. It was obtained by rotat-
ing a curve called the tractrix about its axis. This sur-
face has the shape of a bugle, so it seemed rather less
natural than the space of Euclidean plane geometry
and unsuitable as a rival to it. The pseudosphere was
independently rediscovered by LIOUVILLE [VL.39] some
years later, and Codazzi learned of it from that source
and showed that triangles on this surface are described
by the formulas of hyperbolic trigonometry. But none
of these men saw the connection to non-Euclidean
geometry—that was left to Beltrami.

Beltrami realized that his disk depicted an infinite
space of constant negative curvature, in which the
geomeltry of Lobachevskii (he did not know at that time
of Bolyai's work) held true. He saw that it related to the
pseudosphere in a way similar to the way that a plane
relates to an infinite cylinder. After a period of some
doubt, he learned of Riemann'’s ideas and realized that
his disk was in fact as good a depiction of the space
of non-Euclidean geometry as any could be; there was
no need to realize his geometry as that of a surface in
Euclidean three-dimensional space. He thereupon pub-
lished his essay, in 1868. This was the first time that
sound foundations had been publicly given for the area
of mathematics that could now be called non-Euclidean
geometry.

In 1871 the young KLEIN [VL.57] took up the sub-
ject. He already knew that the English mathematician
CAYLEY [VI.46] had contrived a way of introducing
Euclidean metrical concepts into PROJECTIVE GEOM-
ETRY [[.3 §6.7]. While studying at Berlin, Klein saw a way
of generalizing Cayley's idea and exhibiting Beltrami’s
non-Euclidean geometry as a special case of projective
geometry. His idea met with the disapproval of WEIER-
STRASS [VL.44], the leading mathematician in Berlin,
who objected that projective geometry was not a metri-
cal geometry: therefore, he claimed, it could not gener-
ate metrical concepts. However, Klein persisted and in a
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series of three papers, in 1871, 1872, and 1873, showed
that all the known geometries could be regarded as
subgeometries of projective geometry. His idea was to
recast geometry as the study of a group acting on a
space. Properties of figures (subsets of the space) that
remain invariant under the action of the group are the
geometric properties. So, for example, in a projective
space of some dimension, the appropriate group for
projective geometry is the group of all transformations
that map lines to lines, and the subgroup that maps the
interior of a given conic to itself may be regarded as the
group of transformations of non-Euclidean geometry:
see the box on p. 94. (For a fuller discussion of Klein's
approach to geometry, see [.3 §6].)

In the 1870s Klein's message was spread by the first
and third of these papers, which were published in
the recently founded journal Mathematische Annalen.
As Klein's prestige grew, matters changed, and by the
1890s, when he had the second of the papers repub-
lished and translated into several languages, it was this,
the Erlanger Programm, that became well-known. It is
named after the university where Klein became a pro-
fessor, at the remarkably young age of twenty-three,
but it was not his inaugural address. (That was about
mathematics education.) For many years it was a singu-
larly obscure publication, and it is unlikely that it had
the effect on mathematics that some historians have
come to suggest.

9 Convincing Others

Klein’s work directed attention away from the figures
in geometry and toward the transformations that do
not alter the figures in crucial respects. For example, in
Euclidean geometry the important transformations are
the familiar rotations and translations (and reflections,
if one chooses to allow them). These correspond to the
motions of rigid bodies that contemporary psycholo-
gists saw as part of the way in which individuals learn
the geometry of the space around them. But this theory
was philosophically contentious, especially when it
could be extended to another metrical geometry, non-
Euclidean geometry. Klein prudently entitled his main
papers “On the so-called non-Euclidean geometry,” to
keep hostile philosophers at bay (in particular Lotze,
who was the well-established Kantian philosopher at
Gottingen). But with these papers and the previous
work of Beltrami the case for non-Euclidean geometry
was made, and almost all mathematicians were per-
suaded. They believed, that is, that alongside Euclidean
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geometry there now stood an equally valid mathemati-
cal system called non-Euclidean geometry. As for which
one of these was true of space, it seemed so clear that
Euclidean geometry was the sensible choice that there
appears to have been little or no discussion. Lipschitz
showed that it was possible to do all of mechanics in
the new setting, and there the matter rested, a hypo-
thetical case of some charm but no more. Helmholtz,
the leading physicist of his day, became interested—he
had known Riemann personally—and gave an account
of what space would have to be if it was learned about
through the free mobility of bodies. His first account
was deeply flawed, because he was unaware of non-
Euclidean geometry, but when Beltrami pointed this out
to him he reworked it (in 1870). The reworked version
also suffered from mathematical deficiencies, which
were pointed out somewhat later by LIE [VI.53], but he
had more immediate trouble from philosophers.

Their question was, “What sort of knowledge is this
theory of non-Euclidean geometry?” Kantian philoso-
phy was coming back into fashion, and in Kant's view
knowledge of space was a fundamental pure a priori
intuition, rather than a matter to be determined by
experiment: without this intuition it would be impos-
sible to have any knowledge of space at all. Faced with
a rival theory, non-Euclidean geometry, neo-Kantian
philosophers had a problem. They could agree that the
mathematicians had produced a new and prolonged
logical exercise, but could it be knowledge of the world?
Surely the world could not have two kinds of geom-
etry? Helmholtz hit back, arguing that knowledge of
Euclidean geometry and non-Euclidean geometry would
be acquired in the same way—through experience—but
these empiricist overtones were unacceptable to the
philosophers, and non-Euclidean geometry remained a
problem for them until the early years of the twentieth
century.

Mathematicians could not in fact have given a com-
pletely rigorous defense of what was becoming the
accepted position, but as the news spread that there
were two possible descriptions of space, and that one
could therefore no longer be certain that Euclidean
geometry was correct, the educated public took up the
question: what was the geometry of space? Among the
first to grasp the problem in this new formulation was
POINCARE [VL.61]. He came to mathematical fame in the
early 1880s with a remarkable series of essays in which
he reformulated Beltrami’s disk model so as to make
it conformal: that is, so that angles in non-Euclidean
geometry were represented by the same angles in the
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build entire theories of groups or rings or fields. These
abstract theories may then be applied in diverse set-
tings where the basic axioms are satisfied but where it
may not be at all apparent a priori that a group or a ring
or a field may be lurking. This, in fact, is one of modern
algebra’s great strengths: once we have proved a gen-
eral fact about an algebraic structure, there is no need
to prove that fact separately each time we come across
an instance of that structure. This abstract approach
allows us to recognize that contexts that may look quite
different are in fact importantly similar.

How is it that two endeavors—the high school analy-
sis of polynomial equations and the modern algebra of
the research mathematician—so seemingly different in
their objectives, in their tools, and in their philosoph-
ical outlooks are both called “algebra”? Are they even
related? In fact, they are, but the story of how they are
is long and complicated.

2 Algebra before There Was Algebra:
From Old Babylon to the Hellenistic Era

Solutions of what would today be recognized as first-
and second-degree polynomial equations may be found
in Old Babylonian cuneiform texts that date to the sec-
ond millennium B.C.E. However, these problems were
neither written in a notation that would be recogniz-
able to our modern-day high school student nor solved
using the kinds of general techniques so characteris-
tic of the high school algebra classroom. Rather, par-
ticular problems were posed, and particular solutions
obtained, from a series of recipe-like steps. No general
theoretical justification was given, and the problems
were largely cast geometrically, in terms of measurable
line segments and surfaces of particular areas. Con-
sider, for example, this problem, translated and tran-
scribed from a clay tablet held in the British Museum
(catalogued as BM 13901, problem 1) that dates from
between 1800 and 1600 B.C.E.:

The surface of my confrontation I have accumulated:
45’ is it. 1, the projection, you posit. The moiety of 1
you break, 30" and 30" you make hold. 15" to 45" you
append: by 1, 1 is equalside. 30" which you have made
hold in the inside you tear out: 30" the confrontation.

This may be translated into modern notation as the
equation x2 + 1x = %, where it is important to notice
that the Babylonian number system is base 60, so 45’
denotes :—3 = % The text then lays out the following
algorithm for solving the problem: take 1, the coeffi-

cient of the linear term, and halve it to get % Square ;—
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to get é Add ~l"1 to %, the constant term, to get 1. This is
the square of 1. Subtract from this the % which you mul-
tiplied by to get %, the side of the square. The modern
reader can easily see that this algorithm is equivalent to
what is now called the quadratic formula, but the Baby-
lonian tablet presents it in the context of a particular
problem and repeats it in the contexts of other partic-
ular problems. There are no equations in the modern
sense; the Babylonian writer is literally effecting a con-
struction of plane figures. Similar problems and simi-
lar algorithmic solutions can also be found in ancient
Egyptian texts such as the Rhind papyrus, believed to
have been copied in 1650 B.C.E. from a text that was
about a century and a half older.

There is a sharp contrast between the problem-ori-
ented, untheoretical approach characteristic of texts
from this early period and the axiomatic and deductive
approach that EucLID [V].2] introduced into mathemat-
ics in around 300 B.C.E. in his magisterial, geometrical
treatise, the Elements. (See GEOMETRY [II.2] for a fur-
ther discussion of this work.) There, building on explicit
definitions and a small number of axioms or self-
evident truths, Euclid proceeded to deduce known—
and almost certainly some hitherto unknown—results
within a strictly geometrical context. Geometry done
in this axiomatic context defined Euclid’s standard of
rigor. But what does this quintessentially geometrical
text have to do with algebra? Consider the sixth propo-
sition in Euclid’s Book II, ostensibly a book on plane
figures, and in particular quadrilaterals:

If a straight line be bisected and a straight line be
added toitin a straight line, the rectangle contained by
the whole with the added straight line and the added
straight line together with the square on the half is
equal to the square on the straight line made up of
the half and the added straight line.

While clearly a geometrical construction, it equally
clearly describes two constructions—one a rectangle
and one a square—that have equal areas. It therefore
describes something that we should be able to write
as an equation. Figure 1 gives the picture correspond-
ing to Euclid’'s construction: he proves that the area of
rectangle ADMK equals the sum of rectangles CDML
and HMFG. To do this, he adds the square on CB—
namely, square LHGE—to CDML and HMFG. This gives
square CDFE. It is not hard to see that this is equiva-
lent to the high school procedure of “completing the
square” and to the algebraic equation (2a + b)b + a® =
(a + b)?, which we obtain by setting CB = a and
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Figure 1 The sixth proposition from Euclid’s Book II.

BD = b. Equivalent, yes, but for Euclid this is a spe-
cific geometrical construction and a particular geomet-
rical equivalence. For this reason, he could not deal
with anything but positive real quantities, since the
sides of a geometrical figure could only be measured in
those terms. Negative quantities did not and could not
enter into Euclid’s fundamentally geometrical mathe-
matical world. Nevertheless, in the historical literature,
Euclid’s Book II has often been described as dealing
with “geometrical algebra,” and, because of our easy
translation of the book's propositions into the lan-
guage of algebra, it has been argued, albeit ahistori-
cally, that Euclid had algebra but simply presented it
geometrically.

Although Euclid’s geometrical standard of rigor came
to be regarded as a pinnacle of mathematical achieve-
ment, it was in many ways not typical of the math-
ematics of classical Greek antiquity, a mathematics
that focused less on systematization and more on the
clever and individualistic solution of particular prob-
lems. There is perhaps no better exemplar of this than
ARCHIMEDES [VL.3], held by many to have been one
of the three or four greatest mathematicians of all
time. Still, Archimedes, like Euclid, posed and solved
particular problems geometrically. As long as geom-
etry defined the standard of rigor, not only negative
numbers but also what we would recognize as poly-
nomial equations of degree higher than three effec-
tively fell outside the sphere of possible mathemati-
cal discussion. (As in the example from Euclid above,
quadratic polynomials result from the geometrical pro-
cess of completing the square; cubics could conceiv-
ably result from the geometrical process of completing
the cube; but quartics and higher-degree polynomials
could not be constructed in this way in familiar, three-
dimensional space.) However, there was another math-
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ematician of great importance to the present story,
Diophantus of Alexandria (who was active in the mid-
dle of the third century C.E.). Like Archimedes, he posed
particular problems, but he solved them in an algorith-
mic style much more reminiscent of the Old Babylo-
nian texts than of Archimedes' geometrical construc-
tions, and as a result he was able to begin to exceed the
bounds of geometry.

In his text Arithmetica, Diophantus put forward gen-
eral, indeterminate problems, which he then restricted
by specifying that the solutions should have partic-
ular forms, before providing specific solutions. He
expressed these problems in a very different way from
the purely rhetorical style that held sway for centuries
after him. His notation was more algebraic and was ulti-
mately to prove suggestive to sixteenth-century math-
ematicians (see below). In particular, he used special
abbreviations that allowed him to deal with the first six
positive and negative powers of the unknown as well
as with the unknown to the zeroth power. Thus, what-
ever his mathematics was, it was not the “geometrical
algebra” of Euclid and Archimedes.

Consider, for example, this problem from Book II
of the Arithmetica: “To find three numbers such that
the square of any one of them minus the next fol-
lowing gives a square.” In terms of modern notation,
he began by restricting his attention to solutions of
the form (x + 1,2x + 1,4x + 1). It is easy to see that
(x+1)2—(2x+1) = x%and (2x+1)?—(4x+1) = 4x2,s0
two of the conditions of the problem are immediately
satisfied, but he needed (4x +1)% — (x +1) = 16x° +7x
to be a square as well. Arbitrarily setting 16x° + 7x =
25x2, Diophantus then determined that x = g gave him
what he needed, so a solution was 19—6. %. %, and he was
done. He provided no geometrical justification because
in his view none was needed; a single numerical solu-
tion was all he required. He did not set up what we
would recognize as a more general set of equations and
try to find all possible solutions.

Diophantus, who lived more than four centuries after
Archimedes’ death, was doing neither geometry nor
algebra in our modern sense, yet the kinds of problems
and the sorts of solutions he obtained for them were
very different from those found in the works of either
Euclid or Archimedes. The extent to which Diophantus
created a wholly new approach, rather than drawing on
an Alexandrian tradition of what might be called “algo-
rithmic algebraic,” as opposed to “geometric algebraic,”
scholarship is unknown. It is clear that by the time Dio-
phantus’s ideas were introduced into the Latin West in
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the sixteenth century, they suggested new possibilities
to mathematicians long conditioned to the authority of
geometry.

3 Algebra before There Was Algebra:
The Medieval Islamic World

The transmission of mathematical ideas was, however,
a complex process. After the fall of the Roman Empire
and the subsequent decline of learning in the West,
both the Euclidean and the Diophantine traditions ulti-
mately made their way into the medieval Islamic world.
There they were not only preserved—thanks to the
active translation initiatives of Islamic scholars—but
also studied and extended.

AL-KHWARIZMI [VL5] was a scholar at the royally
funded House of Wisdom in Baghdad. He linked the
kinds of geometrical arguments Euclid had presented
in Book II of his Elements with the indigenous problem-
solving algorithms that dated back to Old Babylonian
times. In particular, he wrote a book on practical math-
ematics, entitled al-Kitab al-mukhtasar fi hisab al-jabr
wa’l-muqgabala (“The compendious book on calcula-
tion by completion and balancing”), beginning it with
a theoretical discussion of what we would now recog-
nize as polynomial equations of the first and second
degrees. (The latinization of the word “al-jabr” or “com-
pletion” in his title gave us our modern term “alge-
bra.”) Because he employed neither negative numbers
nor zero coefficients, al-Khwarizmi provided a system-
atization in terms of six separate kinds of examples
where we would need just one, namely ax?+bx +c = 0.
He considered, for example, the case when “a square
and 10 roots are equal to 39 units,” and his algo-
rithmic solution in terms of multiplications, additions,
and subtractions was in precisely the same form as
the above solution from tablet BM 13901. This, how-
ever, was not enough for al-Khwarizmi. “It is neces-
sary,” he said, “that we should demonstrate geomet-
rically the truth of the same problems which we have
explained in numbers,” and he proceeded to do this
by “completing the square” in geometrical terms rem-
iniscent of, but not as formal as, those Euclid used in
Book II. (Aba Kamil (ca.850-930), an Egyptian Islamic
mathematician of the generation after al-Khwarizmi,
introduced a higher level of Euclidean formality into
the geometric-algorithmic setting.) This juxtaposition
made explicit how the relationships between geomet-
rical areas and lines could be interpreted in terms of
numerical multiplications, additions, and subtractions,
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a key step that would ultimately suggest a move away
from the geometrical solution of particular problems
and toward an algebraic solution of general types of
equations.

Another step along this path was taken by the math-
ematician and poet Omar Khayyam (ca.1050-1130) in
a book he entitled Al-jabr after al-Khwarizmi’'s work.
Here he proceeded to systematize and solve what we
would recognize, in the absence of both negative num-
bers and zero coefficients, as the cases of the cubic
equation. Following al-Khwarizmi, Khayyam provided
geometrical justifications, yet his work, even more than
that of his predecessor, may be seen as closer to a
general problem-solving technique for specific cases of
equations, that is, closer to the notion of algebra.

The Persian mathematician al-Karaji (who flourished
in the early eleventh century) also knew well and
appreciated the geometrical tradition stemming from
Euclid’s Elements. However, like Abu-Kamil, he was
aware of the Diophantine tradition too, and synthe-
sized in more general terms some of the procedures
Diophantus had laid out in the context of specific exam-
ples in the Arithmetica. Although Diophantus’s ideas
and style were known to these and other medieval
Islamic mathematicians, they would remain unknown
in the Latin West until their rediscovery and trans-
lation in the sixteenth century. Equally unknown in
the Latin West were the accomplishments of Indian
mathematicians, who had succeeded in solving some
quadratic equations algorithmically by the beginning
of the eighth century and who, like Bragmagupta four
hundred years later, had techniques for finding inte-
ger solutions to particular examples of what are today
called Pell’s equations, namely, equations of the form
ax?+ b = y? where a and b are integers and a is not
a square.

4 Algebra before There
Was Algebra: The Latin West

Concurrent with the rise of Islam in the East, the
Latin West underwent a gradual cultural and polit-
ical stabilization in the centuries following the fall
of the Roman Empire. By the thirteenth century, this
relative stability had resulted in the firm entrench-
ment of the Catholic Church as well as the establish-
ment both of universities and of an active economy.
Moreover, the Islamic conquest of most of the Iberian
peninsula in the eighth century and the subsequent
establishment there of an Islamic court, library, and
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research facility similar to the House of Wisdom in
Baghdad brought the fruits of medieval Islamic schol-
arship to western Europe’s doorstep. However, as Islam
found its position on the Iberian peninsula increas-
ingly compromised in the twelfth and thirteenth cen-
turies, this Islamic learning, as well as some of the
ancient Greek scholarship that the medieval Islamic
scholars had preserved in Latin translation, began to
filter into medieval Europe. In particular, FIBONACCI
[VI.6], son of an influential administrator within the
Pisan city state, encountered al-Khwarizmi’s text and
recognized not only the impact that the Arabic num-
ber system detailed there could have on accounting
and commerce (Roman numerals and their cumber-
some rules for manipulation were still widely in use)
but also the importance of al-Khwarizmi’s theoretical
discussion, with its wedding of geometrical proof and
the algorithmic solution of what we can interpret as
first- and second-degree equations. In his 1202 book
Liber Abbaci, Fibonacci presented al-Khwarizmi’s work
almost verbatim, and extolled all of these virtues, thus
effectively introducing this knowledge and approach
into the Latin West.

Fibonacci's presentation, especially of the practi-
cal aspects of al-Khwarizmi’s text, soon became well-
known in Europe. So-called abacus schools (named
after Fibonacci's text and not after the Chinese calculat-
ing instrument) sprang up all over the Italian peninsula,
particularly in the fourteenth and fifteenth centuries,
for the training of accountants and bookkeepers in an
increasingly mercantilistic Western world. The teach-
ers in these schools, the “maestri d’abaco,” built on
and extended the algorithms they found in Fibonacci's
text. Another tradition, the Cossist tradition—after the
German word “Coss” connoting algebra, that is, “Kun-
strechnung” or “artful calculation”—developed simul-
taneously in the Germanic regions of Europe and aimed
to introduce algebra into the mainstream there.

In 1494 the Italian Luca Pacioli published (by now
this is the operative word: Pacioli’s text is one of the
earliest printed mathematical texts) a compendium of
all known mathematics. By this time, the geometrical
justifications that al-Khwarizmi and Fibonacci had pre-
sented had long since fallen from the mathematical ver-
nacular. By reintroducing them in his book, the Summa,
Pacioli brought them back to the mathematical fore.
Not knowing of Khayyam's work, he asserted that solu-
tions had been discovered only in the six cases treated
by both al-Khwarizmi and Fibonacci, even though there
had been abortive attempts to solve the cubic and even
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though he held out the hope that it could ultimately be
solved.

Pacioli’s book had highlighted a key unsolved prob-
lem: could algorithmic solutions be determined for the
various cases of the cubic? And, if so, could these be
justified geometrically with proofs similar in spirit to
those found in the texts of al-Khwarizmi and Fibonacci?

Among several sixteenth-century Italian mathemati-
cians who eventually managed to answer the first ques-
tion in the affirmative was CARDANO [VL.7]. In his Ars
Magna, or The Great Art, of 1545, he presented algo-
rithms with geometric justifications for the various
cases of the cubic, effectively completing the cube
where al-Khwarizmi and Fibonacci had completed the
square. He also presented algorithms that had been dis-
covered by his student Ludovico Ferrari (1522-65) for
solving the cases of the quartic. These intrigued him,
because, unlike the algorithms for the cubic, they were
not justified geometrically. As he put it in his book, “all
those matters up to and including the cubic are fully
demonstrated, but the others which we will add, either
by necessity or out of curiosity, we do not go beyond
barely setting out.” An algebra was breaking out of the
geometrical shell in which it had been encased.

5 Algebra Is Born

This process was accelerated by the rediscovery and
translation into Latin of Diophantus’s Arithmetica in
the 1560s, with its abbreviated presentational style
and ungeometrical approach. Algebra, as a general
problem-solving technique, applicable to questions in
geometry, number theory, and other mathematical set-
tings, was established in RAPHAEL BOMBELLI's [VL8]
Algebra of 1572 and, more importantly, in VIETE's
[VL9] In Artem Analyticem Isagoge, or Introduction
to the Analytic Art, of 1591. The aim of the latter
was, in Viéete's words, “to leave no problem unsolved,”
and to this end he developed a true notation—using
vowels to denote variables and consonants to denote
coefficients—as well as methods for solving equations
in one unknown. He called his techniques “specious
logistics.”

Dimensionality—in the form of his so-called law of
homogeneity—was, however, still an issue for Viete.
As he put it, “[lolnly homogeneous magnitudes are
to be compared to one another.” The problem was
that he distinguished two types of magnitudes: “lad-
der magnitudes”—that is, variables (A side) (or x in our
modern notation), (A square) (or x?2), (A cube) (or x?),
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etc.; and “compared magnitudes”—that is, coefficients
(B length) of dimension one, (B plane) of dimension
two, (B solid) of dimension three, etc. In the light of
his law of homogeneity, then, Viéte could legitimately
perform the operation (A cube) + (B plane)(A side) (or
x3+bx in our notation), since the dimension of (A cube)
is three, as is that of the product of the two-dimensional
coefficient (B plane) and the one-dimensional vari-
able (A side), but he could not legally add the three-
dimensional variable (A cube) to the two-dimensional
product of the one-dimensional coefficient (B length)
and the one-dimensional variable (A side) (or, again,
x3 + bx in our notation). Be this as it may, his “ana-
Iytic art” still allowed him to add, subtract, multiply,
and divide letters as opposed to specific numbers, and
those letters, as long as they satisfied the law of homo-
geneity, could be raised to the second, third, fourth,
or, indeed, any power. He had a rudimentary algebra,
although he failed to apply it to curves.

The first mathematicians to do that were FERMAT
[VI.L12] and DESCARTES [VI.11] in their independent
development of the analytic geometry so familiar to
the high school algebra student of today. Fermat, and
others like Thomas Harriot (ca.1560-1621) in England,
were influenced in their approaches by Viéete, while Des-
cartes not only introduced our present-day notational
convention of representing variables by x’s and y's
and constants by a's, b’s, and ¢'s but also began the
arithmetization of algebra. He introduced a unit that
allowed him to interpret all geometrical magnitudes
as line segments, whether they were x's, x%’s, x3's,
x*'s, or any higher power of x, thereby removing con-
cerns about homogeneity. Fermat’s main work in this
direction was a 1636 manuscript written in Latin, enti-
tled “Introduction to plane and solid loci” and circu-
lated among the early seventeenth-century mathemati-
cal cognoscenti; Descartes’s was La Geométrie, written
in French as one of three appendices to his philosoph-
ical tract, Discours de la Méthode, published in 1637.
Both were regarded as establishing the identification
of geometrical curves with equations in two unknowns,
or in other words as establishing analytic geometry
and thereby introducing algebraic techniques into the
solution of what had previously been considered geo-
metrical problems. In Fermat's case, the curves were
lines or conic sections—quadratic expressions in x
and y; Descartes did this too, but he also considered
equations more generally, tackling questions about the
roots of polynomial equations that were connected
with transforming and reducing the polynomials.
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In particular, although he gave no proof or even gen-
eral statement of it, Descartes had a rudimentary ver-
sion of what we would now call THE FUNDAMENTAL
THEOREM OF ALGEBRA [V.13], the result that a poly-
nomial equation x" + an_1x" ! + -+« + a;x + ag of
degree n has precisely n roots over the field C of com-
plex numbers. For example, while he held that a given
polynomial of degree n could be decomposed into n
linear factors, he also recognized that the cubic x3 —
6x2 +13x — 10 = 0 has three roots: the real root 2 and
two complex roots. In his further exploration of these
issues, moreover, he developed algebraic techniques,
involving suitable transformations, for analyzing poly-
nomial equations of the fifth and sixth degrees. Liber-
ated from homogeneity concerns, Descartes was thus
able to use his algebraic techniques freely to explore
territory where the geometrically bound Cardano had
clearly been reluctant to venture. NEWTON [VL.14] took
the liberation of algebra from geometrical concerns a
step further in his Arithmetica Universalis (or Univer-
sal Arithmetic) of 1707, arguing for the complete arith-
metization of algebra, that is, for modeling algebra and
algebraic operations on the real numbers and the usual
operations of arithmetic.

Descartes’'s La Geéomeétrie highlighted at least two
problems for further algebraic exploration: the funda-
mental theorem of algebra and the solution of polyno-
mial equations of degree greater than four. Although
eighteenth-century mathematicians like D’ALEMBERT
[VI.20] and EULER [VI.19] attempted proofs of the fun-
damental theorem of algebra, the first person to prove
it rigorously was GAUSS [VI.26], who gave four distinct
proofs over the course of his career. His first, an alge-
braic geometrical proof, appeared in his doctoral dis-
sertation of 1799, while a second, fundamentally dif-
ferent proof was published in 1816, which in modern
terminology essentially involved constructing the poly-
nomial’s splitting field. While the fundamental theorem
of algebra established how many roots a given poly-
nomial equation has, it did not provide insight into
exactly what those roots were or how precisely to find
them. That problem and its many mathematical reper-
cussions exercised a number of mathematicians in the
late eighteenth and nineteenth centuries and formed
one of the strands of the mathematical thread that
became modern algebra in the early twentieth century.
Another emerged from attempts to understand the gen-
eral behavior of systems of (one or more) polynomials
in n unknowns, and yet another grew from efforts to
approach number-theoretic questions algebraically.
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[II1.15] and which would ultimately be associated with
an n X n square array or MATRIX [I.3 §4.2] of coeffi-
cients, was also developed and analyzed independently
by Gabriel Cramer (1704-52) in the mid eighteenth cen-
tury in the general context of the simultaneous solution
of a system of n linear equations in n unknowns. From
these beginnings, a theory of determinants, indepen-
dent of the context of solving systems of linear equa-
tions, quickly became a topic of algebraic study in its
own right, attracting the attention of Vandermonde,
LAPLACE [VI.23], and Cauchy, among others. Determi-
nants were thus an example of a new algebraic con-
struct, the properties of which were then systematically
explored.

Although determinants came to be viewed in terms
of what SYLVESTER [V1.42] would dub matrices, a theory
of matrices proper grew initially from the context not
of solving simultaneous linear equations but rather of
linearly transforming the variables of homogeneous
polynomials in two, three, or more generally n vari-
ables. In the Disquisitiones Arithmeticae, for exam-
ple, Gauss considered how binary and ternary quad-
ratic forms with integer coefficients—expressions of
the form a;x? + 2axy + a3y2 and a;x? + agy2 +
a3z’ + 2asxy + 2asxz + 2agyz, respectively—are
affected by a linear transformation of their variables.
In the ternary case, he applied the linear transforma-
tionx = ax' + By +yz',y =a'x"+ By +y'z',and
z=o"x"+B"y" +y"z to derive a new ternary form.
He denoted the linear transformation of the variables
by the square array

«x, B,y
o« B,y
al/' Bll' yll

and, in the process of showing what the composition of
two such transformations was, gave an explicit exam-
ple of matrix multiplication. By the middle of the nine-
teenth century, Cayley had begun to explore matrices
per se and had established many of the properties that
the theory of matrices as a mathematical system in its
own right enjoys. This line of algebraic thought was
eventually reinterpreted in terms of the theory of alge-
bras (see below) and developed into the independent
area of linear algebra and the theory of VECTOR SPACES
[I1.3 §2.3].

Another theory that arose out of the analysis of lin-
ear transformations of homogeneous polynomials was
the theory of invariants, and this too has its origins in
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some sense in Gauss’s Disquisitiones. As in his study
of ternary quadratic forms, Gauss began his study
of binary forms by applying a linear transformation,
specifically, x = ax’ + By', ¥ = yx' + §y'. The result
was the new binary form a}(x')? + 2a,x'y' + a5 (y")?,
where, explicitly, a; = ajo® + 2aay + azy?, a, =
ajof+az(ad + By) +azys,and al = a1 B + 2a2 5 +
a36%. As Gauss noted, if you multiply the second of
these equations by itself and subtract from this the
product of the first and the third equations, you obtain
the relation a’? — ajay = (a3 — ajasz)(«d — By)2. To
use language that Sylvester would develop in the early
1850s, Gauss realized that the expression a% —ajaszin
the coefficients of the original binary quadratic form
is an invariant in the sense that it remains unchanged
up to a power of the determinant of the linear trans-
formation. By the time Sylvester coined the term, the
invariant phenomenon had also appeared in the work
of the English mathematician BOOLE [VI.43], and had
attracted Cayley's attention. It was not until after Cay-
ley and Sylvester met in the late 1840s, however, that
the two of them began to pursue a theory of invari-
ants proper, which aimed to determine all invariants for
homogeneous polynomials of degree m in n unknowns
as well as simultaneous invariants for systems of such
polynomials.

Although Cayley and (especially) Sylvester pursued
this line of research from a purely algebraic point of
view, invariant theory also had number-theoretic and
geometric implications, the former explored by Got-
thold Eisenstein (1823-52) and HERMITE [VL.47], the
latter by Otto Hesse (1811-74), Paul Gordan (1837-
1912), and Alfred Clebsch (1833-72), among others.
It was of particular interest to understand how many
“genuinely distinct” invariants were associated with a
specific form, or system of forms. In 1868, Gordan
achieved a fundamental breakthrough by showing that
the invariants associated with any binary form in n vari-
ables can always be expressed in terms of a finite num-
ber of them. By the late 1880s and early 1890s, how-
ever, HILBERT [VI.63] brought new, abstract concepts
associated with the theory of algebras (see below) to
bear on invariant theory and, in so doing, not only re-
proved Gordan's result but also showed that the result
was true for forms of degree m in n unknowns. With
Hilbert's work, the emphasis shifted from the concrete
calculations of his English and German predecessors
to the kind of structurally oriented existence theorems
that would soon be associated with abstract, modern
algebra.
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8 The Quest to Understand
the Properties of “Numbers”

As early as the sixth century B.C.E., the Pythagoreans
had studied the properties of numbers formally. For
example, they defined the concept of a perfect num-
ber, which is a positive integer, suchas 6 = 1+ 2 + 3
and 28 = 1 + 2 + 4 + 7 + 14, which is the sum of its
divisors (excluding the integer itself). In the sixteenth
century, Cardano and Bombelli had willingly worked
with new expressions, complex numbers, of the form
a + \/—b, for real numbers a and b, and had explored
their computational properties. In the seventeenth cen-
tury, Fermat famously claimed that he could prove that
the equation x™ + y™ = z", for n an integer greater
than 2, had no solutions in the integers, except for the
trivial cases when z = x or z = y and the remaining
variable is zero. The latter result, known as FERMAT'S
LAST THEOREM [V.10], generated many new ideas, espe-
cially in the eighteenth and nineteenth centuries, as
mathematicians worked to find an actual proof of Fer-
mat's claim. Central to their efforts were the creation
and algebraic analysis of new types of number systems
that extended the integers in much the same way that
Galois had extended fields. This flexibility to create and
analyze new number systems was to become one of the
hallmarks of modern algebra as it would develop into
the twentieth century.

One of the first to venture down this path was Euler.
In the proof of Fermat's last theorem for the n = 3
case that he gave in his Elements of Algebra of 1770,
Euler introduced the system of numbers of the form
a + b/=3, where a and b are integers. He then blithely
proceeded to factorize them into primes, without fur-
ther justification, just as he would have factorized
ordinary integers. By the 1820s and 1830s, Gauss had
launched a more systematic study of numbers that are
now called the Gaussian integers. These are all num-
bers of the form a + b+/—1, for integers a and b. He
showed that, like the integers, the Gaussian integers are
closed under addition, subtraction, and multiplication;
he defined the notions of unit, prime, and norm in order
to prove an analogue of THE FUNDAMENTAL THEOREM
OF ARITHMETIC [V.14] for them. He thereby demon-
strated that there were whole new algebraic worlds to
create and explore. (See ALGEBRAIC NUMBERS [IV.1] for
more on these topics.)

Whereas Euler had been motivated in his work by
Fermat’s last theorem, Gauss was trying to generalize
the LAW OF QUADRATIC RECIPROCITY [V.28] to a law of
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biquadratic reciprocity. In the quadratic case, the prob-
lem was the following. If a and m are integers with
m > 2, then we say that a is a quadratic residue mod m
if the equation x° = a has a solution mod m; that is,
if there is an integer x such that x? is congruent to
a mod m. Now suppose that p and g are distinct odd
primes. If you know whether p is a quadratic residue
mod q, is there a simple way of telling whether g is a
quadratic residue mod p? In 1785, Legendre had posed
and answered this question—the status of ¢ mod p
will be the same as that of p mod g if at least one
of p and g is congruent to 1 mod 4, and different if
they are both congruent to 3 mod 4—but he had given
a faulty proof. By 1796, Gauss had come up with the
first rigorous proof of the theorem (he would ultimately
give eight different proofs of it), and by the 1820s he
was asking the analogous question for the case of two
biquadratic equivalences x* = p (mod q) and y* = g
(mod p). It was in his attempts to answer this new ques-
tion that he introduced the Gaussian integers and sig-
naled at the same time that the theory of residues of
higher degrees would make it necessary to create and
analyze still other new sorts of “integers.” Although
Eisenstein, DIRICHLET [VI.36], Hermite, KUMMER [VI.40],
and KRONECKER [VI.48], among others, pushed these
ideas forward in this Gaussian spirit, it was DEDEKIND
[VL50] in his tenth supplement to Dirichlet's Vorlesun-
gen tiber Zahlentheorie (Lectures on Number Theory)
of 1871 who fundamentally reconceptualized the prob-
lem by treating it not number theoretically but rather
set theoretically and axiomatically. Dedekind intro-
duced, for example, the general notions—if not what
would become the precise axiomatic definitions—of
fields, rings, IDEALS [III.81 §2], and MODULES [IIL.81 §3]
and analyzed his number-theoretic setting in terms of
these new, abstract constructs. His strategy was, from
a philosophical point of view, not unlike that of Galois:
translate the “concrete” problem at hand into new,
more abstract terms in order to solve it more cleanly
at a “higher” level. In the early twentieth century,
NOETHER [VL.76] and her students, among them Bartel
van der Waerden (1903-96), would develop Dedekind’s
ideas further to help create the structural approach to
algebra so characteristic of the twentieth century.
Parallel to this nineteenth-century, number-theoretic
evolution of the notion of “number” on the continent of
Europe, a very different set of developments was taking
place, initially in the British Isles. From the late eigh-
teenth century, British mathematicians had debated
not only the nature of number—questions such as,
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“Do negative and imaginary numbers make sense?”—
but also the meaning of algebra—questions like, “In an
expression like ax + by, what values may a, b, x, and
y legitimately take on and what precisely may ‘+’ con-
note?” By the 1830s, the Irish mathematician HAMILTON
[VL.37] had come up with a “unified” interpretation of
the complex numbers that circumvented, in his view,
the logical problem of adding a real number and an
imaginary one, an apple and an orange. Given real num-
bers a and b, Hamilton conceived of the complex num-
ber a + b+/—1 as the ordered pair (he called it a “cou-
ple”) (a, b). He then defined addition, subtraction, mul-
tiplication, and division of such couples. As he realized,
this also provided a way of representing numbers in
the complex plane, and so he naturally asked whether
he could construct algebraic, ordered triples so as to
represent points in 3-space. After a decade of con-
templating this question off and on, Hamilton finally
answered it not for triples but for quadruples, the so-
called QUATERNIONS [II.76], “numbers” of the form
(a,b,c,d) = a+bi+cj+dk,where a, b, ¢, and d are real
and where i, j, k satisfy the relations ij = —ji = k, jk =
—kj =i, ki = —ik = j, i* = j* = k?® = —1. As in the two-
dimensional case, addition is defined component-wise,
but multiplication, while definable in such a way that
every nonzero element has a multiplicative inverse, is
not commutative. Thus, this new number system did
not obey all of the “usual” laws of arithmetic.
Although some of Hamilton’s British contemporaries
questioned the extent to which mathematicians were
free to create such new mathematical worlds, others,
like Cayley, immediately took the idea further and
created a system of ordered 8-tuples, the octonions,
the multiplication of which was neither commutative
nor even, as was later discovered, associative. Several
questions naturally arise about such systems, but one
that Hamilton asked was what happens if the field of
coefficients, the base field, is not the reals but rather
the complexes? In that case, it is easy to see that
the product of the two nonzero complex quaternions
(-vV/~1,0,1,0) = —vV~1+jand (+-1,0,1,0) = V-1 +j
is 1 +j° =1+ (-1) = 0. In other words, the complex
quaternions contain zero divisors—nonzero elements
the product of which is zero—another phenomenon
that distinguishes their behavior fundamentally from
that of the integers. As it flourished in the hands of
mathematicians like Benjamin Peirce (1809-80), FROBE-
NIUS [VL.58], Georg Scheffers (1866-1945), Theodor
Molien (1861-1941), CARTAN [VL.69], and Joseph H. M.
Wedderburn (1882-1948), among others, this line of
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thought resulted in a freestanding theory of algebras.
This naturally intertwined with developments in the
theory of matrices (the n X n matrices form an algebra
of dimension n? over their base field) as it had evolved
through the work of Gauss, Cayley, and Sylvester. It also
merged with the not unrelated theory of n-dimensional
vector spaces (n-dimensional algebras are n-dimen-
sional vector spaces with a vector multiplication as
well as a vector addition and scalar multiplication) that
issued from ideas like those of Hermann Grassmann
(1809-77).

9 Modern Algebra

By 1900, many new algebraic structures had been iden-
tified and their properties explored. Structures that
were first isolated in one context were then found to
appear, sometimes unexpectedly, in others: thus, these
new structures were mathematically more general than
the problems that had led to their discovery. In the
opening decades of the twentieth century, algebraists
(the term is not ahistorical by 1900) increasingly rec-
ognized these commonalities—these shared structures
such as groups, fields and rings—and asked questions
at a more abstract level. For example, what are all of
the finite simple groups? Can they be classified? (See
THE CLASSIFICATION OF FINITE SIMPLE GROUPS [V.7].)
Moreover, inspired by the set-theoretic and axiomatic
work of CANTOR [VI.54], Hilbert, and others, they came
to appreciate the common standard of analysis and
comparison that axiomatization could provide. Coming
from this axiomatic point of view, Ernst Steinitz (1871-
1928), for example, laid the groundwork for an abstract
theory of fields in 1910, while Abraham Fraenkel (1891-
1965) did the same for an abstract theory of rings four
years later. As van der Waerden came to realize in the
late 1920s, these developments could be interpreted as
dovetailing philosophically with results like Hilbert's in
invariant theory and Dedekind’s and Noether’s in the
algebraic theory of numbers. That interpretation, laid
out in 1930 in van der Waerden's classic textbook Mod-
erne Algebra, codified the structurally oriented “mod-
ern algebra” that subsumed the algebra of polynomials
of the high school classroom and that continues to
characterize algebraic thought today.
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1.4 Algorithms
Jean-Luc Chabert

1 What Is an Algorithm?

It is not easy to give a precise definition of the word
“algorithm.” One can provide approximate synonyms:
some other words that (sometimes) mean roughly the
same thing are “rule,” “technique,” “procedure,” and
“method.” One can also give good examples, such as
long multiplication, the method one learns in high
school for multiplying two positive integers together.
However, although informal explanations and well-
chosen examples do give a good idea of what an algo-
rithm is, the concept has undergone a long evolution: it
was not until the twentieth century that a satisfactory
formal definition was achieved, and ideas about algo-
rithms have evolved further even since then. In this arti-
cle, we shall try to explain some of these developments
and clarify the contemporary meaning of the term.

" oW
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1.1 Abacists and Algorists

Returning to the example of multiplication, an obvi-
ous point is that how you try to multiply two numbers
together is strongly influenced by how you represent
those numbers. To see this, try multiplying the Roman
numerals CXLVII and XXIX together without first con-
verting them into their decimal counterparts, 147 and
29. It is difficult and time-consuming, and explains why
arithmetic in the Roman empire was extremely rudi-
mentary. A numeration system can be additive, as it
was for the Romans, or positional, like ours today. If it
is positional, then it can use one or several bases—for
instance, the Sumerians used both base 10 and base 60.

For a long time, many processes of calculation used
abacuses. Originally, these were lines traced on sand,
onto which one placed stones (the Latin for small stone
is calculus) to represent numbers. Later there were
counting tables equipped with rows or columns onto
which one placed tokens. These could be used to rep-
resent numbers to a given base. For example, if the
base was 10, then a token would represent one unit,
ten units, one hundred units, etc., according to which
row or column it was in. The four arithmetic operations
could then be carried out by moving the tokens accord-
ing to precise rules. The Chinese counting frame can be
regarded as a version of the abacus.

In the twelfth century, when the Arabic mathemati-
cal works were translated into Latin, the denary posi-
tional numeration system spread through Europe. This
system was particularly suitable for carrying out the
arithmetic operations, and led to new methods of cal-
culation. The term algoritmus was introduced to refer
to these, and to distinguish them from the traditional
methods that used tokens on an abacus.

Although the signs for the numerals had been adapt-
ed from Indian practice, the numerals became known
as Arabic. And the origin of the word “algorithm” is
Arabic: it arose from a distortion of the name AL-
KHWARIZMI [VL5], who was the author of the oldest
known work on algebra, in the first half of the ninth
century. His treatise, entitled al-Kitab al-mukhtasar fi
hisab al-jabr wa’'l-mugabala (“The compendious book
on calculation by completion and balancing”), gave rise
to the word “algebra.”

1.2 Finiteness

As we have just seen, in the Middle Ages the term “algo-
rithm” referred to the processes of calculation based
on the decimal notation for the integers. However, in
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the seventeenth century, according to D'ALEMBERT'S
[VI.20] Encyclopédie, the word was used in a more gen-
eral sense, referring not just to arithmetic but also to
methods in algebra and to other calculational proce-
dures such as “the algorithm of the integral calculus”
or “the algorithm of sines.”

Gradually, the term came to mean any process of sys-
tematic calculation that could be carried out by means
of very precise rules. Finally, with the growing role of
computers, the important role of finiteness was fully
understood: it is essential that the process stops and
provides a result after a finite time. Thus one arrives at
the following naive definition:

An algorithm is a set of finitely many rules for manip-
ulating a finite amount of data in order to produce a
result in a finite number of steps.

Note the insistence on finiteness: finiteness in the writ-
ing of the algorithm and finiteness in the implementa-
tion of the algorithm.

The formulation above is not of course a mathemat-
ical definition in the classical sense of the term. As we
shall see later, it was important to formalize it further.
But for now, let us be content with this “definition”
and look at some classical examples of algorithms in
mathematics.

2 Three Historical Examples

A feature of algorithms that we have not yet mentioned
is iteration, or the repetition of simple procedures. To
see why iteration is important, consider once again the
example of long multiplication. This is a method that
works for positive integers of any size. As the num-
bers get larger, the procedure takes longer, but—and
this is of vital importance—the method is “the same”:
if you understand how to multiply two three-digit num-
bers together, then you do not need to learn any new
principles in order to multiply two 137-digit numbers
together (even if you might be rather reluctant to do
the calculation). The reason for this is that the method
for long multiplication involves a great deal of carefully
structured repetition of much smaller tasks, such as
multiplying two one-digit numbers together. We shall
see that iteration plays a very important part in the
algorithms to be discussed in this section.

2.1 Euclid’s Algorithm: Iteration

One of the best, and most often used, examples to illus-
trate the nature of algorithms is EUCLID'S ALGORITHM
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[I1.22], which goes back to the third century B.C.E. It
is a procedure described by EUCLID [VI.2] to determine
the greatest common divisor (gcd) of two positive inte-
gers a and b. (Sometimes the greatest common divisor
is known as the highest common factor (hcf).)

When one first meets the concept of the greatest com-
mon divisor of a and b, it is usually defined to be the
largest positive integer that is a divisor (or factor) of
both a and b. However, for many purposes it is more
convenient to think of it as the unique positive inte-
ger d with the following two properties. First, d is a
divisor of a and b, and second, if ¢ is any other divi-
sor of a and b, then d is divisible by ¢. The method for
determining d is provided by the first two propositions
of Book VII of Euclid’s Elements. Here is the first one:
“Two unequal numbers being set out, and the less being
continually subtracted in turn from the greater, if the
number which is left never measures the one before it
until a unit is left, the original numbers will be prime
to one another.” In other words, if by carrying out suc-
cessive alternate subtractions one obtains the number
1, then the gcd of the two numbers is equal to 1. In this
case one says that the numbers are relatively prime or
coprime.

2.1.1 Alternate Subtractions

Let us describe Euclid’s procedure in general. It is based
on two simple observations:

(i) if @ = b then the gcd of a and b is b (or a);

(ii) d is a common divisor of a and b if and only if it
is a common divisor of a — b and b, which implies
that the gcd of a and b is the same as the gcd of
a — b and b.

Now suppose that we wish to determine the gcd of a
and b and suppose that a > b. If a = b then obser-
vation (i) tells us that the gcd is b. Otherwise, observa-
tion (ii) tells us that the answer will be the same as it is
for the two numbers a — b and b. If we now let a; be
the larger of these two numbers and b; the smaller (of
course, if they are equal then we just set a; = by = b),
then we are faced with the same task that we started
with—to determine the gcd of two numbers—but the
larger of these two numbers, ap, is smaller than a, the
larger of the original two numbers. We can therefore
repeat the process: if a; = b; then the gcd of a; and
b, and hence that of a and b, is by, and otherwise
we replace a; by a; — by and reorganize the numbers
a) — by and b; so that if one of them is larger then it
comes first.
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a a+p+q a+p

Figure 3 Newton’s method.

x-axis. Adding a to this value returns the origin to (0, 0)
and gives the new approximation to the root of f. This
is why Newton’s method is often called the tangent
method (figure 3). And one can now see that the new
approximation will definitely be better than the old one
if the tangent to f at (a, f(a)) intersects the x-axis ata
point that lies between a and the point where the curve
y = f(x) intersects the x-axis.

As it happens, this is not the case for Newton's choice
of the value a = 2 above, but it is true for the approx-
imate value 2.1 and for all subsequent ones. Geo-
metrically, the favorable situation occurs if the point
(a, f(a)) lies above the x-axis in a convex part of the
curve that crosses the x-axis or below the x-axis in a
concave part of the curve that crosses the x-axis. Under
these circumstances, and provided the root is not a
multiple one, the convergence is quadratic, meaning
that the error at each stage is roughly the square of
the error at the previous stage—or, equivalently, the
approximation is valid to a number of decimal places
that roughly doubles at each stage. This is enormously
fast.

The choice of the initial approximation value is obvi-
ously important, and raises unexpectedly subtle ques-
tions. These are clearer if we look at complex polyno-
mials and their complex roots. Newton’s method can be
easily adapted to this more general context. Suppose
that z is a root of some complex polynomial and that
Z( is an initial approximation for z. Newton’s method
then gives us a sequence zg, 21, 22,..., which may or
may not converge to z. We define the domain of attrac-
tion, denoted A(z), to be the set of all complex num-
bers z; such that the resulting sequence does indeed
converge to z. How do we determine A(z)?

The first person to ask this problem was CAYLEY
[VI.46], in 1879. He noticed that the solution is easy
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for quadratic polynomials but difficult as soon as the
degree is 3 or more. For example, the domains of
attraction of the roots +1 of the polynomial z2 — 1
are the open half-planes bounded by the vertical axis,
but the domains corresponding to the roots 1, w, and
w? of z3 — 1 are extremely complicated sets. They
were described by Julia in 1918—such subsets are now
called fractal sets. Newton's method and fractal sets are
discussed further in DYNAMICS [IV.14].

2.3.2 Recurrence Formulas

At each stage of his method, Newton had to produce
a new equation, but in 1690 Raphson noticed that this
was not really necessary. For particular examples, he
gave single formulas that could be used at each step,
but his basic observation applies in general and leads
to a general formula for every case, which one can
easily obtain using the interpretation in terms of tan-
gents. Indeed, the tangent to the curve y = f(x) at the
point of x-coordinate a has the equation y — f(a) =
f'(a)(x — a), and it cuts the x-axis at the point with
x-coordinate a — f(a)/f'(a). What we now call the
Newton-Raphson method springs from this simple for-
mula. One starts with an initial approximation ag = a
and then defines successive approximations using the
recurrence formula

-~ Slan)

f'(an) '

As an example, let us consider the function f(x) =
x? — ¢. Here, Newton's method provides a sequence of
approximations of the square root \/c of ¢, given by
the recurrence formula a,s; = %(a,, + ¢/ayn) (which
we obtain by substituting x2 + ¢ for f in the general
formula above). This method for approximating square
roots was known by Heron of Alexandria in the first
century. Note that if a is close to \/c, then ¢/ag is also
close, /¢ lies between them, and a; = %(ao +c/ap) is
their arithmetic mean.

Anil = An

3 Does an Algorithm Always Exist?

3.1 Hilbert’s Tenth Problem:
The Need for Formalization

In 1900, at the Second International Congress of Math-
ematicians, HILBERT [VI.63] proposed a list of twenty-
three problems. These problems, and Hilbert’s works in
general, had a huge influence on mathematics during
the twentieth century (Gray 2000). We are interested
here in Hilbert’s tenth problem: given a Diophantine
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equation, that is, a polynomial equation with any num-
ber of indeterminates and with integer coefficients, “a
process is sought by which it can be determined, in a
finite number of operations, whether the equation is
solvable in integral numbers.” In other words, we have
to find an algorithm which tells us, for any Diophan-
tine equation, whether or not it has at least one integer
solution. Of course, for many Diophantine equations it
is easy to find solutions, or to prove that no solutions
exist. However, this is by no means always the case: con-
sider, for instance, the Fermat equation x™ + y" = z"
(n > 3). (Even before the solution of FERMAT'S LAST
THEOREM [V.10] an algorithm was known for deter-
mining for any specific n whether this equation had
a solution. However, one could not call it easy.)

If Hilbert's tenth problem has a positive answer, then
one can demonstrate it by exhibiting a “process” of the
sort that Hilbert asked for. To do this, it is not necessary
to have a precise understanding of what a “process” is.
However, if you want to give a negative answer, then
you have to show that no algorithm exists, and for that
you need to say precisely what counts as an algorithm.
In section 1.2 we gave a definition that seems to be rea-
sonably precise, but it is not precise enough to enable
us to think about Hilbert's tenth problem. What kind of
rules are we allowed to use in an algorithm? How can
we be sure that no algorithm achieves a certain task,
rather than just that we are unable to find one?

3.2 Recursive Functions: Church’s Thesis

What we need is a formal definition of the notion of an
algorithm. In the seventeenth century, LEIBNIZ [VL.15]
envisaged a universal language that would allow one to
reduce mathematical proofs to simple computations.
Then, during the nineteenth century, logicians such
as Charles Babbage, BOOLE [VI.43], FREGE [VL.56], and
PEANO [VI.62] tried to formalize mathematical reason-
ing by an “algebraization” of logic. Finally, between
1931 and 1936, GODEL [VL92], CHURCH [VI.89], and
Stephen Kleene introduced the notion of recursive func-
tions (see Davis (1965), which contains the original
texts). Roughly speaking, a recursive function is one
that can be calculated by means of an algorithm, but
the definition of recursive functions is different, and is
completely precise.

3.2.1 Primitive Recursive Functions

Another rough definition of a recursive function is as
follows: a recursive function is one that has an induc-
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tive definition. To give an idea of what this means, let us
consider addition and multiplication as functions from
Nx N to N. To emphasize this, we shall write sum(x, y)
and prod(x, y) for x + y and xy, respectively.

A familiar fact about multiplication is that it is “re-
peated addition.” Let us examine this idea more pre-
cisely. We can define the function “prod” in terms of
the function “sum” by means of the following two
rules: prod(1, y) equals y and prod(x + 1,y) equals
sum(prod(x, y), »). Thus, if you know prod(x, y) and
you know how to calculate sums, then you can work out
prod(x + 1,y). Since you also know the “base case”
prod(1,y), a simple inductive argument shows that
these simple rules completely determine the function
“prod.”

We have just seen how one function can be “recur-
sively defined” in terms of another. We now want to
understand the class of all functions from N" to N that
can be built up in a few basic ways, of which recursion
is the most important. We shall refer to functions from
N" to N as n-ary functions.

To begin with, we need an initial stock of functions
out of which the rest will be built. It turns out that a
very simple set of functions is enough. Most basic are
the constant functions: that is, functions that take every
n-tuple in N” to some fixed positive integer ¢. Another
very simple function, but the function that allows us
to create much more interesting ones, is the successor
function, which takes a positive integer n to the next
one, n + 1. Finally, we have projection functions: the
function U,:,1 takes a sequence (xi,...,Xx5) in N and
maps it to the kth coordinate xy.

We then have two ways of constructing functions
from other functions. The first is substitution. Given an
me-ary function ¢ and m n-ary functions @,..., ¢y,
one defines an n-ary function by

(X1,.00,xn) = dPr(xy, .0, xXn), oo Wim(Xxy, .00y xn)).

For example, (x + y)2 = prod(sum(x, y),sum(x, y)),
so we can obtain the function (x,y) — (x + y)?
from the functions “sum” and “prod” by means of
substitution.

The second method of construction is called primi-
tive recursion. This is a more general form of the induc-
tive method we used above in order to construct the
function “prod” from the function “sum.” Given an
(n — 1)-ary function ¢ and an (n + 1)-ary function y,
one defines an n-ary function ¢ by saying that

d(1,x2,...

yXn) = P(x2,...,Xn)
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and

d(k+1,x2,...,Xn)
= p(k, p(k,x2,...

In other words, ¢ tells you the “initial values” of ¢
(the values when the first coordinate is 1) and u tells
you how to work out ¢(k+1,x,,...,x,) in terms
of ¢p(k,x2,...,xn),x2,...,xn and k. (The sum-prod-
uct example was simpler because we did not have a
dependence on k.)

A primitive recursive function is any function that can
be built from the initial stock of functions using the two
operations, substitution and primitive recursion, that

VX)) X2, 000, Xn).

we have just described.

3.2.2 Recursive Functions

If you think for a while about primitive recursion and
know a small amount about programming computers,
you should be able to convince yourself that they are
effectively computable: that is, that for any primitive
recursive function there is an algorithm for computing
it. (For example, the operation of primitive recursion
can usually be realized in a rather direct way as a FOR
loop.)

How about the converse? Are all computable func-
tions primitive recursive? Consider, for example, the
function that takes the positive integer n to p,, the
nth prime number. It is not hard to devise a simple
algorithm for computing p,, and it is then a good exer-
cise (if you want to understand primitive recursion) to
convert this algorithm into a proof that the function is
primitive recursive.

However, it turns out that this function is not typical:
there are computable functions that are not primitive
recursive. In 1928, Wilhelm Ackermann defined a func-
tion, now known as the Ackermann function, that has a
“doubly inductive” definition. The following function is
not quite the same as Ackermann’s, but it is very simi-
lar. It is the function A(x, y) that is determined by the
following recurrence rules:

(i) A(1,y) =1y + 2 for every y;
(ii)) A(x,1) = 2 for every x;
(iii) A(x+1,y+1) = A(x,A(x+1,y)) whenever x > 1
and y > 1.

For example, A(2,y +1) = A(1,A(2,y)) = A(2,y) + 2.
From this and the fact that A(2,1) = 2 it follows that
A(2,y) = 2y for every y. In a similar way one can
show that A(3,y) = 2%, and in general that for each x
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the function that takes y to A(x + 1, y) “iterates” the
function that takes y to A(x,y). This means that the
values of A(x, y) are extremely large even when x and
y are fairly small. For example, A(4,y + 1) = 24082,
so in general A(4, y) is given by an “exponential tower”
of height y. We have A(4,1) = 2, A(4,2) = 22 = 4,
A(4,3) = 2% = 16, A(4,4) = 2'® = 65536, and
A(4,5) = 255536 which is too large a number for its
decimal notation to be reproduced here.

It can be shown that for every primitive recursive
function ¢ there is some x such that the function
A(x,y) grows faster than ¢(y). This is proved by an
inductive argument. To oversimplify slightly, if ¢/ (y)
and u(y) have already been shown to grow more slowly
than A(x,y), then one can show that the function
¢ produced from them by primitive recursion also
grows more slowly. This allows us to define a “diag-
onal” function A(y) = A(y,y) that is not primi-
tive recursive because it grows faster than any of the
functions A(x,y).

If we are trying to understand in a precise way which
functions can be calculated algorithmically, then our
definition will surely have to encompass functions like
the Ackermann function, since they can in principle be
computed. Therefore, we must consider a larger class
of functions than just the primitive recursive ones.
This is what Godel, Church, and Kleene did, and they
obtained in different ways the same class of recursive
functions. For instance, Kleene added a third method of
construction, which he called minimization. If f is an
(n + 1)-ary function, one defines an n-ary function g
by taking g(xi,...,x5) to be the smallest y such that
f(xy,...,xn,¥) = 0.(If there is no such y, one regards
g as undefined for (xi,...,x,). We shall ignore this
complication in what follows.)

It turns out that, not only is the Ackermann function
recursive, but so are all functions that one can write
a computer program to calculate. So this gives us the
formal definition of computability that we did not have
before.

3.2.3 Effective Calculability

Once the notion of recursive functions had been formu-
lated, Church claimed that the class of recursive func-
tions was exactly the same as the class of “effectively
calculable” functions. This claim is widely believed,
but it is a conviction that cannot be proved since
the notion of recursive function is a mathematically
precise concept while that of an effectively calcula-
ble function is an intuitive notion, rather like that of
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“algorithm.” Church’s statement lies in the realm of
metamathematics and is now called Church’s thesis.

3.3 Turing Machines

One of the strongest pieces of evidence for Church’s
thesis is that in 1936 TURING [VL.94] found a very
different-looking way of formalizing the notion of an
algorithm, which he showed was equivalent. That is,
every function that was computable in his new sense
was recursive and vice versa. His approach was to
define a notion that is now called a Turing machine,
which can be thought of as an extremely primitive com-
puter, and which played an important part in the devel-
opment of actual computers. Indeed, functions that
are computable by Turing machines are precisely those
that can be programmed on a computer. The primi-
tive architecture of Turing machines does not make
them any less powerful: it merely means that in prac-
tice they would be too cumbersome to program or to
implement in hardware. Since recursive functions are
the same as Turing-computable functions, it follows
that recursive functions too are those functions that
can be programmed on a computer, so to disbelieve
Church’s thesis would be to maintain that there are
some “effective procedures” that cannot be converted
into computer programs-—which seems rather implau-
sible. A description of Turing machines can be found
in COMPUTATIONAL COMPLEXITY [IV.20§1].

Turing introduced his machines in response to a
question that generalized Hilbert’s tenth problem. The
Entscheidungsproblem, or decision problem, was also
asked by Hilbert, in 1922. He wanted to know whether
there was a “mechanical process” by which one could
determine whether any given mathematical statement
could be proved. In order to think about this, Turing
needed a precise notion of what constituted a “mechan-
ical process.” Once he had defined Turing machines,
he was able to show by means of a fairly straightfor-
ward diagonal argument that the answer to Hilbert's
question was no. His argument is outlined in THE
INSOLUBILITY OF THE HALTING PROBLEM [V.20].

4 Properties of Algorithms

4.1 Iteration versus Recursion

As previously mentioned, we often encounter compu-
tation rules which define each element of a sequence
in terms of the preceding elements. This gives rise to
two different ways of carrying out the computation.
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The first is iteration: one computes the first terms, then
one obtains succeeding terms by means of a recurrence
formula. The second is recursion, a procedure which
seems circular at first because one defines a procedure
in terms of itself. However, this is allowed because the
procedure calls on itself with smaller values of the vari-
ables. The concept of recursion is subtle and powerful.
Let us try to clarify the difference between recursion
and iteration with some examples.

Suppose that we wish to compute n! = 1 -2 -
3---(n—1) - n. An obvious way of doing it is to note
the recurrence relation n! = n - (n — 1)! and the ini-
tial value 1! = 1. Having done so, one could then
compute successively the numbers 2!, 3!, 4!, and so
on until one reached n!, which would be the iterative
approach. Alternatively, one could say that if fact(n) is
the result of a procedure that leads to n!, then fact(n) =
n x fact(n — 1), which would be a recursive procedure.
The second approach says that to obtain n! it suffices to
know how to obtain (n—1)!, and to obtain (n—1)!it suf-
fices to know how to obtain (n—2)!, and so on. Since one
knows that 1! = 1, one can obtain n!. Thus, recursion
is a bit like iteration but thought of “backwards.”

In some ways this example is too simple to show
clearly the difference between the two procedures.
Moreover, if one wishes to compute n!, then iteration
seems simpler and more natural than recursion. We
now look at an example where recursion is far simpler
than iteration.

4.1.1 The Tower of Hanoi

The Tower of Hanoi is a problem that goes back to
Edouard Lucas in 1884. One is given n disks, all of dif-
ferent sizes and each with a hole in the middle, stacked
on a peg A in order of size, with the largest one at the
bottom. We also have two empty pegs B and C. The
problem is to move the stack from peg A to peg B while
obeying the following rules. One is allowed to move just
one disk at a time, and each move consists in taking
the top disk from one of the pegs and putting it onto
another peg. In addition, no disk may ever be placed
above a smaller disk.

The problem is easy if you have just three disks,
but becomes rapidly harder as the number of disks
increases. However, with the help of recursion one can
see very quickly that an algorithm exists for moving
the disks in the required way. Indeed, suppose that we
know a procedure H(n — 1) that solves the problem for
n — 1 disks. Here is a procedure H (n) for n disks: move
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the first n — 1 disks on top of A to C with the procedure
H(n — 1), then move the last disk on A to B, and finally
apply once more the procedure H(n —1) to move all the
disks from C to B. If we write Hag(n) for the procedure
that moves n disks from peg A to peg B according to the
rules, then we can represent this recursion symbolically
as
Hag(n) = Hac(n — 1)Hap(1)Hpc(n — 1).

Thus, Hag(n) is deduced from Hac(n — 1) and Hpe(n —
1), which are clearly equivalent to Hag(n — 1). Since
Hag (1) is certainly easy, we have the full recursion.

One can easily check by induction that this proce-
dure takes 2™ — 1 moves—moreover, it turns out that
the task cannot be accomplished in fewer moves. Thus,
the number of moves is an exponential function of n,
so for large n the procedure will be very long.

Furthermore, the larger n is, the more memory one
must use to keep track of where one is in the procedure.
By contrast, if we wish to carry out an iteration during
an iterative procedure, it is usually enough to know just
the result of the previous iteration. Thus, the most we
need to remember is the result of one iteration. There
is in fact an iterative procedure for the Tower of Hanoi
as well. It is easy to describe, but it is much less obvious
that it actually solves the problem. It encodes the posi-
tions of the n disks as an n-bit sequence and at each
step applies a very simple rule to obtain the next n-bit
sequence. This rule makes no reference to how many
steps have so far taken place, and therefore the amount
of memory needed, beyond that required to store the
positions of the disks, is very small.

4.1.2 The Extended Euclid Algorithm

Euclid’s algorithm is another example that lends itself
in a very natural way to a recursive procedure. Recall
that if a and b are two positive integers, then we
can write a = gb + v with 0 < r < b. The algo-
rithm depended on the observation that gcd(a,b) =
gcd(b, r). Since the remainder v can be calculated eas-
ily from a and b, and since the pair (b,7) is smaller
than the pair (a, b), this gives us a recursive procedure,
which stops when we reach a pair of the form (a,0).

An important extension of Euclid’s algorithm is Be-
zout’s lemma, which states that for any pair of posi-
tive integers (a, b) there exist (not necessarily positive)
integers u and v such that

ua +vb =d = gcd(a,b).

How can we obtain such integers u and v? The answer
is given by the extended Euclid algorithm, which again
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can be defined using recursion. Suppose we can find a
pair (', v') that works for b and r: thatis, u'b +v'r =
d. Since a = gb + r, we can substitute » = a — gb into
this equation and deduce thatd = u'b + v'(a — qb) =
v'a+(u'-v'q)b.Thus, settingu = v'andv = u'-v’q,
we have ua + vb = d. Since a pair (u,v) that works
for a and b can be easily calculated from a pair (u',v")
that works for the smaller b and r, this gives us a recur-
sive procedure. The “bottom” of the recursion is when
r = 0, in which case we know that 1b + 0r = d. Once we
reach this, we can “run back up” through Euclid’s algo-
rithm, successively modifying our pair (u, v) according
to the rule just given. Notice, incidentally, that the fact
that this procedure exists is a proof of Bézout’s lemma.

4.2 Complexity

So far we have considered algorithms in a theoretical
way and ignored their obvious practical importance.
However, the mere existence of an algorithm for car-
rying out a certain task does not guarantee that your
computer can do it, because some algorithms take so
many steps that no computer can implement them
(unless you are prepared to wait billions of years for
the answer). The complexity of an algorithm is, loosely
speaking, the number of steps it takes to complete
its task (as a function of the size of the input). More
precisely, this is the time complexity of the algorithm.
There is also its space complexity, which measures the
maximum amount of memory a computer needs in
order to implement it. Complexity theory is the study
of the computational resources that are needed to carry
out various tasks. It is discussed in detail in COMPUTA-
TIONAL COMPLEXITY [IV.20]—here we shall give a hint
of it by examining the complexity of one algorithm.

4.2.1 The Complexity of Euclid’s Algorithm

The length of time that a computer will take to imple-
ment Euclid’s algorithm is closely related to the number
of times one needs to compute quotients and remain-
ders: that is, to the number of times that the recur-
sive procedure calls on itself. Of course, this number
depends in turn on the size of the numbers a and b
whose gcd is to be determined. An initial observation
is that if 0 < b < a, then the remainder in the divi-
sion of a by b is less than a/2. To see this, notice that
if b > a/2 then the remainder is a — b, which is at
most a/2, whereas if b < a/2 then we know that the
remainder is at most b and so is again at most a/2. It
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Not many working mathematicians have subscribed
to these principles, but almost all would agree that
there is an important difference between constructive
proofs and indirect proofs of existence, a difference
that has come to seem more important with the rise
of computer science. This has added a further level of
refinement: sometimes, even if you know that a math-
ematical object can be produced algorithmically, you
still care whether the algorithm can be made to work
in a reasonably short time.

5.2.2 Effective Results

In number theory there is an important distinction
between “effective” and “ineffective” results. For exam-
ple, MORDELL'S CONJECTURE [V.29], proposed in 1922
and finally proved by Faltings in 1983, states that a
smooth rational plane curve of degree n > 3 has at
most finitely many points with rational coefficients.
Among its many consequences is that the Fermat equa-
tion x™ + y™ = z™ has only finitely many integral solu-
tions for each n > 4. (Of course, we now know that it
has no nontrivial solutions, but the Mordell conjecture
was proved before Fermat’s last theorem, and it has
many other consequences.) However, Faltings’s proof is
ineffective, which means that it does not give any infor-
mation about how many solutions there are (except that
there are not infinitely many), or how large they can be,
so one cannot use a computer to find them all and know
that one has finished the job. There are many other
very important proofs in number theory that are inef-
fective, and replacing any one of them with an effective
argument would be a major breakthrough.

A completely different set of issues was raised by
another solution to a famous open problem, the FOUR-
COLOR THEOREM [V.12], which was conjectured by Fran-
cis Guthrie, a student of DE MORGAN [VI.38], in 1852
and proved in 1976 by Appel and Haken, with a proof
that made essential use of computers. They began with
a theoretical argument that reduced the problem to
checking finitely many cases, but the number of cases
was so large that it could not be done by hand and was
instead done by computers. But how should we judge
such a proof? Can we be sure that the computer has
been programmed correctly? And even if it has, how
do we know with a computation of that size that the
computer has operated correctly? And does a proof
that relies on a computer really tell us why the theo-
rem is true? These questions continue to be debated
today.
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IL.5 The Development of Rigor in
Mathematical Analysis
Tom Archibald

1 Background

This article is about how rigor came to be introduced
into mathematical analysis. This is a complicated topic,
since mathematical practice has changed considerably,
especially in the period between the founding of the cal-
culus (shortly before 1700) and the early twentieth cen-
tury. In a sense, the basic criteria for what constitutes a
correct and logical argument have not altered, but the
circumstances under which one would require such an
argument, and even to some degree the purpose of the
argument, have altered with time. The voluminous and
successful mathematical analysis of the 1700s, associ-
ated with names such as Johann and Daniel BERNOULLI
[VI.18], EULER [VL.19], and LAGRANGE [VL.22], lacked
foundational clarity in ways that were criticized and
remedied in subsequent periods. By around 1910 a
general consensus had emerged about how to make
arguments in analysis rigorous.

Mathematics consists of more than techniques for
calculation, methods for describing important features
of geometric objects, and models of worldly phenom-
ena. Nowadays, almost all working mathematicians are
trained in, and concerned with, the production of rig-
orous arguments that justify their conclusions. These
conclusions are usually framed as theorems, which are
statements of fact, accompanied by an argument, or
proof, that the theorem is indeed true. Here is a simple
example: every positive whole number that is divisible
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by 6 is also divisible by 2. Running through the six times
table (6, 12, 18, 24, ...) we see that each number is even,
which makes the statement easy enough to believe. A
possible justification of it would be to say that since 6
is divisible by 2, then every number divisible by 6 must
also be divisible by 2.

Such a justification might or might not be thought
of as a thorough proof, depending on the reader. For
on hearing the justification we can raise questions: is it
always true that if a, b, and ¢ are three positive whole
numbers such that ¢ is divisible by b and b is divisi-
ble by a, then c¢ is divisible by a? What is divisibility
exactly? What is a whole number? The mathematician
deals with such questions by precisely defining con-
cepts (such as divisibility of one number by another),
basing the definitions on a smallish number of unde-
fined terms (“whole number” might be one, though it
is possible to start even further back, with sets). For
example, one could define a number n to be divisible
by a number m if and only if there exists an integer g
such that gm = n. Using this definition, we can give a
more precise proof: if n is divisible by 6, then n = 6q
for some q, and therefore n = 2(3q), which proves that
n is divisible by 2. Thus we have used the definitions
to show that the definition of divisibility by 2 holds
whenever the definition of divisibility by 6 holds.

Historically, mathematical writers have been satis-
fied with varying levels of rigor. Results and methods
have often been widely used without a full justification
of the kind just outlined, particularly in bodies of math-
ematical thought that are new and rapidly developing.
Some ancient cultures, the Egyptians for example, had
methods for multiplication and division, but no justi-
fication of these methods has survived and it does not
seem especially likely that formal justification existed.
The methods were probably accepted simply because
they worked, rather than because there was a thorough
argument justifying them.

By the middle of the seventeenth century, European
mathematical writers who were engaged in research
were well-acquainted with the model of rigorous math-
ematical argument supplied by EucCLID’s [VI.2] Ele-
ments. The kind of deductive, or synthetic, argument
we illustrated earlier would have been described as a
proof more geometrico—in the geometrical way. While
Euclid’s arguments, assumptions, and definitions are
not wholly rigorous by today’s standards, the basic idea
was clear: one proceeds from clear definitions and gen-
erally agreed basic ideas (such as that the whole is
greater than the part) to deduce theorems (also called
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propositions) in a step-by-step manner, not bringing
in anything extra (either on the sly or unintentionally).
This classical model of geometric argument was widely
used in reasoning about whole numbers (for example
by FERMAT [VI.12]), in analytic geometry (DESCARTES
[VI.11]), and in mechanics (Galileo).

This article is about rigor in analysis, a term which
itself has had a shifting meaning. Coming from ancient
origins, by around 1600 the term was used to refer to
mathematics in which one worked with an unknown
(something we would now write as x) to do a calculation
or find a length. In other words, it was closely related to
algebra, though the notion was imported into geometry
by Descartes and others. However, over the course of
the eighteenth century the word came to be associated
with the calculus, which was the principal area of appli-
cation of analytic techniques. When we talk about rigor
in analysis it is the rigorous theory of the mathematics
associated with differential and integral calculus that
we are principally discussing. In the third quarter of
the seventeenth century rival methods for the differ-
ential and integral calculus were devised by NEWTON
[VI.14] and LEIBNIZ [VL15], who thereby synthesized
and extended a considerable amount of earlier work
concerned with tangents and normals to curves and
with the areas of regions bounded by curves. The tech-
niques were highly successful, and were extended read-
ily in a variety of directions, most notably in mechanics
and in differential equations.

The key common feature of this research was the use
of infinities: in some sense, it involved devising meth-
ods for combining infinitely many infinitely small quan-
tities to get a finite answer. For example, suppose we
divide the circumference of a circle into a (large) num-
ber of equal parts by marking off points at equal dis-
tances, then joining the points and creating triangles by
joining the points to the center. Adding up the areas of
the triangles approximates the circular area, and the
more points we use the better the approximation. If
we imagine infinitely many of these inscribed triangles,
the area of each will be “infinitely small” or infinitesi-
mal. But because the total involves adding up infinitely
many of them, it may be that we get a finite posi-
tive total (rather than just 0, from adding up infinitely
many zeros, or an infinite number, as we would get
if we added the same finite number to itself infinitely
many times). Many techniques for doing such calcula-
tions were devised, though the interpretation of what
was taking place varied. Were the infinities involved
“real” or merely “potential”? If something is “really”
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infinitesimal, is it just zero? Aristotelian writers had
abhorred actual infinities, and complaints about them
were common at the time.

Newton, Leibniz, and their immediate followers pro-
vided mathematical arguments to justify these meth-
ods. However, the introduction of techniques involv-
ing reasoning with infinitely small objects, limiting
processes, infinite sums, and so forth meant that the
founders of the calculus were exploring new ground
in their arguments, and the comprehensibility of these
arguments was frequently compromised by vague ter-
minology or by the drawing of one conclusion when
another might seem to follow equally well. The objects
they were discussing included infinitesimals (quantities
infinitely smaller than those we experience directly),
ratios of vanishingly small quantities (i.e., fractions
in, or approaching, the form 0/0), and finite sums of
infinitely many positive terms. Taylor series represen-
tations, in particular, provoked a variety of questions.
A function may be written as a series in such a way
that the series, when viewed as a function, will have, at
a given point x = a, the same value as the function, the
same rate of change (or first derivative), and the same
higher-order derivatives to arbitrary order:

f(x) = fla)+ fl@)x —a) + 3 f" (@) (x —a)* + .

For example, sinx = x — x3/3!1 + x%/5! + - - -, a fact
already known to Newton though such series are now
named after Newton'’s disciple BROOK TAYLOR [VI.16].

One problem with early arguments was that the
terms being discussed were used in different ways by
different writers. Other problems arose from this lack
of clarity, since it concealed a variety of issues. Per-
haps the most important of these was that an argument
could fail to work in one context, even though a very
similar argument worked perfectly well in another. In
time, this led to serious problems in extending analysis.
Eventually, analysis became fully rigorous and these
difficulties were solved, but the process was a long
one and it was complete only by the beginning of the
twentieth century.

Let us consider some examples of the kinds of dif-
ficulties that arose from the very beginning, using a
result of Leibniz. Suppose we have two variables, u
and v, each of which changes when another variable,
x, changes. An infinitesimal change in x is denoted dx,
the differential of x. The differential is an infinitesimal
quantity, thought of as a geometrical magnitude, such
as a length, for example. This was imagined to be com-
bined or compared with other magnitudes in the usual
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ways (two lengths can be added, have aratio, and so on).
When x changes to x + dx, u and v change to u + du
and v + dv, respectively. Leibniz concluded that the
product uv would then change to uv + udv + v du,
so thatd(uv) = udv + v du. His argument is, roughly,
that d(uv) = (u + du)(v + dv) — uv. Expanding the
right-hand side using regular algebra and then simpli-
fying gives udv + vdu + du dv. But the term du dv
is a second-order infinitesimal, vanishingly small com-
pared with the first-order differentials, and is thus
treated as equal to 0. Indeed, one aspect of the prob-
lems is that there appears to be an inconsistency in the
way that infinitesimals are treated. For instance, if you
want to work out the derivative of y = x?2, the calcu-
lation corresponding to the one just given (expanding
(x +dx)?, and so on) shows that dy/dx = 2x +dx.We
then treat the dx on the right-hand side as zero, but
the one on the left-hand side seems as though it ought
to be an infinitesimal nonzero quantity, since otherwise
we could not divide by it. So is it zero or not? And if not,
how do we get around the apparent inconsistency?

At a slightly more technical level, the calculus re-
quired mathematicians to deal repeatedly with the
“ultimate” values of ratios of the form dy/dx when
the quantities in both numerator and denominator
approach or actually reach 0. This phrasing uses, once
again, the differential notation of Leibniz, though the
same issues arose for Newton with a slightly different
notational and conceptual approach. Newton generally
spoke of variables as depending on time, and he sought
(for example) the values approached when “evanes-
cent increments”—vanishingly small time intervals—
are considered. One long-standing set of confusions
arose precisely from this idea that variable quantities
were in the process of changing, whether with time
or with changes in the value of another variable. This
means that we talk about values of a variable approach-
ing a given value, but without a clear idea of what this
“approach” actually is.

2 Eighteenth-Century Approaches
and Critiques

Of course, had the calculus not turned out to be an
enormously fruitful field of endeavor, no one would
have bothered to criticize it. But the methods of New-
ton and Leibniz were widely adopted for the solution of
problems that had interested earlier generations (nota-
bly tangent and area problems) and for the posing and
solution of problems that these techniques suddenly
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made far more accessible. Problems of areas, maxima
and minima, the formulation and solution of differen-
tial equations to describe the shape of hanging chains
or the positions of points on vibrating strings, applica-
tions to celestial mechanics, the investigation of prob-
lems having to do with the properties of functions
(thought of for the most part as analytic expressions
involving variable quantities)—all these fields and more
were developed over the course of the eighteenth cen-
tury by mathematicians such as Taylor, Johann and
Daniel Bernoulli, Euler, D’ALEMBERT [V].20], Lagrange,
and many others. These people employed many vir-
tuoso arguments of suspect validity. Operations with
divergent series, the use of imaginary numbers, and
manipulations involving actual infinities were used
effectively in the hands of the most capable of these
writers. However, the methods could not always be
explained to the less capable, and thus certain results
were not reliably reproducible—a very odd state for
mathematics from today’s standpoint. To do Euler’s
calculations, one needed to be Euler. This was a situ-
ation that persisted well into the following century.

Specific controversies often highlighted issues that
we now see as a result of foundational confusion. In the
case of infinite series, for example, there was confusion
about the domain of validity of formal expressions.
Consider the series

1-14+1-14+1-1+41----.

In today’s usual elementary definition (due to cAuCHY
[VI.29] around 1820) we would now consider this series
to be divergent because the sequence of partial sums
1,0,1,0,... does not tend to a limit. But in fact there
was some controversy about the actual meaning of such
expressions. Euler and Nicolaus Bernoulli, for example,
discussed the potential distinction between the sum
and the value of an infinite sum, Bernoulli arguing that
something like 1 —2+6-24+120+ - - - has no sum but
that this algebraic expression does constitute a value.
Whatever may have been meant by this, Euler defended
the notion that the sum of the series is the value of
the finite expression that gives rise to the series. In
his 1755 Institutiones Calculi Differentialis, he gives the

example of 1 — x + x2 — x3 + .-+, which comes from
1/(1 + x), and later defended the view that this meant
that 1 -1 +1-1+--- = ]5 His view was not uni-

versally accepted. Similar controversies arose in con-
sidering how to extend the values of functions outside
their usual domain, for example with the logarithms of
negative numbers.
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Probably the most famous eighteenth-century cri-
tique of the language and methods of eighteenth-cen-
tury analysis is due to the philosopher George Berke-
ley (1685-1753). Berkeley's motto, “To be is to be
perceived,” expresses his idealist stance, which was
coupled with a strong view that the abstraction of
individual qualities, for the purposes of philosophi-
cal discussion, is impossible. The objects of philos-
ophy should thus be things that are perceived, and
perceived in their entirety. The impossibility of per-
ceiving infinitesimally small objects, combined with
their manifestly abstracted nature, led him to attack
their use in his 1734 treatise The Analyst: Or, a Dis-
course Addressed to an Infidel Mathematician. Referring
sarcastically in 1734 to infinitesimals as the “ghosts
of departed quantities,” Berkeley argued that neglect-
ing some quantity, no matter how small, was inap-
propriate in mathematical argument. He quoted New-
ton in this regard, to the effect that “in mathematical
matters, errors are to be condemned, no matter how
small.” Berkeley continued, saying that “[n]Jothing but
the obscurity of the subject” could have induced New-
ton to impose this kind of reasoning on his follow-
ers. Such remarks, while they apparently did not dis-
suade those enamored of the methods, contributed to a
sentiment that aspects of the calculus required deeper
explanation. Writers such as Euler, d’Alembert, Lazare
Carnot, and others attempted to address foundational
criticisms by clarifying what differentials were, and
gave a variety of arguments to justify the operations
of the calculus.

2.1 Euler

Euler contributed to the general development of analy-
sis more than any other individual in the eighteenth
century, and his approaches to justifying his arguments
were enormously influential even after his death, owing
to the success and wide use of his important textbooks.
Euler’s reasoning is sometimes regarded as rather care-
less since he operated rather freely with the notation of
the calculus, and many of his arguments are certainly
deficient by later standards. This is particularly true
of arguments involving infinite series and products. A
typical example is provided by an early version of his
proof that ~ 2
27

His method is as follows. Using the known series ex-
pansion for sin x he considered the zeros of

s ¥ | ox o xtx
Jx 31 5! 7!
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These lie at 12, (2m)2, (3m)?%, .... Applying (with-
out argument) the factor theorem for finite algebraic
equations he expressed this equation as

sin /x ( x)( x )( x)
R e [ e | e
Jx us 4772 9772

Now, it can be seen that the coefficient of x in the infi-
nite sum, —%. should equal the negative of the sum
of the coefficients of x in the product. Euler appar-
ently concluded this by imagining multiplying out the
infinitely many terms and selecting the 1 from all but
one of them. This gives

1 T 1 B 1 + 1

w2 4mw? 9 -6’
and multiplying both sides by 72 gives the required
sum.

We now think of this approach as having several
problems. The product of the infinitely many terms
may or may not represent a finite value, and today
we would specify conditions for when it does. Also,
applying a result about (finite) polynomials to (infi-
nite) power series is a step that requires justification.
Euler himself was to provide alternative arguments
for this result later in his life. But the fact that he
may have known counterexamples—situations in which
such usages would not work—was not, for him, a deci-
sive obstacle. This view, in which one reasoned in a
generic situation that might admit a few exceptions,
was common at his time, and it was only in the late
nineteenth century that a concerted effort was made to
state the results of analysis in ways that set out pre-
cisely the conditions under which the theorems would
hold.

Euler did not dwell on the interpretation of infinite
sums or infinitesimals. Sometimes he was happy to
regard differentials as actually equal to zero, and to
derive the meaning of a ratio of differentials from the
context of the problem:

An infinitely small quantity is nothing but a vanish-
ing quantity and therefore will be actually equal to
0....Hence there are not so many mysteries hidden in
this concept as there are usually believed to be. These
supposed mysteries have rendered the calculus of the
infinitely small quite suspect to many people.

This statement, from the Institutiones Calculi Differen-
tialis of 1755, was followed by a discussion of propor-
tions in which one of the ratios is 0/0, and a justifi-
cation of the fact that differentials may be neglected
in calculations with ordinary numbers. This accurately

121

describes a good deal of his practice—when he worked
with differential equations, for example.

Controversial matters did arise, however, and de-
bates about definitions were not unusual. The best-
known example involves discussions connected with
the so-called vibrating string problem, which involved
Euler, d’Alembert, and Daniel Bernoulli. These were
closely connected with the definition of FUNCTIONS
[I.2 §2.2], and the question of which functions studied
by analysis actually could be represented by series (in
particular trigonometric series). The idea that a curve
of arbitrary shape could serve as an initial position for
a vibrating string extended the idea of function, and
the work of FOURIER [VI.25] in the early nineteenth
century made such functions analytically accessible. In
this context, functions with broken graphs (a kind of
discontinuous function) came under inspection. Later,
how to deal with such functions would be a decisive
issue for the foundations of analysis, as the more “nat-
ural” objects associated with algebraic operations and
trigonometry gave way to the more general modern
concept of function.

2.2 Responses from the Late Eighteenth Century

One significant response to Berkeley in Britain was that
of Colin Maclaurin (1698-1746), whose 1742 textbook
A Treatise of Fluxions attempted to clarify the foun-
dations of the calculus and do away with the idea
of infinitely small quantities. Maclaurin, a leading fig-
ure of the Scottish Enlightenment of the mid eigh-
teenth century, was the most distinguished British
mathematician of his time and an ardent proponent
of Newton’s methods. His work, unlike that of many
of his British contemporaries, was read with interest
on the Continent, especially his elaborations of Newto-
nian celestial mechanics. Maclaurin attempted to base
his reasoning on the notion of the limits of what he
termed “assignable” finite quantities. Maclaurin's work
is famously obscure, though it did provide examples of
calculating the limits of ratios. Perhaps his most impor-
tant contribution to the clarification of the foundations
of analysis was his influence on d’Alembert.
D’Alembert had read both Berkeley and Maclaurin
and followed them in rejecting infinitesimals as real
quantities. While exploring the idea of a differential as
a limit, he also attempted to reconcile his idea with the
idea that infinitesimals may be consistently regarded
as being actually zero, perhaps in a nod to Euler’s
view. The main exposition of d’Alembert’s views may
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Cauchy’s movement away from the formal approach
of Lagrange rejected the “vagueness of algebra.” Al-
though he was clearly guided by intuition (both geo-
metric and otherwise), he was well aware that intu-
ition could be misleading, and produced examples to
show the value of adhering to precise definitions. One
famous example, the function that takes the value
e 1/** when x # 0 and zero when x = 0, is differ-
entiable infinitely many times, yet it does not yield
a Taylor series that converges to the function at the
origin. Despite this example, which he mentioned in
his lectures, Cauchy was not a specialist in counter-
examples, and in fact the trend toward producing
counterexamples for the purpose of clarifying defini-
tions was a later development.

Abel famously drew attention to an error in Cauchy’s
work: his statement that a convergent series of contin-
uous functions has a continuous sum. For this to be
true, the series must be uniformly convergent, and in
1826 Abel gave as a counterexample the series

i(_l)k,]sinkx
k=1 k

which is discontinuous at odd multiples of 7. Cauchy
was led to make this distinction only much later, after
the phenomenon had been identified by several writers.
Historians have written extensively about this apparent
error; one influential account, due to Bottazzini, pro-
poses that for various reasons Cauchy would not have
found Abel’s example telling, even if he had known of
it at the time (this account appears in Bottazzini (1990,
p. LXXXV)).

Before leaving the time of Cauchy, we should note
the related independent activity of BOLZANO [VI.28].
Bolzano, a Bohemian priest and professor whose ideas
were not widely disseminated at the time, investigated
the foundations of the calculus extensively. In 1817,
for example, he gave what he termed a “purely ana-
lytic proof of the theorem that between any two values
that possess opposite signs, at least one real root of
the equation exists”: the intermediate value theorem.
Bolzano also studied infinite sets: what is now called
the Bolzano-Weierstrass theorem states that for every
bounded infinite set there is at least one point having
the property that any disk about that point contains
infinitely many points of the set. Such “limit points”
were studied independently by WEIERSTRASS [VI.44].
By the 1870s, Bolzano's work became more broadly
known.

II. The Origins of Modern Mathematics

3.2 Riemann, the Integral, and Counterexamples

Riemann is indelibly associated with the foundations of
analysis because of the Riemann integral, which is part
of every calculus course. Despite this, he was not always
driven by issues involving rigor. Indeed he remains a
standard example of the fruitfulness of nonrigorous
intuitive invention. There are many points in Riemann'’s
work at which issues about rigor arise naturally, and
the wide interest in his innovations did much to direct
the attention of researchers to making these insights
precise.

Riemann’s definition of the definite integral was pre-
sented in his 1854 Habilitationschrift—the “second the-
sis,” which qualified him to lecture at a university for
fees. He generalized Cauchy’s notion to functions that
are not necessarily continuous. He did this as part of an
investigation of FOURIER SERIES [II.27] expansions. The
extensive theory of such series was devised by Fourier
in 1807 but not published until the 1820s. A Fourier
series represents a function in the form

~

F(x) =ag+ D (ancos(nx) + by sin(nx))
n=1

on a finite interval.

The immediate inspiration for Riemann’'s work was
DIRICHLET [VIL.36], who had corrected and developed
earlier faulty work by Cauchy on the question of when
and whether the Fourier series expansion of a function
converges to the function from which it is derived. In
1829 Dirichlet had succeeded in proving such conver-
gence for a function with period 27 that is integrable
on an interval of that length, does not possess infinitely
many maxima and minima there, and at jump discon-
tinuities takes on the average value between the two
limiting values on each side. As Riemann noted, follow-
ing his professor Dirichlet, “this subject stands in the
closest connection to the principles of infinitesimal cal-
culus, and can therefore serve to bring these to greater
clarity and definiteness” (Riemann 1854, p. 238). Rie-
mann sought to extend Dirichlet’s investigations to fur-
ther cases, and was thus led to investigate in detail
each of the conditions given by Dirichlet. Accordingly,
he generalized the definition of a definite integral as
follows:

We take between a and b an increasing sequence of
values x1,x7,...,x,-1,and for brevity designate x| - a
by 81, x2 —x1 by &2, ..., b — x,1 by 6, and by € a
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positive proper fraction. Then the value of the sum

S=081f(a+€6))+62f(x1+€282)

+ 63f(X2 +€303) + 00+ 6nf(xn 1+ €ndn)
depends on the choice of the intervals 6 and the quanti-
ties €. If it has the property that it approaches infinitely
closely a fixed limit A no matter how the 6 and ¢ are
chosen, as § becomes infinitely small, then we call this
value [¥ f(x) dx.

In connection with this definition of the integral, and
in part to show its power, Riemann provided an exam-
ple of a function that is discontinuous in any inter-
val, yet can be integrated. The integral thus has points
of nondifferentiability on each interval. Riemann’s def-
inition rendered problematic the inverse relationship
between differentiation and integration, and his exam-
ple brought this problem out clearly. The role of such
“pathological” counterexamples in pushing the devel-
opment of rigor, already apparent in Cauchy's work,
intensified greatly around this time.

Riemann’s definition was published only in 1867, fol-
lowing his death; an expository version due to Gaston
Darboux appeared in French in 1873. The populariza-
tion and extension of Riemann’s approach went hand
in hand with the increasing appreciation of the impor-
tance of rigor associated with the Weierstrass school,
discussed below. Riemann's approach focused atten-
tion on sets of points of discontinuities, and thus were
seminal for CANTOR’s [VI.54] investigations into point
sets in the 1870s and afterwards.

The use of the Dirichlet principle serves as a fur-
ther example of the way in which Riemann’s work drew
attention to problems in the foundations of analysis.
In connection with his research into complex analy-
sis, Riemann was led to investigate solutions to the
so-called Dirichlet problem: given a function g, defined
on the boundary of a closed region in the plane, does
there exist a function f that satisfies the LAPLACE
PARTIAL DIFFERENTIAL EQUATION [L.3 §5.4] in the inte-
rior and takes the same values as g on the bound-
ary? Riemann asserted that the answer was yes. To
demonstrate this, he reduced the question to prov-
ing the existence of a function that minimizes a cer-
tain integral over the region, and argued on physical
grounds that such a minimizing function must always
exist. Even before Riemann’s death his assertion was
questioned by WEIERSTRASS [VI.44], who published a
counterexample in 1870. This led to attempts to refor-
mulate Riemann’s results and prove them by other
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means, and ultimately to a rehabilitation of the Dirich-
let principle through the provision of precise and broad
hypotheses for its validity, which were expressed by
HILBERT [VL.63] in 1900.

4 Weierstrass and His School

Weierstrass had a passion for mathematics as a student
at Bonn and Miinster, but his student career was very
uneven. He spent the years from 1840 to 1856 as a high
school teacher, undertaking research independently
but at first publishing obscurely. Papers from 1854
onward in Journal fiir die reine und angewandte Math-
ematik (otherwise known as Crelle’s Journal) attracted
wide attention to his talent, and he obtained a profes-
sorship in Berlin in 1856. Weierstrass began to lecture
regularly on mathematical analysis, and his approach
to the subject developed into a series of four courses
of lectures given cyclically between the early 1860s
and 1890. The lectures evolved over time and were
attended by a large number of important mathemati-
cal researchers. They also indirectly influenced many
others through the circulation of unpublished notes.
This circle included R. Lipschitz, P. du Bois-Reymond,
H. A. Schwarz, O. Hélder, Cantor, L. Koenigsberger, G.
Mittag-Leffler, KOVALEVSKAYA [VI.59], and L. Fuchs, to
name only some of the most important. Through their
use of Weierstrassian approaches in their own research,
and their espousal of his ideas in their own lectures,
these approaches became widely used well before the
eventual publication of a version of his lectures late in
his life. The account that follows is based largely on
the 1878 version of the lectures. His approach was also
influential outside Germany: parts of it were absorbed
in France in the lectures of HERMITE [VI.47] and JORDAN
[VL.52], for example.

Weierstrass’s approach builds on that of Cauchy
(though the detailed relationship between the two bod-
ies of work has never been fully examined). The two
overarching themes of Weierstrass’s approach are, on
the one hand, the banning of the idea of motion, or
changing values of a variable, from limit processes, and,
on the other, the representation of functions, notably
of a complex variable. The two are intimately linked.
Essential to the motion-free definition of a limit is
Weierstrass’s nascent investigation of what we would
now call the topology of the real line or complex plane,
with the idea of a limit point, and a clear distinc-
tion between local and global behavior. The central
objects of study for Weierstrass are functions (of one
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