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Prologue

What's Wrong with This Picture?

The Description of Nature at the End of the Nineteenth Century

Anyone already familiar with some of the more bizarre implications of quantum
mechanics—its phantoms of probability; particles that are waves and waves that are
particles; cats that are at once both alive and dead; its uncertainty, non-locality, and
seemingly ‘spooky’ goings-on—might look back rather wistfully on the structure of
classical mechanics. We might be tempted to think that classical mechanics offers a much
more appealing or comforting description of nature, one that is unambiguous, definite,
and certain.

There is a persistent myth that, towards the end of the nineteenth century, such was
the appeal of the classical structure that it seemed to physicists that all the most pressing
problems had now been solved. In a lecture delivered to the British Association for the
Advancement of Science in 1900, the great physicist Lord Kelvin (William Thomson)
is supposed to have declared: “There is nothing new to be discovered in physics now. All
that remains is more and more precise measurement.’!

Except there is no evidence that Kelvin ever said this.? It’s true that in Light Waves and
Their Uses, a book based on a series of lectures delivered in 1899 to the Lowell Institute
in Boston, Massachusetts, American physicist Albert Michelson wrote:?

Many other instances might be cited, but these will suffice to justify the statement that
‘our future discoveries must be looked for in the sixth place of decimals.” It follows that
every means which facilitates accuracy in measurement is a possible factor in a future
discovery.

It is perhaps not surprising that Michelson would want to extol the virtues of just the
kind of precise measurement on which he’d built an international reputation. But in
April 1900, Kelvin was warning that all was not well. A storm was gathering in the
dynamical theory of heat and light.* We now know that the classical structure breaks
down in the microscopic realm of atoms and subatomic particles, and Isaac Newton’s
laws of motion can’t handle objects moving at or near light speed. However, within its
domain of applicability, classical mechanics is surely free of mystery and much less prone
to endless bickering about what it’s all supposed to mean?
Except that it isn’t, really.

The Quantum Cookbook. Jim Baggott, Oxford University Press (2020). © Jim Baggott.
DOI: 10.1093/0s0/9780198827856.001.0001



2 The Interpretation of Space and Time

Make no mistake, despite its intuitive appeal, classical mechanics is just as fraught
with conceptual difficulties and problems of interpretation as its quantum replacement.
The problems just happen to be rather less obvious, and so more easily overlooked (or,
quite frankly, ignored). Quantum mechanics was born not only from the failure wrought
by trying to extend classical physical principles into the microscopic world of atoms and
molecules, but also from the failure of some of its most familiar and cherished concepts.
To set the scene and prepare us for what follows, I thought it might be worth highlighting
some of the worst offenders.

The Interpretation of Space and Time

The classical system of physics that Newton had helped to construct, by ‘standing on the
shoulders of giants’,? consists of three laws of motion and a law of universal gravitation.
The Mathematical Principles of Natural Philosophy, first published in 1687, uses these
laws to bring together aspects of the terrestrial physics of everyday objects and the
‘celestial’ mechanics of planetary motion, in what was nothing less than a monumental
synthesis, fully deserving of its exalted status in science history. So closely did the
resulting description agree with and explain observation and experiment that there could
be little doubting its essential ‘truth’. By the end of the nineteenth century it had stood,
unrivalled, for more than two hundred years.

Unrivalled, but by no means unquestioned. Newton’s mechanics might be intuitive
but it demands a number of fairly substantial conceptual or philosophical trade-offs.
Perhaps the most fundamental is that Newton’s physics is assumed to take place in an
absolute space and time. This is a problem because, if it existed, an absolute space would
form a curious kind of container, presumably of infinite dimensions, within which some
sort of mysterious cosmic metronome marks absolute time. Actions impress forces on
matter and things happen wwithin the container and all motion is then referred to a fixed
frame, thereby making all motion absolute.

If we could take all the matter out of Newton’s universe, then we would be obliged to
presume that the empty container would remain, and the metronome would continue to
tick. The existence of such a container implies a vantage point from which it would be
possible to look down on the entire material universe, a ‘God’s-eye view’ of all creation.

But a moment’s reflection tells us that, despite superficial appearances, we only ever
perceive objects to be moving towards or away from each other, changing their relative
positions. This is relative motion, occurring in a space and time that are in principle
defined only by the relationships between the objects themselves. If the motion is uniform,
then there is in principle zo observation we can make that will tell us if this object is
moving relative to that object, or the other way around. In the Mathematical Principles,
Newton acknowledged this in what he called our ‘vulgar’ experience.

If we can never perceive motion in an absolute space and time then we arguably
have no good reason to accept that these exist. And if there is no absolute coordinate
system of the universe; no absolute or ultimate inertial frame of reference against which
all motion can be measured, then there can be no such thing as absolute motion. Newton’s
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arch-rival, German philosopher Gottfried Wilhelm Leibniz, argued: ‘the fiction of a finite
material universe, the whole of which moves about in an infinite empty space, cannot be
admitted. It is altogether unreasonable and impracticable.”® Now, any concept that is not
accessible to observation or experiment in principle, a concept for which we can gather no
empirical evidence, 1s typically considered to be metaphysical (meaning literally ‘beyond
physics’).

Why, then, did Newton insist on a system of absolute space and time, one that we
can never directly experience and which is therefore entirely metaphysical? Because
by making this metaphysical pre-commitment he found that he could formulate some
very highly successful laws of motion. Success breeds a certain degree of comfort,
and a willingness to suspend disbelief in the grand but sometimes rather questionable
foundations on which theoretical descriptions are constructed.

Classical Mechanics and the Concept of Force

Classical mechanics is the physics of the ordinary. Suppose we apply a force F for a
short time interval, dt, to an object that is stationary or moving with constant velocity, v,
in a straight line. In the Mathematical Principles, Newton explains that the force is simply
an ‘action’, exerted or impressed upon the object, which effects a change in its linear
momentum (p, given by the object’s mass m multiplied by v), by an amount dp. If we
assume that mass is an intrinsic property of the object and does not change with time
or with the application of the force, then dp is then simply the mass multiplied by the
change in velocity: dp = mdv.

Applying the force may change the magnitude of the velocity (up or down) and/or it
may change the direction in which the object is moving. Newton’s second law of motion
is then expressed as Fdt = dp (= mdv). This equation may not look very familiar, but
we can take a further step. Dividing both sides by dr gives

dp
F=—. P1

o (P.1)
Logically, the greater the applied force, the greater the rate of change of linear momentum
with time. But, as we’ve seen, dp/dt = mdv/dt. Obviously, dv/dt is the rate of change of
velocity with time, or the object’s acceleration, usually given the symbol a. Hence Newton’s
second law can be restated as the much more familiar

F = ma. (P.2)

Force equals inertial mass times acceleration, and we think of inertial mass as the measure
of an object’s resistance to acceleration under an applied force. This is a statement of
Newton’s second law equation of motion.

Though famous, this result actually does not appear in the Mathematical Principles,
despite the fact that Newton must have been aware of this particular formulation, which



4 Classical Mechanics and the Concept of Force

features in German mathematician Jakob Hermann’s treatise Phoronomia, published in
1716.* It is sometimes referred to as the ‘Euler formulation’, after the eighteenth-century
Swiss mathematician L.eonhard Euler.

Newton’s version of classical mechanics is expressed in terms of forces which result
from the application of various mechanical ‘actions’. Whilst it is certainly true to say
that the notion of mechanical force still has much relevance today, the attentions of
eighteenth- and nineteenth-century physicists switched from force to energy as the more
fundamental concept. My foot connects with a stone, this action impressing a force on
the stone. But a better way of thinking about this is to see the action as transferring energy
to the stone.

Like force, the concept of energy also has its roots in seventeenth-century mechanical
philosophy. Leibniz wrote about vis viva, a ‘living force’ expressed as mwv?, and he
speculated that this might be a conserved quantity, meaning that it can only be transferred
between objects or transformed from one form to another—it can’t be created or
destroyed. The term ‘energy’ was first introduced in the early nineteenth century and
it gradually became clear that kinetic energy—the energy of motion—is not in itself
conserved. It was important to recognize that a system might also possess potential energy
by virtue of its physical characteristics and situation. It was then possible to formulate
a law of conservation of the fotal energy—Kkinetic plus potential—largely through the
efforts of physicists concerned with the principles of thermodynamics, which we will go
on to examine later in this Prologue.

If we denote the kinetic energy as 7" and the potential energy as 1/, then the total
energy is simply 7"+ V. The kinetic energy T is given by

1
T = —mv* P

=—. P.3
2 2m (P:3)

It’s helpful to understand how this relates to Newton’s force, F. Differentiating (P.3) with
respect to time gives

a2 a2

dr 1 d(¥*) 1 dv  dv dv
(?)E + ga) = mo—" = muva. (P.4)

In (P4) we have assumed the mass m to be independent of time and we have applied the
product rule d(uv)/dx = v(du/dx) + u (dv/dx) to the evaluation of d (212) /dt. We can
now make use of the second law ¥ = ma and the chain rule

* Newton published a third edition of the Mathematical Principles in 1726 and, if he had been so minded,
could have incorporated this version of the second law.
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T
d— =Fv andso dT = Fvdr= F@dz = Fdx. (P.5)
dt dt

Integrating then allows us to express the kinetic energy in terms of force as follows:
T= f Fdx. (P.6)

We can now put Newton’s conception of force on a much firmer basis. We define the
potential energy |7 as

V= —dex. (P.7)

This shift in emphasis from force to energy in the eighteenth and nineteenth centuries
meant that it made more sense to define the secondary property of force in terms of the
primary property of potential energy:

, dV
F= " (P.8)
Equations (P.7) and (P.8) make perfect sense. Lifting a heavy weight from its initial
position on the floor to shoulder height involves the application of a force which changes
the potential energy of the weight. The force applied is negative (as its acts against
gravity), and transfers energy from the gravitational field into the potential energy
of the weight. Letting go of the weight exposes it to the force of gravity, converting
the gravitational potential energy it contains into Kinetic energy, and it falls back to
its initial position on the floor. The force is directed in such a way as to reduce the
potential energy—hence the negative sign in (P.7)—driving the system ‘downhill’. And
the ‘steeper’ the shape of the potential energy curve (the faster the potential energy
changes with position), the greater the resulting force, (P.8).

Setting up the relationship between force and potential energy in this way means that
in a closed system which cannot exchange energy with the outside world the rate of
change of total energy with time balances to zero—energy can be moved back and forth
between potential and kinetic forms but the rotal energy is conserved:

Z—i + ‘Z—L: = mva + %% = mva—{—@fl—: = v(ma—i— le—:) = v (ma — F). (P.9)

We can see from this that the time derivatives of the expressions for kinetic and potential
energy sum to zero—the total energy doesn’t change with time.

This shift of emphasis led to a substantial and profound reformulation of classical
mechanics, first by Italian mathematician and astronomer Joseph-Louis Lagrange (in
1764) and subsequently by Irish physicist William Rowan Hamilton (in 1835). This
wasn’t simply about recasting Newton’s laws in terms of energy. Hamilton in particular
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greatly elaborated and expanded the classical structure and the result, called Hamiltonian
mechanics, extended the number of mechanical situations to which the theory could be
applied.

Newton’s equation of motion FF = ma is formulated in terms of position coordinates
(such as Cartesian coordinates x, y, 2) and time. This is fine in principle for very simple
systems involving at most one or two objects, but it quickly becomes problematic for
systems involving large numbers of objects. To define the physical ‘state’ of a system
consisting of, say, N objects, such that we can predict how the system will evolve in
time, we would need to specify the position and the velocity of eack of the N objects in
three-dimensional space, at specific moments in time. It’s not enough just to specify the
positions—Newton’s second law applies to objects that are already in a state of rest or
uniform motion, so to predict what happens next we also need to know how fast and in
which directions the objects are moving as the force is applied. In other words we need
a total of 6N coordinates for each object.

We can think of the motion of the system as a ‘trajectory’ in an abstract 6/N-
dimensional configuration space. Instead of positions and velocities, Hamilton’s reformu-
lation makes use of the positions of the objects and their momenta. If we keep things
simple by restricting ourselves to a single object with inertial mass m moving along a
single position coordinate x, then these canonical coordinates are (x, p), where p is again the
object’s linear momentum. Hamilton’s choice defines what would subsequently become
known as phase space.

The motion of the object is then represented by the trajeciory of a point in the phase
space coordinates. This gives us an advantage in more complex systems because instead
of specifying the initial positions and velocities of all the objects in a 6 N-dimensional
configuration space, in Hamiltonian mechanics we just need to specify the system’s initial
position in phase space. It then becomes possible to predict the future time evolution of
the system from any starting point on its phase space diagram.

As we will draw on many of these concepts in what follows, it’s worth taking the
time here for a very brief and somewhat superficial look at Hamiltonian mechanics. The
Hamiltonian of a classical system is simply the total energy, E, and is defined as

H(=E=T+V. (P.10)

In Hamiltonian mechanics we’re obviously interested to know the behaviour of the
Hamiltonian H with respect to the canonical coordinates, which in a single dimension
are given by (x, p). This behaviour is summarized in Hamilton’s equations of motion:

dp oH dx dH
—_— = - —_— = —. P11
dt dx an dt ap ( )

These equations may appear somewhat unfamiliar, but the second establishes a fairly
straightforward connection between momentum and velocity. Remember, we assume
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that the potential energy I is independent of p, and from (P.3) we know that 7' = p?/2m:

IH 9T . 2
d—=d—=i L =£=v=ﬁ. P.12)
ap ap op \ 2m

And the first is simply a restatement of Newton’s second law:

oH _ v

dp
. ryl F= o (= ma). (P.13)
It’s worth noting in passing that we’ve traded Newton’s single equation of motion, which
is a second-order differential equation (remember, a = d?x/dt?), for Hamilton’s two first-
order partial differential equations, (P.11).

We can get some sense for how this works by considering a simple example. In one-
dimensional simple harmonic motion (such as a low-amplitude pendulum or an object
suspended on a spring), an object of mass m oscillates back and forth with an angular
frequency @ under the action of a ‘restoring’ force F = —mw?x. The Hamiltonian for
this system is, therefore,

1
H= -+ Emmzxz (P.14)
(remember, IV = — [ Fdx), and Hamilton’s equations of motion are
dp dH 5 dx 9H p
B d = =—"— ==, P.15
dt ox e an dt op m ( )

If we define the initial position (xp) to be the origin at time ¢t = 0 (i.e. xg = 0), then the
solutions of these equations have the particularly simple form

p=pocoswt and x= £ sin wt, (P.16)
me

where py is the initial momentum. In a phase space with canonical coordinates (x, p), the
motion describes an elliptical trajectory:

2 2
LIS A (P.17)
(po/mw)* 1
Switching to a phase space description allows us to represent the mechanics in terms of
the single trajectory of a point in a multidimensional space, summarizing the motion
of the entire system, not the individual objects. This was a generalization discovered
by French mathematician Henri Poincaré in 1888, from his study of the infamous
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three-body problem (and which also led him to appreciate the sensitivity of dynamical
systems to initial conditions, later to become an obsession of chaos theory).

A year later, Poincaré noted a rather curious phenomenon. In an ideal mechanical
system with a finite upper bound on the volume of available phase space (one in which
no objects can escape the system and in which energy is conserved), within a sufficiently
long, but finite, time the phase space trajectory will return to its starting point.* This
is called Poincaré recurrence. No matter how many objects are involved, if the dynamics
unfold from some starting configuration and we have sufficient patience, the system wi//
return to this configuration.

The Troublesome Concept of Mass

The development of our understanding of potential energy in the nineteenth century
allowed us to put Newton’s concept of force on a much firmer basis, as we’ve seen. There
would appear to be no reason to question our understanding of any of the other concepts
which appear in Hamilton’s equations. We haven’t forgotten the problems of absolute
space and time but we surely know what we mean when we talk about acceleration,
momentum, and mass.

But what, precisely, is inertial mass? Newton provides a handy definition very early in
the Mathematical Principles:”

The quantity of matter is the measure of the same, arising from its density and bulk conjunctly . . .
It is this that [ mean hereafter everywhere under the name body or mass. And the same
is known by the weight of each body; for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shewn hereafter.

If we interpret Newton’s use of the term ‘bulk’ to mean volume, then the mass of an
object is simply its density multiplied by its volume. It doesn’t take long to figure out that
this definition is entirely circular, as Austrian physicist Ernst Mach pointed out many
years later:®

With regard to the concept of “mass”, it is to be observed that the formulation of Newton,
which defines mass to be the quantity of matter of a body as measured by the product
of its volume and density, is unfortunate. As we can only define density as the mass of a
unit of volume, the circle is manifest.

We have to face up to the rather unwelcome conclusion that in classical mechanics we
don’t really know what inertial mass is.

* Poincaré’s theorem also requires that phase volume is conserved as the system evolves, which is true for
all Hamiltonian systems by virtue of Joseph Liouville’s 1838 theorem.
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The Force of Gravity

In Newton’s law of universal gravitation, two objects with masses #1 and m; experience
a force of gravity that is proportional to the product of their masses (are these the same as
inertial mass?) and inversely proportional to the square of the distance between them, r,
or ' = Gmy mz/rz, where (7 1s Newton’s gravitational constant.

This was another great success, but it also came with another hefty price tag. Although
the symbol FF might be the same, Newton’s force of gravity is distinctly different from
the kinds of forces involved in his laws of motion. The latter forces are impressed; they are
caused by actions such as kicking, shoving, pulling, or whirling. They require physical
contact between the object at rest or moving uniformly and whatever it is we are doing
to change the object’s motion. Newton’s gravity works very differently. It is presumed
to pass instantaneously between the objects that exert it, through some kind of curious
action at a distance. It was not at all clear how this was supposed to work. Leibniz was
again dismissive: “This, in effect, is going back to qualities which are occult or, what is
more, inexplicable.””

Newton himself had nothing to offer. In a general discussion (called a ‘general
scholium?), which he added to the 1713 second edition of the Mathematical Principles,
he wrote:!?

Hitherto we have explain’d the phanomena of the heavens and of our sea, by the power
of Gravity, but have not yet assign’d the cause of this power... I have not been able
to discover the cause of those properties of gravity from ph@nomena, and I frame no
hypotheses.

Light Waves and the Ether

Newton sought to extend the scope of his mechanics to include light, and in his treatise
Opticks, first published in 1704, he concluded that light is essentially ‘atomic’ in nature,
consisting of tiny particles, or corpuscles. Two of his contemporaries, English natural
philosopher and experimentalist Robert Hooke and Dutch physicist Christiaan Huygens,
had argued compellingly in favour of a wave theory of light, and Newton’s incendiary
disputes with Hooke led him to postpone publication of Opticks until after Hooke’s death
in March 1703. Such was Newton’s standing and authority that the corpuscular theory
held sway for more than a hundred years.

But in a series of papers read to the Royal Society of London between 1801 and
1803, nearly eighty years after Newton’s death, an English medical doctor (and part-time
physicist) called Thomas Young revived the wave theory as the only logical explanation
for the phenomena of light diffraction and interference. In one experiment, commonly
attributed to Young (although historians are divided on whether he actually performed
it), he showed that when passed through two narrow, closely spaced holes or slits, light
produces a pattern of bright and dark fringes. These are readily explained in terms of
a wave theory of light in which the peaks and troughs of the light waves from the two
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slits start out in phase, spread out beyond, and overlap. Where a peak of one wave is
coincident with a peak of another, the two waves add and reinforce to produce construc-
tive interference, giving rise to a bright fringe. Where a peak of one wave is coincident
with a trough of another, the two waves cancel to produce destructive interference, giving
a dark fringe.

Today this logic seems inescapable, but Young’s conclusions were roundly criticized,
with some condemning his explanation as ‘destitute of every species of merit’.!!
Nevertheless, as the nineteenth century progressed, the wave theory gained a slow, if
somewhat grudging, acceptance. Then, as is so often the case in science, perhaps the
most compelling arguments in favour of the wave theory emerged from a seemingly
unrelated discipline.

The intimate connection between the phenomena of electricity and magnetism
was established over a long period of study in the nineteenth century, most notably
through the extraordinary experimental work of Michael Faraday at LLondon’s Royal
Institution. Drawing on analogies with fluid mechanics, over a ten-year period from 1855
Scottish physicist James Clerk Maxwell developed a theory of electromagnetic fields whose
properties are described by a set of complex differential equations. These equations can
be manipulated to give expressions for the space and time dependences of the electric
field E and magnetic field B in a vacuum, as follows (again simplified to one dimension):

2E 2E d 3°B 9‘B (B.18)
—_— = ) —— an — = —_— .
a2 M0 a2 OH0OTn

In Eq. (P.18), g9 and o are the relative permittivity and permeability of free space,
respectively. The former is a measure of the resistance of a medium (in this case,
the ‘“vacuum’) to the formation of an electric field—a certain fixed electric charge will
generate a greater electric flux in a medium with low permittivity. The latter is a measure
of the ability of a medium to support a magnetic field—applying a certain fixed magnetic
field strength will result in greater magnetisation in a medium with high permeability.

Maxwell had made no assumptions about how these fields are supposed to move
through space. But his equations not only demonstrate rather nicely the symmetry of
the interdependent electric and magnetic fields, they also rather obviously describe wave
motion. For a wave travelling in one dimension with velocity v, a generalized wave
equation can be written as

92 1 92

@llf(x,z) = ;a?\b(x,c), (P.19)
where W (x, t) is a generalized ‘wavefunction’. From (P.18) and (P>19) we can deduce
that v = 1/,/eopro. The velocity of Maxwell’s ‘electromagnetic waves’ could now be
determined from the experimental values of the relative permittivity and permeability of
free space, which had been reported by (German physicists Wilhem Weber and Rudolf
Kohlrausch in 1856. Maxwell found that:'?
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This velocity is so nearly that of light, that it seems we have strong reason to conclude
that light itself (including radiant heat, and other radiations if any) is an electromagnetic
disturbance in the form of waves propagated through the electromagnetic field according
to electromagnetic laws.

But an electromagnetic disturbance in what? If we throw a stone into a lake, and watch
as the disturbance ripples across the surface of the water, we conclude that the waves
travel in a ‘medium’—the water in this case. There could be no escaping the conclusion:
electromagnetic waves had to be waves in some kind of medium. Maxwell himself didn’t
doubt that electromagnetic waves must move through the ether, a purely hypothetical,
tenuous form of matter thought to fill all of space.

And here’s another price to be paid. All the evidence from experimental and observa-
tional physics suggested that if the ether really exists, then it couldn’t be participating in
the motions of observable objects. The ether must be stationary. If the ether is stationary,
then it is also by definition absolute: it fills precisely the kind of container demanded by an
absolute space. A stationary ether would define the ultimate inertial frame of reference.

Newton required an absolute space that sits passively in the background and which,
by definition, we can never experience. Now we have an absolute space that is supposed
to be filled with ether. That’s a very different prospect.

If the Earth spins in a stationary ether, then we might expect there to be an ether wind
at the surface (actually, an ether drag, but the consequences are the same). The ether is
supposed to be very tenuous, so we wouldn’t expect to feel this wind like we feel the wind
in the air. But, just as a sound wave carried in a high wind reaches us faster than a sound
wave travelling in still air, we might expect that light travelling in the direction of the
ether wind should reach us faster than light travelling against this direction. A stationary
ether suggests that the speed of light should be different when we look in different
directions.

Any differences were expected to be very small, but nevertheless still measureable
with late-nineteenth-century optical technology. In 1887, American physicists Albert
Michelson and Edward Morley performed experiments to look for such differences using
a device called an interferometer, in which a beam of light is split and sent off along two
different paths. The beams along both paths set off in phase, and they are then brought
back together and recombined. Now, if the total path taken by one beam is slightly longer
than the total path taken by the other, then when the beams are recombined, peak may
no longer coincide with peak and the result is destructive interference. Alternatively, if
the total paths are equal but the speed of light is different along different paths, then the
result will again be interference.

But thev could detect no differences. Within the accuracy of the measurements, the
speed of light was found to be constant, irrespective of direction, suggesting that there is
no such thing as a stationary ether. This is one of the most important ‘negative’ results
in the entire history of experimental science.

Newton’s laws of motion demand an absolute space and time that we can’t experience
or gain any empirical evidence for. Maxwell’s electromagnetic waves demand a stationary
ether to move in, but we can’t gain any evidence for this either.
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Atoms and the Second Law

The second law in question here is that of thermodynamics, the science born from the
study of engines, and particularly the relationship between heat and work. French physi-
cist and engineer Sadi Carnot is credited with establishing the basis for thermodynamics
with his 1824 publication Reflections on the Motive Power of Fire, although some ten years
passed before the merits of Carnot’s work were realized by his fellow countryman Emile
Clapeyron, who helped rid Carnot’s theory of the concept of heat as a fluid, called caloric.
Nine years later English physicist James Joule identified the mechanical equivalent of
heat—motion and heat are equivalent and interchangeable—and helped to establish the
law of conservation of energy. When Kelvin coined the term ‘thermodynamics’ in 1854,
the conservation of energy was summarized as its first law.

Carnot had imagined that useful work can be derived as heat ‘falls’ from a higher
temperature to a lower temperature, just as falling water will turn a paddle wheel.
But Carnot imagined that heat would be conserved, meaning that all the usable heat
is transferred into work without loss, allowing the possibility of perpetual motion
and obviously in conflict with the conservation of energy. In 1850, German physicist
Rudolf Clausius resolved this problem by declaring as a principle that heat cannot
spontaneously flow from a cold object to a hot object, with the rest of the universe
remaining unchanged.” For a system undergoing a closed cyclic process in which heat
1s transformed into work which is then transformed back into heat, Clausius expressed
this principle mathematically as an inequality:

50 _
?g? <0. (P.20)

In this equation the increments § Q represent the net amount of heat added to a system
from an external reservoir at temperature 7. For processes that are cyclical and reversible,
meaning that infinitesimal changes that maintain thermodynamic equilibrium can in
theory restore the initial state, the equality holds. But for processes that are irreversible the
inequality holds. The logic here is fairly simple. In an irreversible process the (positive)
heat input divided by the higher temperature will alzways be sinaller than the (negative)
heat output divided by the lower temperature. Summing (or integrating) over the cycle
means §Q/T < 0.

Clausius was able to show that the ratio §Q/T is a quantity which depends only on
the physical state of the system, and not on the details of the path taken to produce it.
Hence it 1s a property of the system, also called a function of state (or state function). In
1865 he went a little further, and identified this property as the entropy (symbol §) of
the system, which he now defined for reversible open paths connecting some initial state
1 with a final state f, as

* Kelvin formulated a similar principle at around the same time.
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f 1’78
Ava:Sf—Sz-:[ dSm.=f (TQ) . (P.21)

The property of entropy accounts for the dissipative loss of heat (or energy) from the
system, but to get a real sense for what this means we need to look at how Egs. (P.20)
and (P.21) can be combined. Equation (P.20) applies to a closed cycle which may involve
paths that are reversible and/or irreversible, whereas (I221) applies only to open paths
that are reversible. So, imagine a closed cycle in which the path from initial to final state
is irreversible, but the return path from final to initial state is reversible. From (P.20) we

have
55% _ ffg +fft (%) <o. (P22)

But the return path is reversible, and so from (P.21) we know that

i 5Q e
ff (T)m‘_sz Sy. (P.23)

Hence,
/8 f 8
f ?Q+Sl-—sfgo, or Asi,r=sf—sizf TQ (P.24)

We see that the change in entropy from initial to final state in an irreversible process is
always greater than the corresponding change for a completely reversible process, which is
a direct consequence of applying Clausius’ inequality. Heat transfer to a system increases
its entropy, and heat transfer from a system will decrease its entropy, but factors that
result in irreversibility (such as friction and other loss mechanisms) will always increase
the entropy. We can see this more clearly by generalizing (P.24) for any irreversible process
in an isolated system (one which doesn’t exchange energy with the external environment).
In such a situation §Q = 0 and

ASirr = 0: (st)

which is a statement of the second law of thermodynamics.

This version of the second law was deduced by German physicist Max Planck in
his 1879 doctoral thesis. He regarded it as a much more general statement, and so
more fundamental and profound. For an isolated system energy will be conserved (first
law) but entropy will inexorably increase to a maximum (second law) as the system
achieves thermal equilibrium. Irreversibility and the increase in entropy are intimately
linked, defining an ‘arrow of time’ such that any reverse process, spontaneously decreasing
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entropy, implies running backwards in time, ‘so that a return of the world to a previously
occupied state is impossible’.!?

And therein lies another problem.

As the science of thermodynamics was being worked out in the nineteenth century,
s0 too was an elaborate mechanical theory of atoms. Hard, impenetrable, indestructible
atoms, no more sophisticated than those imagined by the atomist philosophers of ancient
Greece, had been an accepted metaphysical pre-commitment of seventeenth-century
mechanical philosophers such as Newton. This despite the fact that they were not really
necessary and did not feature in the classical mechanics that these philosophers helped to
establish. Newton’s atomism was quite influential in the eighteenth century, but as atoms
appeared to lie well beyond the scope of any available experimental or observational
technology, they remained firmly speculative.'*

In 1738, the Swiss physicist Daniel Bernoulli had argued that the properties of gases
could be understood to derive from the rapid motions of the innumerable atoms or
molecules that constitute the gas (hereafter referred to simply as ‘atoms’). (Gas pressure
then results from the impact of these atoms on the surface of the vessel that contains
them. Gas temperature is the result of the motions of the atoms. This kinetic theory of gases
bounced around for a few decades before being refined by Clausius in 1857. Two years
later Maxwell developed a mathematical formula for the distribution of the velocities
of the atoms in a gas. As it is obviously impossible to keep track of the motions of
large numbers of individual atoms, Maxwell was obliged to resort to probabilities and
so derived a probability distribution. This was generalized in 1871 by Austrian physicist
Ludwig Boltzmann, and is now known as the Maxwell-Boltzmann distribution.

Boltzmann built further on Maxwell’s ideas, applying probabilities to the distribution
of energy instead of velocity, as he worked to derive all the most important thermodynamic
quantities based on the underlying motions of the system’s constituent atoms. In 1877 he
derived the expression for the entropy of an ideal gas which is carved on his gravestone,

S = kgln(¥), (P.26)

where kg is Boltzmann’s constant and W is the number of microstates (the number of
individual configurations of atomic positions and velocities or momenta that are possi-
ble). If it is assumed that all these microstates are equally probable, then the probability
for each microstate is simply 1/W. Bulk quantities such as pressure, temperature, and
entropy summarize the macrostate of the system.

The second law can now be interpreted as the natural evolution of an isolated system
towards the largest number of available microstates. If we pump a gas into one corner of
an otherwise empty container, we anticipate that this system will evolve dynamically: the
gas will expand and become diluted so that it fills all of the available space. The number
of microstates (atomic positions and momenta) that are available in the final equilibrium
situation is much greater than in the initial situation. Entropy increases.

We can now see how Hamiltonian mechanics is perfectly suited to the interpretation
of thermodynamics in terms of complex systems involving the motions of large numbers
of atoms. In his Lectures on Gas Theory, published in 1896, Boltzmann himself defined
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‘phase’ to mean the collective state of a gas derived from the positions and momenta of
all its constituent atoms, though he held back from calling it phase space.!”

But towards the end of the nineteenth century the existence of atoms was still largely
a matter for metaphysical speculation and many physicists were inclined to be rather
stubborn about them. It’s perhaps difficult for readers who have lived with the fallout
from the ‘atomic age’ to understand why perfectly competent scientists should have been
so reluctant to embrace atomic ideas, but we must remember that by 1900 there was very
little evidence for their existence. Some physicists, such as the arch-empiricist Mach,
rejected them completely. To make matters considerably worse, the statistical mechanical
interpretation of thermodynamics produced conclusions which some physicists found
extremely discomforting.

Statistics have a dark side. They deal with probabilities, not certainties. What thermo-
dynamics argues to be unquestionably irreversible and a matter of irresistible natural law,
statistics argues that this is only the most probable of many different possible alternatives.
The conflict was most stark in the interpretation of the second law and in 1895, with
Planck’s approval, his research assistant Ernst Zermelo took the argument directly to the
atomists in the pages of the German scientific journal Annalen der Physik.

If we were to release two gases of different temperature in a closed container, the
second law predicts that the gases will mix and the temperature will become uniform, with
the entropy of the mixture increasing to a maximum. However, according to the atomists,
the behaviour of the gases is a consequence of the underlying mechanical motions of the
atoms of each gas, and the equilibrium state of the mixture is simply the most probable of
many possible states. Furthermore, such dynamical systems could be expected to exhibit
Poincaré recurrence, implying that, if we wait long enough, the system will eventually
return to its initial far-from-equilibrium state, with the gases once more separated at
different temperatures. Such a possibility runs directly counter to the second law, which
insists that in an isolated system undergoing spontaneous change, entropy can never
decrease, Eq. (P.25).

Boltzmann had no real alternative but to accept what statistical mechanics implied.
Entropy does not always increase, he argued, in contradiction to the most common
interpretation of the second law. It just almost always increases. Statistically speaking,
there are many, many more states of higher entropy than there are of lower entropy,
with the result that the system spends much more time in higher entropy states. In effect,
Boltzmann was saying that if we do indeed wait long enough, we might eventually catch a
system undergoing a spontaneous reduction in entropy. This is as miraculous an event as
a smashed cocktail glass spontaneously reassembling itself, to the astonishment of party
guests.

To Planck, this stretched the interpretation of his cherished second law to breaking
point. It may have been that Planck was not averse to the atomic theory per se—he
was certainly well aware of the theory’s successes. But he judged that it was unlikely to
offer a productive approach to a deeper understanding of thermodynamics. In a letter
to Wilhelm Ostwald in 1893 he declared that the atomic theory was nothing less than
a ‘dangerous enemy of progress’.'® Matter is continuous, not atomic, he insisted. He
had no doubt that atomic ideas would eventually have to be abandoned, despite their
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success, ‘in favour of the assumption of continuous matter’.!” In his historical analysis,
American philosopher Thomas Kuhn argues that Planck’s ‘continuous medium’ would
subsequently become the ether.!®

In seeking to find a way to refute Boltzmann’s statistical arguments, ’lanck chose as
a battleground the physics of ‘black body’ radiation. And this is where our story really
begins.
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Planck’s Derivation of E = hv
The Quantization of Energy

Planck was born in Kiel in April 1858, descended from a line of pastors and professors
of theology and jurisprudence. At school Planck was diligent and personable but not
especially gifted. Physics was a subject for which Planck himself felt he had no particular
talent, and he had once been counselled against a career in theoretical physics. His
professor at the University of Munich had advised him that, with the discovery of the
principles of thermodynamics, physics as a subject had been largely completed. There
was, quite simply, nothing more to be discovered.! This was fine with Planck, who was
quite content with the rather less heroic task of deepening the foundations of science. He
had no real interest in making new discoveries.

He preferred the stability and predictability of a science which reflected the character
of the bourgeois German society of which he was a part. He had risen through the
academic ranks and established a solid international reputation as a master of classical
thermodynamics, and especially the second law. Now in his early forties, he worked at a
slow, steady, and conservative pace. By his own subsequent admission, he was ‘peacefully
inclined’, and rejected “all doubtful adventures’.2
Planck is thus a good candidate for the history of science’s most unlikely revolutionary.

Black Body Radiation

As we saw in the Prologue, Planck was unwilling to accept Boltzmann’s statistical
interpretation of the second law. He therefore needed to find a way to show how irre-
versible processes could result from matter that forms a continuum. Such a continuum
would exhibit some kind of collective, ordered, or correlated motion, in contrast to the
disordered motions characteristic of the atoms of Maxwell and Boltzmann. Irreversibility
would then be associated with changes in this collective motion; changes that are not
described by resorting to arguments based on probabilities, which opens the door to
unacceptable, entropy-reducing processes, no matter how improbable they may be.
Although Planck had chosen to reject atoms, he held firm to the theory of mechanics,
and in this way he hoped eventually to reconcile mechanics with thermodynamics.

The Quantum Cookbook. Jim Baggott, Oxford University Press (2020). © Jim Baggott.
DOI: 10.1093/0s0/9780198827856.001.0001
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That Planck should turn his attention from the thermodynamics of gases to the physics
of black body radiation as a battleground might seem puzzling at first. But Planck saw
no contradiction. To understand why, we first need to know a little more about it.

Heat any object to a high temperature and it will glow, emitting light of different
colours. We say that the object is ‘red hot’ or ‘white hot’. Increasing the temperature of
the object increases the intensity of the light and shifts it to a higher range of frequencies
(shorter wavelengths). As it gets hotter, an object glows first red, then orange-yellow, then
bright yellow, then brilliant white.

Theoreticians had sought to model the physics based on the notion of a black body,
a completely non-reflecting object that is presumed to absorb and emit light radiation
perfectly, without favouring any particular range of radiation frequencies or wavelengths
(or colours). The density or intensity of the radiation that a black body emits, measured
over a range of frequencies, is then directly related to the amount of energy it contains.

The properties of black body radiation could be studied in the laboratory using
specialized cavities, vessels made of porcelain and platinum with almost perfectly
absorbing walls. Such cavities could be heated, and the radiation released and trapped
inside could be observed with the aid of a small pinhole, a bit like peeking into the glowing
interior of an industrial furnace. Such studies provided more than just an interesting
test of theoretical principles. Cavity radiation was also useful to the German Bureau of
Standards as a reference for rating electric lamps.

Planck imagined that the source of the (continuous) electromagnetic radiation
released into the cavity is a continuum of ideal mechanical vibrators, or ‘resonators’.
These resonators were entirely imaginary, their sole purpose being to absorb and emit
radiation and so bring the system—cavity and radiation—to a dynamic equilibrium.
The radiation would have an entropy—just like a gas—and equilibrium would be
characterized by maximum entropy.

Consequently, Planck wasn’t specific on where these resonators might be physically
located, but if it helps, we can suppose they reside in the cavity material. We probably
wouldn’t hesitate today to identify these with the electrons in the atoms of the material,
but remember that the electron was only discovered in 1895 and in 1900 Planck was
strenuously opposed to the idea of atoms. For now, let’s not worry overmuch about what
these resonators might actually represent.

Planck subsequently acknowledged that the use of the term ‘resonators’ was inappro-
priate (a resonator oscillates only at specific—resonant—ifrequencies). These imaginary
objects are actually so-called ‘linear Hertzian oscillators’, which we can think of as
massless springs with electric charge at each end. Planck’s task was to show how
irreversible processes (and the second law) could arise from the collective motions of the
oscillators and the dynamic exchange of energy between the oscillators and the trapped
radiation. No atoms to be seen, anywhere.

This must have seemed like a perfectly safe choice.

In the winter of 1859-60, the German physicist Gustav Kirchhoff had demonstrated
that the ratio of emitted to absorbed radiation energy depends only on the frequency
of the radiation and the temperature inside the cavity. This means that the density
of radiation inside the cavity at equilibrium is a function only of frequency, v, and
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temperature, T', designated p(v, T'). The density does not depend in any way on the shape
of the cavity, the shape of its walls, or the nature of the material from which the cavity
is made. This implied that something quite fundamental concerning the physics of the
radiation itself was being observed, and Kirchhoff challenged the scientific community
to discover the origin of this behaviour.

Planck’s Radiation Law

Much progress had been made. Studies of infrared (heat) radiation had in 1896 led
German physicist Wilhelm Wien to devise Wien’s law, which can be summarized (in
modern notation) as follows:

83 T
P, 1) = =T, (1.1)

where cis the speed of light and % and kg would later become known as Planck’s constant
and Boltzmann’s constant, respectively. The real significance of these physical constants
was not immediately apparent.

Wien’s law seemed to be quite acceptable, and was supported by further experiments
carried out by German physicist Friedrich Paschen at the Technical Academy in Hanover
in 1897. But new experimental results reported in 1900 by Otto Lummer and Ernst
Pringsheim at the Reich Physical-Technical Institute in Berlin showed that Wien’s law
failed at lower frequencies. Wien’s law was clearly not the answer.

In June 1900, English physicist L.ord Rayleigh (William Strutt) published details of a
new theoretical model based on the ‘modes of ethereal vibration’ in the cavity. Each mode
was supposed to possess a specific frequency, and could take up and give out energy
continuously. Rayleigh assumed a classical distribution of energy over these modes. At
equilibrium, each mode of vibration should then possess an energy directly proportional
to the cavity temperature.

It’s instructive to interrupt this historical narrative and fast-forward a few years to May
1905. Rayleigh obtained an expression for the constant of proportionality, but made an
error in his calculation which was put right by James Jeans the following July. The result
is now known as the Rayleigh—Jeans law:

2
BTV T (1.2)

3T =
p(v, T) 3

Rayleigh’s reasoning and use of thermodynamic principles was both logical and convinc-
ing, but the result was disastrous. The Rayleigh—Jeans law implies that p(v, T') increases
with the square of the radiation frequency without limit, and so the total emitted energy
quickly mushrooms to infinity at high frequencies. In 1911 the Austrian physicist Paul
Ehrenfest called this problem the ‘Rayleigh-Jeans catastrophe in the ultraviolet’, now
commonly known as the ultravioler catastrophe. Rayleigh’s approach might have been
perfectly logical, but the result was totally illogical.
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Butboth Wien’s law and the Rayleigh—Jeans law were glimpses of the complete picture,
approximations of p(v, T) applicable only at the extremes of high and low radiation
frequency.

Planck had succeeded Kirchhoff at the University of Berlin in 1889, rising to full
professorin 1892. He was unaware of Rayleigh’s work when, on 7 October 1900, German
physicist Heinrich Rubens visited him at his villa in the Berlin suburb of the Griinewald.
Rubens told him about some new experimental results he had recently obtained with his
associate Ferdinand Kurlbaum.

Rubens and Kurlbaum had studied cavity radiation at even lower frequencies, and
the behaviour they had observed set Planck thinking. After Rubens had left, Planck
continued to work alone in his study. After some reflection, he found that he could now
replace Wien’s law with one of his own, ‘a result of inspired guesswork, scientific tact,
sober compromise, in short, of tinkering’:3

8I{hV3 e—hv/k;gT

p(v, T) = 3 1 — e~ /kpT" (1.3)

This result is shown graphically in Fig. 1.1. We can now see what happens. For very
high v (or short wavelengths), the term ¢ ™/ 8T pecomes very small compared with 1
and Planck’s radiation law reduces to Wien’s law. If we multiply the exponential term
in Planck’s law top and bottom by ¢”/%87 we can re-write this term as 1/(¢™/%87 — 1),
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Figure 1.1 Planck’s radiation law predicts the variation of radiation density with frequency or
wavelength at different cavity temperatures. As the temperature increases, the peak wavelength shifts to
shorter and shorter values.
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For very low v (long wavelengths), ¢"”/*81" can be approximated as 1 + hv/kpT, and
Planck’s law reduces to the Rayleigh—Jeans law.

Planck sent Rubens a postcard summarizing details of his new radiation law, and
he presented a crude derivation at a meeting of the German Physical Society on
19 October. He declared: ‘I therefore feel justified in directing attention to this new
formula, which, from the standpoint of electromagnetic radiation theory, I take to be the
simplest excepting Wien’s.® The next day, Rubens advised Planck that he had compared
the experimental results with the new law and found ‘completely satisfactory agreement
in all cases’?

But, although Planck’s new law was satisfactory, it was in truth no more than a
mathematical “fit’ to the data. Planck’s challenge now was to find a deeper theoretical
interpretation for it, and of course to make use of this interpretation to pursue his
principal objective, which was to reconcile mechanics and thermodynamics and reassert
the irreversible nature of the second law.

The Oscillator Energy

To follow Planck’s logic we need to understand the nature of the relationships between
p(v, T) and thermodynamic quantities such as the internal energy U and entropy S of
the cavity radiation. These latter quantities are, of course, inter-related.

According to the first law of thermodynamics the microscopic change in the internal
energy of the radiation dU is equal to the amount of heat absorbed (§Q) less any work
done. But the cavity radiation does no work (it’s not used to drive a piston, for example),
so dU = 8 Q; the change in internal energy logically derives only from the heat absorbed.

We know from Eq. (P.21) that 45 = §Q/ T, so in this situation dU = TdS, which is
a version of the so-called fundamental thermodynamic relation. We can therefore get to
the entropy from

1
dS = —=dU 1.4
T (1.4)

and integrating.

We can suppose that the frequency of vibration of the imaginary oscillators increases
with increasing temperature and they exchange energy with the radiation at the same
Jfrequency with which they are vibrating. If we assume that a// the energy of the oscillators
is released into the cavity radiation, then at thermodynamic equilibrium we can further
suppose that the internal energy (and entropy) of the oscillators is identical to that of
the radiation. Consequently, Planck focused on the relationship between p(v, 7') and
the average internal energy of the oscillators themselves (which we will refer to here as
U, T).

Between 1897 and 1899, Planck published a series of five papers titled ‘On Irreversible
Radiation Processes’, in which he analysed a model system consisting of electromagnetic
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was indispensable to me, is that according to it the energy of the resonant oscillator
depends only on radiation intensity and frequency v but not on any of its other
properties.®

There are a number of different ways to derive Eq. (1.5), but perhaps the simplest
involves the analysis of the radiation in terms of cavity modes, as explained in Appendix
1. Interestingly, if we assume that the oscillators are all identical and follow a simple
harmonic motion, then we know that the total average thermal energy of each oscillator
consists of contributions of %kBT from translational motion (kinetic energy) and %kB T
from its potential energy. This is the equipartition theorem, developed in the 1840s, which
relates the temperature of a system to its average energies. Under this assumption, we see
that U(v, 7)) is independent of v and equal to k57T, which on substitution in Eq. (1.5)
gives the Rayleigh—Jeans law.

So, in May 1899 Planck had access to a really rather simple and straightforward
route to the Rayleigh—Jeans law, more than a year before Rayleigh himself published his
(erroneous) version of it. However, it seems that, at this time, Planck was simply unaware
of the equipartition theorem.

In any case, we know that the Rayleigh-Jeans law is physically unrealistic except as a
low-frequency limit. Comparing Eq. (1.5) with Planck’s radiation law (1.3) shows that
U(v, T') is much more complicated than the equipartition theorem would suggest, and
is indeed dependent on both v and 7~

hve*fn"/kn'f' hv
U(U: T) = 1— e*f”)/kHT = ehl’/kHT — 1

(1.6)

Planck’s task was now to make use of Eq. (1.6) to derive an expression for the average
entropy of the oscillators, one that would be entirely consistent with his radiation law. This
was to lead to ‘some weeks of the most strenuous work of my life’.” Planck tried several
different approaches, but he found that he was compelled to return to the statistical
methods of his arch-rival Boltzmann. The mathematics led him in a direction he really
did not want to go. He eventually succumbed, in a final act of desperation. As he later
admitted: ‘A theoretical interpretation therefore had to be found at any cost, no matter
how high’®

Although the approach Planck took was subtly different from that of Boltzmann, as
we will see, he found that black body radiation is absorbed and emitted as though it is
composed of discrete ‘atoms’, which Planck called quanta. Moreover, he found that each
quantum of radiation has a fixed energy given by E = hv. Though much less familiar,
this is an expression that is every bit as profound as Einstein’s E = mc?.

So, what did Planck do?

The Ingredients

1. Integration by substitution.
2. The standard integral of In(x).
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quantum of radiation has a fixed energy given by £ = Av. Though much less familiar,

this is an expression that is every bit as profound as Einstein’s E = mc?.

So, what did Planck do?

The Ingredients

Integration by substitution.

The standard integral of In(x).

Boltzmann’s equation for the entropy: S = kg In(1W).
Combinatorics: partition theory.

Al A

Stirling’s formula for the factorials of large numbers: N! = (N/e)™.

The Recipe

It is perhaps a little unfortunate that this first recipe—the recipe that launched the
quantum revolution—is somewhat convoluted and rather more difficult to follow than
some of the other iconic equations of quantum mechanics. But this really shouldn’t come
as too much of a surprise. Thermodynamics is not the most obvious place to look for
evidence of the quantum nature of radiation, and Planck had to torture the theory in
a way that would eventually allow this conclusion to emerge from an entirely classical
structure. It was always going to be a difficult birth.

We begin in Step (1) by manipulating the expression for the average internal energy
of an oscillator, Eq. (1.6), such that it is in a form that can be more easily integrated. On
integration we will have an expression for the entropy of an oscillator which is consistent
with Planck’s radiation law and which we can then generalize for a large collection of N
oscillators. We can think of this as a derivation of the entropy based on thermodynamics
which we know to be consistent with experimental data (as summarized by Planck’s law).

As Planck soon realized, the result looks to all the world like a version of Boltzmann’s
equation for the entropy, based on the logarithm of the number of microstates, or the
number of different possible configurations, W, as given in Eq. (P.26).

But the possible configurations of what, exactly? After all, there are no atoms or atomic
motions in this system. So, in Step (2) we take another route, calculating the entropy
using Boltzmann’s methods but with a not-so-subtle difference. Boltzmann estimated
the number of possible microstates W as the number of different ways that the available
energy can be distributed over a large number of distinguishable atoms. But this couldn’t
give Planck the mathematical form demanded by the expression for the entropy which he
had deduced in Step (1). So he did something different. He instead estimated W as the
number of ways in which a series of indistinguishable energy elements can be distributed
over a large number of oscillators.

We can think of this as a derivation of the entropy based on statistics. In his biography
of Einstein, the American physicist Abraham Pais wrote: ‘From the point of view of
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physics in 1900 the logic of Planck’s electromagnetic and thermodynamics steps was
impeccable, but his statistical step was wild.”®

Our final Step (3) is simply to compare the two derivations of the oscillator entropy
and draw conclusions.

Step (1): Derive the Oscillator Entropy from Thermodynamics

Our starting point is the expression for the average internal energy of an oscillator which
we know to be consistent with ’lanck’s radiation law, Eq. (1.6). As this next bit is going to
get complicated, let’s simplify the notation, replacing U(v, T') with U, but remembering
that U is a function of both frequency and temperature. We can rearrange the expression
we got for U in Eq. (1.6) as follows:

UMk T _ U =p or UM*ET = py + U. (1.7)

Taking natural logarithms of both sides of this last expression gives

N, ,
In(U) + m = In(hv + U), (1.8)

which we can rearrange to give an expression for 1/7":

i—k—B[l (h U) — In(U)] (1.9)
= n(hv + — In(U)]. .

We can tidy this up a bit by recognizing that

-

In(hv + U) = ln(l + hi) + In(hv) (1.10)
v

and
T

In(U) =1 U
n( )—n(h

v

) FIn(). (1.11)
When we put these into the expression for 1/7 the terms in In(kv) cancel and we get

1 _ kp U U
T

We can now substitute this expression for 1/7 directly into the expression for 48§,
Eq. (1.4):
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ds = z‘z[ln(l +;i) —ln(g)]dl}. (1.13)

To obtain an expression for the average oscillator entropy we need to integrate
S= i |:ln(1 +£) —ln(g)] dUu. (1.14)

hv hv hv
This looks pretty complicated, but we can simplify it by making a couple of substitutions:
x=1+ h—[:: for which jz, = hl—v and dU = hvdx (1.15)
and
J . dy 1

y= ™ for which i = ™ and dU = hvdy. (1.16)

Making these substitutions transforms the expression for § into
S=kp [[(ln(x)dx — ln(y)dy)] (1.17)

We can now use the standard integral f In(x)dx = xIn(x) — x to give

U U U U U U
S=% 14— )n{1l+—)—({14+—]— —In{— — C, 1.18
B[( +}w)n( +hv) ( +hv) hv n(;’w)Jrhv]Jr ( )
where C is a constant of integration.
The free terms U /hv cancel, and the extra term —kp can be absorbed into the constant,

leaving us with
U U U U
S=k 14+ —)n{1l+—)— —In{ — (o 1.19
B|:( +hu) n( +hv) hv n(kv)]+ ( )

The final step involves one last bit of rearranging, to give

N\ 14Uy
S =kpln (1+£_;,)+ |

U U/hv
hv

The entropy of N oscillators is obviously N times the average entropy of one oscillator,
and we quietly set aside the constant C’, as measures of entropy are based on differences
in which any constant contributions will subtract out:

+C. (1.20)
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U 1+U /Ry
hv

Sy = Nkgln ( (1.21)

U ) U/hv

hv

This is almost certainly not where Planck had hoped to get to. The term in square brackets
in Eq. (1.21) is, as we will soon see, strongly reminiscent of a combinatorial expression,
implying that this is nothing less than a version of Boltzmann’s equation for the entropy,
S = kpIn(W). The mathematics had taken Planck in a direction he really had not wanted
to go.

Planck had been fighting a losing battle against Boltzmann’s logic for at least three
years. He now succumbed to the inevitable. As he later explained: ‘I busied myself, from
then on, that is, from the day of its establishment, with the task of elucidating a true
physical character for the [new radiation law], and this problem led me automatically to
a consideration of the connection between entropy and probability, that is, Boltzmann’s
trend of ideas.’!?

Step (2): Derive the Oscillator Entropy from Statistics

Boltzmann reasoned that the most probable state of a gas at thermal equilibrium is the
one with the highest number of different ways to distribute (or partition) the available
energy over the atoms or molecules of the gas, representing the maximum entropy at that
energy. In essence, the second law of thermodynamics ensures that energy is distributed
‘fairly’ over all the particles that can carry it. In other words, it doesn’t accumulate in a
subset of these, equivalent to a small quantity of the gas (let’s say the air in one corner
of the room where you’re sitting) spontaneously becoming hotter than the rest. As we’ve
discussed already in the Prologue, this isn’t completely ruled out by Boltzmann’s logic;
it’s just that such a situation is very highly improbable. By working out the maximum
number of possible ways to partition the energy (which Boltzmann called the number of
complexions), it is a relatively simple step to calculate the entropy.

Boltzmann’s approach to such a calculation involves assuming that the total available
(and continuously variable) energy in a system can be thought of as being organized
into a series of ‘buckets’. The lowest energy bucket is assigned an energy FE, the next an
energy 2L, the next 3L, and so on. The atoms of the gas are then distributed among
the buckets and the number of different possible permutations of atoms in the buckets
is calculated. In this analysis the use of buckets is simply a calculation tool, with no real
physical significance intended. All that Boltzmann had done was parcel up the energy
so that he could count the number of atoms in the energy range zero to I, the range E to
2FE, the range 2F to 3K, and so on, and thus calculate the number of different possible
permutations.

For example, consider a gas consisting of just three atoms, which we assume are
distinguishable and which we label a, 6, and ¢. L.et’s assume this gas has a total energy
of 4E. We can’t put all three atoms in the lowest energy bucket, as this doesn’t account
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where N is the number of particles, #; is the ‘occupation number’ (the number of atoms
in the /™ energy bucket), and P is the total number of buckets. In the simple example
given above N = 3 and N! = 6. The number of particles in energy bucket 1 is 2
(som =2,1/m!=1/2! = 1/2) and the number of particles in energy bucket 2 is 1 (so
n2=1,1/mx!=1/1! = 1). Wis then equal to 6 x 2 x 1 = 3. Incidentally, if we assume
each of these permutations is equally probable, then the probability for each permutation
is simply 1/W =1/3.*

It obviously gets more interesting as the number of atoms and the amount of energy
increases. In the case of 8F distributed over 5 atoms, we can see that there are two
possibilities, also shown in Fig. 1.2. In one of these we put 2 atoms in energy bucket 1
and 3 in energy bucket 2, giving the number of permutations W = 10. However, putting
3 particles in bucket 1, 1 in bucket 2, and 1 in bucket 3 increases W to 20. Nature will
favour the combination which maximizes the complexity at equilibrium (i.e. minimizes
the product of the #,;! in the denominator), and hence the entropy.

4E 8E 8E
3 particles 5 particles 5 particles
Energy
'y
E — — —_—
0
W= 3 10 20
[ | )
a b c
o 8] O
E 2E [ab, €]
E 2K E ac, b]
2F E E [be, a]

Figure 1.2 In Boltzmann’s approach the total available energy in a system is assumed to be
continuously variable but organized into a series of ‘buckets’. This makes it possible to count the number
of atoms in the energy range zero o E, E to 2E, 2E to 3E, and so on. The entropy is then calculated
Jfrom the maximum number of possible permutations, W. Note that in this method of counting, no
molecule is assigned zero energy.

* Note that if we relax the restriction to conserve energy, Eq. (1.22) implies many more possible permutations
than we’re considering here.



