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Exordium
An Introduction to Relational Biology

My 2009 book ML has garnered some attention and has engendered/
sustained/renewed interest on the subject of relational biology. The journal
Axiomathes (the theme of which is “Where Science Meets Philosophy ') dedicated
a recent 1ssue (volume 21 number 3, September 2011; [Poli 2011]) to discussing
the nuances of ML. Entitled ‘Essays on More Than Life Itself , the special topical
1ssue comprises four essays commenting on ML and my responses [Louie 2011] to
these comments. The growing interest also led to my being invited to conferences
to speak on the subject. This Exordium is a representation of one of these lectures.
It is included herein as a review, or a ‘refresher of the whys and wherefores’, as it
were, of concepts considered in detail in ML.

E.1 The Interrogative  Science is an activity based on the interrogative: one
poses questions about nature and attempts to gain knowledge by answering these
questions.

Aristotle contended that one did not really know a ‘thing” (which to Aristotle
meant a natural system) until one had answered its ‘why?’ with its aiTiov (primary
or original ‘cause’). In other words, Aristotle’s science 1s precisely the subjects
for which one seeks the afria to the interrogative *?°.

Aristotle’s original Greek term aitiov (aition) was translated into the Latin
causa, a word which might have been appropriate initially, but which had
unfortunately diverged into our contemporary notion of ‘cause’, as ‘that which
produces an effect” (more on this shortly). The possible semantic equivocation
may be avoided if one understands that Aristotle’s original idea had more to do
with “grounds or forms of explanation’, so a more appropriate Latin rendering, in
retrospect, would probably have been explanatio.

E.2 What Is Life?  Biology is the study of life. The ultimate biological question
is, then, “What is life?”

This was the question Erwin Schrodinger posed in 1943 and attempted to
answer in a series of lectures delivered in Dublin; the corresponding book was
published in 1944 [Schrodinger 1944]. With decades of hindsight and further
advances in biology, parts of the book may now appear dated. But the originality

Xvii
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expressed in this book is not diminished, and the fact that it is still in print is a
testimony to its continuing significance.

The Schrodinger question “What i1s life?” is an abbreviation. A more
explicitly posed expansion 1s

“What distinguishes a living system from a non-living one?”
alternatively,

“What are the defining characteristics of a natural system
for us to perceive it as being alive?”

These are epistemological forms of the question.

E.3 The Modelling Relation = Causality in the modern sense, the principle that
every effect has a cause, is a reflection of the belief that successions of events in
the world are governed by definite relations. Natural Law posits the existence of
these entailment relations and that this causal order can be imaged by implicative
order.

A modelling relation 1s a commutative functorial encoding and decoding
between two systems. Between a natural system (an object partitioned from the
physical universe) N and a formal system (an object in the universe of
mathematics) F , the situation may be represented in the following canonical
diagram:

decoding
(1) causal Formal inferential
entailment system entailment
c , F i
encoding
'

The encoding £ maps the natural system N and its causal entailment ¢ therein to
the formal system /' and its internal inferential entailment 7 ; that 1s,

(2) e N—>F and g:c—>1i.

The decoding & does the reverse. The entailments satisfy the commutativity
condition

3) c=ebibO.
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(Stated graphically. equality (3) says that, in diagram (1), tracing through arrow ¢
1s the same as tracing through the three arrows £, i, and & in succession.)
Thence related, F' 1s a model of N ,and N 1s a realization of F¥. In terms of the
modelling relation, then, Natural Law is a statement on the existence of causal
entailment ¢ and the encodings £ : N - I and €:c > .

A formal system may simply be considered as a ser with additional
mathematical structures. So the mathematical statement £ : N — F | that is, the
posited existence for every natural system N a model formal system F', may be
stated as the axiom

LEverything is a set.

A mapping is an inference that assigns to each element of one set a unique
element of another set. In elementary mathematics, when the two sets involved
are sets of numbers, the inference process is often called a function. So ‘mapping’
may be considered a generalization of the term, when the sets are not necessarily
of numbers. (The use of ‘mapping’ here avoids semantic equivocation and leaves
‘function’ to its biological meaning.)

Causal entailment in a natural system 1s a network of interacting processes.
The mathematical statement £ :¢ — i, that is, the functorial correspondence [A/L:
A.10] between causality ¢ in the natural domain and inference i in the formal
domain, may thus be stated as an epistemological principle, the axiom

Every process is a mapping.

Together, the two axioms are the mathematical formulation of Natural Law.
These self-evident truths serve to explain “the unreasonable effectiveness of
mathematics mn the natural sciences”.

E.4 Biology Extends Physics A living system is a material system, so its study
shares the material cause with physics and chemistry. Reductionists claim this,
therefore, makes biology reducible to “physics’. Physics, in its original meaning
of the Greek word @ooic, is simply (the study of) nature. So in this sense, it is
tautological that everything is reducible to physics. But the hardcore reductionists,
unfortunately, take the term ‘physics’ to pretentiously mean ‘(the toolbox of)
contemporary physics’.

Contemporary physics that is the physics of mechanisms reduces biology to
an exercise in molecular dynamics. This reductionistic exercise, for example,
practised in biochemistry and molecular biology. 1s useful and has enjoved
popular success and increased our understanding life by parts. But it has become
evident that there are incomparably more aspects of natural systems that the
physics of mechanisms is not equipped to explain.

Biology is a subject concerned with organization of relations.
Physicochemical theories are only surrogates of biological theories, because the
manners in which the shared matter is organized are fundamentally different.
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Hence, the behaviours of the realizations of these mechanistic surrogates are
different from those of living systems. This in-kind difference 1s the impermeable
dichotomy between predicativity and impredicativity. (I shall explicate these two
antonyms presently.)

In his 1944 book, Schrodinger wrote:

“... living matter, while not eluding the ‘laws of physics’ as
established up to date, is likely to involve ‘other laws of
physics” hitherto unknown, which however, once they have been
revealed, will form just as integral a part of science as the
former.”

There have, of course, been many interpretations of what these ‘other laws of
physics” might have been. Schrodinger himself likely thought of extensions in
thermodynamical terms. It 1s, however, nothing new in the history of physics that
‘other laws of physics” have been added to the repertoire from time to time when
‘the toolbox of contemporary physics’ became inadequate. The mathematical
toolbox of calculus was sufficient for Newtonian mechanics. Tensor geometry
had to be recruited for relativity. Operator theory was the appropriate mathematical
language of quantum physics. I contend that biology extends physics, and to
accordingly expand the toolbox, one needs to enlist category theory.

Any question becomes unanswerable if one does not permit oneself a large
enough universe to deal with the question. The failure of presumptuous
reductionism is that of the inability of a small surrogate universe to exhaust the
real one. Equivocations create artefacts. The limits of mechanistic dogma are
very examples of the restrictiveness of self-imposed methodologies that fabricate
non-existent artificial ‘limitations’ on science and knowledge. The limitations are
due to the nongenericity of the methods and their associated bounded microcosms.
One learns something new and fundamental about the universe when 1t refuses to
be exhausted by a posited method.

E.S Relational Biology The studv of biology from the standpoint of
‘organization of relations’ is a subject called relational biology. Tt was founded by
Nicolas Rashevsky (1899-1972) in the 1950s, thence continued and flourished
under his student Robert Rosen (1934—-1998). my PhD supervisor.

The essence of reductionism in biology is to keep the matter of which an
organism is made, and throw away the organization, with the belief that, since
physicochemical structure implies function, the organization can be effectively
reconstituted from the analytic material parts.

Relational biology, on the other hand, keeps the organization and throws
away the matter; function dictates structure, whence material aspects are entailed.

In terms of the modelling relation, reductionistic biology is physicochemical
process seeking models, while relational biology 1s organization seeking
realizations. Stated otherwise, reductionistic biology begins with the material
system and relational biology begins with the mathematics. Thus, the principles
of relational biology may be considered the operational inverse of (and
complementary to) reductionistic ideas. It must be emphasized that both
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approaches are valuable, each answering questions that the other is not equipped
to answer. ‘Structure implies function” has beneficial epistemological implications,
while ‘function dictates structure’ better addresses ontological issues. What
renders hardcore reductionism a falsehood is their practitioners’ overreaching
claim of genericity, their indignant exclusion of other approaches (which they
presumptuously consider to be illegitimate), and their self-declared exclusive
ownership of objectivity besides. One world is not enough.

In the relational-biological approach, the answer to our “What is life?”
question will define an organism as a material system that realizes a certain kind
of relational pattern, whatever the particular material basis of that realization may
be. For the remainder of this exposition, I shall proceed to answer this question
and use the process of reaching this goal to illustrate the methods of relational
biology.

E.6 Mapping and Its Relational Diagram In relational biology, we begin with
a formal system, with biology entailed as its realization. So let me begin with a
mathematical object, a mapping f from set 4 toset B . It is commonly denoted

thus:
(€)) fA>B.

The mapping (4) may alternatively be represented in its category-theoretic
notation

(5) feH(A.B),

where [1 (A,B) denotes a set of mappings from set 4 to set B and is called a
hom-set. Essentially, (5) says that 7(A.B) is a collection of mappings from set
A toset B,and f,being a member of this collection, is one such mapping.

Another way to represent the mapping (4) is its ‘element-chasing’ version: if
ace A, be B, and the variables are related as b = f(a), then one may use the

‘maps to” arrow (note the short vertical line segment at the tail of the arrow) and
write

(©) framb.

Let me introduce a final representation of the mapping f . its relational

diagram in graph-theoretic form. It may be drawn as a network with three nodes
and two directed edges. that 1s, a directed graph (or digraph for short):
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(7N f ra ‘,>b

This graph-theoretic representation allows a ready identification of components of
a mapping with the four Aristotelian causes that respond to the interrogative “Why
mapping?”.

The input a € A 1s the material cause. The output b € B is the final cause.
The hollow-headed arrow denotes the flow from mput ae 4 to output be B,
whence the final cause of the mapping may be identified also as the hollow-
headed arrow that terminates on the output:

8) —>b

The efficient cause 1s the function of the mapping f as a processor; thus, it may
be identified as f itself. The solid-headed arrow denotes the induction of or
constraint upon the flow by the processor f ., whence the efficient cause of the

mapping may be identified also as the solid-headed arrow that originates from the
processor:

® >

The formal cause of the mapping is the ordered pair of arrows:

(10) > >

that is, the ordered pair of ( processor, flow )

E.7 Efficient Cause  Since the efficient cause will turn out to be the crucial
aition in relational biology, T shall explicate 1t further. Aristotle’s xwvnuxdg
(kinetikos) 1s rendered into efficare in Latin: the efficient cause is “one who puts
in motion, that which brings the thing into being, the source of change, that which
makes what 1s made, the “production rule™. Note that efficient cause in the
Aristotelian sense 1s simply ‘the processor’, and the adjective ‘efficient” has
nothing to do with its common-usage sense that is “productive with minimum
waste or effort’.

The Natural Law axiom “Every process is a mapping.” encodes natural
processes into mappings; in particular, the encoding identifies an efficient cause of
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a natural process with the efficient cause of the corresponding mapping. The
isomorphic correspondence between the solid-headed arrow (9) and the efficient
cause of a mapping then completes the linkage in our formalism. Each statement
on entailment thus has three analogous formulations, concerning:

1. Causal entailment patterns among efficient causes of natural processes
i1. Inferential entailment paths among efficient causes of mappings

1. Graphical entailment networks among solid-headed arrows

E.8 Compositions  The relational diagrams of mappings may inferact: two
mappings, with the appropriate domains and codomains, mav be connected at
different common nodes.

As a first example, consider g x+> a and [ at>s b thus, the output of g
is the input of f (the common ‘middle” element a ). In terms of hom-sets, one
has ge H(X.A) and feH(A.B) (where, naturally, xeX , aeA , and
b e B, thus, the codomain of g is the domain of f (the common ‘middle’ set

A). The relational diagrams of these two mappings connect at the common node
a as

g f
(an / /
a
x > > b

This sequential composition of relational diagrams represents the composite
mapping fogeH (X,B) with fog:xi>b.

When several mappings are linked by sequential compositions, one has a
sequential chain:

LSS LS

When the first and last mappings in a sequential chain are themselves linked by
sequential composition, the chain folds up into a sequential cvcle:
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(13)

Note that within a sequential cycle, the arrows involved have a consistent direction
and are all hollow-headed (with solid-headed arrows peripheral to the cycle).
That is, the compositions involved in the closed path are all sequential, and each
final cause has the additional role of being the material cause of the subsequent
mapping. A sequential cycle may, therefore, be called a closed path of material
causation.

Next, consider two mappings g and f with g:x+ f and f:a+> b—now
the output of g is itself the mapping f . The hom-sets involved are
geH(X,H(A,B)) and feH(A,B): thus, the codomain of g contains f .
Because of this ‘containment’, the mapping g may be considered to occupy a
higher ‘hierarchical level” than the mapping f (and that the hom-set

il (X,H (A,B)) is at a higher hierarchical level than I7(4,B)). For these two

mappings, one has the hierarchical composition of relational diagrams:

g > P/

(14) Yu

Vp
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Since the final cause (1e. output) of g is the efficient cause of f . the
mapping g may be considered an ‘efficient cause of efficient cause’. An iteration

of efficient causes i1s inherently hierarchical, in the sense that a lower-level
efficient cause 1s contained within a higher-level efficient cause. In sequential
composition, the first mapping g produces something to be operated on, but in

hierarchical composition, the first mapping g produces instead an operator itself,

Hierarchical composition thus concerns a “different” mode of entailment, which is
given the name of functional entailment.

Similar to sequential compositions, hierarchical compositions may form a
hierarchical chain:

(15)

and a hierarchical cycle:

(16)
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Note that, in contrast to a sequential cycle (13), solid-headed arrows (along with
hollow-headed arrows) are definitive components of a hierarchical cycle.
Efficient causes are relayed; thus, a hierarchical cycle is a closed path of efficient
causation.

E.9 Impredicativity In logic, the predicate is what 1s said or asserted about an
object. It can take the role as either a property or a relation between entities. Thus,
predicate calculus 1s the type of symbolic logic that takes into account the

contents (i.e. predicate) of a statement. The defining property p(x) of a subset

P 1n the universe U | asin
(17) P={xeU:p(x)}.

is an example of a predicate, since it asserts unambiguously the property that x
must have in order to belong to the set P .

Contrariwise, a definition of an object is said to be impredicative if it invokes
(mentions or quantifies over) the object itself being defined, or perhaps another set
which contains the object being defined. In other words, impredicativity 1s the
property of a self-referencing definition and may entail ambiguities.  An
impredicative definition often appears circular, as what is defined participates in
its own definition.

Impredicative definitions usually cannot be bypassed and are mostly harmless.
But there are some that lead to paradoxes. The most famous of a problematic
impredicative construction 1s Russell’s paradox, which involves the set of all sets
that do not contain themselves:

(18) {x:xex}.

(This foundational difficulty 1s only avoided by the restriction to a naive set-
theoretic universe that explicitly prohibits self-referencing constructions.)

It 1s evident that a hierarchical cycle, with its cyclic collection of mutually
entailing efficient causes, is impredicative. In other words, a hierarchical cycle is
an impredicative cycle of inferential entailment. A closed path of efficient
causation must form a hierarchical cycle of containment: both the hierarchy of
containment and the cycle are essential attributes of this closure.

Through the encoding that 1dentifies an efficient cause of a natural process
with the efficient cause of the corresponding mapping. one may conclude that

A natural system has a model containing a hierarchical cycle
if and only if'it has a closed path of efficient causation.

Stated otherwise, a hierarchical cycle is the relational diagram in graph-theoretic
form of a closed path of efficient causation.
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E.10 Nonsimulability  An algorithm is a computation procedure that requires in
its application a rigid stepwise mechanical execution of explicitly stated rules. 1t
1s presented as a prescription, consisting of a finite number of instructions. It halts
after a finite number of steps. It has no room for ambiguity.

Predicates are algorithmic. Impredicativity is everything that an algorithm is
not.

A mapping is simulable if it is definable by an algorithm. A formal system,
an object in the universe of mathematics, may be considered a collection of
mappings connected by the system’s entailment pattern (i.e. its graph, which may
itself be considered a mapping). So by extension, a formal system is simulable if
its entailment pattern and all of its mappings are simulable. Simulability entails
finiteness: that the corresponding Turing machine halts after a finite number of
steps, that the corresponding algorithmic process is of finite length, and that the
corresponding program is of finite length.

Impredicativity has many consequences. In view of its being the antithesis of
things algorithmic, one of these consequences is, therefore, nonsimulability.

Among the entailment networks (12). (13), (15), and (16) that we have
considered, the first three, namely, sequential chain, sequential cycle, and
hierarchical chain, are simulable, but the last one, hierarchical cycle, is not. The
nonsimulability of a hierarchical cycle has been proven using lattice theory. I
state this theorem formally as

A formal system that contains a hierarchical cycle is not simulable.

For natural systems, a deadlock is a situation wherein competing actions are
waiting for one another to finish, and thus none ever does. A set of processes is in
a deadlock state when every process in the set is waiting for an event that can be
caused only by another process in the set. This is a realization, a relational
analogue, of mmpredicativity. In computer science, deadlock refers to a specific
condition when two or more processes are each waiting for another to release a
resource, or more than two processes are waiting for resources in a circular chain.
Implementation of hierarchical cycles (or attempts to execute ambiguous codes in
general) will lead a program to either a deadlock or an endless loop. In either case,
the program does not terminate. This is practical verification that a hierarchical
cycle is not simulable.

E.11 Biological Realization: Metabolism-Repair System  Every process is a
mapping. The crucial biological process of metabolism may, therefore, be

represented as a mapping f:at> b (equivalently, fe H (A,B) ), an enzyme may
be the realization of the efficient cause f , with material input and output
metabolites realizations of @ and » . Networks of mappings in sequential
composition are, then, models of metabolic pathways.

Some biochemical processes produce enzymes as oufputs. Such a process
may naturally be modelled as a mapping of the form ®:x+— f (equivalently,

e (X,H(A,B))). The morphism ® may be considered repair: its codomain
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1s H(A,B), so it is a mapping that creates new copies of enzymes / , hence a

gene that ‘repairs’ (or replenishes) the metabolism process. The repair map @
and the metabolism map / are thus in hierarchical composition.

A typical eukaryotic cell 1s compartmentalized into two observably different
regions, the cytoplasm and the nucleus. Metabolic activities mainly occur in the
cytoplasm, while repair processors (i.e. genes) are contained in the nucleus.
Repair in cells generally takes the form of a continual synthesis of basic units of
metabolic processor (i.e. enzymes), using as inputs materials provided by the
metabolic activities themselves. In particular, the simplest domain of the repair
map @ may be the codomain of metabolism /. the latter’s ‘output set” B (i.e.

O:b— f, ®e H(B,H(A B))), whence metabolism and repair combine into the

relational diagram

9

This geometry gives a graphic representation of the metabolism component as the
abstract equivalent of ‘cytoplasm’ and the repair component as the abstract
counterpart of ‘nucleus’.

What 1f the repair components themselves need repairing? New mappings
representing replication (serving to replenish the repair components) may be
defined. A replication map must have as its codomain the hom-set
H(X,H(A,B)) to which repair mappings @ belong, so it must be of the form

(20) f:Y —>H(X.H(A.B))

for some set ¥ (where ¥ contains ingredients already present in the cell). In the
simplest case, when X" = B , one may choose V = I/ (A,B); so (20) becomes

21 fH(A4.B)—> H(B.H(A4.B)).

It tumms out that under stringent but not prohibitively strong conditions, the
replication mapping /# may already be entailed within the components present.

There are many ways in which this happens; one natural way is that an isomorphic
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correspondence may be defined between » and f, whence the mapping (21) may
be equivalently represented as

(22) b:fi>d.

The relational diagram of the entailment among the metabolism-repair-replication
mappings

(23) {f:al—)b, Db f, b:fl—HD}

1s then

(24)

Diagram (24) 1s the relational diagram in graph-theoretic form of the simplest
metabolism-repair system (or (M.R)-system for short), introduced by Robert Rosen
in the late 1950s.

Note that (24) is a hierarchical cycle. The entailment pattern is more evident
when the relational diagram is unfolded thus:

]

(25)

[«

One may also note that there is no “privileged” position of any of the three
mappings involved. They are in cyclic entailment and may be assigned the labels
of metabolism, repair, and replication in any cyclic permutation. The all-
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important feature is that the mappings form a hierarchical cycle: stated otherwise,
the simplest (M,R)-system is a hierarchical-cycle model of a cell.
In the specialization of the replication map /A from (20) to (21), many

simplifying assumptions have been made to create the three-mapping { f ,CD,b}

hierarchical cycle. A more sophisticated (M,R)-system model of a cell would
contain a large number of metabolism and repair components connected in a
complex entailment network, since in a cell there are obviously many more than
three interacting processes. (Diagram (24) actually already captures the essence of
all (M.R)-systems, and indeed it is possible in principle to reduce every abstract
(M.R)-system to this simple form by making the three mappings involved
sufficiently complex. One must, nevertheless, not lose sight of the network aspect
of (M,R)-systems.)

Metabolism may alternatively be considered an input-output system, with the
mapping f representing the transfer function of the “block’, the domain 4 as the

set of inputs, and the codomain B as the set of outputs. Similarly, repair may be
considered an input-output system, with the mapping @ representing the transfer
function of the block, the domain B as the set of inputs, and the codomain

H (A,B) as the set of outputs. With the addition of entailment arrows for

environmental inputs and outputs, and the abbreviated representation by the
symbols M and R of the components, the relational diagram (19) may be
represented as this simple network of one metabolism component and one repair
component:

(26)

In general, a metabolism-repair network consists of many metabolism and repair
components, with the requisite connections that the outputs of a repair component
are observables in the hom-set of its corresponding metabolism component; the
metabolism components may be connected among themselves by their inputs and
outputs; and repair components must receive at least one input from the outputs of
the metabolism components of the network. The following 1s a sample (M.R)-
network (still relatively simple) with six pairs of metabolism-repair components:
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One may easily visualize larger (M,R)-networks with thousands of components.

E.12 Closure to Efficient Causation Suppose a natural system confains a
closed path of efficient causation, then some of its efficient causes are in cyclic
entailment of one another. Their corresponding mappings must then form a
hierarchical cycle. If it so happens that all of a natural system’s efficient causes
entail one another, then 1t must have a model in which a// solid-headed arrows are
components of hierarchical cycles (e.g. diagram (24) of the simplest (M,R)-
system). Having a/l efficient causes entailed within the system is a more stringent
requirement than having just some, and members of this subset of natural systems
are given a special description: closed to efficient causation.

A natural system 1s closed to efficient causation if its every
efficient cause is entailed within the system.

The correspondence between an efficient cause and a solid-headed arrow implies:

A natural system is closed to efficient causation if and only if
each connected component in its relational diagram has a closed
path that contains all the solid-headed arrows.

I mention in passing that “a closed path that contains all the solid-headed arrows™
is related to the concept of fraversability (one continuous trace of the edges in a
graph, passing along each edge exactly once) in network topology. Thus, the
study of ‘closed to efficient causation’ can make use of the powerful results from
the mathematical theory of topology (in addition to lattice theory and category
theory that we have already encountered).
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Not all metabolism-repair networks satisfy the stringent requirements for
entailment closure. The defining characteristic of an (M.R)-system that makes it a
model of cells is the self-sufficiency in the networks of metabolism and repair
components, in the sense that every mapping is entailed within, in short, closure to
efficient causation.

The answer to our “What 1s life?” question according to the Rashevsky-Rosen
school of relational biology, in a nutshell, is that an organism—the term 1s used in
the sense of an ‘autonomous life form’, that is, any living system (including, in
particular, cells)—admits a certain kind of relational description, that it is ‘closed
to efficient causation’. Explicitly:

A material system is an organism
if and only if it is closed to efficient causation.

This “self-sufficiency’ in efficient causation is what we implicitly recognize as the
one feature that distinguishes a living system from a nonliving one.
In terms of (M,R)-systems, we may state the Postulate of Life:

A natural system is an organism
if and only if it realizes an (M,R)-system.

Thus, an (M.R)-system is the very model of life, and, conversely, life is the very
realization of an (M,R)-system.



Prolegomenon
Cardinalis

Not everything that counts can be counted, and not everything
that can be counted counts.

— attributed to Albert Einstein

As I did in ML, in this book, I assume that the reader is familiar with the basic
facts of naive set theory, as presented, for example, in Halmos [1960]. In this
prologue, however, [ shall present some set-theoretic and logical preliminaries;
this 1s more for the clarity of notations (especially for those non-standardized ones)
than for the concepts themselves.

Sets

0.1 Definition If 4 and B are sets and if every element of 4 1s an element of
B then A is a subset of B . denoted

M AcB.

Note that this symbolism of containment means either 4 =B (which means the
sets A and B have the same elements; ML: 0.2: Axiom of Extension) or 4 is a
proper subset of B (which means that B contains at least one element that 1s not
in A) Twosets 4 and B areequal if and only if 4 c B and B c 4 (ML: 0.4).

0.2 Definition If X is a set, the power set PX of X 1s the family of all
subsets of X .

An alternate notation of the power set PX is 2% (¢f ML: A3 for the
etymology).

0.3 Definition  The relative complement of a set 4 1n a set B 1s the set of
elementsin B butnotin 4 :
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@) B~A={xeB:xeAd}.

When B is the ‘universal set” U (of some appropriate universe under study. e.g.
the set N of all natural systems), the set U ~ A is denoted A°, that is,

3) A ={xeU :xe 4},

and is called simply the complement of the set A .

0.4 Number Sets  Various sets of numbers are denoted thus:

1. Natural numbers (‘positive integers”)  N={12.3.4. .}

ii. Whole numbers (‘nonnegative integers’) N, ={0}UN={0.1,2.3,4,...}
ni. Integers Z = { ,—3.-2,-1,0,1.2.3, .. }

iv. Rational numbers (‘fractions’) Q= { L pPEZ,q€E N}
q

v. Real numbers R
vi. Complex numbers  C

The six number sets are related by

) NcN, cZcQcRcC

in which all containments are proper.

Equipotence

0.5 Definition  Two sets are equipotent (to each other) if there exists a bijective
mapping, that is, a one-to-one correspondence, between them (¢f ML: 1.8).

Stated otherwise, two sets are equipotent if they are isomorphic in the category Set
(¢f ML: A.6). It is evident that equipotence is an equivalence relation (ML: 1.11).
The symmetry of the relation also allows the usage ‘set 4 is equipotent to set B,
since it implies “set B is equipotent to set 4 °, whence 4 and B are equipotent
to each other. One also occasionally sees the usage of ‘equipollent’, or even
‘equinumerous’, for the same concept.

0.6 Schrider-Bernstein Theorem  [feach of two sets is equipotent to a subset
of the other, then the two sets are equipotent.
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Since every set itself 1s its own subset, the converse of the Schroder-Bernstein
Theorem, that if two sets are equipotent then each is equipotent to a subset of the
other, 1s trivially true.

0.7 Law of Trichotomy of Equipotence  7wo sets are either equipotent fo each
other, or one is equipotent to a subset of the other.

If two sets are equipotent, then it is easy to see that their power sets are
equipotent. But a set 1s never equipotent to its own power set; this is

0.8 Cantor’s Theorem  FEvery set is equipotent to a proper subset of its power
set, but is not equipotent to the power set itself.

Cardinality

0.9 Definition A set is finite 1f 1t is either empty or equipotent to the set
{0,1,2,...,;?71} for a natural number » ; otherwise it is infinite. An infinite set
that is equipotent to the set N of all natural numbers is called countably infinite,

otherwise the infinite set 18 uncountable. The term countable means either finite
or countably infinite.

With the formal definition 0=@ and n={0.1.2....n—1} for €N a finite
set 18 equivalently ‘equipotent to a whole number’. Each finite set X 1s equipotent
to a unique whole number |X | =neN, the ‘number of elements of X" ". In short,
a finite set is a set consisting of a finite number of elements.

The property that each finite set is equipotent to a unique whole number may

be extended to infinite sets. The generalized ‘number of elements’ of a set is
called its cardinality, and formally one has the

0.10 Property Every set is equipotent to a unique cardinal number.

I will not go into the formal definition of cardinal number (and its related concept
ordinal number) here. The interested reader may read Halmos [1960]. The usual
partial order < of whole numbers may be extended to all cardinal numbers. One

uses the same notation |X | = n for the cardinality of the set X', where » may be
an ‘infinite cardinal” in addition to a whole number. Infinite cardinal numbers are
usually denoted by the first letter N (aleph) of the Hebrew alphabet. When
|X | =n. one may simply sav X has cardinal number »* or * X has cardinality

3

n .

When ‘X‘ = n, a bijective mapping from the cardinal number » (as a set) to

the set X 1s called an enumeration, a ‘listing of the elements” of X . While ‘to
enumerate’ literally means ‘to count out’ (i.e. ‘to have a number as output’), the
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domain of an enumeration may be any cardinal number, countable or uncountable.
The enumeration map is not uniquely defined by the correspondence n <> X |
since any permutation of the assignment also serves as a bijection (each different
permutation—there being n! of them for finite » —defining its own distinct
listing of elements of the set X ).

0.11 Theorem

1. Every set has a cardinal number.
1. Twosets A and B are equipotent if and only if they have the same cardinal

number, that 1s, iff | A| = ‘B| .

111 ‘A| < |B‘ if and only if A is equipotent to a subset of B .

1v. ‘A| < |B‘ if and only if A is equipotent to a subset of B but B is not
equipotent to a subset of A .

Some trivial properties of finite sets are:

0.12 Corollary

1. Every finite set has a unique number of elements.
1. Two finite sets are equipotent if and only if they have the same number of
elements.
. Ifasetis finite, then every one of its subsets is finite.
.  Ifa finite set X has n elements and a subset A X has k elements, then
k<n, further, k=n iff A=X.

v. Ifasetis finite, then it is not equipotent to any of its proper subsets.

Property v, that a finite set is not equipotent to any of its proper subsets, in fact
characterizes finite sets. The inverse thus characterizes infinite sets; stated
formally:

0.13 Theorem

1. A set is infinite if and only if it is equipotent to a proper subset of itself.
1. A set is finite if and only if it is not equipotent to any proper subset of itself.

One also has the following concerning countability:

0.14 Lemma

1. Every subset of a countable set is countable.
1. Every infinite set has a countably infinite subset.

0.15 Cardinality of the Power Set  If |.X'|=». then |PX|=2" (for all cardinal

numbers #, finite and infinite). The proof 1s immediate from the fact that PX" is
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equipotent to Set(XY,2)=2"_ the hom-set of all mappings from X' to 2={0.1}
(¢f ML: A.3). One may succinctly write

5) \2X|:2"*‘.

0.16 Cantor’s Continuum Hypothesis  The cardinality of the set N of all
natural numbers (whence of all countably infinite sets) is denoted by X, . In view

of Lemma 0.14.11, N, is, then, the least infinite cardinal number. Analogously,
the least uncountable cardinal number 1s usually denoted by N, . In terms of the
canonical order relation < of cardinal numbers, X, is the /east cardinal number
strictly following N, .

Cantor’s Theorem (Theorem 0.8) dictates that the set N is equipotent to a
subset of 1ts power set PN, but 1s not equipotent to PN itself. Whence, it follows

from Theorem 0.11.iv and Section 0.15 that N <|PN‘ =2%_ Since N, is the

least cardinal number larger than N, one must have
() N, <2%

In his famous contimum hypothesis, Cantor conjectured that ¥, =2 . (The word
‘continuum’ is used because 2% is also the cardinal number of the set R of all
real numbers, the ‘cardinality of the continuum’, usually denoted |[R| =c))

The consistency of the continuum hypothesis with the usual axioms of set
theory has been proven, that is, the equality N, = 2% is non-contradictory. It has
likewise been proven that the continuum hypothesis is independent of the usual
axioms of set theory that is, the inequality N, < 2™ is also non-contradictory.

Indexed Sets

0.17 Indexed Family Let / and X be sets. A family of elements in X
indexed by I is amapping x:/ — X . The domain [ is called the index set (note
the noun adjunct ‘index’), an element iel is called an index, the range

x([) c X is called an indexed set (note the past participle ‘indexed’), and the

value x(i) of the mapping x at an index 7, wrilten as x, (whence the element-
chasing form of the mapping x may be written as x:7+> x, ). 1s a term (or more

precisely ‘the 7 th term”) of the family. Such a mapping is often denoted

™ {x] .
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and the mapping is also called an indexed family (in X ). Note that notation (7)
represents the indexed family, which is a mapping, whence {xf. } € X', while

the notation
(8) {x,:iel}

represents the indexed set (i.e. the range of the indexed family, whence
{x, e I} =x(/)c X . The notion of ‘the i th term’ only makes sense with
respect to the indexed family (7) but not the indexed set (8). Occasionally one
may simply use {x,. } for (7) if the index set / 1s implicitly understood, but this is

not good notation (although it is commonly accepted) because of the possible
equivocation between the two different entities (7) and (8), essentially the
identification of a mapping with its range.

One may also note that the mapping x:/ —)x([ ) 1s surjective (which is

simply the statement that a mapping maps onfo its range), but an indexed family is
not required to be injective. Explicitly, it may happen for j, j €/ that i # j but

x, =x,: that 1s, there may be “duplicated terms’.

0.18 Indexed Family of Sets  An indexed family of sets is an indexed family
A:1 - PX (of elementsin PX ), denoted

©) (4.4,
where each 4, c X,

0.19 Indexed Partition An indexed partition of a set X 1is an indexed family of
nonempty sets A:1 — PX for which the collection of subsets {AI el } forms

a partition of X (¢f ML: 1.16), thatis, foreach iel, 4, #@ , and

(10) X=J4,

il
with

(1D A4,NA4;,=@ for i#j.
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0.20 Axiom of Choice  If {A,},I 1s an indexed family of nonempty sets

indexed by a nonempty index set 7/, then there exists an indexed family {x i}

iel

such that foreach iel, x, e 4,.

Compare this with the equivalent statement from ML: 1.37. Given a
nonempty family A of nonempty sets, there 1s a mapping f with domain A

such that f(A)e A forall A€ A. The correspondence is A :{Af e 1} . The
mapping f:H—> UA (1e. f:{A, :."EI} %UA, ) defined by

A=l iel
(12) f(4)=x,

is called a choice mapping. When the index set / is finite, choosing, for each
iel, an x, from a nonempty set A, (i.e. defining a choice mapping f ) is a

simple procedure; not so when / is infinite. There 1s no prescription of how
infinitely many choices are to be made, and that is why the existence of the choice
mapping has to be postulated in an axiom. It is almost a convention in
mathematics that one explicitly acknowledges when a consequence depends on the
Axiom of Choice.

Sequences

0.21 Sequence An indexed family {x,.} . m X with an index set

1= { l,2,...,n} (for some natural number r) or I =N is called a sequence (finite

or infinite, respectively) in X .
A finite sequence is often written as a list of its terms:

(13) {x’}refl,z,. } ={xl,:rc2 ..... x"} :

so also 1s an infinite sequence:
(14) {x,}femz{xl,xl,xl,.“}.

Note that in the listing of the elements on the right-hand side of each of (13) and
(14), the distinction between indexed family and indexed set is already somewhat
blurred (again, this is not good notation but is commonly accepted). A caveat of
the blurred listing notation 1s that in an indexed family, duplicated terms are kept,
while in an indexed set, duplicated terms are (almost) always eliminated.
Consider, for example, a finite sequence of two vectors v, and v,, with the two
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vectors 1dentical and nonzero, that 1s, v, =v, #0. The sequence (ie. indexed
family) {vl,vz} 1s linearly dependent, but the set {vl,vz}:{vl} 1s linearly

independent, since it consists actually of just one nonzero vector.

0.22 Preorder The terms of finite and infinite sequences are well-ordered (ML:
3.39) by the natural order of integers of their index sets ({1,2,...,11} and N
respectively).  Thus, one may truncate, for example, an infinite sequence

{xl,xl,xs,...} after m terms (where m e N) to split off the infinite ‘tail end’

{x X, ... X } and obtain the finite sequence {xl,xz,. x } . One may say,

m+12 "m0 T 30 T m

as another example, that a term x, precedes another term x , if i< j (and that

x; follows x, in the sequence).
[t is important to note that the ordering of the terms in a sequence { X, } has to

do with the positions of the terms, and not the ordering of the elements themselves
in the indexed set. This is because the codomain X is not necessarily equipped
with an order, and unless it is, a statement such as x, < X, 1s meaningless.

There 1s, however, a way to define the binary relation of precedence on the
range x([) = {xf. ie ]} using the order inherent in / c N . by

(15) X, Xx, 1n x(I) iff i<; inN.

Note that the relation < is defined only on the range x(/) and not on the rest of

the codomain X ~ x (7). It is easy to see that the relation of precedence on x (/)

is reflexive and transitive (ML: 1.10), but not necessarily either antisymmetric or
symmetric. A relation that is reflexive and transitive is called a preorder
(something that is ‘not quite’ a partial order, A/L: 1.20, or an equivalence, A/L:
1.11). A set equipped with a preorder is called a preordered set or proset. (I shall
revisit binary relations, especially these with special properties, in Chapter 3 of
this book.)

Each preordered set (S,-j) 1s itsell a category (c¢f. ML: A.1). This category
S has objects the elements of S, and for a.h .S, the hom-set S(a,b) either
contains a single S-morphism or is empty, depending on whether @ < 5 or not.
Transitivity of < provides for the composition of morphisms, and reflexivity
provides the identity morphisms in S(a,a). (I have discussed poset, i.c. partially

ordered set, as category in ML: 1.31, but indeed a proset suffices; the
antisymmetry 1s not needed.)
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0.23 Monotonic Sequence As a mapping x:([,s) - (x([),-_<) of prosets, the

sequence {x ; } preserves the ordering relation by the very definition of < in (15),

and is therefore a morphism in the category of prosets and order-preserving
mappings. But the order-preserving property of a sequence {xl} may also exist,

as a mapping x: (I,S) - (x([),j) of prosets, when the codomain Y 1s already
equipped with its own preorder < (even when < is not the precedence defined on
x(I)c X : in particular, when (Y.<} is in fact a poser). As the mapping

X (I,s) — (X,-j) of prosets, the sequence {x‘

1

} 1s isotone (¢f- ML: 1.23)1f

(16) i<jinl = x<x inX.
An 1sotone sequence {x,} 1s more commonly called monotonically increasing,

and implication (16) is equivalent to

(17) X, <x

,<x,, for ieN

(orforie {1,2,..., nfl} in the case of a finite sequence). (The sequence {xi } 18,

of course. monotonically increasing with respect to the relation of precedence on
x(7).) If the mapping x: (I,S) - <X,-_<> is order reversing (1.e. “antitone’), then

(18) i<jinl = x =x, inX.

P
which is equivalent to

(19) x,=x, for ieN

(or, again, for ie{l,Z,,..,n—l} in the case of a finite sequence), such is a

monotonically decreasing sequence.

If the ordering in (17) is strict, that is, x, <x,., which means “x, < x,,, and

i+l

i

x, #x,, (ML:122), then the sequence {x} 1s strictly increasing. Likewise, a
strict inequality x, = x,,, (x,=x,, and x, #x,, ) n (19) defines a strictly

decreasing sequence. The class of monotonic sequences consists of all the
mcreasing and the decreasing sequences.
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0.24 Subsequence  There is an important way of obtaining new sequences from

a given infinite sequence {x,.}r_EM :{xl,xz,x3,...}. Let {nk }keN = {nl,nz,n3,...}

be an infinite sequence in N such that

(20) n,,>n, for kel

(1.e. the sequence n: (N,S> — (N,S) 1s strictly increasing). The sequence
k> x, is called a subsequence of the sequence {x'}'eN ={xl,x1,x3,w} and is

denoted

@ PR ]

One may see that the subsequence {xnk }kem is simply the (sequential)
composition (ML: 5.13) of the mapping k > n, (in NV) followed by the mapping
nx, (in XM).

One may also readily verify that every sequence {x,} is a subsequence of
itsell, and 1if {zi} 1s a subsequence of { y,} and { yl} 1s a subsequence of {xi} .
then {zj} 1s a subsequence of {x,.} . Stated otherwise, the relation ‘is a

subsequence of” on the set X" of all infinite sequences in X is reflexive and
transitive; it 1s, therefore, a preorder (Section 0.22). Trivially, the relation ‘is a
subsequence of” 1s not symmetric, so it 1s not an equivalence relation; that it is not
antisymmetric (whence not a partial order) may be seen in the following example.
Let

(22) {x,} ={0.10.10.1..} and {y,}={101010, .}
The mapping 7k - k+1_ that is, the sequence

23) {n}=1{234567.}.

is such that

(24) yen=x and xon=y,

that 1s,

@5 {y.}={x}={01010L.} and {x} = {»,} = {10.L0.L0...}.
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So {x, } and {yi} are subsequences of each other, but {x,} # {y, } :

0.25 Enumerating Sequence  Recall (Definition 0.9) that a nonempty set is finite
if it 1s equipotent to the set {0,1,2,...,1171 } = { 1,2,...n } for a natural number » .
and a set 1s countably infinite if it is equipotent to the set N of all natural numbers.

Equipotence implies that a nonempty finite set X with cardinality |X | =n has a

bijective indexed family x:{1.2,..n}— X listing its elements in order and

representing it as a finite sequence {xj} 12 }={x1,x2,.,,,x"}. (This means, in
i={ 1,2, ..n

particular, that for i, j e/, if i# j, then x,# x,.) Similarly, a countably infinite
set X' (with cardinality |X| =N,) may be represented as an infinite sequence
{x,} N {xl,xz,xa,...} with its corresponding bijective indexed family

x:N— X . The bijective indexed family x, a mapping turning a countable set
into a sequence, is called an enumeration of X (e¢f Section 0.10).

For both finite and infinite sets, the choice of the enumeration 1s, as
previously mentioned, not unique: any permutation of the assignment also serves
as an enumeration (each different permutation defining its own distinct listing of
elements and sequential representation of the set).



PART I
Pentateuchus
Becoming Mapping

He had brought a large map representing the sea,
Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

“What’s the good of Mercator’s North Poles and Equators,
Tropics, Zones, and Meridian Lines?”

So the Bellman would cry: and the crew would reply
“They are merely conventional signs!

Other maps are such shapes, with their islands and capes!
But we’ve got our brave Captain to thank”

(So the crew would protest) “that he’s bought us the best —
A perfect and absolute blank!”

— Lewis Carroll (1876)
The Hunting of the Snark
Fit the Second (The Bellman’s Speech)
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This mtroductory Part I 1s an exploration in five chapters of the algebraic
theory of set-valued mappings.

My emphasis is on the topics that will be of use to us on our continuing
journey in relational biology. Some theorems will only be stated in this
introduction without proofs; their proofs may be found in Chapter 1 of Aubin and
Frankowska [1990], Chapter 2 of Berge [1963], or Chapter | of Burachik and
Tusem [2008]. These are among the very few books that contain the subject of set-
valued mappings, and even therein, the algebraic theory is only a prelude that is
quickly passed over to concentrate on the analvtic and topological aspects. [
should note that the ‘forked arrow’ notation F:X — Y. to be infroduced in

Section 2.1, for a set-valued mapping F from set X to set I, 1s my own.



1
Mapping Origins

He drove out the man; and at the east of the garden of Eden he
placed the cherubim, and a sword flaming and turning to guard
the way to the tree of life.

— Genesis 3:24

In Principio: Mappings

1.1 Definition Given two sets X" and 1 . one denotes by X x} the set of all
ordered pairs of the form (x, y) where xeX and ye¥ . The set XxT is

called the product (or Cartesian product) of the sets X' and 1.

The definition of product may be extended to any finite sequence of sets (cf
Sections 0.18 and 0.21) {X,,} (02 }:{Xl,Xz,...,X"} , of which the product is

the set of all ordered n-tuples of the form (xl,xz,...,xn) where, for i=12,....n,

x, €X,. and may alternatively be denoted

) X% X, xex X, = [, = I1 ¥
i1 ie(12. )

(the Cartesian product being the product in the category Set; ML: A.26).
If either X or ¥ 1sempty, then X x} isempty. If X #& and ¥ # D, then

there is an element xe X' and an element y el , whence (x,y)eXxY and
X x¥ #@. These remarks may trivially be extended to a finite sequence of sets
{x,} s }:{XJ,XZ,...,X”} — X, xX,x--xX, =@ if and only if at least

one X, =@ . For an infinite indexed family of sets (1.e. {X ; } _, Where the index

set / is infinite), the sufficiency of the previous statement is still trivial: if at least
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© Springer Science+Business Media New York 2013
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one X, =@, then [JX,=@ . The necessity. however, is nontrivial, and the
iel

inverse statement 1s 1n fact an alternate statement of the

1.2 Axiom of Choice The product of a nonempty family of nonempty sets is
nonempty.

(For a review of necessity versus sufficiency and the logic of conditional

statements in general, sce the Prolegomenon of ML.) Stated otherwise, if {X ,,} ,

is a family of nonempty sets indexed by a nonempty set / . then there exists an
indexed family {x,} , such that for each i €/, x, € X, (which is the Axiom of

Choice stated in 0.20). The ‘ordered [ -tuple’ (x, ) , is an element in the product
HX; , whence HX,. 0.

icl iel

1.3 Definition A relation 1s a set R of ordered pairs; that is, R c X' x} for
some sets X and V.

If (x,y) € R, then one may say that x is relatedto y .

Equivalently, a relation R is an element of the power set P(.\'xY)
(Definition 0.2), that 1s, R € P(XXY). The collection of all relations between
two sets X" and I is thus the power set P(X xY). The relation U =X xT
€ P(X' xY) is the universal relation, in which every x € X is related to every
vel . The relation & € P(XXY) 1s the empty relation, in which no xe X 1s
related to any ye¥ . In the partially ordered set <P(X><Y),c>, U is the

greatest element and & is the least element (¢f ML: 1.28). For all relations
ReP(XxY), DcRcU.

1.4 Definition A mapping is a set [ of ordered pairs with the property that, if
(x.y)e f and (x.z)e [ .then y=2z.

Note that the requirement for a subset of X' %} to qualify as a mapping is in
fact quite a stringent one: an element x € X' cannot be related to more than one

element of y eV . Most relations, that 1s, generic members of P(X ><Y), do not

have this ‘single-valued’ property.

1.5 Definition Let / be a mapping. One defines two sets, the domain of f
and the range of [ . respectively, by
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2) dom(f)z{xeX:(x,y)ef for some er}
and
3) ran(f)={er:(x,y)ef for some xeX},

Thus dom(f)c X and ran(f)cT , and f is a subset of the product
dom( f)xran(/f). If ran( /) contains exactly one element, then f is called a

constant mapping.

Various words, such as ‘function’, ‘transformation’, and ‘operator’, are used
as synonyms for ‘mapping’. The mathematical convention is that these different
synonyms are used to denote mappings having special types of sets as domains or
ranges. Because these alternate names also have interpretations in biological
terms, to avoid semantic equivocation, in this book I shall—unless convention
dictates otherwise—use mapping (and often map) for the mathematical entity.

1.6 Notations The traditional concept of a mapping is that which assigns to
each element of a given set a definite element of another given set; that 1s, a
‘point-to-point” map. I shall now reconcile this with the formal definition given
above. Let X and ¥ be sets, and let f < X' x¥ be a mapping. This implies

[ cdom(f)xran(f)c X =¥ . If one further requires that dom( /) =X (I shall

have more to say about this restriction in Section 1.24 below.), then one says that
[ 1s amapping of X into Y , denoted by

“) [ XY

and occasionally (mostly for typographical reasons) by

(5) y—L o,y

The collection of all mappings of X into ¥ is a proper subset of the power set
P(X xT): this subset is denoted I’ . Suggestively. one has ¥* < 27

To each element xe.X , by Definition 1.4, there corresponds a unique

clement y ¥ such that (x_, y)e f. Traditionally, y is called the value of the
mapping [ at the element x , and the relation between x and y 1s denoted by
y=f(x) instead of (x.y)ef . Note that the y= f(x) notation is only
logically consistent when f i1s a mapping (i.e. single-valued). For a general

relation f . it is possible that y # z yet both (x,y)e f and (x.z)e f . if one
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were to write y = f(x) and z= f(x) in such a situation, then one would be led
to the conclusion that y = z : a direct contradiction to y # z .

With the y = f(x) notation, one has

©) ran(f)z{er:yzf(x) for some xeX},
which may be further abbreviated to
(N ran(f)={f(x):xedom(f)}.

One then also has
) f={(x./(x)): xeXx}.

From this last representation, we observe that when X ¢ R and ¥ < R (where R is
the set of real numbers), my formal definition of a mapping coincides with that of
the ‘graph of f ~ in elementary mathematics.

1.7 Element Chase Sometimes it is useful to trace the path of an element as it is
mapped. If ae X, bel .and b= f(a), one uses the ‘maps to” arrow (note the

short vertical line segment at the tail of the arrow) and writes
)] framb.

One occasionally also uses the ‘maps to” arrow to define the mapping f itself’

(10) x f(x).

Mappings of Sets

1.8 Definition Let / be a mapping of X into V. If £/ c X, the image of I
under f is defined to be the set f(E) of all elements f(x)el for x e £ ; that

(n S(E)={/(x) xeE}cY.

In this notation, f(X') is the range of /. One may also note that, for all
xelX .
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(12) S =1/ (%)}

1.9 Definition If f is a mapping of X into ¥ , the set ¥ is called the
codomain of f , denoted by cod(f).

While the domain and range of f:X —V} are specified by f in
dom(f)=X and ran( /)= f(X). the codomain is not yet uniquely determined.
All that 1s required so far is that the codomain contains the range as a subset,
Yo ran( /). One needs to invoke a category theory axiom that assigns to each
mapping f a unique set I =cod (f) as its codomain. The axiom is on the

mutual exclusiveness of hom-sets in a category C:

(13) C(A.B)NC(C.D)=D unless A=C and B=D .

Thus each C-morphism f determines a unique pair of C-objects, its domain
A=dom(f) and codomain B=cod(f). such that feC(A.B). One may
consider that associated with a category C there is a pair of ‘mappings’ (hence
with unique images), dom and cod, that takes C-morphisms to C-objects. (I shall
elaborate on this pair of mappings in Sections 6.8 and 6.9.) Alternatively, one
may consider a C-morphism as a triple (A,B,f) consisting of two C-objects 4 ,
B and a C-morphism [ EC(A,B); equality between triples occurs when they

are component-wise equal.

1.10 The Category Set The category in which the collection of objects 1s the
collection of all sets (in a suitably naive universe of small sets) and the morphisms
are mappings is denoted Set. Given two sets X and I, the hom-set Set(.\.})

is the collection ¥ of all mappings from X to .

I often employ non-full subcategories of Set. and I use / (X,Y) for
appropriate subsets of 1'¥ = Set (X ,Y) under consideration (e.g. when mappings
f X =Y represent metabolic functions). These collections of hom-sets
H (X.Y) in the subcategory, of course, still have to satisfy the category axioms.

Axiom (13) is interpreted in the category Set to yield unique codomains. If a
given mapping [ from A to B in fact maps A into a proper subset B of B,

then (A.B.f) and (A.B'.f) count as different Set-morphisms, although as

‘mappings’ they are the same. For an illustration, consider the mapping

f:R—>R defined by f(x)=x" versus the mapping g:R > {yeR:y=0}
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defined by g(x)=x*. While f and g arc the same ‘squaring mapping’, they
are different as Set-morphisms, (R,R, /) # ([R, {y eR:y> O} ,g) :

L.11 Surjection The range f(X)=ran(/f) is a subset of the codomain
¥ =cod( /). but they need not be equal. When they are, that is, when /(.Y')=V,
one says that f 1s a mapping of X onto ¥ and that [/ : X —V 1s surjective (or

1s a surjection). Note that every mapping maps onto its range.

1.12 Definition If EcY ., f7'(F) denotes the set of all xe.X that / maps
into £

(14) SUE)={x f(x)eE}cX
and 1s called the inverse image of E under f .

Note that /' (¥) =X . even though ran( /)= f(.X') may be a proper subset
of Y. If yel . /! ({y}) is abbreviated to /' (») . whence

(15 fl(y):{xeX:f(x):y}.

1.13 Injection Note that [ l(y) may be the empty set or may contain more
than one element. If, foreach yel , f* ( y) consists of at most one element of
X, then f 1ssaid to be an injective (also one-to-one or I-1) mapping of X into 1.
Other commonly used names are * /' : X' — Y is an injection’ and * f: X —> T 1is
an embedding’. This may also be expressed as follows: f is a one-to-one
mapping of X into I’ provided f(x,)# f(x,) whenever x.x, €X and x #x,.

For Ac X . the embedding i: 4 — X defined by i(x)=x for all xe A is

called the inclusion map (of 4 in X' ). The inclusion map of X in X is called
the identity map on X, denoted 1, .

1.14 Lemma

. f:X VY isinjective iff for every y eran(f), [ (v) is a singleton set in
X.

. [:X =7 is surjective iff for every nonempty subset ECY , [ (E) is a
nonempty subset of X .



1 Mapping Origins 21
1.15 Inverse Mapping In view of the equivalence in Lemma 1.14.1, when
/X -7 isinjective, it defines an inverse mapping f~' :tan(f)— X (with the
mild notational equivocation of each singleton set f'(y) with the element it

contains). Indeed, as a mapping, /' is necessarily a one-to-one mapping of
ran( ) onto X =dom( f).
A mapping and its inverse (when it exists) compose to identity mappings; thus,

(16) flef=1 but foft=1,,

(and not necessarily fo /' =1,).

One also has the following simple

1.16 Lemma Let f:X =Y and g:¥ —> X be mappings. If gof =1, then

[ is injective and g is surjective.

1.17 Bijection If a mapping f: X — T is both one-to-one and onto, that is,
both injective and surjective, then f is called bijective (or is a bijection) and that

the mapping / establishes a one-to-one correspondence between the sets X' and
Y.

1.18 The Power Set Functor  The power set functor P:Set — Set assigns to
each set X its power set PX (Definition 0.2) and assigns to each mapping
[ X =Y the mapping

(17) P/ PY - PY

that sends each 4 c X to its image f(A)cY . One readily verifies that this
definition satisfies the functorial requirements P(ge /)= P(g)°P(/) (the
mapping that sends a subset 4 of the domain of f to the subset g(f(A)) of the

codomain of g) and Pl, =1, (the identity morphism gets sent to the identity

morphism), so P 1s a covariant functor from Set to Set.

Dually, the contravariant power set functor P:Set — Set assigns to each set
X its power set PX and to each mapping f: X — 1 the mapping
(18) PfPY > PX

that sends each B Y to its inverse image f ' (B) cX.
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Thus a ‘point-to-point” mapping f : X — I naturally defines two ‘point-to-
point’ mappings, P/ :PX — PY and P/ :PY — PX , for which a ‘point’ is an
element of a power set, hence a set. Alternatively (with mild notational
equivocation), the ‘image map’ Pf may be considered a “set-to-set” mapping f
from X to 1, sending subsets of X' to subsets of I, while the ‘inverse image
map’ Pf may be considered a ‘set-to-set” mapping £~ from ¥ to X . sending
subsets of I to subsets of X .

Note that the traffic f +> P/ (or f > Pf ) from a ‘point-to-point” mapping
to a ‘set-to-set” mapping only goes one way. For a given mapping g:PX — PY
of power sets, there is in general no mapping f : X' — Y for which g =Pf (or
f: Y = X for which ng’f ). This is because, in the covariant case (the
argument for the contravariant case being similar), for x € X" , one would have to
have f(x) :g({x}) . But there is no guarantee that g({x}) c T is a singleton
set, which is what is required for f to be a mapping.

Some properties of the “set-to-set” mapping P/ : PX — PY are listed in the
following theorem:

1.19 Theorem [let f:X —Y and A, Bc X . Then:

i f(A)2O iff 42D,

i. AcB = f(4)cf(B).
ii. f(AUB) = f(4)Uf(B).
iv. f(ANB) < f(A)N/(B).
v. f(B~4) > f(B)~f(A).

The simple example of f(1)=/(2)=0. A={1}. and B={2} (whence
f(A)= f(B)={0}) shows why the converse of property ii is false and why

properties iv and v are not equalities.
One sees from property iv that the mapping P/ : PX" — PI does not preserve

the Boolean algebraic structure of power sets: one does not have
f(ANB) = f(A)N f(B). Note property v implies that
(19) f(X——A)Df(X)-—f(A):ran(f)—-f(A),

but in general there is no inclusion relation between the sets /(X ~A) and

Y ~ f(4) (since ¥ ~ f(.X') may be nonempty: i.e. / may not be surjective).
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On the other hand, the dual ‘set-to-set’ mapping Pf:PY — PX has the

following properties:
1.20 Theorem [let f:X =Y and A, BcY . Then:

i A4=0 = f['(4)=9.
i AcB = f(4)cs(B).

i f(AUB) = (A US(B).
v. f(ANB) = f(A)NS(B).
v S(B~A) = fU(B)~ S (A)

Going from Theorem 1.19 to Theorem 1.20, one sees that now in properties iv
and v, set inclusion has been replaced by equality. Recall (Section 1.15) that the

inverse mapping /' is necessarily a bijective mapping of ran ( f ) onto
X =dom(f). These ‘improvements’ result as a consequence. Theorem 1.20 says
that P/ :PY = PX is in fact a Boolean algebra homomorphism. Note also that
S (@)= and f'(¥)=X; thus the least and greatest elements are preserved

by the inverse mapping /'
The converse of property 1.20.1 is not true (in contrast to property 1.19.1).
This is again because f itself may not be surjective: if AcY ~ f(X) is a

nonempty subset, then one still has /' (4)=9@ . But A ran(f)—> X is
surjective, so /' (Y) =X : property 1.20.v then also says that

(20) Y ~4)=X~77(4)

(contrast this with (19) and its subsequent discussion).
The following properties of the composites of f and ' may also be readily

verified:
1.21 Theorem [let f:X Y, AcX,and BcY . Then:
i Ac f(/(4).

i Bof(f"(B))
iii. /(4N (B))=/(A)NB

The inclusion relations in properties 1.19.1v and v and properties 1.21.1 and 11
become equality under special conditions:
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1.22 Theorem Let f:X =Y . The following are equivalent:

1. f isinjective.

ii. Forall AcX, A= f"(f(4)).

iii. Forall ABcX, f(ANB) = f(A4)N f(B).

iv. Forall ABcX, f(B~A) = f(B)~f(4).

v. Forall AcX, f(X ~A) c Y~ f(4).

1.23 Theorem [ler f: X =Y. The following are equivalent:

1. f is surjective.
ii. Forall BY, B=f(/"(B)).
iii. Forall AcX,Y~f(4) c f(X~A4).

What Is a Mapping?

1.24 Hardy’s Idea of a Mapping A mappmg (ie. ‘function” m the
mathematical sense) y = f(x) often possesses three characteristics:

1.y is determined for every value of x .
1.y 1s determined uniquely for each value of x; that is, to each value of x
corresponds one and only one value of y .
1. The relation f between x and y is expressed by means of an analytic
formula, from which the value of vy corresponding to a given x may be
calculated by direct substitution of the latter.

G. H. Hardy, in his seminal textbook A Course of Pure Mathematics [10th
edition, 1952], dismissed each of these characteristics as “by no means essential to
a function”. That characteristic 111 1s not essential 1s evident: not all functional

correspondences are given by neat formulae such as y=3x"+x-2 and
y=asin(bx+c). Indeed, the existence of an “analytic formula” depends on the

set of “elementary functions” one has in one’s toolbox, which is expanded by
necessity with the augmentation, when circumstances warrant, of “special

functions™ consider, for example, y=log(x) , y:cosh(x) s y:F(x) . and
yv=1Li (x) But toolbox collections are finite. From another viewpoint, the

negation of 111 alludes to the fact that not all mappings are computable.
In all the editions of his book (from first edition (1908) to the final tenth
edition (1952), which is still being reprinted and available). Hardy maintained:
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“All that is essential is that there should be some relation
between x and y such that to some values of x at any rate
correspond values of y.”

Note the quantifier in “some values of x~ and the plurality of “correspond vaiues
of y7.

That characteristic 1 is not essential is inherent in the definition of a relation
R as any subset of the Cartesian product X' xY . There is no requirement that for
each x € X | there hasto be a y €} such that (x,y) € R . This condition may be

passed on to mappings, hence the negation of i: y = f(x) (ie. (x.y)€ f) may
only hold for “some values”. For example, one may consider f(x)= Jx asa
mapping from R to R, although f (x) is not determined for x <0 . whence
dom(f)={xeR:x>0}. Since dom(f)c X . the issue may be bypassed by
restricting  f to X'=dom(/) . and considering /< X'x} instead of
S cXxY , then y is determined for every value of x e X' This is commonly
practised; with the f(x)= Jx example, the mapping 1s more properly considered
as from X'= {xe R :x20} to R. Indeed, in the notation f:X — Y (Section

1.6). the convention is that one implicitly takes dom( /) =X (unless otherwise

stated).
The single-valued requirement of characteristic 11 is now standard, universally
accepted as an integral part of the definition of a mapping (¢f. Definition 1.4

above). As I remarked in Section 1.6 above, the notation y = f (x) (attributed to

Leonhard Euler) only makes logical sense when f(x)e¥ is uniquely determined.

In this context of a mapping belng single-valued by definition, the term ‘multi-
valued mapping’ is therefore a misnomer; a mapping has to be single valued to be
called “well defined’. But as Hardy declared as late as 1952, it is at times useful to
relax characteristic ii to include “values of y 7.

1.25 Well-Posed Problem Jacques Hadamard stated that mathematical models
of physical phenomena should have the properties that:

1. A solution exists.
1. The solution is unique.
. The solution depends continuously on the data, in some reasonable topology.

The formulation of such a model is termed a well-posed problem (and an ill-posed
problem otherwise). Hadamard’s well-posed problem i1s often used as an
explanation of whyv mappings are defined thus, especially their unique-value
requirement: compare Hadamard’s three properties with the three characteristics in
the previous section.
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1.26 Examples of Multi-valued Mappings There are, however, many
situations in which existence fails, when no output is associated with an mput, and
in which uniqueness fails, when more than one output are associated with an input.
When a mapping is not surjective, its inverse 1s not defined on its codomain: for

f:X —>7Y and ye¥ ~ran(f). /' (y) is not defined (at least not by the role of
/" as an inversion of /). When a mapping is not injective, its inverse is not
single-valued: for f: X -7 and yeran(f). /'(») may contain more than

one element. Thus the ‘inverse’ f ' of a mapping f is not necessarily itself a
mapping. Stated otherwise, the “inverse’ of a Set-morphism is not necessarily a
Set-morphism.

As a simple example, consider the inverse of the square mapping y = x* from
R to R, that is, real solutions to the equation y* =x . If x is a negative real
number, there are no real solutions for y . (This is, of course, famously the
genesis of complex numbers.) If x is a positive real number, this equation defines
two values of y corresponding to x, namely, y = +x . Indeed, the ‘square-root
mapping’ is not a mapping, unless one follows the convention that the symbol
Jx is defined to mean the positive square root of a positive real number x

(whence —+/x 1is the negative square root). The proper ‘square-root mapping’ is
thus the ‘double-valued’

20 xH{I,—\/;}.

In general, for a complex number z = re' (where —z<@<x ). there are n
(distinct when z #0) »throots of z, given by

1

(22) PP k=01 .n-1.

>

The proper ° n th-root mapping” from C to C is thus the multi-valued

(23) N { proit e HEnta) }

In complex analysis, there are many situations in which ‘multi-valued
mappings’ arise, and most of them stem from the ambiguity of the argument
6 =argz of a complex number

(24) z=re”,

since ¢ plus any multiple of 27 may be substituted for ¢ in (24). The
‘mapping” arg is thus not well defined:
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(25) arg: z > {0+2kn keZ}.

In order to have a (single-valued) mapping, one restricts arg: C >R to one
branch (its principal branch), and one defines

(26) -w<argz<7,

that 1s, as the mapping arg: C — ( -7, 7r] .

It 1s often useful to have domains and codomains of complex mappings as
open sets; thus one may even restrict further. For example, the complex logarithm

of a complex number z = e’ is the multi-valued mapping
2n log:z|—>{logr+i(9+2kir):keZ}.

Its principal branch is restricted to the domain C ~ {s s < O} (i.e. the complex

plane with a “slit’ along the negative real axis) and defined as

(28) logz:log|z|+iargz

(Where —7 <argz < 7 ), whence log:C ~{s :s <0} - {weC:Rew>0}.

A more sophisticated treatment replaces complex ‘multi-valued mappings’
with mappings with Riemann surfaces as domains, but I shall not digress thence.
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From Points to Sets

He made loops of blue on the edge of the outermost curtain of
the first set; likewise he made them on the edge of the outermost
curtain of the second set; he made fifty loops on the one curtain,
and he made fifty loops on the edge of the curtain that was in the
second set; the loops were opposite one another.

—  FExodus 36:11-12

Congregatio: Set-Valued Analysis

2.1 Set-Valued Mapping From the forms of the ‘point-to-set mappings’
F:es{-} in Section 126 (¢f. (21), (23), (25), and (27) therein), one may

naturally proceed to define a set-valued mapping thus:

Definition A A set-valued mapping from set X' to set V' is a relation
F c X xY (Definition 1.3). It may be denoted

(1 F: XV,

such that foreach xe X,
2) F(x)={yel:(x.y)eF}c¥.

Note the point-to-set nature of a set-valued mapping (as opposed to “point-to-
point’ for a standard mapping; ¢f. Section 1.6). This relaxation of characteristic

1.24.11 thus includes, when F (x) contains more than one element, Hardy’s
allowance of mappings in which to a point may plurally “correspond values of y ”.
Note, also, the possibility that for some x € X', it may happen that F(x)=@.

This relaxation of characteristic 1.24.1 thus includes Hardy’s allowance of

»

mappings in which values may correspond to only “some values of x .
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Note the special “forked arrow” —C that I have chosen to denote set-valued
mappings, in distinction from — for a standard (single-valued) mapping. In this
chapter when I introduce the concept of set-valued mapping and its properties, I
shall also use capital letters to denote set-valued mappings, e.g., F: X —C I, while

use lowercase letters to denote standard mappings, e.g., f: X —>Y . This F-—

versus—/ distinction may not, however, necessarily continue in later chapters, but
the two different arrows will remain as the characterizing form.
In a set-valued mapping’s element-chasing form, one may write

3) F:xl—)F(x).

The “source” of F 1s still a point x € X', but now the value of the mapping F at
the element x 1s a set F (x) c Y . The source (material cause) and the value

(final cause) of a set-valued mapping are thus different in kind from each other,
they belonging to different hierarchical levels (‘point” versus “set’). (For a review
of the 1dentification of Arnstotle’s four causes with components of a mapping, see
MTL: Chapter 5.)

A standard (single-valued) mapping (as defined in 1.4) f: X — 1 may be

considered a very specialized set-valued mapping F: X —C }* such that, for each
x e X . the value

@) F(x)={/(x)}

1s a singleton set. Indeed, one can make the formal definition: a set-valued
mapping F: X —C ¥ is called single-valued if for each xe X ., F(x) is a

singleton set. A “single-valued set-valued mapping” /' : X' —— V" therefore defines
a ‘standard’ mapping /X —Y by f:x - the single element in F(x). Thus

‘single-valued set-valued mapping’ and ‘mapping” are equivalent terms.
Since a set-valued mapping F: X —C } takes its values in the family of

subsets of V' (i.e., the power set P} of ¥ ), one may alternatively consider

Definition B A set-valued mapping from set X to set I is a (single-valued)
mapping /. X — Pl .

In algebraic terms, the two definitions are equivalent. In topological terms (¢f.
Hadamard’s property iii in 1.25), however, because of the complicated power-set
topology of PY induced by the topology of I . it is often advantageous to use
Definition A.

2.2 Definition Let //: X —— I be a set-valued mapping. The graph of I 1s

defined as F' 1n 1ts relational form: 1.e.,
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%) F:{(x,y)eXxY :yeF(x)}:{(x,y)eXxY:(x,y)EF }CXXY.
(Compare this with the ‘graph of f * in Section 1.6.)

2.3 Domain  The domain of the set-valued mapping F: X —— I is the set X,
denoted by dom ().

The word “‘domain’ is from the Latin domus, ‘house, home’. Thus the domain
of a mapping is the set of values for which the mapping ‘feels at home’ (in the
idyllic and idealistic sense of the set of values that “do not cause the mapping any
trouble’). In addition, the related Latin word dominus means ‘lord. master’
literally ‘one who rules the home’, or ‘one who owns the domain’. Thus the
domain of a mapping is the set of values that the mapping ‘owns” or ‘has control
of .

There is a subtle difference 1n the definitions of ‘domain’ of a set-valued
mapping and a (single-valued) mapping, as respectively given in 2.3 and 1.5.

When a mapping is considered as a relation /' < X' x} , one has dom( f ) cX.
But, as I mentioned in Section 124, in the notation /X — Y for a standard
mapping, the convention is that one implicitly takes dom( f ) =X (whence for
every xe X | f(x) is defined and it is a single element in }" ). Contrariwise, for
a set-valued mapping /. X' —— ¥, F is still defined at those x € X" for which
F(x)=@. One has dom (/) =X in both interpretations of /', as the relation
F < X xY and as the point-to-set mapping /' x - F'(x) from X to PY .

2.4 Definition The projections of the graph of F onto its first and second
components are, respectively, the corange and the range of F'.

(©) cor(F)={xeX F(x)#@}.
) ran(F):{er:yeF(x) forsome xeX}.
Thus cor(F)c X and ran(F)c Y . and both inclusions may be proper.

X ~cor(F)=dom(F)~cor(F) is the subset of X that contains all those
xeX at which F (x) = . Note that some authors, however, define the domain
of I as {x eX F(x)# Qﬁ} instead of X itself But there are category-

theoretic advantages in allowing F (x)=@ for x e dom(#). (I shall return to
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this point when I presently introduce the category Rel of sets and relations.) The
range of /' may also be expressed as

(8) ran(F) = [ JF(x) = T
xeX
F (as a relation in X' x¥ ) is thus a subset of the product cor(F)xran(F).
xecor(F) means there exists yeran(F) such that (x,y)eF . dually,
y € ran (F7) means there exists x € cor([) such that (x.y)e F.

If there exists a subset C of ¥ such that F(x)=C forall xeX ,then F is

called a constant set-valued mapping. As a relation in X' x} , F' is the subset
X' xC . The constant mapping f : x> ¢ (where ¢ € ) thus defines the constant

set-valued mapping F :x {c} . The universal relation U = X' x} from X to
Y (¢f. Section 1.3) is the constant set-valued mapping U : X —— 1 that sends
everything to the set 1 1., such that F(x)=1 forall xe X .

2.5 The Constant Empty-Set-Valued Mapping  The constant set-valued
mapping /X —C ¥ that sends everything to the empty set, 1.e.. such that

) F(x)=@ forall xe X,

has

(10 cor(F)={xeX F(x)#@}=0,

(11 ran(F)=0 .

and

(12) (xeX F(x)=@} = X ~cor(F) = X

Asarelationin X' xV , F 1s thus the ‘empty relation’ & (¢f Section 1.3).

Note that the ‘empty relation” & is a legitimate set-valued mapping from set
X toset I, for all sets X' and V. This 1s in contrast to standard mappings,
when the ‘empty mapping’ &: X -} is only a mapping when X' =@ . Recall

(ML: A.4) that by convention ¥ ={@} . thus the “‘empty mapping” @ is the only
mapping from the empty set to any set I'. If X # @, however, then f(X)#J
for any mapping / with dom(f)=X , whence ran(f)#@ . so one has
@Y =@ whence @ ¢ @*
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It is interesting to note that for any two sets X and I, whatever their nature,
the constant empty-set-valued mapping @ : X —— I is the same one. There is

only one constant empty-set-valued mapping because there is only one empty set.
Suppose &, and &, are two empty sets. Then xe @, = xed,, since there 1s

no xe@, to contradict this statement; thus @, <@, . Likewise, @, c O, .
Therefore, &, =<,

The map that is a “perfect and absolute blank™ of Lewis Carroll’s Bellman is
an example of a constant empty-set-valued mapping (indeed, a manifestation of
the empty set) @ . As a material system, a blank sheet of paper 1s, of course,
structurally nonempty, but, as a map, it functions as the empty set.

2.6 Definition For a set-valued mapping F: X —C ¥, the set I is called the
codomain of F , denoted by cod(F).

Thus one has the dual relations

(13) ran(F)ccod(F)=Y. cor(F)cdom(F)=X.

2.7 Definition A set-valued mapping F- X — 7T 1is:

1. Surjective if

(14) ran(F)=cod(F)=Y

1. Semi-single-valued if

(15) F(x)NF(x,)#@ = F(x)=F(x,)

ui. Injective if

(16) N#EX, = F(q)NF(x,)=9
(which is contrapositively equivalent to

17 F(x)NF(x,)#@ = x =x,)

A semi-single-valued mapping F: X —— I defines a partition of its range
ran (F) . its distinct values are pairwise disjoint subsets of ¥, forming the blocks

of the partition. It also defines a partition of its domain X : one block is
X ~cor(F) (which contains all those xeX for which F(x)=@ ). and then
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2.12 Theorem Let F': X —— ¥ be a set-valued mapping. The following are

equivalent:

1. F is surjective.

ii. Forall ACX .Y ~F(4) c F(X~4).

Inverse Mapping

2.13 Definition Given a set-valued mapping F : X —C ¥, its inverse is the set-
valued mapping F ' :¥ —— X (equivalently, the relation F' < ¥ %X ) defined by
interchanging the ordered components in the graph (5) of F :

(20) F’l={(y,x)erX:yeF(x)}z{(y,x)erX:(x,y)eF}CYxX.

A (single-valued) mapping is not necessarily injective, and so its inverse is
not necessarily single-valued and hence not (well defined as) a mapping. But the
inverse of a set-valued mapping 1s always a set-valued mapping. Note, however,
that 7' is itself a point-to-set mapping (not a ‘set-to-point mapping’, as a direct
reversal-of-roles ‘inverse’ of a point-to-set mapping would have been), with its
value at the point y €} defined as the set

@2n F'(y)={reX:(x.y)eF}cX.

Indeed, since both F(x) and F'(y) are defined by the membership (x.y)e F
(cf- (2) and (21)), one trivially has

2.14 Lemma Let F- X TV, xeX , and yel . Then
(22) yeF(x) iff xEF_l(y)A

While F maps points in X to subsets of ¥, the inverse F~' maps points in
T to subsets of X : so the involvements of the sets X and ¥ in F and F are
asymmetric. The situation 1s more evident if one considers the maps in terms of
Definition 2.1B:
(23) F:X >Pr, F'' 7Y >PX.

There 1s, however, symmetry in corange and range:

24 cor(F)=ran(F")=F"(Y), F(X)=ran(F)=cor(F’1).
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Note also that

(25) dom(F)=cod(F')=X. ¥ =cod(F)=dom(F").
And that
26) (F) ' =F.

For F:X —— ¥, all the xeX for which F(x)=@ are not members of
cor(F ) and, therefore, not members of ran (F ") . In other words, when
X ~cor(F)#@. F'is not surjective. If yel ~ran(F). then F'(y)=0 .
Consider the simple example of F:{1.2} = {p.q} with F(1)={p.¢q} and
F(2)={q}: then F'(p)={1} and F'(q)={1.2}. This F' is not semi-

single-valued and (hence) not injective. Thus, in contrast to an inverse mapping
£ (which is only defined from ran( I ) to X but is both injective and surjective

thence, ¢/ Section 1.15), an inverse set-valued mapping F ' is defined from ¥ to
X . but is not necessarily either injective or surjective.

2.15 Theorem Let F-X VY and F™':Y = X be its inverse. Then:

i. If F is single-valued, F™" is injective.
. If I is injective, F™" is single-valued.
iii. If F is semi-single-valued, " is semi-single-valued.

Inverse Images

If /:X —7Y isamapping and £ 1, the inverse image of £ under f , the
set f7(E)= {x eX:f(x)ekE } , may be considered in two equivalent ways:

i, Asthe set {xeX:{f(x)}ﬂEi@}

ii. As the set {xeX:{f(x)}cE}

When these two sets are interpreted in set-valued mapping terms (recalling that f
defines the special singleton-set-valued mapping x +— { v (x)} ), they give two

different notions of the inverse image of aset £ 1 :
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2.16 Definition For a set-valued mapping //: X' ——Y and £V,

1. The inverse image of E by F is the set

an Fl(E)_{{xeX:F(x)ﬂEiQJ} %fEfQ.
%) I E=0

1. The core of E by F is the set
(28) FY(E)={xeX:F(x)cE}.

The two notions 1 and i1 coincide (and are identical to the inverse image in
Definition 1.12) when the mapping is single-valued, since F(x)NE=#@ iff

F(x)c E when F(x) is a singleton set.

Note that when /':} == X is considered a set-valued mapping itself (as

opposed to its role as the mverse of another set-valued mapping), for £ c ! the
set F™'(E). the image of E under F~'. has already been defined in 2.9. It is the

set

(29) FUE)=JF ' (y)cX.

vek

One may verify that this defines the same set as i (27), so the notation is
consistent. In particular, for yet , F(x)ﬂ{y};t@ iff yEF(x) iff

(x.y)eF . thus F ({y }) as defined by (27) when E={y} is identical to
F™'(y) as defined in (21).

The similarity of the word ‘core’ to the symbol “ cor * for corange may lead to
confusion, so it is perhaps opportune to clarify here at the outset. For a set-valued
mapping F: X —C Y and E c Y, both the corange of I and the core of £ by F

are subsets of the domain X of F :

(30) cor(F)cX and FY(E)cX.

But there are no general inclusion relations between cor(F) and ™' (E). Other
than having the first three letters of their names in common, corange and core are
very different entities: cor( . ) the corange of - | accepts one argument /* that
1s a set-valued mapping, whereas -“( +). the core of « by - . accepts two

arguments, the first being a set-valued mapping F and the second being a subset
L of the mapping’s codomain.
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The definition of F*'(E) implies that
@Bl F'(@) = {xeX:F(x)=0} = X ~cor(F) = dom(F)~cor(F):

Le.. F“(@) is the subset of X that contains all those xeX at which
F (x) =(J . and it 1s not necessarily the empty set. Equivalently, (31) says

(32)  cor(F) = {xeX F(x)#T} = X ~ F''(Q) = dom(F)~F"(@).

Note that forevery £t ,

(33) FY @) « F'(E).
and
(34) FYE) c X ~F' (D).

This last inclusion says that F™' (E) F™' (@) =@, which means if xe F~'(E),
then F'(x)#@.

Consider the simple example of [ : { 1,2 } —- {p,q} with F(l) = { p,q} and
F(2)=@: then cor(F)={1}. F'({p})={1}. and F"'({p})={2}. This
shows that in general there are no inclusion relations between cor(F ) and
F™(E) and between F ' (E) and F™ (E).

The same authors who define the domain of F' as {x eX: F(x) * @} (ie.,

my cor(F )) also define their alternate inverse (sometimes called upper inverse )

accordingly, for £ c ¥, as

(35) P (E) = {xeX:F(x)qt@ and F(x)cE} %fE;t@.
2 if E=0

This puts, for all £V,

(36) F'(E) ¢ X ~F(@) = cor(F).

One sees that

(37) FYE) = FYE)UF' (D) and FYE)NFT (D) = @
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(i.e., F*'(E) is the union of the disjoint sets F*'(E) and F™'(@)), and

(38) FYE) € F'Y(E).
Also
(39) FYE)NF'(Q) = 2.

In particular,

(40) F'I(Y) = F“(Y) = X~F“(®) = cor(F)
and
1) Fr) = X |

2.17 Lemma  For a set-valued mapping IF- X ——Y and EcCY,
42) F'(Y~E)=X~F"'(E):

(43) F'(Y~E)=X~F'(E).

With the identities (32) and (37), one has

2.18 Corollary For a set-valued mapping F . X ——Y and E Y,
(44) FHY = E) = cor(F)=F"(E);

(43 F"'(Y ~E) = cor(F)~F'(E).

Note that among the three varieties of ‘inverse images’ that [ have defined,
inverse image F ' (E), core F"'(E). and upper inverse /"' (E). only the first is

associated with an ‘inverse mapping’, viz., F~':¥ —— X, with
(46) F’l(y):F’]({y}):{xeXtF(x)ﬂ{y}#@}:{xeX:yeF(x)}.
While one may similarly define £ () and ' (y).

(47) F'(y)=F"({»})={xe X F(x)c{r}}].
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Let Accor(F) , whence AcF'(F(A4)) by Lemma 221 A
nonempty F' (F (A)) ~A  means the existence of an element xe
F (F(A)) ~A4 . This element x must be in cor(F) ~ A, which means
F(x)ﬂF(cor(F)~ A) #@ . At the same time, x & 7! (F(A)) ~A.s0a
Jortiori xe ™' (F(A)) . which means F(x)F(A)# . In other words,
A=F" (F(A)) iff there is no x ecor(F) such that F(x)\F(4)#J
and F (x)ﬂF (cor(F ) ~ A) =@  But this equivalent condition is the same
when A is replaced by cor(F)~ A, since cor(F)~ (cor(F) ~ A) =4,
whence it also defines the conditions under which
cor(F)y~A=F" (F(cor(F) ~ A)) . Thus A=F"(F(A)) iff cor(F)~4
= F ' (F(cor(F)~4)). and this says A€ iff cor(F)~4Ae$. & is
therefore complemented.

Let 4,Be$ . Then, using Theorem 2.10.111 and Theorem 2.19.111,

(49) F'(F(AUB))=F'(F(4))UF"(F(B))=AUB.

so AUBe$S. Since cor(F)~(AﬂB):(cor(F)~A)U(cor(F)~B)ES,
one alsohas ANBe$. ]

Theorem 1.22 says that a mapping /X =1 isinjective iff A= /" (f(A))
forall A< X . Correspondingly. one has

2.24 Lemma A4 set-valued mapping FF:X T Y is injective iff A=
F(F(A)) forall Accor(F).

When a set-valued mapping F: X —C ¥ is injective, every subset of cor(F) is

stable; the complemented lattice § of stable subsets is thus all of P(cor(F )) :

An injective mapping /X —} means [ 'o f =1, the identity mapping
x > x on the domain X . But an injective set-valued mapping F : X' —C } means

<so> GRSt
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ie, x> F (F (x)) 1s a disjoint union, the concatenation of the inclusion map i
of cor(#) in X and the constant empty-set-valued mapping & on
F'(@)=X~cor(F) . So even for an imjective F , the combination
G(x)= F (P(x)) 1s still not quite the identity mapping on X (unless
F! (@) =@ ) When i and G are considered as subsets of X xX |
G=i= {(x, x) ‘xe A} (but not necessarily G =1, = {(x,x) x e X} ).

2.25 Second Combination Given a mapping /X — 1 and BcY . one has
Bof ( [ (B)) (Theorem 1.21.11). But there is no containment relation between

B and F (F - (B)) for a set-valued mapping F: X —— ¥. Consider the example
F:{12} - {p.q.r} with F(1)={p.q} and F(2)=@: then F(F ' ({g.7}))
=F({1})={p.q} This time, even a restriction to B cran(F) (dual to A
cor (/") in Lemma 2.21) does not help: in the example, {p}» F(I"'({p})) =
F({1}) = {p.q} . Neither does the specialization to surjections: Theorem 1.23
says that a mapping /X =Y is surjective iff B=f(/7(B)) for all B .
But the same F in my example is a surjective set-valued mapping from {1,2}
onto {p.q}. andstill {p} = F(F ' ({p})) = F({1}) = {r.q}

Since neither x> F7'(F(x)) nor ys F(F7'(y)) is necessarily the

identity mapping on its respective domain, one must understand the usage of the
term ‘inverse set-valued mapping’ with this in mind: it is not the usual algebraic
definition in connection with a ‘reversal entity for the recovery of the identity’.

For this reason. some authors call 7 ':¥V —— X the ‘converse’ of F: X —— ¥

instead of the “inverse’.
2.26 Third Combination Given a mapping /X Y, Ac X, and BT,
one has f(Aﬂf’l(B)) = f(A)NB (Theorem 1.21 ii1).

Consider the example F:{1.2} - {p.q} with F(1)={p.q} and F(2)

~{q}-then F({1}NF ({p)) = F((13N413) = {p.q} . but F({1)N{p)

={p.q}N{p} ={p}. Sothey arenot equal. But one does have inclusion:

227 Theorem Let F-X < ¥, Ac X, and B<Y . Then F(ANF(B))
> F(4)NB.



2 From Points to Sets 45

Operations on Set-Valued Mappings

2.28 Definition If F: X CJF and G:X -C ¥ are two set-valued mappings,
then:

1. Their union is the mapping F UG - X —— ¥ defined by
(FUG)(x)=F(x)UG(x).

.. Their intersection 1s the mapping F (NG : X —C Y defined by
(FNG)(x)=F(x)NG(x).

1. Their Cartesian product 1s the mapping FxG: X —C ¥ xI defined by
(FxG)(x)= F(x)xG(x).
2.29 Theorem Let F:X Y and G:X T VY. Then, for Ac X :
i (FUG)(A) = F(A)UG(4).
ii. (FNG)(A) ¢ F(A)NG(A).
. (FxG)(d) ¢ F(A)xG(4).
Recall (Section 2.4) that /*: X -C V' is a constant (set-valued) mapping if

there exists a subset C of ¥ such that F'(x)=C for all xe X' . This implies
F(A)=C forall Ac X .

2.30 Corollary Let F: X — Y be a constant mapping. Let G: X T Y and
Ac X . Then (FﬂG)(A) = F(A)ﬂG(A).

2.31 Theorem [fboth F:X —VY and G X 1 are semi-single-valued,
then the set-valued mappings F(\G . X TV and FxG: X — Y xY are semi-
single-valued.

2.32 Theorem [fone of F:X T VY and G:X —C Y is injective, then the
set-valued mappings FF(\G: X = ¥ and FxG:X —C VxY are injective.



