MATTI TEDRE

SCIEKNCEK OF
COMPUTING

CRC Press
Taylor & Francis Group

A CHAPMAN & HALL BOOK

THE
SCIENCE OF
COMPUTING

SHAPING A DISCIPLINE

MATTI TEDRE, PH.D.

oooooooooooooooooooooo

CRC Press
Taylor & Francis Group
CRC P

i up, an informa business

aylor & Francis ,
A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20141023

International Standard Book Number-13: 978-1-4822-1769-8 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Tedre, Matti.
The science of computing : shaping a discipline / author, Matti Tedre.
pages cm
Includes bibliographical references and index.
ISBN 978-1-4822-1769-8 (pbk.)
1. Computer science. I. Title.

QA76.T4116 2014
004--dc23 2014039070

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures vii
List of Tables iX
Preface Xi
Part | Introduction
CHAPTER 1 = Introduction
1.1 SCIENCE, ENGINEERING, AND MATHEMATICS 12
Part Il Computer Scientists and Mathematicians
Computer Scientists and Mathematicians 19
CHapter 2 = Theoretical Roots of Modern Computing 21
CHapter 3= Marriage to Mathematics 33
3.1 CUTTING THE TIES THAT BIND 34
3.2 EDUCATING THE COMPUTER SCIENTIST 41
CHaprTER 4 = The Formal Verification Debate 59
4.1 PROOFS OF CORRECTNESS 61
4.2 TEXTS MAKE NO MISTAKES 68
Part Il The Fall and Rise of Engineering
The Fall and Rise of Engineering 87
CHapter 5= Engineering the Modern Computer 91
5.1 ROOTS OF THE STORED-PROGRAM PARADIGM 92

vi B Contents

5.2 DIFFERENCE BETWEEN “KNOW-HOW” AND “KNOW-
THAT” 101
CHarTER 6 = Software Engineering to the Rescue 111
6.1 SOFTWARE CRISES 113
6.2 ENGINEERING SOLUTIONS 120
Part IV The Science of Computing
The Science of Computing 141
CHAPTER 7 » What's in a Name? 145
CHAPTER 8 = Science of the Artificial 153
8.1 THE NATURE OF COMPUTING AS A SCIENCE 155
8.2 THE FUNDAMENTAL QUESTION 164
CHapter 9 = Empirical Computer Science 175
9.1 HOW DO PEOPLE IN COMPUTING REALLY WORK? 178
9.2 EXPERIMENTAL COMPUTER SCIENCE 184
9.3 SCIENCE OF THE NATURAL 194
Part V Conclusions
CHapter 10 = Conclusions 205
References 219
Bibliography 253
Index 277

List of Figures

2.1 Leibniz's illustration of concepts and their relationships. 23
2.2 Examples of basic Boolean algebra and circuit design. 29
2.3 Bacon’s cipher. 30

3.1 Division of computing fields in computing curricula post-1990s. 55

5.1 Tabulating operation, ca. 1920: punch operators, sorting ma-
chine operators, and their supervisors. 94

5.2 John von Neumann in 1952, standing in front of the IAS com-

puter. 102
8.1 Descriptions of computing in 1968, 1989, and 2003. 171
8.2 Six windows of computing mechanics. 172
8.3 The “great principles of computing” framework. 173
9.1 Validation methods in software engineering studies. 180
9.2 Research methods in three computing fields. 181

vii

Copyrighted material

List of Tables

3.1 Examples of Computing Courses, from a Survey of US Aca-

demic Institutions in the Late 1950s. 42
5.1 Time-Saving Using the A-0 Compiler. 108
6.1 Objections Posed by Computer Science Skeptics. 142

Copyrighted material

Preface

“That’s not computer science,” a professor told me when I abandoned the
traditional computer science and software engineering study tracks to pursue
computing topics that [thought to be more societally valuable. Very quickly
I learned that the best way to respond to such remarks was with a series
of counter questions about what exactly is computer science and why. The
difficulties that many brilliant people had responding to those questions led me
to suspect that there’s something deeper about the topic, yet the more I read
about it, the more confused I got. Over the years I've heard the same reason—
“That’s not computer science”—used to turn down tenure, to reject doctoral
theses, and to decline funding. Eventually I became convinced that the nature
of computing as a discipline is something worth studying and writing about.

Fortunately enough, the word “no” doesn’t belong to the vocabulary of
Professor Erkki Sutinen, who became my supervisor, mentor, colleague, and
friend. Throughout my studies in his group I worked on a broad variety of
applied computing topics, ranging from unconventional to eccentric, yet in
the meanwhile Erkki encouraged me to continue to study computing’s disci-
plinary identity, and I ended up writing, in a great rush, a thesis on the topic.
When I moved from the University of Eastern Finland to Asia and then to
Africa for the better half of a decade, I kept on writing small practice es-
says on computing’s identity. And as decent journals kept on publishing those
essays, I continued to work on the topic. Many vears’ worth of evenings in
the quiet African town of Iringa, one full day’s drive away from the bustling
Dar es Salaam, gave me the time and mental space to finally read enough
about what computing’s pioneers over the years have said about computing.
I continued that work at Stockholm University, where my department’s man-
agement encourages the researchers to do whatever they want to do. That,
and a nine-month research break in 2013, enabled me to put it all on paper.
Eventually, the hardest part about writing this book was putting an end to it:
I still have hundreds of bits and pieces that would amend the book in impor-
tant ways. I guess that, like dissertations, books like this are never finished,
but abandoned when stress grows unbearable.

Over the many vears that it has taken to finish this book, I have accumu-
lated a great debt of gratitude. During the past year, many people read parts
of this manuscript at different stages of its development. I wish to thank Pe-
ter Denning for amending the story with his vision and experiences as well as
for sharing many behind-the-scenes stories of events described in this book;

xii W Preface

Jan van Leeuwen for pages after pages of insights and suggestions on im-
proving the work; Gordana Dodig-Crnkovic for her enthusiastic support and
careful reading of the manuscript; Edgar Daylight for pointing out problems
and oversimplifications; Johannes Cronjé for research vocabulary; and Taylor
& Trancis’s anonymous reviewer for a great many suggestions for improve-
ment (and what must have been two penfuls of red ink). I wish to thank
Jorma Sajaniemi and Viola Schiaffonati for many constructive comments on
the manuscript, and Thomas Haigh for pointing out references that I should
not miss. As always, although I received a great amount of help, I alone bear
responsibility for incorrect interpretations and factual errors.

Over the years, numerous colleagues have shared their insights and ideas;
colleagues with whom I worked at University of Eastern Finland, Ajou Univer-
sity in South Korea, Tumaini University in Tanzania, University of Pretoria
and Cape Peninsula University of Technology in South Africa, and Stockholm
University in Sweden. I apologize that I have included in the above list only
those people who had direct influence on this particular manuscript and not
those who have influenced my work or thinking in other ways. I particularly
apologize to those colleagues whose articles have not received adequate at-
tention from me during the writing of this book (especially Mikko, Henrik,
and Jyri). I thank my closest gene pool for my existence and brotherhood.
This work received funding from the Academy of Finland grant #132572,
the Finnish Association of Non-fiction Writers, the Ella and Georg Ehrnrooth
Foundation, and Kauppaneuvos Otto Malmin Lahjoitusrahasto. The artwork
is by Lasse Merildinen.

The greatest gratitude I owe is to Nella for the mornings, for the evenings,
and for all the moments between.

Matti Tedre
Stockholm, Sweden

|

Introduction

)
i
= |
vm

CHAPTER 1

Introduction

OMPUTING is an ancient activity. There is evidence of computing, start-
ing from counting and calculation, that dates back thousands of years.
Many early civilizations developed their own, unique means for storing and
processing numerical information, such as the Quipu of Incas and the Chinese
counting rods.! Various tools and aids for computing—such as analog astro-
nomical computers and mechanical computing machinery—have existed for
millennia.? The modern computer is the latest addition to that continuum.
Computing as a discipline—whether one prefers to talk about computer
science, informatics, algorithmics, or something else—is a much more recent
phenomenon than abstract mathematical concepts or the practice of using
mechanical aids for calculation. There is, however, no birth date for computing
as a discipline. Looking for such a date, one could point out computational
or algorithmic-like concepts from the 1800s, the 1600s, or perhaps 1800 BCE.
But it would be untrue to say that George Boole in the 1800s, or Blaise
Pascal in the 1600s, or the mathematicians of ancient Babylon around 1800
BCE were early computer scientists or that they worked in the discipline of
computing. The discipline simply did not exist at the time. The mathematician
and logician George Boole, for instance, was a professor of mathematics at
Queen’s College in Ireland.
The pieces of a new era in computing emerged in the early 1900s from
developments on a broad front, most prominently electrical engineering and

mathematical logic. In the 1930s, answers to David Hilbert’s decision problem
led to formal definitions of an algorithm.? Also in the 1930s, Boolean logic
was connected with the design of digital circuits, and theoretical definitions of
computability were presented. The turn of the 1940s saw the crossing of the
Newton Maxwell gap from mechanical and electromechanical computing—
governed by Newton’s laws of motion—to fully electronic devices—governed
by Maxwell’s laws of electromagnetism.* In and around the 1940s, visions of
modern computing started to form from earlier and newer innovations, and
later condensed into a hard core of computing knowledge. The now stable
hard core of computing includes ideas like the formalization of computable
functions, the idea that instructions can be encoded as data, the idea that

3

4 M The Science of Computing: Shaping a Discipline

instructions and data reside in the same memory storage, and the separation
of memory, the processing unit(s), control unit, and input/output unit(s).

Indeed, the late 1940s and the 1950s must have been an exciting time to
work in computing. The emergence of a new and electrifying field with tan-
gible progress and a whole horizon of open problems, attracted young and
talented researchers, as well as significant financial resources. The nascent
field brought together people from various backgrounds, such as mathemat-
ics, physics, and electrical engineering, and this diversity fueled a rapid series
of technological and theoretical breakthroughs. Diversity of viewpoints, imme-
diate applications, and a bold pioneer attitude were among the driving forces
of the theoretical and technical revolution in computing.

The disciplinary identity of computing professionals began to emerge
around the same time as modern computing machinery, but there is no sin-
gle birth date of computing as an independent discipline. The field gradually
developed attributes of an independent discipline. Theoretical foundations—
which were first conceived in terms of mathematical logic, and later as theory
of computing, saw great advances starting from the 1930s. A number of central
technological advances were made in the 1940s. The 1940s also saw the emer-
gence of today’s central academic and professional associations for computing.
Conferences for computing machinery were around well before the advent of
modern computers. The 1950s saw a number of major computing journals
and magazines, and the 1960s computing departments, complete curricula for
universities, and the first Ph.D. graduates. In the 1970s, a number of major
funding agencies made computing a category of its own. By the 1990s the dis-
cipline had a rich and unique body of deep theorems and algorithms.® There
is no longer doubt about computing researchers’ ability to independently set
and follow a unique research agenda for their trade.

Today computing is a broad, thriving topic for academic research. Com-
puting fields and branches span from information technology and information
systems to software engineering, theoretical computer science, and scientific
computation. Technological aspects of computing are studied in computer
engineering and electrical engineering. There are a vast array of computing
branches that are related to each other to various degrees—take, for instance,
branches like computer security, human-computer interaction, artificial intel-
ligence, health informatics, and computability theory.

But over the years computing has grown so large that it is sometimes hard
to comprehend the shape and size of the discipline as a whole. Hence, it is no
wonder that there is no consensus on what computing as a discipline is actually
comprised of. Asking ten computing researchers what computing as a disci-
pline is will yield ten different answers. There are a number of concepts—take
for instance, the Turing machine and the stored program concept®—whose
fundamental significance for the field is now rarely disputed. But aside from
some central concepts and innovations, there is considerable disagreement
with many aspects of computing as a discipline: for instance, opinions diverge

Introduction W 5

about proper methods, subjects of study, or proper curricula for computing
fields.

Starting from the 1950s, computing professionals have presented a dizzy-
ing number of arguments concerning the essential features of computing as an
academic discipline. After almost 60 years of debates, the field seems to be
further away from a consensus than ever before. Moreover, most arguments
make a strong case for their cause, and they are often based on an intuitively
appealing idea of computing as an activity, body of knowledge, or principles.
It is easy to get lost amongst the contradictory, yet compelling, arguments
for computing as a discipline made by the field’s pioneers. Some argue that
computing is primarily a technical field that aims at cost-efficient solutions,
and others argue that the field’s important contributions are theoretical by
nature. Yet another school of thought argues that computing is an empir-
ical science of information processes that are found everywhere—numerous
accounts of computing try to combine different aspects of computing into a
singular comprehensive package.

So, the field’s identity has been fiercely debated throughout its short his-
tory. But what are the debates about and what is at stake? Why have the
debates not ceased over the 60- or 70-year history of the discipline? Why is
it still so difficult to define computing as a discipline? What do people mean
when they say that computing is a scientific, mathematical, or engineering dis-
cipline? More precisely, what is computing, the academic discipline, about?

This book tries to shed some light on those questions by presenting the
reader with arguments and debates about the essence of computing as a disci-
pline. The book puts those debates in a broader disciplinary context, clarifies
their background, and analyzes the reasoning behind those debates. By doing
so, the book aims at presenting a rich picture of computing as a discipline
from the viewpoints of the field’s champions. Although this hook is written
by a computing researcher for other people in computing disciplines, it does
not require very deep knowledge of any specific branches of computing.

Viewpoint of This Book

This book emphasizes three viewpoints that are helpful for understanding the
debates about computing as a discipline: contextual awareness of those de-
bates, a broad perspective of the field, and tolerance towards different uses
of terminology. First, in order to understand debates about computing as a
discipline, it is crucial to understand the roots, and the context, of those de-
bates. Many arguments about the nature of computing as a discipline are so
deeply rooted in ages-old debates about computing that it is nigh impossible
to appreciate them without a contextual frame of reference. For instance, a
lock behind the still-ongoing debates about the scientific nature of comput-
ing reveals a wide range of stimuli. Many computing pioneers were originally
natural scientists, and academic and public prestige played an important role
in university politics. Attracting students, staff, and funding were affected by

6 M The Science of Computing: Shaping a Discipline

the field’s image, and there were issues with the burgeoning field’s intellectual
integrity and progress. Those aspects, and many others like them, shaped the
course of discussions about computing’s scientific nature.

Contextual understanding is also important because many famous quotes
get a different twist in the context where they were first presented. Take,
for instance, the oft-cited remarks of Edsger Dijkstra—a computing pioneer
and visionary, and a master of metaphors and catchy one-liners. One pop-
ular quotation of Dijkstra is his comparison of calling the discipline “com-
puter science” with calling surgery “knife science.”” Dijkstra’s remark was
part of a decades-long debate between theoretical, scientific, and engineering
approaches to computing. Those debates were fueled by the software crisis,
which was manifest in overbudget, poor-quality, unmanageable, and overdue
software projects. The crisis with the work force greatly affected academic
computing, too. There was a lot to be unhappy about, and a lot of the blame
was put on the sloppy practices of software producers. Dijkstra—a recognized
practitioner himself—belonged at that time to an influential but at the time
already diminishing group of theoretical purists regarding programming, he
had his own vision for how computing should develop as a discipline, and
his view was that technology is contingent, while formal, abstract theoretical
knowledge is of lasting value.

Second, in addition to contextual understanding, it is important to appre-
ciate the breadth of the field. The diversity of the discipline and its dizzying
variety of applications have been some of the main driving forces of the field’s
development. During the past sixty years, computing researchers have brought
together a wide variety of scientific disciplines and methodological standpoints.
The resulting discipline has its own distinct body of knowledge, but its body
of knowledge also intertwines with knowledge from many other fields and it
offers a variety of unique means of modeling and simulating phenomena in
other fields. The expansion of computational and algorithmic models—“the
idiom of modern science”®—to all other fields has been dubbed the “algo-
rithmization” of the sciences.” The increased investments in research efforts
in computing have been paralleled by the growth of the number of branches
of computing, such as scientific computation, artificial intelligence, decision
support systems, architectural design, and software engineering. Arguments
about the content of the field, its methods, and its aims have sometimes been
fierce, and the rapid pace of extension of the field has made it even harder to
define computing as an intellectual activity faithfully to what happens in the
laboratories, offices, and garages.

Although interdisciplinarity made the rapid development of computing
possible in the first place, it also gave rise to very real challenges. For exam-
ple, there never was an agreement over what kinds of topics should be included
in the discipline, and it was very difficult to come up with a common under-
standing of how research in computing should ideally be done. If a generic set
of rules for quality research in all of computing were formulated, those rules
should cover research in fields such as software engineering, computational

Introduction W 7

complexity theory, usability, the psychology of programming, management
information systems, virtual reality, and architectural design. The subjects
that computing researchers study can be, for instance, programs, algorithms,
logic, programmers, machines, usability, or complex systems. Consequently,
there was considerable disagreement about what new generations of comput-
ing graduates should be taught. Attempts to describe computing as a discipline
have invariably been either so broad that they do not exclude much, or very
narrow and applicable to only some subfields of computing. It is debatable
whether an overarching, all-inclusive definition of computing as a discipline is
even necessary, or if computing stands out as an example of a postdisciplinary
era of science.

Interdisciplinarity has also fueled methodological debates that have
haunted computing’s disciplinary identity from early on. Given the broad
variety of computing fields, a single set of methods and approaches cannot be
used with the whole variety of subjects that researchers in computing fields
study. Mathematical and formal models are precise and unambiguous, yet
they are confined to the world of abstractions and they fail to fully capture
the unbounded richness of the physical world and meaning and significance
in the social world. Narratives and ethnographies are rich in dimensions and
sensitive to detail, yet they are equivocal and context-dependent. Narratives
have little predictive power, and formal proofs have little explanatory power
regarding things like usability preferences and much of human experience in
general. Then again, the predictive power of mathematical and computational
formulations is uncanny: computational models have a miraculous, “unreason-

ably effective”10

capability of accurately predicting things in seemingly unre-
lated domains. Simulations continue to pervade other academic disciplines
and change them. Still today, computing’s disciplinary debates abound with
arguments about the merits of scientific experiments, formal methods, and
engineering methods, to name a few.

Third, a final difficulty in understanding disciplinary debates about com-
puting is that the debaters use the same words to mean different things and
different words to mean the same thing. The very phrase “computer science”
is a bone of contention as such. Many arguments about how “computer scien-
tists” should work have their roots in different conceptions about what “com-
puter science” is. Some have used the phrase “computer science” to refer to a
specific field of academic computing, while others have used it as an umbrella
term for computing’s myriad topics. Trying to come to grips with controver-
sies between scholars from different branches of computing sometimes requires
open-mindedness toward views that arise from different backgrounds of schol-
ars and their fields of research. Arguments about the essence of computing are
rarely uninformed or naive, yet fully appreciating them often does require in-
sight into the intellectual background from which they are made and meanings
they have adopted.

In this book, the terms “computing disciplines” and “computing as a dis-
cipline” are used as umbrella terms for the academic fields that belong to

8 M The Science of Computing: Shaping a Discipline

the computing family—such as information technology, information systems,
scientific computing, and computer science. Also located under that umbrella
are computing’s engineering fields: computer engineering, which emerged from
electrical engineering and deals specifically with computer hardware, and soft-
ware engineering.!! “Computer science” refers to one of the computing fields,
and it has branches like artificial intelligence, computational complexity the-
ory, and formal languages. These distinctions between computing as a disci-
pline, its fields, and their branches are, however, muddied by historical uses of
terminology—many pioneers of computing used “computer science” to refer
to all of computing. In many places in this book, the authors’ original use of
terminology is followed in quotations and their immediate context.

This book presents a broad variety of views on computing as an academic
discipline. Those views are presented, in a somewhat chronological fashion,
through opinion pieces and academic articles of authority figures, practition-
ers, and educators in computing fields. The aim of that approach is threefold:
to describe the current views of computing as a part of a long continuum, to
portray a picture of a rich and living discipline, and to present the recurring
bones of contention concerning computing as a discipline.

By focusing on what was publicly said and written, this book excludes,
to large extent, what was done in practice. Such account of computing might
require an ethnomethodological approach instead. As the book focuses on
central debates of computing, the book is not about the development of the
great insights and ideas of computing; neither is it a story of people who have
contributed to computing. The book’s view is also very narrow because it ex-
cludes local debates and discussions in languages other than English. Because
this book focuses on a few select development lines of computing, the book
excludes a large number of crucial developments for computing as a disci-
pline. Perhaps the most important of those excluded topics is the effect of the
Internet and the World Wide Web. The web changed the discipline of com-
puting so profoundly that those changes require a book of its own. Similarly,
this book only discusses debates about computing’s nature as a theoretical,
engineering, and scientific field, but excludes many other conceptions of the
computing endeavor.

This book is not a history book, either—the author is not a historian, it is
not based on archival records, many of the events discussed in this book have
not had a proper treatment by professional historians of computing, and “pre-
sentism” may haunt the book more than the author would hope. Quotations
are presented as they appear in the literature, and they often do not reflect
their authors’ broader world view, those authors’ views of all of computing,
or how their views changed during their careers. Instead, quotations are used
to exemplify what has been written at single points in time. Biographies,
memoirs, and other similar works can provide the reader richer portrayals of
each computing pioneer’s thinking. Regardless, a book on computing’s major
debates has to look back to the development of the field, so many research
studies by professional historians of computing have been used in writing this

Introduction W 9

book and used as they stand. To help the reader to deeper treatments of the
topics, pointers to the literature are presented in footnotes and at the end of
each part of the book.

Organization of This Book

This book is organized around three central debates that reflected, and per-
haps shaped, the discipline’s formation. Many characterizations of comput-
ing have been formulated around three different intellectual traditions: the
logico-mathematical tradition, the engineering tradition, and the scientific tra-
dition. Although quite some academic computing work is done outside those
traditions—following, for instance, historical, anthropological, or social sci-
ences’ research traditions—most debates on computing have revolved around
those intellectual traditions. The role and relevance of each tradition has,
however, been questioned at some point in time. A look into those debates is
revealing about what was, and still is, at stake.

After the academic discipline of computing started to form, the first se-
rious debates about computing’s place in academia were concerned with the
field’s independence from other disciplines, especially mathematics and elec-
trical engineering. Disciplinary identity was necessary for a large number of
reasons, but the prestige of mathematics, the queen of the sciences, made
the relationship between computing and mathematics ambivalent. Consider-
able effort was spent on describing the relationship between the two fields,
and the role of mathematics in computing was a central bone of contention
for three decades. The formal verification debate, especially, which had roots
in the identity-forming years of the field, characterized the 1970s and 1980s
discussions about computing as a discipline.

The first debate that this book portrays is the debate about computing as
a formal, theoretical discipline —in many ways similar to mathematics, yet dif-
ferent in crucial ways. While that discussion has not completely petered out,
it is no longer central to the field’s search for identity. Part II of this book
traces the discussions about the theoretical nature of computing, starting from
the field’s intellectual origins in mathematical logic. The difficult relationship
between mathematics and computing is portrayed through arguments by the
field’s pioneers and through changes in the role of mathematics in computing
curricula. Chapters 2 through 4 present characterizations of computing as a
discipline of mathematical nature all the way to the end of the formal verifi-
cation debate, and discuss modern views of the role of theory in computing
against that background.

Second, although engineering was central to the birth of modern comput-
ing, for decades engineering, with its practical aims, was seriously undervalued
in academic computing. In one of the early arguments for the emerging aca-
demic discipline of computing, computing education was explicitly distanced
from technical considerations.'? That argument, and many others at the time,
made ignoring technology in computing lock like a virtue. That spirit lingered

10 W The Science of Computing: Shaping a Discipline

in academic computing for decades to come—perhaps best expressed by oft-
quoted phrases like “computer science is not about machines, in the same
way that astronomy is not about telescopes”'3 and “the computing scientist
could not care less about the specific technology that might be used to realize
machines, be it electronics, optics, pnewmatics, or magic.”*

The second debate that this book portrays is the debate about computing
as an engineering discipline, which was brought under scrutiny at the end
of the 1960s, when software engineering promised an end to the “software
crisis.” The engineering debate has also, in many ways, lost its momentum,
vet many current arguments about the engineering character of computing can
be understood as a continuation of that decades-long debate. Part III traces
the engineering debates in computing from various technical innovations in the
1600s, to the conception of the modern technological paradigm of computing
in the 1940s and the forming of computing as a new technical profession
in the 1940s, to the early 2000s discussions that finally legitimized software
engineering as a part of the academic discipline of computing. Chapters 5 and
6 present arguments for and against the view of computing as engineering
within the context of software production, and analyze the clash between the
theoretical and practical mindsets.

Third, while mathematics and engineering were something that, for various
reasons, many computing pioneers wanted to dissociate the field from, science
is a different story. Computing was always a tool for other fields of science and
engineering, and many early pioneers wished to see computing research to be
founded on scientific principles, too. Beginning in the late 1960s, computing
publication forums saw a strong movement to liken the discipline of computing
with the natural sciences and other empirical sciences. Before the late 1960s,
science discussions were often concerned with naming the field—whether the
discipline should be called a “science” or not. The “what’s in a name?” dispute
gave rise to a large number of opinion pieces over the decades. The name
“computer science” penetrated the computing parlance so stealthily that it is
hard to pinpoint the exact origins of the phrase: the term “computer science”
was not mentioned in a naming discussion in 1958 but was found, in a plural
form, in a mainstream publication in 1959 and one pioneer traced it to 1956.'°

The naming issue was soon joined by another branch of “science” debates,
this time concerned with the subject matter of computing. Whereas natural
sciences study naturally occurring things, the subject matter of computing is
in some ways artificial or human-made. The question was whether “sciences of
the artificial” can be sciences in the traditional sense of the word. In one of the
earliest arguments for the scientific nature of computer science, the authors
argued that “phenomena breed sciences,” and that computer science is the
study of the phenomenon called computers and other phenomena surrounding
them.'® At one point of time, the subject matter debates seemed to have
largely disappeared, but the turn towards natural computing breathed new
life into the subject matter debate.

Early arguments for computing as an academic discipline often glossed

Introduction W 11

over methodological questions, but over the course of time it became increas-
ingly common to argue that computing is indeed science—not by virtue of
its subject matter but by virtue of its method of inquiry. The methodology
question, long bubbling under, was brought into the limelight by the “experi-
mental computer science” debate. Driven by various motivations and visions,
a campaign for “rejuvenating” experimental computer science started at the
turn of the 1980s.

However, the rejuvenation campaign did not make clear what exactly was
meant by “experimental computer science.” In a nontechnical sense of the
word, “experimental” can refer to exploratory work on novel and untested
ideas or techniques. In a more specialized sense of the word, “experimental”
can refer to a subset of empirical work: to the use of controlled experiments for
testing hypotheses (perhaps “experiment-based” would be a less ambiguous
term). The original “rejuvenating” report!” teetered between the two mean-
ings of the word but never made it clear what exactly was meant by experi-
mental computer science except that it was desirable and should be funded.
What followed was several decades of polemics during which discussants talked
past each other, all talking about experimental computer science but meaning
different things. The experimental computer science debate has been a notable
feature of computing’s disciplinary self-image since the 1980s, and that debate
shows no signs of fading away. And in the course of computing’s triumph in
modeling phenomena in an impressive number of disciplines, some came to
believe that the old queen of science, mathematics, was dead—Ilong live the
new queen, computing. Some even proclaimed the “death of proof.”!®

Part IV portrays the emerging view of computing as a science in its own
right-—not only as a tool for other sciences. Chapter 7 starts the story by
discussing the early naming debates, and Chapter 8 continues to describe var-
ious views of computing as a science and some famous characterizations of the
field. Chapter 9 continues with a description and analysis of the experimental
computer science debate, which started in the 1980s and is still a widely and
actively discussed topic. Chapter 9 ends with views to natural computing and
the algorithmization of sciences.

The last part, Part V, discusses how computing’s disciplinary debates
changed over time. That part discusses how tools of rhetoric and narratives
were used in the wrangles over computing’s disciplinary nature, and how some-
times by “hijacking the narrative,”'” one school of thinking was able to re-
define how computing was conceptualized, while sometimes similar, perhaps
better justified, efforts failed. The part describes sticking points that still con-
tinue to divide opinions about computing’s very nature, and presents that the
disciplinary disputes of computing seem trivial in comparison to the changes
that computing and computational methods have caused in other sciences.
The part ends with a discussion of computing as a discipline and of the im-
portance of disciplinary self-understanding.

12 W The Science of Computing: Shaping a Discipline

1.1 SCIENCE, ENGINEERING, AND MATHEMATICS

This book deals with different traditions of computing—the mathematical
tradition, the engineering tradition, and the scientific tradition—but drawing

lines between them is very hard. One of the reasons is that the intellectual en-
deavors they represent are not strictly definable. There is no single, monolithic
Mathematics but a large variety of different kinds of mathematics. There is no
archetypal example of science, but a broad range of activities, theories, philo-
sophical standpoints, and other elements that together constitute windows to
science. Science and mathematics are very tightly connected, too. And similar
to science and mathematics, there is no universal agreement on what engineer-
ing is, but a spectrum of different views, each emphasizing different aspects
of engineering. In addition to its heavy use of scientific knowledge and math-
ematical tools, engineering also has its own body of knowledge. Add concepts
like technology, applied science, and mathematical logic, and the confusion is
multiplied. While the problems start with the multiple meanings of those con-
cepts, computing researchers sometimes exacerbate the issues by combining
knowledge and methods from different traditions, and by occasionally moving
between the traditions as if there was no distinction between them.

Nonetheless, as this book uses the terms mathematics, engineering, and
science to draw lines between traditions of computing, some fundamental dif-
ferences have to be noted between those endeavors. Although such separation
between highly debated concepts is an open invitation for numerous angles of
well grounded critique, it is nevertheless necessary. All the characterizations
below are contentious and highly debated between philosophers of science,
mathematics, and engineering—hence, the reader is advised to proceed with
caution.

Aims

‘While some notable scientists have argued that the only valid aims of science
are description and prediction of phenomena, many others consider explo-
ration and explanation to be other important aims of science.?’ Exploration
refers to developing an initial understanding of a yet uncharted phenomenon.
Description refers to the attempt to systematically record and model the phe-
nomenon and its connections to other phenomena. Prediction refers to the at-
tempt to use previous understanding to predict phenomena that have not yet
come to pass. And explanation refers to the attempt to clarify the causes, re-
lationships, and consequences of the phenomena at hand. The aims of sciences
vary remarkably between natural sciences, social sciences, and life sciences.
Many philosophers of engineering and technology have argued that the
essence of engineering lies in its aims. What seems to be common to many
different engineering branches is that they are constructive; they aim at pro-
ducing things. For instance, in his analysis of paradigms of computing Peter
Wegner wrote that research in engineering is aimed at development of tools

Introduction W 13

that accomplish classes of tasks more efficiently.?! Carl Mitcham, who is a
prominent philosopher of technology, wrote:

Engineering as a profession is identified with the systematic knowl-
edge of how to design useful artifacts or processes, a discipline that
(as the standard engineering educational curriculum illustrates) in-
cludes some pure science and mathematics, the “applied” or “en-
gineering sciences” (e.q., strength of materials, thermodynamics,
electronics), and is directed toward some social need or desire. But
while engineering involves a relationship to these other elements,
artifact design is what constitutes the essence of engineering, be-
cause it 1s design thal establishes and orders the unique engineering

framework that integrates other elements.
Mitcham (1994, pp.146-147)

Regarding the aims of mathematics, there is considerable disagreement,
suggestions ranging from understanding, to insight, to coherent structures, to
creation of abstract beauty.

Certainty

Scientific knowledge, expressed as things like models, theories, constants, or
laws, is tentative, and although many scientists claim that their theories or
models are very good approximations of how the world works, the door is
always wide open to better theories and descriptions of the world. Being ap-
proximations, scientific theories—and nowadays increasingly computational
models—often compete for which theoryv gives the most accurate predictions
or which one is the most widely applicable.

Contrary to that, mathematical knowledge, expressed as theorems, con-
sists of necessary truths; truths which cannot be otherwise, given the selected
set of axioms and rules. Theorems are accepted only if their conclusions are
always true in that set of axioms and rules; their conclusions always follow
from the axioms. Proofs are chains of substitutions within a formal system
of rules, vet most proofs use natural language to increase readability at the
expense of introducing some ambiguity. In principle, an informal proof can
be expanded to a formal proof—but in practice, that is in most cases not
doable.?? Compared to sciences, in mathematics it is much rarer that signif-
icant theorems are first accepted and then shown to be wrong, although the
history of mathematics has examples of such cases.?3

According to philosophers of engineering, engineering knowledge, ex-
pressed as things like technical maxims, state-of-the-art solutions, and de-
scriptive laws, is tentative, contextual, and unlike scientific and mathematical
knowledge, not concerned with truth but whether that knowledge works.?!
Much of engineering knowledge is prescriptive and tacit, such as technical
maxims (“rules of thumb,” which offer heuristic strategies for successfully

14 W The Science of Computing: Shaping a Discipline

completing tasks) or descriptive laws (“If A then B” kind of experience-based
rules).*”

Methods

“The scientific method” is a catch-all phrase for a cycle of research that con-
sists of systematic observation and collection of measurable data, formulation
of hypotheses, testing those hypotheses through experiments, and analysis of
results and possible acceptance, modification, or rejection of hypotheses. A
broader term “empirical methods” covers all kinds of data collection, their
analysis, theoretization, and testing those theories. Data collection and anal-
vsis methods are among the dividing elements between academic disciplines.
Different scientific disciplines collect empirical data using very different sets of
methods ranging from qualitative to quantitative, and data are also analyzed
using a broad range of methods of analysis. Statistical analysis is used to gen-
eralize findings to broader populations, and nowadays computational models
are a common tool at all stages of scientific research.

What makes the methods in mathematics different from those in science is
that in pure mathematics, reasoning is deductive—mathematical induction is
deductive, too. Generally speaking, new mathematics is strongly linked with
old results in mathematics unlike in science, where new empirical knowledge
that conflicts with old knowledge can be created. In pure mathematics there
is no collection and analysis of empirical data, but the work is based on ma-
nipulation of abstract concepts—as well as on intuition and contextualization.
George Pélya described in his famous book How to Solve It*® how results in
mathematics are presented as rigorous deductive proofs, but in practice, math-
ematicians use various heuristics, rules of thumb, guessing, and intuition.

In engineering, methods are often constructive and descriptive; they are
actions aimed at achieving change in the affairs of the world. Billy Vaughn
Koen described the engineering method as “the use of heuristics to cause the
best change in a poorly understood situation within the available resources.” "
In addition to scientific knowledge and mathematics, the engineering method
usually relies on things like heuristics, technical maxims, and technologi-
cal theories,?® which are often encapsulated in state-of-the-art engineering
practices. Techniques of engineers involve things like parameter variation
repeated measurement of the performance of a device or process, while system-
atically adjusting the parameters of the device or its conditions of operation,?*
often in search for optimal solutions with various necessary trade-offs. Denning
et al. argued that in computing the cycle of engineering work consists of an
ever-improving iteration of defining requirements, defining specifications, de-
signing and implementing, and testing.?" In addition to engineering methods,
engineers use a wide range of methods from natural sciences (for studying,

e.g., material properties) and social sciences (for studying, e.g., users).

Introduction W 15

Subjects

Different kinds of science—physical sciences, life sciences, social sciences, and
earth and space sciences —deal with very different kinds of subjects. While
the subjects of physical science (such as atoms, fields of force, and proper-
ties of matter) are mind-independent, the subjects of social sciences (such
as economiies, societies, and preferences) are mind-dependent. What makes
the subjects of engineering different is that unlike natural scientists who deal
with naturally occurring phenomena, engineers deal with artifacts, which are
created by people. In addition to artifacts, engineers’ subjects also include
people, the users of artifacts, because value and utility of artifacts arise from
the human experience. Much research and design (and design research3!) in
software engineering, for instance, studies people and the artifact at the same
time. And, lastly, different from science and engineering, mathematics deals
with abstract, intangible objects.??

The different subject matters give rise to different claims of value-ladenness
of work between mathematics, engineering, and science. Pure mathematics
is usually considered to be value-free and basic science often claims to be
value-free, but engineering acknowledges its value-ladenness. First, artifacts
are created for a purpose and those purposes typically embody some values.
Second, for the scientist, natural phenomena are not desirable or undesirable—
they “just are,” but for engineers natural phenomena can be desirable or
undesirable—for instance, in the field of electronic communication thermal
noise is an unwanted natural phenomenon.?3

Copyrighted material

[l

Computer Scientists and
Mathematicians

Computer Scientists and
Mathematicians

EGINNING in ancient Greece, there has been a tight connection between
B mathematics and many other academic disciplines; the folklore has it
that above the entrance to Plato’s Academy there was a sign that read “Let
none ignorant of geometry enter here.”! Galileo Galilei’s famous methodolog-
ical stand was that the book of nature is written in the language of math-
ematics.? In a similar manner, it has been argued that mathematics is the
quintessential knowledge and skill for computing disciplines. The relationship
between mathematics and the discipline of computing seems so seamless that
one computing pioneer called computing “the engineering of mathematics.”3

Disciplinary debates over specific sciences often center around a few stick-
ing points, or pivotal questions—questions that are so foundational that an-
swers to them decide the fate of whole horizons of other questions. One piv-
otal question concerning scientific disciplines is whether specific sciences are
reducible to other sciences. That question in computing asks whether com-
puting, the discipline, is reducible to mathematics or logic.*

The reductionist view of the discipline of computing seems compelling. It
is hard to know where to start or where to stop. Many forefathers of auto-
matic computing—Pascal, Leibniz, and Babbage, for instance—were known
for their contributions to mathematics. Years before the first modern com-
puters were built, mathematicians had developed a definition of what can be
computed with any kind of machinery, and many champions of modern com-
puting were trained as mathematicians. The most impressive advancements in
computing are frequently proven and presented in the language of mathemat-
ics. Mathematical structures—such as matrices, vectors, and graphs—are used
to present organization of data in computers. Many branches of computing
require sophisticated mathematical tools and techniques. Abstract algorithms
can readily be turned into executable programs, and the program text can
be formally proven to correspond to the formal specifications. The appeal
of a mathematical reductionist view of computing has led some computing
pioneers to argue that programming—the actual construction of computer
programs—is a form of mathematics, too.

It is, however, one thing to say that the field uses mathematics as a tool
and quite another to say that the discipline is reducible to mathematics. There

19

20 m Computer Scientists and Mathematicians

are things that duly recognized computing professionals and theorists do that
might not be reducible to pure mathematics, such as eliciting requirements,
constructing models, designing and writing programs, testing and debugging
programs, and designing user interfaces. Perceptions of the role of mathematics
in the field of computing have also changed over the discipline’s history and
at no point has there been a consensus over that role and its centrality in the
field.® Hence, it is also important to be clear about the limits of mathematics
in computing.

This part of the book starts by describing, in Chapter 2, the mathematical
roots of computing: the logical and mathematical ideas that underlie the birth
of the discipline. It is important to understand those ideas in their original
context, and not simply as “precursors” of modern computing: Pascal cer-
tainly did not wake up every day thinking, “Isn’t it exciting to be a precursor
of computer science here in the Renaissance!” The following chapter, Chapter
3, continues to describe the ambivalent relationship that academic computing
had with mathematics once the field started to develop an independent dis-
ciplinary identity. Chapter 4 ends this part with a portrayal of how debates
about computing’s mathematical nature intensified throughout the 1960s and
1970s, coming to a head in the 1980s in an all-out clash between advocates
and critics of strong formal verificationism.

CHAPTER 2

Theoretical Roots of
Modern Computing

AcCH academic discipline has a “hard core” of theoretical ideas that are

rarely questioned. Those theoretical ideas underlie each field’s research
agenda: a broad consensus on the field’s proper subjects of study, important
questions in the field and how to pose them, proper methods and tools for
achieving answers, what answers should look like, and valid interpretations
of the answers.! The ability to independently set research agenda is one of
the defining features of an autonomous academic field of research. Hence, it is
often a good idea to investigate a scientific discipline by looking at the “hard
core” of theoretical ideas, which form the foundations of the field, and which
guide some of its research agenda.

Many computing’s core concepts and ideas date back a long time and
have roots in a variety of disciplines.? For instance, having different states
of a computing machine stand for, or symbolize, different abstract ideas has
roots in the history of symbol systems, yet the idea of abstraction is certainly
not an obvious one. Russell noted that “it must have required many ages to
discover that a brace of pheasanls and a couple of days were both instances
of the number 2.3 Binary representation of numbers—that two symbols is
enough—also has a long history in mathematics but also in games, divination
systems, and numerous other aspects of life. Discrete mechanisms—that the
machine jumps between exact states instead of smoothly and gradually moving
between values or states—can be found in various kinds of machinery over
centuries. Turing’s definition of computability—that five different operations
are enough for carrying out any computation—is a much newer insight but it
is rooted in centuries of development in mathematical logic.*

The history of modern computing is not “a” history but many intertwined
histories that are concerned with different motivations, needs, and aims, and
that are rooted in different intellectual traditions. One braid of computing
histories is concerned with the mathematical and logical roots of modern com-

22 W The Science of Computing: Shaping a Discipline

puting, and has to do with the quest of formalizing human thinking or human
problem solving into something that can be reduced to calculation and ul-
timately mechanized. In the book The Universal Computer: The Road from
Leibniz to Turing® the mathematician and early computing pioneer Martin
Davis started the history of modern computing in Germany in the 1600s,
where Leibniz, one of history’s great polymaths, had a vision of describing
all concepts or ideas in our common body of knowledge (“alphabet of human
thought”) and also presenting the rules for combining them into more complex
ideas, for reasoning about them, and for resolving which statements are true.

“Language of Thought”

The extraordinary German intellectual Gottfried Leibniz (1646-1716), “the
last universal genius,”®
His significant contributions to multiple fields—law, mathematics, philoso-

phy, natural sciences, and technology, among others—make him one of the

was a visionary and an incredibly productive man.

true polymaths of history. What makes Leibniz a direct ancestor of modern
computing is his envisioned language of rational thought that could be used
to formalize human inference. The same vision, in different forms, drove the
development of mathematical logic, and similar visions continue to drive nu-
merous branches of computing from the semantic web to artificial intelligence.”

Leibniz was a child genius who became proficient in Latin by the age of
twelve, and was thus able to read the philosophical and theological works in
the library he had inherited from his professor father. As a teenager, Leib-
niz was introduced to Aristotelian logic, and he got captivated by Aristotle’s
categorization of objects in the human mind into ten groups based on their
function in a proposition.® Aristotle’s syllogistic logic is the type of logic that
works with categories and their relationships, well familiar from elementary
philosophy classes: “All men are mortal,” “Socrates is a man,” “Therefore,
Socrates is mortal.”

Taking concepts of logic to a higher level, Leibniz’s dream was to come
up with a general algebra, a sort of calculus that could be used to logi-
cally infer the truth value of any proposition. To make his vision come true,
Leibniz needed three things. First, Leibniz needed a universal vocabulary or
“database” of all concepts, a characteristica universalis, encapsulated in a
special symbol system. Second, Leibniz needed a script that was able to for-
mally represent the relationships between thoughts. Third, he needed rules
of inference, a calculus ratiocinator, for determining which propositions writ-
ten in that language were true and which were false. One does not need much
imagination to draw parallels between those three projects and many branches
of computing today. For Leibniz, such innovation promised an end to disagree-
ments in areas ranging from metaphysics and morals to geometry and analysis:
instead of quarreling, “let us calculate” — “calculemus!” °

If controversies were to arise, there would be no more need of dis-
putation between two philosophers than belween two accountants.

Theoretical Roots of Modern Computing B 23

FIGURE 2.1 Leibniz’s illustration of concepts and their relationships.
Source: Leibniz (1875, B.IV).

For it would suffice to take their pencils in their hands, to sit down
to thewr slates, and to say to each other (with a friend as witness,

if they liked): Let us calculate.
Leibniz, translated in Russell (1937, p.200)

Leibniz’s idea behind his thinking was simple: He believed that all our
ideas can be reduced to a small number of concepts (an alphabet of human
thought) and that all complex ideas are rationally deduced and combined from
those concepts. In Leibniz’s world there was no room for chance: his world was
deterministic through and through. Unfortunately, Leibniz presented only few
concrete examples of his idea; Figure 2.1 portrays one of Leibniz’s diagrams.

In Figure 2.1, earth (terra) and air (aer) are opposing pairs, as are fire
(ignis) and water (equa). The four corners represent properties, or qualities,
of the elements: dryness (siccitas), heat (caliditas), humidity (humiditas),
and coldness (frigititas). The elements are formed in combinations of their
properties: Fire is possible at the combination of dryness and heat, air at the
combination of heat and humidity, water at the combination of coldness and
humidity, and earth at the combination of coldness and dryness.

Despite his numerous intellectual contributions to other fields, Leibniz did
not get very far with his universal language. He did, however, make pioneering
contributions to logic. Leibniz developed a notation and algebra of logic and
presented the idea of using logical operators to manipulate concepts in the

