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INTRODUCTION

Scientific revolutions are often driven by the invention of new
instruments — the microscope, the telescope, genome sequencing — each
of which have radically changed our ability to sense, measure, and
reason about the world. The latest instrument at our disposal?
A windfall of digital data that traces the entirety of the scientific enter-
prise, helping us capture its inner workings at a remarkable level of
detail and scale. Indeed, scientists today produce millions of research
articles, preprints, grant proposals, and patents each year, leaving
detailed fingerprints of the work we admire and how they come about.
Access to this data is catalyzing the emergence of a new multidisciplin-
ary field, called science of science, which, by helping us to understand in
a quantitative fashion the evolution of science, has the potential to
unlock enormous scientific, technological, and educational value.

The increasing availability of all this data has created an unpre-
cedented opportunity to explore scientific production and reward. Parallel
developments in data science, network science, and artificial intelligence
offer us powerful tools and techniques to make sense of these millions of
data points. Together, they tell a complex yet insightful story about how
scientific careers unfold, how collaborations contribute to discovery, and
how scientific progress emerges through a combination of multiple inter-
connected factors. These opportunities — and the challenges that come
with them — have fueled the emergence of a new multidisciplinary com-
munity of scientists that are united by their goals of understanding
science. These practitioners of science of science use the scientific methods
to study themselves, examine projects that work as well as those that fail,
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quantify the patterns that characterize discovery and invention, and offer
lessons to improve science as a whole. In this book, we aim to introduce
this burgeoning field — its rich historical context, exciting recent develop-
ments, and promising future applications.

We had three core audiences in mind as we wrote this book.
The primary audience includes any scientist or student curious about
the mechanisms that govern our passion, science. One of the founding
fathers of the science of science, Thomas Kuhn, a physicist turned
philosopher, triggered worldwide interest in the study of science back
to 1962 with the publication of The Structure of Scientific Revolutions.
Kuhn’s notion of “paradigm shift” today is used in almost every cre-
ative activity, and continues to dominate the way we think about the
emergence and acceptance of new ideas in science. In many ways, the
science of science represents the next major milestone in this line of
thinking, addressing a series of questions that are dear to the heart of
every scientist but may well lay outside of the Kuhnian worldview:
When do scientists do their best work? What is the life cycle of scientific
creativity? Are there signals for when a scientific hit will occur in a
career? Which kinds of collaboration triumph and which are destined to
for disaster? How can young researchers maximize their odds of suc-
cess? For any working scientist, this book can be a tool, providing data-
driven insight into the inner workings of science, and helping them
navigate the institutional and scholarly landscape in order to better
their career.

A broader impact of the science of science lies in its implications
for policy. Hence, this book may be beneficial to academic adminis-
trators, who can use science of science to inform evidence-based deci-
sion-making. From department chairs to deans to vice presidents of
research, university administrators face important personnel and invest-
ment decisions as they try to implement and direct strategic research.
While they are often aware of a profusion of empirical evidence on this
subject, they lack cohesive summaries that would allow them to extract
signals from potential noise. As such, this book may offer the know-
ledge and the data to help them better take advantage of useful insights
the science of science community has to offer. What does an b-index of
25 tell us about a physics faculty member seeking tenure? What would
the department most benefit from: a junior vs. a senior hire? When
should we invest in hiring a superstar, and what can we expect their
impact will be?
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Albert Einstein published 248 papers in his lifetime, Charles
Darwin 119, Louis Pasteur 172, Michael Faraday 161, Siméon Denis
Poisson 158, and Sigmund Freud 330 [1]. Contrast these numbers with
the body of work of Peter Higgs, who had published only 25 papers by
the age of 84, when he received the Nobel Prize for predicting the Higgs
boson. Or think of Gregor Mendel, who secured an enduring legacy
with only seven scientific publications to his name [2].

These differences show that in the long run what matters to a
career is not productivity, but impact. Indeed, there are remarkable
differences among the impact of the publications. Even for star scien-
tists, of all papers they publish, at most a few may be remembered by a
later generation of scientists. Indeed, we tend to associate Einstein’s
name with relativity and Marie Curie with radioactivity, while lacking
general awareness of the many other discoveries made by each. In other
words, one or at most a few discoveries — the outliers — seem to be what
define a scientist’s career. So, do these outliers accurately represent a
scientific career? Or did these superstar scientists just get lucky in one or
a few occasions along their careers?

And, if only one or at most a few papers are remembered, when
do scientists make that defining discovery? Einstein once quipped, “A
person who has not made his great contribution to science before the
age of 30 will never do so” [3]. Indeed, Einstein was merely 26 years old
when he published his Annus Mirabilis papers. Yet, his observation
about the link between youth and discovery was not merely autobio-
graphical. Many of the physicists of his generation too made their
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defining discoveries very early in their career — Heisenberg and Dirac at
24; Pauli, Fermi, and Wigner at 25; Rutherford and Bohr at 28. But is
youth a necessity for making an outstanding contribution to science?
Clearly not. Alexander Fleming was 47 when he discovered penicillin.
Luc Montagnier was 51 when he discovered HIV. And John Fenn was
67 when he first began to pursue the research that would later win him
the Nobel Prize in chemistry. So, how is creativity, as captured by
scientific breakthroughs, distributed across the lifespan of a career?

The first part of this book will dive into these sets of fascinating
questions regarding scientific careers. Indeed, as we survey our young
and not so young colleagues doing groundbreaking work, we are
prompted to ask: Are there quantitative patterns underlying when
breakthrough work happens in a scientific career? What mechanisms
drive the productivity and impact of a scientist? The chapters in this part
will provide quantitative answers to these questions, offering insights
that affect both the way we train scientists and the way we acknowledge
and reward scientific excellence.



PRODUCTIVITY OF A SCIENTIST

Paul Erdés, arguably the most prolific mathematician in the
twentieth century, was, by all accounts, rather eccentric. The
Hungarian-born mathematician — who moved to the US before the start
of WWII - lived out of a ragged suitcase that he famously dragged with
him to scientific conferences, universities, and the homes of colleagues
all over the world. He would show up unannounced on a colleague’s
doorstep, proclaim gleefully, “My mind is open.” He then spent a few
days working with his host, before moving on to surprise some other
colleague at some other university. His meandering was so constant that
it eventually earned him undue attention from the FBI. To his fellow
mathematicians, he was an eccentric but lovable scientist. But to law
enforcement officers during the Cold War, it was suspicious that he
crossed the Iron Curtain with such ease. Indeed, Erd6s was once
arrested in 1941 for poking around a secret radio tower. “You see,
I was thinking about mathematical theorems,” he explained to the
authorities in his thick Hungarian accent. It took decades of tracking
for the Bureau to finally believe him, concluding that his rambling was
indeed just for the sake of math.

His whole life was, too. He had no wife, no children, no
job, not even a home to tie him down. He earned enough in guest
lecturer stipends from universities and from various mathematics
awards to fund his travels and basic needs. He meticulously
avoided any commitment that might stand in the way of his work.
Before he died in 1996 at the age of 83, Erd6és had written or
coauthored a stunning 1,475 academic papers in collaboration
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with 511 colleagues. If total publication counts as a measure of
productivity, how does Erdds’ number compare to the productivity
of an ordinary scientist? It surely seems exceptional. But how
exceptional?

1.1 How Much Do We Publish?

Scholarly publications are the primary mode of communication

in science, helping disseminate knowledge. The productivity of a scien-
tist captures the rate at which she adds units of knowledge to the field.
Over the past century, the number of publications has grown exponen-
tially. An important question is whether the growth in our body of
knowledge is simply because there are now more scientists, or because
each scientist produces more on average than their colleagues in
the past.

An analysis of over 53 million authors and close to 9o million
papers published across all branches of science shows that both the
number of papers and scientists grew exponentially over the past
century [4]. Yet, while the former grew slightly faster than the latter
(Fig. 1.1a), meaning that the number of publications per capita has
been decreasing over time, for each scientist, individual productivity
has stayed quite stable over the past century. For example, the
number of papers a scientist produces each year has hovered at
around two for the entire twentieth century (Fig. 1.1b, blue curve),
and has even increased slightly during the past 15 years. As of 2015,
the typical scientist authors or coauthors about 2.5 papers per year.
This growth in individual productivity has its origins in collabor-
ations: Individual productivity is boosted as scientists end up on
many more papers as coauthors (Fig. 1.1b, red curve). In other
words, while in terms of how many scientists it takes to produce a
paper, that number has been trending downwards over the past
century, thanks to collaborative work individual productivity has
increased during the past decade.

1.2 Productivity: Disciplinary Ambiguities

But, when it comes to a scientist’s productivity, it’s not easy to
compare across disciplines. First, each publication may represent a unit
of knowledge, but that unit comes in different sizes. A sociologist may
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number of papers coauthored by each physicist has been less than one during the
past 1oo years, but increased sharply in the past 15 years. After Dong et al. [4] and
Sinatra et al. [5].

not feel their theory is fully articulated unless the introduction of the
paper spans a dozen pages. Meanwhile, a paper published in Physical
Review Letters, one of the most respected physics journals, has a strict
four-page limit, including figures, tables, and references. Also, when we
talk about individual productivity, we tend to count publications in
scientific journals. But in some branches of the social sciences and
humanities, books are the primary form of scholarship. While each
book is counted as one unit of publication, that unit is admittedly much
more time-consuming to produce.

And then there is computer science (CS). As one of the youngest
scientific disciplines (the first CS department was formed at Purdue
University in 1962), computer science has adopted a rather unique
publication tradition. Due to the rapidly developing nature of the field,
computer scientists choose conference proceedings rather than journals
as their primary venue to communicate their advances. This approach
has served the discipline well, given everything that has been accom-
plished in the field — from the Internet to artificial intelligence — but it
can be quite confusing to those outside the discipline.
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Box 1.1 The study of productivity has a long history [9-15]

In 1926, Alfred J. Lotka [1 1] observed that the number of papers produced
by scientists follows a fat-tailed distribution. In other words, he found that
a small fraction of scientists are responsible for the bulk of scientific
literature. Lotka studied 6,891 authors listed in Chemical Abstracts pub-
lishing between 1907 and 1916, concluding that the number of authors
making N contributions follows a power law

P(N)~N"“, (1.2)

where the exponent a = 2. A power law predicts that productivity has a
long tail, capturing major variations among individuals. Note that it often
requires a large amount of data to reliably distinguish a power law from a
lognormal distribution [9], which Lotka did not have in 1926.

This lognormal distribution of productivity is rather odd, as
Shockley quickly noticed. Indeed, in most competitive arenas, individual
performance metrics almost always follow a narrow distribution. Think
about running. At the Rio Olympics in 2016, Usain Bolt finished the
1oo-meter final in just 9.81 seconds. Justin Gatlin came in second and
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Andre De Grasse in third, with running times 9.89 s and 9.91 s, respect-
ively. These numbers are awfully close, reflecting a well-known fact that
performance differences between individuals are typically bounded [16].
Similarly, Tiger Woods, even on his best day, only took down his closest
contenders by a few strokes, and the fastest typist may only type a few
words more per minute than a merely good one. The bounded nature of
performance reminds us that it is difficult, if not impossible, to signifi-
cantly outperform the competition in any domain. Yet, according to
Fig. 1.2, this boundedness does not hold for scientific performance.
Apparently, it is possible to be much better than your competitors when
it comes to churning out papers. Why is that?

1.4 Why So Productive?

Shockley proposed a simple model to explain the lognormal

productivity distribution he observed (Eq. 1.1) [9]. He suggested that in
order to publish a paper, a scientist must juggle multiple factors, like:

F,. Identify a good problem.

F,. Make progress with it.

F,. Recognize a worthwhile result.

E,. Make a decision as to when to stop the research and start writing up
the results.

F;. Write adequately.

F¢. Profit constructively from criticism.

. Show determination to submit the paper for publication.

Fg. Make changes if required by the journal or the referees.

If any of these steps fail, there will be no publication. Let us assume that
the odds of a person clearing hurdle F; from the list above is p;. Then,
the publication rate of a scientist is proportional to the odds of clearing
each of the subsequent hurdles, thatis N ~ p.p.p;p.pspsp-ps. If each of
these odds are independent random variables, then the multiplicative
nature of the process predicts that P(N) follows a lognormal distribu-
tion of the form (1.1).

To understand where the outliers come from, imagine, that
Scientist A has the same capabilities as Scientist B in all factors, except
that A is twice as good at solving a problem (F,) knowing when to stop
(F,), and determination (F,). As a result, A’s productivity will be eight
times higher than B’s. In other words, for each paper published by
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Scientist B, Scientist A will publish eight. Hence small differences in
scientists’ ability to clear individual hurdles can together lead to large
variations in overall productivity.

Shockley’s model not only explains why productivity follows
lognormal distribution, but it also offers a framework to improve our
own productivity. Indeed, the model reminds us that publishing a paper
does not hinge on a single factor, like having a great idea. Rather, it
requires scientists to excel at multiple factors. When we see someone
who is hyper-productive, we tend to attribute it to a single exceptional
factor. Professor X is really good at coming up with new problems (F,),
or conveying her ideas in writing (F,). The model suggests, however,
that the outliers are unlikely to be explained by a single factor; rather, a
researcher is most productive when she excels across many factors and
fails in none.

The hurdle model indicates that a single weak point can
choke an individual’s productivity, even if he or she has many
strengths. It also tells us that Erd6és may have not been as super-
human as we often think he was, or that his productivity might be
attainable with careful honing of various skills. Indeed, if we could
improve at every step of writing a paper, and even if it’s just a tiny bit
in each step, these improvements can combine to exponentially
enhance productivity. Admittedly, this is easier said than done. But
you can use this list to diagnose yourself: What step handicaps your
productivity the most?

The remarkable variations in productivity have implications
for reward. Indeed, Shockley made another key observation: while
the productivity of a scientist is multiplicative, his salary — a form of
reward often tied to performance — is additive. The highest paid
employees earn at best about 50-100 percent more than their peers.
There are many reasons why this is the case — it certainly seems fairer,
and it helps ensure a collaborative environment. Yet, from a paper-
per-dollar perspective, Shockley’s findings raise some interesting ques-
tions about whether the discrepancy between additive salaries and
multiplicative productivities could be exploited. Indeed, an institution
may be better off employing a few star scientists, even if that means
paying them a great deal more than their peers. Shockley’s arguments
are often used as a rationale for why top individuals at research-
intensive institutions are offered much higher salaries and special
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perks, and why top departments within a university get disproportio-
nately more funding and resources.

To be sure, gauging a career based on publication count
alone grossly misrepresents how science works. Yet, individual prod-
uctivity has been shown to closely correlate with the eminence of a
scientist as well as her perceived contributions to the field. This
pattern was documented by Wayne Dennis, dating back at least to
1954 [1], when he studied 71 members of the US National Academy
of Sciences and eminent European scientists. He found that, almost
without exception, highly productive individuals have also achieved
scientific eminence, as demonstrated by their listing in the Encyclo-
pedia Britannica or in histories of important developments they have
contributed to the sciences. Higher productivity has been shown to
increase the odds of receiving tenure [17], and of securing funding
for future research [18]. At the institutional level, the publication
rates of the faculty are not only a reliable predictor of a program’s
reputation, they also influence the placement of graduates into fac-
ulty jobs [19].

In sum, sustained high productivity is rare, but it correlates with
scientific impact and eminence. Given this evidence, it may appear that
productivity is the key indicator for a meaningful career in science. Yet,
as we show in the following chapters, among the many metrics used to
quantify scientific excellence, productivity is the least predictive. The
reason is simple: While great scientists tend to be very productive, not
all scientists who are productive make long-lasting contributions. In
fact, most of them do not. Multiple paths can lead to achieving high
productivity. For example, lab technicians in certain fields may find
their names on more than a hundred — or sometimes as many as a
thousand — papers. Hence, they appear to be exceptionally prolific
based on their publication counts, but are rarely credited as the intellec-
tual owner of the research. The way people publish is also changing
[20]. Coauthorship is on the rise, as are multiple publications on
the same data. There have also been more discussions about LPUs,
which stands for least publishable unit [20] or the “salami publishing”
approach, which could further contribute to inflated productivity
counts.

So, if productivity is not the defining factor of a successful
career, what is?
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Box 1.2 Name disambiguation

Our ability to accurately track individual productivity relies on our skill to
identify the individual(s) who wrote a paper and all other work that
belongs to that individual [21, 22]. This seemingly simple task represents
a major unsolved problem [21-23], limited by four challenges. First, a
single individual may appear in print under multiple names because of
orthographic and spelling variants, misspellings, name changes due to
marriage, religious conversion, gender reassignment, or the use of pen
names. Second, some common names can be shared by multiple individ-
uals. Third, the necessary metadata is often incomplete or missing. This
includes cases where publishers and bibliographic databases failed to
record authors’ first names, their geographical locations, or other identify-
ing information. Fourth, an increasing percentage of papers is not only
multi-authored, but also represents multidisciplinary and multi-
institutional efforts. In such cases, disambiguating some of the authors
does not necessarily help assign the remaining authors.

While multiple efforts are underway to solve the name disambigu-
ation problem, we need to be somewhat mindful about the results pre-
sented in this and following chapters, as some conclusions may be affected
by the limitations in disambiguation. In general, it is easier to disambigu-
ate productive scientists, who have a long track record of papers, com-
pared with those who have authored only a few publications. Therefore,
many studies focus on highly productive scientists with unusually long
careers instead of “normal” scientists.
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The b-index of Albert Einstein (a) and Peter Higgs (b). To calculate
the h-index, we plot the number of citations versus paper number, with papers listed
in order of decreasing citations. The intersection of the 45° line with the curve gives
h. The total number of citations is the area under the curve [26]. According to
Microsoft Academic Graph, Einstein has an h-index of 67, and Higgs 8. The top
three most cited papers by Einstein are: (1) Can quantum mechanical description of
physical reality be considered complete, Physical Review, 1935; (2) Investigations
on the theory of Brownian movement, Annalen der Physik, 1905; and (3) On the
electrodynamics of moving bodies, Annalen der Physik, 1905. The top three for
Higgs are: (1) Broken symmetries and the masses of gauge bosons, Physical Review
Letters, 1964; (2) Broken symmetries, massless particles and gauge fields, Physies
Letters, 1964; (3) Spontaneous symmetry breakdown without massless bosons,
Physical Review, 1966.

Chapter 19). Yet, despite the model’s simplicity, the linear relation-
ship predicted by (2.3) holds up generally well for scientists with
long scientific careers [26].

This linear relationship (2.3) has two important implications:

(1) If a scientist’s h-index increases roughly linearly with time, then its
speed of growth is an important indicator of her eminence. In other
words, the differences between individuals can be characterized by
the slope, m. As (2.2) shows, 1 is a function of both 7 and c. So, if a
scientist has higher productivity (a larger #), or if her papers collect
more citations (higher c¢), she has a higher 7. And the higher the m,
the more eminent is the scientist.

(2) Based on typical values of m, the linear relationship (2.3) also
offers a guideline for how a typical career should evolve. For
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example, Hirsch suggested in 2005 that for a physicist at
major research universities, # ~ 12 might be a typical value
for achieving tenure (i.e., the advancement to associate profes-
sor) and that » ~ 18 might put a faculty member into consider-
ation for a full professorship. Fellowship in the American
Physical Society might typically occur around /» ~ 15-20, and
membership in the US National Academy of Sciences may
require b =~ 45 or higher.

Since its introduction, the h-index has catalyzed a profusion of
metrics and greatly popularized the idea of using objective indicators to
quantify nebulous notions of scientific quality, impact or prestige [27].
As a testament to its impact, Hirsh’s paper, published in 2005, had been
cited more than 8,000 times as of the beginning of 2019, according to
Google Scholar. It even prompted behavioral changes — some ethically
questionable — with scientists adding self-citations for papers on the
edge of their h-index, in hopes of boosting it [28—30]. Given its preva-
lence, we must ask: can the h-index predict the future impact of a
career?

Box 2.1 The Eddington number

The h-index for scientists is analogous to the Eddington number for
cyclists, named after Sir Arthur Eddington (1882-1944), an English
astronomer, physicist, and mathematician, famous for his work on the
theory of relativity. As a cycling enthusiast, Eddington devised a measure
of a cyclist’s long-distance riding achievements. The Eddington number,
E, is the number of days in your life when you have cycled more than E
miles. Hence an Eddington number of 7o would mean that the person in
question has cycled at least 7o miles a day on 70 occasions. Achieving a
high Eddington number is difficult, since jumping from, say, 70 to 73
may require more than § new long-distance rides. That’s because any
rides shorter than 75 miles will no longer be included. Those hoping to
increase their Eddington number are forced to plan ahead. It might be
easy to achieve an E of 15 by doing 15 trips of 15 miles — but turning that
E = 15 into an E = 16 could force a cyclist to start over, since an E number
of 16 only counts trips of 16 miles or more. Arthur Eddington, who
reached an E = 87 by the time he died in 1944, clearly understood that if
he wanted to achieve a high E number, he had to start banking long rides
early on.
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2.2 The Predictive Power of the A-Index

To understand the value of the b-index, let’s take a look at the
“usual suspects” — metrics that are commonly used to evaluate a scien-

tist’s performance, and review their strengths and limitations [26].

(1) Total number of publications (N).
Advantage: Measures the productivity of an individual.
Disadvantage: Ignores the impact of papers.

(2) Total number of citations (C).

Advantage: Measures a scientist’s total impact.

Disadvantage: It can be affected by a small number of big hits,
which may not be representative of the individual’s overall
career, especially when these big hits were coauthored with
others. It also gives undue weight to highly cited reviews as
opposed to original research contributions.

(3) Citations per paper (C/N).

Advantage: Allows us to compare scientists of different ages.

Disadvantage: Outcomes can be skewed by highly cited papers.

(4) The number of “significant papers,” with more than ¢ citations.

Advantage: Eliminates the disadvantages of (1), (2), (3), and meas-
ure broad and sustained impact.

Disadvantage: The definition of “significant” introduces an arbi-
trary parameter, which favors some scientists or disfavors others.

(5) The number of citations acquired by each of the g most-cited papers

(for example, g = 5).

Advantage: Overcomes many of the disadvantages discussed above.

Disadvantage: Does not provide a single number to characterize a
given career, making it more difficult to compare scientists to
each other. Further, the choice of g is arbitrary, favoring some
scientists while handicapping others.

The key advantage of the h-index is that it sidesteps all of the
disadvantages of the metrics listed above. But, is it more effective
at gauging the impact of an individual’s work? When it comes to
evaluating the predictive power of metrics, two questions are often
the most relevant.

Qr1: Given the value of a metric at a certain time ¢,, how well does it
predict the value of itself or of another metric at a future time ¢,?
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This question is especially interesting for hiring decisions. For example,
if one consideration regarding a faculty hire is the likelihood of the
candidate to become a member of the National Academy of Sciences
20 years down the line, then it would be useful to rank the candidates by
their projected cumulative achievement after 20 years. Hirsch tested Ot
by selecting a sample of condensed matter physicists and looked at their
publication records during the first 12 years of their career and in the
subsequent 12 years [31]. More specifically, he calculated four different
metrics for each individual based on their career records in the first 12
years, including the h-index (Fig. 2.za), the total number of citations
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Quantifying predictive power of the h-index. Scatter plots compare
the tatal number of citations, C, after ¢, = 24 years vs. the value of the various
indicators at 7, = 12 year for each individual within the sample. Hirsch hypothesized
C may grow quadratically with time, and hence used its square root when calculating
the total number of citations. By calculating the correlation coefficient, he found that
the h-index (a) and the number of citations at ¢, (b) are the best predictors of the
future cumulative citations at #,. The number of papers correlates less (c), and the
number of citations per paper performs the worst (d). After Hirsch [31].
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(Fig. 2.2b), the total number of publications (Fig. 2.2¢), and the average
number of citations per paper (Fig. 2.2d). He then asked if we want to
select candidates that have the most total citations by year 24, which
one of the four indicators gives us the best chance? By measuring the
correlation coefficient between future cumulative citations at time #, and
four different metrics calculated at time ¢,, he found that the h-index
and the number of citations at time #, turn out to be the best predictors
(Fig. 2.2).

While Fig. 2.2 shows that the A-index predicts cumulative
impact, in many cases it’s the future scientific output that matters the
most. For example, if we’re deciding who should get a grant, how many
more citations an applicant’s earlier papers are expected to collect in the
next few years is largely irrelevant. We’re concerned, instead, with
papers that the potential grantee has not yet written and the impact of
those papers. Which brings us to Q2:

Q2: How well do the different metrics predict future scientific output?

To answer Q2, we need to use indicators obtained at ¢, to predict
scientific achievement occurring only in the subsequent period,
thereby omitting all citations to work performed prior to ¢,.
Hirsch repeated the similar prediction task for the four metrics,
but this time used each of them to predict total citations accrued
by papers published only in the next 12 years. Naturally, this is a
more difficult task, but an important one for allocating research
resources. Hirsch found that the h-index again emerges as the
best predictor for achievement incurred purely in future time
frame [31].

These findings indicate that two individuals with similar b are
comparable in terms of their overall scientific achievement, even if their
total number of papers or citations are quite different. Conversely, two
individuals of the same scientific age can have a similar number of total
papers or citation counts but very different » values. In this case, the
researcher with the higher 5 is typically viewed by the community as the
more accomplished. Together, these results highlight the key strength of
the h-index: When evaluating scientists, it gives an easy but relatively
accurate estimate of an individual’s overall scientific achievements.
Yet at the same time, we must also ask: What are the limitations of
the h-index?
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must account for the field-dependent nature of citations [43]. This can
be achieved by the h,-index, which rescales the rank of each paper #
by the average number of papers written by author in the same year
and discipline, 7, [43] or the hg-index, which normalizes the h-index
by the average / of the authors in the same discipline [44].

e Time dependence. As we discussed in Chapter 2.2, the h-index is time
dependent. When comparing scientists in different career stages, one
can use the m quotient (2.2) [26], or contemporary h-index [45].

e Collaboration effects. Perhaps the greatest shortcoming of the h-index
is its inability to discriminate between authors that have very different
coauthorship patterns [46—48]. Consider two scientists with similar
b indices. The first one is usually the intellectual leader of his/her
papers, mostly coauthored with junior researchers, whereas the second
one is mostly a junior author on papers coauthored with eminent
scientists. Or consider the case where one author always publishes
alone whereas the other one routinely publishes with a large number
of coauthors. As far as the h-index is concerned, all these scientists are
indistinguishable. Several attempts have been proposed to account for
the collaboration effect, including fractionally allocating credit in
multi-authored papers [48-50], and counting different roles played
by each coauthor [51—54] by for example differentiating the first and
last authorships. Hirsch himself has also repeatedly acknowledged this
issue [46, 47|, and proposed the A -index to quantify an individual’s
scientific leadership for their collaborative outcomes [47]. Among all
the papers that contribute to the h-index of a scientist, only those
where he or she was the most senior author (the highest #-index among
all the coauthors) are counted toward the h,-index. This suggests that a
high h-index in conjunction with a high by /k ratio is a hallmark of
scientific leadership [47].

In addition to these variations of the h-index, there are other metrics to
quantify the overall achievement of individual scientists, including the
ito-index, used exclusively by Google Scholar |5 5], which computes the
number of articles with at least 1o citations each; or the SARA method
[56], which uses a diffusion algorithm that mimics the spreading of
scientific credits on the citation network to quantify an individual’s
scientific eminence. Despite the multitude of metrics attempting to
correct the shortcomings of the h-index, to date no other bibliometric
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index has emerged as preferable to the h-index, cementing the status of
the b-index as a widely used indicator of scientific achievement.

As we dug deeper into h-index and the voluminous body of
work motivated by it, it was easy to forget a perhaps more important
point: No scientist’s career can be summarized by a single number. Any
metric, no matter how good it is at achieving its stated goal, has
limitations that must be recognized before it is used to draw conclusions
about a person’s productivity, the quality of her research, or her scien-
tific impact. More importantly, a scientific career is not just about
discoveries and citations. Rather, scientists are involved in much
broader sets of activities including teaching, mentoring, organizing
scientific meetings, reviewing, and serving on editorial boards, to name
a few. As we encounter more metrics for scientific eminence, it’s import-
ant to keep in mind that, while they may help us understand certain
aspects of scientific output, none of them alone can capture the diverse
contributions scientists make to our community and society [57, 58].
Just as Einstein cautioned: “Many of the things you can count, don’t
count. Many of the things you can’t count, do count.”

Therefore, we must keep in mind that the h-index is merely a
proxy to quantify scientific eminence and achievement. But the problem
is, in science, status truly matters, influencing the perception of quality
and importance of one’s work. That’s what we will focus on in the next
chapter, asking if and when status matters, and by how much.



THE MATTHEW EFFECT

Lord Rayleigh is a giant of physics, with several laws of nature
carrying his name. He is also known beyond the profession thanks to
Rayleigh scattering, which answers the proverbial question, “Why is the
sky blue?” Rayleigh was already a respected scientist when, in 1886, he
submitted a new paper to the British Association for the Advancement
of Science to discuss some paradoxes of electrodynamics. The paper was
promptly rejected on the grounds that it did not meet the journal’s
expectation of relevance and quality. Yet, shortly after the decision,
the editors reversed course. Not because anything changed about the
paper itself. Rather, it turns out that Rayleigh’s name had been inadvert-
ently omitted from the paper when it was first submitted. Once the
editors realized it was Rayleigh’s work, it was immediately accepted
with profuse apologies [59, 60]. In other words, what was initially
viewed as the scribblings of some “paradoxer,” suddenly became worth
publishing once it became clear that it was the work of a world-
renowned scientist.

This anecdote highlights a signaling mechanism critical in sci-
ence: the role of scientific reputation. Robert K. Merton in 1968 [60]
called this the Matthew effect after a verse in the biblical Gospel of
Matthew pertaining to Jesus’ parable of the talents: “For to everyone
who has will more be given, and he will have an abundance. But from
the one who has not, even what he has will be taken away.” The
Matthew effect as a concept has been independently discovered in
multiple disciplines over the last century, and we will encounter it again
in Chapter 17, when we discuss citations. In the context of careers, the
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Matthew effect implies that a scientist’s status and reputation alone
can bring additional attention and recognition. This means that status
not only influences the community’s perception of the scientist’s cred-
ibility, playing an important role in how her work is evaluated, but it
also translates into tangible assets — from research funding to access to
outstanding students and collaborators — which in turn further
improve her reputation. The goal of this chapter is to unpack the role
of the Matthew effect in careers. When does it matter? And to what
extent?

3.1 What’s in a Name?

The Internet Engineering Task Force (IETF) is a community of
engineers and computer scientists who develop the protocols that run

the Internet. To ensure quality and functionality, engineers must submit
all new protocols as manuscripts that undergo rigorous peer review. For
a while, each manuscript included the name of every author. However,
beginning in 1999, some manuscripts replaced the full author list with a
generic “et al.,” concealing the name of some authors from the review
committee.

By comparing cases where well-known authors were hidden by
the et al. label with those where the hidden names were little-known,
researchers effectively conducted a real-world Lord Rayleigh experi-
ment [61]. They found that when an eminent name was present on a
submission, like the chair of a working group, which signals profes-
sional standing, the submission was 9.4 percent more likely to be
published. However, the “chair effect” declined by 7.2 percent when
the senior author’s name was masked by the et al. label. In other words,
name-based signaling accounts for roughly 77 percent of the benefits of
having an experienced author as a coauthor on the manuscript.

Interestingly, when the analysis was restricted to a small pool
of manuscripts that were “pre-screened,” or closely scrutinized, the
author name premium disappeared. This suggests that the status effect
only existed when the referees were dealing with high submission rates.
In other words, when the reviewers do actually read the manuscript,
carefully judging their content, status signals tend to disappear.

Given the exponential growth of science, we frequently encoun-
ter the “too many to read” situations. Yet, typically, peer review is a
rather involved process, with multiple rounds of communication
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between authors and expert reviewers, suggesting that the status signal-
ing may be less of a concern for scientific manuscripts. Indeed, through
those rebuttals and revisions, an objective assessment of the work is
expected to prevail. Yet, as we see next, the status effect is rarely
eliminated.

Whether an author’s status affects the perceived quality of his/
her papers has been long debated in the scientific community. To truly
assess the role of status, we need randomized control experiments,
where the same manuscript undergoes two separate reviews, one in
which the author identities are revealed and another in which they are
hidden. For obvious ethical and logistical reasons, such an experiment
is difficult to carry out. Yet, in 2017, a team of researchers at Google
were asked to co-chair the program of the Tenth Association for
Computing Machinery International Conference on Web Search and
Data Mining (WSDM), a highly selective computer science conference
with a 15.6 percent acceptance rate. The researchers decided to use the
assignment as a chance to assess the importance of status for a paper’s
acceptance [62].

There are multiple ways to conduct peer review. The most
common is the “single-blind” review, when the reviewers are fully
aware of the identity of the authors and the institution where they
work, but, the authors of the paper are not privy to the reviewer’s
identity. In contrast, in “double-blind” review, neither the authors nor
the reviewers know each other’s identity. For the 2017 WSDM confer-
ence the reviewers on the program committee were randomly split into a
single-blind and a double-blind group. Each paper was assigned to four
reviewers, two from the single-blind group and two from the double-
blind group. In other words, two groups of referees were asked to
independently judge the same paper, where one group was aware of
who the authors were, while the other was not.

Given the Lord Rayleigh example, the results were not surpris-
ing: Well-known author — defined as having at least three papers
accepted by previous WSDM conferences and at least Too computer
science papers in total — were 63 percent more likely to have the paper
accepted under single-blind review than in double-blind review. The
papers under review in these two processes were exactly the same,
therefore, the difference in acceptance rate can only be explained by
author identity. Similarly, authors from top universities had a 58 percent
increase in acceptance once their affiliation was known. Further, for
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cited again. This phenomenon is called preferential attachment, which we
will discuss again in detail in Chapter 17. To see how an author’s
reputation affects the impact of her publications, we can measure the
early citation premium for well-known authors [65]. For example, for
a group of well-known physicists, their paper has acquired around 40
citations (¢, ~ 40) before preferential attachment turns on (Fig. 3.1). In
contrast, for junior faculty in physics (assistant professors), ¢, drops from
40 to 10. In other words, right after its publication, a senior author’s
paper appears four times more likely to be cited than a junior author’s.

Figure 3.1 suggests that reputation plays an important role
early on, when the number of citations is small (i.e., when ¢ < ¢).
Yet, with time, the reputation effect fades away, and the paper’s long-
term impact is primarily driven by mechanisms inherent to papers
rather than their authors. In other words, well-known authors enjoy
an early citation premium, representing better odds of their work to be
noticed by the community. This leads to a leg-up in early citations. But
with time, this reputation effect vanishes, and preferential attachment
takes over, whose rate is driven primarily by the collective perception of
the inherent value of the discovery.

The reputation boost discussed above is not limited to new
papers. Eminence can spill over to earlier works as well, boosting their
impact. Sudden recognitions, like receiving the Nobel Prize, allow us
to quantify this effect. Consider, for example, John Fenn, who received
the 2002 Nobel Prize in chemistry for the development of the
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The cross-over effect of reputation on citations. The linear
attachment rate breaks down for ¢ < ¢, suggesting that additional forces
provide a citation boost which elevates ¢(¢) to deviate from what is
predicted by the pure preferential attachment mechanism. Datasets include
100 top-cited physicists, and another 1oo highly prolific physicists. After
Petersen et al. [65].
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electrospray ionization technique. His original discovery, published in
Science in 1989 [69], is Fenn’s most cited work, collecting close to
8,500 citations by 2018 according to Google Scholar. But as his
landmark paper started to collect citations at an exceptional rate
following its publication, the citation rates of several of Fenn’s older
papers also started to grow at a higher pace. Analyses of 124 Nobel
laureates show that this boost is common [70]: The publication of a
major discovery increases the citation rates of papers the author pub-
lished before. Interestingly, the older papers that enjoyed the citation
boosts are not necessarily related to the topic of the new discovery. In
other words, reputational signaling operates by bringing professional
attention to the individual. Consequently, when an author becomes
prominent in one area of science, her reputation may be extended to
her other line of work, even in unrelated fields.

Box 3.2 From boom to bust: The reverse Matthew effect

If a major breakthrough blesses both past and future scholarship, what
does a scandal do to a career? Scientists are certainly fallible, and the
scientific community regularly confronts major mistakes or misconduct.
These incidents lead to retractions of articles, particularly in top journals
[71], where they receive enhanced scrutiny. To what degree does a
retracted paper affect a scientific career? Are eminent authors affected
more or less severely than their junior colleagues? While retractions are
good for science, helping other researchers avoid false hypotheses, retrac-
tions are never good for the authors of the retracted paper: they experience
a spillover, leading to citation losses to their prior body of work as well
[72—74]. The negative impact is not distributed equally, however: Eminent
scientists are more harshly penalized for their retracted papers than when
retractions happen to their less-distinguished peers [74]. Importantly, this
conclusion only holds when the retractions involve fraud or misconduct.
In other words, when the retraction is perceived to be the consequence of
an “honest mistake,” the penalty differential between high- and low-status
authors disappears [74].

When a senior and junior scientists are on the same retracted paper,
however, the status penalty becomes quite different [75]: Senior authors
often escape mostly unscathed, whereas their junior collaborators carry
the blame, sometimes even to a career-ending degree. We will return to this
effect in Chapter 13, where we explore the benefits and the drawbacks of
collaborative work.
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3.3 s it Really the Matthew Effect After All?

Great scientists are seldom one-hit wonders [60, 76]. Newton is a
prime example: beyond the Newtonian mechanics, he developed the
theory of gravitation, calculus, laws of motion, optics, and optimization.
In fact, well-known scientists are often involved in multiple discoveries,

another phenomenon potentially explained by the Matthew effect.
Indeed, an initial success may offer a scientist legitimacy, improve peer
perception, provide knowledge of how to score and win, enhance social
status, and attract resources and quality collaborators, each of these
payoffs further increasing her odds of scoring another win. Yet, there is
an appealing alternative explanation: Great scientists have multiple hits
and consistently succeed in their scientific endeavors simply because
they’re exceptionally talented. Therefore, future success again goes to
those who have had success earlier, not because of advantages offered
by the previous success, but because the earlier success was indicative of a
hidden talent. The Matthew effect posits that success alone increases the
future probability of success, raising the question: Does status dictate
outcomes, or does it simply reflect an underlying talent or quality? In
other words, is there really a Matthew effect after all?

Why should we care about which is the more likely explan-
ation, if the outcome is the same? Indeed, independent of the mechan-
ism, people who have previously succeeded are more likely to succeed
again in the future. But, if innate differences in talent is the only reason
why some people succeed while others don’t, it means that the deck is
simply stacked in favor of some — at the expense of others — from the
outset. If, however, the Matthew effect is real, each success you experi-
ence will better your future chances. You may not be Einstein, but if you
are lucky to get that early win, you may narrow the gap between
yourself and someone of his eminence, as your success snowballs.

Unfortunately, it is rather difficult to distinguish these two
competing theories, as they yield similar empirical observations. One
test of these contrasting hypotheses was inspired by the French Acad-
emy’s mythical “41st chair.” The Academy decided early on to have
only 40 seats, limiting its membership to 40 so-called “immortals,” and
would only consider nominations or applications for new members if
one of the seats became vacant through the death of a member. Given
this restriction, many deserving individuals were never elected into the
Academy, being eternally delegated to the grst chair. It’s a crowded
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seat, shared by true immortals like Descartes, Pascal, Moli¢re, Rous-
seau, Saint-Simon, Diderot, Stendahl, Flauberta, Zola, and Proust [60].
At the same time, many of those who did hold a seat in the esteemed
club are (unfortunately) utterly irrelevant to us today. With time, the
471st chair became a symbol of the many talented scientists who should
have been, but were never, recognized as giants of their discipline.

But, does it actually matter if someone is formally recognized or
not? Indeed, how does the post-award perception of major prizewinners
compare to scientists who had comparable performance, but who were
not officially recognized? In other words, how does the career of those
that occupied the 41st chair differed, had they been elected to the French
Academy? The answer is provided by a study, exploring the impact of a
major status-conferring prize [77].

As a prestigious private funding organization for biomedical
research in the United States, the Howard Hughes Medical Institute
(HHMI) selects “people, not projects,” generously supporting scientists
rather than awarding them grants for specific peer-reviewed research
proposals. The HHMI offers about US$1 million per investigator each
year, providing long-term, flexible funding that allows awardees the
freedom to follow their instincts, and if necessary, change research direc-
tions. Beyond the monetary freedom, being appointed an HHMI investi-
gator is seen as a highly prestigious honor. To measure the impact of the
HHMI award, the challenge is to create a control group of scientists who
were close contenders but who were not selected for the award and
compare their scientific outputs with those of the HHMI investigators.

But, let’s assume that we identify this control group of scientists,
and do find evidence that HHMI investigators have more impact. How can
we know that the difference is purely because of their newfound status?
After all, the US$1 million annual grant gives them the resources to do
better work. To sort this out, we can focus only on articles written by the
awardees before they received the award. Therefore, any citation differ-
ences between the two groups couldn’t be simply the result of the superior
resources offered to awardees. Sure enough, the analysis uncovered a post-
appointment citation boost to earlier works, offering evidence that in
science, the haves are indeed more likely to have more than the have-nots.

This success-breeds-success effect is not limited to HHMI inves-
tigators. When a scientist moves from a laureate-to-be to a Nobel
laureate, her previously published work — whether of Nobel prize-
winning caliber or not — gathers far more attention [78]. Once again,
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like the case of John Fenn discussed above, a person’s previous work
doesn’t change when she becomes an HHMI investigator or a Nobel
laureate. But with new accolades casting warm light on her contribu-
tion, attention to her work increases.

Interestingly, though, strictly controlled tests suggest that status
has only a modest role on impact, and that role is limited to a short
window of time. Consistent with theories of the Matthew effect, a prize
has a significantly larger effect when there is uncertainty about article
quality, and when prizewinners are of (relatively) low status at the time of
the award. Together, these results suggest that while the standard
approach to estimating the effect of status on performance is likely to
overstate its true influence, prestigious scientists do garner greater recog-
nition for their outputs, offering further support for the Matthew effect.

Box 3.3 Causal evidence for the Matthew effect: Field
experiments

Randomized experiments offer the best way to untangle the role of status
from individual differences such as talent. We can select two groups — a
control and a treatment group — and randomly assign an advantage to
some while denying it to others. If success is allocated independent of prior
success or status, any discrepancy in the subsequent advantage of recipi-
ents over non-recipients can only be attributed to the exogenously allo-
cated early success.

While we can’t assign life-altering awards or grants to randomly
chosen scientists [79], we can explore the phenomenon using experiments
carried out in real-world settings where the intervention causes minimal
harm. This is what Arnout van de Rijt and his collaborators did in a series
of experiments [8o, 81]. They randomly selected the most productive
Wikipedia contributors within a subset of the top 1 percent of editors
and randomly assigned them to one of two groups. Then they gave out
“barnstars” to the experimental group — an award used within the com-
munity to recognize outstanding editors, while leaving the control group
unrecognized. As shown in Fig. 3.2, prior to intervention, the activities of
the two groups are indistinguishable, as they were drawn randomly from
the same sample of productive editors. Yet once the fake barnstars
were bestowed on the experimental group, the awardees exhibited more
engagement than their peers in the control group, demonstrating greater
sustained productivity and less likelihood of discontinuing their editorial




40 | The Science of Science

20.0%

2623 - Age 36 and younger
== Age 66 and older

16.0%

12.0%

8.0%

Percent of all principal investigators

4.0%

0.0%

1980 1985 1990 1995 2000 2005 2010
Fiscal year

The graying of science. Changes in the percentage of NIH
Ror grant recipients, aged 36 and younger and aged 66 and older,
1980—2010. After Alberts et al. [82].

4.1 When Do Scientists Do their Greatest Work?

The earliest investigation into the link between a person’s age
and exceptional accomplishment dates back to 1874, when George
M. Beard estimated that peak performance in science and the creative
arts occurred between the ages of 35 and 40 [84]. Subsequently, Harvey
C. Lehman devoted around three decades to the subject, summarizing
his findings in Age and Achievement, a book published in 1953 [85].

Since then, dozens of studies have explored the role of age in a wide
range of creative domains, revealing a remarkably robust pattern: No
matter what creative domain we look at or how we define achievement,
one’s best work tends to occur around mid-career, or between 30 to 40
years of age [2, 66, 85-87].

Figure 4.2 shows the age distribution of signature achievements,
capturing Nobel prizewinners and great technological innovators of the
twentieth century [88]. The figure conveys three key messages:

(1) There is a large variance when it comes to age. While there are many
great innovations by individuals in their 30s (42%), a high fraction
contributed in their 40s (30%), and some 14 percent had their
breakthrough beyond the age of so.

(2) There are no great achievers younger than 19. While Einstein had
his annus mirabilis at the tender age of 26, and Newton’s annus
mirabilis came even earlier, at the age of 23, the Einsteins and
Newtons of the world are actually rare, because only 7 percent of
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the sample have accomplished their great achievement at or before
the age of 26.

(3) The Nobel laureates and the inventors come from two independ-
ent data sources, with only 7 percent overlap between the two
lists. Yet, the age distributions of these two samples are remark-
ably similar.

Thus, Fig. 4.2 demonstrates that scientific performance peaks
in middle age [2, 66, 85-87]. The life cycle of a scientist often begins
with a learning period, absent of major creative outputs. This is
followed by a rapid rise in creative output that peaks in the late 30s
or 40s and ends with a slow decline as he advances through his later
years. These patterns are remarkably universal. Researchers have
explored them in a variety of ways, identifying important scientists
by their Nobel Prizes, by their listings in encyclopedias, and by their
membership in elite groups like the Royal Society or the National
Academies. No matter how you slice the data, the patterns observed
in Fig. 4.2 remain essentially the same, raising two questions: Why
does creativity take off during our 20s and early 30s? And why does it
decline in later life?
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A remarkable feature of a scientific career is the lack of contri-
butions in the beginning of life [89]. Simply put, no 18 year old has
managed to produce anything worthy of a Nobel. The early life cycle
coincides with schooling, suggesting that the need for education may be




