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Inlro:

Some time around AD 820 the Persian
mathematician Abu ‘Abdallah Muhammad ibn
Musa al-Khwarizmi wrote his Compendious Book
on Calculation by Completion and Balancing.
There he gave us the word ‘algebra’ and gathered
together some of its basic principles. Fundamental
to algebra is the notion of balance, which the
equation has come to embody: if we put an apple
on one side and an orange on the other, the
scales balance when the two weights are equal.
And that's what every equation says: these two
things balance.

How to vse this bool

This book could be read from cover to cover,
like a novel, but most people don’t read maths
books that way. Maths is a vast, interconnected
network of ideas that asks to be explored rather
than watching it whizz by in a predefined order.
For that reason this book contains many cross-
references and you may well find that one section
makes more sense when you come back to it after
reading another, later one. Don't be dismayed
by this; it's how most of us feel most of the time
when studying maths. Even great mathematicians
sometimes report feeling lost and confused when
learning a new area of the subject. They also
describe the joy of finding unexpected connections,
some of which can be very profound and beautiful.
When meeting any new mathematical idea,
most of us need to start with an intuitive picture of
what's going on. This book can’t get too technical
— every one of its sections has been the subject
of whole books, sometimes many advanced and
complicated ones. What it can do is make the
general ideas plain and indicate ways in which
those ideas can talk to each other, sometimes
across widely different parts of mathematics,
science and everyday life. This inevitably involves
some quite drastic simplifications, which | hope
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beginners will appreciate and experts will forgive.
For similar reasons most of the graphs don‘t have
numerical scales and whatnot; | suppose this

will enrage maths teachers, but the removal of
extraneous details keeps our focus on the overall
shape of what'’s going on.

Notalion

Still, this is a book about equations. Many
popular maths books carefully chart their route
to avoid too many scary-looking formulas. This
one takes the opposite approach. Mathematicians’
notation is designed to make life easier, not
more difficult. In this respect it's just like other
special forms of notation, such as that used by
musicians, editors, choreographers, knitters and
chess-players. If you can’t parse it, it's completely
incomprehensible. But if you can, then, like

a picture, this notation can do the work of many
cumbersome words.

Our way of writing maths down isn't always
logical. It developed over hundreds of years and it
can be quirky, weird or downright silly; like most
things it shows traces of the historical process
that produced it. Perhaps someone could invent a
whole new way of writing equations that would
be more coherent, but only a foolhardy reformer
would dare to try. So don’t worry if sometimes it's
clear to you what a symbol represents but not why
it looks the way it does. At some point you learned
to read the words on this page; that was a much
more difficult task, involving a system of notation
that's almost completely arbitrary. If you managed
that, you can surely do this too.

I've assumed you know about positive and
negative whole numbers and what a fraction is,
along with the following principles from algebra.
Letters (or other symbols) can be used to stand
for numbers that are unknown or that can vary.
Multiplying these unknown quantities can be

Introdection



Table of Symbols
Here's a list of the most important symbols that crop up in multiple sections,
along with the place where they're first introduced.

VX Square root of x [Pythagoras's Theorem,
page 10]

3 Sum [Zeno’s Dichotomy, page 18]

lim Limit [Zeno’s Dichotomy, page 18]

oo Infinity [Zeno's Dichotomy, page 18]

m Pi [Euler’s Identity, page 40]

sin, cos, Trigonometric functions [Trigonometry, page 14]

tan

| Integral [The Fundamental Theorem of Calculus,
page 26]

d

% Derivative of y with respect to x (other letters
sometimes replace y and x) [The Fundamental
Theorem of Calculus, page 26]

2
ng: Second derivative of y with respect to x

(other letters sometimes replace y and x) [The
Fundamental Theorem of Calculus, page 26]

represented by putting the letters next to each
other, so that

axb=ab

and dividing one number by another is conveniently
represented by a fraction:

Finally, the all-important equals sign says that
the total of everything on one side of it is exactly
the same as on the other. All other notation will be
introduced as we go along.

Each equation works like a little machine with
moving parts; our main task is to understand
what each part does and how it interacts with
all the others. Sometimes that means spending
time unpacking or decoding notation. Sometimes
it means working through a simple example.
Sometimes it means getting to the bottom of
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x', x" First and second derivatives of x with respect to
time (alternative notation) [Curvature, page 30]

log, In Logarithms [Logarithms, page 36]

i The square root of -1 [Euler’s Identity, page 40]

v Laplacian [The Heat Equation, page 80]

div, curl Derivatives of vector fields [Maxwell’'s Equations,
page 92]

v Gradient [The Navier-Stokes Equation, page 96]

-,V Logical not, and, or [De Morgan's Laws,
page 126]

P(x) The probability of event x [The Uniform
Distribution, page 162]

P(x|y) The conditional probability of x given y [Bayes's

Theorem, page 168]

something obscure or, by contrast, catching a
hurried glimpse of it as we zoom past.

In fact, in terms of a traditional sequence of
maths education, this book is incredibly uneven:
one minute you're dealing with a bit of high-school
algebra, then on the next page you hit something
you'd meet only late-on in a university degree.

I've chosen to ignore that, because mathematical
subjects don't come with predefined levels of
difficulty. The arithmetic you learned as a child is,

it turns out, incredibly deep and mysterious, while
many so-called ‘advanced’ topics are actually pretty
easy to grasp once you get past the jargon. Go
with the flow, understand what you can and look
more deeply into the parts that grab your interest.
There isn't a wrong way to do this.
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Pylha:

The sides of a triangle tell us something basic about how space works.

What's It Abowt

Take any three sticks of any lengths. Call the
lengths A, B and C, and suppose A is the longest
one (or joint-longest one, if necessary). You'll find
you can make the sticks into a triangle as long as
A is less than B + C. If you want to make a triangle
with a right angle — a 90° corner, like the kind on
a square or rectangle — you have to have a very
special set of sticks, though. In fact, if you have
any two B and C sticks already fixed in a right
angle (making an L-shape), Pythagoras’s Theorem
tells you how long stick A must be to complete
the triangle.

At first this might seem less than impressive.
First, it only works for a triangle with a right angle
in it, which seems a bit of a limitation. Second,
when was the last time you had to work out
the lengths of the sides of a triangle anyway?
Well, it turns out that triangles are fantastically
important. In a sense a triangle is the simplest
two-dimensional shape you can make, so problems
involving other 2D shapes can often be turned
into problems about triangles. Many 3D problems
can, too. What's more, right-angled triangles have
a rather special place among all their three-sided
siblings (see Trigonometry, page 14).

The other sides

The long side J

The kind of triangle you get depends on the lengths
of its three sides. Some combinations of lengths can't
be made into a triangle at all.

Why Does It Hatter?

Pythagoras’s Theorem is one of the few equations
in this book that you might yourself use when,

for example, doing a bit of DIY around the house.
Still, that doesn't really explain why it's such an
important equation. What it captures is something
very basic about the way we expect distances

The Shape of Space: Geometry and Number



to work: in particular, how they relate to the
way we typically find our way about.

Imagine a big field with a solitary wooden
post somewhere around the middle of it. Suppose
I've hidden some treasure in a secret location in
this field and | need to direct you to the right spot
to dig it up by passing you a message that’s as
concise as possible. As long as | know you'll have
a compass with you (or you know how to find
north by looking at the sky), | can give you the
necessary information using just two numbers:
| can tell you to stand at the post and go so many
metres (or yards) north, and then so many metres
(or yards) east.

What if I've hidden the treasure somewhere
south-east of the post? No problem - | can give
you a negative number for the north distance,
and you'll be able to interpret —10m (-=10yd) north
as meaning 10m (10yd) south. In this way | can
identify any point in the field, however large it
is, with just those two numbers. In fact this is
a standard way to find our way around flat, two-
dimensional spaces, and it was formalized by the
French mathematician René Descartes in the early
1600s. Instead of north and east we often use
x and y, which you might remember from school.
Sometimes physicists use i and | to mean more or
less the same thing.

It's not even important where the post is; in fact,
if the post moves, | can always adjust the numbers
I've given you to take that into account. In a sense,
then, this allows us to get from any one point
(the post) to any other (the treasure). Here's what
Pythagoras does for us: in this setup we know the
distances north and east, and these form two sides
of a right-angled triangle (because east is at right
angles to north). So Pythagoras’s Theorem tells us
what the direct distance is between the post and
the treasure. That makes it a fundamental fact
about distances in space.

Perhaps you can see how to extend it to three
dimensions, too: simply add another number
indicating 'height above ground’ (see illustration,
page 12). If the number is negative, it tells you how
deep to dig downwards! Pythagoras's Theorem
still works in three dimensions, and even in higher

Pythagoras’

dimensions, too. We call these setups ‘rectangular
coordinate systems’, and Pythagoras’s Theorem
gives us a way to calculate lengths and distances.
This is some of the most basic information we need
in maths, physics and engineering where these
systems — and this equation — are used every day.

In lore Detail

We don’t know much about Pythagoras; he lived

in the Greek world in the 5th century BC and
became the leader of a religious cult whose beliefs
were steeped in numerology. Many weird stories
have been told about his life and teachings, but if
he himself ever wrote any of it down, none of it
survives. The fact known as Pythagoras'’s Theorem
probably wasn’t discovered or proved by him alone,
but it certainly seems to have been in circulation
among his followers. In the book The Ascent of
Man, the 20th-century mathematician and author
Jacob Bronowski called it ‘the most important
single theorem in all of mathematics’; that might
be pushing it a bit, but it's surely one of the ancient
mathematicians’ great achievements.

The first thing to notice is that on paper this
looks like an equation about areas rather than
lengths. After all, if A is a length, say 10cm (or
10in or 10 anything else), then A? is the area
of a 10cm x 10cm square, that is, 100cm? (one

Xé—-—_
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To find the point X from the origin O, we walk
a certain distance up and then to the right.
Here, that distance to the right is negative!

s Theovem 11



hundred square centimetres). That, in fact, is the

ancient view of it, summed up in a slogan that

schoolchildren down the centuries were made to

recite: ‘The square on the longest side is equal

to the sum of the squares on the other two sides."

This, though, hardly makes it clear why anyone

should care about it, since we very rarely come

across three squares arranged so neatly in real life.
The power of the theorem comes from our

ability to take square roots. The square root of

a number is just the number that, when you

multiply it by itself, takes you back to where

you started. So the square root of 9 is 3, because

3 x 3 =9. In other words, if you want to lay out

a square room whose area is 9m? you should make

each side of the room 3m long. In modern notation

we write

v9=3

with that odd tick symbol meaning ‘square root'.
We're now ready to use Pythagoras's Theorem

to find the length of stick we need to finish off a

triangle or, more excitingly, how far the treasure is

To find the bird from the base of
the post, we go a certain distance
north, a certain distance east and
a certain distance up. Any point in
3D space can be found this way.

from the post. For example, suppose stick B is 3cm
long and stick C is 4cm; they're already fixed in an
L-shape; we want to find the length of stick A to
complete the triangle:

A%=RB2%+C?
=32+42
=9+16

=25¢m?

So we know A?, but we want to find A; that is, we
know the area of the square and want the lengths
of its sides, which is exactly what the square root
gives us:

A=V25

=Scm

As in the example about areas given above,
this sum works equally well with sides of 3in, 4in
and 5in, or of any other unit. | didn't pick the
numbers 3, 4 and 5 by accident: when A, B and C
in Pythagoras’s Theorem are all nice whole numbers
they're called a 'Pythagorean Triple’. These aren't

N
ik T & AN {"!'I-:l' L;:‘.,-'_\‘. (RATE o Y,
: |
W \ Ull ' l‘ Lla { b \, /
|, - \ ’ M i | - 1 II'- l' |‘l J'I I \
| w&l-“"lm INERSLAY Hl\}*"f’-"‘{w” ‘u--“"‘"‘“‘ﬂ{‘*l VA IR [ |
e .‘_ t, | : \ \ -". ‘k L | A r.'{i { J_ il \_“. l-\, 3 -: rI| { | 4 \ . Ir‘- I’._':l
Y /“1\_\ “”'\:ltl!l Yy \'t"t_”l\l k..“}[:\ VL \ Im\_” A\ 11\'\“1 ll.t El't.,['- H'i.iq AN WY li,lllﬂlg'rtt .f-.it.\
!l(\l{},. \ -r|" '
x o Wiled oy,

>,

The Shape of Space: Geometry and Rember



raed
e
s—) as)

g

so easy to come up with by trial and error, but the The renowned Persian scholar Nasir al-Din al-Tusi
ancient Greek geometer Euclid figured out a clever ~ published his version of Euclid's Proof of the
way to find them. Pick any two different whole Pythagorean theorem in Arabic in 1258.

numbers — call them p and g — and suppose p is the
bigger one. Then make

and you have a Pythagorean Triple. If you know a

A=p%+¢q? little bit of algebra, try proving for yourself that this
{

B= qu works: B + C? will always equal A? if Euclid’s recipe

C=p%-¢? is followed.

Pythagoras’s Theorem looks like a relationship between
the areas of three squares, but actually it tells us how
to work out distances between points in space.
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Circles make the world go round; triangles give us a handle on them.

The angle

sin (@)

cos (a)

tan (a)

What's It Abowt?

The word ‘trigonometry’ means something like ‘the
art of measuring triangles’. Triangles are some of
the most basic shapes in geometry — they come up
everywhere in areas such as surveying, building and
astronomy, so it's not surprising that this is a very
old art indeed. In fact, in some ways trigonometry
s older than anything we would recognize as
geometry, or even mathematics: we can find its
beginnings in practical techniques used in ancient
Egypt and Babylon a good 4,000 years ago.

It turns out that trigopnometry has intimate
connections with circles, even though circles don‘t
lock much like triangles. This, too, was known
intuitively from very early on: a point moving in
a circle can be described by the trigonometric
functions, and they appear in many mathematical
models that involve circular or smooth back-and-
forth motions. As a result, they pop up in several
equations in this book.

1

The opposite side

The long side

The adjacent side

In More Detail

When it comes to measuring triangles, two things
spring to mind: the lengths of the three sides and
the sizes of the three angles. These are obviously
connected: to see this, take any three sticks and
you'll find there’s only one triangle you can make
with them, so the lengths seem to determine the
angles in advance.

This relationship is evidently more about
proportions than about actual lengths, though,
since two triangles can have the same angles but
different-length sides. In other words, they are the
same shape but different sizes — the jargon from
geometry class is that they're 'similar triangles’.

So it is the ratios of the lengths of the sides that
determine the angles in the triangle, not the actual
lengths themselves.

Around AD600, Indian scholars created the
main trigonometric ratios as we know them today,
though they went under different names: we call

The Shape of Space: Geometry and Number
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The sine function (on the right) is the height of the green triangle (on the left)
as its longest side sweeps around the red circle.

them sine ('sin’), cosine (‘cos’) and tangent (‘tan’).
There have been quite a few others, some of which
are still in regular use because they make certain
formulas or operations more convenient, but these
are the best-known ones. For a long time they
were laboriously calculated by measuring different
triangles. But why would anyone feel the need
to do this? The answer, at the time, was simple:
trigonometry helps us deal with common, real-life
problems that are tough to solve without it.
Suppose you want to measure the height of a
tall tree that's too difficult to climb. If you lie down
on the ground you can measure the angle you have
to look up at to see the top of the tree. This can be
done quite accurately with some simple equipment.
You can also easily measure the distance along the
ground from where you're looking to the bottom
of the tree. From this information, trigonometry
enables us to find the height of the tree.

We know an angle, x, and the length of side
adjacent to it, A; we'd like to find the length of the
opposite side, O. The formulas tell us that

tan(x)=Q

A
Suppose we measure the angle to be 40°. We
look up tan(40) in a table — or use a calculator -
and find the value is about 0.839. Suppose we
also measured the distance A to be 10m (or, again,
10 yards or 10 of any other unit). Then we have

0.839-2
10

which means that O, the height of the tree, must
be 8.39m. As you can imagine, this was a very
useful technique for ancient surveyors and builders
to know about, and their successors still use it today.

Circles, angles and distances are basic building blocks
of some of the maths we use most often — trigonometry
brings them together in a strange kind of harmony.
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Conic Seclions

The circle, ellipse, parabola and hyperbola are found everywhere
in nature and have a simple geometric description.

Fixed numbers

Ax?{Bxy+Cy?+ D+ Ey+F=0

What's 1t Abowt D

Shine a torch directly at a wall: it should make a
circle of light. Now slowly tilt the torch upwards a
little bit and watch the circle stretch out into a new
shape. If you keep going, at some point the shape
will suddenly seem to open out indefinitely as it
goes upwards. You can even carry on, and for a
while at least you'll see the shape moving upwards
and changing shape more subtly. Those shapes,
though they look quite different, are all ‘conic
sections’. Each one is literally a cross-section of the
cone of light coming from the end of the torch.

As well as cropping up in many natural settings
that seem to have nothing to do with walls and
torches, conic sections share a surprising geometric
unity. This comes from the fact that your torch is
really producing a constant, three-dimensional cone
el of light, as you can see if the room is smoky or very

6\ dusty. The two-dimensional shape you see changes
_{;’l simply because of the changing angle at which the
' wall ‘chops off' the cone.

Circle

Parabola

Hyperbola

The light from a torch forms a cone, which In Here Betail

is “cut off” when it hits a wall. The resulting As you tilt the torch the shapes you see are, in
shape on the wall is a conic section. sequence, a circle, a series of ellipses, a parabola
and then a series of hyperbolas (see illustration).

@ The Shape of Space: Gecmetry and Hember



Like many power stations, this one in Didcot, England,
uses cooling towers whose curved outline is a parabola.

These are some of the most important curves

in all of mathematics. When you throw a ball,

its path is a parabola (see Newton’s Second

Law, page 56); the same shape is used to make
mirrors, microphones and other objects that use
reflection to concentrate a signal onto a point, and
Archimedes is even said to have used parabolic
mirrors to set fire to ships during the Siege of
Syracuse in the third century BC. The planets move
in ellipses around the sun [see Kepler's First Law,
page 52] and the ellipse has its own reflective
properties, exploited in the ‘'whispering galleries’ of
St Paul’s Cathedral in London and in the treatment
of gallstones by sound waves. Hyperbolas can be
found in soap films and electrical fields and are
frequently used in architecture and design. The
image of the torch’s beam on the wall changes
more subtly from parabolic to hyperbolic when the
torch is parallel to the wall - for example, when
pointing directly upwards - so lamps close to walls
usually create hyperbolic shapes.

Jets of water often form parabolas, like these at the
University of Adelaide, Australia.

To draw a curve using the equation given above,
first fix values for A, B, C, D, E and F. The other
letters (x and y) define points in a two-dimensional
space, so that every point gives a unique pair of
values for x and y [see Pythagoras’s Theorem, page
10]. Now we try each point to see if the equation
is true there — if so, it belongs to the curve, and
if not, it doesn’t. Most of the points we try won't
work; when we calculate everything on the left-
hand side of the equals sign, we’ll get something
other than zero, so that point isn't on the curve.
We only choose the points where we get zero,
and perhaps we imagine marking them with a
dot. What we'll find is that our dots always join
up to make one of the shapes the torch made on
the wall: a circle, ellipse, parabola or hyperbola,
depending on the values we choose for our fixed
numbers. Actually there are two other possibilities,
for if we choose the numbers really carefully we
can either get two straight lines that cross each
other or just one single point.

The curves known as conic sections fascinated the ancient
Greeks and have found a surprising range of applications in the
modern world, from lens making to architecture.

Conic Seclions
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Zeno's Dicholomy

A ‘proof’ that motion is impossible comes close to
inventing calculus two millennia early.

The sum for the
first n values...

The limit as n goes { =,

to infinity

I .
n——:»oo" |

What's It Abowt?
Suppose, says the ancient philosopher Zeno of
Elea, that you're in the middle of a room and want
to get out. The door is open and there’s nothing
blocking your path. Go ahead and walk to the door
— except there’s a tiny problem. To get there you
must first walk halfway to the door. Then, you must
walk halfway from where you are to the door. You
still won't have got there, so you must repeat this
again and again...how many times? Zeno thinks
the answer is an infinite number of times. After
all, with each motion you get closer to the door
but the next step only covers half of the remaining
distance, so you never quite close the gap. Well,
he concludes, nobody can do an infinite number of
things in a finite amount of time, so getting out of
the room is impossible!

Zeno's argument isn't quite as silly as it sounds
— as far as we can tell, it was one of a set of four
arguments that work together to criticize some

0,

=1

Half the remaining

/ distance

12t

specific ancient ideas about space, time and motion
— but for us the interest is more mathematical than
philosophical. What Zeno has noticed is that a given
distance seems to be equal to the sum of all those
halves: we halve it, halve it again, halve it again and
so on. In modern language he's discovered the idea
of a limit, which in the 18th century became a basic
tool in maths and physics.

Why Does It Matter?

Infinities bother people, and not just in philosophy
seminars. The idea that you can add up an infinite
number of things and get something perfectly
ordinary and finite seems dodgy from the outset;
after all, nobody actually could add them all up,
since they'd never finish the process. In response
to problems like this Aristotle made an important
distinction between actual infinities and merely
potential ones, which can go on as long as you
like without any definite end-point. The easiest

The Shape of Space: Geometry and Number



As n gets bigger and bigger, '6, gets smaller and

smaller. In fact, it gets awfully close to 0 when n is
very big. What's more, if you give me any 'margin
of error’, however small, | can find a value of n so
that 'd, is closer to O than your margin of error is
and, from that point onwards as n increases ',
always stays within that margin. In English we
say ‘the limit of '6,, as n goes to infinity is 0’. We
don’t mean that n ever becomes infinity, just that
it's allowed to grow larger and larger. That, in a
nutshell, is what a limit is.

Let's now look at the claim made by our
equation:

lim Y L _1
n— 00 i
i=1

In English: ‘the limit, as n goes off towards
infinity, of the sum of '6, for every /i from 1 to n,
is equal to 1°. Quite a mouthful, admittedly: but
it exactly expresses the geometric intuition that
as you take each step covering half the remaining
distance you get closer to the door (that is, to
having covered a total distance of 1 unit) and
that you can get as close as you like to the door if
you're allowed to take a lot of steps (though you
can never actually get to it).

In fact this sophisticated, 18th-century idea
fwas already almost-formed when Archimedes
used his ‘method of exhaustion” to find the
circumference of a circle. He noticed that if you
fit regular polygons into a circle, letting the
number of sides increase without bounds, they
get closer and closer to being circles. In modern

- ——
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Archimedes’ ‘method of exhaustion’ produces
a sequence of polygons that get closer and
closer to the blue circle.

terms, Archimedes realized that 'the limit of the
circumference of a regular polygon, as the number
of sides increases, is the circumference of a circle’,

which gave him an approximate value of pi [see

Euler's Identity, page 40).

Approaching a limit by an infinite number of smaller and smaller
steps sounds like philosophical wordplay but it lies at the heart of
calculus, one of the most useful of all mathematical inventions.
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Fibonacei Numbers

What number links pentagons, ancient mysticism and rabbit-breeding?

The next Fibonacci
number

\

What's 1t About?

In 1202 Leonardo of Pisa, known as Fibonacci,
published and solved the following problem.
Imagine you're a farmer breeding a special kind
of rabbit that reaches sexual maturity at one
month old and has a very long lifespan. Each
mature female can produce one male and one
female each month. You take a new-born male
and female and put them in a big field with plenty
of food and no predators. Now suppose you let
nature take its course and return after a certain
number of months, n. How many mating pairs of
rabbits will you have? The answer is F,, the nth
Fibonacci number, and our equation tells us how
to calculate it.

The problem may seem a bit trivialized: after
all, it does not describe a very realistic situation.
Yet the Fibonacci numbers are an extraordinary
discovery. They have a close relationship with an
ancient number known as the Golden Ratio, which
many have believed to be sacred or mystical and
which itself has many surprising connections to
other mathematical puzzles. There are a great
many alleged sightings of these numbers in
nature, especially in biology, where a simple rule
like Fibonacci’'s might explain how organic growth

D

The one before it 2

The one before that 2

that produces complicated-looking forms can be
encoded by relatively little DNA.

Why Does 1t Hatler P

The truth is, the Fibonacci numbers have mostly
fascinated mathematicians, not scientists or
technologists. We'll discuss some mathematical
reasons to be interested in them shortly. However,
in inventing them, Fibonacci gave birth to the
really important general idea of a ‘recurrence
relation’. This is, crudely put, any sequence of
numbers whose next term depends only on one
or more of the terms before it, according to a

rule that never changes.

The way recurrence relations evolve the next
value from the ones that have gone before makes
them very useful for describing processes that
develop over time. Extremely simple recurrence
relations govern the amount of money in your
savings account (assuming you put by the
same amount every month), for example, and
the amount you owe on your mortgage [see
Logarithms, page 36]. Economists often use much
more complex recurrence relations than these, as
do biologists and engineers. What are known as
Markov Chains - essentially, recurrence relations

The Shape of Space: Geometry and Nember



that only rely on the immediately preceding value,
usually including an element of chance - appear in

a perplexing array of applications, from the physics 1 4
of heat diffusion [see The Heat Equation, page 80]
to financial forecasting [see Brownian Motion, 1.2 A
page 70]. % ' a
: ; : 1.0 7 \/ v
Some recurrence relations continue to entertain Ratio |
the pure mathematicians, too, and the most 0.7

notorious is the following. The first item in the
sequence is any whole number you choose. The _
rule is: if the last number was even, halve it; 0.4
otherwise treble it and add 1. So if we begin with

7 the sequence starts off like this:

0.6

2 4 6 8 1012 14

Ter
7, 22, 11, 34, 17, 52, 26, 13, =
40¢ 20; 10; 5’ 16; 89 4: 29 15 49 The ratio of adjacent Fibonacci numbers
29 1: 49 2: 19 4: 2;--- quickly settles down to being close to the

Golden Ratio, approaching it as a limit.
Notice that, after a bit of jumping around,
this sequence reaches the number 1, and after
that it settles down into a simple cycle of three

numbers. Will this always happen, no matter understand, nobody knows whether it's true or not.
which number you start with? That is, do these A solution, if it's found, will almost certainly involve
sequences always, eventually, hit 1? The so-called the development of brand new ideas, perhaps with
Collatz Conjecture says they do; though easy to wide applications.

The family tree of Fibonacci's rabbits should
follow his recurrence relation - at least in
theory. Real life is somewhat more complicated.
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draw a regular pentagon (five-sided shape) using
only a ruler and compass; this was an important
practical technique for artists and craftsmen and
led to the ancient Greeks discovering the ratio,
long before Fibonacci and his imaginary rabbits.

The Golden Ratio has an extremely odd history
and even today there are people who believe it
has something approaching magical powers. They
claim it governs many natural phenomena and has
been used by architects and artists to create work
with intrinsically pleasing proportions. I'm sorry to
say that many of these claims turn out to be false.
The Golden Ratio does, though, appear in the
natural structures known as ‘quasicrystals’, which
chemists are still actively researching.

The wilder claims often turn up in relation to the
so-called Golden Rectangle. If you cut a square off
this type of rectangle, the leftover part has exactly
the same proportions as the one you started with.
This means you can carry on cutting off smaller and

In a Penrose tiling, the angles in
the tiles are based on the Golden
Ratio, and even if you continue the
pattern indefinitely it never exactly
repeats itself.

smaller squares forever (or until you get bored). If
you cut up the Golden Rectangle repeatedly, in just
the right way, you can draw a quarter-circle in each
square and produce a Golden Spiral, which is very
pretty This only works when the rectangle’s longest
side is @ times its shortest. Let's briefly see why.

If it's going to work, the main rectangle will have
sides of length, say, 1 and r such that once you've
cut a 1x1 square off it the remaining rectangle will
have short side equal to r-1 and long side equal to
1. So r must satisfy the equation

1_r-1
r

A little rearranging turns this into the equation
r‘—r—-1=0, and a little high-school algebra yields ¢
as one of the two possible solutions (the other also

works; you just end up with the rectangle flipped
over on its side).

Recurrence relations create complex results by repetition,
just as many natural processes do, and their long-term
behaviours are often full of surprises.
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