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INTRODUCTION

What is Statistics? This question was asked as early as 1838—in
reference to the Royal Statistical Society—and it has been asked many
times since. The persistence of the question and the variety of answers
that have been given over the years are themselves remarkable
phenomena. Viewed together, they suggest that the persistent puzzle is
due to Statistics not being only a single subject. Statistics has changed
dramatically from its earliest days to the present, shifting from a
profession that claimed such extreme objectivity that statisticians would
only gather data—mnot analyze them—to a profession that seeks
partnership with scientists in all stages of investigation, from planning to
analysis. Also, Statistics presents different faces to different sciences: In
some applications, we accept the scientific model as derived from
mathematical theory; in some, we construct a model that can then take on
a status as firm as any Newtonian construction. In some, we are active
planners and passive analysts; in others, just the reverse. With so many
faces, and the consequent challenges of balance to avoid missteps, it is no
wonder that the question, “What is Statistics?” has arisen again and again,
whenever a new challenge arrives, be it the economic statistics of the
1830s, the biological questions of the 1930s, or the vaguely defined “big
data” questions of the present age.

With all the variety of statistical questions, approaches, and
interpretations, is there then no core science of Statistics? If we are

fundamentally dedicated to working in so many different sciences, from



public policy to validating the discovery of the Higgs boson, and we are
sometimes seen as mere service personnel, can we really be seen in any
reasonable sense as a unified discipline, even as a science of our own?
This is the question I wish to address in this book. I will not try to tell you
what Statistics is or is not; I will attempt to formulate seven principles,
seven pillars that have supported our field in different ways in the past
and promise to do so into the indefinite future. I will try to convince you
that each of these was revolutionary when introduced, and each remains a
deep and important conceptual advance.

My title is an echo of a 1926 memoir, Seven Pillars of Wisdom, by T.
E. Lawrence, Lawrence of Arabia.! Its relevance comes from Lawrence’s
own source, the Old Testament’s Book of Proverbs 9:1, which reads,
“Wisdom hath built her house, she hath hewn out her seven pillars.”
According to Proverbs, Wisdom’s house was constructed to welcome
those seeking understanding; my version will have an additional goal: to
articulate the central intellectual core of statistical reasoning.

In calling these seven principles the Seven Pillars of Statistical
Wisdom, I hasten to emphasize that these are seven support pillars—the
disciplinary foundation, not the whole edifice, of Statistics. All seven
have ancient origins, and the modern discipline has constructed its many-
faceted science upon this structure with great ingenuity and with a
constant supply of exciting new ideas of splendid promise. But without
taking away from that modern work, I hope to articulate a unity at the
core of Statistics both across time and between areas of application.

The first pillar I will call Aggregation, although it could just as well be
given the nineteenth-century name, “The Combination of Observations,”
or even reduced to the simplest example, taking a mean. Those simple
names are misleading, in that I refer to an idea that is now old but was
truly revolutionary in an earlier day—and it still is so today, whenever it

reaches into a new area of application. How is it revolutionary? By



stipulating that, given a number of observations, you can actually gain
information by throwing information away! In taking a simple arithmetic
mean, we discard the individuality of the measures, subsuming them to
one summary. It may come naturally now in repeated measurements of,
say, a star position in astronomy, but in the seventeenth century it might
have required ignoring the knowledge that the French observation was
made by an observer prone to drink and the Russian observation was
made by use of an old instrument, but the English observation was by a
good friend who had never let you down. The details of the individual
observations had to be, in effect, erased to reveal a better indication than
any single observation could on its own.

The earliest clearly documented use of an arithmetic mean was in
1635; other forms of statistical summary have a much longer history,
back to Mesopotamia and nearly to the dawn of writing. Of course, the
recent important instances of this first pillar are more complicated. The
method of least squares and its cousins and descendants are all averages;
they are weighted aggregates of data that submerge the identity of
individuals, except for designated covariates. And devices like kernel
estimates of densities and various modern smoothers are averages, too.

The second pillar is Information, more specifically Information
Measurement, and it also has a long and interesting intellectual history.
The question of when we have enough evidence to be convinced a
medical treatment works goes back to the Greeks. The mathematical
study of the rate of information accumulation is much more recent. In the
early eighteenth century it was discovered that in many situations the
amount of information in a set of data was only proportional to the square
root of the number n of observations, not the number n itself. This, too,
was revolutionary: imagine trying to convince an astronomer that if he
wished to double the accuracy of an investigation, he needed to quadruple

the number of observations, or that the second 20 observations were not



nearly so informative as the first 20, despite the fact that all were equally
accurate? This has come to be called the root-n rule; it required some
strong assumptions, and it required modification in many complicated
situations. In any event, the idea that information in data could be
measured, that accuracy was related to the amount of data in a way that
could be precisely articulated in some situations, was clearly established
by 1900.

By the name [ give to the third pillar, Likelihood, I mean the
calibration of inferences with the use of probability. The simplest form
for this is in significance testing and the common P-value, but as the
name “Likelihood” hints, there is a wealth of associated methods, many
related to parametric families or to Fisherian or Bayesian inference.
Testing in one form or another goes back a thousand years or more, but
some of the earliest tests to use probability were in the early eighteenth
century. There were many examples in the 1700s and 1800s, but
systematic treatment only came with the twentieth-century work of
Ronald A. Fisher and of Jerzy Neyman and Egon S. Pearson, when a full
theory of likelihood began serious development. The use of probability to
calibrate inference may be most familiar in testing, but it occurs
everywhere a number is attached to an inference, be it a confidence
interval or a Bayesian posterior probability. Indeed, Thomas Bayes’s
theorem was published 250 years ago for exactly that purpose.

The name I give the fourth pillar, Intercomparison, is borrowed from
an old paper by Francis Galton. It represents what was also once a radical
idea and is now commonplace: that statistical comparisons do not need to
be made with respect to an exterior standard but can often be made in
terms interior to the data themselves. The most commonly encountered
examples of intercomparisons are Student’s t-tests and the tests of the
analysis of variance. In complex designs, the partitioning of variation can

be an intricate operation and allow blocking, split plots, and hierarchical



designs to be evaluated based entirely upon the data at hand. The idea is
quite radical, and the ability to ignore exterior scientific standards in
doing a “valid” test can lead to abuse in the wrong hands, as with most
powerful tools. The bootstrap can be thought of as a modern version of
intercomparison, but with weaker assumptions.

I call the fifth pillar Regression, after Galton’s revelation of 1885,
explained in terms of the bivariate normal distribution. Galton arrived at
this by attempting to devise a mathematical framework for Charles
Darwin’s theory of natural selection, overcoming what appeared to
Galton to be an intrinsic contradiction in the theory: selection required
increasing diversity, in contradiction to the appearance of the population
stability needed for the definition of species.

The phenomenon of regression can be explained briefly: if you have
two measures that are not perfectly correlated and you select on one as
extreme from its mean, the other is expected to (in standard deviation
units) be less extreme. Tall parents on average produce somewhat shorter
children than themselves; tall children on average have somewhat shorter
parents than themselves. But much more than a simple paradox is
involved: the really novel idea was that the question gave radically
different answers depending upon the way it was posed. The work in fact
introduced modern multivariate analysis and the tools needed for any
theory of inference. Before this apparatus of conditional distributions was
introduced, a truly general Bayes’s theorem was not feasible. And so this
pillar is central to Bayesian, as well as causal, inference.

The sixth pillar is Design, as in “Design of Experiments,” but
conceived of more broadly, as an ideal that can discipline our thinking in
even observational settings. Some elements of design are extremely old.
The Old Testament and early Arabic medicine provide examples. Starting
in the late nineteenth century, a new understanding of the topic appeared,

as Charles S. Peirce and then Fisher discovered the extraordinary role



randomization could play in inference. Recognizing the gains to be had
from a combinatorial approach with rigorous randomization, Fisher took
the subject to new levels by introducing radical changes in
experimentation that contradicted centuries of experimental philosophy
and practice. In multifactor field trials, Fisher’s designs not only allowed
the separation of effects and the estimation of interactions; the very act of
randomization made possible valid inferences that did not lean on an
assumption of normality or an assumption of homogeneity of material.

I call the seventh and final pillar Residual. You might suspect this is an
evasion, “residual” meaning “everything else.” But I have a more specific
idea in mind. The notion of residual phenomena was common in books on
logic from the 1830s on. As one author put it, “Complicated phenomena

may be simplified by subducting the effect of known causes, ...
leaving ... a residual phenomenon to be explained. It is by this process ...
that science ... is chiefly promoted.”” The idea, then, is classical in
outline, but the use in Statistics took on a new form that radically
enhances and disciplines the method by incorporating structured families
of models and employing the probability calculus and statistical logic to
decide among them. The most common appearances in Statistics are our
model diagnostics (plotting residuals), but more important is the way we
explore high-dimensional spaces by fitting and comparing nested models.
Every test for significance of a regression coefficient is an example, as is
every exploration of a time series.

At serious risk of oversimplification, I could summarize and rephrase
these seven pillars as representing the usefulness of seven basic statistical
ideas:

1. The value of targeted reduction or compression of data
2. The diminishing value of an increased amount of data

3. How to put a probability measuring stick to what we do



4. How to use internal variation in the data to help in that

5. How asking questions from different perspectives can
lead to revealingly different answers

6. The essential role of the planning of observations

7. How all these ideas can be used in exploring and
comparing competing explanations in science

But these plain-vanilla restatements do not convey how revolutionary
the ideas have been when first encountered, both in the past and in the
present. In all cases they have pushed aside or overturned firmly held
mathematical or scientific beliefs, from discarding the individuality of
data values, to downweighting new and equally valuable data, to
overcoming objections to any use of probability to measure uncertainty
outside of games of chance. And how can the variability interior to our
data measure the uncertainty about the world that produced it? Galton’s
multivariate analysis revealed to scientists that their reliance upon rules of
proportionality dating from Euclid did not apply to a scientific world in
which there was variation in the data—overthrowing three thousand years
of mathematical tradition. Fisher’s designs were in direct contradiction to
what experimental scientists and logicians had believed for centuries; his
methods for comparing models were absolutely new to experimental
science and required a change of generations for their acceptance.

As evidence of how revolutionary and influential these ideas all were,
just consider the strong push-back they continue to attract, which often
attacks the very aspects I have been listing as valued features. I refer to:

Complaints about the neglect of individuals, treating people as mere
statistics

Implied claims that big data can answer questions on the basis of size
alone

Denunciations of significance tests as neglectful of the science in



question

Criticisms of regression analyses as neglecting important aspects of the
problem

These questions are problematic in that the accusations may even be
correct and on target in the motivating case, but they are frequently aimed
at the method, not the way it is used in the case in point. Edwin B. Wilson
made a nice comment on this in 1927. He wrote, “It is largely because of
lack of knowledge of what statistics is that the person untrained in it trusts
himself with a tool quite as dangerous as any he may pick out from the
whole armamentarium of scientific methodology.”?

The seven pillars T will describe and whose history I will sketch are
fine tools that require wise and well-trained hands for effective use. These
ideas are not part of Mathematics, nor are they part of Computer Science.
They are centrally of Statistics, and I must now confess that while I began
by explicitly denying that my goal was to explain what Statistics is, I may
by the end of the book have accomplished that goal nonetheless.

I return briefly to one loose end: What exactly does the passage in
Proverbs 9:1 mean? It is an odd statement: “Wisdom hath built her house,
she hath hewn out her seven pillars.” Why would a house require seven
pillars, a seemingly unknown structure in both ancient and modern times?
Recent research has shown, I think convincingly, that scholars, including
those responsible for the Geneva and King James translations of the
Bible, were uninformed on early Sumerian mythology and mistranslated
the passage in question in the 1500s. The reference was not to a building
structure at all; instead it was to the seven great kingdoms of
Mesopotamia before the flood, seven kingdoms in seven cities founded
on principles formulated by seven wise men who advised the kings.
Wisdom’s house was based upon the principles of these seven sages. A
more recent scholar has offered this alternative translation: “Wisdom has

built her house, The seven have set its foundations.”*



Just so, the seven pillars I offer are the fruit of efforts by many more
than seven sages, including some whose names are lost to history, and we
will meet a good selection of them in these pages.



CHAPTER 1

AGGREGATION

From Tables and Means to Least Squares

The first pillar, Aggregation, is not only the oldest; it is also the most
radical. In the nineteenth century it was referred to as the “combination of
observations.” That phrase was meant to convey the idea that there was a
gain in information to be had, beyond what the individual values in a data
set tell us, by combining them into a statistical summary. In Statistics, a
summary can be more than a collection of parts. The sample mean is the
example that received the earliest technical focus, but the concept
includes other summary presentations, such as weighted means and even
the method of least squares, which is at bottom a weighted or adjusted
average, adjusting for some of the other characteristics of individual data
values.

The taking of a mean of any sort is a rather radical step in an analysis.
In doing this, the statistician is discarding information in the data; the
individuality of each observation is lost: the order in which the
measurements were taken and the differing circumstances in which they
were made, including the identity of the observer. In 1874 there was a
much-anticipated transit of Venus across the face of the sun, the first
since 1769, and many nations sent expeditions to places thought to be
favorable for the viewing. Knowing the exact time from the beginning to
the end of the transit across the sun could help to accurately determine the

dimensions of the solar system. Were numbers reported from different



cities really so alike that they could be meaningfully averaged? They were
made with different equipment by observers of different skills at the
slightly different times the transit occurred at different locations. For that
matter, are successive observations of a star position made by a single
observer, acutely aware of every tremble and hiccup and distraction,
sufficiently alike to be averaged? In ancient and even modern times, too
much familiarity with the circumstances of each observation could
undermine intentions to combine them. The strong temptation is, and has
always been, to select one observation thought to be the best, rather than
to corrupt it by averaging with others of suspected lesser value.

Even after taking means had become commonplace, the thought that
discarding information can increase information has not always been an
easy sell. When in the 1860s William Stanley Jevons proposed measuring
changes in price level by an index number that was essentially an average
of the percent changes in different commodities, critics considered it
absurd to average data on pig iron and pepper. And once the discourse
shifted to individual commodities, those investigators with detailed
historical knowledge were tempted to think they could “explain” every
movement, every fluctuation, with some story of why that particular event
had gone the way it did. Jevons’s condemnation of this reasoning in 1869
was forceful: “Were a complete explanation of each fluctuation thus
necessary, not only would all inquiry into this subject be hopeless, but the
whole of the statistical and social sciences, so far as they depend upon
numerical facts, would have to be abandoned.”! It was not that the stories
told about the data were false; it was that they (and the individual
peculiarities in the separate observations) had to be pushed into the
background. If general tendencies were to be revealed, the observations
must be taken as a set; they must be combined.

Jorge Luis Borges understood this. In a fantasy short story published in

1942, “Funes the Memorious,” he described a man, Ireneo Funes, who



found after an accident that he could remember absolutely everything. He
could reconstruct every day in the smallest detail, and he could even later
reconstruct the reconstruction, but he was incapable of understanding.
Borges wrote, “To think is to forget details, generalize, make abstractions.
In the teeming world of Funes there were only details.”> Aggregation can
yield great gains above the individual components. Funes was big data
without Statistics.

When was the arithmetic mean first used to summarize a data set, and
when was this practice widely adopted? These are two very different
questions. The first may be impossible to answer, for reasons I will
discuss later; the answer to the second seems to be sometime in the
seventeenth century, but being more precise about the date also seems
intrinsically difficult. To better understand the measurement and reporting
issues involved, let us look at an interesting example, one that includes
what may be the earliest published use of the phrase “arithmetical mean”
in this context.

Variations of the Needle

By the year 1500, the magnetic compass or “needle” was firmly
established as a basic tool of increasingly adventurous mariners. The
needle could give a reading on magnetic north in any place, in any
weather. It was already well known a century earlier that magnetic north
and true north differed, and by 1500 it was also well known that the
difference between true and magnetic north varied from place to place,
often by considerable amounts—10° or more to the east or to the west. It
was at that time believed this was due to the lack of magnetic attraction
by the sea and the consequent bias in the needle toward landmasses and
away from seas. The correction needed to find true north from a compass
was called the variation of the needle. Some navigational maps of that



magnetic north agree at Limehouse, that common value should be
(nearly) the midpoint between the two measurements, since the sun
travels a symmetrical arc with the maximum at the meridian (“high
noon”). On the other hand, if magnetic north is 10° east of true north, then
the morning shadow should be 10° farther west and the afternoon shadow
likewise. In either case the average of the two should then give the
variation of the needle. Borough’s table of data for October 16, 1580, is
presented in Figure 1.2.

y' 1 Limehoufe the f. vteenth of’

OClober, Anno,r 5 8o,

1.2 Borough's 1580 data for the variation of the needle at Limehouse, near London.



(Norman 1581)

He had data for nine pairs, taken at elevations from 17° to 25° with the
morning variations (given in westward degrees) and afternoon variations
(given in eastward degrees, so opposite in sign to the morning, except for
the 25° afternoon measure, which was slightly westward). Because of the
different signs in the morning and afternoon, the variations in the right-
hand column are found as the difference of the variations divided by 2.
For the pair taken at sun’s elevation 23° we have

(AM + PM)/2 = (34° 40' + (—12° 0"))/2
= (34° 40' - 12° 0')/2
= (22° 40')/2 = 11° 20

The nine determinations are in quite good agreement, but they are not
identical. How could Borough go about determining a single number to
report? In a pre-statistical era, the need to report data was clear, but as
there was no agreed upon set of summary methods, there was no need to
describe summary methods—indeed, there was no precedent to follow.
Borough’s answer is simple: referring to the right hand column, he writes,
“conferring them all together, I do finde the true variation of the Needle
or Cumpas at Lymehouse to be about 11 d. %, or 11 d. %, whiche is a
poinct of the Cumpas just or a little more.” His value of 11 d. 15 m. (11°
15') does not correspond to any modern summary measure—it is smaller
than the mean, median, midrange, and mode. It agrees with the value for
22° elevation, and could have been so chosen—but then why also give 11
d. 20 m., the figure for 23° elevation? Or perhaps he rounded to
agreement with “one point of the compass,” that is, the 11 d. 15 m.
distance between each of the 32 points of the compass? Regardless, it is
clear Borough did not feel the necessity for a formal compromise. He
could take a mean of two values from morning and afternoon at the same
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