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A Hundred Years of Controversy
Regarding the Foundations of
Mathematics’

Synopsis

What is metamathematics? Cantor’s theory of infinite sets. Russell
on the paradozes. Hilbert on formal systems. Godel’s incompleteness
theorem. Turing on uncomputability. My work on randomness and
complezity. Is mathematics quasi-empirical?. .. The computer and pro-
grammang languages were invented by logicians as the unezpected by-
product of their unsuccessful effort to formalize reasoning completely.
Formalism failed for reasoning, but it succeeded brilliantly for compu-
tation. In practice, programming requires more precision than proving
theorems!. .. Each step Godel = Turing = Chaitin makes incomplete-
ness seem more natural, more pervasive, more ubiquitous—and much

more dangerous!

What 1s Metamathematics?

In this century there have been many conceptual revolutions. In physics
the two big revolutions this century were relativity theory and quantum
mechanics: Einstein’s theory of space, time and gravitation, and the

1Based on a lecture on “Cien afios de controversia sobre los fundamentos de
las matematicas” given at several institutions during two visits to Buenos Aires in

1998.
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theory of what goes on inside the atom. These were very revolutionary
revolutions, dramatic and drastic changes of viewpoint, paradigm shifts,
and very controversial. They provoked much anguish and heartache,
and they marked a generational shift between so-called classical physics
and modern physics.

Independently an earlier revolution, the statistical viewpoint, has
continued, and now almost all physics, classical or modern, is statistical.
And we are at the beginning of yet another conceptual shift in physics,
the emphasis on chaos and complexity, where we realize that everyday
objects, a dripping faucet, a compound pendulum, the weather, can
behave in a very complicated and unpredictable fashion.

What'’s not much known by outsiders is that the world of pure
mathematics hasn’t been spared, 1t’s not immune. We've had our crises
too. Outsiders may think that mathematics is static, eternal, perfect,
but in fact this century has been marked by a great deal of anguish,
hand-wringing, heartache and controversy regarding the foundations
of mathematics, regarding its most basic tenets, regarding the nature
of mathematics and what 1s a valid proof, regarding what kinds of
mathematical objects exist and how mathematics should be done.

In fact, there is a new field of mathematics called metamathematics,
in which you attempt to use mathematical methods to discuss what
mathematics can and cannot achieve, and to determine what is the
power and what are the limitations of mathematical reasoning. In
metamathematics, mathematicians examine mathematics itself through
a mathematical microscope. It’s like the self-analysis that psychiatrists
are supposed to perform on themselves. It’s mathematics looking at
itself in the mirror, asking what i1t can do and what it can’t do.

In this book I'm going to tell you the story of this century’s con-
troversies regarding the foundations of mathematics. I'm going to tell
you why the field of metamathematics was invented, and to summarize
what it has achieved, and the light that it sheds—or doesn’t—on the
fundamental nature of the mathematical enterprise. I'm going to tell
you the extent to which metamathematics clarifies how mathematics
works, and how different it is or 1sn’t from physics and other empirical
sciences. | and a few others feel passionately about this.

It may seem tortured, it may seem defeatist for mathematicians to
question the ability of mathematics, to question the worth of their craft.
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In fact, it’s been an extraordinary adventure for a few of us. It would
be a disaster if most mathematicians were filled with self-doubt and
questioned the basis for their own discipline. Fortunately they don’t.
But a few of us have been able to believe in and simultaneously question
mathematics. We've been able to stand within and without at the same
time, and to pull off the trick of using mathematical methods to clarify
the power of mathematical methods. It’s a little bit like standing on
one leg and tying yourself in a knot!

And it has been a surprisingly dramatic story. Metamathematics
was promoted, mostly by Hilbert, as a way of confirming the power of
mathematics, as a way of perfecting the axiomatic method, as a way of
eliminating all doubts. But this metamathematical endeavor exploded
in mathematicians’ faces, because, to everyone’s surprise, this turned
out to be impossible to do. Instead it led to the discovery by Godel,
Turing and myself of metamathematical results, incompleteness theo-
rems, that place severe limits on the power of mathematical reasoning
and on the power of the axiomatic method.

So in a sense, metamathematics was a fiasco, it only served to
deepen the crisis that it was intended to resolve. But this self-
examination did have wonderful and totally unexpected consequences
in an area far removed from its original goals. It played a big role
in the development of the most successful technology of our age, the
computer, which after all is just a mathematical machine, a machine
for doing mathematics. As E.T. Bell put it, the attempt to soar above
mathematics ended in the bowels of a computer!

So metamathematics did not succeed in shoring up the foundations
of mathematics. Instead it led to the discovery in the first half of
this century of dramatic incompleteness theorems. And it also led to
the discovery of fundamental new concepts, computability and uncom-

putability, complexity and randomness, which in the second half of this
century have developed into rich new fields of mathematics.

That’s the story I'm going to tell you about here, and it’s one in
which I'm personally involved, in which I’'m a major participant. So this
will not be a disinterested historian’s objective account. This will be a
very biased and personal account by someone who was there, fighting
in the trenches, shedding blood over this, lying awake in bed at night
without being able to sleep because of all of this!!
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What provoked all this? Well, a number of things. But I think it’s
fair to say that more than anything else, the crisis in the foundations of
mathematics in this century was set off by G. Cantor’s theory of infinite
sets. Actually this goes back to the end of the previous century, because
Cantor developed his theory in the latter decades of the 19th century.
So let me start by telling you about that.

Cantor’s Theory of Infinite Sets

So how did Cantor create so much trouble!? Well, with the simplicity
of genius, he considered the so-called natural numbers (non-negative

integers):
D, 234,08 .

And he asked himself, “Why don’t we add another number after all of
these? Let’s call it w!” That’s the lowercase Greek letter omega, the
last letter of the Greek alphabet. So now we’ve got this:

0,1,2,...w

But of course we won’t stop here. The next number will be w + 1, then
comes w + 2, etc. So now we've got all this:

0.1, 2...0,w0+ 1w 42,...

And what comes after w + 1l,w + 2,w + 3,... 7 Well, says Cantor,
obviously 2w, two times w!

0,1,2,..w,w+1l,w+2,...2w

Then we continue as before with 2w+ 1, 2w + 2, etc. Then what comes?

Well, it’s 3w.
0,1,2,..w,w+1l,w+2,...2w...3w

So, skipping a little, we continue with 4w, 5w, etc. Well, what comes
after all of that? Says Cantor, it’s w squared!

0,1,2,..w,w+1l,w+2,..2w...3w...w
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Then we eventually have w cubed, w to the fourth power, etc.
0,1,2,..ww+lw+2...20w...30w...0°%. .. .0%. . .04 ..
Then what? Well, says Cantor, 1t’s w raised to the power w!
0,1,2,..ww+lw+2,...2w...w°. ... . w"...
Then a fair distance later, we have this:
0,1,2,..0,w+lw+2...2w...0°...0°...0" ...

Then much later we start having trouble naming things, because we
have w raised to the w an infinite number of times. This is called ¢

(epsilon) nought.

w

€0 = W

It’s the smallest solution of the equation
w® = €.

Well, you can see that this is strong stuff! And as disturbing as it is,
it’s only half of what Cantor did. He also created another set of infinite
numbers, the cardinal numbers, which are harder to understand.? I've
shown you Cantor’s ordinal numbers, which indicate positions in infi-
nite lists. Cantor’s cardinal numbers measure the size of infinite sets.
A set is just a collection of things, and there’s a rule for determining if
something 1s in the set or not.

Cantor’s first infinite cardinal is aleph nought

Ro

which measures the size of the set of natural numbers (non-negative
integers). Aleph is the first letter of the Hebrew alphabet. Then comes

aleph one
S

2 Note for ezperts: To simplify matters, I’m assuming the generalized continuum
hypothesis.



8 (G.J. Chaitin

It’s like the paradox of the village barber who shaves every man
in the village who doesn’t shave himself. But then who shaves the
barber?! He shaves himself iff (if and only if) he doesn’t shave himself.
Of course, in the case of the barber, there i1s an easy way out. We
either deny the existence of such a barber, for he can’t apply the rule
to himself, or else the barber must be female! But what can be wrong
with Russell’s set of all sets that are not members of themselves?

The Russell paradox is closely related to a much older paradox, the
liar paradox, which is also called the Epimenides paradox and goes back
to classical Greece. That’s the paradox “This statement is false!”
It’s true iff it’s false, and therefore it’s neither true nor false!

Clearly, in both cases the paradox arises in some way from a self-
reference, but outlawing all self-reference would be throwing out the
baby with the bath water. In fact, self-reference will play a fundamental
role in the work of Godel, Turing, and my own that I'll describe later.
More precisely, Godel’s work is related to the liar paradox, and Turing’s
work is related to the Russell paradox. My work is related to another
paradox that Russell published, which has come to be called the Berry

paradox.

What’s the Berry paradox? It’s the paradox of the first natural
number that can’t be named 1n less than fourteen words. The
problem i1s that I've just named this number in thirteen words! (Note
that the existence of this number follows from the fact that only finitely
many natural numbers can be named in less than fourteen words.)

This paradox 1s named after G.G. Berry, who was a librarian at
Oxford University’s Bodleian library (Russell was at Cambridge Uni-
versity), because Russell stated in a footnote that this paradox had
been suggested to him in a letter from Berry. Well, the Mexican math-
ematical historian Alejandro Garciadiego has taken the trouble to find
that letter, and it’s a rather different paradox. Berry’s letter actu-
ally talks about the first ordinal that can’t be named in a finite
number of words. According to Cantor’s theory such an ordinal must
exist, but we've just named it 1n a finite number of words, which is a
contradiction.

These details may not seem too interesting to you, but they’re
tremendously interesting to me, because I can see the germ of my work
in Russell’s version of the Berry paradox, but I can’t see it at all in
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Berry’s original version.®

Hilbert on Formal Systems

So you see, Cantor’s set theory was tremendously controversial and cre-
ated a terrific uproar. Poor Cantor ended his life in a mental hospital.

What was to be done? One reaction, or over-reaction, was to advo-
cate a retreat to older, safer methods of reasoning. The Dutch math-
ematician L.E.J. Brouwer advocated abandoning all non-constructive
mathematics. He was in favor of more concrete, less “theological” math-
ematics.

For example, sometimes mathematicians prove that something ex-
1sts by showing that the assumption that it doesn’t exist leads to a
contradiction. This is often referred to in Latin and is called an exis-
tence proof via reductio ad absurdum, by reduction to an absurdity.

“Nonsense!” exclaimed Brouwer. The only way to prove that some-
thing exists is to exhibit it or to provide a method for calculating it.
One may not actually be able to calculate it, but in principle, if one is

very patient, it should be possible.
And the paradoxes led some other mathematicians to distrust ar-

guments in words and flee into formalism. The paradoxes led to in-
creased interest in developing symbolic logic, in using artificial formal
languages instead of natural languages to do mathematics. The Italian

SWhy not? Well, to repeat, Russell’s version is along the lines of “the first
positive integer that can’t be named in less than a billion words” and Berry’s version
is “the first transfinite Cantor ordinal that can’t be named in a finite number of
words”. First of all, in the Russell version for the first time we look at precisely
how long a text it takes to specify something (which is close to how large a
program it takes to specify it via a computation, which is program-size complexity).
The Berry version is just based on the fact that there are a countable (Rp) infinity
of English texts, but uncountably many transfinite ordinals. So Russell looks at the

exact size of a text, while Berry just cares if it’s finite or not. Second, Russell is
looking at the descriptive complexity of integers, which are relatively down-to-earth
objects that you can have on the computer, while Berry is looking at extremely
big transfinite ordinals, which are much more theological objects, they’re totally
nonconstructive. In particular, Berry’s ordinals are much bigger than all the
ordinals that I showed you in the previous section, which we certainly named in a

finite number of words. .. 1 hope this explanation is helpful!
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logician G. Peano went particularly far in this direction. And Russell
and A.N. Whitehead in their monumental 3-volume Principia Mathe-
matica, in attempting to follow Peano’s lead, took an entire volume to
deduce that 1 + 1 is equal to 2! They broke the argument into such
tiny steps that a volume of symbols and words was necessary to show
that 1 + 1 = 2!* A magnificent try, but considered by most people to
be an unsuccessful one, for a number of reasons.

At this point Hilbert enters the scene, with a dramatic proposal for
a “final solution.” What was Hilbert’s proposal? And how could it
satisfy everyone?

Hilbert had a two-pronged proposal to save the day. First, he said,
let’s go all the way with the axiomatic method and with mathemati-
cal formalism. Let’s eliminate from mathematics all the uncertainties
and ambiguities of natural languages and of intuitive reasoning. Let’s
create an artificial language for doing mathematics in which the rules
of the game are so precise, so complete, that there is absolutely no
uncertainty whether a proof is correct. In fact, he said, it should be
completely mechanical to check whether a proof obeys the rules, be-
cause these rules should be completely syntactic or structural, they
should not depend on the semantics or the meaning of mathematical
assertions! In other words—words that Hilbert didn’t use, but that we
can use now—there should be a proof-checking algorithm, a com-
puter program for checking whether or not a proof is correct.

That was to be the first step, to agree on the axioms—principles
accepted without proof—and on the rules of inference—methods for
deducing consequences (theorems) from these axioms—for all of math-
ematics. And to spell out the rules of the game in excruciatingly clear
and explicit detail, leaving nothing to the imagination.

By the way, why are the axioms accepted without proof? The tra-
ditional answer 1s, because they are self-evident. I believe that a better
answer is, because you have to stop somewhere to avoid an infinite
regress!

What was the second prong of Hilbert’s proposal?

It was that he would include unsafe, non-constructive reasoning

They defined numbers in terms of sets, and sets in terms of logic, so it took
them a long time to get to numbers.
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in his formal axiomatic system for all of mathematics, like existence
proofs via reductio ad absurdum. But, then, using intuitive, informal,
safe, constructive reasoning outside the formal system, he would prove
to Brouwer that the unsafe traditional methods of reasoning Hilbert
allowed 1n his formal axiomatic system could never lead to trouble!

In other words, Hilbert simultaneously envisioned a complete for-
malization of all of mathematics as a way of removing all uncertainties,
and as a way of convincing his opponents using their own methods
of reasoning that Hilbert’s methods of reasoning could never lead to
disaster!

So Hilbert’s program or plan was extremely ambitious. It may seem
mad to entomb all of mathematics in a formal system, to cast it in
concrete. But Hilbert was just following the axiomatic formal tendency

in mathematics and taking advantage of all the work on symbolic logic,
on reducing reasoning to calculation. And the key point is that once
a branch of mathematics has been formalized, then it becomes a fit
subject for metamathematical investigation. For then it becomes a
combinatorial object, a set of rules for playing with combinations of
symbols, and we can use mathematical methods to study what it can

and cannot achieve.

This, I think, was the main point of Hilbert’s program. I'm sure
he didn’t think that “mathematics is a meaningless game played
with marks of ink on paper”; this was a distortion of his views. I'm
sure he didn’t think that in their normal everyday work mathematicians
should get involved in the minutiae of symbolic logic, in the tedium
of spelling out every little step of a proof. But once a branch of
mathematics 1s formalized, once 1t 1s desiccated and dissected, then
you can put it under a mathematical microscope and begin to analyze
1t.

This was indeed a magnificent vision! Formalize all of mathematics.
Convince his opponents with their own methods of reasoning to accept
his! How grand!... The only problem with this fantastic scheme, which
most mathematicians would probably have been happy to see succeed,
is that it turned out to be impossible to do. In fact, in the 1930s K.
Godel and A.M. Turing showed that it was impossible to formalize all of
mathematics. Why? Because essentially any formal axiomatic system
1s either inconsistent or incomplete.
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Inconsistency and incompleteness sound bad, but what exactly do
they mean? Well, here are the definitions that I use. “Inconsis-
tent” means proves false theorems, and “incomplete” means doesn’t

prove all true theorems. (For reasons that seemed pressing at the time,
Hilbert, Godel and Turing used somewhat different definitions. Their

definitions are syntactic, mine are semantical.)

What a catastrophe! If mathematics can’t be formalized, if no finite
set of axioms will suffice, where does that leave mathematical certainty?
What becomes of mathematical truth? Everything is uncertain, every-
thing is left up in the air!

Now I'm going to tell you how Godel and Turing arrived at this
astonishing conclusion. Their methods were very different.

Godel’s Incompleteness Theorem

How did Godel do it?7 Well, the first step, which required a tremen-

dous amount of imagination, was to guess that perhaps Hilbert was
completely wrong, that the conventional view of mathematics might
be fatally flawed. John von Neumann, a very brilliant colleague of
Godel’s, admired him very much for that, for it had never occurred to
von Neumann that Hilbert could be mistaken!®

Godel began with the liar paradox, “This statement 1s false!” If
it’s true, then 1t’s false. If it’s false, then 1t’s true. So it can neither
be true nor false, which is not allowed in mathematics. As long as we
leave it like this, there’s not much we can do with it.

But, Godel said, let’s change things a little. Let’s consider “This
statement is unprovable!” It’s understood that this means in a
particular formal axiomatic system, from a particular set of axioms,
using a particular set of rules of inference. That’s the context for this
statement.

Well, there are two possibilities. Either this statement is a theorem,
is provable, or it 1sn’t provable, it’s not a theorem. Let’s consider the
two cases.

What if Godel’s statement is provable? Well, since it affirms that it
itself 1s unprovable, then it’s false, it does not correspond with reality.

SMy source for this information is Ulam’s autobiography.
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lecture on “Logic and the understanding of nature.” As is touchingly
described by Hilbert’s biographer Constance Reid, this was the grand
finale of Hilbert’s career and his last major public appearance. Hilbert’s
lecture ended with his famous words: “Wir mussen wissen. Wir werden
wissen.” We must know! We shall know!

Hilbert had just retired, and was an extremely distinguished emer-
itus professor, and Godel was a twenty-something unknown. They did
not speak to each other then, or ever. (Later I was luckier than Godel
was with Hilbert, for I at least got to talk with Godel on the phone!
This time I was the twenty-something unknown and he was the famous
one.”)

But the general reaction to Godel, once the message sank in, was
shock! How was it possible!? Where did this leave mathematics? What
happens to the absolute certainty that mathematics 1s supposed to
provide? If we can never have all the axioms, then we can never be
sure of things. And if we try adding new axioms, since there are no
guarantees and the new axioms may be false, then math becomes like
physics, which is tentative and subject to revision! If the fundamental
axioms change, then mathematical truth is time dependent, not perfect,
static and eternal the way we thought!

Here is the reaction of the well-known mathematician Hermann
Weyl: “[W]e are less certain than ever about the ultimate foundations
of (logic and) mathematics...we have our ‘crisis’...it directed my in-
terests to fields I considered relatively ‘safe,” and has been a constant
drain on the enthusiasm and determination with which I pursued my

research work.”

But with time a funny thing happened. People noticed that in their
normal everyday work as mathematicians you don’t really find results
that state that they themselves are unprovable. And so mathematicians

carried on their work as before, ignoring Godel. The places where you
get into trouble seemed too remote, too strange, too atypical to matter.

But only five years after Godel, Turing found a deeper reason for
incompleteness, a different source of incompleteness. Turing derived
incompleteness from uncomputability. So now let me tell you about

] i:cll this story in my lecture “The Berry paradox” published in the first issue
of Complezity magazine in 1995.
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that.

Turing’s Halting Problem

Turing’s remarkable paper of 1936 marks the official beginning of the
computer era. Turing was the first computer scientist, and he was not
just a theoretician. He worked on everything, computer hardware,
artificial intelligence, numerical analysis. . .

The first thing that Turing did in his paper was to invent the
general-purpose programmable digital computer. He did it by invent-
ing a toy computer, a mathematical model of a computer called the
Turing machine, not by building actual hardware (though he worked

on that later). But it’s fair to say that the computer was invented by
the English mathematician/logician Alan Turing in the 1930s, years
before they were actually built, in order to help clarify the foundations
of mathematics. Of course there were many other sources of invention
leading to the computer; history is always very complicated. That Tur-
ing deserves the credit is as true, or truer, than many other historical
“truths.”

(One of the complications is that Turing wasn’t the only inventor
of what is now called the Turing machine. Emil Post came up with
similar ideas independently, a fact known only to specialists.)

How does Turing explain the idea of a digital computer? Well,
according to Turing the computer i1s a very flexible machine, it’s soft
hardware, it’s a machine that can simulate any other machine, if it’s
provided with a description of the other machine. Up to then computing
machines had to be rewired in order to undertake different tasks, but
Turing saw clearly that this was unnecessary.

Turing’s key idea is his notion of a universal digital machine. I’ll
have much more to say about this key notion of “computational univer-
sality” later. Now let’s move on to the next big contribution of Turing’s
1936 paper, his discussion of the halting problem.

What is the halting problem? Well, now that Turing had invented
the computer, he immediately asked if there was something that can’t
be done using a computer, something that no computer can do. And he
found i1t right away. There 1s no algorithm, no mechanical procedure, no
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computer program that can determine in advance if another computer
program will ever halt. The idea is that before running a program P,
in order to be sure that P will eventually stop, it would be nice to be
able to give P to a halting problem program H. H decides whether P
will halt or not. If H says that P halts, then we run P. Otherwise, we
don’t.

Why, you may ask, is there a problem? Just run the program P and
see if it halts. Well yes, it’s easy to decide if a program halts in a fixed
amount of time by running it for that amount of time. And if it does
halt, eventually we can discover that. The problem is how to decide
that it never halts. You can run P for a million years and give up and
decide that it will never halt just five minutes before it was going to!

(Since there’s no time limit the halting problem is a theoretical
problem, not a practical problem. But it’s also a very concrete, down-
to-earth problem in a way, because we're just trying to predict if a
machine will eventually do something, if something eventually happens.
So it’s almost like a problem in physics!)

Well, it would be nice to have a way to avoid running bad programs
that get stuck in a loop. But here 1s Turing’s proof that there’s no way
to do it, that it’s uncomputable.

The proof, which I'll give in detail in Chapter IV in LISP, will be
a reductio ad absurdum. Let’s assume that we have a way to solve the
halting problem. Let’s assume that we have a subroutine H that can
take any program P as input, and that H returns “will halt” or “never

halts” and always gets it right.

Then here’s how we get into trouble with this halting problem
subroutine H. We put together a computer program P that’s self-
referential, that calculates itself. We’ll do this by using the same self-
reference trick that I use in Chapter III to prove Godel’s theorem. Once
this program P has calculated itself, P uses the halting problem sub-
routine H to decide if P halts. Then, just for the heck of it, P does
the opposite of what H predicted. If H said that P would halt, then
P goes into an infinite loop, and if H said that P wouldn’t halt, then
P immediately halts. And we have a contradiction, which shows that
the halting problem subroutine H cannot exist.

And that’s Turing’s proof that something very simple is uncom-
putable. The trick is just self-reference—it’s like Russell’s set of all sets
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