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Introduction

It all started at school, one cold winter morning in 1956,
when [ was ten.

Mr. Harding had been doing some maths at the blackboard,
with chalk dust raining down everywhere, when he suddenly
whirled round and told us all to draw a semicircle, with
diameter AB.

Then we had to choose some point P on the semicircle, join

itto A and B by straight lines, and measure the angle at P (Fig. 1).

Fig. 1 Thales’ theorem.
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I duly got on with all this, casually assuming that the angle
at P would depend on where P is, exactly, on the semicircle.

But it doesn’t.

It’s always 90°.

* ok X

At the time,  had no idea that mathematics is full of surprises
like this.

I had no idea, either, that this is one of the first great theorems
of geometry, due to a mathematician called Thales, in ancient
Greece. And according to Thales —so it is said — the key question
is always not ‘What do we know?’ but rather ‘How do we know it?’

Why is it, then, that the angle in a semicircle is always 90°?

The short answer is that we can prove it, by a sequence of
simple logical steps, from a few apparently obvious starting

assumptions.

*Jou wANT PROF? |11 GWVE You Proog!"
Fig. 2 The importance of proof.
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And by doing just that, in the next few pages, I hope to not
only lay some foundations for geometry, but do something
far more ambitious.

For, with geometry, it is possible to see something of the
whole nature and spirit of mathematics at its best, at almost
any age, within just half an hour of starting.

And in case you don’t quite believe me...
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Getting Started

The first really major idea is that of parallel lines.
These are lines, in the same plane, which never meet, no
matter how far they are extended.

And I will make two assumptions about them.

Parallel lines

Imagine, if you will, two lines crossed by a third line, produ-

cing the so-called corresponding angles of Fig. 3.

Fig. 3 Corresponding angles.



GETTING STARTED 5

Then, throughout most of this book, I will assume that

(1) If two lines are parallel, the corresponding angles are

equal.

(2) If corresponding angles are equal, the two lines are

parallel.

These assumptions are rooted in the intuitive notion that
parallel lines must be, so to speak, ‘in the same direction’, but
however obvious (1) and (2) may seem, they are assumptions.
And, even at this early stage, it is worth noting that they
amount to two very different statements.
In effect, (1) helps us use parallel lines, while (2) helps us
show that we have some.

Angles

We will measure angles in degrees, denoted by °, and the two
parts of a straight line through some point P form an angle of
180° (Fig. 4).

180°

®
P
Fig. 4 A straight line.

A right angle is half this, i.e. an angle of 90°, and the two
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[11 Fig. 5 Rightangles.

lines forming it are then said to be perpendicular (Fig. 5).

Opposite angles

When two straight lines intersect, the so-called opposite angles
are equal (Fig. 6).

Fig. 6 Opposite angles.

Alternate angles

If two lines are parallel, and crossed by a third line, then the

so-called alternate angles are equal (Fig. 7).

Fig. 7 Alternate angles.
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A

a

/

Fig. 8 Proof that alternate angles are equal.

This is because, in Fig. 8, a = b (corresponding angles) and
b = ¢ (opposite angles). Soa =c.

The argument works ‘in reverse’, too, so that if alternate
angles are equal, the two lines must be parallel.

And with these ideas in place, we are now ready to prove

the first theorem which, in my view, is not obvious at all...

The angle-sum of a triangle

The three angles in any triangle add up to 180° (Fig. 9).

Fig. 9 Angles in a triangle.
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To prove this, draw a straight line through one corner,
parallel to the opposite side (Fig. 10).

Fig. 10 Proof of the angle-sum of a triangle.

The angles a are then equal (alternate angles).
The angles b are also equal, for the same reason.
Finally, the new line is straight, so a + b + ¢ = 180°, which

completes the proof.



N 257/
.37
o

Euclid’s Elements

The most famous example of geometry being presented in this
concise, deductive, and carefully ordered way is the Elements,
written by Euclid of Alexandria (Fig. 11), in about 300 BC.

Fig. 11 Euclid.
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Itis best to be clear from the outset, I think, that the precise
theorems and proofs of Euclid’s Elements (Fig. 12) are essen-
tially about imaginary objects.

Fig. 12 The oldest surviving copy of Euclid’s Elements, MS
D'Orville 301, copied by Stephen the Clerk for Arethas of Patras,
in Constantinople in AD 888.

A Euclidean straight line, for instance, isn’t just ‘perfectly’
straight—it has zero thickness. So even if I could draw one
properly, you wouldn’t be able to see it.

And a point isn’t a blob of small dimension—it has no

dimension at all. Or, as Euclid put it:
A point is that which has no part.

It should be said, too, that Euclid makes no use of what we

would call ‘measurement units’ for length. And there are no
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degrees in Euclid; the nearest he comes to having a unit for
angle is the concept of right angle, which he uses a great deal
(Fig. 13).

PROP. XV.
(o) _Af two right lines AB, CD, cut thyo'
one another, then are the two angles which
= are oppofite, viz. CEB; AED; equal one
A B tothe other:
For the angle AEC-}-CEB 2— to
D two right angles — AEC +AED; &
therefore CEB=AED. #hich was to be done.

Fig. 13 Proof that opposite angles are equal, from a 1732 edition
of Euclid’s Elements.

In spite of this, and the austere style of exposition, the
Elements has had more influence, and more editions, than
almost any other book in human history.

In the end, however, there can be no single ‘best’ way of
doing geometry, and we all have to find our own path into the
subject.

And if, in this book, I unashamedly assume more than
Euclid does, it is because I want to proceed more quickly to

interesting and surprising results...



Euclid, 1732

R

One of the most popular early editions
of Euclid was by Isaac Barrow. It was
first published in 1660, but my own copy
dates from 1732.
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Thales’ Theorem

Thales’ theorem says that the angle in a semicircle is always 90°.

And, to prove it, we need just one or two more key ideas.

Congruent triangles

Congruent triangles are ones which have exactly the same size
and shape.

And the most obvious way of fixing the exact size and
shape of a triangle is, perhaps, to specify the lengths of two
sides and the angle between them.

This leads to a very simple test for congruence, known

informally as ‘side-angle-side’, or SAS (Fig. 14).

ShS) =, G

Fig. 14 Congruence by SAS.

Isosceles triangles

An isosceles triangle is one in which two sides are equal.
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Triangles of this kind play a major part in geometry, largely

because the ‘base’ angles of an isosceles triangle are equal (Fig. 15).

C

A B Fig. 15 Anisosceles triangle.

Many people, I think, find this particular result rather obvi-
ous. After all, if we ‘nip round the back’ of an isosceles tri-
angle it will look exactly the same.

A more formal way of proving the result is to introduce the
line CD bisecting the angle at C (Fig. 16).

C

Fig. 16 Proof that the base angles of an
A D B isosceles triangle are equal.

The triangles ACD and BCD are then congruent by SAS,

and one is, in fact, a ‘mirror image’ or ‘overturned’ version
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of the other. In particular, then, the angles at A and B must
be equal.

(If all three sides of a triangle happen to be equal it is said to
be equilateral. The triangle is then isosceles in three different

ways, so all three of its angles are equal.)

Circles

The defining property of a circle is that all its points are the
same distance from one particular point, called the centre, O.

Some other common terminology is introduced in Fig. 17.

circumference

diameter

Fig. 17 The circle.
And this gives us all we need to prove Thales’ theorem.

Thales’ theorem

We want to prove that if P is any point on the semicircle in
Fig. 18, then ZAPB=90°, where ZAPB denotes the angle
between AP and PB.

Now, the simplest way of using the fact that P lies on the
semicircle, surely, is to draw in the line OP and observe that
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Fig. 18 Proof of Thales’ theorem.

OP = OA = OB, because all points on a circle are the same
distance from its centre.

Suddenly, then, we have two isosceles triangles, AOP and BOP.

The two ‘base angles’ a are therefore equal, and so are the
two base angles b.

Finally, the three angles of the large triangle APB must add
up to 180°, so

a+(a+b)+b=180°

and therefore a + b = 90°. In consequence, ZAPB=90°,
which proves the theorem.

And in all the years since I first saw this proof, on a cold
winter morning in 1956, I have never forgotten it.

Afterall, the resultis, at first sight, rather difficult to believe,
yet just a few minutes later we find ourselves saying, argu-
ably: ‘Oh, it’s sort of obvious, really, isn’t it—when you look at it
the right way.”

And in my experience, at least, this is often one of the hall-

marks of mathematics at its best.



Crotona

Syracuse

Thales lived in Miletus.

Pythagoras came from the island of Samos,

but later moved to Crotona.

‘I Archimedes
-500 -400 -300 -200 -100




Plato’s Academy in Athens had this famous
inscription over its entrance:

ATEOMETPHTOZX

MHAEIX EIXITQ

“Let no one ignorant of geometry enter here”

Euclid wrote The Elements in Alexandria.

Archimedes lived and worked in Syracuse.



Geometry in Action

Throughout history there have been practical applications
of geometry, and one of the earliest was Thales’ attempt to
calculate the height of the Great Pyramid in Egypt.

Thales and similar triangles

Thales measured the shadow of the Great Pyramid cast by the
Sun, and by adding half the pyramid’s base determined the
distance L in Fig. 19.

Fig. 19 Similar triangles.
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He then measured the shadow { cast by a vertical pole of
height h.

Assuming the Sun’s rays to be parallel, he reasoned that
the two triangles in Fig. 19, though of very different size,
would have exactly the same shape, and that corresponding
sides would therefore be in the same proportion.

In particular, then, he reasoned that

L}

H L’
and so, having measured the other three lengths, he was able
to determine the Great Pyramid’s height H.

cUROPA

AANHNIKH AHMOW#

i
1

Fig. 20 Thales, on a Greek postage stamp of 1994.

Today we use the term similar to describe triangles which
have exactly the same shape, and, as we will see later, they
play a major part in some of the most striking theorems of

geometry.
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Measuring the Earth

According to its Greek roots, the word ‘geometry’ means,
quite literally, ‘Earth measurement’. So it seems appropriate
to look next at a famous attempt to measure the circumfer-
ence of the Earth, by Eratosthenes of Alexandria, in about
240 BC.

And, as it happens, he too used the Sun’s rays, but in a
rather different way.

Eratosthenes knew that, at noon on the longest day of the
year, the Sun was directly overhead at his birthplace Syene
(modern-day Aswan), because it illuminated the bottom of a
deep well there.

He also knew that, at the same time, the Sun made an angle
of 7.2° with the vertical at Alexandria, which he took to be
5000 stades due north of Syene.

Alexandria

r N

-
P

720
o* i

Sun

A

Fig. 21 Measuring the Earth.

Eratosthenes assumed that the Sun was so far from the

Earth that its rays arrived parallel. The two shaded angles in
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Fig. 21 are then corresponding angles, so the angle at O, the
centre of the Earth, must also be 7.2°.

Now, 7.2° is one-fiftieth of 360°, so he reasoned that the
circumference of the Earth must be 50 times the distance
between Alexandria and Syene, i.e. 250,000 stades.

In truth, this is probably an oversimplification of what
Eratosthenes actually did. Moreover, what a stade was, as a
unit of distance, is also lost; estimates by subsequent scholars
put it between 0.15 and 0.2 km, leading to a result for
the Earth’s circumference somewhere between 37,500 and
50,000 km. (The actual value is about 40,000 km.)

‘Practical work’, 1929

There is, of course, another, quite different aspect to practical
geometry, namely the actual construction of geometrical fig-
ures using ruler, compasses, and other tools of the trade.

When doing this kind of work, however, we have to be
continually mindful of what physicists would call ‘experi-
mental error’; otherwise, things can get a bit ridiculous.

On my shelves at home, for instance, there is an old geom-
etry exercise book, dating from 1929, that once belonged to a
pupil at a primary school in the north of England.

The book itself has considerable charm, and consists
mostly of simplified Euclid, carried out neatly and well. On
the very last page, however, and without any warning at
all, we suddenly meet something called ‘Practical Work’,

involving—apparently—some actual measurement (Fig. 22).
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Fig. 22 From a 1929 school exercise book.

Yet, despite the tick of approval from the teacher, there
is something faintly absurd about this particular piece of
work.

So far as I can determine, the angle A is closer to 45° than
50°, and it looks to me as if the various numbers have simply
been cooked up, quite unashamedly, so that the angle-sum
comes out ‘right’.

Area

Perhaps the oldest geometrical idea of real practical import-

ance is that of area, driven largely by problems concerning

land.

Copyrighted material
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We begin with a square of side 1 unit, and it quickly becomes
evident how to calculate the area of a rectangle with sides

which are whole numbers (Fig. 23).

4
1
1 3
A=1
A=4x3
a
b b
A=ab a
A=lab
2
Fig. 23 Area.

This leads us to define the area of a rectangle, more gener-

ally, as
A=ab,

where the side lengths a and b may now be fractional or even
irrational.

Introducing a diagonal then bisects the rectangle itself, giv-
ing Lab as the area of a right-angled triangle.

And, improbable as it may seem, these elementary ideas of
area are enough to let us take a first look at one of the most

famous—and far-reaching—theorems of all....
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Pythagoras’ Theorem

*

There is a surprisingly simple relationship between the
lengths of the sides of any right-angled triangle (Fig. 24).
And, like so much that is best in mathematics, it is this

generality that gives the theorem its power.

Fig. 24 Pythagoras’ theorem.

In Fig. 24, c denotes the length of the hypotenuse—meaning
the side opposite the right angle—while 4 and b denote the
lengths of the other two sides.



