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Chapter 1

Probability:
Basic concepts and theorems

The mathematical formalism of quantum mechanics is a probability cal-
culus. The probability algorithms it places at our disposal—state vectors,
wave functions, density matrices, statistical operators—all serve the same
purpose, which is to calculate the probabilities of measurement outcomes.
That’s reason enough to begin by putting together what we already know
and what we need to know about probabilities.

1.1 The principle of indifference

Probability is a measure of likelihood ranging from 0 to 1. If an event has a
probability equal to 1, it is certain that it will happen; if it has a probability
equal to 0, it is certain that it will not happen; and if it has a probability
equal to 1/2, then it is as likely as not that it will happen.

Tossing a fair coin yields heads with probability 1/2. Casting a fair
die yields any given natural number between 1 and 6 with probability 1/6.
These are just two examples of the principle of indifference, which states:

If there are m mutually ezclusive and jointly erhaustive possibilities (or
possible events), and if we have no reason to consider any one of them more
likely than any other, then each possibility should be assigned a probability
equal to 1/n.

Saying that events are mutually exclusive is the same as saying that at most
one of them happens. Saying that events are jointly exhaustive is the same
as saying that at least one of them happens.
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1.2 Subjective probabilities versus objective probabilities

There are two kinds of situations in which we may have no reason to consider
one possibility more likely than another. In situations of the first kind, there
are objective matters of fact that would make it certain, if we knew them,
that a particular event will happen, but we don’t know any of the relevant
matters of fact. The probabilities we assign in this case, or whenever we
know some but not all relevant facts, are in an obvious sense subjective.
They are ignorance probabilities. They have everything to do with our
(lack of) knowledge of relevant facts, but nothing with the ezistence of
relevant facts. Therefore they are also known as epistemic probabilities.

In situations of the second kind, there are no objective matters of fact
that would make it certain that a particular event will happen. There
may not even be objective matters of fact that would make it more likely
that one event will occur rather than another. There isn’t any relevant
fact that we are ignorant of. The probabilities we assign in this case are
neither subjective nor epistemic. They deserve to be considered objective.
Quantum-mechanical probabilities are essentially of this kind.

Until the advent of quantum mechanics, all probabilities were thought
to be subjective. This had two unfortunate consequences. The first is that
probabilities came to be thought of as something intrinsically subjective.
The second is that something that was not a probability at all—namely, a
relative frequency—came to be called an “objective probability.”

1.3 Relative frequencies

Relative frequencies are useful in that they allow us to measure the like-
lihood of possible events, at least approximately, provided that trials can
be repeated under conditions that are identical in all relevant respects. We
obviously cannot measure the likelihood of heads by tossing a single coin.
But since we can toss a coin any number of times, we can count the number
Ny of heads and the number N of tails obtained in N tosses and calculate
the fraction fﬁ = Ny /N of heads and the fraction f}{; = N7 /N of tails.
And we can expect the difference | Ny — Nr| to increase significantly slower

than the sum N = Ny + Np, so that

. |Ng— Nr| )
dn TNy A Y - A= 0 (L1)
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In other words, we can expect the relative frequencies f I{}I and f}‘: to tend
to the probabilities py of heads and pr of tails, respectively:
Ny Np
= 1. _— = ]' - . 12
PH NE*I})C N ’ pT Ngnoo ( )

1.4 Adding and multiplying probabilities

Suppose you roll a (six-sided) die. And suppose you win if you throw either

a1l or a6 (no matter which). Since there are six equiprobable outcomes,

two of which cause you to win, your chances of winning are 2/6. In this
example it is appropriate to add probabilities:

1

p(1V6) =p(1) +p(6) = &

The symbol V means “or.” The general rule is this:

1 1
t5=3- (1.3)
Sum rule. Let W be a set of w mutually exclusive and jointly exhaustive
events (for instance, the possible outcomes of a measurement), and let 2/
be a subset of W containing a smaller number u of events: U C W, u < w.
The probability p(if) that one of the events eq,..., e, in U takes place (no
matter which) is the sum p; + - -+ + p, of the respective probabilities of
these events.

One nice thing about relative frequencies is that they make a rule such as
this virtually self-evident. To demonstrate this, let N be the total number
of trials—think coin tosses or measurements. Let Nj be the total number
of trials with outcome ey, and let N () be the total number of trials with
an outcome in 4. As N tends to infinity, Ni/N tends to p and N(U)/N
tends to p(U). But
NU) Ni+---+N, N N,
N N ~ ot
and in the limit NV — oo this becomes
pU) =pr+ -+ pu. (1.5)

Suppose now that you roll two dice. And suppose that you win if your total

(1.4)

equals 12. Since there are now 6 x 6 equiprobable outcomes, only one of
which causes you to win, your chances of winning are 1/(6 x 6). In this
example it is appropriate to multiply probabilities:

1

ey s L1 X
p(6 A6) = p(6) x p(6) = 5 X 6" 3% (1.6)
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The symbol A means “and.” Here is the general rule:

Product rule. The joint probability p(e1A---Aey) of v independent events
€1,...,6€y, (that is, the probability with which all of them happen) is the
product of the probabilities p(e1), ..., p(e,) of the individual events.

It must be stressed that the product rule only applies to independent events.
Saying that two events a, b are independent is the same as saying that the
probability of @ is independent of whether or not b happens, and vice versa.

As an illustration of the product rule for two independent events, let
at, ..., ay be mutually exclusive and jointly exhaustive events (think of the
possible outcomes of a measurement of a variable A), and let pf,...,p5
be the corresponding probabilities. Let by,...,bx be a second such set
of events with corresponding probabilities p?, ... ,p?(. Now draw a 1 x 1
square with coordinates z,y ranging from 0 to 1. Partition it horizontally
into J strips of respective width p7. Partition it vertically into K strips
of respective width pl,:_. You now have a square partitioned into J x K
rectangles with respective areas p§ x p?c. Since a joint measurement of A
and B is equivalent to throwing a dart in such a way that it hits a random
position (z, y) within the square, the joint probability p(a; A by) equals the
corresponding area.

Problem 1.1. We have seen that the probabilily of obtaining a total of 12
when rolling a pair of dice is 1/36. What is the probability of obtaining a
total of (a) 11, (b) 10, (c) 97

Problem 1.2. (x)* In 1999, Sally Clark was convicted of murdering her
first two babies, which died in their sleep of sudden infant death syndrome.
She was sent to prison to serve two life sentences for murder, essentially on
the testimony of an “expert” who told the jury it was too improbable that two
children in one family would die of this rare syndrome, which has a proba-
bility of 1/8,500. After over three years in prison, and five years of fighting
in the legal system, Sally was cleared by a Courl of Appeal, and another
two and a half years later, the “expert” pediatrician Sir Roy Meadow was
found guilty of serious professional misconduct. Amazingly, during the trial
nobody raise the objection that an expert pediatrician was not likely to be an
expert statistician. Meadow had argued that the probability of two sudden
infant deaths in the same family was (1/8,500)x (1/8,500) = 1/72, 250, 000.

FEzxplain why he was so terribly wrong.

1A star indicates that a solution or a hint is provided in Appendix A.
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1.5 Conditional probabilities and correlations

If the events a; and by are not independent, we must distinguish between
marginal probabilities, which are assigned to the possible outcomes of ei-
ther measurement without taking account of the outcome of the other mea-
surement, and conditional probabilities, which are assigned to the possible
outcomes of either measurement depending on the outcome of the other
measurement. If a; and bj are not independent, their joint probability is

plaj Abi) = p(bilaz) plaz) = plaj|be) p(br) , (1.7)

where p(a;) and p(by) are marginal probabilities, while p(bx|a;) is the prob-
ability of by, conditional on the outcome a; and p(a;|by) is the probability
of a; conditional on the outcome by. This gives us the useful relation

planb)

p(tlo) = 2

(1.8)

Another useful rule is

pla) = p(alb) p(b) + plalb) p(B) , (1.9)

where b and b are two mutually exclusive and jointly exhaustive events.
(To obtain b is to obtain any outcome other than b.) The validity of this
rule is again readily established with the help of relative frequencies. We
obviously have that

N(a) N(aAb) N(aAb) N(anb)N(b) N(anb)N(D)

_ _ A (110
N N TN No N N v 0

where N is the number of joint measurements of two variables, one with
the possible outcome a and one with the possible outcome b. In the limit
N — o0, N(a)/N (the left-hand side of Eq. 1.10) tends to the marginal
probability p(a), while the right-hand side of this equation tends to the
right-hand side of Eq. (1.9), as will be obvious from a glance at Eq. (1.8).
An important concept is that of (probabilistic) correlation. Two events
a,b are correlated just in case that p(alb) # p(alb). Specifically, @ and b are
positively correlated if p(alb) > p(alb), and they are negatively correlated if
plalb) < p(alb). Saying that a and b are independent is thus the same as
saying that they are uncorrelated, in which case p(a|b) = p(a|b) = p(a).

Problem 1.3. (x) Let’'s Make a Deal was a famous game show hosted by
Monty Hall. In it a player was to open one of three doors. Behind one door
there was the Grand Prize (for example, a car). Behind the other doors
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there were booby prizes (say, goats). After the player had chosen a door,
the host opened a different door, revealing a goat, and offered the player the
opportunity of choosing the other closed door. Should the player accept the
offer or should he stick with his first choice? Does it maoke a difference?

Problem 1.4. (x) Which of the following statements do you think is true?
(i) Event A happens more frequently because it is more likely. (i) Event A
is more likely because it happens more frequently.

Problem 1.5. (x) Suppose we have a 99% accurale lest for a certain dis-
ease. And suppose that a person picked at random from the population tests
postive. What is the probability that this person actually has the discase?

1.6 Expectation value and standard deviation

Another two important concepts associated with a probability distribution
are the expected/expectation value (or mean) and the standard deviation
(or root mean square deviation from the mean).

The expected value associated with the measurement of an observable
with K possible outcomes vy and corresponding probabilities p(vy) is

K
(W) ZS plor) v (1.11)
k=1

Note that the expected value doesn’t have to be one of the possible out-
comes. The expected value associated with the roll of a die, for instance,
equals 3.5.

To calculate the rms deviation from the mean, Awv, we first calculate
the squared deviations from the mean, (v, — (v))?, then we calculate their
mean, and finally we take the root:

K
Av= | > plog) (v — (v))2 . (1.12)
k=1

The standard deviation of a random variable V' with possible values vy is an
important measure—albeit not the only one—of the variability or spread

of V.

Problem 1.6. (x) Calculate the standard deviation for the sum obtained

by rolling two dice.



Chapter 2

A (very) brief history
of the “old” theory

2.1 Planck

Quantum physics started out as a rather desperate measure to avoid some
of the spectacular failures of what we now call “classical physics.” The story
begins with the discovery by Max Planck, in 1900, of the law that perfectly
describes the radiation spectrum of a glowing hot object. (One of the things
predicted by classical physics was that you would get blinded by ultraviolet
light if you looked at the burner of your stove.) At first it was just a fit to the
data—“a fortuitous guess at an interpolation formula,” as Planck himself
described his radiation law. It was only weeks later that this formula was
found to imply the quantization of energy in the emission of electromagnetic
radiation, and thus to be irreconcilable with classical physics. According to
classical theory, a glowing hot object emits energy continuously. Planck’s
formula implies that it emits energy in discrete quantities proportional to
the frequency v of the radiation:

E=hv, (2.1)
where h = 6.626069 x 1074 Js is the Planck constant. Often it is more

convenient to use the reduced Planck constant h = h/2m (“h bar”), which
allows us to write

E=hw, (2.2)

where the angular frequency w = 2wv replaces v.

2.2 Rutherford

In 1911, Ernest Rutherford proposed a model of the atom that was based
on experiments conducted by Hans Geiger and Ernest Marsden. Geiger



10 The World According to Quantum Mechanics

and Marsden had directed a beam of alpha particles (helium nuclei) at a
thin gold foil. As expected, most of the alpha particles were deflected by
at most a few degrees. Yet a tiny fraction of the particles were deflected
through angles much larger than 90 degrees. In Rutherford’s own words

[Cassidy et al. (2002)],

It was almost as incredible as if you fired a 15-inch shell at a
piece of tissue paper and it came back and hit you. On con-
sideration, I realized that this scattering backward must be the
result of a single collision, and when I made calculations I saw
that it was impossible to get anything of that order of magni-
tude unless you took a system in which the greater part of the
mass of the atom was concentrated in a minute nucleus.

The resulting model, which described the atom as a miniature solar system,
with electrons orbiting the nucleus the way planets orbit a star, was how-
ever short-lived. Classical electromagnetic theory predicts that an orbiting
electron will radiate away its energy and spiral into the nucleus in less than
a nanosecond. This was the worst quantitative failure in the history of
physics, under-predicting the lifetime of hydrogen by at least forty orders
of magnitude. (This figure is based on the experimentally established lower
bound on the proton’s lifetime.)

2.3 Bohr

In 1913, Niels Bohr postulated that the angular momentum L of an orbiting
atomic electron was quantized: its possible values are integral multiples of
the reduced Planck constant:

L=nh, n=1,23.... (2.3)

Observe that angular momentum and Planck’s constant are measured in
the same units.

Bohr's postulate not only explained the stability of atoms but also ac-
counted for the by then well-established fact that atoms absorb and emit
electromagnetic radiation only at specific frequencies. What is more, it en-
abled Bohr to calculate with remarkable accuracy the spectrum of atomic
hydrogen—the particular frequencies at which it absorbs and emits light
(visible as well as infrared and ultraviolet).

Apart from his quantization postulate, Bohr’s reasoning at the time
remained completely classical. Let us assume with Bohr that the electron’s
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Fig. 2.1 Calculating the acceleration of an orbiting electron.

orbit is a circle of radius r. The electron’s speed is then given by v =
rdf3/dt, where d3 is the small angle traversed during a short time dt, while
the magnitude a of the electron’s acceleration is the magnitude dv of the
vector difference vo — v divided by dt.! This equals a = vd3/dt, as we
gather from Fig. 2.1. Eliminating d3/dl by using v = rdj3/dl, we arrive at
a=v/r.

We want to calculate the electron’s total energy as it orbits the nucleus
(a proton). In Gaussian units, the magnitude of the Coulomb force exerted
on the electron by the proton takes the particularly simple form I" = e? /2,
where e is the absolute value of both the electron’s and the proton’s charge.
Since F = ma = mv®/r, we have that mv? = e?/r. This gives us the
electron’s kinetic energy,

Fx = — (2.4)

where m. is the electron’s mass.

By convention, the electron’s potential energy is 0 at r = co. Its poten-
tial energy at the distance r from the nucleus is therefore minus the work
done by moving it from r to infinity,

o0 oo e2 , 62 ( )
Ep:—f Fd'r:—f —dr’' = ——. 2.5
: ST

(You will do the integral in the next chapter.) So the electron’s total energy
is E = Ex + Ep = —e2/2r.

Our next order of business is to express E as a function of L rather
than r. Classically, . = m.vr. Equation (2.4) allows us to massage E into

1To be precise, this holds in the limit in which di, and hence df3 and dv, go to 0. See
the next chapter for a brief introduction to vectors, differential quotients, and such.
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the desired form:

mee? mee? .
E= T 2m2y2y? T 2702 ° (2.6)
e

At this point Bohr simply substitutes L = nh for the classical expression
L= m.or:

1 [ mee*
En.:_ﬁ(?h?), 1’121,2,37... (27)

If nh (n = 1,2,3,...) are the only values that L can take, then these are
the only values that the electron’s energy can take. It follows at once that
a hydrogen atom can emit or absorb energy only by amounts equal to the
differences
1 1

AE,, =E, - E, = (m — 'n_Q) Ry, (2.8)
where the Rydberg (Ry) is an energy unit equal to m.e/2h% =
13.605691 eV. It is also the ionization energy AFE.; of atomic hydrogen
in its ground state.

Considering the variety of wrong classical assumptions that went into
the derivation of Eq. (2.8), it is remarkable that the frequencies predicted by
Bohr via v = Enm /h were in excellent agreement with the experimentally
known frequencies at which atomic hydrogen emits and absorbs light.

2.4 de Broglie

In 1923, ten years after Bohr postulated that L comes in integral multi-
ples of A, someone finally hit on an explanation why angular momentum
was quantized. In 1905, Albert Einstein had argued that electromagnetic
radiation itself was quantized—not merely its emission and absorption, as
Planck had held. Planck’s radiation formula had implied a relation between
a particle property and a wave property for the quanta of electromagnetic
radiation we now call photons: E = hr. Einstein’s explanation of the
photoelectric effect established another such relation:

p=h/\, (2.9)

where p is the photon’s momentum and A is its wavelength. But if elec-
tromagnetic waves have particle properties, Louis de Broglie reasoned, why
cannot electrons have wave properties?

Imagine that the electron in a hydrogen atom is a standing wave on
a circle (Fig. 2.2) rather than a corpuscle moving in a circle. (The crests,



A (v ry) brief history of the “old” theory 13

Fig. 2.2 Standing waves on a circle for n = 3,4,5,6.

troughs, and nodes of a standing wave are stationary—they stay put.) Such
a wave has to satisfy the condition

2mr =nA, n=1,2,3,..., (2.10)

i.e., the circle’s circumference 27 must be an integral multiple of A. Using
p = h/A to eliminate A from Eq. (2.10) yields pr = nh. But pr = mor
is just the angular momentum L of a classical electron moving in a circle
of radius . In this way de Broglie arrived at the quantization condition

L = nh, which Bohr had simply postulated.
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Chapter 3

Mathematical interlude

3.1 Vectors

A wector is a quantity that has both a magnitude and a direction—for
present purposes a direction in “ordinary” 3-dimensional space. Such a
quantity can be represented by an arrow.

The sum of two vectors can be defined via the parallelogram rule:
(i) move the arrows (without changing their magnitudes or directions) so
that their tails coincide, (ii) duplicate the arrows, (iii) move the duplicates
(again without changing magnitudes or directions) so that (a) their tips co-
incide and (b) the four arrows form a parallelogram. The resultant vector
extends from the tails of the original arrows to the tips of their duplicates.

If we introduce a coordinate system with three mutually perpendicular
axes, we can characterize a vector a by its components (ag, ay, a;) (Fig. 3.1).

Problem 3.1. (%) The sum ¢ = a + b of two vectors has the components
(C.T! Cy>Cz) - (a:t: + bzy Uy + bya a; + bz)

The dot product of two vectors a, b is the number
Def
a-b = azby +ayb, +ab.. (3.1)

We need to check that this definition is independent of the (rectangular)
coordinate system to which the vector components on the right-hand side

refer. To this end we calculate
(a + b) N (a + b) = (‘-q/.'lr + b:::)2 + (ay + by)Q + (az + bz)2
= a2 +aj+a+ b2+ b2+ b2 42 (azby + ayb, + azb.)
—a-atb-b+2a-b. (3.2)
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v X

Fig. 3.1 The components of a vector.

According to Pythagoras, the magnitude a of a vector a equals
ai + a2 + a?. Because the left-hand side and the first two terms on the

right-hand side of Eq. (3.2) are the squared magnitudes of vectors, they do
not change under a coordinate transformation that preserves the magni-
tudes of all vectors. Hence the third term on the right-hand side does not
change under such a transformation, and neither therefore does the product
a - b. But the coordinate transformations that preserve the magnitudes of
vectors also preserve the angles between vectors. In particular, they turn
a system of rectangular coordinates into another system of rectangular co-
ordinates. Thus while the individual components on the right-hand side of
Eq. (3.2) generally change under such a transformation, the dot product
a - b does not.

By the term scalar we mean a number that is invariant under transfor-
mations of some kind or other. Since the dot product is invariant under
translations and rotations of the coordinate axes—the transformations that
preserve magnitudes and angles—it is also known as scalar product.

Problem 3.2. (%) a-b = ab cosf, where 0 is the angle between a and b.

Another useful definition (albeit only in a 3-dimensional space) is the cross

product of two vectors. If X, §,Z are unit vectors parallel to the coordinate
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A p(X)

v

Xl X2
Fig. 3.2 The area corresponding to a definite integral.

axes, this is given by
axb 2 (ab, — asby) % + (asby — apbs) ¥ + (asby — aybe)z.  (3.3)

Problem 3.3. The cross product is antisymmetric: a Xx b = —b x a.

Problem 3.4. (x) a x b is perpendicular to both a and b.

Problem 3.5. X x§y =2, §xZ=%X, ZxX=¥.

By convention, the direction of a x b is given by the right-hand rule: if
the first (index) and the second (middle) finger of your right hand point in
the direction of a and b, respectively, then your right thumb (pointing in a
direction perpendicular to both a and b) indicates the direction of a x b.

Problem 3.6. (x) The magnitude of a x b equals ab sin 6, the area of the
parallelogram spanned by a and b.

3.2 Definite integrals

We frequently have to deal with probabilities that are assigned to intervals
of a continuous variable z (like the interval [z, xs| in Fig. 3.2). Such
probabilities are calculated with the help of a probability density function
p(x), which is defined so that the probability with which z is found to
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Xy X, Xy X,

Fig. 3.3 Two approximations to the definite integral (3.4).

lie in the interval [z, 2] is given by the shaded area in Fig. 3.2. The
mathematical tool for calculating this area is the (definite) integral

A= f " () e (3.4)

To define this integral, we overlay the shaded area of Fig. 3.2 with N
rectangles of width Ax = (w2 — z1)/N in either of the ways shown in
Fig. 3.3. The sum of the rectangles in the left half of this figure,

N—1

Ay =" plz+kAz) Az, (3.5)

k=0
is larger than the wanted area A, while the sum of the rectangles in the
right half,

N
A=) pla+ kAx) A, (3.6)
k=1
is smaller. It is clear, though, that the differences A;—A and A—A_ de-
crease as the number of rectangles increases. The integral (3.4) is defined
as the limit of either sum:

N o N-1
lim T+ kAzx A:c:f z)dr = lim z+ kAz)Az.
Jim ;p( ) | pla)de = Jim kz:% ol )

Another frequently used expression is the integral fjsp(:c) dx, which is

defined as the limit
+a
lim plz)dx. (3.7)

—
a—oo J
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One often has to integrate functions of more than one variable. Take
the integral

fR f(@y,2) dr. (3.8)

R is a region of 3-space, and d*r = dady dz is the volume of an infinitely
small rectangular cuboid with sides dz,dy,dz. Instead of summing over
infinitely many infinitely small intervals lying inside a finite interval, one
now sums over infinitely many infinitely small rectangular cuboids lying
inside a finite region R. (For more on infinitely many infinitely small things
see the next section.)

3.3 Derivatives

A function f(z) is a machine that has an input and an output. Insert
a number z and out pops the number f(z). [Warning: sometimes f(x)
denotes the machine itself rather than the number obtained after inserting
a particular z.] We shall mostly be dealing with functions that are well-
behaved. Saying that a function f(x) is well-behaved is the same as saying
that we can draw its graph without lifting up the pencil, and we can do the
same with the graphs of its derivatives.

The (first) derivative of f(x) is a machine f'(x) that works like this:
insert a number z, and out pops the slope of (the graph of) f(x) at =.
What we mean by the slope of f(x) at a particular point = a is the slope
of the tangent t(x) on f(x) at a.

Take a look at Fig. 3.4. The curve in each of the three diagrams is (the
graph of) f(x). The slope of the straight line s(x) that intersects f(x) at
two points in the upper diagrams is given by the difference quotient

As  s(z+ Az) — s(z)
Ar Az '

This tells us how much s(z) increases as x increases by Az. The lower
diagram shows the tangent ¢(x) on the function f(x) for a particular x.
Now consider the small black disk at the intersection of the functions
f(x) and s(z) at z+Ax in the upper left diagram. Think of it as a bead
sliding along f(x) towards the left. As it does so, the slope of s(z) increases
(compare the upper two diagrams). In the limit in which this bead occupies
the same place as the bead sitting at z, s(z) coincides with ¢(z), as one

(3.9)

gleans from the lower diagram. In other words, as Az tends to 0, the
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flck ) f(x+Ax)A
f(x) f(x)
X X+AX g X X+AX g
f(x)
- .

Fig. 3.4 Definition of the slope of a function f(z) at .

difference quotient (3.9) tends to the differential quotient

df Def . Af
— = lim —

3.10
dx Az—0 Az ’ ( )

which is the same as f/(z). The differentials dz and df are infinitesimal
(“infinitely small”) quantities. This sounds highly mysterious until one
realizes that every expression containing such quantities is to be understood
as the limit in which these tend to 0, one (here, dr) independently, the
others (here, df) dependently.

To differentiate a function f(x) is to obtain its first derivative f'(x).
By differentiating f’(x), we obtain the second derivative f”(x) of f(x),
for which we can also write d *f /dz?. To make sense of the last expression,
think of d/dx as an operator. Like a function, an operator has an input and
an output, but unlike a function, it accepts a function as input. Insert f(x)
into d/dx and get the function df /dz. Insert the output of d/dx into another
operator d/dz and get the function (d/dz)(d/dz)f(x) et (d?/dx?)f(x) =
d?f /d=?.

By differentiating the second derivative we obtain the third, and so on.
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g dg

Fig. 3.5 Illustration of the product rule.

Problem 3.7. Find the slope of the straight line f(z) = ax +b.
Problem 3.8. () Calculate f'(x) for f(x) = 22* — 3z + 4.

Problem 3.9. (x) What does f"(z)—the slope of the slope of f(x)—tell
us about the graph of f(xz)?

By definition, (f + g)(z) = f(z) + g(x) .

Problem 3.10. If a is a number and f and g are functions of x, then

d(af) df d(f+g) _df  dg
— —_— d —_— e — —_

dx “Ir a dx dx + dx
A slightly more difficult task is to differentiate the product h(z) =
f(z) g(z). Think of f and ¢ as the vertical and horizontal sides of a rectan-
gle of area h. As x increases by Az, the product fg increases by the sum

of the areas of the three white rectangles in Fig. 3.5:
Ah = f(Ag) + (Af)g + (Af)(Ag). (3.11)

Hence
Ah  Ag Af AfAg
A A TR A
If we now let Az go to 0, the first two terms on the right-hand side tend
to fg'+ f'g. What about the third term? Since it is the product of an
expression (either Ag/Ax or A f/Axz) that tends to a finite number and an

expression (either Af or Ag) that tends to 0, it tends to 0. The bottom
line:

(3.12)

R=(fg) =Ffd+1'g. (3.13)

Problem 3.11. (x) (fgh) = fgh' + fgh+ fgh.
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The generalization to products of n functions is straightforward. An im-
portant special case is the product of n identical functions:

Y = P R S T = L (34
If f(z) = z, this boils down to
(") =nz" L. (3.15)
Suppose now that ¢ is a function of f, and that f is a function of . An
increase in x by Az will cause an increase in f by Af =~ (df /dz)Az, and
this will cause an increase in g by Ag = (dg/df)Af (the symbol =~ means
“is approximately equal to”). Thus
Ag dgdf
Az " df do”

In the limit Az — 0, “approximately equal” becomes “equal,” and Eq.

(3.16)

(3.16) becomes the chain rule
dg  dg df
de  df dz’
Problem 3.12. We have proved Eq. (3.15) for integers n > 2. Check that
it also holds for n =0 and n = 1.

(3.17)

Problem 3.13. (x) Equation (3.15) also holds for negative integers n.

Problem 3.14. (x) Equation (3.15) also holds for n = 1/m, where m is a
natural number.

Problem 3.15. Use the chain rule (3.17) to show that if Eq. (3.15) holds

for n=a and n = b, then it also holds for n = ab.

It follows from what you have just shown that Eq. (3.15) holds for all
rational numbers n. Moreover, since every real number is the limit of a
sequence of rational numbers, we can make sure that Eq. (3.15) holds for
all real numbers, by defining it as the limit of some sequence in case n is an
irrational number.

We often use functions with more than one input slot. The output of
f(t,z,y, z), for example, depends on the time coordinate ¢ as well as the
spatial coordinates x,vy,z. If we choose a fixed set of values z,vy, 2z, we
obtain a function fu.,.(t) of t alone. The partial derivative of f(t,xz,y,2)
with respect to ¢ is the derivative of f,.(t), for which we write 0f/0t
(usually without explicitly indicating that this function depends on the
chosen set of values x,y,z). The partial derivatives of f(¢,x,y,z) with
respect to the other variables are defined analogously.
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3.4 Taylor series

A well-behaved function can be expanded into a power series. This means
that for all non-negative integers k = 0,1,2,... there are real numbers ay,
such that

f@) =3 axa* =agt+ a1z +az2® +aga’ +agat +- . (318)
k=0

Let’s calculate the first four derivatives using (3.15):

f'(z) :a1+2a2x+3a3m2+4a4m3+5a5m4+--~,
f”(:f;) :2&2+2-3(131:4»3-4(141'24»4-5(151'3+--- ,
f(x)=2-3a3+2-3-dasz+3-4-5as2* +---,
f""(x) =2-3-4a4+2-3-4-5a5x+---.

Setting x equal to zero, we obtain the following values:

f(0)=ao, f(0)=a1, ['(0)=2ay,
F70)=2x3a3, f"0)=2x3x4day.

Since we don’t want to go on adding primes ('), we will write f(?)(z) for
the n-th derivative of f(z). If we also write f(”(z) for f(z), we have
that f(F) (0) equals k!ay, where the factorial k! is defined as equal to 1 for
k =0 and k£ = 1, and as the product of all natural numbers n < k for
k > 1. Expressing the coefficients aj in terms of the derivatives of f(x) for
x = 0, we arrive at the following power series—also known as the Taylor
series—for f(x):

©  rk
fla)=>3" f(;!(o) z". (3.19)
k=0
A remarkable result: if you know the value of a well-behaved function f(x)
and the values of all of its derivatives for a single value of = (in this case
x = 0, but there is a similar series for any value of z), then you know f(x)
for all values of z.

3.5 Exponential function

We define the function exp(x) by requiring that exp’(x) = exp(z) and
exp(0) = 1. In other words, the value of this function is everywhere equal
to the slope of its graph, which intersects the vertical axis at the value 1.
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Problem 3.16. Sketch the graph of exp(x) using this information alone.
Problem 3.17. All derivatives of exp(z) are equal to exp(z).

Thus exp(’“)((]) = 1 for all k, whence a particularly simple Taylor series
results:
o 2 3 4

T xTr X
exp( :Zk—*1+r+?+€+ﬂ+ (320)
k=

Problem 3.18. (%) exp(z) satisfies
fla) f(b) = fla+b). (3.21)

It can be shown that every function satisfying Eq. (3.21) has the form
f(x) = a®. This means that there is a number e such that exp(z) = e*—
hence the name “exponential function.”

Problem 3.19. (x) Calculate e.

Problem 3.20. d(e®)/dx = a e

The natural logarithm In  is the inverse of ¢®, that is, e = In(e*) = .
Problem 3.21. na4+1Inb= ln(ab).
Problem 3.22. (x)
dl 1 4
din f(x) L df (3.22)
dx f(x) dz
3.6 Sine and cosine
We define the function cos(x) by requiring that cos”(z) = — cos(x),

cos(0) = 1, and cos’(0) = 0.

Problem 3.23. (x) Sketch the graph of cos(x), making use of this infor-

mation alone.
Problem 3.24. For n > 0: cos"2)(z) = — cos™ ().

Problem 3.25.
+1 for k =0,4,8,12, ...
cos®(0) = { —1 for k —2,6,10, 14, . ..
0 for odd k
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We thus arrive at the following Taylor series:

P
cos(x)zl—?+ﬁ—a+---, (3.23)

The function sin(z) is defined by requiring that sin” (z) = —sin(z), sin(0) =
0, and sin’(0) = 1. This leads to the Taylor series

JI?S .’TJ5 .’I,'7

Sin(m)zm—§+ﬁ—ﬁ+“w (3.24)

3.7 Integrals

In Sec. 3.2 we defined the definite integral as a limit. How do we calculate
this limit? The answer is elementary if we know a function F(x) of which
f(x) is the first derivative, f = dF/dz, for we can then substitute dF' for
fda:

L ’ fla) dz = / bdF(w) . (3.25)

On the face of it, we are still adding infinitely many infinitely small quan-
tities, but look what this amounts to:

b
/ dF(z) = [F(a + dz) — F(a)]

+ [F(a+ 2dzx) — F(a + dz)]
+ [F(a+ 3dz) — F(a+ 2dx)]
+A..
+ [F(b—2dz) — F(b— 3dz)]
+ [F(b—dz) — F(b— 2dx)]
+[F(b) — F(b—dx)] .

After all cancellations are done, we are left with f: dF'(xz) = F(b) — F(a).

If f(z) is the derivative of F(z), F(z) is known as an integral or anti-
derwative of f(x)—an integral rather than the integral because if F'(z) is
an integral of f(z) and ¢ is a constant, then F(z) + ¢ is another integral
of f(x). To distinguish integrals from definite integrals, we also refer to
them as indefinite integrals.

Problem 3.26. (*) Calculate flz 22 dz.



