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PART 1

General Survey

1. The Nature of Mathematics by PHILIP E. B. JOURDAIN



COMMENTARY ON

PHILIP E. B. JOURDAIN

HILIP E. B. JOURDAIN (1879-1919), whose little book on the

nature of mathematics is here reproduced in its entirety, was a logi-
cian, a philosopher and a historian of mathematics. To each of these sub-
jects he brought a fresh outlook and a remarkably penetrating and creative
intelligence. He was not yet forty when he died and from adolescence had
been afflicted by a terrible paralytic ailment (Friedrick’s ataxia) which
gradually tightened its grip upon him. Yet he left behind a body of work
that influenced the development of both mathematical logic and the history
of science.

Jourdain, the son of a Derbyshire vicar, was educated at Cheltenham
College and at Cambridge. The few years during which he was able to
enjoy the normal pleasures of boyhood—Ilong walks were his special de-
light—are described in a poignant memoir by his younger sister, Millicent,
who suffered from the same hereditary disease. In 1900 the brother and
sister went to Heidelberg to seek medical help. While at the hospital he
began in earnest his study of the history of mathematics. “We had,” wrote
Millicent, “what was to be nearly our last bit of walking together here.”
The treatment was unavailing and when they returned to England, Jour-
dain could no longer walk or stand or even hold a pencil without difficulty.
Nevertheless, he undertook with great energy and enthusiasm the first of
a series of mathematical papers which established his reputation. Among
his earlier writings were studies of Lagrange’s use of differential equations,
the work of Cauchy and Gauss in function theory, and conceptual prob-
lems of mathematical physics.! Between 1906 and 1912 he contributed to
the Archiv der Mathematik und Physik a masterly group of papers on the
mathematical theory of transfinite numbers, a subject in which he was
always deeply interested. In the same period the Quarterly Journal of
Mathematics published a group of essays on the development of the
theories of mathematical logic and the principles of mathematics. Jourdain
was an editor of Isis and the Monist, in whose pages appeared his articles
on Leibniz, Napier, Hooke, Newton, Galileo, Poincaré and Dedekind. He
edited reprints of works by De Morgan, Boole, Georg Cantor, Lagrange,
Jacobi, Gauss and Ernst Mach; he wrote a brilliant and witty book, The
Philosophy of Mr. B*rtr*nd R*ss*ll, dealing with Russell’s analysis of the
problems of logic and the foundations of mathematics; he took out a
patent covering an invention of a “silent engine” (I have been unable to

! Bibliographies of Jourdain's writings appear in Isis, Vol. 5, 1923, pp. 134-136, and
in the Monist, Vol. 30, 1920, pp. 161-182,
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Philip E. B. Jourdain 3

discover what this machine was) and he wrote poems and short stories
which never got published. In 1914, at the height of his powers, he was
producing enough “to keep two typists busy all day.”

The distinctive qualities of Jourdain's thought were its independence
and its cutting edge. He was renowned for his broad scholarship in the
history and philosophy of science, but he was more than a scholar. Never
content with comprehending all that others had said about a problem, he
had to work it through in his own way and overcome its difficulties by his
own methods. This led him to conclusions peculiarly his own. They are
not always satisfactory but they always deserve close attention: Jourdain
rarely failed to uncover points overlooked by less subtle and original in-
vestigators.

The Nature of Mathematics reflects his excellent grasp of the subject,
his at times oblique but always rewarding approach to logic and mathe-
matics, his wit and clear expression. He had sharpened his thinking on
some of the hardest and most baffling questions of philosophy and had
achieved an orderly understanding of them which he was fully capable
of imparting to the attentive reader. The book is not a textbook collection
of methods and examples, but an explanation of “how and why these
methods grew up.” It discusses concepts which are widely used even in
elementary arithmetic, geometry and algebra—negative numbers, for ex-
ample—but far from widely comprehended. It presents also a careful
treatment of “the development of analytical methods and certain examina-
tions of principles.” There are at least two other excellent popularizations
of mathematics, A. N. Whitehead’s celebrated Introduction to Mathe-
matics 2 and the more recent Mathematics for the General Reader by
E. C. Titchmarsh.3 Both books can be recommended strongly, the first as
a characteristic, immensely readable work by one of the greatest of twen-
tieth-century philosophers; the second as a first-class mathematician’s
lucid, unhurried account of the science of numbers from arithmetic
through the calculus. Jourdain’s book follows a somewhat different path of
instruction in that it emphasizes the relation between mathematics and
logic. It is the peer of the other two studies and has for the anthologist
the additional appeal of being unjustly neglected and out of print. “I hope
that I shall succeed,” says Jourdain in his introduction, “in showing that
the process of mathematical discovery is a living and a growing thing.”
In this attempt he did not fail.

2 Oxford University Press, New York, 1948.
3 Hutchinson's University Library, London, n. d.



Pure mathematics consists entirely of such asseverations as that, if such and
such a proposition is true of anything, then such and such another proposi-
tion is true of that thing. It is essential not to discuss whether the first prop-
osition is really true, and not to mention what the anything is of which it
is supposed to be true. . . . If our hypothesis is about anything and not
about some one or more particular things, then our deductions constitute
mathematics. Thus mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what we are saying is

true. —BERTRAND RUSSELL

The Nature of Mathematics

By PHILIP E. B. JOURDAIN
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INTRODUCTION

AN eminent mathematician once remarked that he was never satisfied
with his knowledge of a mathematical theory until he could explain it to
the next man he met in the street. That is hardly exaggerated; however,
we must remember that a satisfactory explanation entails duties on both
sides. Any one of us has the right to ask of a mathematician, *What is the
use of mathematics?” Any one may, I think and will try to show, rightly
suppose that a satisfactory answer, if such an answer is anyhow possible,
can be given in quite simple terms. Even men of a most abstract science,
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The Nature of Mathematics 5

such as mathematics or philosophy, are chiefly adapted for the ends of
ordinary life; when they think, they think, at the bottom, like other men.
They are often more highly trained, and have a technical facility for
thinking that comes partly from practice and partly from the use of the
contrivances for correct and rapid thought given by the signs and rules
for dealing with them that mathematics and modern logic provide. But
there is no real reason why, with patience, an ordinary person should not
understand, speaking broadly, what mathematicians do, why they do it,
and what, so far as we know at present, mathematics is.

Patience, then, is what may rightly be demanded of the inquirer. And
this really implies that the question is not merely a rhetorical one—an
expression of irritation or scepticism put in the form of a question for the
sake of some fancied effect. If Mr. A. dislikes the higher mathematics be-
cause he rightly perceives that they will not help him in the grocery
business, he asks disgustedly, “What's the use of mathematics?” and does
not wait for an answer, but turns his attention to grumbling at the lateness
of his dinner. Now, we will admit at once that higher mathematics is of
no more use in the grocery trade than the grocery trade is in the naviga-
tion of a ship; but that is no reason why we should condemn mathematics
as entirely useless. I remember reading a speech made by an eminent sur-
geon, who wished, laudably enough, to spread the cause of elementary
surgical instruction. “The higher mathematics,” said he with great satis-
faction to himself, “do not help you to bind up a broken leg!” Obviously
they do not; but it is equally obvious that surgery does not help us to add
up accounts; . . . or even to think logically, or to accomplish the closely
allied feat of seeing a joke.

To the question about the use of mathematics we may reply by pointing
out two obvious consequences of one of the applications of mathematics:
mathematics prevents much loss of life at sea, and increases the commer-
cial prosperity of nations. Only a few men—a few intelligent philosophers
and more amateur philosophers who are not highly intelligent—would
doubt if these two things were indeed benefits. Still, probably, all of us
act as if we thought that they were. Now, I do not mean that mathema-
ticians go about with life-belts or serve behind counters; they do not
usually do so. What I mean I will now try to explain.

Natural science is occupied very largely with the prevention of waste
of the labour of thought and muscle when we want to call up, for some
purpose or other, certain facts of experience. Facts are sometimes quite
useful. For instance, it is useful for a sailor to know the positions of the
stars and sun on the nights and days when he is out of sight of land.
Otherwise, he cannot find his whereabouts. Now, some people connected
with a national institution publish periodically a Nautical Almanac
which contains the positions of stars and other celestial things you see
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through telescopes, for every day and night years and years ahead. This
Almanac, then, obviously increases the possibilities of trade beyond coast-
ing-trade, and makes travel by ship, when land cannot be sighted, much
safer; and there would be no Nautical Almanac if it were not for the sci-
ence of astronomy; and there would be no practicable science of as-
tronomy if we could not organise the observations we make of sun and
moon and stars, and put hundreds of observations in a convenient form
and in a little space—in short, if we could not economise our mental or
bodily activity by remembering or carrying about two or three little for-
mula instead of fat books full of details; and, lastly, we could not econ-
omise this activity if it were not for mathematics.

Just as it is with astronomy, so it is with all other sciences—both those
of Nature and mathematical science: the very essence of them is the pre-
vention of waste of the energies of muscle and memory. There are plenty
of things in the unknown parts of science to work our brains at, and we
can only do so efficiently if we organise our thinking properly, and conse-
quently do not waste our energies.

The purpose of this little volume is not to give—like a text-book—a
collection of mathematical methods and examples, but to do, firstly, what
text-books do not do: to show how and why these methods grew up. All
these methods are simply means, contrived with the conscious or uncon-
scious end of economy of thought-labour, for the convenient handling of
long and complicated chains of reasoning. This reasoning, when applied
to foretell natural events, on the basis of the applications of mathematics,
as sketched in the fourth chapter, often gives striking results. But the
methods of mathematics, though often suggested by natural events, are
purely logical. Here the word “logical” means something more than the
traditional doctrine consisting of a series of extracts from the science of
reasoning, made by the genius of Aristotle and frozen into a hard body of
doctrine by the lack of genius of his school. Modern logic is a science
which has grown up with mathematics, and, after a period in which it
moulded itself on the model of mathematics, has shown that not only the
reasonings but also conceptions of mathematics are logical in their nature.

In this book I shall not pay very much attention to the details of the
elementary arithmetic, geometry, and algebra of the many text-books, but
shall be concerned with the discussion of those conceptions—such as that
of negative number—which are used and not sufficiently discussed in
these books. Then, too, I shall give a somewhat full account of the de-
velopment of analytical methods and certain examinations of ptinciples.

I hope that I shall succeed in showing that the process of mathematical
discovery is a living and a growing thing. Some mathematiciahs have lived
long lives full of calm and unwavering faith—for faith in mathematics, as
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I will show, has always been needed—some have lived short lives full of
burning zeal, and so on; and in the faith of mathematicians there has been
much error.

Now we come to the second object of this book. In the historical part
we shall see that the actual reasonings made by mathematicians in build-
ing up their methods have often not been in accordance with logical rules.
How, then,'can we say that the reasonings of mathematics are logical in
their nature? The answer is that the one word “mathematics” is habitually
used in two senses, and so, as explained in the last chapter, I have distin-
guished between “mathematics,” the methods used to discover certain
truths, and “Mathematics,” the truths discovered. When we have passed
through the stage of finding out, by external evidence or conjecture, how
mathematics grew up with problems suggested by natural events, like the
falling of a stone, and then how something very abstract and intangible
but very real separated out of these problems, we can turn our attention
to the problem of the nature of Mathematics without troubling ourselves
any more-as to how, historically, it gradually appeared to us quite clearly
that there is such a thing at all as Mathematics—something which exists
apart from its application to natural science. History has an immense
value in being suggestive to the investigator, but it is, logically speaking,
irrelevant. Suppose that you are a mathematician; what you eat will have
an important influence on your discoveries, but you would at once see
how absurd it would be to make, say, the momentous discovery that 2
added to 3 makes 5 depend on an orgy of mutton cutlets or bread and
jam. The methods of work and daily life of mathematicians, the connect-
ing threads of suggestion that run through their work, and the influence
on their work of the allied work of others, all interest the investigator be-
cause these things give him examples of research and suggest new ideas
to him; but these reasons are psychological and not logical.

But it is as true as it is natural that we should find that the best way to
become acquainted with new ideas is to study the way in which knowl-
edge about them grew up. This, then, is what we will do in the first place,
and it is here that I must bring my own views forward. Briefly stated, they
are these. Every great advance in mathematics with which we shall be
concerned here has arisen out of the needs shown in natural science or
out of the need felt to connect together, in one methodically arranged
whole, analogous mathematical processes used to describe different natural
phenomena. The application of logic to our system of descriptions, which
we may make either from the motive of satisfying an intellectual need
(often as strong, in its way, as hunger) or with the practical end in view
of satisfying ourselves that there are no hidden sources of error that may
ultimately lead us astray in calculating future or past natural events, leads
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at once to those modern refinements of method that are regarded with dis-
favour by the old-fashioned mathematicians.

In modern times appeared clearly—what had only been vaguely sus-
pected before—the true nature of Mathematics. Of this I will try to give
some account, and show that, since mathematics is logical and not psy-
chological in its nature, all those petty questions—sometimes amusing and
often tedious—of history, persons, and nations are irrelevant to Mathe-
matics in itself. Mathematics has required centuries of excavation, and the
process of excavation is not, of course, and never will be, complete. But
we see enough now of what has been excavated clearly to distinguish be-
tween it and the tools which have been or are used for excavation. This
confusion, it should be noticed, was never made by the excavators them-
selves, but only by some of the philosophical onlookers who reflected on
what was being done. I hope and expect that our reflections will not lead
to this confusion.

CHAPTER 1
THE GROWTH OF MATHEMATICAL SCIENCE IN ANCIENT TIMES

IN the history of the human race, inventions like those of the wheel, the
lever, and the wedge were made very early—judging from the pictures on
ancient Egyptian and Assyrian monuments. These inventions were made
on the basis of an instinctive and unreflecting knowledge of the processes
of nature, and with the sole end of satisfaction of bodily needs. Primitive
men had to build huts in order to protect themselves against the weather,
and, for this purpose, had to lift and transport heavy weights, and so on.
Later, by reflection on such inventions themselves, possibly for the pur-
poses of instruction of the younger members of a tribe or the newly-joined
members of a guild, these isolated inventions were classified according to
some analogy. Thus we see the same elements occurring in the relation of
a wheel to its axle and the relation of the arm of a lever to its fulcrum—
the same weights at the same distance from the axle or fulcrum, as the
case may be, exert the same power, and we can thus class both instru-
ments together in virtue of an analogy. Here what we call “scientific”
classification begins. We can well imagine that this pursuit of science is
attractive in itself; besides helping us to communicate facts in a compre-
hensive, compact, and reasonably connected way, it arouses a purely in-
tellectual interest. It would be foolish to deny the obvious importance to
us of our bodily needs; but we must clearly realise two things:—(1) The
intellectual need is very strong, and is as much a fact as hunger or thirst;
sometimes it is even stronger than bodily needs—Newton, for instance,
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often forgot to take food when he was engaged with his discoveries.
(2) Practical results of value often follow from the satisfaction of intel-
lectual needs. It was the satisfaction of certain intellectual needs in the
cases of Maxwell and Hertz that ultimately led to wireless telegraphy; it
was the satisfaction of some of Faraday’s intellectual needs that made the
dynamo and the electric telegraph possible. But many of the results of
strivings after intellectual satisfaction have as yet no obvious bearing on
the satisfaction of our bodily needs. However, it is impossible to tell
whether or no they will always be barren in this way. This gives us a new
point of view from which to consider the question, “What is the use of
mathematics?” To condemn branches of mathematics because their results
cannot obviously be applied to some practical purpose is short-sighted.

The formation of science is peculiar to human beings among animals.
The lower animals sometimes, but rarely, make isolated discoveries, but
never seem to reflect on these inventions in themselves with a view to
rational classification in the interest either of the intellect or of the indirect
furtherance of practical ends. Perhaps the greatest difference between man
and the lower animals is that men are capable of taking circuitous paths
for the attainment of their ends, while the lower animals have their minds
so filled up with their needs that they try to seize the object they want, or
remove that which annoys them, in a direct way. Thus, monkeys often
vainly snatch at things they want, while even savage men use catapults or
snares or the consciously observed properties of flung stones.

The communication of knowledge is the first occasion that compels dis-
tinct reflection, as everybody can still observe in himself. Further, that
which the old members of a guild mechanically pursue stiikes a new mem-
ber as strange, and thus an impulse is given to fresh reflection and in-
vestigation.

When we wish to bring to the knowledge of a person any phenomena
or processes of nature, we have the choice of two methods: we may allow
the person to observe matters for himself, when instruction comes to an
end; or, we may describe to him the phenomena in some way, so as to
save him the trouble of personally making anew each experiment. To
describe an event—like the falling of a stone to the earth—in the most
comprehensive and compact manner requires that we should discover
what is constant and what is variable in the processes of nature; that we
should discover the same law in the moulding of a tear and in the motions
of the planets. This is the very essence of nearly all science, and we will
return to this point later on.

We have thus some idea of what is known as “the economical function
of science.” This sounds as if science were governed by the same laws as
the management of a business; and so, in a way, it is. But whereas the



10 Philip E. B. Jourdain

aims of a business are not, at least directly, concerned with the satisfaction
of intellectual needs, science—including natural science, logic, and mathe-
matics—uses business methods consciously for such ends. The methods
are far wider in range, more reasonably thought out, and more intelli-
gently applied than ordinary business methods, but the principle is the
same. And this may strike some people as strange, but it is nevertheless
true: there appears more and more as time goes on a great and compelling
beauty in these business methods of science.

The economical function appears most plainly in very ancient and mod-
ern science. In the beginning, all economy had in immediate view the satis-
faction simply of bodily wants. With the artisan, and still more so with the
investigator, the most concise and simplest possible knowledge of a given
province of natural phenomena—a knowledge that is attained with the
least intellectual expenditure—naturally becomes in itself an aim; but
though knowledge was at first a means to an end, yet, when the mental
motives connected therewith are once developed and demand their satis-
faction, all thought of its original purpose disappears. It is one great object
of science to replace, or save the trouble of making, experiments, by the
reproduction and anticipation of facts in thought. Memory is handier than
experience, and often answers the same purpose. Science is communi-
cated by instruction, in order that one man may profit by the experience
of another and be spared the trouble of accumulating it for himself; and
thus, to spare the efforts of posterity, the experiences of whole generations
are stored up in libraries. And further, yet another function of this
economy is the preparation for fresh investigation.!

The economical character of ancient Greek geometry is not so apparent
as that of the modern algebraical sciences. We shall be able to appreciate
this fact when we have gained some ideas on the historical development of
ancient and modern mathematical studies.

The generally accepted account of the origin and early development of
geometry is that the ancient Egyptians were obliged to invent it in order to
restore the landmarks which had been destroyed by the periodical inunda-
tions of the Nile. These inundations swept away the landmarks in the
valley of the river, and, by altering the course of the river, increased or
decreased the taxable value of the adjoining lands, rendered a tolerably
accurate system of surveying indispensable, and thus led to a systematic
study of the subject by the priests. Proclus (412—485 A.D.), who wrote a
summary of the early history of geometry, tells this story, which is also
told by Herodotus, and observes that it is by no means strange that the
invention of the sciences should have originated in practical needs, and
that, further, the transition from perception with the senses to reflection,

1Cf. pp. 5, 13, 15, 16, 42, 71,
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and from reflection to knowledge, is to be expected. Indeed, the very name
“geometry”—which is derived from two Greek words meaning measure-
ment of the earth—seems to indicate that geometry was not indigenous to
Greece, and that it arose from the necessity of surveying. For the Greek
geometricians, as we shall see, seem always to have dealt with geometry
as an abstract science—to have considered lines and circles and spheres
and so on, and not the rough pictures of these abstract ideas that we see
in the world around us—and to have sought for propositions which should
be absolutely true, and not mere approximations. The name does not
therefore refer to this practice.

However, the history of mathematics cannot with certainty be traced
back to any school or period before that of the Ionian Greeks. It seems
that the Egyptians’ geometrical knowledge was of a wholly practical
nature. For example, the Egyptians were very particular about the exact
orientation of their temples; and they had therefore to obtain with accu-
racy a north and south line, as also an east and west line. By observing
the points on the horizon where a star rose and set, and taking a plane
midway between them, they could obtain a north and south line. To get
an east and west line, which had to be drawn at right angles to this, cer-
tain people were employed who used a rope ABCD, divided by knots or
marks at B and C, so that the lengths AB, BC, CD were in the proportion
3:4:5. The length BC was placed along the north and south line, and
pegs P and Q inserted at the knots B and C. The piece BA (keeping it
stretched all the time) was then rotated round the peg P, and similarly the
piece CD was rotated round the peg Q, until the ends A and D coincided;
the point thus indicated was marked by a peg R. The result was to form a
triangle PQR whose angle at P was a right angle, and the line PR would
give an east and west line. A similar method is constantly used at the
present time by practical engineers, and by gardeners in marking tennis
courts, for measuring a right angle. This method seems also to have been
known to the Chinese nearly three thousand years ago, but the Chinese
made no serious attempt to classify or extend the few rules of arithmetic
or geometry with which they were acquainted, or to explain the causes of
the phenomena which they observed.

The geometrical theorem of which a particular case is involved in the
method just described is well known to readers of the first book of Euclid’s
Elements. The Egyptians must probably have known that this theorem is
true for a right-angled triangle when the sides containing the right angle
are equal, for this is obvious if a floor be paved with tiles of that shape.
But these facts cannot be said to show that geometry was then studied as
a science. Our real knowledge of the nature of Egyptian geometry depends
mainly on the Rhind papyrus.

The ancient Egyptian papyrus from the collection of Rhind, which was
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written by an Egyptian priest named Ahmes considerably more than a
thousand years before Christ, and which is now in the British Museum,
contains a fairly complete applied mathematics, in which the measurement
of figures and solids plays the principal part; there are no theorems prop-
erly so called; everything is stated in the form of problems, not in general
terms, but in distinct numbers. For example: to measure a rectangle the
sides of which contain two and ten units of length; to find the surface of
a circular area whose diameter is six units. We find also in it indications
for the measurement of solids, particularly of pyramids, whole and trun-
cated. The arithmetical problems dealt with in this papyrus—which, by
the way, is headed “Directions for knowing all dark things"—contain
some very interesting things. In modern language, we should say that the
first part deals with the reduction of fractions whose numerators are 2 to
a sum of fractions each of whose numerators is 1. Thus 3% is stated to be
the sum of %4, ¥s, %74, and ¥a2. Probably Ahmes had no rule for forming
the component fractions, and the answers given represent the accumulated
experiences of previous writers. In one solitary case, however, he has indi-
cated his method, for, after having asserted that % is the sum of % and 1,
he added that therefore two-thirds of one-fifth is equal to the sum of a
half of a fifth and a sixth of a fifth, that is, to %o + %4o.

That so much attention should have been paid to fractions may be ex-
plained by the fact that in early times their treatment presented consider-
able difficulty. The Egyptians and Greeks simplified the problem by re-
ducing a fraction to the sum of several fractions, in each of which the
numerator was unity, so that they had to consider only the various de-
nominators: the sole exception to this rule being the fraction %. This re-
mained the Greek practice until the sixth century of our era. The Romans,
on the other hand, generally kept the denominator equal to twelve, ex-
pressing the fraction (approximately) as so many twelfths.

In Ahmes’ treatment of multiplication, he seems to have relied on re-
peated additions. Thus, to multiply a certain number, which we will denote
by the letter “a,” by 13, he first multiplied by 2 and got 2a, then he
doubled the results and got 4a, then he again doubled the result and got
8a, and lastly he added together a, 4a, and 8a.

Now, we have used the sign “g” to stand for any number: not a par-
ticular number like 3, but any one. This is what Ahmes did, and what we
learn to do in what we call “algebra.” When Ahmes wished to find a num-
ber such that it, added to its seventh, makes 19, he symbolised the number
by the sign we translate “heap.” He had also signs for our “+,” “—,” and
“="2 Nowadays we can write Ahmes’ problem as: Find the number x

2 In this book I shall take great care in distinguishing signs from what they signify.
Thus 2 is to be distinguished from “2": by “2” I mean the sign, and the sign written
without inverted commas indicates the thing signified. There has been, and is, much
confusion, not only with beginners but with eminent mathematicians between a sign
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x
such that x -i--;-: 19. Ahmes gave the answer in the form 16 + % + %.

We shall find that algebra was hardly touched by those Greeks who
made of geometry such an important science, partly, perhaps, because the
almost universal use of the abacus ® rendered it easy for them to add and
subtract without any knowledge of theoretical arithmetic. And here we
must remember that the principal reason why Ahmes’ arithmetical prob-
lems seem so easy to us is because of our use from childhood of the
system of notation introduced into Europe by the Arabs, who originally
obtained it from either the Greeks or the Hindoos. In this system an in-
tegral number is denoted by a succession of digits, each digit representing
the product of that digit and a power of ten, and the number being equal
to the sum of these products. Thus, by means of the local value attached
to nine symbols and a symbol for zero, any number in the decimal scale
of notation can be expressed. It is important to realise that the long and
strenuous work of the most gifted minds was necessary to provide us with
simple and expressive notation which, in nearly all parts of mathematics,
enables even the less gifted of us to reproduce theorems which needed the
greatest genius to discover. Each improvement in notation seems, to the
uninitiated, but a small thing: and yet, in a calculation, the pen sometimes
seems to be more intelligent than the user. Our notation is an instance of
that great spirit of economy which spares waste of labour on what
is already systematised, so that all our strength can be concentrated
either upon what is known but unsystematised, or upon what is un-
known.

Let us now consider the transformation of Egyptian geometry in Greek
hands. Thales of Miletus (about 640-546 B.c.), who, during the early
part of his life, was engaged partly in commerce and partly in public
affairs, visited Egypt and first brought this knowledge into Greece. He dis-
covered many things himself, and communicated the beginnings of many
to his successors. We cannot form any exact idea as to how Thales pre-
sented his geometrical teaching. We infer, however, from Proclus that it
consisted of a number of isolated propositions which were not arranged
in a logical sequence, but that the proofs were deductive, so that the
theorems were not a mere statement of an induction from a large number
of special instances, as probably was the case with the Egyptian geometri-

and what is signified by it. Many have even maintained that numbers are the signs
used to represent them. Often, for the sake of brevity, I shall use the word in inverted
commas (say “a") as short for “what we call ‘a,’” but the context will make plain
what is meant.

2 The principle of the abacus is that a number is represented by counters in a series
of grooves, or beads strung on parallel wires; as many counters being put on the first
groove as there are units, as many on the second as there are tens, and so on. The
rules to be followed in addition, subtraction, multiplication, and division are given in
various old works on arithmetic.
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cians. The deductive character which he thus gave to the science is his
chief claim to distinction. Pythagoras (born about 580 B.C.) changed
geometry into the form of an abstract science, regarding its principles in
a purely abstract manner, and investigated its theorems from the imma-
terial and intellectual point of view. Among the successors of these men,
the best known are Archytas of Tarentum (428-347 B.c.), Plato (429-
348 B.c.), Hippocrates of Chios (born about 470 B.c.), Menaechmus
(about 375-325 B.c.), Euclid (about 330-275 B.c.), Archimedes (287-
212 B.C.), and Apollonius (260-200 B.C.).

The only geometry known to the Egyptian priests was that of surfaces,
together with a sketch of that of solids, a geometry consisting of the
knowledge of the areas contained by some simple plane and solid figures,
which they had obtained by actual trial. Thales introduced the ideal of
establishing by exact reasoning the relations between the different parts of
a figure, so that some of them could be found by means of others in a
manner strictly rigorous. This was a phenomenon quite new in the world,
and due, in fact, to the abstract spirit of the Greeks. In connection with
the new impulse given to geometry, there arose with Thales, moreover,
scientific astronomy, also an abstract science, and undoubtedly a Greek
creation. The astronomy of the Greeks differs from that of the Orientals
in this respect: the astronomy of the latter, which is altogether concrete
and empirical, consisted merely in determining the duration of some
periods or in indicating, by means of a mechanical process, the motions
of the sun and planets; whilst the astronomy of the Greeks aimed at
the discovery of the geometrical laws of the motions of the heavenly
bodies.

Let us consider a simple case. The area of a right-angled field of length
80 yards and breadth 50 yards is 4000 square yards. Other fields which
are not rectangular can be approximately measured by mentally dissecting
them—a process which often requires great ingenuity and is a familiar
problem to land-surveyors. Now, let us suppose that we have a circular
field to measure. Imagine from the centre of the circle a large number of
radii drawn, and let each radius make equal angles with the next ones
on each side of it. By joining the points in succession where the radii meet
the circumference of the circle, we get a large number of triangles of
equal area, and the sum of the areas of all these triangles gives an approxi-
mation to the area of the circle. It is particularly instructive repeatedly to
go over this and the following examples mentally, noticing how helpful
the abstract ideas we call “straight line,” “circle,” “radius,” “angle,” and
so on, are. We all of us know them, recognise them, and can easily feel
that they are trustworthy and accurate ideas. We feel at home, so to speak,
with the idea of a square, say, and can at once give details about it which
are exactly true for it, and very nearly true for a field which we know is
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very nearly a square. This replacement in thought by an abstract geomet-
rical object economises labour of thinking and imagining by leading us to
concentrate our thoughts on that alone which is essential for our pur-
pose.

Thales seems to have discovered—and it is a good thing to follow these
discoveries on figures made with the help of compasses and ruler—the
proof of what may be regarded as the obvious fact that the circle is
divided into halves by its diameter, that the angles at the base of a triangle
with two equal sides—an “isosceles” triangle—are equal, that all the
triangles described in a semi-circle with two of their angular points at the
ends of the diameter and the third anywhere on the circumference con-
tain a right angle, and he measured the distance of vessels from the shore,
presumably by causing two observers at a known distance apart to
measure the two angles formed by themselves and the ship. This last dis-
covery is an application of the fact that a triangle is determined if its base
and base angles are given.

When Archytas and Menaechmus employed mechanical instruments for
solving certain geometrical problems, “Plato,” says Plutarch, “inveighed
against them with great indignation and persistence as destroying and per-
verting all the good there is in geometry; for the method absconds from
incorporeal and intellectual to sensible things, and besides employs again
such bodies as require much vulgar handicraft: in this way mechanics
was dissimilated and expelled from geometry, and, being for a long time
looked down upon by philosophy, became one of the arts of war.” In
fact, manual labour was looked down upon by the Greeks, and a sharp
distinction was drawn between the slaves, who performed bodily work
and really observed nature, and the leisured upper classes, who speculated
and often only knew nature by hearsay. This explains much of the naive,
hazy, and dreamy character of ancient natural science. Only seldom did
the impulse to make experiments for oneself break through; but when
it did, a great progress resulted, as was the case with Archytas and Archi-
medes. Archimedes, like Plato, held that it was undesirable for a philoso-
pher to seek to apply the results of science to any practical use; but,
whatever might have been his view of what ought to be the case, he did
actually introduce a large number of new inventions.

We will not consider further here the development of mathematics with
other ancient nations, nor the chief problems investigated by the Greeks;
such details may be found in some of the books mentioned in the Bibliog-
raphy at the end. The object of this chapter is to indicate the nature of
the science of geometry, and how certain practical needs gave rise to
investigations in which appears an abstract science which was worthy of
being cultivated for its own sake, and which incidentally gave rise to ad-
vantages of a practical nature.
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There are two branches of mathematics which began to be cultivated
by the Greeks, and which allow a connection to be formed between the
spirits of ancient and modern mathematics.

The first is the method of geometrical analysis to which Plato seems to
have directed attention. The analytical method of proof begins by assum-
ing that the theorem or problem is solved, and thence deducing some
result. If the result be false, the theorem is not true or the problem is in-
capable of solution: if the result be true, if the steps be reversible, we get
(by reversing them) a synthetic proof; but if the steps be not reversible,
no conclusion can be drawn. We notice that the leading thought in analysis
is that which is fundamental in algebra, and which we have noticed in the
case of Ahmes: the calculation or reasoning with an unknown entity,
which is denoted by a conventional sign, as if it were known, and the de-
duction at last, of some relation which determines what the entity must be.

And this brings us to the second branch spoken of: algebra with the
later Greeks. Diophantus of Alexandria, who probably lived in the early
half of the fourth century after Christ, and probably was the original in-
ventor of an algebra, used letters for unknown quantities in arithmetic
and treated arithmetical problems analytically. Juxtaposition of symbols
represented what we now write as “+,” and “—" and “=" were also
represented by symbols. All these symbols are mere abbreviations for
words, and perhaps the most important advantage of symbolism—the
power it gives of carrying out a complicated chain of reasoning almost
mechanically—was not made much of by Diophantus. Here again we
come across the economical value of symbolism: it prevents the weari-
some expenditure of mental and bodily energy on those processes which
can be carried out mechanically. We must remember that this economy
both emphasises the unsubjugated—that is to say, unsystematised—prob-
lems of science, and has a charm—an @sthetic charm, it would seem—of
its own.

Lastly, we must mention “incommensurables,” “loci,” and the begin-
nings of “trigonometry.”

Pythagoras was, according to Eudemus and Proclus, the discoverer of
“incommensurable quantities.” Thus, he is said to have found that the
diagonal and the side of a square are “incommensurable.” Suppose, for
example, that the side of the square is one unit in length; the diagonal is
longer than this, but it is not two units in length, The excess of the length
of the diagonal over one unit is not an integral submultiple of the unit.
And, expressing the matter arithmetically, the remainder that is left over
after each division of a remainder into the preceding divisor is not an in-
tegral submultiple of the remainder used as divisor. That is to say, the
rule given in text-books on arithmetic and algebra for finding the greatest
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common measure does not come to an end. This rule, when applied to
integer numbers, always comes to an end; but, when applied to certain
lengths, it does not. Pythagoras proved, then, that if we start with a line
of any length, there are other lines whose lengths do not bear to the first
length the ratio of one integer to another, no matter if we have all the
integers to choose from. Of course, any two fractions have the ratio of
two integers to one another. In the above case of the diagonal, if the
diagonal were in length some number x of units, we should have x* =2,
and it can be proved that no fraction, when “multiplied”—in the sense to
be given in the next chapter—by itself gives 2 exactly, though there are
fractions which give this result more and more approximately.

On this account, the Greeks drew a sharp distinction between *“num-
bers,” and “magnitudes” or “quantities” or measures of lengths. This dis-
tinction was gradually blotted out as people saw more and more the ad-
vantages of identifying numbers with the measures of lengths. The inven-
tion of analytical geometry, described in the third chapter, did most of the
blotting out. It is in comparatively modern times that mathematicians
have adequately realised the importance of this logically valid distinction
made by the Greeks. It is a curious fact that the abandonment of strictly
logical thinking should have led to results which transgressed what was
then known of logic, but which are now known to be readily interpretable
in the terms of what we now know of Logic. This subject will occupy us
again in the sixth chapter.

The question of loci is connected with geometrical analysis, and is diffi-
cult to dissociate from a mental picture of a point in motion. Think of a
point under restrictions to move only in some curve. Thus, a point may
move so that its distance from a fixed point is constant; the peak of an
angle may move so that the arms of the angle pass—slipping—through
two fixed points, and the angle is always a right angle. In both cases the
moving point keeps on the circumference of a certain circle. This curve
is a “locus.” It is evident how thinking of the locus a point can describe
may help us to solve problems.

We have seen that Thales discovered that a triangle is determined if
its base and base angles are given. When we have to make a survey of
either an earthly country or part of the heavens, for the purpose of map-
making, we have to measure angles—for example, by turning a sight, like
those used on guns, through an angle measured in a circular arc of metal
—to fix the relative directions of the stars or points on the earth. Now,
for terrestrial measurements, a piece of country is approximately a flat
surface, while the heavens are surveyed as if the stars were, as they seem
to be, scattered on the inside of a sphere at whose centre we are. Sec-
ondly, it is a network of triangles—plane or spherical—of which we
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measure the angles and sometimes the sides: for, if the angles of a triangle
are known, the proportionality of the sides is known; and this proportion-
ality cannot be concluded from a knowledge of the angles of a rectangle,
say. Hipparchus (born about 160 B.c) seems to have invented this prac-
tical science of the complete measurement of triangles from certain data,
or, as it is called, “trigonometry,” and the principles laid down by him
were worked out by Ptolemy of Alexandria (died 168 A.p.) and also by
the Hindoos and Arabians. Usually, only angles can be measured with
accuracy, and so the question arises: given the magnitude of the angles,
what can be concluded as to the kind of proportionality of the sides.
Think of a circle described round the centre O, and let AP be the arc of
this circle which measures the angle AOP. Notice that the ratio of AP
to the radius is the same for the angle 4OP whatever value the radius
may have. Draw PM perpendicular to OA. Then the figure OPMAP re-
minds one of a stretched bow, and hence are derived the names “sine of
the arc AP” for the line PM, and “cosine” for OM. Tables of sines and
cosines of arcs (or of angles, since the arc fixes the angle if the radius
is known) were drawn up, and thus the sides PM and OM could be
found in terms of the radius, when the arc was known. It is evident that
this contains the essentials for the finding of the proportions of the sides
of plane triangles. Spherical trigonometry contains more complicated rela-
tions which are directly relevant to the position of an astronomer and his
measurements.

Mathematics did not progress in the hands of the Romans: perhaps the
genius of this people was too practical. Still, it was through Rome that
mathematics came into medieval Europe. The Arab mathematical text-
books and the Greek books from Arab translations were introduced into
Western Europe by the Moors in the period 1150-1450, and by the end
of the thirteenth century the Arabic arithmetic had been fairly introduced
into Europe, and was practised by the side of the older arithmetic
founded on the work of Boethius (about 475-526). Then came the Renas-
cence. Mathematicians had barely assimilated the knowledge obtained
from the Arabs, including their translations of Greek writers, when the
refugees who escaped from Constantinople after the fall of the Eastern
Empire (1453) brought the original works and the traditions of Greek
science into Italy. Thus by the middle of the fifteenth century the chief
results of Greek and Arabian mathematics were accessible to European
students.

The invention of printing about that time rendered the dissemination
of discoveries comparatively easy.
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CHAPTER 11
THE RISE AND PROGRESS OF MODERN MATHEMATICS—ALGEBRA

MODERN mathematics may be considered to have begun approximately
with the seventeenth century. It is well known that the first 1500 years of
the Christian era produced, in Western Europe at least, very little knowl-
edge of value in science. The spirit of the Western Europeans showed
itself to be different from that of the ancient Greeks, and only slightly less
so from that of the more Easterly nations; and, when Western mathe-
matics began to grow, we can trace clearly the historical beginnings of
the use, in a not quite accurate form, of those conceptions—variable and
function—which are characteristic of modern mathematics. We may say,
in anticipation, that these conceptions, thoroughly analysed by reasoning
as they are now, make up the difference of our modern views of Mathe-
matics from, and have caused the likeness of them to, those of the ancient
Greeks. The Greeks seem, in short, to have taken up a very similar posi-
tion towards the mathematics of their day to that which logic forces us to
take up towards the far more general mathematics of to-day. The gen-
erality of character has been attained by the effort to put mathematics
more into touch with natural sciences—in particular the science of mo-
tion. The main difficulty was that, to reach this end, the way in which
mathematicians expressed themselves was illegitimate. Hence philosophers,
who lacked the real sympathy that must inspire all criticism that hopes to
be relevant, never could discover any reason for thinking that what the
mathematicians said was true, and the world had to wait until the mathe-
maticians began logically to analyse their own conceptions. No body of
men ever needed this sympathy more than the mathematicians from the
revival of letters down to the middle of the nineteenth century, for no
science was less logical than mathematics.

The ancient Greeks never used the conception of motion in their sys-
tematic works. The idea of a locus seems to imply that some curves could
be thought of as generated by moving points; the Greeks discovered some
things by helping their imaginations with imaginary moving points, but
they never introduced the use of motion into their final proofs. This may
have been because the Eleatic school, of which one of the principal repre-
sentatives was Zeno (495-435 B.c.), invented some exceedingly subtle
puzzles to emphasize the difficulty there is in the conception of motion.
We shall return in some detail to these puzzles, which have not been
appreciated in all the ages from the time of the Greeks till quite modern
times. Owing to this lack of subtlety, the conception of variability was
freely introduced into mathematics. It was the conceptions of constant,
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variable, and function, of which we shall, from now on, often have occa-
sion to speak, which were generated by ideas of motion, and which, when
they were logically purified, have made both modern mathematics and
modern logic, to which they were transferred by mathematical logicians—
Leibniz, Lambert, Boole, De Morgan, and the numerous successors of
Boole and De Morgan from about 1850 onwards—into a science much
more general than, but bearing some close analogies with, the ideal of
Greek mathematical science. Later on will be found a discussion of what
can be meant by a “moving point.”

Let us now consider more closely the history of modern mathematics.
Modern mathematics, like modern philosophy and like one part—the
speculative and not the experimental part—of modern physical science,
may be considered to begin with René Descartes (1596-1650). Of course,
as we should expect, Descartes had many and worthy predecessors. Per-
haps the greatest of them was the French mathematician Frangois Viéte
(1540-1603), better known by his Latinized name of “Vieta.” But it is
simpler and shorter to confine our attention to Descartes.

Descartes always plumed himself on the independence of his ideas, the
breach he made with the old ideas of the Aristotelians, and the great
clearness and simplicity with which he described his ideas. But we must
not underestimate the part that “ideas in the air” play; and, further, we
know now that Descartes’ breach with the old order of things was not as
great as he thought.

Descartes, when describing the effect which his youthful studies had
upon him when he came to reflect upon them, said:

“I was especially delighted with the mathematics, on account of the
certitude and evidence of their reasonings: but I had not as yet a precise
knowledge of their true use; and, thinking that they but contributed to
the advancement of the mechanical arts, I was astonished that founda-
tions so strong and solid should have had no loftier superstructure reared
on them.”

And again:

“Among the branches of philosophy, I had, at an earlier period, given
some attention to logic, and, among those of the mathematics, to geometri-
cal analysis and algebra—three arts or sciences which ought, as I con-
ceived, to contribute something to my design. But, on examination, I
found that, as for logic, its syllogisms and the majority of its other pre-
cepts are of avail rather in the communication of what we already know,
or even in speaking without judgment of things of which we are ignorant,
than in the investigation of the unknown: and although this science con-
tains indeed a number of correct and very excellent precepts, there are,
nevertheless, so many others, and these either injurious or superfluous,
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mingled with the former, that it is almost quite as difficult to effect a
severance of the true from the false as it is to extract a Diana or a
Minerva from a rough block of marble. Then as to the analysis of the
ancients and the algebra of the moderns: besides that they embrace only
matters highly abstract, and, to appearance, of no use, the former is so
exclusively restricted to the consideration of figures that it can exercise
the understanding only on condition of greatly fatiguing the imagination;
and, in the latter, there is so complete a subjection to certain rules and
formulas, that there results an art full of confusion and obscurity, calcu-
lated to embarrass, instead of a science fitted to cultivate the mind. By
these considerations I was induced to seek some other method which
would comporise the advantages of the three and be exempt from their
defects. . . .

“The long chains of simple and easy reasonings by means of which
geometers are accustomed to reach the conclusions of their most difficult
demonstrations had led me to imagine that all things to the knowledge
of which man is competent are mutually connected in the same way, and
that there is nothing so far removed from us as to be beyond our reach,
or so hidden that we cannot discover it, provided only that we abstain
from accepting the false for the true, and always preserve in our thoughts
the order necessary for the deduction of one truth from another. And I
had little difficulty in determining the objects with which it was necessary
to begin, for I was already persuaded that it must be with the simplest
and easiest to know, and, considering that, of all those who have hitherto
sought truth in the sciences, the mathematicians alone have been able to
find any demonstrations, that is, any certain and evident reasons, I did not
doubt but that such must have been the rule of their investigations. I re-
solved to begin, therefore, with the examination of the simplest objects,
not anticipating, however, from this any other advantage than that to be
found in accustoming my mind to the love and nourishment of truth and
to a distaste for all such reasonings as were unsound. But I had no inten-
tion on that account of attempting to master all the particular sciences
commonly denominated ‘mathematics’; but observing that, however dif-
ferent their objects, they all agree in considering only the various relations
or proportions subsisting among those objects, I thought it best for my
purpose to consider these proportions in the most general form possible,
without referring them to any objects in particular, except such as would
most facilitate the knowledge of them, and without by any means restrict-
ing them to these, that afterwards I might thus be the better able to apply
them to every other class of objects to which they are legitimately appli-
cable. Perceiving further that, in order to understand these relations, I
should have sometimes to consider them one by one and sometimes only
to bear in mind or embrace them in the aggregate, I thought that, in order
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the better to consider them individually, I should view them as subsisting
between straight lines, than which I could find no objects more simple or
capable of being more distinctly represented to my imagination and senses;
and, on the other hand, that, in order to retain them in the memory, or
embrace an aggregate of many, I should express them by certain char-
acters the briefest possible. In this way I believed that I could borrow all
that was best both in geometrical analysis and in algebra, and correct all
the defects of the one by help of the other.”

Let us, then, consider the characteristics of algebra and geometry.

We have seen, when giving an account, in the first chapter, of the
works of Ahmes and Diophantus, that mathematicians early saw the ad-
vantage of representing an unknown number by a letter or some other
sign that may denote various numbers ambiguously, writing down—much
as in geometrical analysis—the relations which they bear, by the condi-
tions of the problem, to other numbers, and then considering these rela-
tions. If the problem is determinate—that is to say, if there are one or
more definite solutions which can be proved to involve only numbers
already fixed upon—this consideration leads, by the use of certain rules
of calculation, to the determination—actual or approximate—of this solu-
tion or solutions. Under certain circumstances, even if there is a solution,
depending on a variable, we can find it and express it in a quite general
way, by rules, but that need not occupy us here.

Suppose that you know my age, but that I do not know yours, but
wish to. You might say to me: “I was eight years old when you were
born.” Then I should think like this. Let x be the (unknown) number of
years in your age at this moment and, say, 33 the number of years in my
age at this moment; then in essentials your statement can be translated by
the equation “x — 8 = 33."” The meaning of the signs “—,” “=," and “+"
are supposed to be known—as indeed they are by most people nowadays
quite sufficiently for our present purpose. Now, one of the rules of algebra
is that any term can be taken from one side of the sign “=" to the other
if only the “+” or “—" belonging to it is changed into “—" or “+,” as
the case may be. Thus, in the present case, we have: “x =33 + 8 =41."
This absurdly simple case is chosen intentionally. It is essential in mathe-
matics to remember that even apparently insignificant economies of
thought add up to make a long and complicated calculation readily per-
formed. This is the case, for example, with the convention introduced by
Descartes of using the last letters of the alphabet to denote unknown
numbers, and the first letters to denote known ones. This convention is
adopted, with a few exceptional cases, by algebraists to-day, and saves
much trouble in explaining and in looking for unknown and known quan-
tities in an equation. Then, again, the signs “4,” “—," “=" have great
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merits which those unused to long calculations cannot readily understand.
Even the saving of space made by writing “xy” for “x X y" (“x multiplied
by ") is important, because we can obtain by it a shorter and more
readily surveyed formula. Then, too, Descartes made a general practice
of writing “powers” or “exponents” as we do now; thus “x3" stands for
“xxx"” and “x5" for some less suggestive symbol representing the con-
tinued multiplication of five x’s.

One great advantage of this notation is that it makes the explanation of
logarithms, which were the great and laborious discovery of John Napier
(1550-1617), quite easy. We start from the equation “xmx" = xm+n”
Now, if x? = y, and we call p the “logarithm of y to the base x”; in signs:
“p =log,y”; the equation from which we started gives, if we denote x™
by “u” and x" by “v,” so that m = log,u and n = log,v, that log, (¥v) =
log.u + log,v. Thus, if the logarithms of numbers to a given base (say
x =10) are tabulated, calculations with large numbers are made less
arduous, for addition replaces multiplication, when logarithms are found.
Also subtraction of logarithms gives the logarithm of the quotient of two
numbers.

Let us now shortly consider the history of algebra from Diophantus to
Descartes.

The word “algebra” is the European corruption of an Arabic phrase
which means restoration and reduction—the first word referring to the
fact that the same magnitude may be added to or subtracted from both
sides of an equation, and the last word meaning the process of simplifi-
cation. The science of algebra was brought among the Arabs by Mo-
hammed ben Musa (Mahomet the son of Moses), better known as
Alkarismi, in a work written about 830 A.D., and was certainly derived
by him from the Hindoos. The algebra of Alkarismi holds a most impor-
tant place in the history of mathematics, for we may say that the subse-
quent Arab and the early medieval works on algebra were founded on it,
and also that through it the Arabic or Indian system of decimal numera-
tion was introduced into the West. It seems that the Arabs were quick to
appreciate the work of others—notably of the Greek masters and of the
Hindoo mathematicians—but, like the ancient Chinese and Egyptians,
they did not systematically develop a subject to any considerable
extent.

Algebra was introduced into Italy in 1202 by Leonardo of Pisa (about
1175-1230) in a work based on Alkarismi's treatise, and into England by
Robert Record (about 1510-1558) in a book called the Whetstone of
Witte published in 1557. Improvements in the method or notations of
algebra were made by Record, Albert Girard (1595-1632), Thomas
Harriot (1560-1621), Descartes, and many others.
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In arithmetic we use symbols of number. A symbol is any sign for a
quantity, which is not the quantity itself. If a man counted his sheep by
pebbles, the pebbles would be symbols of the sheep. At the present day,
when most of us can read and write, we have acquired the convenient
habit of using marks on paper, “1, 2, 3, 4,” and so on, instead of such
things as pebbles. Our “1 4+ 1” is abbreviated into “2,” “2 4 1" is abbre-
viated into “3,” “3 4+ 1” into “4,” and so on. When “1,” “2,” “3,” &c.,
are used to abbreviate, rather improperly, “1 mile,” “2 miles,” “3 miles,”
&c., for instance, they are called signs for concrete numbers. But when
we shake off all idea of “1,” “2,” &c., meaning one, two, &c., of anything
in particular, as when we say, “six and four make ten,” then the numbers
are called abstract numbers. To the latter the learner is first introduced in
treatises on arithmetic, and does not always learn to distinguish rightly be-
tween the two. Of the operations of arithmetic only addition and subtrac-
tion can be performed with concrete numbers, and without speaking of
more than one sort of 1. Miles can be added to miles, or taken from miles.
Multiplication involves a new sort of 1, 2, 3, &c., standing for repetitions
(or times, as they are called). Take 6 miles 5 times. Here are two kinds
of units, 1 mile and 1 time. In multiplication, one of the units must be a
number of repetitions or times, and to talk of multiplying 6 feet by 3 feet
would be absurd. What notion can be formed of 6 feet taken “3 feet”
times? In solving the following question, “If 1 yard cost 5 shillings, how
much will 12 yards cost?” we do not multiply the 12 yards by the 5
shillings; the process we go through is the following: Since each yard costs
5 shillings, the buyer must put down 5 shillings as often (as many times)
as the seller uses a one-yard measure; that is, 5 shillings is taken 12 times.
In division we must have the idea either of repetition or of partition, that
is, of cutting a quantity into a number of equal parts. “Divide 18 miles
by 3 miles” means, find out how many times 3 miles must be repeated to
give 18 miles: but “divide 18 miles by 3” means, cut 18 miles into 3 equal
parts, and find how many miles are in each part.

The symbols of arithmetic have a determinate connection; for instance,
4 is always 2 + 2, whatever the things mentioned may be, miles, feet,
acres, &c. In algebra we take symbols for numbers which have no deter-
minate connection. As in arithmetic we draw conclusions about 1, 2, 3,
&c., which are equally true of 1 foot, 2 feet, &c., 1 minute, 2 minutes, &c.;
so in algebra we reason upon numbers in general, and draw conclusions
which are equally true of all numbers. It is true that we also use, in kinds
of algebra which have been developed within the last century, letters to
represent things other than numbers—for example, classes of individuals
with a certain property, such as “horned animals,” for logical purposes; or
certain geometrical or physical things with directions in space, such as
“forces”—and signs like “+” and “—" to represent ways of combination
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of the things, which are analogous to, but not identical with, addition and
subtraction. If “a” denotes “the class of horned animals” and “b” denotes

“the class of beasts of burden,” the sign “ab” has been used to denote
“the class of horned beasts of burden.” We see that here ab = ba, just as
in the multiplication of numbers, and the above operation has been called,
partly for this reason, “logical multiplication,” and denoted in the above
way. Here we meet the practice of mathematicians—and of all scientific
men—of using words in a wider sense for the sake of some analogy. This
habit is all the more puzzling to many people because mathematicians are
often not conscious that they do it, or even talk sometimes as if they
thought that they were generalising conceptions instead of words. But,
when we talk of a “family tree,” we do not indicate a widening of our
conception of trees of the roadside.

We shall not need to consider these modern algebras, but we shall be
constantly meeting what are called the “generalisations of number” and
transference of methods to analogous cases. Indeed, it is hardly too much
to say that in this lies the very spirit of discovery. An example of this is
given by the extension of the word “numbers” to include the names of
fractions as well. The occasion for this extension was given by the use of
arithmetic to express such quantities as distances. This had been done by
Archimedes and many others, and had become the usual method of pro-
cedure in the works of the mathematicians of the sixteenth century, and
plays a great part in Descartes’ work.

Mathematicians, ever since they began to apply arithmetic to geometry,
became alive to the fact that it was convenient to represent points on a
straight line by numbers, and numbers by points on a straight line. What
is meant by this may be described as follows. If we choose a unit of
length, we can mark off points in a straight line corresponding to 0 units
—which means that we select a point, called “the origin,” to start from,—
1 unit, 2 units, 3 units, and so on, so that “the point m,” as we will call
it for short, is at a distance of m units from the origin. Then we can
divide up the line and mark points corresponding to the fractions 3, %,
7%, s, %, or the point between 1 and 2 which is the same distance from
1 as % is from O, and so on. Now, there is nothing here to distinguish
fractions from numbers. Both are treated exactly in the same way; the re-
sults of addition, subtraction, multiplication, and division * are interpret-
able, in much the same way as new points whether the “a” and “b” in

4 The operation of what is called, for the sake of analogy, “multiplication” of frac-
tions is defined in the manner indicated in the following elaaa;uzlg( _;f % of a yard costs

10d., bo;rmml:hdoea % of a yard cost? The nmwerln-—-:,-‘-—-s—-—pmce. and we de-
fine —— as E “multiplied by” %, by analogy with what would happen if % were 1

3Ix8
and % were, say, 3.
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“a+ b, “a—b," “ab,” and so on, stand for numbers or fractions, and
we have, for example,
a+b=b+aab=="ba,a(b+c)=ab+ac,

always. Because of this very strong analogy, mathematicians have called
the fractions “numbers” too, and they often speak and write of “generali-
sations of numbers,” of which this is the first example, as if the conception
of number were generalised, and not merely the name “number,” in virtue
of a great and close and important analogy.

When once the points of a line were made to represent numbers, there
seemed to be no further difficulty in admitting certain “irrational num-
bers” to correspond to the end-points of the incommensurable lines which
had been discovered by the Greeks. This question will come up again at
a later stage: there are necessary discussions of principle involved, but
mathematicians did not go at all deeply into questions of principle until
fairly modern times. Thus it has happened that, until the last sixty years
or so, mathematicians were nearly all bad reasoners, as Swift remarked of
the mathematicians of Laputa in Gulliver's Travels, and were unpardon-
ably hazy about first principles. Often they appealed to a sort of faith. To
an intelligent and doubting beginner, an eminent French mathematician
of the eighteenth century said: “Go on, and faith will come to you.” It is
a curious fact that mathematicians have so often arrived at truth by a sort
of instinct.

Let us now return to our numerical algebra. Take, say, the number 8,
and the fraction, which we will now call a “number” also, %. Add 1 to
both; the greater contains the less exactly 8 times. Now this property is

possessed by any number, and not 8 alone. In fact, if we denote tht; num-
a+

ber we start with by “a,”” we have, by the rules of algebra, - =a.

This is an instance of a general property of numbers proved by ;]gelgra.
Algebra contains many rules by which a complicated algebraical ex-
pression can be reduced to its simplest terms. Owing to the suggestive and
compact notation, we can easily acquire an almost mechanical dexterity
in dealing with algebraical symbols. This is what Descartes means when
he speaks of algebra as not being a science fitted to cultivate the mind. On
the other hand, this art is due to the principle of the economy of thought,
and the mechanical aspect becomes, as Descartes foresaw, very valuable
if we could use it to solve geometrical problems without the necessity of
fatiguing our imaginations by long reasonings on geometrical figures.

I have already mentioned that the valuable notation “x™" was due to
Descartes. This was published, along with all his other improvements in
algebra, in the third part of his Geometry of 1637. I shall speak in the
next chapter of the great discovery contained in the first two parts of this
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work; here I will resume the improvements in notation and method made
by Descartes and his predecessors, which make the algebraical part of the
Geometry very like a modern book on algebra.

It is still the custom in arithmetic to indicate addition by juxtaposition:
thus “2%" means “2 + %.” In algebra, we always, nowadays, indicate
addition by the sign “+" and multiplication by juxtaposition or, more
rarely, by putting a dot or the sign “X” between the signs of the numbers
to be multiplied. Subtraction is indicated by “—".

Here we must digress to point out—what is often, owing to confusion
of thought, denied in text-books—that, where “a” and *“b” denote num-
bers, “a — b” can only denote a number if a is equal to or greater than b.
If a is equal to b, the number denoted is zero; there is really no good
reason for denying, say, that the numbers of Charles IL.’s foolish sayings
and wise deeds are equal, if a well-known epitaph be true. Here again we
meet the strange way in which mathematics has developed. For centuries
mathematicians used “negative” and “positive” numbers, and identified
“positive” numbers with signless numbers like 1, 2, and 3, without any
scruple, just as they used fractionary and irrational “numbers.” And when
logically-minded men objected to these wrong statements, mathematicians
simply ignored them or said: “Go on; faith will come to you.” And the
mathematicians were right, and merely could not give correct reasons—
or at least always gave wrong ones—for what they did. We have, over
again, the fact that criticism of the mathematicians’ procedure, if it wishes
to be relevant, must be based on thorough sympathy and understanding.
It must try to account for the rightness of mathematical views, and bring
them into conformity with logic. Mathematicians themselves never found
a competent philosophical interpreter, and so nearly all the interesting
part of mathematics was left in obscurity until, in the latter half of the
nineteenth century, mathematicians themselves began to cultivate philoso-
phy—or rather logic.

Thus we must go out of the historical order to explain what “negative
numbers” means. First, we must premise that when an algebraical expres-
sion is enclosed in brackets, it signifies that the whole result of that expres-
sion stands in the same relation to surrounding symbols as if it were one
letter only. Thus, “a — (b — ¢)” means that from a we are to take b — c,
or what is left after taking ¢ from b. It is not, therefore, the same as
a — b — c. In fact we easily find thata — (b — c) isthesameasa— b 4 c.
Note also that “(a + b) (c + d)” means (a + b) multiplied by (¢ + d).

Now, suppose a and b are numbers, and a is greater than b. Let a — b
be c. To get ¢ from a, we carry out the operation of taking away b. This
operation, which is the fulfilment of the order: “Subtract b,” is a “nega-
tive number.” Mathematicians call it a “number” and denote it by “—b"
simply because of analogy: the same rules for calculation hold for “nega-
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tive numbers” and “positive numbers” like “+5,” whose meaning is now
clear too, as do for our signless numbers; when “addition,” “subtraction,”
&c., are redefined for these operations. The way in which this redefinition
must take place is evident when we represent integers, fractions, and posi-
tive and negative numbers by points on a straight line. To the right of 0
are the integers and fractions, to the left of 0 are the negative numbers,
and to the right of 0 stretch the series of positive numbers, +a coinciding
with a and being symmetrically placed with —a as regards 0. Also we de-
termine that the operations of what we call “addition,” &c., of these new
“numbers” must lead to the same results as the former operations of the
same name. Thus the same symbol is used in different senses, and we
write
a+b—b=a+0=(+a) + (+b) + (—b) =+a=a.

This is a remarkable sequence of quick changes.

We have used the sign of equality, “=". It means originally, “is the
same as.” Thus 3 + 1 = 4. But we write, by the above convention, “a =
+a,” and so we sacrifice exactness, which sometimes looks rather pedantic,
for the sake of keeping our analogy in view, and for brevity.

Let us bear this, at first sight, puzzling but, at second sight, justifiable
peculiarity of mathematicians in mind. It has always puzzled intelligent
beginners and philosophers. The laws of calculation and convenient sym-
bolism are the things a mathematician thinks of and aims at. He seems to
identify different things if they both satisfy the same laws which are im-
portant to him, just as a magistrate may think that there is not much
difference between Mr. A., who is red-haired and a tinker and goes to
chapel, and Mr. B.,, who is a brown-haired horse-dealer and goes to
church, if both have been found out committing petty larceny. But their
respective ministers of religion or wives may still be able to distinguish
them.

Any two expressions connected by the sign of equality form an
“equation.” Here we must notice that the words “Solve the equation
x2 4+ ax = b” mean: find the value or values of x such that, a and b
being given numbers, x? + ax becomes &. Thus, if a=2 and b = —1, the
solution is x = —1.

As we saw above, Descartes fixed the custom of employing the letters
at the beginning of the alphabet to denote known quantities, and those
at the end of the alphabet to denote unknown quantities. Thus, in the
above example, a and b are some numbers supposed to be given, while x
is sought. The question is solved when x is found in terms of @ and b and
fixed numbers (like 1, 2, 3); and so, when to @ and b are attributed any
fixed values, x becomes fixed. The signs “a” and “b” denote ambiguously,
not uniquely like “2” does; and *“x” does not always denote ambiguously
when a and b are fixed. Thus, in the above case, whena =2, b = —1, “x”
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denotes the one negative number —1. What is meant is this: In each mem-
ber of the class of problems got by giving a and b fixed values independ-
ently of one another, there is an unknown x, which may or may not
denote different numbers, which only becomes known when the equation
is solved. Consider now the equation ax + by = c, where a, b, and c are
known quantities and x and y are unknown. We can find x in terms of
a, b, ¢, and y, or y in terms of a, b, ¢, and x; but x is only fixed when y
is fixed, or y when x is fixed. Here in each case of fixedness of a, b, and ¢,
x is undetermined and “variable,” that is to say, it may take any of a
whole class of values. Corresponding to each x, one y belongs; and y also
is a “variable” depending on the “independent variable” x. The idea of
“variability” will be further illustrated in the next chapter; here we will
only point out how the notion of what is called by mathematicians the
“functional dependence” of y on x comes in. The variable y is said to be
a “function™ of the variable x if to every value of x corresponds one or
more values of y. This use has, to some extent, been adopted in ordinary
language. We should be understood if we were to say that the amount of
work performed by a horse is a function of the food that he eats.

Descartes also adopted the custom—if he did not arrive at it independ-
ently—advocated by Harriot of transferring all the terms of an equation
to the same side of the sign of equality. Thus, instead of “x =1," “ax +
b=¢" and “3x2 + g = hx,” we write respectively “x—1=0," “ax+
(b —¢) =0," and “3x2 — hx + g = 0.” The point of this is that all equa-
tions of the same degree in the unknown—we shall have to consider cases
of more unknowns than one in the next chapter—that is to say, equations
in which the highest power of x (x or x2 or 2% . . .) is the same, are
easily recognisable. Further, it is convenient to be able to speak of the ex-
pression which is equated to 0 as well as of the equation. The equations
in which 22, and no higher power of x, appears are called “quadratic”
equations—the result of equating a ‘“‘quadratic” function to 0; those in
which x8, and no higher power, appears are called “cubic”; and so on for
equations “of the fourth, fifth . . .” degrees. Now the quadratic equa-
tions, 3x2 + g=0, ax? + bx + ¢ =0, x2 — 1 = 0, for example, are differ-
ent, but the differences are unimportant in comparison with this common
property of being of the same degree: all can be solved by modifications
of one general method.

Here it is convenient again to depart from the historical order and
briefly consider the meaning of what are called “imaginary” expressions. If
we are given the equation x2 — 1 =0, its solutions are evidently x = +1
or x = —1, for the square roots of +1 are +1 and —1. But if we are
given the equation x2 + 1 = 0, analogy would lead us to write down the
two solutions x = + /=1 and x = —/=1. But there is no positive or
negative “number” which we have yet come across which, when multi-
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plied by itself, gives a negative “number.” Thus “imaginary numbers”
were rejected by Descartes and his followers. Thus x2 — 1 =0 had two
solutions, but x2 4+ 1 =0 none; further, x3 4+ x24 x4+ 1 =0 had one
solution (x = —1), while x* —x2 —x+1=0 had two (x=1, x=—1),
and x3 — 2x2 — x 4+ 2 = 0 had three (x=1, x=—1, x=2). Now, suppose,
for a moment, that we can have “imaginary” roots and (\/=1) (/=1)
= —1, and also that we can speak of rweo roots when the roots are identi-
cal in a case like the equation x2+ 2x+ 1 =0, or (x+ 1)2 =0, which
has two identical roots x = —1. Then, in the above five equations, the first
two quadratic ones have two roots each (+1, —1, and + /=1, — \/=1
respectively), and the three cubics have three each (—1, + /=1, —/—1;
+1, —1, +1; and +1, —1, +2 respectively). In the general case, the theo-
rem has been proved that every equation has as many roots as (and not
merely “no more than,” as Descartes said) its degree has units. For this
and for many other reasons like it in enabling theorems to be stated more
generally, “imaginary numbers” came to be used almost universally. This
was greatly helped by one puzzling circumstance: true theorems can be
discovered by a process of calculation with imaginaries. The case is analo-
gous to that which led mathematicians to introduce and calculate with
“negative numbers.”
For the case of imaginaries, let 4, b, ¢, and d be any numbers, then

(a® + b%) (2 + d?) = (a + b/=1) (a — /=)
(c+ d\/=T)(c — d\/=T)
= (a+by/=T)(c + d/=T)
(@ — b\/=1) (c — &\/=T)
= [(ac — bd) + \/—1(ad + bc)]
[(ac — bd) —~/=1(ad + bc)]
= (ac — bd)? + (ad + bc)2.

We get, then, an interesting and easily verifiable theorem on numbers by
calculation with imaginaries, and imaginaries disappear from the conclu-
sion. Mathematicians thought, then, that imaginaries, though apparently
uninterpretable and even self-contradictory, must have a logic. So they
were used with a faith that was almost firm and was only justified much
later. Mathematicians indicated their growing security in the use of /=1
by writing “i” instead of “\/—1" and calling it “the complex unity,” thus
denying, by implication, that there is anything really imaginary or impos-
sible or absurd about it.

The truth is that “i”” is not uninterpretable. It represents an operation,
just as the negative numbers do, but is of a different kind. It is geometri-
cally interpretable also, though not in a straight line, but in a plane. For
this we must refer to the Bibliography; but here we must point out that,
in this “generalisation of number” again, the words “addition,” “multi-
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plication,” and so on, do not have exactly the same, but an analogous,
meaning to those which they had before, and that “complex numbers”
form a domain like a plane in which a line representing the integers, frac-
tions, and irrationals is contained. But we must leave the further develop-
ment of these questions.

It must be realised that the essence of algebra is its generality. In the
most general case, every symbol and every statement of a proposition in
algebra is interpretable in terms of certain operations to be undertaken
with abstract things such as numbers or classes or propositions. These
operations merely express the relations of these things to one another. If
the results at any stage of an algebraical process can be interpreted—and
this interpretation is often suggested by the symbolism—say, not as opera-
tions with operations with integers, but as other operations with integers,
they express true propositions. Thus (a + 5)2 = a2 + 2ab + b? expresses,
for example, a relation holding between those operations with integers
that we call “fractionary numbers,” or an analogous relation between
integers. The language of algebra is a wonderful instrument for expressing
shortly, perspicuously, and suggestively, the exceedingly complicated rela-
tions in which abstract things stand to one another. The motive for study-
ing such relations was originally, and is still in many cases, the close anal-
ogy of relations between certain abstract things to relations between
certain things we see, hear, and touch in the world of actuality round wus,
and our minds are helped in discovering such analogies by the beautiful
picture of algebraical processes made in space of two or of three dimen-
sions made by the “analytical geometry” of Descartes, described in the
next chapter.

CHAPTER IlI

THE RISE AND PROGRESS OF MODERN MATHEMATICS—ANALYTICAL
GEOMETRY AND THE METHOD OF INDIVISIBLES

WE will now return to the consideration of the first two sections of
Descartes’ book Geometry of 1637.

In Descartes’ book we have to glean here and there what we now
recognise as the essential points in his new method of treating geometrical
questions. These points were not expressly stated by him. I shall, however,
try to state them in a small compass.

Imagine a curve drawn on a plane surface. This curve may be consid-
ered as a picture of an algebraical equation involving x and y in the fol-
lowing way. Choose any point on the curve, and call “x” and “y” the
numbers that express the perpendicular distances of this point, in terms of
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a unit of length, from two straight lines (called “‘axes”) drawn at right
angles to one another in the plane mentioned. Now, as we move from
point to point of the curve, x and y both vary, but there is an unvarying
relation which connects x and y, and this relation can be expressed by an
algebraical equation called “the equation of the curve,” and which con-
tains, in germ as it were, all the properties of the curve considered. This
constant relation between x and y is a relation like y2 = 4ax. We must
distinguish carefully between a constant relation between variables and a
relation between constants. We are always coming across the former kind
of relation in mathematics; we call such a relation a “function™ of x and y
—the word was first used about fifty years after Descartes’ Geometry was
published, by Leibniz—and write a function of x and y in general as
“f(x, ¥).” In this notation, no hint is given as to any particular relation
x and y may bear to each other, and, in such a particular function as
y? — 4ax, we say that “the form of the function is constant,” and this is
only another way of saying that the relation between x and y is fixed.
This may be also explained as follows. If x is fixed, there is fixed one or
more values of y, and if y is fixed, there is fixed one or more values of x.
Thus the equation ax + by + ¢ = 0 gives one y for each x and one x for
each y; the equation y2 — 4ax = 0 gives two y’s for each x and one x for
each y.5

Consider the equation ax + by + ¢ = 0, or, say, the more definite in-
stance x + 2y — 2 = 0. Draw axes and mark off points; having fixed on a
unit of length, find the point x =1 on the x-axis, on the perpendicular
to this axis measure where the corresponding y, got by substituting x =1
in the above equation, brings us. We find y = %. Take x = 3, then y = %;
and so on. We find that all the points on the parallels to the y-axis lie on
one straight line. This straight line is determined by the equation
x + 2y — 2 = 0; every point off that straight line is such that its x and y
are not connected by the relation x 4+ 2y — 2 = 0, and every point of it is
such that its x and y are connected by the relation x + 2y — 2 = 0. Simi-
larly we can satisfy ourselves that every point on the circumference of a
circle of radius c units of length, described round the point where the axes
cross, is such that x2 + y2 = ¢2, and every point not on this circumference
does not have an x and y such that the constant relation x + y2 = ¢2 is
satisfied for it.

There are two points to be noticed in the above general statement.
Firstly, I have said that the curve “may be expressed,” and so on. By this
I mean that it is possible—and not necessarily always true—that the curve

5 We also denote a function of x by “f(x)” or “F(x)” or “¢(x),” &c. Here “f” is
a sign for “function of,” not for a number, just as later we shall find *“sin” and “A”
and “d” standing for functions and not numbers. This may be regarded as an exten-

sion of the language of early algebra. The equation y = f(x) is in a good form for
graphical representation in the manner explained below.
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may be so considered. We can imagine curves that cannot be represented
by a finite algebraical equation. Secondly, about the fundamental lines of
reference—the “axes™ as they are called. One of these axes we have called
the “x-axis,” and the distance measured by the number x is somectimes
called “the abscissa™; while the line of length y units which is perpendicu-
lar to the end of the abscissa farthest from the origin, and therefore paral-
lel to the other axis (“the y-axis”) is called “the ordinate.” The name
“ordinate” was used by the ancient Roman surveyors. The lines measured
by the numbers x and y are called the “co-ordinates” of the point deter-
mining and determined by them. Sometimes the numbers x and y them-
selves are called “co-ordinates,” and we will adopt that practice here.

Sometimes the axes are not chosen at right angles to one another, but
it is nearly always far simpler to do so, and in this book we always assume
that the axes are rectangular. The whole plane is divided by the axes into
four partitions, the co-ordinates are measured from the point—called “the
origin”"—where the axes cross. Here the interpretation in geometry of the
“negative quantities” of algebra—which so often seems so puzzling to
intelligent beginners—gives us a means of avoiding the ambiguity arising
from the fact that there would be a point with the same co-ordinates in
each quadrant into which the plane is divided.

Consider the x-axis. Measure lengths on it from the origin, so that to
the origin (OQ) corresponds the number 0. Let OA, measured from left to
right along the axis, be the unit of length; then to the point 4 corresponds
the number 1. Then let lengths 4B, BC, and so on, all measured from
left to right, be equal to OA in length; to the points B, C, and so on, cor-
respond the numbers 2, 3, and so on. Further to the point that bisects 0A
let the fraction % correspond; and so on for the other fractions. In this
way half of the x-axis is nearly filled up with points. But there are points,
such as the point P, such that OP is the length of the circumference of a
circle, say of unit diameter. For picturesqueness, we may imagine this
point P got by rolling the circle along the x-axis from O through one
revolution. The point P will fall a little to the left of the point 3% and a
little to the right of the point 3%, and so on; the point P is not one of the
points to which names of fractions have been assigned by the process
sketched above. This can be proved rigidly. If it were not true, it would
be very easy to “square the circle.”

There are many other points like this. There is no fraction which, multi-
plied by itself, gives 2; but there is a length—the diagonal of a square of
unit side—which is such that, if we were to assume that a number corre-
sponded to every point on OX, it would be a number a such that a2 = 2.
We will return to this important question of the correspondence of points
and lines to numbers, and will now briefly recall that “negative numbers”
are represented, in Descartes’ analytical geometry, on the x-axis, by the
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points to the left of the origin, and, on the y-axis, by the points below the
origin. This was explained in the second chapter.

Algebraical geometry gave us a means of classifying curves. All straight
lines determine equations of the first degree between x and y, and all such
equations determine straight lines; all equations of the second degree
between x and y, that is to say, of the form

ax2 4+ bxy +cy*+dx+ey+ f=0,

determine curves which the ancient Greeks had studied and which result
from cutting a solid circular cone, or two equal cones with the same axis,
whose only point of contact is formed by the vertices. It is somewhat of
a mystery why the Greek geometricians should have pitched upon these
particular curves to study, and we can only say that it seems, from the
present standpoint, an exceedingly lucky chance. For these “conic sec-
tions”—of which, of course, the circle is a particular case—are all the
curves, and those only, which are represented by the above equation of
the second degree. The three great types of curves—the “parabola,” the
“ellipse,” and the “hyperbola™—all result from the above equation when
the coefficients a, b, ¢, d, e, f satisfy certain special conditions. Thus, the
equation of a circle—which is a particular kind of ellipse—is always of
the form got from the above equation by putting b = 0 and ¢ = a.

It may be mentioned that, long after these curves were introduced as
sections of a cone, Pappus discovered that they could all be defined in a
plane as loci of a point P which moves so that the proportion that the
distance of P from a fixed point (§) bears to the perpendicular distance
of P (PN) to a fixed straight line is constant. As this proportion is less
than equal to or greater than 1, the curve is an ellipse, parabola, or hyper-
bola, respectively.

It will not be expected that a detailed account should here be given of
the curves which result from the development of equations of the second
or higher degrees between x and y. I will merely again emphasize some
points which are, in part, usually neglected or not clearly stated in text-
books. The letters “a, b, . . . x, y,” here stand for “numbers” in the ex-
tended sense. We have seen in what sense we may, with the mathemati-
cians, speak of fractionary, positive, and negative “numbers,” and identify,
say, the positive number +2 and the fraction 3; with the signless integer 2.
Well, then, the above letters stand for numbers of that class which includes
in this sense the fractionary, irrational, positive and negative numbers,
but excludes the imaginary numbers. We call the numbers of this class
“real” numbers. The question of irrational numbers will be discussed at
greater length in the sixth chapter, but enough has been said to show how
they were introduced. In mathematics it has, I think, always happened
that conceptions have been used long before they were formally intro-
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duced, and used long before this use could be logically justified or its
nature clearly explained. The history of mathematics is the history of a
faith whose justification has been long delayed, and perhaps is not accom-
plished even now.

These numbers are the measurements of length, in terms of a definite
unit, like the inch, of the absciss® and ordinates of certain points. We
speak of such points simply by naming their co-ordinates, and say, for
example, that “the distance of the point (x, y) from the point (a, b) is
the positive square root of (x —a)2 4+ (y — b)2."

Notice that x2, for example, is the length of a lire. It is natural to make,
as algebraists before Descartes did, x2 stand primarily for the number of
square units in a square whose sides are x units in length, but there is no
necessity in this. We shall often use the latter kind of measurement in the
fourth and fifth chapters.

The equation of a straight line can be made to satisfy two given condi-
tions. We can write the equation in the form

b c _
-\'+;y+;—0-

and thus have two ratios, -{ and E, that we can determine according to
a a
- the conditions. The equation ax + by + ¢ = 0 has apparently three “‘arbi-
trary constants,” as they are called, but we see that this greater generality
is only apparent. Now we can so fix these constants that two conditions
are fulfilled by the straight line in question. Thus, suppose that one of
these conditions is that the straight line should pass through the origin—
the point (0, 0). This means simply that when x = 0, then y = 0. Putting

[
them, x = 0 and y = 0 in the above equation, we get — = 0, and thus one
a

of the constants is determined. The other is determined by a new condi-
tion that, say, the line also passes through the point (3, 2). Substituting,

c

then, in the above equation, we have, as — =0 as we know already,
a
2b b
1% 4+ — =0, whence — = —%. Hence the equation of the line passing
a a

through (0, 0) and (%, 2) is x— %y =0, or y — 6x = 0. Instead of
having to pass through a certain point, a condition may be, for example,
that the perpendicular from the origin on the straight line should be of a
certain length, or that the line should make a certain angle with the x-axis,
and so on.
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Similarly, the circle whose equation is written in the form
(x—a)+(y—-b)=c?

is of radius ¢ and centre (a, b). It can be determined to pass through any
three points, or, say, to have a determined length of radius and position
of centre. Fixation of centre is equivalent to two conditions. Thus, sup-
pose the radius is to be of unit length: the above equation is (x — a)? +
(y — b)2 = 1. Then, if the centre is to be the origin, both a and b are
determined to be 0, and this may also be effected by determining that
the circle is to pass through the points (%, 0) and (—%, 0), for
example.

Now, if we are to find the points of intersection of the straight line
2x 4+ 2y =1 and the circle x2 + y2 = 1, we seek those points which are
common to both curves, that is to say, all the pairs of values of x and y
which satisfy both the above equations. Thus we need not trouble about
the geometrical picture, but we only have to apply the rules of algebra
for finding the values of x and y which satisfy two *simultaneous” equa-
tions in x and y. In the above case, if (X, ¥) is a point of intersection,

1—-2X
we have ¥ =

, and therefore, by substitution in the other equation,

1 —2Xx\2
X2+ = 1. This gives a quadratic equation
2
8X2—-4X—-3=0

for X, and, by rules, we find that X must be either % (1 ++/7) or
% (1 —~/7). Hence there are two values of the abscissa which are given
when we ask what are the co-ordinates of the points of intersection;
and the value of y which corresponds to each of these x’s is given by
substitution in the equation 2x + 2y = 1.

Thus we find again the fact, obvious from a figure, that a straight line
cuts [a circle] at two points at most. We can determine the points of inter-
section of any two curves whose equations can be expressed algebraically,
but of course the process is much more complicated in more general
cases. Here we will consider an important case of intersection of a straight
line.

Think of a straight line cutting a circle at two points. Imagine one point
fixed and the other point moved up towards the first. The intersecting line
approaches more and more to the position of the tangent to the circle at
the first point, and, by making the movable point approach the other
closely enough, the secant will approach the tangent in position as nearly
as we wish. Now, a tangent to a curve at a certain point was defined by
the Greeks as a straight line through the point such that between it and
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the curve no other straight line could be drawn. Note that other curves
might be drawn: thus various circles may have the same tangent at a
common point on their circumference, but no circle—and no curve met
with in elementary mathematics—has more than one tangent at a point.
Descartes and many of his followers adopted different forms of definition
which really involve the idea of a limit, an idea which appears boldly in
the infinitesimal calculus. A tangent is the limit of a secant as the points
of intersection approach infinitely near to one another; it is a produced
side of the polygon with infinitesimal sides that the curve is supposed to
be; it is the direction of motion at an instant of a point moving in the
curve considered. The equation got from that of the curve by substituting
for y from the equation of the intersecting straight line has, if this straight
line is a tangent, two equal roots. In the above case, this equation was
quadratic. In the case of a circle, we can easily deduce the well-known
property of a tangent of being perpendicular to the radius; and see that
this property has no analogue in the case of other curves.

We must remember that, just as plane curves determine and are deter-
mined by equations with rwo independent variables x and y, so surfaces—
spheres, for instance—in three-dimensional space determine and are deter-
mined by equations with three independent variables, x, y, and z. Here
x, ¥, and z are the co-ordinates of a point in space; that is to say, the
numerical measures of the distances of this point from three fixed planes
at right angles to each other. Thus, the equation of a sphere of radius d
and centre at (a, b, ¢) is (x —a)2+ (y —b)2+ (z—c)2=d2

We may look at analytical geometry from another point of view which
we shall find afterwards to be important, and which even now will suggest
to us some interesting thoughts. The essence of Descartes’ method also
appears when we represent loci by the method. Consider a circle; it is the
locus of a point (P) which moves in a plane so as to preserve a constant
distance from a fixed point (0). Here we may think of P as varying in
position, and make up a very striking picture of what we call a variable
in mathematics. We must, however, remember that, by what we call a
“variable” for the sake of picturesqueness, we do not necessarily mean
something which varies. Think of the point of a pen as it moves over a
sheet of writing paper; it occupies different positions with respect to the
paper at different times, and we understandably say that the pen’s point
moves. But now think of a point in space. A geometrical point—which is
not the bit of space occupied by the end of a pen or even an “atom” of
matter—is merely a mark of position. We cannot, then, speak of a point
moving; the very essence of point is to be position. The motion of a point
of space, as distinguished from a point of matter, is a fiction, and is the
supposition that a given point can now be one point and now another.
Motion, in the ordinary sense, is only possible to matter and not to space.
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Thus, when we speak of a “variable position,” we are speaking absurdly
if we wish our words to be taken literally. But we do not really so wish
when we come to think about it. What we are doing is this: we are using
a picturesque phrase for the purpose of calling up an easily imagined
thought which helps us to visualise roughly a mathematical proposition
which can only be described accurately by a prolix process. The ancient
Greeks allowed prolixity, and it was only objected to by the uninitiated.
Modern mathematics up to about sixty years ago successfully warred
against prolixity; hence the obscurity of its fundamental notions and proc-
esses and its great conquests. The great conquests were made by sacrificing
very much to analogy: thus, entities like the integer 2, the ratio 2/1, and
the real number which is denoted by “2” were identified, as we have seen,
because of certain close analogies that they have. This seems to have been
the chief reason why the procedure of the mathematicians has been so
often condemned by logicians and even by philosophers. In fact, when
mathematicians began to try to find out the nature of Mathematics, they
had to examine their entities and the methods which they used to deal
with them with the minutest care, and hence to look out for the points
when the analogies referred to break down, and distinguish between what
mathematicians had usually failed to distinguish. Then the people who do
not mind a bit what Mathematics is, and are only interested in what it
does, called these earnest inquirers “pedants” when they should have said
“philosophers,” and “logic-choppers”—whatever they may be—when they
should have said “logicians.” We have tried to show why ratios or frac-
tions, and so on, are called “numbers,” and apparently said to be some-
thing which they are not; we must now try to get at the meaning of the
words “constant” and ‘“‘variable.”

By means of algebraic formulz, rules for the reconstruction of great
numbers—sometimes an infinity—of facts of nature may be expressed
very concisely or even embodied in a single expression. The essence of
the formula is that it is an expression of a constant rule among variable
quantities. These expressions “constant” and “variable” have come down
into ordinary language. We say that the number of miles which a certain
man walks per day is a “variable quantity”; and we do not mean that, on
a particular day, the number was not fixed and definite, but that on differ-
ent days he walked, generally speaking, different numbers of miles. When,
in mathematics, we speak of a “variable,” what we mean is that we are
considering a class of definite objects—for instance, the class of men alive
at the present moment—and want to say something about any one of
them indefinitely. Suppose that we say: “If it rains, Mr. A. will take his
umbrella out with him”; the letter “A” here is what we call the sign of
the “variable.” We do not mean that the above proposition is about a
variable man. There is no such thing; we say that a man varies in health
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and so in time, but, whether or not such a phrase is strictly correct, the
meaning we would have to give the phrase “a variable” in the above
sentence is not one and the same man at different periods of his own
existence, but one and the same man who is different men in turn. What
we mean is that if “A” denotes any man, and not Smith or Jones or
Robinson alone, then he takes out his umbrella on certain occasions. The
statement is not always true; it depends on A. If “A” stands for a bank
manager, the statement may be true; if for a tramp or a savage, it prob-
ably is not. Instead of “A,” we may put “B” or “C” or “X”; the kind of
mark on paper does not really matter in the least. But we attach, by
convention, certain meanings to certain signs; and so, if we wrote down
a mark of exclamation for the sign of a variable, we might be misunder-
stood and even suspected of trying to be funny. We shall see, in the sev-
enth chapter, the importance of the variable in logic and mathematics.

“Laws of nature” express the dependence upon one another of two or
more variables. This idea of dependence of variables is fundamental in all
scientific thought, and reaches its most thorough examination in mathe-
matics and logic under the name of “functionality.” On this point we must
refer back to the second chapter. The ideas of function and variable were
not prominent until the time of Descartes, and names for these ideas were
not introduced until much later.

The conventions of analytical geometry as to the signs of co-ordinates
in different quadrants of the plane had an important influence in the
transformation of trigonometry from being a mere adjunct to a practical
science. In the same notation as that used at the end of the first chapter,

P
we may conveniently call the number —, which is the same for all

PM oM
lengths of OP, by the name “u,” for short, and define —— and —— as
OP oP

the “sine of u,” and the “cosine of u” respectively. Thus “sin u” and
“cos u,” as we write them for short, stand for numerical functions of u.
Considering O as the origin of a system of rectangular co-ordinates of

. . . x y
which OA is the x-axis, so that ¥ measures the angle POA4 and — and -

r r
are cos u and sin u respectively. Now, even if u becomes so great that
POA is successively obtuse, more than two right angles . . . , these defi-

nitions can be preserved, if we pay attention to the signs of x and y in the
various quadrants. Thus sin # and cos u become separated from geometry,
and appear as numerical functions of the variable u, whose values, as we
see on reflection, repeat themselves at regular intervals as u becomes larger
and larger. Thus, suppose that OP turns about O in a direction opposite
to that in which the hands of a clock move. In the first quadrant, sin u
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¥ x y —x )
and cos u are — and —; in the second they are — and —; in the third they
r r r r
-y —x - x
are — and —; in the fourth they are — and —; in the fifth they are
r r r r

y x
— and - again; and so on. Trigonometry was separated from geometry
r r

mainly by John Bernoulli and Euler, whom we shall mention later.

We will now turn to a different development of mathematics.

The ancient Greeks seem to have had something approaching a general
method for finding areas of curvilinear figures. Indeed, infinitesimal meth-
ods, which allow indefinitely close approximation, naturally suggest them-
selves. The determination of the area of any rectilinear figure can be
reduced to that of a rectangle, and can thus be completely effected. But
this process of finding areas—this “method of quadratures”—failed for
areas or volumes bounded by curved lines or surfaces respectively. Then
the following considerations were applied. When it is impossible to find
the exact solution of a question, it is natural to endeavour to approach to
it as nearly as possible by neglecting quantities which embarrass the com-
binations, if it be foreseen that these quantities which have been neglected
cannot, by reason of their small value, produce more than a trifling error
in the result of the calculation. For example, as some properties of curves
with respect to areas are with difficulty discovered, it is natural to consider
the curves as polygons of a great number of sides. If a regular polygon
be supposed to be inscribed in a circle, it is evident that these two figures,
although always different, are nevertheless more and more alike according
as the number of the sides of the polygon increases. Their perimeters,
their areas, the solids formed by their revolving round a given axis, the
angles formed by these lines, and so on, are, if not respectively equal, at
any rate so much the nearer approaching to equality as the number of
sides becomes increased. Whence, by supposing the number of these sides
very great, it will be possible, without any perceptible error, to assign to
the circumscribed circle the properties that have been found belonging
to the inscribed polygon. Thus, if it is proposed to find the area of a given
circle, let us suppose this curve to be a regular polygon of a great number
of sides: the area of any regular polygon whatever is equal to the product
of its perimeter into the half of the perpendicular drawn from the centre
upon one of its sides; hence, the circle being considered as a polygon of
a great number of sides, its area ought to equal the product of the circum-
ference into half the radius. Now, this result is exactly true. However,
the Greeks, with their taste for strictly correct reasoning, could not allow
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themselves to consider curves as polygons of an “infinity” of sides. They
were also influenced by the arguments of Zeno, and thus regarded the use
of “infinitesimals” with suspicion.

Zeno showed that we meet difficulties if we hold that time and space
are infinitely divisible. Of the arguments which he invented to show this,
the best known is the puzzle of Achilles and the Tortoise. Zeno argued
that, if Achilles ran ten times as fast as a tortoise, yet, if the tortoise has
(say) 1000 yards start, it could never be overtaken. For, when Achilles
had gone the 1000 yards, the tortoise would still be 100 yards in front of
him; by the time he had covered these 100 yards, it would still be 10
yards in front of him; and so on for ever; thus Achilles would get nearer
and nearer to the tortoise, but never overtake it. Zeno invented some other
subtle puzzles for much the same purpose, and they could only be dis-
cussed really satisfactorily by quite modern mathematics.

To avoid the use of infinitesimals, Eudoxus (408-355 B.c.) devised a
method, exposed by Euclid in the Twelth Book of his Elements and used
by Archimedes to demonstrate many of his great discoveries, of verifying
results found by the doubtful infinitesimal considerations. When the
Greeks wished to discover the area bounded by a curve, they regarded
the curve as the fixed boundary to which the inscribed and circumscribed
polygons approach continually, and as much as they pleased, according
as they increased the number of their sides. Thus they exhausted in some
measure the space comprised between these polygons and the curve, and
doubtless this gave to this operation the name of “the method of exhaus-
tion.” As these polygons terminated by straight lines were known figures,
their continual approach to the curve gave an idea of it more and more
precise, and “the law of continuity” serving as a guide, the Greeks could
eventually arrive at the exact knowledge of its propetties. But it was not
sufficient for geometricians to have observed, and, as it were, guessed at
these properties; it was necessary to verify them in an unexceptionable
way; and this they did by proving that every supposition contrary to the
existence of these properties would necessarily lead to some contradiction:
thus, after, by infinitesimal considerations, they had found the area (say)
of a curvilinear figure to be a, they verified it by proving that, if it is not a,
it would yet be greater than the area of some polygon inscribed in the
curvilinear figure whose area is palpably greater than that of the polygon.

In the seventeenth century, we have a complete contrast with the Gre-
cian spirit. The method of discovery seemed much more important than
correctness of demonstration. About the same time as the invention of
analytical geometry by Descartes came the invention of a method for
finding the areas of surfaces, the positions of the centres of gravity of
variously shaped surfaces, and so on. In a book published in 1635, and in
certain later works, Bonaventura Cavalieri (1598-1647) gave his “method
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of indivisibles” in which the cruder ideas of his predecessors, notably of
Kepler (1571-1630), were developed. According to Cavalieri, a line is
made up of an infinite number of points, each without magnitude, a
surface of an infinite number of lines, each without breadth, and a volume
of an infinite number of surfaces, each without thickness. The use of this
idea may be illustrated by a single example. Suppose it is required to find
the area of a right-angled triangle. Let the base be made up of n points
(or indivisibles), and similarly let the side perpendicular to the base be
made of na points, then the ordinates at the successive points of the base
will contain a, 2a . . ., na points. Therefore the number of points in the
areas is @ + 2a 4+ . . . + na; the sum of which is % (n2a + na). Since n
is very large, we may neglect Y%na, for it is inconsiderable compared with
%n%a. Hence the area is composed of a number % (na)n of points, and
thus the area is measured in square units by multiplying half the linear
measure of the altitude by that of the base. The conclusion, we know
from other facts, is exactly true.

Cavalieri found by this method many areas and volumes and the centres
of gravity of many curvilinear figures. It is to be noticed that both
Cavalieri and his successors held quite clearly that such a supposition that
lines were composed of points was literally absurd, but could be used as a
basis for a direct and concise method of abbreviation which replaced with
advantage the indirect, tedious, and rigorous methods of the ancient
Greeks. The logical difficulties in the principles of this and allied methods
were strongly felt and commented on by philosophers—sometimes with
intelligence; felt and boldly overcome by mathematicians in their strong
and not unreasonable faith; and only satisfactorily solved by mathemati-
cians—not the philosophers—in comparatively modern times.

The method of indivisibles—whose use will be shown in the next
chapter in an important question of mechanics—is the same in principle
as “the integral calculus.” The integral calculus grew out of the work of
Cavalieri and his successors, among whom the greatest are Roberval
(1602-1675), Blaise Pascal (1623-1662), and John Wallis (1616-1703),
and mainly consists in the provision of a convenient and suggestive nota-
tion for this method. The discovery of the infinitesimal calculus was com-
pleted by the discovery that the inverse of the problem of finding the areas
of figures enclosed by curves was the problem of drawing tangents to these
curves, and the provision of a convenient and suggestive notation for this
inverse and simpler method, which was, for certain historical reasons,
called “the differential calculus.”

Both analytical geometry and the infinitesimal calculus are enormously
powerful instruments for solving geometrical and physical problems. The
secret of their power is that long and complicated reasonings can be
written down and used to solve problems almost mechanically. It is the
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merest superficiality to despise mathematicians for busying themselves,
sometimes even consciously, with the problem of economising thought.
The powers of even the most god-like intelligences amongst us are ex-
tremely limited, and none of us could get very far in discovering any part
whatever of the Truth if we could not make trains of reasoning which we
have thought through and verified, very ready for and easy in future appli-
cation by being made as nearly mechanical as possible. In both analytical
geometry and the infinitesimal calculus, all the essential properties of very
many of the objects dealt with in mathematics, and the essential features
of very many of the methods which had previously been devised for deal-
ing with them are, so to speak, packed away in a well-arranged (and
therefore readily got at) form, and in an easily usable way.

CHAPTER 1V

THE BEGINNINGS OF THE APPLICATION OF MATHEMATICS TO NATURAL
SCIENCE—THE SCIENCE OF DYNAMICS

THE end of very much mathematics—and of the work of many eminent
men—is the simple and, as far as may be, accurate description of things
in the world around us, of which we become conscious through our senses.

Among these things, let us consider, say, a particular person’s face, and
a billiard ball. The appearance to the eye of the ball is obviously much
easier to describe than that of the face. We can call up the image—a very
accurate one—of a billiard ball in the mind of a person who has never
seen it by merely giving the colour and radius. And, unless we are engaged
in microscopical investigations, this description is usually enough. The
description of a face is a harder matter: unless we are skilful modellers,
we cannot do this even approximately; and even a good picture does not
attempt literal accuracy, but only conveys a correct impression—often
better than a model, say in wax, does.

Our ideal in natural science is to build up a working model of the
universe out of the sort of ideas that all people carry about with them
everywhere “in their heads,” as we say, and to which ideas we appeal
when we try to teach mathematics. These ideas are those of number,
order, the numerical measures of times and distances, and so on. One
reason why we strive after this ideal is a very practical one. If we have a
working model of, say, the solar system, we can tell, in a few minutes,
what our position with respect to the other planets will be at all sorts of
far future times, and can thus predict certain future events. Everybody
can see how useful this is: perhaps those persons who see it most clearly
are those sailors who use the Nautical Almanac. We cannot make the
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earth tarry in its revolution round its axis in order to give us a longer day
for finishing some important piece of work; but, by finding out the un-
changing laws concealed in the phenomena of the motions of earth, sun,
and stars, the mathematician can construct the model just spoken of. And
the mathematician is completely master of his model; he can repeat the
occurrences in his universe as often as he likes; something like Joshua, he
can make his “sun” stand still, or hasten, in order that he may publish the
Nautical Almanac several years ahead of time. Indeed, the “world” with
which we have to deal in theoretical or mathematical mechanics is but a
mathematical scheme, the function of which it is to imitate, by logical
consequences of the properties assigned to it by definition, certain proc-
esses of nature as closely as possible. Thus our “dynamical world” may
be called a model of reality, and must not be confused with the reality
itself.

That this model of reality is constructed solely out of logical concep-
tions will result from our conclusion that mathematics is based on logic,
and on logic alone; that such a model is possible is really surprising on
reflection. The need for completing facts of nature in thought was, no
doubt, first felt as a practical need—the need that arises because we feel it
convenient to be able to predict certain kinds of future events, Thus, with
a purely mathematical model of the solar system, we can tell, with an
approximation which depends upon the completeness of the model, the
relative positions of the sun, stars, and planets several years ahead of time;
this it is that enables us to publish the Nautical Almanac, and makes up
to us, in some degree, for our inability “to grasp this sorry scheme of
things entire . . . and remould it nearer to the heart’s desire.”

Now, what is called “mechanics” deals with a very important part of
the structure of this model. We spoke of a billiard ball just now. Every-
body gets into the way, at an early age, of abstracting from the colour,
roughness, and so on, of the ball, and forming for himself the conception
of a sphere. A sphere can be exactly described; and so can what we call
a “square,” a “circle” and an “ellipse,” in terms of certain conceptions
such as those called “point,” “distance,” “straight line,” and so on. Not
so easily describable are certain other things, like a person or an emotion.
In the world of moving and what we roughly class as inanimate objects—
that is to say, objects whose behaviour is not perceptibly complicated by
the phenomena of what we call “life” and “will"—people have sought
from very ancient times, and with increasing success, to discover rules for
the motions and rest of given systems of objects (such as a lever or a
wedge) under given circumstances (pulls, pressures, and so on). Now,
this discovery means: the discovery of an ideal, exactly describable mo-
tion which should approximate as nearly as possible to a natural motion
or class of motions. Thus Galileo (1564-1642) discovered the approxi-
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mate law of bodies falling freely, or on an inclined plane, near the earth’s
surface; and Newton (1642-1727) the still more accurate law of the
motions of any number of bodies under any forces.

Let us now try to think clearly of what we mean by such a rule, or, as
it is usually called, a “scientific” or “natural law,” and why it plays an
important part in the arrangement of our knowledge in such a convenient
way that we can at once, so to speak, lay our hand on any particular
fact the need of which is shown by practical or theoretical circum-
stances.

For this purpose, we will see how Galileo, in a work published in 1638,
attacked the problem of a falling body. Consider a body falling freely to
the earth: Galileo tried to find out, not why it fell, but how it fell—that
is to say, in what mathematical form the distance fallen through and the
velocity attained depends on the time taken in falling and the space fallen
through. Freely falling bodies are followed with more difficulty by the eye
the farther they have fallen; their impact on the hand receiving them is,
in like measure, sharper; the sound of their striking louder. The velocity
accordingly increases with the time elapsed and the space traversed. Thus,
the modern inquirer would ask: What function is the number (v) repre-
senting the velocity of those (s and r) representing the distance fallen
through and the time of falling? Galileo asked, in his primitive way: Is v
proportional to s; or again, is v proportional to 1? Thus he made assump-
tions, and then ascertained by actual trial the correctness or otherwise of
these assumptions.

One of Galileo’s assumptions was, thus, that the velocity acquired in the
descent is proportional to the time of the descent. That is to say, if a
body falls once, and then falls again during twice as long an interval of
time as it first fell, it will attain in the second instance double the velocity
it acquired in the first. To find by experiment whether or not this assump-
tion accorded with observed facts, as it was difficult to prove by any direct
means that the velocity acquired was proportional to the time of descent,
but easier to investigate by what law the distance increased with the time,
Galileo deduced from his assumption the relation that obtained between
the distance and the time. This very important deduction he effected as
follows.

On the straight line OA, let the abscisse OE, OC, OG, and so on,
represent in length various lengths of time elapsed from a certain instant
represented by O, and let the ordinates EF, CD, GH, and so on, corre-
sponding to these abscissz, represent in length the magnitude of the veloci-
ties acquired at the time represented by the respective abscisse.

We observe now that, by our assumption, O, F, D, H, lie in a straight
line OB, and so: (1) At the instant C, at which one-half OC of the time
of descent OA has elapsed, the velocity CD is also one-half of the final
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velocity AB; (2) If E and G are equally distant in opposite directions
on OA from C, the velocity GH exceeds the mean velocity CD by the
same amount that the velocity EF falls short of it; and for every instant
antecedent to C there exists a corresponding one subsequent to C and
equally distant from it. Whatever loss, therefore, as compared with uni-
form motion with half the final velocity, is suffered in the first half of the
motion, such loss is made up in the second half. The distance fallen
through we may consequently regard as having been uniformly described
with half the final velocity.

In symbols, if the number of units of velocity acquired in ¢ units of
time is v, and suppose that v is proportional to ¢, the number s of units of
space descended through is proportional to %¢2. In fact, s is given by Yvr,
and, as v is proportional to t, s is proportional to Y2

Now, Galileo verified this relation between s and t experimentally. The
motion of free falling was too quick for Galileo to observe accurately with
the very imperfect means—such as water-clocks—at his disposal. There
were no mechanical clocks at the beginning of the seventeenth century;
they were first made possible by the dynamical knowledge of which
Galileo laid the foundations. Galileo, then, made the motion slower, so
that s and ¢ were big enough to be measured by rather primitive apparatus
in which the moving balls ran down grooves in inclined planes. That the
spaces traversed by the ball are proportional to the squares of the meas-
ures of the times in free descent as well as in motion on an inclined plane,
Galileo verified by experimentally proving that a ball which falls through
the height of an inclined plane attains the same final velocity as a ball
which falls through its length. This experiment was an ingenious one with
a pendulum whose string, when half the swing had been accomplished,
caught on a fixed nail so placed that the remaining half of the swing was
with a shorter string than the other half. This experiment showed that the
bob of the pendulum rose, in virtue of the velocity acquired in its descent,
just as high as it had fallen. This fact is in agreement with our instinctive
knowledge of natural events; for if a ball which falls down the length of
an inclined plane could attain a greater velocity than one which falls
through its height, we should only have to let the body pass with the
acquired velocity to another more inclined plane to make it rise to a
greater vertical height than that from which it had fallen. Hence we can
deduce, from the acceleration on an inclined plane, the acceleration of
free descent, for, since the final velocities are the same and s = Y%, the
lengths of the sides of the inclined plane are simply proportional to the
times taken by the ball to pass over them.

The motion of falling that Galileo found actually to exist is, accordingly,
a motion of which the velocity increases proportionally to the time.

Like Galileo, we have started with the notions familiar to us (through
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the practical arts, for example), such as that of velocity, Let us consider
this motion more closely.

If a motion is uniform and c feet are travelled over in every second, at
the end of ¢ seconds it will have travelled ct feet. Put ¢t = 5 for short.
Then we call the “velocity” of the moving body the distance traversed in a

s
unit of time so that it is — units of length per second, the number which is

the measure of the dista:lce divided by the number which is the measure
of the time elapsed. Galileo, now, attained to the conception of a motion
in which the velocity increases proportionally to the time. If we draw a
diagram and set off, from the origin O along the x-axis OA, a series of
abscisse which represent the times in length, and erect the corresponding
ordinates to represent the velocities, the ends of these ordinates will lie on
a line OB, which, in the case of the “uniformly accelerated motion” to
which Galileo attained, is straight, as we have already seen. But if the
ordinates represent spaces instead of velocities, the straight line OB be-
comes a curve. We see the distinction between the ‘“curve of spaces” and
“the curve of velocities,” with times as abscissee in both cases. If the
velocity is uniform, the curve of spaces is a straight line OB drawn from
the origin O, and the curve of velocities is a straight line parallel to the
x-axis. If the velocity is variable, the curve of spaces is never a straight
line; but if the motion is uniformly accelerated, the curve of velocities is
a straight line like OB. The relations between the curve of spaces, the
curve of velocities, and the areas of such curves AOB are, as we shall see,
relations which are at once expressible by the “differential and integral
calculus”—indeed, it is mainly because of this important illustration of
the calculus that the elementary problems of dynamics have been treated
here. And the measurement of velocity in the case where the velocity
varies from time to time is an illustration of the formation of the funda-
mental conception of the differential calculus.

It may be remarked that the finding of the velocity of a particle at a
given instant and the finding of a tangent to a curve at a given point are
both of them the same kind of problem—the finding of the “differential
quotient” of a function. We will now enter into the matter more in detail.

Consider a curve of spaces. If the motion is uniform, the number meas-
uring any increment of the distance divided by the number measuring the
corresponding increment of the time gives the same value for the measure
of the velocity. But if we were to proceed like this where the velocity is
variable, we should obtain widely differing values for the velocity. How-
ever, the smaller the increment of the time, the more nearly does the bit
of the curve of spaces which corresponds to this increment approach
straightness, and hence uniformity of increase (or decrease) of s. Thus,
if we denote the increment of t by “At,”"—where “A” does not stand



48 Philip E. B. Jourdain

for a number but for the phrase “the increment of,"—and the correspond-
ing increment (or decrement) of s by “As,” we may define the measure

of average velocity in this element of the motion as E- But, however
t

small At is, the line represented by As is not, usually at least, quite straight,

and the velocity at the instant ¢, which, in the language of Leibniz’s differ-

ential calculus, is defined as the quotient of “infinitely small” increments

ds
and symbolised by —, —the A’s being replaced by d's when we consider
dt

“infinitesimals,”—appears to be only defined approximately. We have met
this difficulty when considering the method of indivisibles, and will meet
it again when considering the infinitesimal calculus, and will only see how
it is overcome when we have become familiar with the conception of a
“limit.”

This new notion of velocity includes that of uniform velocity as a par-
ticular case. In fact, the rules of the infinitesimal calculus allow us to

ds

conclude, from the equation d_ = a, where a is some constant, the equa-
t

tion s = at + b, where b is another constant. We must remember that all

this was not expressly formulated until about fifty years after Galileo had

published his investigations on the motion of falling.

If we consider the curve of velocities, uniformly accelerated motion
occupies in it exactly the same place as uniform velocity does in the
curve of spaces. If we denote by v the numerical measure of the velocity
at the end of ¢ units of time, the acceleration, in the notation of the differ-

ential calculus, is measured by f and the equation d_v= h, where h is
dt dt

some constant, is the equation of uniformly accelerated motion. In New-
tonian dynamics, we have to consider variably accelerated motions, and
this is where the infinitesimal calculus or some practically equivalent
calculus such as Newton's “method of fluxions” becomes so necessary in
theoretical mechanics.

We will now consider the curve of spaces for uniformly accelerated
motion. On this diagram—the arcs being ¢ and s—we will draw the curve

et
§s=—
2
where g denotes a constant. Of course, this is the same thing as drawing

gx?
the curve y = T in a plane divided up by the x-axis and the y-axis of
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Descartes. This curve is a parabola passing through the origin. An interest-
ing thing about this curve is that it is the curve that would be described
by a body projected obliquely near the surface of the earth if the air did
not resist, and is very nearly the path of such a projectile in the resisting
atmosphere. A free body, according to Galileo’s view, always falls towards
the earth with a uniform vertical acceleration measured by the above
number g. If we project a body vertically upwards with the initial velocity
of c units, its velocity at the end of ¢ units of time is — ¢ + gt units, for if
the direction downwards (of g) is reckoned positive, the direction up-
wards (of ¢) must be reckoned negative. If we project a body horizontally
with the velocity of @ units, and neglect the resistance of the air, Galileo
recognised that it would describe, in the horizontal direction, a distance
of at units in t units of time, while simultaneously it would fall a distance
2
of g_::_ units. The two motions are to be considered as going on independ-

ently of each other. Thus also, oblique projection may be considered as
compounded of a horizontal and a vertical projection. In all these cases
the path of the projectile is a parabola; in the case of the horizontal pro-
jection, its equation in x and y co-ordinates is got from the two equations

gx2
x=at and y=—, and is thus y = —.
2 2a?

Now, suppose that the velocity is neither uniform nor increases uni-
formly, but is different and increases at a different rate at different points
of time. Then in the curve of velocities, the line OB is no longer straight.
In the former case, the number s was the number of square units in the
area of the triangle AOB. In this case the figure AOB is not a triangle,
though we shall find that its area is the s units we seek, although v does
not increase uniformly from O to A.

Notice again that if, on OA, we take points C and E very close together,
the little arc DF is very nearly straight, and the figure DGF very nearly a
rectilinear triangle. Note that we are only trying, in this, to get a first
approximation to the value of s, so that, instead of the continuously
changing velocities we know—or think we know—from our daily experi-
ence, we are considering a fictitious motion in which the velocity increases
(or decreases) so as to be the same as that of the motion thought of at a
large number of points at minute and equal distances, and between
successive points increases (or decreases) uniformly.

Note also that we are assuming (what usually happens with the curves
with which we shall have to do) that the arc DF which corresponds to
CE becomes as straight as we wish if we take C and E close enough
together.
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And now let us calculate s approximately. Starting from O, in the first
small interval OH the rectilinear triangle OHK, where HK is the ordinate
at H, represents approximately the space described. In the next small
interval HL, where the length of HL is equal to that of OH, the space
described is represented by the rectilinear figure KHLM. The rectangle
KL is the space passed over with the uniform velocity K in time HL;
and the triangle KNM is the space passed over by a motion in which the
velocity increases from zero to MN. And so on for other intervals beyond
HL. Thus s is ultimately given (approximately) as the number of square
units in a polygon which closely approximates to the figure AOB.

We must now say a few words about the meaning of the letters in
geometrical and mechanical equations which, following Descartes, we use
instead of the proportions used by Galileo and even many of his contem-
poraries and followers. It seems better, when beginning mechanics, to
think in proportions, but afterwards, for convenience in dealing with the
symbolism of mathematical data, it is better to think in equations.

A typical proportion is: Final velocities are to one another as the times;
or, in symbols,

“Wev::T:T.

Here “V” (for example) is just short for “the velocity attained at the end
of the period of time” (reckoned from some fixed instant) denoted by
“T,” and V : V’, and T : T, are just numbers (real numbers); and the
proportion states the equality of these numbers. Hence the proportion is
sometimes written “V : V' =T : T"." If, now, v is the numerical measure,

v t
merely, of V, v/ that of V¥, and so on, we have ;’ = ;‘ or v’ = V1.

In the last equation, the letters v and ¢ have a mnemonic significance,
as reminding us that we started from velocities and times, but we must
carefully avoid the idea that we are “multiplying” (or can do so) velocities
by times; what we are doing is multiplying the numerical measures of
them. People who write on geometry and mechanics often say inaccu-
rately, simply for shortness, “Let s denote the distance, ¢ the time,” and so
on; whereas, by a tacit convention, small italics are usually employed to
denote numbers. However, in future, for the sake of shortness, I shall do
as the writers referred to, and speak of v as “the velocity.” Equations in

g
mechanics, such as “s = —." are only possible if the left-hand side is of
2

the same kind as the right-hand side: we cannot equate spaces and times,
for example.
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Suppose that we have fixed on the unit of length as one inch and the
unit of time as one second. As unit of velocity we might choose the
velocity with which, say, a inches are described uniformly in one second.
If we did this, we should express the relation between the s units of space
passed over by a body with a given velocity (v units) in a given time
(¢ units) as “s = avf"; whereas, if we defined the unit of velocity as the
velocity with which the unit of length is travelled over in the unit of time,
we should write “s = vt.”

Among the units derived from the fundamental units—such as those of
length and time—the simplest possible relations are made to hold. Thus,
as the unit of area and the unit of volume, the square and the cube of
unit sides are respectively used, the unit of velocity is the uniform rate at
which unit of length is travelled over in the unit of time, the unit of
acceleration is the gain of unit velocity in unit time, and so on.

The derived units depend on the fundamental units, and the function
which a given derived unit is of its fundamental units is called its “dimen-
sions.” Thus the velocity v is got by dividing the length s by the time .
The dimensions of a velocity are written

“Wl=—"

[T}
and those of an acceleration—denoted “F"—
_ 1 ]
(1 (TP
These equations are merely mnemonic; the letters do not mean numbers.
The mnemonic character comes out when we wish to pass from one set
of units to another. Thus, if we pass to a unit of length b times greater
and one of time ¢ times greater, the acceleration f with the old units is
related to that (f') with the new units by the equation

5)-

As the units become greater, f becomes less; and, since the dimensions of

[L]) c?
F are ﬁ’ the factor _I; is obviously suggested to us—the symbol “[T]2”

L il

suggesting a squaring of the number measuring the time.

From Galileo’s work resulted the conclusion that, where there is no
change of velocity in a straight line, there is no force. The state of a
body unacted upon by force is uniform rectilinear motion; and rest in a
special case of this motion where the velocity is and remains zero. This
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“law of inertia” was exactly opposite to the opinion, derived from Aris-
totle, that force is requisite to keep up a uniform motion, and may be
roughly verified by noticing the behaviour of a body projected with a
given velocity and moving under little resistance—as a stone moving on
a sheet of ice. Newton and his contemporaries saw how important this
law was in the explanation of the motion of a planet—say, about the sun.
Think of a simple case, and imagine the orbit to be a circle. The planet
tends to move along the tangent with uniform velocity, but the attraction
of the sun simultaneously draws the planet towards itself, and the result
of this continual combination of two motions is the circular orbit. New-
ton succeeded in calculating the shapes of the orbits for different laws
of attraction, and found that, when attraction varies inversely as the
square of the distance, the shapes are conic sections, as had been observed
in the case of our solar system.

The problem of the solar system appeared, then, in a mathematical
dress; various things move about in space, and this motion is completely
described if we know the geometrical relations—distances, positions, and
angular distances—between these things at some moment, the velocities at
this moment, and the accelerations at every moment. Of course, if we
knew all the positions of all the things at all the instants, our description
would be complete; it happens that the accelerations are usually simpler
to find directly than the positions: thus, in Galileo’s case the acceleration
was simply constant. Thus, we are given functional relations between these
positions and their rates of change. We have to determine the positions
from these relations.

It is the business of the “method of fluxions” or the “infinitesimal cal-
culus” to give methods for finding the relations between variables from
relations between their rates of change or between them and these rates.
This shows the importance of the calculus in such physical questions.

Mathematical physics grew up—perhaps too much so—on the model
of theoretical astronomy, its first really extensive conquest. There are
signs that mathematical physics is freeing itself from its traditions, but we
need not go further into the subject in this place.

Roberval devised a method of tangents which is based on Galileo’s
conception of the composition of motions. The tangent is the direction of
the resuitant motion of a point describing the curve. Newton's method,
which is to be dealt with in the fifth chapter, is analogous to this, and the
idea of velocity is fundamental in his “method of fluxions.”



The Nature of Mathematics 53

CHAPTER V

THE RISE OF MODERN MATHEMATICS
—THE INFINITESIMAL CALCULUS

IN the third chapter we have seen that the ancient Greeks were some-
times occupied with the theoretically exact determination of the areas
enclosed by curvilinear figures, and that they used the “method of exhaus-
tion,” and, to demonstrate the results which they got, an indirect method.
We have seen, too, a “method of indivisibles,” which was direct and
seemed to gain in brevity and efficiency from a certain lack of correctness
in expression and perhaps even a small inexactness in thought. We shall
find the same merits and demerits—both, especially the merits, intensified
—in the “infinitesimal calculus.”

By the side of researches on quadratures and the finding of volumes
and centres of gravity developed the methods of drawing tangents to
curves. We have begun to deal with this subject in the third chapter:
here we shall illustrate the considerations of Fermat (1601-1665) and
Barrow (1630-1677)—the intellectual descendants of Kepler—by a sim-
ple example.

Let it be proposed to draw a tangent at a given point P in the circum-
ference of a circle of centre O and equation x2? 4+ y2 = 1. Let us take the
circle to be a polygon of a great number of sides; let PQ be one of these
sides, and produce it to meet the x-axis at T. Then PT will be the tangent
in question. Let the co-ordinates of P be X and Y; those of Q will be
X 4 e and Y + a, where e and a are infinitely small increments, positive
or negative. From a figure in which the ordinates and abscissz of P and
Q are drawn, so that the ordinate of P is PR, we can see, by a well-known
property of triangles, that TR is to RP (or ¥) aseistoa. Now, X and Y
are related by the equation X? 4+ Y% = 1, and, since Q is also on the locus
x2 4 y2=1, we have (X + )2 + (Y + a)2 = 1. From the two equations
in which X and Y occur, we conclude that 2eX + e? + 2aY + a2 =0,

e TR —Y(Y +¢/,)

[ € a
and hence—-(X +-) + Y +-=0. But- = —; hence TR = —88M88 .
a 2 2 a Y X+,

Now, a and e may be neglected in comparison with X and Y, and thus
we can say that, at any rate very nearly, we have TR = —;—. But this is
exactly right, for, since TP is at right angles to OP, we know that OR is

to RP as PR is to RT. Here X and Y are constant, but we can say that
the abscissa of the point where the tangent at any point (say y) of the
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circle cuts the x-axis is given by adding —— to x.
x

Thus, we can find tangents by considering the ratios of infinitesimals to
one another. The method obviously applies to other curves besides circles;
and Barrow’s method and nomenclature leads us straight to the notation
and nomenclature of Leibniz. Barrow called the triangle POS, where § is
where a parallel to the x-axis through Q meets PR, the “differential tri-
angle,” and Leibniz denoted Barrow’s a and e by dy and dx (short for the
“differential of y” and “the differential of x,” so that “d" does not denote
a number but “dx” altogether stands for an “infinitesimal”) respectively,
and called the collection of rules for working with his signs the “differen-
tial calculus.”

But before the notation of the differential calculus and the rules of it
were discovered by Gottfried Wilhelm von Leibniz (1646-1716), the
celebrated German philosopher, statesman, and mathematician, he had
invented the notation and found some of the rules of the “integral calcu-
lus”: thus, he had used the now well-known sign “f”” or long “s” as short
for “the sum of,” when considering the sum of an infinity of infinitesimal
elements as we do in the method of indivisibles. Suppose that we propose
to determine the area included between a certain curve y = f(x), the
x-axis, and two fixed ordinates whose equations are x = a and x = b; then,
if we make use of the idea and notation of differentials, we notice that the
area in question can be written as

“J'y . dx'“

the summation extending from x = a to x = b. We will not here further
concern ourselves about these boundaries. Notice that in the above expres-
sion we have put a dot between the “y” and the “dx”: this is to indicate
that y is to multiply dx. Hitherto we have used juxtaposition to denote
multiplication, but here d is written close to x with another end in view;
and it is desirable to emphasise the difference between “d” used in the
sense of an adjective and “d” used in the sense of a multiplying number,
at least until the student can easily tell the difference by the context. If,
then, we imagine the abscissa divided into equal infinitesimal parts, each
of length dx, corresponding to the constituents called “points” in the
method of indivisibles, y . dx is the area of the little rectangle of sides
dx and y which stand at the end of the abscissa x. If, now, instead of
extending to x = b, the summation extends to the ordinate at the indeter-
minate or “variable” point x, y . dx becomes a function of x.

Now, if we think what must be the differential of this sum—the infini-
tesimal increment that it gets when the abscissa of length x, which is one
of the boundaries, is increased by dx—we see that it must be y . dx. Hence

d(fy.dx) =y.dx,
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and hence the sign of “d" destroys, so to speak, the effect of the sign “".
We also have [dx = x, and find that this summation is the inverse process
to differentiation. Thus the problems of tangents and quadratures are in-
verses of one another. This vital discovery seems to have been first made
by Barrow without the help of any technical symbolism. The quantity
which by its differentiation produces a proposed differential, is called the
“integral” of this differential; since we consider it as having been formed
by infinitely small continual additions: each of these additions is what we
have named the differential of the increasing quantity, it is a fraction of it:
and the sum of all these fractions is the entire quantity which we are in
search of. For the same reason we call “integrating” or “taking the sum
of” a differential the finding the integral of the sum of all the infinitely
small successive additions which form the series, the differential of which,
properly speaking, is the general term.

It is evident that two variables which constantly remain equal increase
the one as much as the other during the same time, and that consequently
their differences are equal: and the same holds good even if these two
quantities had differed by any quantity whatever when they began to vary;
provided that this primitive difference be always the same, their differen-
tials will always be equal.

Reciprocally, it is clear that two variables which receive at each instant
infinitely small equal additions must also either remain constantly equal to
one another, or always differ by the same quantity—that is, the integrals
of two differentials which are equal can only differ from each other by a
constant quantity. For the same reason, if any two quantities whatever
differ in an infinitely small degree from each other, their differentials will
also differ from one another infinitely little: and reciprocally if two differ-
ential quantities differ infinitely little from one another, their integrals,
putting aside the constant, can also differ but infinitely little one from
the other.

Now, some of the rules for differentiation are as follows. If y = f(x),
dy = f(x + dx) — f(x), in which higher powers of differentials added to
lower ones may be neglected. Thus, if y = x2, then dy = (x + dx)?2
— x2=2x.dx+ (dx)?2=2x.dx. Here it is well to refer back to the
treatment of the problem of tangents at the beginning of this chapter.
Again, if y=a.x, where a is constant, dy =a.dx. If y==x.z then

X
dy=(x+dx)(z+dz) —x.z=x.dz+z.dx. If y=-, x=y.z s0

z
dx —y.dz
dx =y.dz+ z.dy; hence dy =————, Since the integral calculus
z

is the inverse of the differential calculus, we have at once
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2x.dx = x2, [a.dx = adx,
Jx.dz+ Jz.dx=xz,
and so on. More fully, from d(x®) = 3x2.dx, we conclude, not that

[x2.dx = %3, but that [x2. dx = 3x3 4+ ¢, where “¢” denotes some con-
stant depending on the fixed value for x from which the integration starts.

2y.dy

Consider a parabola y2 = ax; then 2y.dy =a.dx, or dx= .
a
2yt . dy 2y8

Thus the area from the origin to the point x is + ¢; but d— =
a 3a

2y . dy 2y3
; thus the area is — + ¢, or, since y? = ax, %x .y + c. To deter-
a 3a

mine ¢ when we measure the area from 0 to x, we have the area zero
when x = 0; hence the above equation gives ¢ = 0. This whole result, now
quite simple to us, is one of the greatest discoveries of Archimedes.

Let us now make a few short reflections on the infinitesimal calculus.
First, the extraordinary power of it in dealing with complicated questions
lies in that the question is split up into an infinity of simpler ones which
can all be dealt with at once, thanks to the wonderfully economical fashion
in which the calculus, like analytical geometry, deals with variables. Thus,
a curvilinear area is split up into rectangular elements, all the rectangles
are added together at once when it is observed that integral is the inverse
of the easily acquired practice of differentiation. We must never lose sight
of the fact that, when we differentiate y or integrate y . dx, we are con-
sidering, not a particular x or y, but any one of an infinity of them. Sec-
ondly, we have seen that what in the first place had been regarded but as
a simple method of approximation, leads at any rate in certain cases to
results perfectly exact. The fact is that the exact results are due to a
compensation of errors: the error resulting from the false supposition
made, for example, by regarding a curve as a polygon with an infinite
number of sides each infinitely small and which when produced is a tan-
gent of the curve, is corrected or compensated for by that which springs
from the very processes of the calculus, according to which we retain in
differentiation infinitely small quantities of the same order alone. In fact,
after having introduced these quantities into the calculation to facilitate
the expression of the conditions of the problem, and after having regarded
them as absolutely zero in comparison with the proposed quantities, with
a view to simplify these equations, in order to banish the errors that they
had occasioned, and to obtain a result perfectly exact, there remains but
to eliminate these same quantities from the equations where they may
still be.
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But all this cannot be regarded as a strict proof. There are great diffi-
culties in trying to determine what infinitesimals are: at one time they
are treated like finite numbers and at another like zeros or as “ghosts of
departed quantities,” as Bishop Berkeley, the philosopher, called them.

Another difficulty is given by differentials “of higher orders than the
first.” Let us take up again the considerations of the fourth chapter. We

ds
saw that v = —:‘—r-, and found that s was got by integration: s = [v.dt. This

is now an immediate inference, since ;—dt =ds. Now, let us substitute
1

dv
for v in —. Here t is the independent variable, and all of the older mathe-
dt
maticians treated the elements df as constant—the interval of the inde-
pendent variable was split up into atoms, so to speak, which themselves
were regarded as known, and in terms of which other differentials, ds, dx,
dy, were to be determined. Thus

dv d("/“) 1/4; . d(d&') d?s

dt dt dt  ard
“d2s" being written for “d(ds)"” and “dr*" for “(dt)2". Thus the accelera-
tion was expressed as “the second differential of the space divided by the

d3s d3s
square of dr.” If d—; were constant, say, a, then 7 =a.dt; and, integrat-
t t

ing both sides:

ds
_=Ia,dt=dfdf=dt+br
dt

where b is a new constant. Integrating again, we have:
a?
s=a[t.dr+bjdr=2—+ bt +ec,

which is a more general form of Galileo’s result. Many complicated prob-
lems which show how far-reaching Galileo’s principles are were devised
by Leibniz and his school.

Thus, the infinitesimal calculus brought about a great advance in our
powers of describing nature. And this advance was mainly due to Leibniz's
notation; Leibniz himself attributed all of his mathematical discoveries to
his improvements in notation. Those who know something of Leibniz's
work know how conscious he was of the suggestive and economical value
of a good notation. And the fact that we still use and appreciate Leibniz’s
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“/ and “d,” even though our views as to the principles of the calculus are
very different from those of Leibniz and his school, is perhaps the best
testimony to the importance of this question of notation. This fact that
Leibniz’s notations have become permanent is the great reason why I have
dealt with his work before the analogous and prior work of Newton.

Isaac Newton (1642-1727) undoubtedly arrived at the principles and
practice of a method equivalent to the infinitesimal calculus much earlier
than Leibniz, and, like Roberval, his conceptions were obtained from the
dynamics of Galileo. He considered curves to be described by moving
points. If we conceive a moving point as describing a curve, and the curve
referred to co-ordinate axes, then the velocity of the moving point can be
decomposed into two others parallel to the axes of x and y respectively;
these velocities are called the “fluxions” of x and y, and the velocity of the
point is the fluxion of the arc. Reciprocally the arc is the “fluent” of the
velocity with which it is described. From the given equation of the curve
we may seek to determine the relations between the fluxions—and this is
equivalent to Leibniz's problem of differentiation;—and reciprocally we
may seek the relations between the co-ordinates when we know that be-
tween their fluxions, either alone or combined with the co-ordinates them-
selves. This is equivalent to Leibniz's general problem of integration, and
is the problem to which we saw, at the end of the fourth chapter, that
theoretical astronomy reduces.

Newton denoted the fluxion of x by “x,” and the fluxion of the fluxion
(the acceleration) of x by “¥.” It is obvious that this notation becomes
awkward when we have to consider fluxions of higher orders; and further,
Newton did not indicate by his notation the independent variable consid-

dy dx
ered. Thus “y” might possibly mean either — or —. We have x = —,
dt dx dt
. dx dx drx
X = — = —; but a dot-notation for — would be clumsy and incon-
dt de? dm

venient. Newton’s notation for the “inverse method of fluxions” was far
clumsier even, and far inferior to Leibniz's “[".

The relations between Newton and Leibniz were at first friendly, and
each communicated his discoveries to the other with a certain frankness.
Later, a long and acrimonious dispute took place between Newton and
Leibniz and their respective partisans. Each accused—unjustly, it seems—
the other of plagiarism, and mean suspicions gave rise to meanness of
conduct, and this conduct was also helped by what is sometimes called
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“patriotism.” Thus, for considerably more than a century, British mathe-
maticians failed to perceive the great superiority of Leibniz's notation.
And thus, while the Swiss mathematicians, James Bernoulli (1654-1705),
John Bernoulli (1667-1748), and Leonhard Euler (1707-1783), the
French mathematicians d'Alembert (1707-1783), Clairaut (1713-1765),
Lagrange (1736-1813), Laplace (1749-1827), Legendre (1752-1833),
Fourier (1768-1830), and Poisson (1781-1850), and many other Con-
tinental mathematicians, were rapidly ¢ extending knowledge by using the
infinitesimal calculus in all branches of pure and applied mathematics, in
England comparatively little progress was made. In fact, it was not until
the beginning of the nineteenth century that there was formed, at Cam-
bridge, a Society to introduce and spread the use of Leibniz’s notation
among British mathematicians: to establish, as it was said, “the principles
of pure d-ism in opposition to the dot-age of the university.”

The difficulties met and not satisfactorily solved by Newton, Leibniz, or
their immediate successors, in the principles of the infinitesimal calculus,
centre about the conception of a “limit”; and a great part of the medita-
tions of modern mathematicians, such as the Frenchman Cauchy (1789-
1857), the Norwegian Abel (1802-1829), and the German Weierstrass
(1815-1897), not to speak of many still living, have been devoted to the
putting of this conception on a sound logical basis.

dy dy
We have seen that, ify=x’,;=2x.Whatwedoin{ormingzx—is to

(x + Ax)2 — 22
form ———;—, which is readily found to be 2x + Ax, and then
consider that, as Ax approaches 0 more and more, the above quotient ap-
proaches 2x. We express this by saying that the “limit, as h [Ax] approaches
0,” is 2x. We do not consider Ax as being a fixed “infinitesimal” or as an
absolute zero (which would make the above quotient become indeter-

0
minate E), nor need we suppose that the quotient reaches its limit (the

state of Ax being 0). What we need to consider is that “Ax” should repre-
sent a variable which can take values differing from O by as little as we
please. That is to say, if we choose any number, however small, there is
a value which Ax can take, and which differs from 0 by less than that

¢ It is difficult for a mathematician not to think that the sudden and brilliant dawn
on cighteenth-century France of the magnificent and apparently all-embracing physics
of Newton and the wonderfully powerful mathematical method of Leibniz inspired
scientific men with the belief that the goal of all knowledge was nearly reached and
a new era of knowledge quickly striding towards perfection begun; and that this
optimism had indirectly much to do in preparing for the French Revolution,
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number. As before, when we speak of a “variable” we mean that we are
considering a certain class. When we speak of a “limit,” we are consider-
ing a certain infinite class. Thus the sequence of an infinity of terms 1,
1%, %, %, Ye, and so on, whose law of formation is easily seen, has the
limit 0. In this case 0 is such that any number greater than it is greater
than some term of the sequence, but O itself is not greater than any term
of the sequence and is not a term of the sequence. A sequence like 1,
14+%, 1+%+%, 1+%+%+% ... has an analogous upper
limit 2. A function f(x), as the independent variable x approaches a cer-

tain value, like — as x approaches 0, may have a value (in this case 2,
X

though ar 0, — is indeterminate). The question of the limits of a func-
x

tion in general is somewhat complicated, but the most important limit is

f(x + ax) — f(x) _ dy
—————— as Ax approaches 0; this, if y = f(x), is ;

Ax
That the infinitesimal calculus, with its rather obscure “infinitesimals”—
dy dx
treated like finite numbers when we write — dx = dy and = —, and
dx W/ dy

then, on occasion, neglected—leads so often to correct results is a most
remarkable fact, and a fact of which the true explanation only appeared
when Cauchy, Gauss (1777-1855), Riemann (1826-1866), and Weier-
strass had developed the theory of an extensive and much used class of
functions. These functions happen to have properties which make them
especially easy to be worked with, and nearly all the functions we habitu-
ally use in mathematical physics are of this class. A notable thing is that
the complex numbers spoken of in the second chapter make this theory to
a great extent.

Large tracts of mathematics have, of course, not been mentioned here.
Thus, there is an elaborate theory of integer numbers to be referred to in
a note to the seventh chapter, and a geometry using the conceptions of
the ancient Greeks and methods of modern mathematical thought; and
very many men still regard space-perception as something mathematics
deals with. We will return to this soon. Again, algebra has developed and
branched off; the study of functions in general and in particular has
grown; and soon a list of some of the many great men who have helped
in all this would not be very useful. Let us now try to resume what we
have seen of the development of mathematics along what seem to be its
main lines.



The Nature of Mathematics 61

In the earliest times men were occupied with particular questions—the
properties of particular numbers and geometrical properties of particular
figures, together with simple mechanical questions. With the Greeks, a
more general study of classes of geometrical figures began. But traces of
an earlier exception to this study of particulars are afforded by “algebra.”
In it and its later form symbols—like our present x and y—took the place
of numbers, so that, what is a great advance in economy of thought and
other labour, a part of calculation could be done with symbols instead of
numbers, so that the one result stated, in a manner analogous to that of
Greek geometry, a proposition valid for a whole infinite class of different
numbers.

The great revolution in mathematical thought brought about by Des-
cartes in 1637 grew out of the application of this general algebra to
geometry by the very natural thought of substituting the numbers express-
ing the lengths of straight lines for those lines. Thus a point in a plane—
for instance—is determined in position by two numbers x and y, or co-
ordinates. Now, as the point in question varies in position, x and y both
vary; to every x belongs, in general, one or more y's, and we arrive at the
most beautiful idea of a single algebraical equation between x and y repre-
senting the whole of a curve—the one “equation of the curve” expressing
the general law by which, given any particular x out of an infinity of
them, the corresponding y or y's can be found.

The problem of drawing a tangent—the limiting position of a secant,
when the two meeting points approach indefinitely close to one another—
at any point of a curve came into prominence as a result of Descartes’
work, and this, together with the allied conceptions of velocity and ac-
celeration “at an instant,” which appeared in Galileo’s classical investiga-
tion, published in 1638, of the law according to which freely falling bodies
move, gave rise at length to the powerful and convenient “infinitesimal
calculus” of Leibniz and the “method of fluxions” of Newton. Mathemati-
cally, the finding of the tangent at the point of a curve, and finding the
velocity of a particle describing this curve when it gets to that point, are
identical problems. They are expressed as finding the “differential quotient,”
or the “fluxion” at the point. It is now known to be very probable that
the above two methods, which are theoretically—but not practically—the
same, were discovered independently; Newton discovered his first, and
Leibniz published his first, in 1684. The finding of the areas of curves and
of the shapes of the curves which moving particles describe under given
forces showed themselves, in this calculus, as results of the inverse process
to that of the direct process which serves to find tangents and the law of
attraction to a given point from the datum of the path described by a
particle. The direct process is called “differentiation,” the inverse process
“integration.”
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Newton's fame is chiefly owing to his application of this method to the
solution, which, in its broad outlines, he gave of the problem of the motion
of the bodies in the solar system, which includes his discovery of the law
according to which all matter gravitates towards—is attracted by—other
matter. This was given in his Principia of 1687; and for more than a
century afterwards mathematicians were occupied in extending and apply-
ing the calculus.

Then came more modern work, more and more directed towards the
putting of mathematical methods on a sound logical basis, and the sepa-
ration of mathematical processes from the sense-perception of space with
which so much in mathematics grew and grows up. Thus trigonometry
took its place by algebra as a study of certain mathematical functions, and
it began to appear that the true business of geometry is to supply beautiful
and suggestive pictures of abstract—"analytical” or “algebraical” or even
“arithmetical,” as they are called—processes of mathematics. In the next
chapter we shall be concerned with part of the work of logical examina-
tion and reconstruction.

CHAPTER VI
MODERN VIEWS OF LIMITS AND NUMBERS

LET us try to form a clear idea of the conception which showed itself to
be fundamental in the principles of the infinitesimal calculus, the concep-
tion of a limit.

Notice that the limit of a sequence is a number which is already defined.
We cannot prove that there is a limit to a sequence unless the limit sought
is among the numbers already defined. Thus, in the system of “numbers”
—here we must refer back to the second chapter—consisting of all frac-
tions (or ratios), we can say that the sequence (where 1 and 2 are written
for the ratios Y1 and %) 1,1+ %, 1+ % + %, . . ., has a limit (2), but
that the sequence

1, 1 4 %40, 1 + %0 + Yoo, 1 + %10 + Yoo + Y000, . . .,

or 1-4142 . . .,

got by extracting the square root of 2 by the known process of decimal
arithmetic, has not. In fact, it can be proved that there is no ratio such
that it is a limit for the above sequence. If there were, and it were denoted
by “x,”” we would have x2 =2. Here we come again to the question of
incommensurables and “irrational numbers.” The Greeks were quite right
in distinguishing so sharply between numbers and magnitudes, and it was
a tacit, natural, and unjustified—not, as it happens, incorrect—presup-
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position that the series of numbers, completed into the series of what are
called “real numbers,” exactly corresponds to the series of points on a
straight line. The series of points which represents the sequence last named
seems undoubtedly to possess a limit; this limiting point was assumed to
represent some number, and, since it could not represent an integer or a
ratio, it was said to represent an “irrational number,” \/2. Another irra-
tional number is that which is represented by the incommensurable ratio
of the circumference of a circle to its diameter. This number is denoted
by the Greek letter “n,” and its value is nearly 3-1416. . . . Of course,
the process of approximation by decimals never comes to an end.

The subject of limits forced itself into a very conspicuous place in the
seventeenth and eighteenth centuries owing to the use of infinite series as
a means of approximate calculation. I shall distinguish what I call “se-
quences” and “series.” A sequence is a collection—finite or infinite—of
numbers; a series is a finite or infinite collection of numbers connected
by addition. Sequences and series can be made to correspond in the fol-
lowing way. To the sequence 1, 2, 3, 4, . . . belongs a series of which
the terms are got by subtracting, in order, the terms of the sequence from
the ones immediately following them, thus:

QCQ-D+06B-2)4+@-3N+...=14+14+14+...;
and from a series the corresponding sequence can be got by making the
sum of the first, the first two, the first three, . . . terms the first, sec-
ond, third . . . term of the sequence respectively. Thus, to the series
1+1+4+1+4 ... corresponds the sequence 1, 2, 3, . . .

Now, if a series has only a finite number of terms, it is possible to find
the sum of all the terms; but if the series is unending, we evidently cannot.
But in certain cases the corresponding sequence has a limit, and this limit
is called by mathematicians, neither unnaturally nor accurately, “the sum
to infinity of the series.” Thus, the sequence 1, 1 +%, 1 +% + % . . .
has the limit 2, and so the sum to infinity of the series 1 + % + %4 + % +

. is 2. Of course, all series do not have a sum: thus 1 +1+ 14 . . .
to infinity has not—the terms of the corresponding sequence increase
continually beyond all limits, Notice particularly that the terms of a
sequence may increase continually, and yet have a limit—those of the
above sequence with limit 2 so increase, but not beyond 2, though they
do beyond any number less than 2; also notice that the terms of a se-
quence may increase beyond all limits even if the terms of the correspond-
ing series continually diminish, remaining positive, towards 0. The series
1+%+%+%+¥%+ ... issuch a series; the terms of the sequence
slowly increase beyond all limits, as we see when we reflect that the sums

B+ %B+%B+%+% %+ ... +%, ..
are all greater than %. It is very important to realise the fact illustrated
by this example; for it shows that the conditions under which an infinite
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series has'a sum are by no means as simple as they might appear at first
sight.

The logical scrutiny to which, during the last century, the processes and
conceptions of mathematics have been subjected, showed very plainly
that it was a sheer assumption that such a process as 1:4142 . . ., though
all its terms are less than 2, for example, has any limit at all. When we
replace numbers by points on a straight line, we feel fairly sure that there
is one point which behaves to the points representing the above sequence
in the same sort of way as 2 to the sequence 1, 1 +%, 1 +¥% + %, . ..
Now, if our system of numbers is to form a continuum, as a line seems
to our thoughts to be; so that we can affirm that our number system is
adequate, when we introduce axes in the manner of analytical geometry,
to the description of all the phenomena of change of position which take
place in our space,” then we must have a number /2 which is the limit
of the sequence 1-4142 . . . if 2isof theseries 1 +% 4+ % + . . ., for
to every point of a line must correspond a number which is subject to the
same rules of calculation as the ratios or integers. Thus we must, to justify
from a logical point of view our procedure in the great mathematical
methods, show what irrationals are, and define them before we can prove
that they are limits. We cannot take a series, whose law is evident, which
has no ratio for sum, and yet such that the terms of the corresponding

1 1
sequence all remain less than some fixed number (such as 1 + —1- + H +
1 1

+ ., when all the terms of the corresponding se-
1-2:3  1-2-3-4
quence are less than 3, for example), and then say that it “defines a limit."”
All we can prove is that if such a series has a limit, then, if the terms of
its corresponding sequence do not decrease as we read from left to right
(as in the preceding example), it cannot have more than one limit.

Some mathematicians have simply postulated the irrationals. At the be-
ginning of their discussions they have, tacitly or not, said: “In what
follows we will assume that there are such things as fill up kinds of gaps
in the system of rationals (or ratios).” Such a gap is shown by this. The
rationals less than % and those greater than % form two sets and % divides
them. The rationals x such that x2 is greater than 2 and those x's such
that x2 is less than 2 form two analogous sets, but there is only an ana-
logue to the dividing number % if we postulate a number \/2. Thus by

7 The only kind of change dealt with in the science of mechanics is change of posi-
tion, that is, motion. It does not seem to me to be necessary to adopt the doctrine
that the complete description of any physical event is of a mechanical event; for it is

possible to assign and calculate with numbers of our number-continuum to other vary-
ing characteristics (such as temperature) of the state of a body besides position.
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postulation we fill up these subtle gaps in the set of rationals and get a
continuous set of real numbers. But we can avoid this postulation if we
define “\/2" as the name of the class of rationals x such that x2 is less
than 2 and “(%)"” as the name of the class of rationals x such that x is
less than %. Proceeding thus, we arrive at a set of classes, some of which
correspond to rationals, as (%) to %, but the rest satisfy our need of a
set without gaps. There is no reason why we should not say that these
classes are the real numbers which include the irrationals. But we must
notice that rationals are never real numbers; % is not (%), though analo-
gous to it. We have much the same state of things as in the second chapter,
where 2, 42 and % were distinguished and then deliberately confused be-
cause, with the mathematicians, we felt the importance of analogy in cal-
culation. Here again we identify (%) with ¥4, and so on.

Thus, integers, positive and negative “numbers,” ratios, and real “num-
bers” are all different things: real numbers are classes, ratios and positive
and negative numbers are relations. Integers, as we shall see, are classes.
Very possibly there is a certain arbitrariness about this, but this is unim-
portant compared with the fact that in modern mathematics we have re-
duced the definitions of all “numbers” to logical terms. Whether they are
classes or relations or propositions or other logical entities is compara-
tively unimportant.

Integers can be defined as certain classes. Mathematicians like Weier-
strass stopped before they got as far as this: they reduced the other num-
bers of analysis to logical developments out of the conception of integer,
and thus freed analysis from any remaining trace of the sway of geometry.
But it was obvious that integers had to be defined, if possible, in logical
terms. It has long been recognised that two collections consist of the same
number of objects if, and only if, these collections can be put in such a
relation to one another that to every object of each one belongs one and
only one object of the other. We must not think that this implies that we
have already the idea of the number one. It is true that “one and only one”
seems to use this idea. But “the class a has one and only one member” is
simply a short way of expressing: “x is a member of a, and if y is also a
member of g, then y is identical with x.” It is true, also, that we use the
idea of the v~y or the individuality of the things considered. But this
unity is a property of each individual, while the number 1 is a property of
a class. If a class of pages of a book is itself, under the name of a “vol-
ume,” a member of a class of books, the same class of pages has both a
number (say 360) and a unity as being itself a member of a class.

The relation spoken of above in which two classes possessing the same
number stand to one another does not involve counting. Think of the
fingers on your hands. If to every finger of each hand belongs, by some
process of correspondence, one and only one—remember the above mean-
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ing of this phrase—of the other, they are said to have “the same number."”
This is a definition of what “the same number” is to mean for us; the
word “number” by itself is to have, as yet, no meaning for us; and, to
avoid confusion, we had better replace the phrase “have the same number”
by the words “are equivalent.” Any other word would, of course, do, but
this word happens to be fairly suggestive and customary. Now, if the vari-
able u is any class, “the number of u” is defined as short for the phrase:
“the class whose members are classes which are similar to w." Thus the
number of u is an entity which is purely logical in its nature. Some people
might urge that by “number” they mean something different from this,
and that is quite possible. All that is maintained by those who agree to
the process sketched above is: (1) Classes of the kind described are iden-
tical in all known arithmetical properties with the undefined things people
call “integer numbers”; (2) It is futile to say: “These classes are not num-
bers,” if it is not also said what numbers are—that is to say, if “the
number of” is not defined in some more satisfactory way. There may be
more satisfactory definitions, but this one is a perfectly sound foundation
for all mathematics, including the theory not touched upon here of ordi-
nal numbers (denoted by “first,” “second,” . . .) which apply to sets
arranged in some order, known at present.

To illustrate (1), think of this. Acording to the above definition 2 is
the general idea we call “couple.” We say: “Mr. and Mrs. A. are a
couple”; our definition would ask us to say in agreement with this: “The
class consisting of Mr. and Mrs. A. is a member of the class 2.” We define
“2" as “the class of classes u such that, if x is a u, u lacking x is a 1"'; the
definition of “3” follows that of “2"; and so on. In the same way, we see
that the class of fingers on your right hand and the class of fingers on your
left hand are each of them members of the class 5. It follows that the
classes of the fingers are equivalent in the above sense.

Out of the striving of human minds to reproduce conveniently and
anticipate the results of experience of geometrical and natural events,
mathematics has developed. Its development gave priceless hints to the
development of logic, and then it appeared that there is no gap between
the science of number and the science of the most general relations of
objects of thought. As for geometry and mathematical physics, it becomes
possible clearly to separate the logical parts from those parts which formu-
late the data of our experience.

We have seen that mathematics has often made great strides by sacri-
ficing accuracy to analogy. Let us remember that, though mathematics and
logic give the highest forms of certainty within the reach of us, the process
of mathematical discovery, which is so often confused with what is dis-
covered, has led through many doubtful analogies and errors arriving
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from the great help of symbolism in making the difficult easy. Fortunately
symbolism can also be used for precise and subtle analysis, so that we
can say that it can be made to show up the difficulties in what appears
easy and even negligible—like 1 4+ 1 =2. This is what much modern
fundamental work does.

CHAPTER VII
THE NATURE OF MATHEMATICS

IN the preceding chapters we have followed the development of certain
branches of knowledge which are usually classed together under the name
of “mathematical knowledge.” These branches of knowledge were never
clearly marked off from all other branches of knowledge: thus geometry
was sometimes considered as a logical study and sometimes as a natural
science—the study of the properties of the space we live in. Still less was
there an absolutely clear idea of what it was that this knowledge was
about. It had a name—"mathematics”—and few except “practical” men
and some philosophers doubted that there was something about which
things were known in that kind of knowledge called “mathematical.” But
what it was did not interest very many people, and there was and is a
great tendency to think that the question as to what mathematics is could
be answered if we only knew all the facts of the development of our
mathematical knowledge. It seems to me that this opinion is, to a great
extent, due to an ambiguity of language: one word—"mathematics”—is
used both for our knowledge of a certain kind and the thing, if such a
thing there be, about which this knowledge is. I have distinguished, and
will now explicitly distinguish, between “Mathematics,” a collection of
truths of which we know something, and “mathematics,” our knowledge
of Mathematics. Thus, we may speak of “Euclid’s mathematics” or “New-
ton’s mathematics,” and say truly that mathematics has developed and
therefore had history; but Mathematics is eternal and unchanging, and
therefore has no history—it does not belong, even in part, to Euclid or
Newton or anybody else, but is something which is discovered, in the
course of time, by human minds. An analogous distinction can be drawn
between “Logic” and “logic.” The small initial indicates that we are
writing of a psychological process which may lead to Truth; the big initial
indicates that we are writing of the entity—the part of Truth—to which
this process leads us. The reason why mathematics is important is that
Mathematics is not incomprehensible, though it is eternal and unchang-
ing.

Grammatical usage makes us use a capital letter even for “mathe-
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matics” in the psychological sense when the word begins a sentence, but
in this case I have guarded and will guard against ambiguity.

That particular function of history which I wish here to emphasise will
now, I think, appear. In mathematics we gradually learn, by getting to
know some thing about mathematics, to know that there is such a thing
as Mathematics.

We have, then, glanced at the mathematics of primitive peoples, and
have seen that at first discoveries were of isolated properties of abstract
things like numbers or geometrical figures, and of abstract relations be-
tween concrete things like the relations between the weights and the arms
of a lever in equilibrium. These properties were, at first, discovered and
applied, of course, with the sole object of the satisfaction of bodily needs.
With the ancient Greeks comes a change in point of view which perhaps
seems to us, with our defective knowledge, as too abrupt. So far as we
know, Greek geometry was, from its very beginning, deductive, general,
and studied for its own interest and not for any applications to the con-
crete world it might have. In Egyptian geometry, if a result was stated as
universally true, it was probably only held to be so as a result of induction
—the conclusion from a great number of particular instances to a general
proposition. Thus, if somebody sees a very large number of officials of a
certain railway company, and notices that all of them wear red ties, he
might conclude that all the officials of that company wear red ties. This
might be probably true: it would not be certain: for certainty it would be
necessary to know that there was some rule according to which all the
officials were compelled to wear red ties. Of course, even then the con-
clusion would not be certain, since these sort of laws may be broken. Laws
of Logic, however, cannot be broken. These laws are not, as they are
sometimes said to be, laws of thought; for logic has nothing to do with the
way people think, any more than poetry has to do with the food poets
must eat to enable them to compose. Somebody might think that 2 and 2
make 5: we know, by a process which rests on the laws of Logic, that they
make 4.

This is a more satisfactory case of induction: Fermat stated that no
integral values of x, y, and z can be found such that x* 4 y* = z*, if n be
an integer greater than 2. This theorem has been proved to be true for
n=3, 4, 5, 7, and many other numbers, and there is no reason to doubt
that it is true. But to this day no general proof of it has been given.® This,
then, is an example of a mathematical proposition which has been reached
and stated as probably true by induction.

Now, in Greek geometry, propositions were stated and proved by the

8 This is an example of the “theory of numbers,” the study of the properties of
integers, to which the chief contributions, perhaps, have been made by Fermat and
Gauss.
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laws of Logic—helped, as we now know, by tacit appeals to the conclu-
sions which common sense draws from the pictorial representation in the
mind of geometrical figures—about any triangles, say, or some triangles,
and thus not about one or two particular things, but about an infinity of
them. Thus, consider any two triangles ABC and DEF. It helps the think-
ing of most of us to draw pictures of particular triangles, but our conclu-
sions do not hold merely for these triangles. If the sides BA and AC are
equal in length to the sides ED and DF respectively, and the angle at A4 is
equal to the angle at D, then BC is equal to EF. This is proved rather
imperfectly in the fourth proposition of the first Book of Euclid's
Elements.

When we examine into and complete the reasonings of geometricians,
we find that the conception of space vanishes, and that we are left with
logic alone. Philosophers and mathematicians used to think—and some do
now—that, in geometry, we had to do, not with the space of ordinary life
in which our houses stand and our friends move about, and which certain
quaint people say is “annihilated™ by electric telegraphs or motor cars, but
an abstract form of the same thing from which all that is personal or
material has disappeared, and only things like distance and order and
position have remained. Indeed, some have thought that position did not
remain; that, in abstract space, a circle, for example, had no position of
its own, but only with respect to other things. Obviously, we can only, in
practice, give the position of a thing with respect to other things—*“rela-
tively” and not “absolutely.” These “relativists” denied that position had
any properties which could not be practically discovered. Relativism, in a
thought-out form, seems quite tenable; in a crude form, it seems like ex-
cluding the number 2, as distinguished from classes of two things, from
notice as a figment of the brain, because it is not visible or tangible like a
poker or a bit of radium or a mutton-chop.

In fact, a perfected geometry reduces to a series of deductions holding
not only for figures in space, but for any abstract things. Spatial figures
give a striking illustration of some abstract things; and that is the secret of
the interest which analytical geometry has. But it is into algebra that we
must now look to discover the nature of Mathematics.

We have seen that Egyptian arithmetic was more general than Egyptian
geometry: like algebra, by using letters to denote unknown numbers, it
began to consider propositions about any numbers. In algebra and alge-
braical geometry this quickly grew, and then it became possible to treat
branches of mathematics in a systematic way and make whole classes of
problems subject to the uniform and almost mechanical working of one
method. Here we must again recall the economical function of science.

At the same time as methods—algebra and analytical geometry and the
infinitesimal calculus—grew up from the application of mathematics to
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natural science, grew up also the new conceptions which influenced the
form which mathematics took in the seventeenth, eighteenth, and nine-
teenth centuries. The ideas of variable and function became more and
more prominent. These ideas were brought in by the conception of mo-
tion, and, unaffected by the doubts of the few logicians in the ranks of
the mathematicians, remained to fructify mathematics. When mathema-
ticians woke up to the necessity of explaining mathematics logically and
finding out what Mathematics is, they found that, in mathematics the
striving for generality had led, from very early times, to the use of a
method of deduction used but not recognised and distinguished from the
method usually used by the Aristotelians. I will try to indicate the nature
of these methods, and it will be seen how the ideas of variable and func-
tion, in a form which does not depend on that particular kind of vari-
ability known as motion, come in.

A proposition in logic is the kind of thing which is denoted by such
a phrase as: “Socrates was a mortal and the husband of a scold.” If—and
this is the characteristic of modern logic—we notice that the notions of
variable and function (correspondence, relation) which appeared first in a
special form in mathematics, are fundamental in all the things which are
the objects of our thought, we are led to replace the particular conceptions
in a proposition by variables, and thus see more clearly the structure of
the proposition. Thus: “x is a ¥ and has the relation R to z, a member of
the class u" gives the general form of a multitude of propositions, of
which the above is a particular case; the above proposition may be true,
but it is not a judgment of logic, but of history or experience. The propo-
sition is false if “Kant” or “Westminster Abbey” is substituted for “Soc-
rates’: it is neither if “x,” a sign for a variable, is, and then becomes what
we call a “propositional function” of x and denote by “¢x” or “yx." If
more variables are involved, we have the notation “¢(x,y),” and so on.

Relations between propositional functions may be true or false. Thus x
is a member of the class a, and a is contained in the class b, together
imply that x is a b, is true. Here the implication is true, and we do not
say that the functions are. The kind of implication we use in mathematics
is of the form: “If ¢x is true, then ix is true™; that is, any particular value
of x which makes ¢x true also makes yx true.

From the perception that, when the notions of variable and function
are introduced into logic, as their fundamental character necessitates, all
mathematical methods and all mathematical conceptions can be defined
in purely logical terms, leads us to see that Mathematics is only a part of
Logic and is the class of all propositions of the form: ¢(x,y,z, . . .)
implies, for all values of the variables, ¥(x,y,z, . . .). The structure of
the propositional functions involves only such ideas as are fundamental
in logic, like implication, class, relation, the relation of a term to a class
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of which it is a member, and so on. And, of course, Mathematics depends
on the notion of Truth.

When we say that “1 4+ 1 = 2,” we seem to be making a mathematical
statement which does not come under the above definition. But the state-
ment is rather mistakenly written: there is, of course, only one whole class
of unit classes, and the notation “1 4 1” makes it look as if there were
two. Remembering that 1 is a class of certain classes, what the above
proposition means is: If x and y are members of 1, and x differs from y,
then x and y together make up a member of 2.

At last, then, we arrive at seeing that the nature of Mathematics is
independent of us personally and of the world outside, and we can feel
that our own discoveries and views do not affect the Truth itself, but only
the extent to which we or others see it. Some of us discover things in
science, but we do not really create anything in science any more than
Columbus created America. Common sense certainly leads us astray when
we try to use it for the purposes for which it is not particularly adapted,
just as we may cut ourselves and not our beards if we try to shave with
a carving knife; but it has the merit of finding no difficulty in agreeing
with those philosophers who have succeeded in satisfying themselves of
the truth and position of Mathematics. Some philosophers have reached
the startling conclusion that Truth is made by men, and that Mathematics
is created by mathematicians, and that Columbus created America; but
common sense, it is refreshing to think, is at any rate above being flattered
by philosophical persuasion that it really occupies a place sometimes
reserved for an even more sacred Being.
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COMMENTARY ON
The Great Mathematicians

T the outset of assembling this anthology I decided that I ought to
include a biographical history of the subject. This would provide
a setting for the other selections, and also serve as a small reference man-
ual for the general reader. It was not easy to find a history which was
brief, authoritative, elementary and readable. W. W. R. Ball’s 4 Primer
of the History of Mathematics is a book of merit but rather old-fashioned.
J. W. N. Sullivan's The History of Mathematics in Europe, an admirable
outline, carries the story only as far as the end of the eighteenth century;
I commend this book to your attention. Dirk Struik’s 4 Concise History
of Mathematics has solid virtues but is a trifle too advanced for my pur-
poses and at times dull. A few French and German books which might
have been suitable were not considered because of the labor of translating
them.

Turnbull’s excellent little volume, a biographical history, turned out to
meet the standard in all respects. It is the story of several great mathema-
ticians, “representatives of their day in this venerable science.” “I have
tried to show,” says Professor Turnbull in his preface, “how a mathemati-
cian thinks, how his imagination, as well as his reason, leads him to new
aspects of the truth. Occasionally it has been necessary to draw a figure or
quote a formula—and in such cases the reader who dislikes them may
skip, and gather up the thread undismayed a little further on. Yet I hope
that he will not too readily turn aside in despair, but will, with the help
of the accompanying comment, find something to admire in these elegant
tools of the craft.” There is overlapping between this survey and the pre-
ceding selection, but the two books are complementary, and the reader
who enjoys one will derive no less pleasure from the other. Jourdain
makes ideas the heroes of his account while Turnbull devotes a good deal
of space to lively sketches of the men who made the ideas.

H. W. Turnbull, distinguished for his researches in algebra (determi-
nants, matrices, theory of equations), is Regius professor of mathematics
at the University of St. Andrews in Scotland, a Fellow of the Royal
Society, and, as demonstrated not only in this volume but in other writ-
ings, a gifted simplifier of mathematical ideas.
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We think of Euclid as of fine ice; we admire Newton as we admire the
Peak of Teneriffe. Even the intensest labors, the most remote triumphs of
the abstract intellect, seem to carry us into a region different from our
own—io be in a terra incognita of pure reasoning, to cast a chill on human

glory. —WALTER BAGEHOT
Many small make a great. —CHAUCER
Everything of importance has been said before by somebody who did not
discover it. —ALFRED NORTH WHITEHEAD

1 The Great Mathematicians
By HERBERT WESTREN TURNBULL

PREFACE

THE usefulness of mathematics in furthering the sciences is commonly
acknowledged: but outside the ranks of the experts there is little inquiry
into its nature and purpose as a deliberate human activity. Doubtless this
is due to the inevitable drawback that mathematical study is saturated
with technicalities from beginning to end. Fully conscious of the difficul-
ties in the undertaking, I have written this little book in the hope that it
will help to reveal something of the spirit of mathematics, without unduly
burdening the reader with its intricate symbolism. The story is told of
several great mathematicians who are representatives of their day in this
venerable science. I have tried to show how a mathematician thinks, how
his imagination, as well as his reason, leads him to new aspects of the
truth. Occasionally it has been necessary to draw a figure or quote a
formula—and in such cases the reader who dislikes them may skip, and
gather up the thread undismayed a little further on. Yet I hope that he
will not too readily turn aside in despair, but will, with the help of the
accompanying comment, find something to admire in these elegant tools
of the craft.

Naturally in a work of this size the historical account is incomplete: a
few references have accordingly been added for further reading. It is
pleasant to record my deep obligation to the writers of these and other
larger works, and particularly to my college tutor, the late Mr. W. W.
Rouse Ball, who first woke my interest in the subject. My sincere thanks
are also due to several former and present colleagues in St. Andrews who
have made a considerable and illuminating study of mathematics among
the Ancients: and to kind friends who have offered many valuable sug-
gestions and criticisms.

In preparing the Second Edition I have had the benefit of suggestions

75



76 Herbert Westren Turnbull

which friends from time to time have submitted. I am grateful for this
means of removing minor blemishes, and for making a few additions.
In particular, a date list has been added.

PREFACE TO THIRD EDITION

A FEW additions have been made to the earlier chapters and to Chapter
VI, which incorporate results of recent discoveries among mathematical
inscriptions and manuscripts, particularly those which enlarge our knowl-
edge of the mathematics of Ancient Babylonia and Egypt. 1 gratefully
acknowledge the help derived from reading the Manual of Greek Mathe-
matics (1931) by Sir Thomas Heath. It provides a short but masterly
account of these developments, for which the scientific world is greatly
indebted.

H W.T.
December, 1940.

PREFACE TO FOURTH EDITION

AT the turn of the half-century it is appropriate to add a postscript to
Chapter XI, which brought the story of mathematical development as far
as the opening years of the century. What has happened since has followed
very directly from the wonderful advances that opened up through the
algebraical discoveries of Hamilton, the analytical theories of Weierstrass
and the geometrical innovations of Von Staudt, and of their many great
contemporaries. One very noteworthy development has been the rise of
American mathematics to a place in the front rank, and this has come
about with remarkable rapidity and principally through the study of
abstract algebra such as was inspired by Peirce, a great American disciple
of the Hamiltonian school. Representative of this advance in algebra is
Wedderburn who built upon the foundations laid, not only by Peirce, but
also by Frobenius in Germany and Cartan in France. Through abandon-
ing the commutative law of multiplication by inventing quaternions, Ham-
ilton had opened the door for the investigation of systems of algebra
distinct from the ordinary familiar system. Algebra became algebras just
as, through the discovery of non-Euclidean systems, geometry became
geometries. This plurality, which had been unsuspected for so long, natu-
rally led to the study of the classification of algebras. It was here that
Wedderburn, following a hint dropped by Cartan, attained great success.
The matter led to deeper and wider understanding of abstract theory,
while at the same time it provided a welcome and fertile medium for the
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further developments in quantum mechanics. Simultaneously with this
abstract approach to algebra a powerful advance was made in the tech-
nique of algebraical manipulation through the discoveries of Frobenius,
Schur and A. Young in the theory of groups and of their representations
and applications.

Similar trends may be seen in arithmetic and analysis where the same
plurality is in evidence. Typical of this are the theory of valuation and
the recognition of Banach spaces. The axiom of Archimedes (p. 99) is
here in jeopardy: which is hardly surprising once the concept of regular
equal steps upon a straight line had been broadened by the newer forms
of geometry. Arithmetic and analysis were, so to speak, projected and
made more abstract. It is remarkable that, with these trends towards
generalization in each of the four great branches of pure mathematics,
the branches lose something of their distinctive qualities and grow more
alike. Whitehead’s description of geometry as the science of cross-
classification remains profoundly true. The applications of mathematics
continue to extend, particularly in logic and in statistics.

H W.T.
May, 1951.
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CHAPTER 1
EARLY BEGINNINGS: THALES, PYTHAGORAS AND THE PYTHAGOREANS

TO-DAY with all our accumulated skill in exact measurements, it is a
noteworthy event when lines driven through a mountain meet and make a
tunnel. How much more wonderful is it that lines, starting at the corners
of a perfect square, should be raised at a certain angle and successfully
brought to a point, hundreds of feet aloft! For this, and more, is what
is meant by the building of a pyramid: and all this was done by the
Egyptians in the remote past, far earlier than the time of Abraham.

Unfortunately we have no actual record to tell us who first discovered
enough mathematics to make the building possible. For it is evident that
such gigantic erections needed very accurate plans and models. But many
general statements of the rise of mathematics in Egypt are to be found in
the writings of Herodotus and other Greek travellers. Of a certain king
Sesostris, Herodotus says:

‘This king divided the land among all Egyptians so as to give each one
a quadrangle of equal size and to draw from each his revenues, by im-
posing a tax to be levied yearly. But everyone from whose part the river
tore anything away, had to go to him to notify what had happened; he
then sent overseers who had to measure out how much the land had be-
come smaller, in order that the owner might pay on what was left, in pro-
portion to the entire tax imposed. In this way, it appears to me, geometry
originated, which passed thence to Hellas.’

Then in the Phaedrus Plato remarks:

‘At the Egyptian city of Naucratis there was a famous old god whose
name was Theuth; the bird which is called the Ibis was sacred to him, and
he was the inventor of many arts, such as arithmetic and calculation and
geometry and astronomy and draughts and dice, but his great discovery
was the use of letters.’

According to Aristotle, mathematics originated because the priestly
class in Egypt had the leisure needful for its study; over two thousand
years later exact corroboration of this remark was forthcoming, through
the discovery of a papyrus, now treasured in the Rhind collection at the
British Museum. This curious document, which was written by the priest
Ahmes, who lived before 1700 B.C., is called ‘directions for knowing all
dark things'; and the work proves to be a collection of problems in geom-
etry and arithmetic. It is much concerned with the reduction of fractions
such as 2/(2n + 1) to a sum of fractions each of whose numerators is
unity. Even with our improved notation it is a complicated matter to work
through such remarkable examples as:

%o = You + Yoo + Yire + Yona.
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There is considerable evidence that the Egyptians made astonishing
progress in the science of exact measurements. They had their land sur-
veyors, who were known as rope stretchers, because they used ropes, with
knots or marks at equal intervals, to measure their plots of land. By this
simple means they were able to construct right angles; for they knew that
three ropes, of lengths three, four, and five units respectively, could be
formed into a right-angled triangle. This useful fact was not confined to
Egypt: it was certainly known in China and elsewhere. But the Egyptian
skill in practical geometry went far beyond the construction of right
angles: for it included, besides the angles of a square, the angles of other
regular figures such as the pentagon, the hexagon and the heptagon.

If we take a pair of compasses, it is very easy to draw a circle and then
to cut the circumference into six equal parts. The six points of division
form a regular hexagon, the figure so well known as the section of the
honey cell. It is a much more difficult problem to cut the circumference
into five equal parts, and a very much more difficult problem to cut it
into seven equal parts. Yet those who have carefully examined the design
of the ancient temples and pyramids of Egypt tell us that these particular
figures and angles are there to be seen. Now there are two distinct
methods of dealing with geometrical problems—the practical and the
theoretical. The Egyptians were champions of the practical, and the
Greeks of the theoretical method. For example, as Rdber has pointed out,
the Egyptians employed a practical rule to determine the angle of a regu-
lar heptagon. And although it fell short of theoretical precision, the rule
was accurate enough to conceal the error, unless the figure were to be
drawn on a grand scale. It would barely be apparent even on a circle of
radius 50 feet.

Unquestionably the Egyptians were masters of practical geometry; but
whether they knew the theory, the underlying reason for their results, is
another matter. Did they know that their right-angled triangle, with sides
of lengths three, four and five units, contained an exact right angle? Prob-
ably they did, and possibly they knew far more. For, as Professor D’Arcy
Thompson has suggested, the very shape of the Great Pyramid indicates a
considerable familiarity with that of the regular pentagon. A certain ob-
scure passage in Herodotus can, by the slightest literal emendation, be
made to yield excellent sense. It would imply that the area of each tri-
angular face of the Pyramid is equal to the square of the vertical height;
and this accords well with the actual facts. If this is so, the ratios of
height, slope and base can be expressed in terms of the ‘golden section’,
or of the radius of a circle to the side of the inscribed decagon. In short,
there was already a wealth of geometrical and arithmetical results treas-
ured by the priests of Egypt, before the early Greek travellers became
acquainted with mathematics. But it was only after the keen imaginative



The Great Mathematicians 81

eye of the Greek fell upon these Egyptian figures that they yielded up
their wonderful secrets and disclosed their inner nature.

Among these early travellers was THALES, a rich merchant of Miletus,
who lived from about 640 to 550 B.c. As a man of affairs he was highly
successful: his duties as merchant took him to many countries, and his
native wit enabled him to learn from the novelties which he saw. To his
admiring fellow-countrymen of later generations he was known as one of
the Seven Sages of Greece, many legends and anecdotes clustering round
his name. It is said that Thales was once in charge of some mules, which
were burdened with sacks of salt. Whilst crossing a river one of the ani-
mals slipped; and the salt consequently dissolving in the water, its load
became instantly lighter. Naturally the sagacious beast deliberately sub-
merged itself at the next ford, and continued this trick until Thales hit
upon the happy expedient of filling the sack with sponges! This proved an
effectual cure. On another occasion, foreseeing an unusually fine crop of
olives, Thales took possession of every olive-press in the district; and
having made this ‘corner’, became master of the market and could dictate
his own terms. But now, according to one account, as he had proved what
could be done, his purpose was achieved. Instead of victimizing his
buyers, he magnanimously sold the fruit at a price reasonable enough to
have horrified the financier of to-day.

Like many another merchant since his time Thales early retired from
commerce, but unlike many another he spent his leisure in philosophy and
mathematics. He seized on what he had learnt in his travels, particularly
from his intercourse with the priests of Egypt; and he was the first to
bring out something of the true significance of Egyptian scientific lore. He
was both a great mathematician and a great astronomer. Indeed, much of
his popular celebrity was due to his successful prediction of a solar eclipse
in 585 B.c. Yet it is told of him that in contemplating the stars during an
evening walk, he fell into a ditch; whereupon the old woman attending
him exclaimed, ‘How canst thou know what is doing in the heavens when
thou seest not what is at thy feet?

We live so far from these beginnings of a rational wonder at natural
things, that we run the risk of missing the true import of results now so
very familiar. There are the well-known propositions that a circle is bi-
sected by any diameter, or that the angles at the base of an isosceles tri-
angle are equal, or that the angle in a semicircle is a right angle, or that
the sides about equal angles in similar triangles are proportional. These
and other like propositions have been ascribed to Thales. Simple as they
are, they mark an epoch. They elevate the endless details of Egyptian
mensuration to general truths; and in like manner his astronomical results
replace what was little more than the making of star catalogues by a
genuine science,
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It has been well remarked that in this geometry of Thales we also have
the true source of algebra. For the theorem that the diameter bisects a
circle is indeed a true equation; and in his experiment conducted, as Plu-
tarch says, ‘so simply, without any fuss or instrument’ to determine the
height of the Great Pyramid by comparing its shadow with that of a
vertical stick, we have the notion of equal ratios, or proportion.

The very idea of abstracting all solidity and area from a material shape,
such as a square or triangle, and pondering upon it as a pattern of lines,
seems to be definitely due to Thales. He also appears to have been the
first to suggest the importance of a geometrical locus, or curve traced out
by a point moving according to a definite law. He is known as the father
of Greek mathematics, astronomy and philosophy, for he combined a
practical sagacity with genuine wisdom. It was no mean achievement, in
his day, to break through the pagan habit of mind which concentrates on
particular cults and places. Thales asserted the existence of the abstract
and the more general: these, said he, were worthier of deep study than
the intuitive or sensible. Here spoke the philosopher. On the other hand
he gave to mankind such practical gifts as the correct number of days in
the year, and a convenient means of finding by observation the distance
of a ship at sea.

Thales summed up his speculations in the philosophical proposition ‘All
things are water’. And the fact that all things are not water is trivial com-
pared with the importance of his outlook. He saw the field; he asked the
right questions; and he initiated the search for underlying law beneath all
that is ephemeral and transient.

Thales never forgot the debt that he owed to the priests of Egypt; and
when he was an old man he strongly advised his pupil PYTHAGORAS to pay
them a visit. Acting upon this advice, Pythagoras travelled and gained a
wide experience, which stood him in good stead when at length he settled
and gathered round him disciples of his own, and became even more
famous than his master. Pythagoras is supposed to have been a native of
Samos, belonging like Thales to the Ionian colony of Greeks planted on
the western shores and islands of what we now call Asia Minor. He lived
from about 584 B.c. to 495 B.c. In 529 B.C. he settled at Crotona, a town
of the Dorian colony in South Italy, and there he began to lecture upon
philosophy and mathematics. His lecture-room was thronged with enthusi-
astic hearers of all ranks. Many of the upper classes attended, and even
women broke a law which forbade them to attend public meetings, and
flocked to hear him. Among the most attentive was Theano, the young
and beautiful daughter of his host Milo, whom he married. She wrote a
biography of her husband, but unfortunately it is lost.

So remarkable was the influence of this great master that the more at-
tentive of his pupils gradually formed themselves into a society or brother-
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hood. They were known as the Order of the Pythagoreans, and they were
soon exercising a great influence far across the Grecian world. This in-
fluence was not so much political as religious. Members of the Society
shared everything in common, holding the same philosophical beliefs, en-
gaging in the same pursuits, and binding themselves with an oath not to
reveal the secrets and teaching of the school. When, for example, Hip-
pasus perished in a shipwreck, was not his fate due to a broken promise?
For he had divulged the secret of the sphere with its twelve pentagons!

A distinctive badge of the brotherhood was the beautiful star penta-
gram—a fit symbol of the mathematics which the school discovered. It
was also the symbol of health. Indeed, the Pythagoreans were specially
interested in the study of medicine. Gradually, as the Society spread,
teachings once treasured orally were committed to writing. Thereby a
copy of a treatise by Philolaus, we are told, ultimately came into the pos-
session of Plato; probably a highly significant event in the history of
mathematics.

FIGURE 1

In mathematics the Pythagoreans made very great progress, particu-
larly in the theory of numbers and in the geometry of areas and solids.
As it was the generous practice among members of the brotherhood to
attribute all credit for each new discovery to Pythagoras himself, we can-
not be quite certain about the authorship of each particular theorem. But
at any rate in the mathematics which are now to be described, his was the
dominating influence.

In thinking of these early philosophers we must remember that open air
and sunlight and starry nights formed their surroundings—not our grey
mists and fettered sunshine. As Pythagoras was learning his mensuration
from the priests of Egypt, he would constantly see the keen lines cast by
the shadows of the pillars across the pavements. He trod chequered floors
with their arrays of alternately coloured squares. His mind was stirred by
interesting geometrical truths learnt from his master Thales, his interest in
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number would lead him to count the squares, and the sight of the long
straight shadow falling obliquely across them would suggest sequences of
special squares. It falls maybe across the centre of the first, the fourth,
the seventh; the arithmetical progression is suggested. Then again the
square is interesting for its size. A fragment of more diverse pattern
would demonstrate a larger square enclosing one exactly half its size. A

FIGURE 2

little imaginative thought would reveal, within the larger, a smaller square
placed unsymmetrically, and so would lead to the great theorem which
somehow or other was early reached by the brotherhood (and some say
by Pythagoras himself), that the square on one side of a right-angled
triangle is equal to the sum of the squares on the remaining sides. The
above figures (Figure 2) actually suggest the proof, but it is quite possible
that several different proofs were found, one being by the use of similar
triangles. According to one story, when Pythagoras first discovered this
fine result, in his exultation he sacrificed an ox!

Influenced no doubt by these same orderly patterns, he pictured num-
bers as having characteristic designs. There were the triangular numbers,
one, three, six, ten, and so on, ten being the holy tetractys, another sym-

bol highly revered by the brotherhood. Also there were the square num-
bers, each of which could be derived from its predecessor by adding an

L-shaped border. Great importance was attached to this border: it was
called a gnomon (y»dpwr, carpenter’s rule). Then it was recognized that
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each odd number, three, five, seven, etc., was a gnomon of a square num-
ber. For example, seven is the gnomon of the square of three to make the
square of four. Pythagoras was also interested in the more abstract natural
objects, and he is said to have discovered the wonderful harmonic pro-
gressions in the notes of the musical scale, by finding the relation between
the length of a string and the pitch of its vibrating note. Thrilled by his
discovery, he saw in numbers the element of all things. To him numbers
were no mere attributes: three was not that which is common to three
cats or three books or three Graces: but numbers were themselves the
stuff out of which all objects we see or handle are made—the rational
reality. Let us not judge the doctrine too harshly; it was a great advance
on the cruder water philosophy of Thales.

So, in geometry, one came to be identified with the point; two with the
line, three with the surface, and four with the solid. This is a noteworthy
disposition that really is more fruitful than the usual allocation in which
the line is said to have one, the surface two, and the solid three, dimen-
sions.

More whimsical was the attachment of seven to the maiden goddess
Athene ‘because seven alone within the decade has neither factors nor
product’. Five suggested marriage, the union of the first even with the first
genuine odd number. One was further identified with reason; two with
opinion—a wavering fellow is Two; he does not know his own mind: four
with justice, steadfast and square. Very fanciful no doubt: but has not
Ramanujan, one of the greatest arithmeticians of our own days, been
thought to treat the positive integers as his personal friends? In spite of
this exuberance the fact remains, as Aristotle sums it up: ‘The Pythag-
oreans first applied themselves to mathematics, a science which they
improved; and, penetrated with it, they fancied that the principles of
mathematics were the principles of all things’. And a younger contempo-
rary, Eudemus, shrewdly remarked that ‘they changed geometry into a
liberal science; they diverted arithmetic from the service of commerce’.

To Pythagoras we owe the very word mathematics and its doubly two-
fold branches:

Mathematics

The discrete The continued
The absolute The relative The stable The moving

Arithmetic Music Geometry Astronomy
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This classification is the origin of the famous Quadrivium of knowledge.

In geometry Pythagoras or his followers developed the theory of space-
filling figures. The more obvious of these must have been very well known.
If we think of each piece in such a figure as a unit, the question arises,
can we fill a flat surface with repetitions of these units? It is very likely that
this type of inquiry was what first led to the theorem that the three angles
of a triangle are together equal to two right angles. The same train of
thought also extends naturally to solid geometry, including the conception
of regular solids. One of the diagrams (Figure 3) shows six equal triangles
filling flat space round their central point. But five such equilateral tri-
angles can likewise be fitted together, to form a blunted bell-tent-shaped
figure, spreading from a central vertex: and now their bases form a regu-
lar pentagon. Such a figure is no longer flat; it makes a solid angle, the
corner, in fact, of a regular icosahedron. The process could be repeated by
surrounding each vertex of the original triangles with five triangles. Ex-
actly twenty triangles would be needed, no more and no less, and the

X

FIGURE 3

result would be the beautiful figure of the icosahedron of twenty triangles
surrounding its twelve vertices in circuits of five.

It is remarkable that in solid geometry there are only five such regular
figures, and that in the plane there is a very limited number of associations
of regular space-filling figures. The three simplest regular solids, including
the cube, were known to the Egyptians. But it was given to Pythagoras to
discover the remaining two—the dodecahedron with its twelve pentagonal
faces, and the icosahedron. Nowadays we so often become acquainted
with these regular solids and plane figures only after a long excursion
through the intricacies of mensuration and plane geometry that we fail to
see their full simplicity and beauty.

Another kind of problem that interested Pythagoras was called the
method of application of areas. His solution is noteworthy because it pro-
vided the geometrical equivalent of solving a quadratic equation in al-
gebra. The main problem consisted in drawing, upon a given straight line,
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a figure that should be the size of one and the shape of another given
figure. In the course of the solution one of three things was bound to
happen. The base of the constructed figure would either fit, fall short of,
or exceed the length of the given straight line. Pythagoras thought it
proper to draw attention to these three possibilities; accordingly he intro-
duced the terms parabole, ellipsis and hyperbole. Many years later his
nomenclature was adopted by Apollonius, the great student of the conic
section, because the same threefold characteristics presented themselves in
the construction of the curve. And we who follow Apollonius still call the
curve the parabola, the ellipse, or the hyperbola, as the case may be. The
same threefold classification underlies the signs =, <, > in arithmetic.

FIGURE 4

Many a time throughout the history of mathematics this classification has
proved to be the key to further discoveries.

For example, it is closely connected with the theory of irrational num-
bers; and this brings us to the greatest achievement of Pythagoras, who
is credited with discovering the (dloyor) irrational. In other words, he
proved that it was not always possible to find a common mneasure for two
given lengths a and b. The practice of measuring one line against another
must have been very primitive. Here is a long line a4, into which the
shorter line b fits three times, with a still shorter piece ¢ left over (Figure 4).
To-day we express this by the equation a = 3b + ¢, or more generally by
a = nb + c. If there is no such remainder c, the line » measures a; and
a is called a multiple of b. If, however, there is a remainder ¢, further
subdivision might perhaps account for each length a, b, ¢ without re-
mainder: experiment might show, for instance, that in tenths of inches,
a= 17, b =5, ¢ = 2. At one time it was thought that it was always pos-
sible to reduce lengths @ and b to such multiples of a smaller length. It
appeared to be simply a question of patient subdivision, and sooner or
later the desired measure would be found. So the required subdivision, in
the present example, is found by measuring b with ¢. For c fits twice into
b with a remainder d; and d fits exactly twice into ¢ without remainder.
Consequently d measures ¢, and also measures b and also a. This is how
the numbers 17, 5 and 2 come to be attached to a4, b, and c: namely a
contains d 17 times.

Incidentally this shows how naturally the arithmetical progression
arises. For although the original subdivisions, and extremity, of the line a
occur at distances 5, 10, 15, 17, measured from the left in quarter inches,
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they occur at distances 2, 7, 12, 17, from the right. These numbers form
a typical arithmetical progression, with a rhythmical law of succes-
sion that alone would be incentive for a Pythagorean to study them
further.

This reduction of the comparison of a line a with a line b to that of the
number 17 with 5, or, speaking more technically, this reduction of the
ratio a : b to 17 : 5 would have been agreeable to the Pythagorean. It
exactly fitted in with his philosophy; for it helped to reduce space and
geometry to pure number. Then came the awkward discovery, by Pythag-
oras himself, that the reduction was not always possible; that something
in geometry eluded whole numbers. We do not know exactly how this dis-
covery of the irrational took place, although two early examples can be
cited. First when a is the diagonal and b is the side of a square, no com-
mon measure can be found; nor can it be found in a second example,
when a line a is divided in golden section into parts b and ¢. By this is
meant that the ratio of a, the whole line, to the part b is equal to the ratio
of b to the other part c. Here ¢ may be fitted once into b with remainder
d: and then d may be fitted once into ¢ with a remainder e: and so on.
It is not hard to prove that such lengths a, b, ¢, d, . . . form a geometri-
cal progression without end; and the desired common measure is never
to be found.

If we prefer algebra to geometry we can verify this as follows. Since it is
giventhata=b + cand alsoa: b :: b : ¢, it follows that a(a — b) = b2
This is a quadratic equation for the ratio a : b, whose solution gives the
result

a:b=~/5+1:2

The presence of the surd \/5 indicates the irrational.

The underlying reason why such a problem came to be studied is to be
found in the star badge of the brotherhood (p. 83); for every line therein
is divided in this golden section. The star has five lines, each cut into three

b c

a

FIGURE 5
parts, the lengths of which can be taken as a, b, a. As for the ratio of the
diagonal to the side of a square, Aristotle suggests that the Pythagorean
proof of its irrationality was substantially as follows:

If the ratio of diagonal to side is commensurable, let it be p : g, where



The Great Mathematicians 89

p and q are whole numbers prime to one another. Then p and g denote
the number of equal subdivisions in the diagonal and the side of a square
respectively. But since the square on the diagonal is double that on the
side, it follows that p2 = 242. Hence p2? is an even number, and p itself
must be even. Therefore p may be taken to be 2r, p? to be 4r2, and con-
sequently g2 to be 2r2. This requires g to be even; which is impossible
because two numbers p, g, prime to each other cannot both be even. So
the original supposition is untenable: no common measure can exist; and
the ratio is therefore irrational.

This is an interesting early example of an indirect proof or reductio ad
absurdum; and as such it is a very important step in the logic of mathe-
matics.

We can now sum up the mathematical accomplishments of these early
Greek philosophers. They advanced in geometry far enough to cover
roughly our own familiar school course in the subject. They made sub-
stantial progress in the theoretical side of arithmetic and algebra. They
had a geometrical equivalent for our method of solving quadratic equa-
tions; they studied various types of progressions, arithmetical, geometrical
and harmonical. In Babylon, Pythagoras is said to have learnt the ‘perfect
proportion’

a+b 2ab

N : b
2 a+b

which involves the arithmetical and harmonical means of two numbers.
Indeed, to the Babylonians the Greeks owed many astronomical facts, and
the sexagesimal method of counting by sixties in arithmetic. But they
lacked our arithmetical notation and such useful abbreviations as are
found in the theory of indices. From a present-day standpoint these results
may be regarded as elementary: it is otherwise with their discovery of
irrational numbers. That will ever rank as a piece of essentially advanced
mathematics. As it upset many of the accepted geometrical proofs it came
as a ‘veritable logical scandal’. Much of the mathematical work in the
succeeding era was coloured by the attempt to retrieve the position, and
in the end this was triumphantly regained by Eudoxus.

Recent investigations of the Rhind Papyrus, the Moscow Papyrus of the
Twelfth Egyptian Dynasty, and the Strassburg Cuneiform texts have
greatly added to the prestige of Egyptian and Babylonian mathematics.
While no general proof has yet been found among these sources, many
remarkable ad hoc formulae have come to light, such as the Babylonian
solution of complicated quadratic equations dating from 2000 B.C., which
O. Neugebauer published in 1929, and an Egyptian approximation to the
area of a sphere (equivalent to reckoning = = 256/81).
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CHAPTER 1II
EUDOXUS AND THE ATHENIAN SCHOOL

A SECOND stage in the history of mathematics occupied the fifth and
fourth centuries B.c., and is associated with Athens. For after the wonder-
ful victories at Marathon and Salamis early in the fifth century, when the
Greeks defeated the Persians, Athens rose to a position of pre-eminence.
The city became not only the political and commercial, but the intellec-
tual centre of the Grecian world. Her philosophers congregated from
East and West, many of whom were remarkable mathematicians and as-
tronomers. Perhaps the greatest among these were Hippocrates, Plato,
Eudoxus and Menaechmus; and contemporary with the three latter was
Archytas the Pythagorean, who lived at Tarentum.

Thales and Pythagoras had laid the foundations of geometry and arith-
metic. The Athenian school concentrated upon special aspects of the
superstructure; and, whether by accident or design, found themselves em-
barking upon three great problems: (i) the duplication of the cube, or the
attempt to find the edge of a cube whose volume is double that of a given
cube; (ii) the trisection of a given angle; and (iii) the squaring of a circle,
or, the attempt to find a square whose area is equal to that of a given
circle. These problems would naturally present themselves in a systematic
study of geometry; while, as years passed and no solutions were forth-
coming they would attract increasing attention. Such is their inherent
stubbornness that not until the nineteenth century were satisfactory an-
swers to these problems found. Their innocent enunciations are at once
an invitation and a paradox. Early attempts to solve them led indirectly
to results that at first sight seem to involve greater difficulties than the
problems themselves. For example, in trying to square the circle Hippoc-
rates discovered that two moon-shaped figures could be drawn whose
areas were together equal to that of a right-angled triangle. This diagram
(Figure 6) with its three semicircles described on the respective sides of
the triangle illustrates his theorem. One might readily suppose that it would
be easier to determine the area of a single circle than that of these lunes,
or lunules, as they are called, bounded by pairs of circular arcs. Yet such
is not the case.

In this by-product of the main problem Hippocrates gave the first ex-
ample of a solution in quadratures. By this is meant the problem of con-
structing a rectilinear area equal to an area bounded by one or more .
curves. The sequel to attempts of this kind was the invention of the in-
tegral calculus by Archimedes, who lived in the next century. But his first
success in the method was not concerned with the area of a circle, but
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FIGURE 6

with that of a parabola, a curve that had been discovered by Menaechmus
in an attempt to duplicate the cube. This shows how very interdependent
mathematics had now become with its interplay between branch and
branch. All this activity led to the discovery of many other new curves,
including the ellipse, the hyperbola, the quadratrix, the conchoid (the
shell), the cissoid (the ivy leaf), various spirals, and other curves classed
as loci on surfaces.

The Greeks now found it useful to adopt a special classification for
their problems, calling them plane, solid and linear. Problems were plane
if their solution depended only on the use of straight lines and circles.
These were of distinctly the Pythagorean type. They were solid if they
depended upon conic sections: and they were linear if in addition they de-
pended upon still more complicated curves. This early classification shows
true mathematical insight, because later experience has revealed close al-
gebraic and analytic parallels. For example, the plane problem corre-
sponds in algebra to the problem soluble by quadratic equations. The
Greeks quite naturally but vainly supposed that the three famous prob-
lems above were soluble by plane methods. It is here that they were
wrong: for by solid or linear methods the problems were not necessarily
insoluble.

One of the first philosophers to bring the new learning from Ionia to
Athens was ANAXAGORAS (? 500-428 B.c.), who came from near Smyrna.
He is said to have neglected his possessions, which were considerable, in
order to devote himself to science, and in reply to the question, what was
the object of being born, he remarked: ‘The investigation of the sun,
moon and heaven.’ In Athens he shared the varying fortunes of his friend
Pericles, the great statesman, and at one time was imprisoned for impiety.
This we know from an ancient record which adds that ‘while in prison he
wrote (or drew) the squaring of the circle’, a brief but interesting allusion
to the famous problem. Nor has the geometry of the circle suffered un-
duly from the captivity of its devotees. Centuries later another great chap-
ter was opened, when the Russians flung Poncelet, an officer serving under
Napoleon, into prison, where he discovered the circular points at infinity.
Anaxagoras, however, was famous chiefly for his work in astronomy.
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HipPOCRATES ! was his younger contemporary, who came from Chios
to Athens about the middle of the fifth century. A lawsuit originally lured
him to the city: for he had lost considerable property in an attack by
Athenian pirates near Byzantium. Indeed, the tastes of Athenian citizens
were varied: they were not all artists, sculptors, statesmen, dramatists,
philosophers, or honest seamen, in spite of the wealth there and then as-
sembled. After enduring their ridicule first at being cheated and then for
hoping to recover his money, the simple-minded Hippocrates gave up the
quest, and found his solace in mathematics and philosophy.

He made several notable advances. He was the first author who is
known to have written an account of elementary mathematics; in particu-
lar he devoted his attention to properties of the circle. To-day his actual
work survives among the theorems of Euclid, although his original book
is lost. His chief result is the proof of the statement that circles are to one
another in the ratio of the squares on their diameters. This is equivalent
to the discovery of the formula nr? for the area of a circle in terms of its
radius. It means that a certain number i exists, and is the same for all
circles, although his method does not give the actual numerical value of
wt. It is thought that he reached his conclusions by looking upon a circle
as the limiting form of a regular polygon, either inscribed or circum-
scribed. This was an early instance of the method of exhaustions—a par-
ticular use of approximation from below and above to a desired limit.

The introduction of the method of exhaustions was an important link
in the chain of thought culminating in the work of Eudoxus and Archi-
medes. It brought the prospect of unravelling the mystery of irrational
numbers, that had sorely puzzled the early Pythagoreans, one stage nearer.
A second important but perhaps simpler work of Hippocrates was an ex-
ample of the useful device of reducing one theorem to another. The
Pythagoreans already had shown how to find the geometric mean between
two magnitudes by a geometrical construction. They merely drew a square
equal to a given rectangle. Hippocrates now showed that to duplicate a
cube was tantamount to finding two such geometric means. Put into more
familiar algebraic language, if

a:x=x:Db, then x2 = ab,
and if
a:x=x:y=y:2a

then x3 = 243. Consequently if a was the length of the edge of the given
cube, x would be that of a cube twice its size. But the statement also
shows that x is the first of two geometric means between a and 2a.
We must, of course, bear in mind that the Greeks had no such con-
venient algebraic notation as the above. Although they went through the
! Not the great physician.
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same reasoning and reached the same conclusions as we can, their state-
ments were prolix, and afforded none of the help which we find in these
concise symbols of algebra.

It is supposed that the study of the properties of two such means, x
and y, between given lengths g and b, led to the discovery of the parabola
and hyperbola. As we should say, nowadays, the above continued pro-
portions indicate the equations x2 = qy, and xy = 242. These equations
represent a parabola and a hyperbola: taken together they determine a
point of intersection which is the key to the problem. This is an instance
of a solid solution for the duplication of the cube. It represents the ripe
experience of the Athenian school; for MENAECcHMUS (? 375-325 B.C.),
to whom it is credited, lived a century later than Hippocrates.

Where two lines, straight or curved, cross, is a point: where three sur-
faces meet is a point. The two walls and the ceiling meeting at the corner
of a room give a convenient example. But two curved walls, meeting a
curved ceiling would also make a corner, and in fact illustrate a truly
ingenious method of dealing with this same problem of the cube. The
author of this geometrical novelty was ArcHYTAs (?400 B.C.), a con-
temporary of Menaechmus. This time the problem was reduced to finding
the position of a certain point in space: and the point was located as the
meeting-place of three surfaces. For one surface Archytas chose that gen-
erated by a circle revolving about a fixed tangent as axis. Such a surface
can be thought of as a ring, although the hole through the ring is com-
pletely stopped up. His other surfaces were more commonplace, a cylinder
and a cone. With this unusual choice of surfaces he succeeded in solving
the problem. When we bear in mind how little was known, in his day,
about solid geometry, this achievement must rank as a gem among mathe-
matical antiquities. Archytas, too, was one of the first to write upon
mechanics, and he is said to have been very skilful in making toys and
models—a wooden dove which could fly, and a rattle which, as Aristotle
says, ‘was useful to give to children to occupy them from breaking things
about the house (for the young are incapable of keeping still)".

Unlike the majority of mathematicians who lived in this Athenian era,
Archytas lived at Tarentum in-South Italy. He found time to take a con-
siderable part in the public life of his city, and is known for his enlight-
ened attitude in his treatment of slaves and in the education of children.
He was a Pythagorean, and was also in touch with the philosophers of
Athens, numbering Plato among his friends. He is said upon one occasion
to have used his influence in high quarters to save the life of Plato.

Between Crotona and Tarentum upon the shore of the gulf of Southern
Italy was the city of Elea: and with each of these places we may associate
a great philosopher or mathematician. At Crotona Pythagoras had insti-
tuted his lecture-room; nearly two centuries later Archytas made his
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mechanical models at Tarentum. But about midway through the interven-
ing period there lived at Elea the philosopher ZEno. This acutely original
thinker played the part of philosophical critic to the mathematicians, and
some of his objections to current ideas about motion and the infinitesimal
were very subtle indeed. For example, he criticized the infinite geometrical
progression by proposing the well-known puzzle of Achilles and the Tor-
toise. How, asked Zeno, can the swift Achilles overtake the Tortoise if
he concedes a handicap? For if Achilles starts at A and the tortoise at B,
then when Achilles reaches B the tortoise is at C, and when Achilles
reaches C the tortoise is at D. As this description can go on and on,
apparently Achilles never overtakes the tortoise. But actually he may do
so; and this is a paradox. The point of the inquiry is not when, but how
does Achilles overtake the tortoise.

Somewhat similar questions were asked by DEMocRrITUS, the great
philosopher of Thrace, who was a contemporary of Archytas and Plato.
Democritus has long been famous as the originator of the atomic theory,
a speculation that was immediately developed by Epicurus, and later
provided the great theme for the Latin poet Lucretius. It is, however,
only quite recently that any mathematical work of Democritus has come
to light. This happened in 1906, when Heiberg discovered a lost book of
Archimedes entitled the Method. We learn from it that Archimedes re-
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garded Democritus as the first mathematician to state correctly the for-
mula for the volume of a cone or a pyramid. Each of these volumes was
one-third part of a circumscribing cylinder, or prism, standing on the
same base. To reach his conclusions, Democritus thought of these solids
as built up of innumerable parallel layers. There would be no difficulty
in the case of the cylinder, for each layer would be equal. But for the
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cone or pyramid the sizes of layer upon layer would taper off to a point.
The appended diagram (Figure 7), showing the elevation of a cone or
pyramid, illustrates this tapering of the layers, although the picture that
Democritus had in mind consisted of very much thinner layers. He was
puzzled by their diminishing sizes. ‘Are they equal or unequal? he asked,
‘for if they are unequal, they will make the cone irregular as having many
indentations, like steps, and unevennesses; but, if they are equal, the sec-
tions will be equal, and the cone will appear to have the property of the
cylinder and to be made up of equal, not unequal circles, which is very
absurd.’

This quotation is striking; for it foreshadows the great constructive
work of Archimedes, and, centuries later, that of Cavalieri and Newton.
It exhibits the infinitesimal calculus in its infancy. The notion of stratifi-
cation—that a solid could be thought of as layer upon layer—would
occur quite naturally to Democritus, because he was a physicist; it would
not so readily have occurred to Pythagoras or Plato with their more
algebraic turn of mind which attracted them to the pattern or arrangement
of things. But here the acute Greek thought is once more restless. No
mere rough and ready approximation will satisfy Democritus: there is
discrepancy between stratified pyramid and smoothly finished whole. The
deep question of the theory of limits is at issue; but how far he foresaw
any solution, we do not know.

This brings us to the great arithmetical work at Athens, associated
with the names of PLATO (429-348 B.C.) and Eupoxus (408-355 B.C.)

Among the philosophers of Athens only two were native to the place,
Socrates and Plato, master and disciple, both of whom were well read
mathematicians. Plato was perhaps an original investigator; but whether
this is so or not, he exerted an immense influence on the course that
mathematics was to take, by founding and conducting in Athens his
famous Academy. Over the entrance of his lecture room his students read
the telling inscription, ‘Let no one destitute of geometry enter my doors’;
and it was his earnest wish to give his pupils the finest possible education.
A man, said he, should acquire no mere bundle of knowledge, but be
trained to see below the surface of things, seeking rather for the eternal
reality and the Good behind it all. For this high endeavour the study of
mathematics is essential; and numbers, in particular, must be studied,
simply as numbers and not as embodied in anything. They impart a char-
acter to nature; for instance, the periods of the heavenly bodies can only
be characterized by invoking the use of irrationals.

Originally the Greek word dp:«fuoi, from which we derive ‘arithmetic,’
meant the natural numbers, although it was at first questioned whether
unity was a number; for ‘how can unity, the measure, be a number, the
thing measured?” But by including irrationals as numbers Plato made a
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great advance: he was in fact dealing with what we nowadays call the
positive real numbers. Zero and negative numbers were proposed at a far
later date.

There is grandeur here in the importance which Plato ascribes to arith-
metic for forming the mind: and this is matched by his views on geom-
etry, ‘the subject which has very ludicrously been called mensuration’
(yewperpia = land measuring) but which is really an art, a more than
human miracle in the eyes of those who can appreciate it. In his book,
the Timaeus, where he dramatically expounds the views of his hero
Timaeus, the Pythagorean, reference is made to the five regular solids
and to their supposed significance in nature. The speaker tells how that
the four elements earth, air, fire and water have characteristic shapes: the
cube is appropriated to earth, the octahedron to air, the sharp pyramid
or tetrahedron to fire, and the blunter icosahedron to water, while the
Creator used the fifth, the dodecahedron, for the Universe itself. Is it
sophistry, or else a brilliant foretaste of the molecular theory of our own
day? According to Proclus, the late Greek commentator, ‘Plato caused
mathematics in general and geometry in particular to make a very great
advance, by reason of his enthusiasm for them, which of course is obvi-
ous from the way he filled his books with mathematical illustrations, and
everywhere tries to kindle admiration for these subjects, in those who
make a pursuit of philosophy.’ It is related that to the question, What
does God do? Plato replied, ‘God always geometrizes.’

Among his pupils was a young man of Cnidus, named Eupoxus, who
came to Athens in great poverty, and, like many another poor student,
had a struggle to maintain himself. To relieve his pocket he lodged down
by the sea at the Piraeus, and every day used to trudge the dusty miles to
Athens. But his genius for astronomy and mathematics attracted attention
and finally brought him to a position of eminence. He travelled and
studied in Egypt, Italy and Sicily, meeting Archytas, the geometer, and
other men of renown. About 368 B.C., at the age of forty, Eudoxus re-
turned to Athens in company with a considerable following of pupils,
about the time when Aristotle, then a lad of seventeen, first crossed the
seas to study at the Academy.

In astronomy the great work of Eudoxus was his theory of concentric
spheres explaining the strange wanderings of the planets; an admirable
surmise that went far to fit the observed facts. Like his successor Ptolemy,
who lived many centuries later, and all other astronomers until Kepler, he
found in circular motion a satisfactory basis for a complete planetary
theory. This was great work; yet it was surpassed by his pure mathematics
which touched the zenith of Greek brilliance. For Eudoxus placed the
doctrine of irrationals upon a thoroughly sound basis, and so well was
his task done that it still continues, fresh as ever, after the great arith-
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metical reconstructions of Dedekind and Weierstrass during the nineteenth
century. An immediate effect of the work was to restore confidence in
the geometrical methods of proportion and to complete the proofs of
several important theorems. The method of exhaustions vaguely underlay
the results of Democritus upon the volume of a cone and of Hippocrates
on the area of a circle. Thanks to Eudoxus this method was fully
explained. .

An endeavour will now be made to indicate in a simple way how this
great object was achieved. This study of higher arithmetic at Athens was
stimulated by the Pythagorean, Theodorus of Cyrene, who is said to have
been Plato’s teacher. For Theodorus discovered many irrationals, /3,
V5 V6, /7, /8, V10, /11, /12, \/13, \/14, /15, /17, ‘at
which point,’ says Plato, ‘for some reason he stopped’. The omissions in
the list are obvious: /2 had been discovered by Pythagoras through the
ratio of diagonal to side of a square, while \/4, \/9, \/16 are of course
irrelevant. Now it is one thing to discover the existence of an irrational
such as \/2; it is quite another matter to find a way of approach to the
number. It was this second problem that came prominently to the fore:
it provided the arithmetical aspect of the method of exhaustions already
applied to the circle: and it revealed a wonderful example of ancient
arithmetic. We learn the details from a later commentator, Theon of
Smyrna.

Unhampered by a decimal notation (which here is a positive hindrance,
useful as it is in countless other examples), the Greeks set about their
task in the following engaging fashion. To approximate to \/2 they built

1 1 a ladder of whole numbers. A brief scrutiny of the ladder
2 3 shows how the rungs are devised: 14+1=2, 14+2=3,
5 7 243=5,245=17,5+7=12, and so on. Each rung of
12 17 the ladder consists of two numbers x and y, whose ratio
29 41 approaches nearer and nearer to the ratio 1:1/2, the further

etc. down the ladder it is situated. Again, these numbers x and y,
at each rung, satisfy the equation
¥y — 222 = *1.

The positive »nd negative signs are taken at alternate rungs, starting with
a negative. For example, at the third rung 72 — 2'52 = —1.

As these successive ratios are alternately less than and greater than
all that follow, they nip the elusive limiting ratio 1:+/2 between two
extremes, like the ends of a closing pair of pincers. They approximate
from both sides to the desired irrational: 3 is a little too large, but 1%z is
a little too small. Like pendulum swings of an exhausted clock they die
down—but they never actually come to rest. Here again, is the Pythag-
orean notion of hyperbole and ellipsis; it was regarded as very signifi-
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cant, and was called by the Greeks the ‘dyad’ of the ‘great and small'.
Such a ladder could be constructed for any irrational; and another
very pretty instance, which has been pointed out by Professor D'Arcy
Thompson, is closely connected with the problem of the Golden Section.
1 Here the right member of each rung is the sum of the pair on
the preceding rung, so that the ladder may be extended with
the greatest ease. In this case the ratios approximate, again
by the little more and the little less, to the limit \/5 + 1 : 2.
It is found that they provide the arithmetical approach to the
etc. golden section of a line AB, namely when C divides AB so that
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CB: AC = AC: AB. In fact, AC is roughly % of the length AB, but more
nearly % of AB; and so on. It is only fair to say that this simplest of all
such ladders has not yet been found in the ancient literature, but owing
to its intimate connexion with the pentagon, it is difficult to resist the
conclusion that the later Pythagoreans were familiar with it. The series
1,2, 3,5, 8, ... was known in mediaeval times to Leonardo of Pisa,
surnamed Fibonacci, after whom it is nowadays named.

Let us now combine this ladder-arithmetic with the geometry of a
divided line. For example, let a line AB be divided at random by C, into
lengths a and b, where AC = a, CB = b. Then the question still remains,
what is the exact arithmetical meaning of the ratio a : b, whether or not
this is irrational? The wonderful answer to this question is what has made
Eudoxus so famous. Before considering it, let us take as an illustration
the strides of two walkers. A tall man A takes a regular stride of length 4,
and his short friend B takes a stride . Now suppose that eight strides of
A cover the same ground as thirteen of B: in this case the single strides
of A and B are in the ratio 13 : 8. The repetition of strides, to make them
cover a considerable distance, acts as a magnifying glass and helps in
the measurement of the single strides @ and b, one against the other.
Here we have the point of view adopted by Eudoxus. Let us, says he in
effect, multiply our magnitudes a and b, whose ratio is required, and see
what happens.

Let us, he continues, be able to recognize if a and b are equal, and if
not, which is greater. Then if a is the greater, let us secondly be able to
find multiples 2b, 3b, . . ., nb, of the smaller magnitude b; and thirdly,
let us always be able to find a multiple nb of b which exceeds a. (The tall
man may have seven-league boots and the short man may be Tom
Thumb. Sooner or later the dwarf will be able to overtake one stride of
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his friend!) Few will gainsay the propriety of these mild assumptions:
yet their mathematical implications have proved to be very subtle. This
third supposition of Eudoxus has been variously credited, but to-day it is
known as the Axiom of Archimedes.

A definition of equal ratios can now be stated. Let a, b, c, d be four
given magnitudes, then the ratio a : b is equal to that of c¢: d, if, whatever
equimultiples ma, mc are chosen and whatever equimultiples nb, nd are
chosen,

either ma>nb, me>nd, (i)
or ma = nb, mc = nd, (ii)
or ma<nb, me<nd. (iii)

On this strange threefold statement the whole theory of proportion for
geometry and algebra was reared. It is impossible to develop the matter
here in any convincing way, but the simplicity of the ingredients in this
definition is remarkable enough to merit attention. It has the characteristic
threefold pattern already noticed by Pythagoras. As far as ordinary com-
mensurable ratios go, the statement (ii) would suffice; m and n are whole
numbers and the ratios a : b, ¢ : d are each equal to the ratio n : m. But the
essence of the new theory lies in (i) and (iii), because (ii) never holds
for incommensurables—the geometrical equivalent of irrationals in arith-
metic. But it is extraordinary that out of these inequalities equal ratios
emerge.

Lastly it was a stroke of genius when Eudoxus put on record the above
Axiom of Archimedes. To continue our illustration, marking time is not
striding, and Eudoxus excluded marking time. However small the stride &
might be, it had a genuine length. Eudoxus simply ruled out the case of a
ratio a: b when either a or b was zero. Thereby he avoided a trap that
Zeno had already set, and into which many a later victim was to fall.
So the axiom was a notice-board to warn the unwary. It also had another
use; it automatically required a and b to be magnitudes of the same kind.
For if a denoted length and b weight, no number of ounces could be said
to exceed the length of a foot.

The logical triumphs of this great period in Grecian mathematics over-
shadow important but less spectacular advances which were made in
numerical notation and in music. From the earliest times the significance
of the numbers five and ten for counting had been recognised in Baby-
lonia, China and Egypt: and in Homer weuwdlew ‘to five’ means to count.
Eventually the Greeks systematised their written notation by using the
letters of the alphabet to denote definite numbers (e =1, =2, y=3
and so on). A Halicarnassus inscription (circa 450 B.c.) provides perhaps
the earliest attested use of this alphabetical numeration.

In music Archytas gave the numerical ratios for the intervals of the
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tetrachord on three scales, the enharmonic, the chromatic and the dia-
tonic. He held that sound was due to impact, and that higher tones
correspond to quicker, and lower tones to slower, motion communicated
to the air.

CHAPTER III
ALEXANDRIA: EUCLID, ARCHIMEDES AND APOLLONIUS

TOWARDS the end of the fourth century B.c., the scene of mathematical
learning shifted from Europe to Africa. By an extraordinary sequence of
brilliant victories the young soldier-prince, Alexander of Macedonia, con-
quered the Grecian world, and conceived the idea of forming a great
empire. But he died at the age of thirty-three (323 B.C.), only two years
after founding the city of Alexandria. He had planned this stronghold
near the mouth of the Nile on a magnificent scale, and the sequel largely
fulfilled his hopes. Geographically it was a convenient meeting-place for
Greek and Jew and Arab. There, what was finest in Greek philosophy
was treasured in great libraries: the mathematics of the ancients was
perfected: the intellectual genius of the Greek came into living touch with
the moral and spiritual genius of the Jew: the Septuagint translation of
Old Testament Scriptures was produced: and in due time it was there
that the great philosophers of the early Christian Church taught and
prospered. In spite of ups and downs the city endured for about six
hundred years, but suffered grievous losses in the wilder times that fol-
lowed. The end came in A.D. 642, when a great flood of Arab invasion
surged westward, and Alexandria fell into the hands of the Calif Omar.

A great library, reputed to hold 700,000 volumes, was lost or destroyed
in this series of disasters. But happily a remnant of its untold wealth
filtered through to later days when the Arabs, who followed the original
warriors, came to appreciate the spoils upon which they had fallen.
Ptolemy, the successor of Alexander in his African dominions, had
founded this library about 300 B.c. He had in effect established a Uni-
versity; and among the earliest of the teachers was EucLip. We know
little of his life and character, but he most probably passed his years of
tuition at Athens before accepting the invitation of Ptolemy to settle in
Alexandria. For twenty or thirty years he taught, writing his well-known
Elements and many other works of importance. This teaching bore nota-
ble fruit in the achievements of Archimedes and Apollonius, two of the
greatest members of the University.

The picture has been handed down of a genial man of learning, modest
and scrupulously fair, always ready to acknowledge the original work of
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others, and conspicuously kind and patient. Some one who had begun to
read geometry with Euclid, on learning the first theorem asked, ‘What
shall I get by learning these things?’ Euclid called his slave and said, ‘Give
him threepence, since he must make gain out of what he learns’. Appar-
ently Euclid made much the same impression as he does to-day. The
schoolboy, for whom the base angles of an isosceles triangle ‘are forced
to be equal, without any nasty proof’, is but re-echoing the ancient critic
who remarked that two sides of a triangle were greater than the third, as
was evident to an ass. And no doubt they told Euclid so.

In the Elements Euclid set about writing an exhaustive account of
mathematics—a colossal task even in his day. The Work consisted of
thirteen books, and the subjects of several books are extremely well
known. Books I, II, IV, VI on lines, areas and simple regular plane
figures are mostly Pythagorean, while Book III on circles expounds Hip-
pocrates. The lesser known Book V elaborates the work of Eudoxus on
proportion, which was needed to justify the properties of similar figures
discussed in Book VI. Books VII, VIII and IX are arithmetical, giving an
interesting account of the theory of numbers; and again much here is
probably Pythagorean. Prime and composite numbers are introduced—
a relatively late distinction; so are the earlier G.C.M. and L.C.M. of
numbers, the theory of geometrical progressions, and in effect the theorem
am+n = gmgn, together with a method of summing the progression by
a beautiful use of equal ratios. Incidentally Euclid utilized this method to
give his perfect numbers, such as 6, 28, 496, each of which is equal to
the sum of its factors. The collection of perfect numbers still interests the
curious; they are far harder to find than the rarest postage stamps. The
ninth specimen alone has thirty-seven digits, while a still larger one is
2126(2127 — 1),

Book X of Euclid places the writer in the forefront among analysts. It
is largely concerned with the doctrine of irrational numbers, particularly
of the type \/(\/a =+/b), where a and b are positive integers. Here
Euclid elaborates the arithmetical side of the work of Eudoxus, having
already settled the geometrical aspect in Books V and VI, and here we
duly find the method of exhaustions carefully handled. After Book XI on
elementary solid geometry comes the great Book XII, which illustrates
the same method of exhaustions by formally proving Hippocrates’ theo-
rem for nr2, the area of a circle. Finally in Book XIII we have the climax
to which all this stately procession has been leading. The Greeks were
never in a hurry; and it is soothing, in these days of bustle, to contemplate
the working of their minds. This very fine book gives and proves the
constructions for the five regular solids of Pythagoras, extolled by Plato;
and it ends with the dodecahedron, the symbol of the Universe itself.

By this great work Euclid has won the admiration and helped to form
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the minds of all his successors. To be sure a few logical blemishes occur
in his pages, the gleanings of centuries of incessant criticism; but the
wonder is that so much has survived unchanged. In point of form he left
nothing to be desired, for he first laid down his careful definitions, then
his common assumptions or axioms, and then his postulates, before pro-
ceeding with the orderly arrangement of their consequences. There were,
however, certain gaps and tautologies among these preliminaries of his
work: they occur in the geometrical, not in the Eudoxian parts of his
books; and it has been one of the objects of latter-day criticism to supply
what Euclid left unsaid.

But on one point Euclid was triumphant; in his dealing with parallel
lines. For he made no attempt to hide, by a plausible axiom, his inability
to prove a certain property of coplanar lines. Most of his other assump-
tions, or necessary bases of his arguments, were such as would reasonably
command general assent. But in the case of parallel lines he started with
the following elaborate supposition, called the Parallel Postulate:

If a straight line meet two straight lines, so as to make the two interior
angles on the same side of it taken together less than two right angles,
these straight lines, being continually produced, shall at length meet on
that side on which are the angles which are less than two right angles.

By leaving this unproved, and by actually proving its converse, Euclid
laid himself open to ridicule and attack. Surely, said the critics, this is no
proper assumption; it must be capable of proof. Hundreds of attempts
were vainly made to remove this postulate by proving its equivalent; but
each so-called proof carried a lurking fallacy. The vindication of Euclid
came with the discovery in the nineteenth century of non-Euclidean
geometry, when fundamental reasons were found for some such postulate.
There is dignity in the way that Euclid left this curious rugged ex-
crescence, like a natural outcrop of rock in the plot of ground that other-
wise had been so beautifully smoothed.

Many of his writings have come down to us, dealing with astronomy,
music and optics, besides numerous other ways of treating geometry in
his Data and Division of Figures. But his Book of Fallacies with its
intriguing title, and the Porisms are lost; and we only learn of them indi-
rectly through Pappus, another great commentator. It is one of the histori-
cal puzzles of mathematics to discover what porisms were, and many
geometers, notably Simson in Scotland and Chasles in France, have tried
to do so. Very likely they were properties relating to the organic descrip-
tion of figures—a type of geometry that appealed to Newton, Maclaurin,
and to workers in projective geometry of our own days. Geometry at
Alexandria was in fact a wide subject, and it has even been thought by
some that the porisms consisted of an analytical method, foreshadowing
the co-ordinate geometry of Descartes.
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Euclid was followed by ARCHIMEDES of Samos, and APOLLONIUS of
Perga. After the incomparable discoveries of Eudoxus, so well consoli-
dated by Euclid, it was now the time for great constructive work to be
launched; and here were the giants to do it. Archimedes, one of the great-
est of all mathematicians, was the practical man of common sense, the
Newton of his day, who brought imaginative skill and insight to bear
upon metrical geometry and mechanics, and even invented the integral
calculus. Apollonius, one of the greatest of geometers, endowed with an
eye to see form and design, followed the lead of Menaechmus, and per-
fected the geometry of conic sections. They sowed in rich handfuls the
seeds of pure mathematics, and in due time the harvest was ingathered
by Kepler and Newton,

Little is known of the outward facts in the life of ARCHIMEDES. His

father was Phidias the astronomer, and he was possibly related to Hiero
11, King of Syracuse, who certainly was his friend. As a youth Archimedes
spent some time in Egypt, presumably at Alexandria with the immediate
successors of Euclid—perhaps studying with Euclid himself. Then on
returning home he settled in Syracuse, where he made his great reputa-
tion. In 212 B.c., at the age of seventy-five, he lost his life in the tumult
that followed the capture of Syracuse by the Romans. Rome and Carthage
were then at grips in the deadly Punic wars, and Sicily with its capital
Syracuse lay as a ‘No man’s land’ between them. During the siege of
Syracuse by the Romans, Archimedes directed his skill towards the dis-
comfiture of the enemy, so that they learnt to fear the machines and
contrivances of this intrepid old Greek. The story is vividly told by
Plutarch, how at last Marcellus, the Roman leader, cried out to his men,
‘Shall we not make an end of fighting against this geometrical Briareus
who uses our ships like cups to ladle water from the sea, drives off our
sambuca ignominiously with cudgel-blows, and by the multitude of missiles
that he hurls at us all at once, outdoes the hundred-handed giants of
mythology!" But all to no purpose, for if the soldiers did but see a piece
of rope or wood projecting above the wall, they would cry, ‘There it is,’
declaring that Archimedes was setting some engine in motion against
theg, and would turn their backs and run away. Of course the geo-
metrical Briareus attached no importance to these toys; they were but
the diversions of geometry at play. Ignoble and sordid, unworthy of
written record, was the business of mechanics and every sort of art
which was directed to use and profit. Such was the outlook of Archi-
medes.
He held these views to the end; for even after the fall of the city he
was still pondering over mathematics. He had drawn a diagram in the
sand on the ground and stood lost in thought, when a soldier struck him
down. As Whitehead has remarked:
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‘The death of Archimedes at the hands of a Roman soldier is symbol-
ical of a world change of the first magnitude. The Romans were a great
race, but they were cursed by the sterility which waits upon practicality.
They were not dreamers enough to arrive at new points of view, which
could give more fundamental control over the forces of nature. No
Roman lost his life because he was absorbed in the contemplation of a
mathematical diagram.’

Many, but not all, of the wonderful writings of Archimedes still sur-
vive. They cover a remarkable mathematical range, and bear the incisive
marks of genius. It has already been said that he invented the integral
calculus. By this is meant that he gave strict proofs for finding the areas,
volumes and centres of gravity of curves and surfaces, circles, spheres,
conics, and spirals. By his method of finding a tangent to a spiral he even
embarked on what is nowadays called differential geometry. In this work
he had to invoke algebraic and trigonometric formulae; here, for example,
are typical results:

124224324 , .. +n2=%n(n+1)(2n+1),
T 2x b T
sin—+sin—+ ... +sin (2n—1) —=cot—.
2n 2n 4n

This last is the concise present-day statement of a geometrical theorem,
arising in his investigation of the value of x, which he gave approximately
in various ways, such as

3% > x> 319,
Elsewhere he casually states approximations to \/3 in the form
263458 < \/3 < 135144,

which is an example of the ladder-arithmetic of the Pythagoreans (p. 97).
As these two fractions are respectively equal to

1
1 54 —m
5+ Yo 5+

104+ %

it is natural to suppose that Archimedes was familiar with continued
fractions, or else with some virtually equivalent device; especially as /3
itself is given by further continuation of this last fraction, with denomi-
nators 10, 5, 10, 5 in endless succession. The same type of arithmetic
occurs elsewhere in his writings, as well as in those of his contemporary,
Aristarchus of Samos, a great astronomer who surmised that the earth
travels round the sun.

Allusion has already been made to the recent discovery of the Method
of Archimedes, a book that throws light on the mathematical powers of
Democritus. It also reveals Archimedes in a confidential mood, for in it
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he lifts the veil and tells us how some of his results were reached. He
weighed his parabola to ascertain the area of a segment, and this experi-
ment suggested the theorem that the parabolic area is two-thirds of the
area of a circumscribing parallelogram (Figure 9). He admits the value of
such experimental methods for arriving at mathematical truths, which
afterwards of course must be rigidly proved.

Indeterminate equations, with more unknowns than given equations,
have attracted great interest from the earliest days. For example, there
may be one equation for two unknowns:

3x—2y=3>5.
Many whole numbers x and y satisfy this equation, but it is often interest-

FIGURE 9%

ing to discover the simplest numbers to do so. Such problems are closely
connected with continued fractions, and perhaps Archimedes was begin-
ning to recognize this. At all events we are told that he set the Cattle
Problem to his friends in Alexandria.

The problem dealt with eight herds, four of bulls and four of cows,
according to the colours, white, black, yellow and dappled. Certain facts
were stated; for example, that the dappled bulls exceeded the yellow bulls
in multitude by (% + %) of the number of white bulls: and the problem
required, for its solution, the exact size of each herd. In other words
there were eight unknown numbers to be found, but unfortunately, when
turned into algebra, the data of the problem provided only seven equa-
tions. One of these equations, typical of all seven, can readily be formed
from the facts already cited. If x denotes the number of dappled bulls, y
that of the white bulls, and z that of the yellow bulls, it follows that

x=H+%)y+z

From seven such equations for eight unknowns, of which only three x,
y, z occur in this particular equation, all the unknowns have to be found.
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There are, of course, an infinite number of solutions to seven equations
for eight unknowns. The simplest solution of the above equation, taken
apart from its context, is x = 14, y = 42, z= 1. As this does not fit in
with the other six equations, a more complicated set of numbers for
x, ¥, z must be found. Who would guess that the smallest value of x
satisfying all seven such innocent looking equations is a number exceeding
3% million? In our decimal notation this is a number seven figures long.
But Archimedes improved on the problem by stating that ‘when the white
bulls joined in number with the black, they stood firm, with depth and
breadth of equal measurement; and the plains of Thrinakia, far stretching
all ways, were filled with their multitude’. Taking this to mean that the
total number of black and white bulls was square, an enterprising investi-
gator, fifty years ago, showed that the smallest such herd amounted to a
number 200,000 figures long. The plains of Thrinakia would have to be
replaced by the Milky Way.

The so-called Axiom of Archimedes bears his name probably because
of its application on a grand scale, when he showed that the amount of
sand in the world was finite. This appears in the Sand-Reckoner, a work
full of quaint interest, and important for its influence on the arithmeti-
cians of the last century. The opening sentences run as follows:

‘There are some, King Gelon, who think that the number of the sand
is infinite in multitude: and I mean by the sand not only that which exists
about Syracuse and the rest of Sicily but also that which is found in every
region whether inhabited or uninhabited. And again, there are some who,
without regarding it as infinite, yet think that no number has been named
which is great enough to exceed its multitude.’

So far from weeping to see such quantities of sand, Archimedes cheer-
fully fancies the whole Universe to be stuffed with sandgrains and then
proceeds to count them. After a tilt at the astronomer Aristarchus for
talking of the ratio of the centre of a sphere to the surface—'it being easy
to see that this is impossible, the centre having no magnitude’—he gently
puts Aristarchus right and then turns to the problem. First he settles the
question, how many grains of sand placed side by side would measure
the diameter of a poppy seed. Then, how many poppy seeds would meas-
ure a finger breadth. From poppy seed to finger breadth, from finger
breadth to stadium, and so on to a span of 10,000 million stadia, he
serenely carries out his arithmetical reductions. Mathematically he is
developing something more elaborate than the theory of indices: his
arithmetic might be called the theory of indices of indices, in which he
classifies his gigantic numbers by orders and periods. The first order con-
sists of all numbers from 1 to 100,000,000 = 108, and the first period
ends with the number 10800.000.,000, Thijs number can be expressed more
compactly as (108)1%% but in the ordinary decimal notation consists of
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eight hundred million and one figures. Archimedes advances through
further periods of this enormous size, never pausing in his task until the
hundred-millionth period is reached.

In conclusion:

‘I conceive that these things, King Gelon, will appear incredible to the
great majority of people who have not studied mathematics, but that to
those who are conversant therewith and have given thought to the ques-
tion of the distances and sizes of the earth, the sun and moon, and the
whole universe, the proof will carry conviction. And it was for this reason
that I thought the subject would be not inappropriate for your consid-
eration.’

One cannot pass from the story of Archimedes without reference to
his work on statics and hydrostatics, in which he created a new applica-
tion for mathematics. Like the rest of his writings this was masterly.
Finally, in a book now lost, he discussed the semiregular solids, which
generalize on the Pythagorean group of five regular solids. When each
face of the solid is to be a regular polygon, exactly thirteen and no more
forms are possible, as Kepler was one of the first to verify.

The third great mathematician of this period was ApoLLONIUs of Perga
in Pamphilia (? 262-200 B.c.), who earned the title ‘the great geometer’.
Little is known of him but that he came as a young man to Alexandria,
stayed long, travelled elsewhere, and visited Pergamum, where he met
Eudemus, one of the early historians of our science. Apollonius wrote
extensively, and many of his books are extant. His prefaces are admirable,
showing how perfect was the style of the great mathematicans when they
were free from the trammels of technical terminology. He speaks with
evident pleasure of some results: ‘the most and prettiest of these theorems
are new.’

What Euclid did for elementary geometry, Apollonius did for conic
sections. He defined these curves as sections of a cone standing on a
circular base; but the cone may be oblique. He noticed that not only
were all sections parallel to the base, circular, but that there was also a
secondary set of circular sections.

Although a circle is much easier to study than an ellipse, yet every
property of a circle gives rise to a corresponding property of an ellipse.
For example, if a circle and tangent are looked at obliquely, what the
eye sees is an ellipse and its tangent. This matter of perspective leads on
to projective geometry; and in this manner Apollonius simplified his prob-
lems. By pure geometry he arrived at the properties of conics which we
nowadays express by equations such as

2y
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and ax? + bxy +cy?=1, and even \/ax+\/by=1. In the second
equation a, b, ¢ denote given multiples of certain squares and a rectangle,
the total area being constant. From our analytical geometry of conics he
had clearly very little to learn except the notation, which improves on his
own. He solved the difficult problem of finding the shortest and longest
distances from a given point P to a conic. Such lines cut the curve at
right angles and are called normals. He found that as many as four
normals could be drawn from favourable positions of P, and less from
others. This led him to consider a still more complicated curve called the
evolute, which he fully investigated. He worked with what is virtually an
equation of the sixth degree in x and y, or its geometrical equivalent—
in its day a wonderful feat. His general problem, [locus] ad tres et quattuor
lineas, will be considered when we turn to the work of Pappus.

Another achievement of Apollonius was his complete solution of a
problem about a circle satisfying three conditions. When a circle passes
through a given point, or touches a given line, or touches a given circle,
it is said to satisfy one condition. So the problem of Apollonius really
involved nine cases, ranging from the description of a circle through
three given points to that of a circle touching three given circles. The
simplest of these cases were probably quite well known: in fact, one of
them occurs in the Elements of Euclid.

Apollonius was also a competent arithmetician and astronomer. It is
reported that he wrote on Unordered Irrationals, and invented a ‘quick
delivery’ method of approximating to the number x. Here, to judge from
his title, it looks as if he had begun the theory of uniform convergence.

It may now be wondered what was left for their successors to discover
after Archimedes and Apollonius had combed the field? So complete was
their work that only a few trivial gaps needed to be filled, such as the
addition of a focus to a parabola or a directrix to a conic, properties
which Apollonius seems to have overlooked. The next great step could not
be taken until algebra was abreast of geometry, and until men like Kepler,
Cavalieri and Descartes were endowed with both types of technique.

CHAPTER 1V
THE SECOND ALEXANDRIAN SCHOOL: PAPPUS AND DIOPHANTUS

WITH the death of Apollonius the golden age of Greek mathematics
came to an end. From the time of Thales there had been almost a contin-
uous chain of outstanding mathematicians. But until about the third
century A.n., when Hero, Pappus and Diophantus once more brought
fame to Alexandria, there seems to have been no mathematician of pre-
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eminence. During this interval of about half a millennium the pressure of
Roman culture had discouraged Greek mathematics, although a certain
interest in mechanics and astronomy was maintained; and the age pro-
duced the great astronomer HIPPARCHUS, and two noteworthy commen-
tators, MENELAUS and PToLEMY. Menelaus lived about the year A.p. 100,
and Ptolemy was perhaps fifty years his junior. There is a strange monot-
ony in trying to detail any facts whatsoever about these men—so little
is known for certain, beyond their actual writings. The same uncertainty
hangs over Hero, Pappus and Diophantus, whose names may be associ-
ated together as forming the Second Alexandrian School, because they
each appear to have been active about the year A.n. 300. Yet Pappus and
Diophantus are surrounded by mystery. Each seems to be a solitary echo
of bygone days, in closer touch with Pythagoras and Archimedes than
with their contemporaries, or even with each other.

MENELAUS is interesting, more particularly to geometers, because he
made a considerable contribution to spherical trigonometry. Many new
theorems occur in his writings—new in the sense that no earlier records
are known to exist. But it is commonly supposed that most of the results
originated with Hipparchus, Apollonius and Euclid. A well-known theo-
rem, dealing with the points in which a straight line drawn across a
triangle meets the sides, still bears his name. For some reason, hard to
fathom, it is often classed to-day as ‘modern geometry’, a description
which scarcely does justice to its hoary antiquity. The occasion of its
appearance in the work of Menelaus is the more significant because he
used it to prove a similar theorem for a triangle drawn on a sphere.
Menelaus gave several theorems which hold equally well for triangles
and other figures, whether they are drawn on a sphere, or on a flat plane.
They include a very fundamental theorem known as the cross ratio prop-
erty of a transversal drawn across a pencil of lines. This too is ‘modern
geometry’. He also gave the celebrated theorem that the angles of a
spherical triangle are together greater than two right angles.

ProLEmy (? 100-168 A.p.), who was a good geometer, will always be
remembered for his work in astronomy. He treated this subject with a
completeness comparable to that which Euclid achieved in geometry. His
compilation is known as the Almagest—a name which is thought to be an
Arabic abbreviation of the original Greek title.2 His work made a strong
appeal to the Arabs, who were attracted by the less abstract branches of
mathematics; and through the Arabs it ultimately found a footing in medi-
aeval Europe. In this way a certain planetary theory called the Ptolemaic
system became commonly accepted, holding sway for many centuries until
it was superseded by the Copernican system. Ptolemy, following the lead

2 Meaning ‘The Great Compilation.”
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of Hipparchus, chose one of several competing explanations of planetary
motion, and interpreted the facts by an ingenious combination of circular
orbits, or epicycles. Fundamental to his theory was the supposition that
the Earth is fixed in space: and, if this is granted, his argument follows
very adequately. But there were other explanations, such as that of Aris-
tarchus, the friend of Archimedes, who supposed that the Earth travels
round the Sun. When, therefore, Copernicus superseded the Ptolemaic
theory by his own well-known system, centred on the Sun, he was restor-
ing a far older theory to its rightful place.

Hero of Alexandria was a very practical genius with considerable
mathematical powers. It is generally assumed that all the great mathema-
ticians of the Hellenic world were Greek; but it is supposed that Hero
was not. He was probably an Egyptian. At any rate there is in his work a
strong bias towards the applications and away from the abstractions of
mathematics, which is quite in keeping with the national characteristics of
Egypt. Yet Hero proved to be a shrewd follower of Archimedes, bringing
his mathematics to bear on engineering and surveying. He not only made
discoveries in geometry and physics, but is also reputed to have invented
a steam engine. One of his most interesting theorems proves that, when
light from an object is broken by reflection on mirrors, the path of the ray
between object and eye is a minimum. This is an instance of a principle of
least action, which was formally adopted for optics and dynamics by
Hamilton in the last century, and which has recently been incorporated
in the work of Einstein. We may, therefore, regard Hero as the pioneer
of Relativity (¢. 250 A.D.).

At the beginning of the fourth century there was a revival of pure
mathematics, when something of the Pythagorean enthusiasm for geom-
etry and algebra existed once again in Alexandria under the influence of
Pappus and Diophantus. PAPPUS wrote a great commentary called the
Collection (cvvaywyy); and happily many of his books are preserved. They
form a valuable link with still more ancient sources, and particularly with
the lost work of Euclid and Apollonius. As an expositor, Pappus rivals
Euclid himself, both in completeness of design and wealth of outlook. To
discover-what Euclid and his followers were about, from reading the Col-
lection, is like trying to follow a masterly game of chess by listening to the
comments of an intelligent onlooker who is in full sight of the board.

Pappus was somewhat vain and occasionally unscrupulous, but he had
enough sympathy to enter into the spirit of each great epoch. The space-
filling figures of Pythagorean geometry made him brood over the marvels
of bee-geometry; for God has endowed these sagacious little creatures with
a power to construct their honey cells with the smallest enclosing surface.
How far the bee knows this is not for the mathematician to say, but the
fact is perfectly true. Triangular, or square, cells could be crowded to-
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gether, each holding the same amount of honey as the hexagonal cell; but
the hexagonal cell requires least wax. Like the mirrors of Hero, this again
suggests least action in nature: and Pappus was disclosing another impor-
tant line of inquiry. He put the question, What is the maximum volume
enclosed by a given superficial area? This was perhaps the earliest sug-
gestion of a branch of mathematics called the calculus of variations.

Most striking, and in true Archimedean style, is his famous theorem
which determines the volume of a surface of revolution. His leading idea
may be grasped by first noting that the volume of a straight tube is known
if its cross-section A and its length / are given. For the volume is the
product A.lL Pappus generalized this elementary result by considering such
a tube to be no longer straight but circular. The cross-section A was taken
to be the same at every place; but the length of the tube would need
further definition. For example, the length of an inflated bicycle tyre is
least if measured round the inner circle in contact with the rim, and is
greatest round the outermost circle. This illustration suggests that an
average or mean length | may exist for which the formula A.l still gives
the volume. Pappus found that for such a circular tube this was so, and
he located his average length as that of the circle passing through the cen-
troid of each cross-section A. By centroid is meant that special point of a
plane area often called the centre of gravity. As the shape of the section A
is immaterial to his result, the theorem is one of the most general conclu-
sions in ancient mathematics. In later years P. Guldin (1577-1643) with-
out even the excuse of an unconscious re-discovery, calmly annexed this
theorem, and it has become unjustly associated with his name.

As two further examples of important geometrical work by Pappus, the
properties of the two following diagrams may be given. There are no hid-
den subtleties about the drawing of either figure. In the first (Figure 10),

z

w -] Y

FIGURE 10

A, B, C, D are four points through which various straight lines have been
drawn; and these intersect as shown at X, Y, Z. The line joining ZX is
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produced and cuts AB at W. The interest of this construction lies in the
fact that, no matter what the shape of the quadrilateral ABCD may be,
the lines AW, AB, AY are in harmonical progression. In the second figure
(Figure 11), ABC and DEF are any two straight lines. These trios of points
are joined crosswise by the three pairs of lines meeting at X, Y, Z. Then it
follows that X, Y, Z are themselves in line. Here the interest lies in the
symmetry of the result. It has nine lines meeting by threes in nine points:
but it also has nine points lying by threes on the nine lines, as the reader
may verify. This nice balance between points and lines of a figure is an
early instance of reciprocation, or the principle of duality, in geometry.

In the parts of geometry which deal with such figures of points and
lines, Pappus excelled. He gave a surprisingly full account of kindred
properties connected with the quadrilateral, and particularly with a group-
ing of six points upon a line into three pairs. This so-called involution of
six points would be effected by erasing the line ZXW in the first of the
above figures, and re-drawing it so as to cross the other six lines at random
in six distinct points.

In a significant passage of commentary on Apollonius, Pappus throws

FIGURE 11

light upon what was evidently a very famous problem—the locus ad tres
et quattuor lineas. It sums up so well the best Greek thought upon conics
and it so very nearly inaugurates analytical geometry that it deserves spe-
cial mention. Apollonius, says Pappus, considered the locus or trace of a
roving point P in relation to three or four fixed lines. Suppose P were at
a distance x from the first line, y from the second, z from the third, and
t from the fourth. Suppose further that these distances were measured in
specified directions, but not necessarily at right angles to their several lines.
Then, as P moves, the values of x, y, z, t would vary; although it would
always be possible to construct a rectangle of area xy, or a solid rectangu-
lar block of volume xyz. But as space is three-dimensional there is appar-
ently nothing in geometry corresponding to the product xyzt derived from
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four lines. On the other hand the ratio x : y of two lines is a number, and
there is nothing to prevent us from multiplying together as many such
ratios as we like. So from the four lines x, y, z, t we can form two ratios
x:y and z:t, and then multiply them together. This gives xz : yt. Now
if the resulting ratio is given as a constant, and equal to ¢, we can write

xz/yt =c¢, or xz =cyt.

This is a way of stating the Apollonian problem about four lines: it indi-
cates that the rectangle of the distances x, z from P to two of the lines is
proportional to that of its distances y, r from the other two. When this
happens, as Apollonius proved, P describes a conic. By a slight modifica-
tion the same scrutiny may be applied to the problem, if three and not
four lines are given. Pappus continues his commentary by generalizing the
result with any number of lines: but it will be clearest if we confine our-
selves to six lines.

If the distances of the point P from six given lines are x, y, z, u, v, w,
then we can form them into three ratios x : y, z : &, v : w. If, further, it
is given that the product of these three ratios is fixed, then we can write

Pappus draws the correct conclusion that, when this happens, the point P
is constrained to lie upon a certain locus or curve. But after a few more
remarks he turns aside as if ashamed of having said something obvious.
He had nevertheless again made one of the most general statements in all
ancient geometry. He had begun the theory of Higher Plane Curves. For
the number of ratios involved in such a constant product defines what is
called the order of the locus. So a conic is a curve of order two, because
it involves two ratios, as is shown in the Apollonian case above. In the
simpler case, when only one ratio x : y is utilized, the locus is a straight
line. For this reason a straight line is sometimes called a curve of the first
order. But Pappus had suggested curves of order higher than the second.
These are now called cubics, quartics, quintics, and so on. To be sure, par-
ticular cases of cubic and other curves had already been discovered. The
ancients had invented them for ad hoc purposes of trisecting an angle, and
the like: but mathematicians had to wait for Descartes to clinch the
matter.

The other great mathematician who brought fame to Alexandria was
DiopHANTUS. He is celebrated for his writings on algebra, and lived at the
time of Pappus, or perhaps a little earlier. This we gather from a letter of
Psellus, who records that Anatolius, Bishop of Laodicea about A.n. 280,
dedicated to Diophantus a concise treatise on the Egyptian method of
reckoning. Diophantus was devoted to algebra, as the wording of a Greek
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epigram indicates, which tells us the scanty record of his life. His boyhood
lasted %th of his life; his beard grew after %4sth more; he married after
J4th more, and his son was born five years later; the son lived to half his
father’s age, and the father died four years after his son.

If x was the age when he died, then,

Yox +Yex+¥x+ 5+ Yx+4=x

and Diophantus must have lived to be eighty-four years old.

The chief surviving writings of Diophantus are six of the thirteen books
forming the Arithmetica, and fragments of his Polygonal Numbers and
Porisms. Twelve hundred years after they were written these books began
to attract the attention of scholars in Europe. As Regiomontanus observed
in 1463: ‘In these old books the very flower of the whole of arithmetic lies
hid, the ars rei et census which to-day we call by the Arabic name of
Algebra.’ This work of Diophantus has a twofold importance: he made an
essential improvement in mathematical notation, while at the same time
he added large instalments to the scope of algebra as it then existed. The
full significance of his services to mathematics only became evident with
the rise of the early French school in the fifteenth and sixteenth centuries.

The study of notation is interesting, and covers a wider sphere than at
first sight may be supposed. For it is the study of symbols; and as words
are symbols of thought, it embraces literature itself. Now we may concen-
trate our attention on the literal symbol as it appears to the eye in a mathe-
matical formula and in a printed sentence; or else on the thing signified,
on the sense of the passage, and on the thought behind the symbol. A
good notation is a valuable tool; it brings its own fitness and suggestive-
ness, it is easy to recognize and is comfortable to use. Given this tool and
the material to work upon, advance may be expected. In their own lan-
guage and in their geometrical notation the Greeks were well favoured:
and a due succession of triumphs followed. But their arithmetic and al-
gebra only advanced in spite of an unfortunate notation. For the Greeks
were hampered by their use of letters a, 8, ¥ for the numbers 1, 2, 3, and
this concealed from them the flexibility of ordinary arithmetical calcula-
tions. On the other hand, the very excellence of our decimal notation has
made these operations wellnigh trivial. Before the notation was widely
known, even simple addition, without the help of a ball frame, was a task
of some skill. The chief merits of this notation are the sign 0 for zero,
and the use of one symbol, its meaning being decided by its context, to
denote several distinct things, as, for example, the writing of 11 to denote
ten and one. The history of this usage has been traced to a source in
Southern India, dating shortly after the time of Diophantus. Thence it
spread to the Moslem world and so to mediaeval Europe.

In the previous chapters many algebraic formulz have occurred. They
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are, of course, not a literal transcription of the Greek, but are concise
symbolic statements of Greek theorems originally given in verbal sen-
tences or in geometrical form. For instance, a? has been used instead of
‘the square on AB'. The earliest examples of this symbolic algebra occur
in the work of Vieta, who lived in the sixteenth century, though it only
came into general use about the year A.p. 1650. Until that time the nota-
tion of Diophantus had been universally adopted.
An old classification speaks of
Rhetorical Algebra,
Syncopated Algebra,
Symbolic Algebra,
and these names serve to indicate broad lines of development. By the
rhetorical is meant algebra expressed in ordinary language. Then syncopa-
tions, or abbreviations, similar to our use of H.M.S. for His Majesty’s
Ship, and the like, became common among the ancients. To Diophantus
more than to any other we owe this essential improvement. The third,
symbolic algebra, became finally established, once Vieta had invented it,
through the influence of Napier, Descartes and Wallis.
A typical expression of symbolic algebra is

(250x2 4 2520) + (x* + 900 — 60x2):

and this serves to indicate the type of complication which Diophantus suc-
cessfully faced. His syncopations enabled him to write down, and deal
with, equations involving this or similar expressions. For 250x2 he wrote
ATov: here the letter v meant 50 and o, 200, according to the ordinary
Greek practice. But the AT was short for the Greek word meaning power
(it is our word, dynamic); and power meant the square of the unknown
number. Diophantus used the letter s for the first power of the unknown,
and the abbreviation of the word cube for the third power. He used no
sign for plus, but a sort of inverted ¢ for minus, the letter . for equals,
and a special phrase to denote the division of one expression by another.
It is interesting that his idea of addition and subtraction was ‘forthcoming’
and ‘wanting’, and that the Greek word for wanting is related to the
Pythagorean term ellipse.

Those who have solved quadratic equations will remember the little
refrain—‘the square of half the co-efficient of x. It is a quotation from
Diophantus, who dealt with such equations very thoroughly. He even ven-
tured on the easier cases of cubic equations. Yet he speaks of ‘the impos-
sible solution of the absurd equation 4 = 4x + 20': such an equation
requires a negative solution; and it was not until much later that negative
numbers as things in themselves were contemplated. But fractions and
alternative roots of quadratic equations presented to him no difficulties.

We need not go far into the puzzles of ‘problems leading to simple equa-
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tions’ to convince ourselves of the value of using several letters x, y, z for
the unknown quantities. Each different symbol comes like a friendly hand
to help in disentangling the skein. As Diophantus attempted such prob-
lems with the sole use of his symbol s he was, so to speak, tying one hand
behind his back and successfully working single-handed. This was clearly
the chief drawback of his notation. Nevertheless he cleverly solved simul-
taneous equations such as

yz=m((y+2z),zx=n(z+x), xy=p(x+y);

and it is evident from this instance that he saw the value of symmetry in
algebra.

All this is valuable for its general influence upon mathematical manipu-
lation: and had the genius of Diophantus taken him no farther, he would
still be respected as a competent algebraist. But he attained far greater
heights, and his abiding work lies in the Theory of Numbers and of Inde-
terminate Equations. Examples of these last occurred in the Cattle Problem
of Archimedes (p. 105) and in the relation 2x2 — y2 =1 (of p. 97). His
name is still attached to simple equations, such as enter the Cattle Prob-
lem, although he never appears to have interested himself in them. Instead
he was concerned with the more difficult quadratic and higher types, as,
for example, the equation

xt 4yt 2t =l

He discovered four whole numbers x, y, z, u for which this statement was
true. Centuries later his pages were eagerly read by Fermat, who proved
to be a belated but brilliant disciple. ‘Why’, says Fermat, ‘did not Dio-
phantus seek two fourth powers such that their sum is square? This prob-
lem is, in fact, impossible, as by my method I am able to prove with all
rigour.’ No doubt Diophantus had experimented far enough with the easier
looking equation x* + y* = u2 to prove that no solution was available.

This brings us to the close of the Hellenic period; and we are now in a
position to appreciate the contribution which the Greeks made to mathe-
matics. They virtually sketched the whole design that was to give inces-
sant opportunities for the mathematicians and physicists of later centuries.
In some parts of geometry and in the theory of the irrational the picture
had been actually completed.

Within a glittering heap of numerical and geometrical puzzles and trifles
—the accumulation in Egypt or the East of bygone ages—the Greeks had
found order. Their genius had made mathematics and music out of the
discord. And now in turn their own work was to appear as a wealth of
scattered problems whose interrelations would be seen as parts of a still
grander whole. New instruments were to be invented—the decimal nota-
tion, the logarithm, the analytical geometry of Descartes, and the mag-
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nifying glass. Each in its way has profoundly modified and enriched the
mathematics handed down by the Greeks. Such profound changes have
been wrought that we have been in some danger of losing a proper per-
spective in mathematics as a whole. So ingrained to-day is our habit of
microscopic scrutiny that we are apt to think that all accuracy is effected
by examining the infinitesimal under a glass or by reducing everything to
decimals. It is well to remember that, even in the scientific world, this is
but a partial method of arriving at exact results. Speaking numerically,
multiplication, and not division, was the guiding process of the Greeks.
The spacious definition of equal ratios which the astronomer Eudoxus be-
queathed was not the work of a2 man with one eye glued to a micrometer.

CHAPTER V
THE RENAISSANCE: NAPIER AND KEPLER; THE RISE OF ANALYSIS

AFTER the death of Pappus, Greek mathematics and indeed European
mathematics lay dormant for about a thousand years. The history of the
science passed almost entirely to India and Arabia; and by far the most
important event of this long period was the introduction of the Indian
decimal notation into Europe. The credit for this innovation is due to
Leonardo of Pisa, who was mentioned on p. 98, and certainly ranks as a
remarkable mathematician in these barren centuries. From time to time
there were others of merit and even of genius; but, judged by the lofty
standard of past achievements and of what the future held in store, no
one rose supreme. The broad fact remains: Pappus died in the middle of
the fourth century, and the next great forward step for Western mathe-
matics was taken in the sixteenth century.

It is still an obscure historical problem to determine whether Indian
mathematics is independent of Greek influence. When Alexander con-
quered Eastern lands he certainly reached India, so that at any rate there
was contact between East and West. This took place about 300 B.c.,
whereas the early mathematical work of India is chiefly attributed to the
far later period A.D. 450-650. So in the present state of our knowledge it
is safest to assume that considerable independent work was done in India.
An unnamed genius invented the decimal notation; he was followed by
ARYABHATA and BRAHMAGUPTA, who made substantial progress in algebra
and trigonometry. Their work brings us to the seventh century, an era
marked by the fall of Alexandria and the rise of the Moslem civilization.

The very word algebra is part of an Arabic phrase for ‘the science of
reduction and cancellation’, and the digits we habitually use are often
called the Arabic notation. These survivals remind us that mathematical
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knowledge was mediated to western Europe through the Arabs. But it will
be clear from what has already been said that the Arabs were in no sense
the originators of either algebra or the number notation. The Arabs ren-
dered homage to mathematics; they valued the ancient learning whether
it came from Greece or India. They proved apt scholars; and soon they
were industriously translating into Arabic such valuable old manuscripts
as their forerunners had not destroyed. In practical computation and the
making of tables they showed their skill, but they lacked the originality
and genius of Greece and India. Great tracts of Diophantine algebra and
of geometry left them quite unmoved. For long centuries they were the
safe custodians of mathematical science.

Then came the next chapter in the story, when northern Italy and the
nations beyond the Alps began to feel their wakening strength. Heart and
mind alike were stirred by the great intellectual and spiritual movements
of the Renaissance and the Reformation. Once again mathematics was in-
vestigated with something of the ancient keenness, and its study was
greatly stimulated by the invention of printing. There were centres of
learning, in touch with the thriving city life of Venice and Bologna and
other celebrated towns of mediaeval Europe. Italy led the way; France,
Scotland, Germany and England were soon to follow. The first essential
advance beyond Greek and Oriental mathematics was made by Scipio
FERRO (1465-1526), who picked up the threads where Diophantus left
them. Ferro discovered a solution to the cubic equation.

B2+ mx=n

and, as this solved a problem that had baffied the Greeks, it was a remark-
able achievement.

Scipio was the son of a paper-maker in Bologna whose house can still
be precisely located. He became Reader in mathematics at the University
in 1496 and continued in office, except for a few years’ interval at Venice,
till his death in the year 1526. In those days mathematical discoveries
were treasured as family secrets, only to be divulged to a few intimate
disciples. So for thirty years this solution was carefully guarded, and it
only finally came to light owing to a scientific dispute. Such wranglings
were very fashionable: they were the jousts and tournaments of the intel-
lectual world, and mathematical devices, often double-edged, were the
weapons. Some protagonists preferred to spar with slighter blades—only
drawing their mightiest swords as a last resort. Among them were Tar-
taglia and Cardan, both very celebrated, and ranking with Scipio as lead-
ing figures in this drama of the Cubic Equation. Scipio himself was
dragged rather unwillingly into the fray: others relished it.

NiccoLo FonNTANA (1500-1557) received the nickname TARTAGLIA be-
cause he stammered. When he was quite a little lad he had been almost
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killed by a wound on the head, which permanently affected his speech.
This had occurred in the butchery that followed the capture of Brescia,
his native town, by the French. His father, a postal messenger, was
amongst the slain, but his mother escaped, and rescued the boy. Although
they lived in great poverty, Tartaglia was determined to learn. Lacking
the ordinary writing materials, he even used tombstones as slates, and
eventually rose to a position of eminence for his undoubted mathematical
ability. He emulated Ferro by solving a new type of cubic equation,
x3 + mx2 = n; and when he heard of the original problem, he was led to
re-discover Ferro’s solution. This is an interesting example of what fre-
quently happens,—the mere knowledge that a certain step had been taken
being inducement enough for another to take the same step. Tartaglia was
the first to apply mathematics to military problems in artillery.

GIROLAMO CARDAN (1501-1576) was a turbulent man of genius, very
unscrupulous, very indiscreet, but of commanding mathematical ability.
With strange versatility he was astrologer and philosopher, gambler and
algebraist, physician yet father and defender of a murderer, heretic yet
receiver of a pension from the Pope. He occupied the Chair of Mathe-
matics at Milan and also practised medicine. In 1552 he visited Scotland
at the invitation of John Hamilton, Archbishop of St. Andrews, whom he
cured of asthma. He was interested one day to find that Tartaglia held a
solution of the cubic equation. Cardan begged to be told the details, and
eventually under a pledge of secrecy obtained what he wanted. Then he
calmly proceeded to publish it as his own unaided work in the Ars Magna,
which appeared in 1545. Such a blot on his pages is deplorable because of
the admittedly original algebra to be found in the book. He seems to have
been equally ungenerous in the treatment of his pupil Ferrari, who was
the first to solve a quartic equation. Yet Cardan combined piracy with a
measure of honest toil; and he had enough mathematical genius in him to
profit by these spoils. He opened up the general theory of the cubic and
quartic equations, by discussing how many roots an equation may have.
He surmised the need not only for negative but for complex (or imagi-
nary) numbers to effect complete solutions. He also found out the more
important relations between the roots.

By these mathematical achievements, so variously conducted, Italy
made a substantial advance, It was now possible to state, in an algebraic
formula, the solution of the equation

ax* + bx®+cx? +dx+e=0.

The matter had proceeded step by step from the simple to the quadratic,
the cubic and the quartic equation. Naturally the question of the quintic
and higher equations arose, but centuries passed before further light was
thrown upon them. About a hundred years ago a young Scandinavian
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mathematician named Abel found out the truth about these equations.
They proved to be insoluble by finite algebraic formulae such as these
Italians had used. Cardan, it would seem, had unwittingly brought the
algebraic theory of equations to a violent full stop!

Now what was going on at this time elsewhere in Europe? Something
very significant in Germany, and a steady preparation for the new learn-
ing in France, Flanders and England. Contemporary with Scipio Ferro
were three German pioneers, DURER, STIFEL and CoPERNICUS. Diirer is
renowned for his art; Stifel was a considerable writer on algebra; and
Copernicus revolutionized astronomy by postulating that the Earth and all
the planets revolve around the Sun as centre. About this time, in 1522,
the first book on Arithmetic was published in England: it was a fine
scholarly production by ToNSTALL, who became Bishop of London. In the
preface the author explains the reason for his belated interest in arith-
metic. Having forgotten what he had learnt as a boy, he realized his dis-
advantage when certain gold- and silver-smiths tried to cheat him, and he
wished to check their transactions.

Half a century later another branch of mathematics came into promi-
nence, when STEVINUs left his mark in work on Statics and Hydrostatics.
He was born at Bruges in 1548, and lived in the Low Countries. Then
once more the scene shifts to Italy, where GALILEO of Pisa (1564-1642)
invented dynamics, by rebuilding the scanty and ill-conceived system
which had come down from the time of Aristotle. Galileo showed the im-
portance of experimental evidence as an essential prelude to a theoretical
account of moving objects. This was the beginning of physical science—
which really lies outside our present scope—and by taking this step
Galileo considerably enlarged the possible applications of mathematics. In
such applications it was no longer possible for the mathematician to make
his discoveries merely by sitting in his study or by taking a walk. He had
to face stubborn facts, often very baffling to common sense, but always
the outcome of systematic experiments. Two of the first to do this were
Galileo and his contemporary, Kepler. Galileo found out the facts of
dynamics for himself by dropping pebbles from a leaning tower at Pisa.
Kepler took, for the basis of his astronomical speculations, the results of
patient observations made by Tycho Brahe, of whom more anon.

The latter half of the sixteenth century also saw the rise of mathematics
in France and Scotland. France produced VIETA, and Scotland NAPIER.
The work of these two great men reminds us how deep was the influence
of Ancient Greece upon the leaders of this mathematical Renaissance.
Allusion has already been made to the share which Vieta took in improv-
ing the notation of algebra: he also attacked several outstanding problems
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that had baffled the Greeks, and he made excellent progress. He showed,
for example, that the famous problem of trisecting an angle really de-
pended on the solution of a cubic equation. Also he reduced the problem
of squaring a circle to that of evaluating the elegant expression:
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Here was a considerable novelty—the first actual formula for the time-
honoured number =, which Archimedes had located to lie somewhere
between 3% and 3194;. Vieta was also the first to make explicit use of that
wonderful principle of duality, or reciprocation, which was hinted at by
Pappus. We had an instance in the figure 11 of p. 112. For Vieta pointed
out the importance of a polar triangle, obtained from a spherical triangle
ABC. He drew three great circular arcs whose poles were respectively
A, B, C; and then he formed a second triangle from these arcs. The study
of the two triangles jointly turned out to be easier than that of the original
triangle by itself.

Perhaps the most remarkable of all these eminent mathematicians was
JouN NAPIER, Baron of Merchiston, who discovered the logarithm. This
achievement broke entirely new ground, and it had great consequences,
both practical and theoretical. It gave not only a wonderful labour-saving
device for arithmetical computation, but it also suggested several leading
principles in higher analysis.

John Napier was born in 1550 and died in 1617: he belonged to a
noble Scottish family notable for several famous soldiers. His mother was
sister of Adam Bothwell, first reformed Bishop of Orkney, who assisted
at the marriage of his notorious kinsman, the Earl of Bothwell, to Queen
Mary, and who also anointed and crowned the infant King James VI
Scotland was a country where barbarous hospitality, hunting, the military
art and keen religious controversy occupied the time and attention of
Napier's contemporaries: a country of baronial leaders whose knowledge
of arithmetic went little farther than counting on the fingers of their mail-
clad hands. It was a strange place for the nurture of this fair spirit who
seemed to belong to another world. The boy lost his mother when he was
thirteen, and in the same year was sent to the University of St. Andrews,
where he matriculated in ‘the triumphant college of St. Salvator’. In those
days St. Andrews was no home of quiet academic studies: accordingly the
Bishop, who always took a kindly interest in the lad, advised a change.
‘I pray you, schir,” he wrote to John's father, ‘to send your son Jhone to
the schuyllis; oyer to France or Flanderis; for he can leyr na guid at hame,
nor get na proffeit in this maist perullous worlde.” So abroad he went;
but it is probable that he soon returned to Merchiston, his home near
Edinburgh, where he was to spend so many years of his serene life.
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During the year at St. Andrews his interest was aroused in both arith-
metic and theology. The preface to his Plain Discovery of the Whole
Revelation of St. John, which was published in 1593, contains a reference
to his ‘tender yeares and barneage in Sanct Androis’ where he first was
led to devote his talents to the study of the Apocalypse. His book is full
of profound but, it is to be feared, fruitless speculations; yet in form it
follows the finest examples of Greek mathematical argument, of which
he was master, while in sober manner of interpretation it was far ahead
of its time. Unlike Cardan, before him, and Kepler, after him, he was
innocent of magic and astrology.

Napier acquired a great reputation as an inventor; for with his intellec-
tual gifts he combined a fertile nimbleness in making machines. His con-
stant efforts to fashion easier modes of arithmetical calculation led him
to produce a variety of devices. One was a sort of chess-arithmetic where
digits moved like rooks and bishops on a board: another survives under
the name of Napier's Bones. But what impressed his friends was a piece
of artillery of such appalling efficiency that it was able to kill all cattle
within the radius of a mile. Napier, horrified, refused to develop this
terrifying invention, and it was forgotten.

During his sojourn abroad he eagerly studied the history of the Arabic
notation, which he traced to its Indian source. He brooded over the
mysteries of arithmetic and in particular over the principle which under-
lies the number notation. He was interested in reckoning not only, as is
customary, in tens, but also in twos. If the number eleven is written 11,
the notation indicates one ten and one. In the common scale of ten each
number is denoted by so many ones, so many tens, so many hundreds,
and so on. But Napier also saw the value of a binary scale—in which a
number is broken up into parts 1, 2, 4, 8, etc. Thus he speaks with interest
of the fact that any number of pounds can be weighed by loading the
other scale pan with one or more from among the weights 1 1b., 2 b,
4 1b., 8 1Ib., and so on.

When Napier returned to Scotland he wrote down his thoughts on
arithmetic and algebra, and many of his writings remain. They are very
systematic, showing a curious mixture of theory and practice: the main
business is the theory, but now and then comes an illustration that ‘would
please the mechanicians more than the mathematicians’. Somewhere on
his pages the following table appears:

I II II I v VI vi
1 2 4 8 16 32 64 128

Pethaps the reader thinks that it is simple and obvious; yet in the light
of the'Sequel, it is highly significant. Men were still feeling for a notation
of indices, and the full implications of the Arabic decimal notation had



The Great Mathematicians 123

hardly yet been grasped. Napier was looking with the eyes of a Greek-
trained mathematician upon this notation as upon a new plaything. He
saw in the above parallel series of numbers the matching of an arithmet-
ical with a geometrical progression. A happy inspiration made him think
of these two progressions as growing continuously from term to term. The
above table then became to him a sort of slow kinematograph record,
implying that things are happening between the recorded terms. By the
year 1590, or perhaps earlier, he discovered logarithms—the device which
replaces multiplication by addition in arithmetic: and his treatment of the
matter shows intimate knowledge of the correspondence between arith-
metical and geometrical progressions. So clearly did he foresee the practi-
cal benefit of logarithms in astronomy and trigonometry, that he delib-
erately turned aside from his speculations in algebra, and quietly set
himself the lifelong task of producing the requisite tables. Twenty-five
years later they were published.

Long before the tables appeared, they created a stir abroad. There dwelt
on an island of Denmark the famous Tycho Brahe, who reigned in great
pomp over his sea-girt domain. It was called Uraniburg—the Castle of
the Heavens—and had been given to him by a beneficent monarch, King
Frederick II, for the sole purpose of studying astronomy. Here prolonged
gazings and much accurate star chronicling proceeded; but the stars in
their courses were getting too much for Tycho. Like a voice from another
world word came of a portentous arithmetical discovery in Scotland, the
terra incognita. The Danish astronomer looked for an early publication
of the logarithmic tables; but it was long before they were completed.
Napier, in fact, was slow but sure. ‘Nothing’, said he, ‘is perfect at birth.
I await the judgment and criticism of the learned on this, before unadvis-
edly publishing the others and exposing them to the detraction of the
envious.” The first tables appeared in 1614, and immediately attracted the
attention of mathematicians in England and on the Continent—notably
BriGGs and KepLER. The friendship between Napier and Briggs rapidly
grew, but was very soon to be cut short: for in 1617, worn out by his
incessant toil, Napier died. One of his last writings records how ‘owing to
our bodily weakness we leave the actual computation of the new canon
to others skilled in this kind of work, more particularly to that very
learned scholar, my dear friend, Henry Briggs, public Professor of Geom-
etry in London’.

A picturesque account of their first meeting has been handed down. The
original publication had so delighted Briggs that

‘he could have no quietness in himself, until he had seen that noble person
whose only invention they were. . . . Mr. Briggs appoints a certain day
when to meet in Edinburgh; but failing thereof, Merchiston was fearful
he would not come. It happened one day as John Marr and the Lord
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Napier were speaking of Mr. Briggs: “Ah, John,” saith Merchiston, “Mr.
Briggs will not now come™: at the very instant one knocks at the gate;
John Marr hasted down and it proved to be Mr. Briggs, to his great con-
tentment. He brings Mr. Briggs up into My Lord's chamber, where almost
one quarter of an hour was spent, each beholding other with admiration
before one word was spoken: at last Mr. Briggs began. “My Lord, I have
undertaken this long journey purposely to see your person, and to know
by what engine of wit or ingenuity you came first to think of this most
excellent help unto Astronomy, viz. the Logarithms: but My Lord, being
by you found out, I wonder nobody else found it out before, when now
being known it appears so easy.”’

Exactly: and perhaps this was the highest praise. It is pleasant to record
the excellent harmony existing between Napier, Briggs and Kepler. Kepler
the same year discovered his third great planetary canon which he pub-
lished in the Ephemerides of 1620, a work inscribed to Napier; and there
for frontispiece was a telescope of Galileo, the elliptic orbit of a planet,
the system of Copernicus, and a female figure with the Napierian
logarithm of half the radius of a circle arranged as a glory round her
head!

And what was a logarithm? Put into unofficial language it can be ex-
plained somewhat as follows. A point G may be conceived as describing
a straight line TS with diminishing speed, slowing towards its destination
S, in such wise that the speed is always proportional to the distance it
has to go. When the point G is at the place 4 its speed is proportional to
the distance dS. What a problem in dynamics to launch on the world,

T d S

G [e] ——>{grometrically)

b c 4

a a ——>{arithmetically)
FIGURE 12

before dynamics were even invented! This motion Napier called decreas-
ing geometrically. Alongside this, and upon a parallel line bi, a point a
moves off uniformly from its starting position b. This Napier called
increasing arithmetically. The race between the moving points G and a
is supposed to begin at T and b, both starting off at the same speed; and
then at any subsequent instant the places reached by G and a are recorded.
When G has reached d let a have reached c. Then the number measuring
the length bc is called by Napier the logarithm of the number measuring
dS. In short, the distance a has gone is the logarithm of the distance G
has to go.

Beginning with this as his definition Napier built up not only the theo-
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retical properties of logarithms, but also his seven-figure tables. The defi-
nition is in effect the statement of a differential equation; and his super-
structure provides the complete solution. It even suggests a theory of
functions on a genuinely arithmetical basis. As this was done before either
the theory of indices or the differential calculus had been invented, it
was a wonderful performance.

Napier was also a geometer of some imagination. He devised new
methods in spherical trigonometry. Particularly beautiful is his treatment
of a right-angled spherical triangle as part of a fivefold figure, reminiscent
of the Pythagorean symbol.

The story of Napier shows how the time was ripe for logarithms to be
invented, and it is scarcely surprising that another should also have dis-
covered them. This was his contemporary BURGI, a Swiss watchmaker,
who reached his conclusions through the idea of indices, and published
his results in 1620. Great credit must also be given to Briggs for the
rapid progress he made in fashioning logarithmic tables of all kinds. None
but an expert mathematician of considerable originality could have done
the work so quickly.

The rapid spread of Napier's logarithms on the Continent was due to
the enthusiasm of KEPLER, an astronomer, who was born in 1571 of
humble parents near Stuttgart in Wiirtemberg, and died at Ratisbon in
1630. He was a man of affectionate disposition, abundant energy and
methodical habits, with the intuition of true genius and the readiness to
look for new relations between familiar things. He combined a love of
general principles with the habit of attending to details. To his knowledge
of ancient and mediaeval lore which included, in oné comprehensive
grasp, the finest Greek-geometry and the extravagances of astrology, he
added the new learning of Copernicus and Napier. He learnt of the
former in his student days at Tiibingen whence at the age of twenty-two
he migrated to Gratz in Austria, where he was appointed Professor. There
he imprudently married a wealthy widow—a step which brought him no
happiness. Within three years of his appointment he became famous
through the publication of his Mysterium, a work full of fancies and
strange theories of the heavens.

Kepler’s interest in the stars and planets developed as he corresponded
with the great Tycho Brahe at Uraniburg, who held even kings spellbound
by his discoveries. When in course of time Brahe lost royal favour and
began to wander, he accepted a post at the new observatory near Prague.
He even persuaded Kepler, who also was rather unsettled, to become his
assistant. This arrangement was made in 1599 at the instigation of Ru-
dolph II, a taciturn monarch much addicted to astrology, who hoped that
these two astrological adepts would bring distinction to his kingdom. In
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this he was disappointed: for collaboration was not a success between
these two strong personalities, with their widely different upbringing. Yet
the experience was good for Kepler, especially as he also came under the
influence of Galileo. It helped to stabilize his wayward genius. When
Tycho died in 1601, Kepler succeeded him as astronomer; but his career
-was dogged by bad luck. He was often unpaid; his wife died;—nor did a
second matrimonial venture prove more successful, although he acted with
the greatest deliberation: for he carefully analysed and weighed the virtues
and defects of several young ladies until he found his desire. It is a warn-
ing to all scientists that there are matters in life which elude weights and
measures. The axiom of Archimedes has its limitations!

Kepler brimmed over with new ideas. Possessed with a feeling for num-
ber and music, and imbued through and through with the notions of
Pythagoras, he sought for the underlying harmony in the cosmos. Tem-
peramentally he was as ready to listen as to look for a clue to these secrets.
Nor was there any current scientific reason to suppose that light would
yield more significant results than sound. So he brought all his genius to
bear on the problem of the starry universe: and he dreamt of a harmony
in arithmetic, geometry and music that would solve its deepest mysteries.
Eventually he was able to disclose his great laws of planetary motion, two
in 1609, and the third and finest in the Harmonices Mundi of 1619.

These laws, which mark an epoch in the history of mathematical sci-
ence, are as follows:

1. The orbit of each planet is an ellipse, with the sun at a focus.

2. The line joining the planet to the sun sweeps out equal areas in equal
times.

3. The square of the period of the planet is proportional to the cube of
its mean distance from the sun.

The period in the case of the earth is, of course, a year. So this third
law states that a planet situated twice as far from the sun would take
nearly three years to perform its orbit, since the cube of two is only a
little less than the square of three. This first law itself made a profound
change in the scientific outlook upon nature. From ancient times until the
days of Copernicus and Tycho Brahe, circular motion had reigned su-
preme. But the circle was now replaced by the ellipse: and with the dis-
covery that the ellipse was a path actually performed in the heavens and
by the earth itself, a beautiful chapter in ancient geometry had unexpect-
edly become the centre of a practical natural philosophy. In reaching this
spectacular result Kepler inevitably pointed out details in the abstract
theory that Apollonius had somehow missed—such as the importance of
the focus of a conic, and even the existence of a focus for a parabola.
Then by a shrewd combination of his new ideas with the original conical
properties, Kepler began to see ellipses, parabolas, hyperbolas, circles, and
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pairs of lines as so many phases of one type of curve. To Kepler, starlight,
radiating from points unnumbered leagues away, suggested that in geom-
etry parallel lines have a common point at infinity. Kepler therefore not
only found out something to interest the astronomer; he made essential
progress in geometry. An enthusiastic geometer once lamented that here
was a genius spoilt for mathematics by his interest in astronomy!

The second law of Kepler is remarkable as an early example of the
infinitesimal calculus. It belongs to the same order of mathematics as the
definition that Napier gave for a logarithm. Again we must remember that
this calculus, as a formal branch of mathematics, still lay hidden in the
future. Yet Kepler made further important contributions by his accurate
methods of calculating the size of areas within curved boundaries. His
interest in these matters arose partly through reading the ancient work of
Archimedes and partly through a wish to improve on the current method
of measuring wine casks. Kepler recorded his results in a curious docu-
ment, which incidentally contained an ingenious number notation based
on the Roman system, where subtraction as well as addition is involved.
Kepler used symbols analogous to I, V, X, L, but instead of the numbers
one, five, ten and fifty he selected one, three, nine, twenty-seven, and so
on. In this way he expressed any whole number very economically; for
instance,

20=27-9+3—-1.

As an algebraist he also touched upon the theory of recurring series and
difference relations. He performed prodigies of calculation from the sheer
love of handling numbers. The third of his planetary laws, which followed
ten years after the other two, was no easy flight of genius: it represented
prolonged hard work.

Something may be quoted of the contents in the Harmonices Mundi
which enshrines this great planetary law. It is typical of the work of this
extraordinary man. In it he makes a systematic search into the theory
of musical intervals, and their relations to the distances between the
planets and the sun: he discusses the significance of the five Platonic
regular solids for interplanetary space: he elaborates the properties of the
thirteen semi-regular solids of Archimedes: he philosophizes on the place
of harmonic and other algebraic progressions in civil life, drawing his
illustrations from the dress of Cyrus as a small boy, and the equity of
Roman marriage laws. Few indeed are the great discoverers in science
who can rival Kepler in richness of imagery! For Kepler, every planet
sang its tune: Venus a monotone, the Earth (in the sol-fa notation) the
notes m, f, m, signifying that in this world man may expect but misery and
hunger. This gave Kepler an opportunity for a Latin pun—'in hoc nostro
domicilio miseriam et famen obtinere’. The italics are his, and in fact the
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whole book was written in solemn mediaeval Latin. The song of Mercury,
in his arpeggio-like orbit, is

drmjfsltdrmdsmd

—stated originally of course in the staff notation. As for the comets,
surely they must be live things, darting about with will and purpose ‘like
fishes in the sea'! This frisky skirl of Mercury amid the sober hummings
of the other planets, is no idle fancy: it duly records a curious fact, that
the orbit of Mercury is more strongly elliptical, and less like a circle, than
that of any other planet. It was this very peculiarity of Mercury which
provided Einstein with one of his clues leading to the hypothesis of
Relativity.

Carlyle, in his Frederick the Great (Book III, Chapter XIV) has pre-
served a delightful picture of John Kepler as he appeared to a contempo-
rary, Sir Henry Wotton, Ambassador to the King of Bohemia.

“*‘He hath a little black Tent . . ., says the Ambassador, ‘which he
can suddenly set up where he will in a Field; and it is convertible (like a
windmill) to all quarters at pleasure; capable of not much more than one
man, as [ conceive, and perhaps at no great ease; exactly close and dark,
—save at one hole, about an inch and a half in the diameter to which he
applies a long perspective Trunk, with the convex glass fitted to the said
hole, and the concave taken out at the otherend . . .' . . . An ingenious
person, truly, if there ever was one among Adam's Posterity. Just turned
fifty, and ill-off for cash. This glimpse of him, in his little black tent with
perspective glasses, while the Thirty-Years War blazes out, is welcome as
a date.”

CHAPTER VI

DESCARTES AND PASCAL: THE EARLY FRENCH GEOMETERS
AND THEIR CONTEMPORARIES

HITHERTO the mathematicians of outstanding ability, whose names have
survived, have been comparatively few; but from the beginning of the sev-
enteenth century the number increased so rapidly that it is quite impos-
sible in a short survey to do justice to all. In France alone there were as
many mathematicians of genius as Europe had produced during the pre-
ceding millennium. Three names will therefore be singled out to be repre-
sentatives of their time, Descartes and Pascal from among the French, and
Newton from among the English. In this heroic age that followed the per-
formances of Napier and Kepler, mathematics attained a remarkable
prestige. The age was mathematical; the habits of mind were mathemati-
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cal; and its methods were deemed necessary for an exact philosophy, or
an exact anything else. It was the era when what is called modern philoso-
phy began; and the pioneers among its philosophers, like the Greek phi-
losophers of old, were expert mathematicians. They were Descartes and
Leibniz.

DESCARTES was born of Breton parents near Tours in 1596 and died at
Stockholm in 1650. In his youth he was delicate, and until the age of
twenty his friends despaired of his life. After receiving the traditional
scholastic education of mathematics, physics, logic, rhetoric and ancient
languages, at which he was an apt pupil, he declared that he had derived
no other benefit from his studies than the conviction of his utter ignorance
and profound contempt for the systems of philosophy then in vogue.

‘And this is why, as soon as my age permitted me to quit my precep-
tors,’ he says, ‘I entirely gave up the study of letters; and resolving to seek
no other science than that which I could find in myself or else in the great
book of the world, I employed the remainder of my youth in travel, in see-
ing courts and camps, in frequenting people of diverse humours and con-
ditions, . . . and above all in endeavouring to draw profitable reflection
from what I saw. For it seemed to me that I should meet with more truth
in the reasonings which each man makes in his own affairs, and which if
wrong would be speedily punished by failure, than in those reasonings
which the philosopher makes in his study.’

In this frame of mind he led a roving, unsettled life; sometimes serving
in the army, sometimes remaining in solitude. At the age of three and
twenty, when residing in his winter quarters at Neuberg on the Danube,
he conceived the idea of a reformation in philosophy. Thereupon he began
his travels, and ten years later retired to Holland to arrange his thoughts
into a considered whole. In 1638 he published his Discourse on Method
and his Meditations. An immense sensation was produced by the Dis-
course, which contained important mathematical work. The name of Des-
cartes became known throughout Europe; Princes sought him; and it was
only the outbreak of the civil war in England which prevented him from
accepting a liberal appointment from Charles 1. Instead, he went to
Sweden at the invitation of Queen Christina, arriving at Stockholm in
1649, where it was hoped that he would found an Academy of Sciences.
Such a replica cf the Platonic School in Athens already existed in Paris.
But his health gave way under the severity of the climate, and shortly
after his arrival he died.

The work of Descartes changed the face of mathematics: it gave geom-
etry a universality hitherto unattained; and it consolidated a position
which made the differential calculus the inevitable discovery of Newton
and Leibniz. For Descartes founded analytical geometry, and by so doing
provided mathematicians with occupation lasting over two hundred years.

Descartes was led to his analytical geometry by systematically fitting
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algebraic symbols to the still fashionable rhetorical geometry. Examples
of this procedure have already been given on p. 14 and elsewhere. Those
examples were stated in algebraic formulae in order to convey the sense
of the propositions more readily to the reader. Strictly speaking, they were
an anachronism before the time of Descartes. His next step concerned the
famous Apollonian problem (p. 112) [locus] ad tres et quattuor lineas, dis-
closed by Pappus. It will be recalled that a point moves so that the product
of its oblique distances from certain given lines is proportional to that of
its distances from certain others. Descartes took a step that from one point

P
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of view was simplicity itself—he enlisted the fact that plane geometry is
two-dimensional. So he expressed everything in the figure in terms of two
variable lengths, x and y, together with fixed quantities. This at once gave
an algebraic statement for the results of Pappus: it put them into a form
now typified by f(x, y) = 0, an equation where x and y alone are variable.
The fundamental importance of this result lies in the further consequence
that such an equation can be looked on as the definition of y in terms of x.
It defined y as a function of x: it did geometrically very much what
Napier’s definition of a logarithm did dynamically. It also gave a new sig-
nificance to the method of Archimedes for discussing the area of a curve,
using an abscissa ON and an ordinate NP: in the notation of Descartes
ON became x and NP, y. But, besides this, it linked the wealth of Apol-
lonian geometry with what Archimedes had found; by forging this link
Descartes rendered his most valuable service to mathematics.

Although Descartes deserves full credit for this, because he took con-
siderable pains to indicate its significance, he was not alone in the dis-
covery. Among others to reach the same conclusion was FERMAT—an-
other of the great French mathematicians, a man of deeper mathematical
imagination than Descartes. But Fermat had a way of hiding his dis-
coveries.

Before indicating some of the principal consequences of this new
method in geometry, there are other aspects of the notation which should
be mentioned. The letter x has become world-famous: and it was the
methodical Descartes who first set the fashion of denoting variables by
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x, ¥, z and constants by a, b, c. He also introduced indices to denote con-
tinued products of the same factor, a step which completed the improve-
ments in notation originating with Diophantus. The fruitful suggestion of
negative and fractional indices followed soon afterwards: it was due to
WALLIS, one of our first great English mathematicians. A profound step in
classification also was taken when Descartes distinguished between two
classes of curves, geometrical and mechanical, or, as LEIBN1Z preferred to
call them, algebraic and transcendental. By the latter is meant a curve,
such as the spiral of Archimedes, whose Cartesian equation has no finite
degree.

Apollonius had solved the problem of finding the shortest distance from
a given point to a given ellipse, or other conic. Following this lead Des-

FIGURE 14

cartes addressed himself to the same problem in general: he devised a
method of determining the shortest line PQ from a given point P to a
given curve. Such a line meets the curve at right angles in the point Q,
and is often called the normal at Q to the curve. Descartes took a circle
with centre P, and arranged that the radius should be just large enough
for the circle to reach the curve. The point where it reached the curve
gave him Q, the required foot of the normal. His way of getting the proper
radius was interesting; it depended on solving a certain equation, two of
whose roots were equal. It is hardly appropriate to go into further details

o

FIGURE 15

here; but the reader who has some familiarity with analytical geometry,
and has found the tangent to a circle or conic by the method of equal
roots, has really employed the same general principle. Had Descartes been
so inclined he could also have used his method for finding a tangent to a
curve, i.e. a line PQ touching a given curve at a point Q (Figure 15). This
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is one of the first problems of the differential calculus; and one of the
earliest solutions was found by Fermat and not by Descartes.

Fermat had discovered how to draw the tangent at certain points of a
curve, namely at points Q which were, so to speak, at a crest or in the
trough of a wave of the curve. They were points at a maximum or mini-
mum distance from a certain standard base line called the axis of x. By so

o X
FIGURE 16
doing, Fermat had followed up a fertile hint, which Kepler had let fall,
concerning the behaviour of a variable quantity near its maximum or
minimum values.

An interesting curve, still called the Cartesian oval, was discovered by
Descartes, and has led to far-reaching research in geometry and analysis.
It was found in an endeavour to improve the shape of a lens, so as to
condense a pencil of light to an accurate focus. Although a lens of this
shape would successfully focus a wide-angled pencil of light, if it issued
from a certain particular position, the lens would be otherwise useless.
But it has a physical, besides a mathematical, interest: for the principle
underlying its construction is identical with that which Hero of Alex-
andria first noticed in the case of plane mirrors. It is the principle
of Least Action, which was ultimately exhibited in a general form by
Hamilton.

All this mathematical work was but part of a comprehensive philosophi-
cal programme culminating in a theory of vortices, by which Descartes
sought to account for the planetary motions. Just as Kepler had thought
of comets as live fishes darting through a celestial sea, Descartes imagined
the planets as objects swirling in vast eddies. It remained for Newton not
only to point out that this theory was incompatible with Kepler's planetary
laws, but to propose a truer solution.

In philosophy Descartes made a serious attempt to build up a system
in the only way which would appeal to a mathematician—by first framing
his axioms and postulates. In doing this he was the true symbol of an age,
filled with self-confidence after the triumphs of Copernicus, Napier and
Kepler. We cannot but admire the intellectual force of a man who under-
took to revise philosophy and achieved so much. Nevertheless he lacked
certain gifts that might be thought essential to success in the venture. He
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was cold, prudent and selfish, and offered a great contrast to his younger
contemporary, the mathematician and philosopher, Blaise Pascal.

The analytical geometry of Descartes is a kind of machine: and ‘the
clatter of the co-ordinate mill’, as Study has remarked, may be too in-
sistent. The phenomenal success of this machine in the hands of Newton,
Euler and Lagrange almost completely diverted thought from pure geom-
etry. The great geometrical work in France, contemporary with that of
Descartes, actually sank into oblivion for about two centuries, until it
came into prominence once more, a hundred years ago. Two of the early
French geometers were PascAL and DESARGUES, and their work was the
natural continuation of what Kepler had begun in projective geometry.
Desargues, who was an engineer and architect residing at Lyons, gave to
the ancient geometry of Apollonius its proper geometrical setting. He
showed, for example, with grand economy, how to cut conics of different
shapes from a single cone, and that a right circular cone. He won the ad-
miration of Chasles, the great French geometer of the nineteenth century,
who speaks of Desargues as an artist, but goes on to say that his work
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bears the stamp of universality uncommon in that of an artist. Desargues
had the distinction of finding out one of the most important theorems of
geometry, which takes its place, with a theorem of Pappus already quoted,
as a fundamental element in the subject. It runs as follows: if two tri-
angles ABC and DEF are such that AD, BE, CF meet in a point, then
BC, EF; CA, FD; AB, DE, taken in pairs, meet in three points which are
in line (Figure 17). The theorem is remarkable because it is easier to
prove if the triangles are not in the same plane. As a rule, solid geometry
is more difficult to handle than plane geometry—but not invariably. The
perspective outline drawing of a cube on a sheet of paper is a more com-
plicated figure than the actual outline of the solid cube. Desargues began
the method of disentangling plane figures by raising them out of the flat
into three dimensions. This is a choice method that has only lately borne
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its finest fruit in the many-dimensional geometry of Segre and the Italian
school.

The work of Desargues is intimately linked with that of Pascal. Even
in the grand century which produced Descartes, Fermat and Desargues,
the fourth great French mathematician, BLAISE PAscaL, stands out for the
brilliancy of his genius and for his astonishing gifts. He was born at Cler-
mont-Ferrand in Auvergne on 19th June, 1623; and was educated with the
greatest care by his father, who was a lawyer and president of the Court
of Aids. As it was thought unwise to begin mathematics too early, the boy
was put to the study of languages. But his mathematical curiosity was
aroused, when he was twelve years old, on being told in reply to a question
as to the nature of geometry, that it consisted in constructing exact figures
and in studying the relations between the parts. Pascal was doubtless stim-
ulated by the injunction against reading it, for he gave up his playtime to
the new study, and before long had actually deduced several leading prop-
erties of the triangle. He found out for himself the fact that the angles of
a triangle are together equal to two right angles. When his father knew of
it, he was so overcome with wonder that he wept for joy, repented, and
gave him a copy of Euclid. This, eagerly read and soon mastered, was fol-
lowed by the conics of Apollonius, and within four years Pascal had
written and published an original essay on conic sections, which astounded
Descartes. Everything turned on a miracle of a theorem that Pascal called
‘L’hexagramme mystique’, commonly acknowledged to be the greatest
theorem of mediaeval geometry. It states that, if a hexagon is inscribed
in a conic, the three points of intersection of pairs of opposite sides always
lie on a straight line: and from this proposition he is said to have de-
duced hundreds of corollaries, the whole being infused with the method
of projection. The theorem has had a remarkably rich history, after the
two hundred year eclipse, culminating in the enchantments of Segre when
he presents it as a cubic locus in space of four dimensions, transfigured
yet in its simplest and most inevitable form!

During these years Pascal was fortunate in enjoying the society in Paris
of Roberval, Mersenne and other mathematicians of renown, whose regu-
lar weekly meetings finally grew into the French Academy. Such a stim-
ulating atmosphere bore fruit after the family removed to Rouen, where
at the age of eighteen Pascal amused himself by making his first calcu-
lating machine, and six years later he published his Nouvelles Expériences
sur le vide, containing important experimental results which verified the
work of Torricelli upon the barometer. Pascal was, in fact, as capable and
original in the practical and experimental sciences as in pure geometry.
At Rouen his father was greatly influenced by the Jansenists, a newly
formed religious sect who denied certain tenets of Catholic doctrine, and
in this atmosphere occurred his son’s first conversion. A second conver-
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sion took place seven years later, arising from a narrow escape in a car-
riage accident. Henceforth Pascal led a life of self-denial and charity,
rarely equalled and still more rarely surpassed. When one of his friends
was condemned for heresy, Pascal undertook a vigorous defence in A
Letter written to a Provincial, full of scathing irony against the Jesuits.
Then the idea came to him to write an Apologia of the Christian Faith,
but in 1658 his health, always feeble, gave way; and after some years of
suffering borne with noble patience he died at the age of thirty-nine. The
notes in which he jotted down his thoughts in preparation for this great
project, have been treasured up and published in his Pensées, a literary
classic.

In Pascal the simplest faith graced the holder of the highest intellectual
gifts: and for him mathematics was something to be taken up or laid aside
at the will of God. So when in the years of his retirement, as he lay awake
suffering, certain mathematical thoughts came to him and the pain disap-
peared, he took this as a divine token to proceed. The problem which
occurred to him concerned a curve called the cycloid, and in eight days
he found out its chief properties by a brilliant geometrical argument. This
curve may be described by the rotation of a wheel: if the axle is fixed, like
that of a flywheel in a machine, a point on the rim describes a circle; but
if the wheel rolls along a line, a point on the rim describes a cycloid.
Galileo, Descartes and others were interested in the cycloid, but Pascal
surpassed them all. To do so he made use of a new tool, the method of
indivisibles recently invented by the Italian CAvALIERI. Though Pascal
threw out a challenge, no one could compete with him: and his work may
be regarded as the second chapter in the integral calculus, to which Archi-
medes had contributed the first.

An account of Pascal, the mathematician, would be incomplete without
reference to his algebra, which, in the present-day sense of the word, he
practically founded. It arose out of a game of chance that had formed a
topic of discussion between Pascal and Fermat. From the debate the
notion of mathematical probability emerged; this in turn Pascal looked
upon as a problem in arrangements or combinations of given things and
in counting those arrangements. With characteristic insight he lit upon the
proper mechanism for handling the subject. It was the Arithmetic Tri-
angle, a device already used by Napier for another purpose, and dating
from still earlier times.

1 1 1 1 1 1 Certain numbers are written down in a tri-
1 2 3 4 5 angular table, as shown by the diagram.
1 3 6 10 The table can at any stage be enlarged by
1 4 10 affixing further numbers, one each at the
1 5 right-hand extremities of the rows, with a
1 single 1 added at the bottom of the first
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column to start a new row. For example, underneath the 5 of the second
row, and alongside the 10 of the third row a new number can be placed.
This number is 15, the sum of the 5 and the 10. According to this rule of
simple addition each new number is entered in the table. The diagram
exhibits a 1 in the top left-hand corner followed by five parallel diagonals,
the fifth and last being (1, 5, 10, 10, 5, 1). A sixth, which has not been
filled in, would consist of 1, 6, 15, 20, 15, 6, 1, according to the addition
rule. Instead of locating an entry, 10 for example, as standing in the fourth
row and third column, it is more important to locate it by the fifth diag-
onal and third column. Pascal discovered that this gave the number of
combinations of five things taken two at a time; and he found a formula
for the general case, when the number stood in the mth diagonal and the
(n + 1)th column. He stated this correctly to be (n + 1) (n + 2) (n + 3)
... (m)/1.23. . .. (m — n). He also utilized the diagonals for work-
ing out the binomial expansion of (a + b)™. For example,

(a+ b)5 = a% + 5a*b + 104302 + 10428 + Sabt + b5,

Numbers and quantities are not always so important for their size or
bulk as for their patterns and arrangements. What Pascal did was to bring
this notion of pattern, common enough in geometry, to bear upon num-
ber itself—a highly significant step in the history of mathematics. By so
doing he created higher algebra and prepared the way for Bernoulli, Euler
and Cayley. ‘Let no one say that I have said nothing new’, writes Pascal in
his Pensées; ‘the arrangement of the subject is new. When we play tennis,
we both play with the same ball, but one of us places it better.’

FERMAT, who shared with Pascal the beginning of this algebra, is most
famous for his theory of numbers. In the margin of a copy of Diophantus
he made a habit of scribbling notes of ideas which came into his mind as
he read. These notes are unique in their interest and profundity: he
seemed to grasp properties of whole numbers by intuition rather than
reason. The most celebrated note, which is often called Fermat's Last
Theorem, has baffled the wit of all his analytical successors: for no one
has yet been able to say whether Fermat was right or wrong. The theorem
asserts that it is impossible to find whole numbers x, y, z which satisfy the
equation

Xt 4 yr =20

when n is an integer greater than 2. He adds: ‘I have found for this a
truly wonderful proof, but the margin is too small to hold it." The problem
has led to a wealth of new methods and new ideas about number; valu-
able prizes have been offered for a solution; but to-day its quiet challenge
still remains unanswered.

Great things were also going on in Italy and England during this early
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seventeenth century. CAVALIERI of Bologna will always rank as a remark-
able geometer who went far in advancing the integral calculus by his
Method of Indivisibles, following up Kepler's wine-cask geometry. One of
his theorems is a gem: upon concentric circles equally spaced apart he
drew a spiral of Archimedes whose starting-point was the centre. Then
in order to discover its area he re-drew the figure with all the circles
straightened out into parallel lines the same distances apart as before.
As a result the spiral became a parabola: and ‘Unless I am mistaken’, he
adds, ‘this is a new and very beautiful way of describing a parabola.’ This
is an early example of a transcendental mathematical transformation that
not only preserves the area of a sector of the original curve but also the
length of its arc.

Another very fine piece of work was done in 1695 by PIETRO MENGOLI,
who gave an entirely new setting to the celebrated logarithm, by showing
that it was intimately linked with a harmonical progression. His definition
and treatment was on true Eudoxian lines and rigorous enough to satisfy
the strictest arithmetical disciple of Weierstrass.

It is natural that, in these years succeeding Napier’s death, a great deal
of attention was bestowed upon the logarithm. Besides the practical busi-
ness of constructing tables there was the still more interesting theory of
logarithms to consider. The stimulus of analytical geometry encouraged
several mathematicians to treat the logarithm by the method of co-ordi-
nates. This led to a beautiful result that connected the area between a
hyperbola and its asymptote with the logarithm. It was found in 1647 by
GREGOIRE DE SAINT VINCENT, of Flanders: but several others turned their
attention to the matter, reaching the same general conclusions more or
less independently; notably Mercator, Mersennes, Brouncker, Wallis,
James Gregory, Newton and Leibniz. (This Mercator was not the maker
of geographical maps: he was a mathematician who had lived in the pre-
vious century.)

It is not difficult to suggest how this result was attained. A start was
made with the geometrical progression whose sum is 1/(1 — x); namely,

1

=14+x+x2+83+x4. . .,

1—x
and a curve was determined whose co-ordinate equation is y = 1/(1 — x).
This curve is a hyperbola. Next, its area was determined, by following
much the same course that Archimedes had taken for the case of the
parabola. There was no difficulty in finding a requisite formula, thanks to
Napier’s original definition of the logarithm. It led to the result

log(l—-x)=—-x———————
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which is called the logarithmic series. As may be seen, it is a union of the
geometrical and harmonical progression.

Among the names which have just been given we find one Scot, one
Irishman, and two Englishmen. For at last England produced mathema-
ticians of the first rank, and in Gregory Scotland possessed a worthy suc-
cessor to Napier. It is interesting to give, as typical specimens from the
work of these our fellow-countrymen, the following formulae, which may
be compared and contrasted with the logarithmic series:

4 1
X 1+1
2+ 32
245

T 2X4X4X6X6XEX. .

— .

4 3IX3IXSXSXTIXTX...

k1 4
Z=1_%+%“%+- a a

The first is due to LorRD BROUNCKER, an Irish peer; the second to
WaLLIs, who was educated in Cambridge and later became Savilian Pro-
fessor of Mathematics in Oxford. The third was given by LEIBNIZ, but is
really a special case of a formula discovered by JAMEs GREGORY. Two of
these formulae have been slightly altered from their original statements.
The reader is not asked to prove, but merely to accept the results! After
all, as they stand, they are readily grasped. The row of dots, with which
each concludes, signifies that the formula can be carried farther; in fact,
they each have something in common with the ladder-arithmetic of
Athens (p. 97). They have this in common also with Vieta’s formula for =
(p. 121); but they improve on it, not only for their greater simplicity, but
because each converges, as Plato would have it, by ‘the great and small'—
each step slightly overshooting the mark. This is not always done when
such sequences are used, as in the more ordinary formula

F
— = % of 3.1415926 . . . = -785398 . . .,
4

which approximates from one side only, like the putts of a timid golfer
who never gives the ball a chance, or like the race of Achilles and the
tortoise. Such series need careful handling, as Zeno had broadly hinted;
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and Gregory (by framing the notions of convergency and divergency)
was the first to provide this.

n
In the last of these four formulae for ;, the digits occur at random, and

for this reason the statement is of little interest except to the practical
mathematician. It is far otherwise with the other three: the arrangement
of their parts has the inevitability of the highest works of art. It would be
a pleasure to hear Pythagoras commenting upon them.

The Gregory family has long been associated with the county of Aber-
deen. It had not been distinguished intellectually until John Gregory of
Drumoak married Janet Anderson, herself a mathematician and a relative
of the Professor of Mathematics in Paris. Many of their descendants have
been eminent either as mathematicians or physicians. Chief among them
all was their son James, who learnt mathematics from his mother. Un-
happily, like Pascal, he died in his prime; but he lived long enough to
exhibit his powers. After spending several years in Italy he occupied the
Chair of Mathematics in St. Andrews for six years, followed by one year
in Edinburgh. Shortly before his death he became blind.

Gregory was a great mathematical analyst, and many of his incidental
results are striking. From the study of the logarithm he discovered the
binomial theorem, generally and rightly attributed to Newton, who had
probably found it out a few years earlier without publishing the result. It
was but another case of independent discovery, as were also their inven-
tion of the reflecting telescope, and their attainments in the differential
and integral calculus. The work of Gregory opened out a broad region of
higher trigonometry, algebra and analysis. It is important not merely in
detailed theorems but for its general aim, which was to prove that no finite
algebraic formula could be found to express the functions that arise in
trigonometry and logarithms. In other words, he held that circle-squarers
were pursuing a vainer phantom than those who endeavour with rule and
compass to trisect an angle. His project was lofty, even if it inevitably
failed: it was a brilliant failure in an attempt to disentangle parts of pure
mathematics which were only satisfactorily resolved during the nine-
teenth century.

Some of his greatest work remained in manuscript until the Gregory
tercentenary (1938) gave an opportunity to publish it. This included an
important general theorem which was later discovered by Brook Taylor
(1715). Paper was scarce in 1670 when Gregory used the blank spaces
of old letters to record his work. This was the year when BARROW pro-
duced his masterpiece, the Lectiones Geometricae, in which the founda-
tions of the differential and the integral calculus were truly but geometri-
cally laid.
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If it is asked what is the peculiar national contribution made by our
country to mathematics, the reply is: the mathematics of interpolation—
the mathematical art of reading between the lines. As an illustration let us
consider the arithmetical triangle of Pascal, supposing it to be a fragment
of an Admiralty chart. The numbers indicate the depth in fathoms at
various points on the surface of the sea. Such a chart with these particular
readings obviously indicates a submarine valley trending downwards
south-east. What the chart does not show is the actual depth at positions
intermediate between the readings. Mathematical interpolation is con-
cerned with discovering a formula for the most probable depth consistent
with these measured soundings. Certain isolated points are given: what is
happening between? Napier, Briggs, Wallis, Gregory and Newton, each in
his way gave an answer.

From gap to gap
One hangs up a huge curtain so,
Grandly, nor seeks to have it go
Foldless and flat against the wall.

Indeed, some faith was needed to believe that there was a curtain, and
some imagination to see its pattern. For Napier it was the pattern of the
logarithm; Wallis wrought a continuous chain out of the isolated ex-
ponents x1, x2, x3, . . ., by filling in fractional indices. Newton found
out the pattern which fills in the triangle of Pascal; and from this he dis-
covered the binomial theorem in its general form. Briggs suggested and
Gregory found an interpolation formula of very wide application, while
Newton supplemented it with several other alternatives which have usually
been attributed to Stirling, Bessel and Gauss.

CHAPTER VII
ISAAC NEWTON

IN the country near Grantham during a great storm, which occurred
about the time of Oliver Cromwell’s death, a boy might have been seen
amusing himself in a curious fashion. Turning his back to the wind he
took a jump, which of course was a long jump. Then he turned his face
to the wind and again took a jump, which was not nearly so long as his
first. These distances he carefully measured, for this was his way of ascer-
taining the force of the wind. The boy was Isaac Newton, and he was one
day to measure the force, if force it be, that carries a planet in its orbit.
From school at Grantham his friends took him to tend sheep and go
regularly to the Grantham market. But as he would read mathematics in-
stead of minding his business, it was at last agreed that he should go back
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to school, and from school to college. At school he lodged with Mr. Clark,
apothecary, and in his lodgings spent much time, hammering and knock-
ing. In the room were picture-frames and pictures of his own making, por-
traits, and drawings of birds and beasts and ships. Somewhere in the house
might be seen a clock that was worked by water, and a mill which had a
mouse as its miller. The boy made a carriage which could be propelled by
the passenger, and a sundial that stood in the yard. To the little ladies of
the house he was a very good friend, making tables and chairs for their
dolls. His schoolfellows looked up to him as a skilful mechanic. As for
his studies, when he first came to school he was somewhat lazy, but a
fight that he had one day woke him up, and thereafter he made good
progress. This quiet boy had great powers which were yet to be brought
out.

In his twentieth year he went to Cambridge, where for more than thirty
years he lived at Trinity College. He entered the college as a sizar, that is
to say, being too poor to live in the style of other undergraduates he re-
ceived help from the college. His tutor invited him to join a class reading
Kepler's Optics. So Newton procured a copy of the book, and soon sur-
prised the tutor by mastering it. Then followed a book on astrology; but
this contained something which puzzled him. It was a diagram of the
heavens. He found that, in order to understand the diagram, he must first
understand geometry. So he bought Euclid's Elements, but was disap-
pointed to find it too simple. He called it a ‘trifling book’ and threw it
aside (an act of which he lived to repent). But turning to the work of
Descartes he found his match, and by fighting patiently and steadily he
won the battle,

After taking his degree Isaac Newton still went on learning all the
mathematics and natural philosophy that Cambridge could teach him, and
finding out new things for himself, until the Lucasian Professor of Mathe-
matics in the University had become so convinced of the genius of this
young man that, incredible as it may seem, he gave up to him his pro-
fessorship. Isaac Barrow, the master of Newton’s college, who thus re-
signed, was at no time a man to prefer self-interest before honour. He
was possessed of great personal courage, and is reputed to have fought
with a savage dog in an early morning’s walk, and to have defended a ship
from pirates. He was a mathematician of no mean powers; and as a divine
he gained a lasting reputation.

Newton made three famous discoveries: one was in light, one was in
mathematics, and one in astronomy. We are not to suppose that these
flashed upon him all at once. They were prepared for by long pondering.
‘I keep’, said he, ‘the subject of my inquiry constantly before me, and wait
till the first dawning opens gradually, by little and little, into a full and
clear light’ Early in his career he discovered that white light was com-
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posed of coloured lights, by breaking up a sunbeam and making the sepa-
rate beams paint a rainbow ribbon of colours upon a screen. This discovery
was occasioned by the imperfection of the lenses in telescopes as they were
then made. Newton chose to cure the defect by inventing a reflecting tele-
scope with a mirror to take the place of the principal lens, because he
found that mirrors do not suffer from this awkwardness of lenses. It is one
of his distinctions, shared with Archimedes and a few other intellectual
giants, that his own handiwork was so excellent. In the chapel of his col-
lege there is a statue, holding a prism:

—Newton, with his prism and silent face;
The marble index of a mind for ever
Voyaging through strange seas of thought, alone.

In mathematics his most famous discovery was the differential and in-
tegral calculus—which he called the method of Fluxions: and in astron-
omy it was the conception and elaboration of universal gravitation. It
would be a mistake to suppose that he dealt with these subjects one by
one: rather they were linked together, and reinforced each other. Already
at the age of twenty-three, when for parts of the years 1665 and 1666 the
college was shut down owing to the plague, Newton had thought out, in
his quiet country home, the principles of gravitation and, for the better
handling of the intense mathematical difficulties which the principles in-
volved, he had worked at the fluxional calculus. In the space of three
years after first reading geometry, he had so completely mastered the
range of mathematics from Archimedes to Barrow, that he had fitted their
wonderful infinitesimal geometry into a systematic discipline. Newton
gave to analysis the same universality that Descartes had already given to
geometry.

Newton may be said to have fused the points of view adopted by Napier
and Descartes into a single whole. Napier thought of points M and N
racing along parallel tracks OX and OY, N moving steadily and M at a
variable speed. The co-ordinates of Descartes provide a chart of the race
in the following way: the lines OX and OY can be placed, no longer
parallel, but at right angles to each other, and a curve can be plotted,
traced by a point P which is simultaneously abreast of the points N and M.
In this way two figures can be drawn, one the Napierian and the other the
Cartesian. The figures are symbols of two lines of thought—the kinemati-
cal and the geometrical. Newton may never actually have drawn such
figures side by side, but he certainly had the two trains of thought. ‘I fell
by degrees on the method of fluxions,” he remarks: and by fluxions he
simply meant what we call the simultaneous speeds of the points N and M.
Then by seeking to compare the speed of M with that of N, he devised
the method which the geometrical figure suggests. ‘Fluxions' was his name
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for what we call the differential and integral calculus, but he kept the dis-

covery to himself.

In after years LEIBNIZ announced that he had found this new mathe-
matical method. Then a quarrel arose between the followers of Newton
and the followers of Leibniz, and unhappily it grew into a quarrel between
the great men themselves. It is enough to say that the time was ripe for
such a discovery: and both Newton and the German philosopher were
sufficiently gifted to effect it. Newton was the first to do so, and only
brought the trouble unwittingly on his head by refraining from publishing
his results. It is also probable that Leibniz was influenced more by Pascal
and Barrow than by Newton: and in turn we owe to Leibniz the record of
parts of Pascal’s work which would otherwise have been lost.

About this time the Royal Society of London was founded by King
Charles II. It corresponded with the Academy of Paris, and provided a
rendezvous for the leading mathematicians and natural philosophers in the
country. Two of the Fellows of this Society were Gregory and Newton,
who had become friends through their common interest in the reflecting
telescope. Besides maintaining a correspondence, they may actually have
met. They were certainly brought into contact with other leading mathe-
maticians and astronomers. Among those who have not already been men-
tioned in the last chapter were Wren, Hooke, and Halley.

Christopher Wren is now so famous as the builder of St. Paul's Cathe-
dral that we never hear of his scientific fame, though a man of science he
was. Hooke, who was in appearance a puny little man, was a hard student,
often working till long after midnight, but caring too excessively for his
own reputation. When Newton found out anything, Hooke would com-
monly remark, ‘That is just what I found out before.’ But he was a great
inventor, whose eager speculations stirred people up to think about the
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questions which Newton was to solve. Halley was an astronomer—a very
active man, always travelling about the world to make some addition to
his science. Every one has heard of Halley’s comet, and to Halley is due
the credit of bringing Newton before the world as the discoverer of gravi-
tation.

One day these three friends were talking earnestly together: the subject
of their conversation was the whirlpool theory of Descartes, which they
felt to be hardly a satisfactory explanation of planetary motion. It did not
seem to give a proper explanation of the focal position of the Sun within
the elliptic orbit. Instead of imagining the planets to be propelled by a
whirling current, they preferred to think that each planet was forcibly
attracted by the Sun. ‘Supposing’, said they, ‘the Sun pulls a planet with
such and such a force, how ought the planet to go? We want to see clearly
that the planet will go in an ellipse. If we can see that, we shall be pretty
sure that the Sun does pull the planet in the way we supposed.’ ‘I can
answer that,’ said Hooke: upon which Wren offered him forty shillings on
condition of his producing the answer within a certain time. However,
nothing more was heard of Hooke’s solution. So at last after several
months Halley went to Cambridge, to consult Newton; and, without men-
tioning the discussion which had taken place in London, he put the ques-
tion: If a planet were pulled by the Sun with a force which varies inversely
as the square of the distance between them, in what sort of a curve ought
the planet to go? Newton, to Halley’s astonishment and delight answered,
‘An ellipse.’ ‘How do you know that? ‘Why, I have calculated it." ‘Where's
the calculation?’ Oh, it was somewhere among his papers; he would look
for it and send it to Halley. It appeared that Newton had worked all this
out long before; and only now in this casual way was the matter made
known to the world. Then Halley did a wise thing: he persuaded his re-
tiring friend to develop the entire problem, explaining the whole compli-
cated system of planetary motion. This Newton did; it was a tremendous
task, taking two or three years; at the end of which appeared the famous
book called The Mathematical Principles of Natural Philosophy, or more
shortly the Principia, one of the supreme achievements of the human
mind. :

It is impossible to exaggerate the importance of the book, which at once
attracted the keenest attention not only in England but throughout Europe.
It was a masterpiece alike of mathematics and of natural philosophy. Per-
haps the strangest part of the work was not so much the conception that
the Sun pulls the planet, but that the planet pulls the Sun—and pulls
equally hard! And that the whole Universe is full of falling bodies: and
everything pulls everything else—literally everything, down to the mi-
nutest speck of dust. When Newton’s friends had discussed the effect of
the solar attraction upon a planet, they had correctly surmised the requisite
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force: it was determined by what is called the law of the inverse square.
Newton had already adopted this law of force in his early conjectures,
during the long vacation of 1666, over twenty years before the publication
of the Principia (1687). That early occasion is also the date to which the
well-known apple story may be referred. It is said that the sight of a fall-
ing apple set in motion the train of thought, leading Newton to his dis-
covery of universal gravitation. But after working out the mathematical
consequences of his theory and finding them to disagree with the observed
facts he had tossed his pages aside. Only after many years he became
aware of later and more careful calculations of the observations. This
time, to his delight, they fitted his mathematical theory, and so Newton
was ready with his answer, when Halley paid him the memorable visit.

In the Principia Newton demonstrated that, if his rule of gravitation is
universally granted, it becomes the key to all celestial motions. Newton
could not prove that it was the right key, for not all the celestial motions
were known at the time, but very nearly all that have since been discov-
ered help to prove that he was right. Even so, there was enough already
known to give Newton plenty of trouble. The moon, for instance, that
refuses to go round the Earth in an exact ellipse, but has all sorts of fanci-
ful little excursions of her own—the moon was very trying to Isaac
Newton.

Newton's great book was written in Latin, and, in order to make it
intelligible to current habits of mind, it was couched in the style of Greek
geometry. Newton had of course worked the mathematics out by fluxions,
but he preferred to launch the main gravitational discovery alone, without
further perplexing his readers by the use of a novel method. Outside his
Cambridge lecture-room little was known of his other mathematical per-
formances until a much later date. His Arithmetica Universalis was pub-
lished in 1707, and two more important works, on algebra and geometry,
appeared about the same time. Newton left his mark on every branch of
mathematics which he touched; indeed, there are few parts of the subject
which escaped his attention. Allusion has already been made to his work
in interpolation and algebra. The power of his methods may be judged
from one celebrated theorem which he gave without proof for determining
the positions of the roots of an equation. A hundred and fifty years elapsed
before Sylvester discovered how to prove his theorem.

The publication of the Principia forced Newton to abandon his sheltered
life. In 1689 he became a Member of Parliament, and a few years later
was appointed Master of the Mint. In 1705 he was knighted by Queen
Anne. He died in 1727 at an advanced age, and was buried in Westminster
Abbey. Voltaire has recorded his pride at having lived for a time ‘in a
land where a Professor of Mathematics, only because he was great in his
vocation, was buried like a king who had done good to his subjects’. The
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world at large is often more generous in showing appreciation and grati-
tude than are mathematicians themselves, who feel, but are slow to exhibit
their feelings. It is therefore the more noteworthy that, two hundred years
later, in 1927, the English mathematical world made a pilgrimage to
Grantham, to signal their respect for the genius of Newton. This alone is
enough to indicate that the immense reputation which he always enjoyed
was fully deserved.

It is proper to associate, with Newton, the great Dutch natural philoso-
pher HuvGens (1629-1693), who was in close touch with scientists of
England, and did much to stimulate their wonderful advances. His own
work in physics is so grand that his mathematics are apt to be overlooked.
He contributed many elegant results in the infinitesimal calculus, particu-
larly in its bearings upon mechanical phenomena, the oscillations of a
pendulum, the shape of a hanging string, and the like. But he is best
known for his undulatory theory of light.

As a mathematical concept this has proved to be a landmark in the his-
tory, and it is particularly interesting because it has thrown Newton’s uni-
versal gravitation into intense relief. To Newton light seemed to be so
many tiny particles streaming in luminous lines: to Huygens, on the con-
trary, light was propagated by waves. The sequel has shown that, of these
rival theories, the latter is the more valuable. Not only has it provided a
better key to optical puzzles, but it has also answered many purposes in
the theory of electricity and magnetism. One by one, the natural phe-
nomena were absorbed in this all-enveloping wave-theory, and gravitation
alone remained untouched—a single physical exception. This unwavelike
behaviour of gravitation, this action at a distance, sorely perplexed New-
ton himself, long before these further instances of natural behaviour had
made wave motion the correct deportment. As the mystery of gravitation
deepened, it became more and more the conscious aim of scientists to ex-
plain the contrast: and the matter has only lately been settled by Einstein,
who solves the problem by drastically embedding gravitation in the very
texture of space and time.

But it would be wrong to suppose that this left the field clear for the
wave-theory. Quietly and unobtrusively other interruptions have been con-
gregating, and reasons have once more been urged in favour of Newton’s
corpuscular theory of light. At the present time there is no clear-cut
decision one way or the other: the work of both Newton and Huygens
appears to be fulfilled in the Quantum Theory and the Wave Mechanics.
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CHAPTER VIII
THE BERNOULLIS AND EULER

THE story of mathematics during the eighteenth century is centred upon
Euler, and the scene of action is chiefly laid in Switzerland and Russia.
About the time when Napier was experiencing the turmoil of the Refor-
mation, violent persecution of Protestants took place in Antwerp. One of
the many refugees, whom Belgium could ill afford to lose, was a certain
Jacques Bernoulli, who fled to Frankfort. In 1622 his grandson settled at
Basel, and there, on the frontiers of Switzerland, the BERNoOULLI family
were destined to bring fame to the country of their adoption. As evidence
of the power of heredity, or of early home influence, their mathematical
record is unparalleled. No less than nine members of the family attained
eminence in mathematics or physics, four of whom received signal
honours from the Paris Academy of Sciences. Of these nine the two
greatest were the brothers Jacos and JoHN, great-grandsons of the fugitive
from Antwerp. Jacob was fifth child in the large family, and John, thirteen
years his junior, was tenth. Each in turn became Professor of Mathematics
at Basel.

The elder brother settled to his distinguished career, as a mathematical
analyst, only after considerable experiment and travel. At one time his
father had forbidden him to study either mathematics or astronomy,
hoping that he would devote himself to theology. But an inborn talent
urged his son to spend his life in perfecting what Pascal and Newton had
begun. Among his many discoveries, and perhaps the finest of them all,
is the equiangular spiral. It is a curve to be found in the tracery of the
spider’s web, in the shells upon the shore and in the convolutions of the
far-away nebulae. Mathematically it is related in geometry to the circle
and in analysis to the logarithm. A circle threads its way over the radii
by crossing them always at right angles; this spiral also crosses its radii
at a constant angle—but the angle is not a right angle. Wonderful are the
pheenix-like properties of the curve: let all the mathematical equivalents
of burning it and tearing it in pieces be performed—it will but reappear
unscathed! To Bernoulli in his old age the curve seemed to be no un-
worthy symbol of his life and faith; and in accordance with his wishes
the spiral was engraved upon his tombstone, and with it the words Eadem
mutata resurgo.

His younger brother Joun (1667-1748) followed in his footsteps, con-
tinually adding fresh material to the store of analysis, which now included
differential equations. His works exhibits a bolder use of negative and
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imaginary numbers, thereby realizing ‘the great emolument’ which Napier
himself had hoped to bestow on mathematics by ‘this ghost of a quantity,’
had not his own attention been absorbed by logarithms. His sons Daniel
and Nicolas Bernoulli were also very able mathematicians, and it was
under their influence at college that Euler discovered his vocation.

LeoNARD EULER (1707-1783) was the son of a clergyman who lived
in the neighbourhood of Basel. His natural aptitude for mathematics was
soon apparent from the eagerness and facility with which he mastered
the elements under the tuition of his father. At an early age he was sent
to the University of Basel, where he attracted the attention of John
Bernoulli. Inspired by such a teacher he rapidly matured, and at the age
of seventeen, when he received the degree of Master of Arts, he pro-
voked high applause for a probationary discourse, the subject of which
was a Comparison between the Cartesian and Newtonian Systems.

His father earnestly wished him to enter the ministry and directed his
son to study theology. But unlike the father of Bernoulli, he abandoned
his views when he saw that his son’s talents lay in another direction.
Leonard was allowed to resume his favourite pursuits and, at the age of
nineteen, he transmitted two dissertations to the Paris Academy, one upon
the masting of ships, and the other on the philosophy of sound. These
essays mark the beginning of his splendid career.

About this time, in consequence of the keen disappointment at failing
to attain a vacant professorship in Basel, he resolved to leave his native
country. So in 1727, the year when Newton died, Euler set off for St.
Petersburg to join his friends, the younger Bernoullis, who had preceded
him thither a few years earlier. On the way to Russia, he learnt that
Nicolas Bernoulli had fallen a victim to the stern northern climate; and
the very day upon which he set foot on Russian soil the Empress Cath-
erine I died—an event which at first threatened the dissolution of the
Academy, of which she had laid the foundation. Euler, in dismay, was
ready to give up all hope of an intellectual career and to join the Russian
navy. But, happily for mathematics, when a change took place in the
aspect of public affairs in 1730, Euler obtained the Chair of Natural
Philosophy. In 1733 he succeeded his friend Daniel Bernoulli, who wished
to retire; and the same year he married Mademoiselle Gsell, a Swiss lady,
the daughter of a painter who had been brought to Russia by Peter the
Great.

Two years later, Euler gave a signal example of his powers, when in
three days he effected the solution of a problem urgently needed by mem-
bers of the Academy, though deemed insoluble in less than several
months’ toil. But the strain of the work told upon him, and he lost the
sight of an eye. In spite of this calamity he prospered in his studies and
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discoveries, each step seeming only to invigorate his future exertions. At
about the age of thirty he was honoured by the Paris Academy when he
received recognition, as also did Daniel Bernoulli and our own country-
man Colin Maclaurin, for dissertations upon the flux and reflux of the sea.
The work of Maclaurin contained a celebrated theorem upon the equilib-
rium of elliptical spheroids; that of Euler brought the hope considerably
nearer of solving outstanding problems on the motions of the heavenly
bodies.

In the summer of 1741 King Frederick the Great invited Euler to reside
in Berlin. This invitation was accepted, and until 1766 Euler lived in
Germany. On first arriving he received a royal letter written from the
camp at Reichenbach, and he was soon after presented to the queen-
mother, who always took a great interest in conversing with illustrious
men. Though she tried to put Euler at his ease, she never succeeded in
drawing him into any conversation but that of monosyllables. One day
when she asked the reason for this, Euler replied, ‘Madam, it is because
I have just come from a country where every person who speaks is
hanged.” It was during his residence in Berlin that Euler wrote a remark-
able set of letters, or lessons, on natural philosophy, for the Princess of
Anhalt Dessau, who was eager for instruction from so great a teacher.
These letters are a model of perspicuous and interesting teaching, and it
is noteworthy that Euler should have found time for such detailed ele-
mentary work, amid all his other literary interests.

For eleven years his widowed mother lived in Berlin also, receiving
assiduous attention from her son, and enjoying the pleasure of seeing him
universally esteemed and admired. Euler became intimate in Berlin with
M. de Maupertuis, President of the Academy, a Frenchman from Brittany
who strongly favoured Newtonian philosophy in preference to Cartesian.
His influence was important, as it was exerted at a time when Continental
opinion was still reluctant to accept the views of Newton. Maupertuis
much impressed Euler with his favourite principle of least action, which
Euler used with great effect in his mechanical problems.

It speaks highly for the esteem in which Euler was held that, when in
1760 a Russian army invaded Germany and pillaged a farm belonging to
Euler, and the act became known to the general, the loss was immediately
made good, and a gift of four thousand florins was added by the Empress
Elizabeth when she learnt of the circumstance. In 1766 Euler returned to
Petersburg, to spend the remainder of his days, but shortly after his arrival
he lost the sight of his other eye. For some time he had been forced to use
a slate, upon which in large characters he would make his calculations.
Now, however, his pupils and children copied his work, writing the
memoirs exactly as Euler dictated them. Magnificent work it was too,
astonishing at once for its labour and its originality. He developed an
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amazing facility for figures, and that rare gift of mentally carrying out
far-reaching calculations. It is recorded that on one occasion when two
of his pupils, working the sum of a series to seventeen terms, disagreed
in their results by one unit at the fiftieth significant figure, an appeal was
made to Euler. He went over the calculation in his own mind, and his
decision was found to be correct.

In 1771, when a great fire broke out in the town and reached Euler's
house, a fellow-countryman from Basel, Peter Grimm, dashed into the
flames, discovered the blind man and carried him off on his shoulders
into safety. Although books and furniture were all lost, his precious writ-
ings were saved. For twelve years more Euler continued his excessive
labours, until the day of his death, in the seventy-sixth year of his
age.

Like Newton and many others, Euler was a man of parts, who had
studied anatomy, chemistry and botany. As is reported of Leibniz, he
could repeat the Aeneid from beginning to end, and could even remem-
ber the first and last lines in every page of the edition which he had been
accustomed to use. The power seems to have been the result of his most
wonderful concentration, that great constituent of inventive power, to
which Newton himself has borne witness, when the senses are locked up
in intense meditation, and no external idea can intrude.

Sweetness of disposition, moderation and simplicity of manner were his
characteristics. His home was his joy, and he was fond of children. In spite
of his affliction he was lively and cheerful, possessed of abundant energy;
as his pupil M. Fuss has testified, ‘his piety was rational and sincere; his
devotion was fervent.’

In an untechnical account it is impossible to do justice to the mathe-
matics of Euler: but while Newton is a national hero, surely Euler is a
hero for mathematicians. Newton was the Archimedes and Euler was the
Pythagoras. Great was the work of Euler in the problems of physics—but
only because their mathematical pattern caught and retained his attention.
His delight was to speculate in the realms of pure intellect, and here he
reigns a prince of analysts. Not even geometry, not even the study of lines
and figures, diverted him: his ultimate and constant aim was the perfection
of the calculus and analysis. His ideas ran so naturally in this train, that
even in Virgil's poetry he found images which suggested philosophic
inquiry, leading on to new mathematical adventures. Adventures they
were, which his more wary followers sometimes hailed with delight and
occasionally condemned. The full splendour of the early Greek beginnings
and the later works of Napier, Newton and Leibniz, was now displayed.
Let one small formula be quoted as an epitome of what Euler achieved:

er+1=0,
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Was it not Felix Klein who remarked that all analysis was centred here?
Every symbol has its history—the principal whole numbers 0 and 1; the
chief mathematical relations + and =; = the discovery of Hippocrates;
i the sign for the ‘impossible’ square root of minus one; and e the base of
Napierian logarithms.

CHAPTER IX
MACLAURIN AND LAGRANGE

AMONG the contemporaries of Euler there were many excellent math-
ematicians in England and France, such as Cotes, Taylor, Demoivre,
D’Alembert, Clairaut, Stirling, Maclaurin, and, somewhat later, Ivory,
Wilson and Waring. This by no means exhaustive list contains the names
of several friends of Newton—notably Cotes, Maclaurin and Demoivre.
They were Newton’s disciples, and each was partly responsible for making
the work of the Master generally accessible. Cotes and Maclaurin were
highly gifted geometers: the others of their time were interested in anal-
ysis. It was therefore a loss not only to British but to European mathe-
matics that Cotes and Maclaurin should both have died young.

CoLIN MACLAURIN (1698-1746), a Highlander from the county of
Argyle, was educated at the University of Glasgow. Such was his out-
standing ability that, at the age of nineteen, he was elected Professor of
Mathematics in Aberdeen. Eight years later, when he acted as deputy
Professor in Edinburgh, Newton wrote privately offering to pay part of
the salary, as there was difficulty in raising the proper sum. Maclaurin
took an active part in opposing the march of the Young Pretender in
1745 at the head of a great Highland army, which overran the country
and finally seized Edinburgh. Maclaurin escaped, but the hardships of
trench warfare and the subsequent flight to York proved fatal, and in
1746 he died.

Stirred by the brilliant work of Cotes, which luckily came into his
hands, Maclaurin wrote a wonderful account of higher geometry. He
dealt with the part which is called the organic description of plane curves,
a subject belonging to Euclid, Pappus, Pascal and Newton. It is the mathe-
matics of rods and bars, constrained by pivots and guiding rails—the
abstract replica of valve gears and link motions familiar to the engineer—
and it fascinates the geometer who ‘likes to see the wheels go round’.
Maclaurin carried on what Pascal had begun with, the celebrated mystic
hexagram (which at that date still lay hid), and in so doing he reached
a result of great generality. It provided a basis for the advances in pure
geometry that were made a century later by Chasles, Salmon and Clifford.
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In this kind of geometry the Cartesian method of co-ordinates fails to
keep pace with the purely geometrical. In it men breathe a rarer air, akin
to that in the theory of numbers.

The very success of Maclaurin partakes: of the tragic. For there are
huge tracts of mathematics where co-ordinates provide the natural medium
—where, for any but a supreme master, analysis succeeds and pure geom-
etry leaves one helpless. When Maclaurin wrote his essay on the equilib-
rium of spinning planets, which gained him the honours of the Paris
Academy, he set out on a course wherein few could follow: for the
problem was rendered in the purest geometry. When, in addition to this,
Maclaurin produced a great geometrical work on fluxions, the scale was
so heavily loaded that it diverted England from Continental habits of
thought. During the remainder of the century British mathematics were
relatively undistinguished, and there was no proper revival until the differ-
ential calculus began to be taught in Cambridge, according to the methods
of Leibniz—a change which took place about a hundred years ago. This
delay was the unhappy legacy of the Newton-Leibniz controversy, which
need never have arisen.

The circumstances that prompted Maclaurin to adopt a geometrical
style in his book on fluxions, extended beyond his partiality for geometry.
Many philosophical influences were at work, and there were logical diffi-
culties to face, which seemed to be insurmountable except by recourse to
geometry. The difficulties were focused on the word infinitesimal—which
Eudoxus had so carefully excluded from the vocabulary of Greek mathe-
matics (the mere fact that it is a Latin, and not a Greek, word is not
without its significance; so many of our ordinary mathematical terms have
a Greek derivation). By an infinitesimal is meant something, distinguish-
able from zero, yet which is exceedingly small—so minute indeed that no
multiple of it can be made into a finite size. It evades the axiom of
Archimedes. Practically all analysts, from Kepler onwards, believed in the
efficacy of infinitesimals, until Weierstrass taught otherwise. The differen-
tial calculus of Leibniz was founded on this belief, and its tremendous
success, in the hands of the Bernoullis, Euler and Lagrange, obscured the
issue. Men were disinclined to reject a doctrine which worked so bril-
liantly, and they turned a deaf ear to the philosophers, ancient and mod-
ern. In our own country a lively attack on infinitesimals was headed by
the Irish philosopher and theologian, Bishop Berkeley. His criticism of the
calculus was not lost upon Maclaurin, who was also well versed in Greek
mathematics and the careful work of Eudoxus. So Maclaurin made up
his mind to put Fluxions upon a sound basis and for this reason threw the
work into a geometrical frame. It was his tribute to Newton, the master
‘whose caution’, said Maclaurin, ‘was almost as distinguishing a part of
his character as his invention.’
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One of the chief admirers of Maclaurin was Lagrange, the great French
analyst, whose own work offered a complete contrast to that of the geom-
eter. Maclaurin had dealt in lines and figures—those characters, as Galileo
has finely said, in which the great book of the Universe is written. La-
grange, on the contrary, pictured the Universe as an equally rhythmical
theme of numbers and equations; and was proud to say, of his master-
piece, the Mécanique Analytique, that it contained not a single geomet-
rical diagram. Nevertheless he appreciated the true geometer, declaring
that the work of Maclaurin surpassed that of Archimedes himself, while
as for Newton, he was ‘the greatest genius the world has ever seen—and
the most fortunate, for only once can it be given a man to discover the
system of the Universe!’

JosepH-Louts LAGRANGE (1736-1813) came of an illustrious Parisian
family which had long connection with Sardinia, and some trace of noble
Italian ancestry. He spent his early years in Turin, his active middle life
in Berlin, and his closing years in Paris, where he attained his greatest
fame. Foolish speculation on the part of his father threw Lagrange, at
an early age, upon his own resources, but this change of fortunes proved
to be no great calamity, ‘for otherwise’, he says, ‘I might never have dis-
covered my vocation.” At school his boyish interests were Homer and
Virgil, and it was not until a memoir of Halley came his way, that the
mathematical spark was kindled. Like Newton, but at a still earlier age,
he reached to the heart of the matter in an incredibly short space of time.
At the age of sixteen he was made Professor of Mathematics in the Royal
School of Artillery at Turin, where the diffident lad, possessed of no tricks
of oratory and very few words, held the attention of men far older than
himself. His winning personality elicited their friendship and enthusiasm.
Very soon he was conducting a youthful band of scientists who became
the earliest members of the Turin Academy. With a pen in his hand
Lagrange was transfigured; and from the first, his writings were elegance
itself. He would set to mathematics all the little themes on physical
inquiries which his friends brought him, much as Schubert would set to
music any stray rhyme that took his fancy.

At the age of nineteen he won fame by solving the so-called isoperi-
metrical problem, that had puzzled the mathematical world for half a
century. He communicated his proof in a letter to Euler, who was im-
mensely interested in the solution, particularly as it agreed with a result
that he himself had found. With admirable tact and kindness Euler replied
to Lagrange, deliberately withholding his own work, that all the credit
might fall on his young friend. Lagrange had indeed not only solved a
problem, he had also invented a new method, a new Calculus of Varia-
tions, which was to be the central subject of his life-work. This calculus
belongs to the story of Least Action, which began with the reflecting
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mirrors of Hero (p. 110) and continued when Descartes pondered over
his curiously shaped oval lenses. Lagrange was able to show that the
somewhat varied Newtonian postulates of matter and motion fitted in
with a broad principle of economy in nature. The principle has led to the
still more fruitful results of Hamilton and Maxwell, and it continues
today in the work of Einstein and in the latest phases of Wave Me-
chanics.

Lagrange was ready to appreciate the fine work of others, but he was
equally able to detect a weakness. In an early memoir on the mathematics
of sound, he pointed out faults even in the work of his revered Newton.
Other mathematicians ungrudgingly acknowledged him first as their peer,
and later as the greatest living mathematician. After several years of the
utmost intellectual effort he succeeded Euler in Berlin. From time to time
he was seriously ill from overwork. In Germany King Frederick, who had
always admired him, soon grew to like his unassuming manner, and would
lecture him for his intemperance in study which threatened to unhinge
his mind. The remonstrances must have had some effect, because La-
grange changed his habits and made a programme every night of what
was to be read the next day, never exceeding the ration. For twenty years
he continued to reside in Prussia, producing work of high distinction that
culminated in his Mécaniqgue Analytique. This he decided to publish in
France, whither it was safely conveyed by one of his friends.

The publication of this masterpiece aroused great interest, which was
considerably augmented in 1787 by the arrival in Paris of the celebrated
author himself, who had left Germany after the death of King Frederick,
as he no longer found a sympathetic atmosphere in the Prussian Court.
Mathematicians thronged to meet him and to show him every honour, but
they were dismayed to find him distracted, melancholy, and indifferent to
his surroundings. Worse still—his taste for mathematics had gone! The
years of activity had told; and Lagrange was mathematically worn out.
Not once for two whole years did he open his Mécanique Analytique:
instead, he directed his thoughts elsewhere, to metaphysics, history, reli-
gion, philology, medicine, botany, and chemistry. As Serret has said, ‘That
thoughtful head could only change the objects of its meditations.” What-
ever subject he chose to handle, his friends were impressed with the origi-
nality of his remarks. His saying that chemistry was ‘easy as algebra’
vastly astonished them, In those days the first principles of atomic chem-
istry were keenly canvassed: but it seemed odd to draw a comparison
between such palpable things as chemicals, that can be handled and seen,
and such abstractions as algebraic symbols.

In this philosophical and unmathematical state of mind Lagrange con-
tinued for two years, when suddenly the country was plunged into the
Revolution. Many avoided the ordeal by flight abroad, but Lagrange re-
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fused to leave. He remained in Paris, wondering as he saw his friends
done to death if his turn was coming, and surprised at his good fortune
in surviving. France has reason to be glad that he was not cut down as
was his friend Lavoisier, the great chemist; for in later years mathematical
skill once again returned to him, and he produced many gems of algebra
and analysis.

One mathematical effect of the Revolution was the adoption of the
metric system, in which the subdivision of money, weights and measures
is strictly based on the number ten. When someone objected to this num-
ber, naturally preferring twelve, because it has more factors, Lagrange
unexpectedly remarked, what a pity it was that the number eleven had
not been chosen as base, because it was prime. The M.C.C. appears to be
one of the few official bodies who have followed this hint, by thinking
systematically in terms of such a unit!

For music he had a liking. He said it isolated him and helped him to
think, as it interrupted general conversation. ‘For three bars I listen to it;
thereafter I distinguish nothing, but give myself up to my thoughts. In
this way I have solved many a difficult problem.” He was twice married:
first when he lived in Berlin, where he lost his wife after a long illness,
in which he nursed her devotedly. Then again in Paris he married Mile.
Lemonnier, daughter of a celebrated astronomer. Happy in his home life,
simple and almost austere in his tastes, he spent his quiet fruitful years,
till he died in 1813 at the age of seventy-six.

Lagrange is one of the great mathematicians of all time, not only for
the abundance and originality of his work but for the beauty and pro-
priety of his writings. They possess the grandeur and ease of the ancient
geometers, and Hamilton has described the Mécanique Analytique as ‘a
scientific poem’. He was equally at home rivalling Fermat in the theory of
numbers and Newton in analytical mechanics. Much of the contemporary
and later work of Laplace, Legendre, Monge, Fourier and Cauchy, was
the outcome of his inspiration. Lagrange sketched the broad design; it
was left to others to fill in the finished picture. One must turn to the
historians of mathematics to learn how fully and completely this was done.
The breadth of the canvas attracted men of widely different interests.
Nothing could afford a greater contrast to the mind of Lagrange than
that of Laplace, the other great contributor to natural philosophy, whose
most notable work was the Mécanique Céleste. To Laplace mathematics
were the accidents and natural phenomena the substance—a point of view
exactly opposite to that of Lagrange. To Laplace mathematics were tools,
and they were handled with extraordinary skill, but any makeshift of a
proof would do, provided that the problem was solved. It remained for
the nineteenth century to show the faultiness of this naive attitude. The
instinct of the Greeks was yet to be justified.
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CHAPTER X
GAUSS AND HAMILTON: THE NINETEENTH CENTURY

THE nineteenth century, which links the work of Lagrange with that
of our own day, is perhaps the most brilliant era in the long history of
mathematics. The subject assumed a grandeur in which all that was great
in Greek mathematics was fully recovered; geometry once again came
into its own, analysis further broadened its scope, and the outlets for its
applications were ever enlarging. The century was marked in three note-
worthy ways: there was deeper insight into the familiar properties of
number; there was positive discovery of new processes of calculation,
which, in the quaint words of Sylvester, ushered in ‘the reign of Algebra
the Second’; and there was also a philosophy of mathematics. During these
years England once again rivalled mathematical France, and Germany
and Italy rose to positions of scientific importance; while pre-eminent
over all was the genius of one man, a mathematician worthy of a place
of honour in the supreme rank with Archimedes and Newton.

CARL FRIEDRICH Gauss was born in 1777 at Brunswick, and died in
1855, aged seventy-eight. He was the son of a bricklayer, and it was the
wish of his father that he should be a bricklayer too. But at a very early
age it was clear that the boy had unusual talents. Unlike Newton and
Lagrange he showed the precocity of Pascal and Mozart. It is said that
Mozart wrote a minuet at the age of four, while Gauss pointed out to his
father an error in an account when he was three. At school his cleverness
attracted attention, and eventually be came known to the Duke of Bruns-
wick himself, who took an interest in the lad. In spite of parental protest
the Duke sent him for a few years to the Collegium Carolinum and in
1795 to Géttingen. Still undecided whether to pursue mathematics or
philology, Gauss now came under the influence of Kaestner— that first
of geometers among poets, and first of poets among geometers’, as the
pupil was proud to remark. In the course of his college career Gauss
became known for his marvellous intuition in higher arithmetic. ‘Mathe-
matics, the Queen of the Sciences, and Arithmetic, the Queen of Mathe-
matics’, he would say: and mathematics became the main study of his life.

The next nine years were spent at Brunswick, varied by occasional
travels, in the course of which he first met his friend Pfaff, who alone in
Germany was a mathematician approximating to his calibre. After declin-
ing the offer of a Chair at the Academy in St. Petersburg, Gauss was
appointed in 1807 to be first director of the new observatory at Gottingen,
and there he lived a studious and simple life, happy in his surroundings,
and blessed with good health, until shortly before his death. Once, in
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1828, he visited Berlin, and once, in 1854, he made a pilgrimage to be
present at the opening of the railway from Hanover to Gottingen. He saw
his first railway engine in 1836, but except for these quiet adventures, it
is said that until the last year of his life he never slept under any other
roof than that of his own observatory!

His simple and direct character made a profound impression upon his
pupils, who, seated round a table and not allowed to take notes, would
listen with delight to the animated address of the master. Vivid accounts
have been handed down of the chief figure in the group as he stood before
his pupils ‘with clear bright eyes, the right eyebrow raised higher than
the left (for was he not an astronomer?), with a forehead high and wide,
overhung with grey locks, and a countenance whose variations were
expressive of the great mind within.’

Like Euler, Lagrange and Laplace, Gauss wrote voluminously, but with
a difference. Euler never condensed his work; he revelled in the richness
of his ideas. Lagrange had the easy style of a poet; that of Laplace was
jerky and difficult to read. Gauss governed his writings with austerity,
cutting away all but the essential results, after taking endless trouble to fill
in the details. His pages stimulate but they demand great patience of the
reader.

Gauss made an early reputation by his work in the theory of numbers.
This was but one of his many mathematical activities, and, apart from all
that followed, it would have placed him in the front rank. Like Fermat,
he manifested that baffling genius which leaps—one knows not how—to
the true conclusion, leaving the long-drawn-out deductive proof for others
to formulate. A typical example is provided by the Prime Number
Theorem which has taken a century to prove. Prime numbers were stud-
ied by Euclid, and continue to be an eternal source of interest to mathe-
maticians. They are the numbers, such as 2, 3, 5, 7, 11, that cannot be
broken up into factors. They are infinitely numerous, as Euclid himself
was aware, and they occur, scattered through the orderly scale of num-
bers, with an irregularity that at once teases and captivates the mathema-
tician. The question is naturally suggested: How often, or how rarely, do
prime numbers occur on the average? Or, put in another way, What is
the chance that a specified number is prime? In some form or other this
problem was known to Gauss; and here is his innocent-looking answer:

“Primzahlen unter a (= o)
a

”»

la
It means that when a is a very large number, the result of dividing a by
its logarithm gives a good approximation to the total number of primes
less than a: and the larger a is, the more precise is the result. Whether
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