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COMMENTARY ON

GALILEO GALILEI

ODERN science was founded by men who asked more searching
questions than their predecessors. The essence of the scientific
revolution of the sixteenth and seventeenth centuries is a change in mental
outlook ‘rather than a flowering of invention and Galileo, more than any
other single thinker, was responsible for that change.

Galileo has been called the first of the moderns. “As we read his
writings we instinctively feel at home; we know that we have reached the
method of physical science which is still in use.” ! Galileo’s primary inter-
est was to discover how rather than why things work. He did not depre-
ciate the role of theory and was himself unrivaled in framing bold
hypotheses. But he recognized that theory must conform to the results
of observation, that the schemes of Nature are not drawn up for our easy
comprehension. “Nature nothing careth,” he says, “whether her abstruse
reasons and methods of operating be or be not exposed to the capacity of
men.” He insisted on the supremacy of the “irreducible and stubborn
facts” however “unreasonable™ they might seem.2 “I know very well,”
says Salviati, a character representing Galileo himself in the Dialogues
Concerning the Two Principal Systems of the World, “that one sole exper-
iment, or concludent demonstration, produced on the contrary part, suffic-
eth to batter to the ground . . . a thousand . . . probable Arguments.”

The origins of modern science can of course be traced much further
back—at least to the thirteenth- and fourteenth-century philosophers,
Robert Grosseteste, Adam Marsh, Nicole Oresme, Albertus Magnus,
William ‘of Occam.? Recent historical researches have broadened our
understanding of the evolution of scientific thought, proved its continuity
(history, like nature, evidently abhors making jumps) and helped to kill
the already tottering myth that the science of the Middle Ages was little
more than commentary and sterile exegesis.* The enlarged perspective

'Sir William Dampier, A History of Science, and Its Relations with Philosophy
and Religion, Fourth Edition, Cambridge (England), 1949, p. 129.

21t is a great mistake, as Whitehead points out, “to conceive this historical revolt
as an appeal to reason. On the contrary it was through and through an anti-
intellectualist movement. It was the return to the contemplation of brute fact; and
it was based on a recoil from the inflexible rationality of medieval thought.” Science
and the Modern World, Chapter 1.

3 See for example Herbert Butterfield, The Origins of Modern Science, London,
1949; A. C. Crombie, Robert Grosseteste and the Origins of Experimental Science,
Oxford, 1953; A. C. Crombie, Augustine to Galileo, the History of Science, A.p. 400-
1650, London, 1952; A. R. Hall, The Scientific Revolution, 1500-1800, London, 1954,

41In this discussion I have drawn on material of mine published in the pages of
Scientific American; in particular on a review of the Butterfield book cited in the
preceding note (Scientific American, July 1950, p. 56 ef seq.) 1 am much indebted to
le:'; Origins of Modern Science for its masterly presentation of the period treated

ve.
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Galileo Galilei 727

does not, however, diminish one’s admiration for the stupendous achieve-
ments of Galileo. It is in his approach to the problems of motion that his
imaginative powers are most wonderfully exhibited. Let us examine briefly
the ideas he had to overthrow and the system he had to create in order to
found a rational science of mechanics. According to Aristotle, all heavy
bodies had a “natural” motion toward the center of the universe, which,
for medieval thinkers was the center of the earth. All other motion was
“violent” motion, because it required a constant motive force, and because
it contravened the tendency of bodies to sink to their natural place. The
acceleration of falling bodies was explained on the ground that they moved
more “jubilantly”—somewhat like a horse—as they got nearer home. The
planetary spheres, seen to be exempt from the *“natural” tendency, were
kept wheeling in their great arcs by the labors of a sublime Intelligence
or Prime Mover. Except for falling bodies things moved only when and
as long as effort was expended to keep them moving. They moved fast
when the mover worked hard; their motion was impeded by friction; they
stopped when the mover stopped. For the motion of terrestrial objects
Aristotle had in mind the example of the horse and cart; in the
celestial regions his mechanics left “the door halfway open for spirits
already.”

On the whole, Aristotle’s theory of motion squared well enough with
common experience, and his teachings prevailed for more than fifteen
centuries. Eventually, however, men began to discover small but disturb-
ing inconsistencies between experimental data and the Aristotelian dictates.
There was the anomaly of the misbehaving arrow which, according to
the horse and cart concept of motion, should have fallen to earth the
instant it lost contact with the bowstring. Nor was the traditional explana-
tion of the acceleration of falling bodies swallowed forever without pro-
test. In each case the paradox was met by an ingenious modification of
the accepted system (this was known, from Plato’s celebrated phrase, as
“saving the phenomena™); yet every such tailoring, however skillful, was
a source of controversy and raised new suspicions as to the validity of
all Aristotle’s teachings.

In the fourteenth century Jean Buridan and others at the University of
Paris developed a “theory of impetus” which proved to be a major factor
in dethroning Aristotelian mechanics. This theory, later picked up by
Leonardo da Vinci, held that a projectile kept moving by virtue of a
something “inside the body itself” which it had acquired in the course
of getting under way. Falling bodies accelerated because “impetus” was
continually being added to the constant fall produced by the original
weight. The importance of the theory lay in the fact that men for the
first time were presented with the idea of motion as a lingering aftereffect
derived from an initial impulse. This was midway to the modern view,



728 Editor's Comment

pretty clearly expressed in Galileo, that a body “continues its motion in a
straight line until something intervenes to halt or slacken or defiect it.”

What was needed to complete the journey was an extraordinary trans-
position of ideas from the real to an imaginary world. The ghosts of
Plato and Pythagoras returned triumphantly to point the way. Modern
mechanics describes quite well how real bodies behave in the real world;
its principles and laws are derived, however, from a nonexistent con-
ceptual world of pure, clean, empty, boundless Euclidean space, in which
perfect geometric bodies execute perfect geometric figures. Until the great
thinkers, operating, in Butterfield’s words, “on the margin of contem-
porary thought,” were able to establish the mathematical hypothesis of
this ideal Platonic world, and to draw their mathematical consequences, it
was impossible for them to construct a rational science of mechanics
applicable to the physical world of experience. This was the forward leap
of imagination required—the new look at familiar things in an unfamiliar
way, to see what in fact there was to be seen, rather than what some
classical or medieval writer had said ought to be seen. Buridan, Nicole
Oresme and Albert of Saxony with their theory of impetus; Galileo with
his beautiful systematization of everyday mechanical occurrences and
his ability to picture such situations as the behavior of perfectly spherical
balls moving on perfectly horizontal planes; Tycho Brahe with his im-
mense and valuable observational labors in astronomy; Copernicus with
the De Revolutionibus Orbium and heliocentric hypothesis; Kepler with
his laws of planetary motion and his passionate search for harmony and
“sphericity”; Descartes with his discourse on method, his determination
to have all science as closely knit as mathematics, his wedding of algebra
to geometry; Huygens with his mathematical analysis of circular motion
and centrifugal force; Gilbert with his rerella, his theory of magnetism
and gravitation; Viéte, Stevin and Napier with their aids to simplicity of
mathematical notation and operations: each took a part in the grand
renovation not only of the physical sciences but of the whole manner of
thinking about the furniture of the outside world. They made possible
the culminating intellectual creation of the seventeenth century, the
clockwork universe of Newton in which marbles and planets rolled about
as a result of the orderly interplay of gravitational forces, in which motion
was as “natural” as rest, and in which God, once having wound the clock,
had no further duties.

Galileo was the principal figure in this drama of changing ideas.5 He

% *“Taking his achievements in mechanics as a whole, we must admit that in the
progress from the pre-Galileon to the post-Newtonian period, Galileo's contribution
extends more than halfway. And it must be remembered that he was the pioneer.
Newton said no more than the truth when he declared that if he saw further than
other men it was because he stood on the shoulders of giants. Galileo in these matters
had no giants on whom to mount; the only giants he encountered were those who
had first to be destroyed before vision of any kind became possible.” Herbert Dingle,
The Scientific Adventure (“Galileo Galilei (1564 1642)"), London, 1952, p. 106.
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was the first to grasp the importance of the concept of acceleration in
dynamics. Acceleration means change of velocity, in magnitude or direc-
tion. As against Aristotle’s view that motion required a force to maintain
it, Galileo held that it is not motion but rather “the creation or destruc-
tion” of motion or a change in its direction—i.e. acceleration, which
requires the application of external force. He discovered the law of falling
bodies. This law, as Bertrand Russell remarks, given the concept of
“acceleration,” is of “the utmost simplicity.” ¢ A falling body moves with
constant acceleration except for the resistance of the air. At first Galileo
supposed that the speed of a falling body was proportional to the distance
fallen through. When this hypothesis proved unsatisfactory, he modified it
to read that speed was proportional to the time of fall. The mathematical
consequences of this assumption he was able partially to verify by
experiment,.

Because free-falling bodies attained a velocity beyond the capacity of
the measuring instruments then available, Galileo approached the problem
of verification by experiments in which the effect of gravity was “diluted.”
He proved that a body moving down an inclined plane of given height
attains a velocity independent of the angle of slope, and that its terminal
speed is the same as if it had fallen through the same vertical height. The
trials on the inclined plane thus confirmed his law. The famous story
about his dropping different weights from the Tower of Pisa to disprove
Aristotle’s contention that heavy objects fall faster than light ones is
probably untrue; but it follows from Galileo’s law that all bodies, heavy
or light, are subject to the same acceleration. He himself had no doubt
on this score—whether or not he actually corroborated the principle by
experiment—but it was not until after his death, when the air pump had
been invented, that a complete proof was given by causing bodies to fall
in a vacuum.

Experimenting with a pendulum, Galileo obtained further evidence to
sustain the principle of “persistence of motion.” The swinging bob of a
pendulum is analogous to a body falling down an inclined plane. A ball
rolling down a plane, assuming negligible friction, will climb another plane
to a height equal to that of its starting point. And so, as Galileo found,
with the bob. If released at one horizontal level C (as in the diagram), it
will ascend to the same height DC, whether it moves by the arc BD or,
when the string is caught by nails at E or F, by the steeper arcs BG or BL”
It was a short step from his work on the problem of persistence of motion
to Newton’s first law of motion, also known as the law of inertia.

Another of Galileo’s important discoveries in dynamics resulted from
his study of the path of projectiles. That a cannon ball moves forward and

® Bertrand Russell, 4 History of Western Philosophy, New York, 1945, p. 532.
7 See Crombie (Augustine to Galileo), op. cit., pp. 299-300,
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also falls was obvious, but how these motions were combined was not
understood. Galileo showed that the trajectory of the projectile could be
resolved into two simultaneous motions: one horizontal, with the velocity
(disregarding the small air resistance) remaining unchanged, the other
vertical, conforming to the law of falling bodies, i.e., 16 feet in the first
second, 48 feet in the second second, 80 feet in the third, and so on. Com-
bining the two motions makes the path a parabola. Galileo’s principle of
the persistence of motion, and his method of dissecting compound motions
solved the apparent anomalies gleefully urged by those opposed to the
Copernican system. It could now be explained why an object dropped
from the mast of a ship fell to the foot of the mast and was not left
behind by the ship’s motion; why a stone dropped from a tower landed
at its base and not to the west of it, even though the rotating earth had
moved towards the east while the stone fell. The stone, as Galileo realized,
shares the velocity of rotation of the earth, and retains it on the way
down.®

It was Galileo’s way to turn back and forth from hypothesis and deduc-

8%In faect if the tower were high enough, there would be the opposite effect to
that expected by the opponents of Copernicus. The top of the tower, being further
from the center of the earth than the bottom, is moving faster, and therefore the
stone should fall slightly to the east of the foot of the tower. This effect, however,
would be too slight to be measurable.” Russell, op. cir., p. 534.
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tion to experiment: no one before him attained a comparable skill in
blending experiments with mathematical abstractions. In all his investiga-
tions he followed the procedure epitomized in a famous passage of Francis
Bacon: “to educe and form axioms from experience . . . to deduce and
derive new experiments from axioms. . . . For our road does not lie on
a level, but ascends and descends; first ascending to axioms, then descend-
ing to works.” In the true Platonic tradition he was convinced that the
mathematical models which led him to observations were the “enduring
reality, the substance. underlying phenomena.” ?

“Philosophy,” he wrote in his polemic treatise, Il Saggiatore, “is written
in that vast book which stands forever open before our eyes, I mean the
universe; but it cannot be read until we have learnt the language and
become familiar with the characters in which it is written. It is written in
mathematical language, and the letters are triangles, circles and other
geometrical figures, without which means it is humanly impossible to
comprehend a single word.”

* L * * *

The facts of Galileo’s life are well known and T shall restrict myself
to a bare summary. He was born in 1564, the year Michelangelo died,
and he died in 1642, the year in which Newton was born. (“I commend
these facts,” says Bertrand Russell, “to those (if any) who still believe
in metempsychosis.”) His father was a noble of Florence and Galileo
was well educated, first in medicine, at the University of Pisa, then in
mathematics and physics. One of his first discoveries was that of the
isochronism of the pendulum; he was seventeen when the sight of a lamp
set swinging in the cathedral of Pisa—which he measured by his pulse
beats—inspired this conjecture. Another of his early works was the inven-
tion of a hydrostatic balance. For eighteen years (1592-1610) he held the
chair of mathematics at Padua. He was an enormously popular lecturer,
and “such was the charm of his demonstrations that a hall capable of

containing 2000 people had eventually to be assigned for the accommoda-

® “Galileo’s Platonism was of the same kind as that which had led to Archimedes
being known in the sixteenth century as the ‘Platonic philosopher,” and with Galileo
mathematical abstractions got their validity as statements about Nature by being
solutions of particular physical problems. By using this method of abstracting from
immediate and direct experience, and by correlating observed events by means of
mathematical relations which could not themselves be observed, he was led to
experiments of which he could not have thought in terms of the old commonsense
empiricism. A good example of this is his work on the pendulum.

“By abstracting from the inessentials of the situation, ‘the opposition of the air,
and line, or other accidents,” he was able to demonstrate the law of the pendulum,
that the period of oscillation is independent of the arc of swing and simply propor-
tional to the square-root of the length. This having been proved, he could then
reintroduce the previously excluded factors. He showed, for instance, that the reason
why a real pendulum, of which the thread was not weightless, came to rest, was not
simply because of air resistance, but because each particle of the thread acted as a
small pendulum. Since they were at different distances from the point of suspension,
they had different frequencies and therefore inhibited each other.”” Crombie, op. cit.,
(Augustine to Galileo), pp. 295-296.
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tion of the overflowing audiences which they attracted.” 1° Galileo made
first-class contributions to hydrostatics, to the mechanics of fluids and to
acoustics. He designed the first pendulum clock, invented the first ther-
mometer (a glass bulb and tube, filled with air and water, with the end
of the open tube dipping in a vessel of water), and constructed, from his
own knowledge of refraction, one of the first telescopes and a compound
microscope.!! Although he was early drawn to the Copernican system, it
was not until 1604, on the appearance of a new star, that he publicly
renounced the Aristotelian axiom of the “incorruptibility of the heavens”;
a short time later he entirely abandoned the Ptolemaic principles. Having
greatly improved on his first telescope, Galileo made a series of discoveries
which opened a new era in the history of astronomy. He observed the
mountains in the moon and roughly measured their height; the visibility
of “the old moon in the new moon’s arms” he explained by earth-shine; 12
he discovered four of the eleven satellites of Jupiter,!3 innumerable stars
and nebulae, sun spots, the phases of Venus predicted by Copernicus, the
librations of the moon.

In 1615, after Galileo had removed from Padua to Florence, his ad-
vocacy of the Copernican doctrines began to bring him into conflict
with the Church. At first the warnings were mild. “Write freely,” he was
told by a high ecclesiastic, Monsignor Dini, “but keep outside the sacristy.”
He made two visits to Rome to explain his position; the second on the
accession of Pope Urban VIII, who received him warmly. But the publi-
cation in 1632 of his powerfully argued, beautifully written masterpiece,
Dialogue on the Great World Systems, an evaluation, “sparkling with
malice,” of the comparative merits of the old and new theories of celestial
motion, brought a head-on collision with the Inquisition.!+ Galileo was

10 Encyclopaedia Britannica, Eleventh Edition, article on Galileo.

"' It is the Dutchman, Jan Lippershey, to whom priority in the invention of these
instruments (1600) is usually attributed. See H. C. King, The History of the Tele-
scope, Cambridge, 1955.

A small excursion on Galileo’s work with the microscope will perhaps be permitted.
“When the Frenchman, Jean Tarde, called on Galileo in 1614, he said ‘Galileo told
me that the tube of a telescope for observing the stars is no more than two feet in
length; but to see objects well, which are very near, and which on account of their
smaller size are hardly visible to the naked eye, the tube must be two or three times
longer. He tells me that with this long tube he has seen flies which look as big as
a lamb, are covered all over with hair, and have very pointed nails, by means of
which they keep themselves up and walk on glass although hanging feet upwards.’"
Galileo, Opera, Ed. Naz. Vol. 19, p. 589, as quoted in Crombie, op. cit., p. 352.

12 Sir Oliver Lodge, Pioneers of Science, London, 1928, p. 100.

131t is not always possible to prove to a philosopher the existence of a thing by
bringing it into plain view. The professor of philosophy at Padua “refused to look
through Galileo’s telescope, and his colleague at Pisa labored before the Grand Duke
with logical arguments, ‘as if with magical incantations to charm the new planets out
of the sky.'"” Dampier, op. cit., p. 130.

14In 1953 appeared two new excellent editions of the Dialogue, last translated
into English by Sir Thomas Salusbury in 1661: (1) Galileo's Dialogue on the Great
World Systems, edited by Giorgio de Santillana, Chicago, 1953 (based on the Salus-
bury translation); (2) Galileo Galilei—Dialogue Concerning the Two Chief World
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summoned to Rome and tried for heresy. Before his spirit was broken he
observed: “In these and other positions certainly no man doubts but His
Holiness the Pope hath always an absolute power of admitting or con-
demning them; but it is not in the power of any creature to make them
to be true or false or otherwise than of their own nature and in fact
they are.” Long questioning—though it is unlikely physical torture was
applied—brought him to his knees. He was forced to recant, to recite
penitential psalms, and was sentenced to house imprisonment for the rest
of his life. He retired to a villa at Arcetri, near Florence, where he con-
tinued, though much enfeebled and isolated, to write and meditate. In
1637 he became blind and thereafter the rigor of his confinement was
relaxed so as to permit him to have visitors. Among those who came, it
is said, was John Milton. He died aged seventy-eight.

I have taken a substantial excerpt from the Dialogues Concerning Two
New Sciences (Discorsi e Dimostriazioni Matematiche Intorno a due
nuove scienze),!® a work completed in 1636. It presents his mature and
final reflections on the science of mechanics and is a monument of litera-
ture and science. On the margin of Galileo’s own copy of the Dialogue
on the Great World Systems appears a note in his handwriting which sums
up his lifelong, passionate and courageous dedication to the unending
struggle of reason against authority:

“In the matter of introducing novelties. And who can doubt that it will
lead to the worst disorders when minds created free by God are compelled
to submit slavishly to an outside will? When we are told to deny our
senses and subject them to the whim of others? When people devoid of
whatsoever competence are made judges over experts and are granted
authority to treat them as they please? These are the novelties which are
apt to bring about the ruin of commonwealths and the subversion of the
state.”

Systems—Ptolemaic and Copernican, translated by Stillman Drake, Foreword by
Albert Einstein, Berkeley and Los Angeles, 1953. For the most detailed and searching
modern account of Galileo’s clash with the Church, and trial for heresy, see Giorgio
de Santillana, The Crime of Galileo, Chicago, 1955. .

15 The standard English translation is by Henry Crew and Alfonso de Salvio, The
Macmillan Company, New York, 1914. A reprint has recently (1952) been issued
by Dover Publications, Inc., New York.



[My uncle Toby] proceeded next to Galileo and Torricellius, wherein, by
certain Geometrical rules, infallibly laid down, he found the precise part
to be a “Parabola’—or else an “Hyperbola,"—and that the parameter, or
“latus rectum,” of the conic section of the said path, was to the gquantity
and amplitude in a direct ratio, as the whole line to the sine of double the
angle of incidence, formed by the breech upon an horizontal line;—and
that the semiparameter,—stop! my dear uncle Toby—stop!

—LAWRENCE STERNE

In questions of science the authority of a thousand is not worth the humble
reasoning of a single individual. —GALILEO GALILEI

1 Mathematics of Motion
By GALILEO GALILEI

THIRD DAY
CHANGE oF PosITION [De Motu Locali]

MY purpose is to set forth a very new science dealing with a very ancient
subject. There is, in nature, perhaps nothing older than motion, concern-
ing which the books written by philosophers are neither few nor small;
nevertheless I have discovered by experiment some properties of it which
are worth knowing and which have not hitherto been either observed or
demonstrated. Some superficial observations have been made, as, for
instance, that the free motion [raturalem motum] of a heavy falling body
is continuously accelerated;! but to just what extent this acceleration
occurs has not yet been announced; for so far as I know, no one has yet
pointed out that the distances traversed, during equal intervals of time,
by a body falling from rest, stand to one another in the same ratio as the
odd numbers beginning with unity.2

It has been observed that missiles and projectiles describe a curved path
of some sort; however no one has pointed out the fact that this path is a
parabola. But this and other facts, not few in number or less worth
knowing, I have succeeded in proving; and what I consider more impor-
tant, there have been opened up to this vast and most excellent science,
of which my work is merely the beginning, ways and means by which
other minds more acute than mine will explore its remote corners. . . .

NATURALLY ACCELERATED MOTION

The properties belonging to uniform motion have been discussed in the
preceding section; but accelerated motion remains to be considered.

! “Natural motion” of the author has here been translated into “free motion"—
since this is the term used to-day to distinguish the “natural” from the “violent”
motions of the Renaissance. | Trans.]

2 A theorem demonstrated in Corollary I, p. 746, [Trans.|
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And first of all it seems desirable to find and explain a definition best
fitting natural phenomena. For anyone may invent an arbitrary type of
motion and discuss its properties; thus, for instance, some have imagined
helices and conchoids as described by certain motions which are not met
with in nature, and have very commendably established the properties
which these curves possess in virtue of their definitions; but we have
decided to consider the phenomena of bodies falling with an acceleration
such as actually occurs in nature and to make this definition of accelerated
motion exhibit the essential features of observed accelerated motions.
And this, at last, after repeated efforts we trust we have succeeded in
doing. In this belief we are confirmed mainly by the consideration that
experimental results are seen to agree with and exactly correspond with
those properties which have been, one after another, demonstrated by us.
Finally, in the investigation of naturally accelerated motion we were led,
by hand as it were, in following the habit and custom of nature herself,
in all her various other processes, to employ only those means which are
most common, simple and easy.

For I think no one believes that swimming or flying can be accom-
plished in a manner simpler or easier than that instinctively employed by
fishes and birds.

When, therefore, I observe a stone initially at rest falling from an ele-
vated position and continually acquiring new increments of speed, why
should I not believe that such increases take place in a manner which is
exceedingly simple and rather obvious to everybody? If now we examine
the matter carefully we find no addition or increment more simple than
that which repeats itself always in the same manner. This we readily
understand when we consider the intimate relationship between time and
motion; for just as uniformity of motion is defined by and conceived
through equal times and equal spaces (thus we call a motion uniform
when equal distances are traversed during equal time-intervals), so also
we may, in a similar manner, through equal time-intervals, conceive
additions of speed as taking place without complication; thus we may
picture to our mind a motion as uniformly and continuously accelerated
when, during any equal intervals of time whatever, equal increments of
speed are given to it. Thus if any equal intervals of time whatever have
elapsed, counting from the time at which the moving body left its position
of rest and began to descend, the amount of speed acquired during the
first two time-intervals will be double that acquired during the first time-
interval alone; so the amount added during three of these time-intervals
will be treble; and that in four, quadruple that of the first time-interval. To
put the matter more clearly, if a body were to continue its motion with
the same speed which it had acquired during the first time-interval and
were to retain this same uniform speed, then its motion would be twice
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as slow as that which it would have if its velocity had been acquired
during two time-intervals.

And thus, it seems, we shall not be far wrong if we put the increment
of speed as proportional to the increment of time; hence the definition of
motion which we are about to discuss may be stated as follows: A motion
is said to be uniformly accelerated, when starting from rest, it acquires,
during equal time-intervals, equal increments of speed.

Sacrepo. Although I can offer no rational objection to this or indeed to
any other definition, devised by any author whomsoever, since all defini-
tions are arbitrary, I may nevertheless without offense be allowed to doubt
whether such a definition as the above, established in an abstract manner,
corresponds to and describes that kind of accelerated motion which we
meet in nature in the case of freely falling bodies. And since the Author
apparently maintains that the motion described in his definition is that of
freely falling bodies, I would like to clear my mind of certain difficulties
in order that I may later apply myself more earnestly to the propositions
and their demonstrations.

SALVIATL It is well that you and Simplicio raise these difficulties. They
are, I imagine, the same which occurred to me when I first saw this
treatise, and which were removed either by discussion with the Author
himself, or by turning the matter over in my own mind.

SaGr. When I think of a heavy body falling from rest, that is, starting
with zero speed and gaining speed in proportion to the time from the
beginning of the motion; such a motion as would, for instance, in eight
beats of the pulse acquire eight degrees of speed; having at the end of
the fourth beat acquired four degrees; at the end of the second, two; at
the end of the first, one: and since time is divisible without limit, it
follows from all these considerations that if the earlier speed of a body
is less than its present speed in a constant ratio, then there is no degree of
speed however small (or, one may say, no degree of slowness however
great) with which we may not find this body travelling after starting
from infinite slowness, i.e., from rest. So that if that speed which it had
at the end of the fourth beat was such that, if kept uniform, the body
would traverse two miles in an hour, and if keeping the speed which it
had at the end of the second beat, it would traverse one mile an hour,
we must infer that, as the instant of starting is more and more nearly
approached, the body moves so slowly that, if it kept on moving at this
rate, it would not traverse a mile in an hour, or in a day, or in a year or
in a thousand years; indeed, it would not traverse a span in an even
greater time; a phenomenon which baffles the imagination, while our
senses show us that a heavy falling body suddenly acquires great speed.

SaLv. This is one of the difficulties which I also at the beginning,
experienced, but which I shortly afterwards removed; and the removal
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was effected by the very experiment which creates the difficulty for you.
You say the experiment appears to show that immediately after a heavy
body starts from rest it acquires a very considerable speed: and I say
that the same experiment makes clear the fact that the initial motions of
a falling body, no matter how heavy, are very slow and gentle. Place a
heavy body upon a yielding material, and leave it there without any
pressure except that owing to its own weight; it is clear that if one lifts
this body a cubit or two and allows it to fall upon the same material, it
will, with this impulse, exert a new and greater pressure than that caused
by its mere weight; and this effect is brought about by the [weight of the]
falling body together with the velocity acquired during the fall, an effect
which will be greater and greater according to the height of the fall, that
is according as the velocity of the falling body becomes greater. From
the quality and intensity of the blow we are thus enabled to accurately
estimate the speed of a falling body. But tell me, gentlemen, is it not true
that if a block be allowed to fall upon a stake from a height of four
cubits and drives it into the earth, say, four finger-breadths, that coming
from a height of two cubits it will drive the stake a much less distance,
and from the height of one cubit a still less distance; and finally if the
block be lifted only one finger-breadth how much more will it accom-
plish than if merely laid on top of the stake without percussion? Certainly
very little. If it be lifted only the thickness of a leaf, the effect will be
altogether imperceptible. And since the effect of the blow depends upon
the velocity of this striking body, can any one doubt the motion is very
slow and the speed more than small whenever the effect [of the blow]
is imperceptible? See now the power of truth; the same experiment which
at first glance seemed to show one thing, when more carefully examined,
assures us of the contrary.

But without depending upon the above experiment, which is doubtless
very conclusive, it seems to me that it ought not to be difficult to establish
such a fact by reasoning alone. Imagine a heavy stone held in the air at
rest; the support is removed and the stone set free; then since it is heavier
than the air it begins to fall, and not with uniform motion but slowly
at the beginning and with a continuously accelerated motion. Now since
velocity can be increased and diminished without limit, what reason is
there to believe that such a moving body starting with infinite slowness,
that is, from rest, immediately acquires a speed of ten degrees rather than
one of four, or of two, or of one, or of a half, or of a hundredth; or,
indeed, of any of the infinite number of small values [of speed]? Pray
listen. I hardly think you will refuse to grant that the gain of speed of the
stone falling from rest follows the same sequence as the diminution and
loss of this same speed when, by some impelling force, the stone is thrown
to its former elevation: but even if you do not grant this, I do not see
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how you can doubt that the ascending stone, diminishing in speed, must
before coming to rest pass through every possible degree of slowness.

SiMmpLicio. But if the number of degrees of greater and greater slowness
is limitless, they will never be all exhausted, therefore such an ascending
heavy body will never reach rest, but will continue to move without limit
always at a slower rate; but this is not the observed fact.

SaLv. This would happen, Simplicio, if the moving body were to main-
tain its speed for any length of time at each degree of velocity; but it
merely passes each point without delaying more than an instant: and
since each time-interval however small may be divided into an infinite
number of instants, these will always be sufficient [in number] to corre-
spond to the infinite degrees of diminished velocity.

That such a heavy rising body does not remain for any length of time
at any given degree of velocity is evident from the following: because if,
some time-interval having been assigned, the body moves with the same
speed in the last as in the first instant of that time-interval, it could from
this second degree of elevation be in like manner raised through an equal
height, just as it was transferred from the first elevation to the second,
and by the same reasoning would pass from the second to the third and
would finally continue in uniform motion forever. . . .

SaLv. The present does not seem to be the proper time to investigate
the cause of the acceleration of natural motion concerning which various
opinions have been expressed by various philosophers, some explaining
it by attraction to the center, others to repulsion between the very small
parts of the body, while still others attribute it to a certain stress in the
surrounding medium which closes in behind the falling body and drives it
from one of its positions to another. Now, all these fantasies, and others
too, ought to be examined; but it is not really worth while.. At present it
is the purpose of our Author merely to investigate and to demonstrate
some of the properties of accelerated motion (whatever the cause of this
acceleration may be)—meaning thereby a motion, such that the momen-
tum of its velocity [i momenti della sua velocitd] goes on increasing after
departure from rest, in simple proportionality to the time, which is the
same as saying that in equal time-intervals the body receives equal incre-
ments of velocity; and if we find the properties [of accelerated motion]
which will be demonstrated later are realized in freely falling and accel-
erated bodies, we may conclude that the assumed definition includes such
a motion of falling bodies and that their speed [accelerazione] goes on
increasing as the time and the duration of the motion.

SAGR. So far as I see at present, the definition might have been put a
little more clearly perhaps without changing the fundamental idea,
namely, uniformly accelerated motion is such that its speed increases in
proportion to the space traversed; so that, for example, the speed acquired
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by a body in falling four cubits would be double that acquired in falling
two cubits and this latter speed would be double that acquired in the
first cubit. Because there is no doubt but that a heavy body falling from
the height of six cubits has, and strikes with, a momentum [impeto]
double that it had at the end of three cubits, triple that which it had at
the end of one.

SaLv. It is very comforting to me to have had such a companion in
error; and moreover let me tell you that your proposition seems so
highly probable that our Author himself admitted, when I advanced
this opinion to him, that he had for some time shared the same fallacy.
But what most surprised me was to see two propositions so inherently
probable that they commanded the assent of everyone to whom they were
presented, proven in a few simple words to be not only false, but im-
possible.

Simp. I am one of those who accept the proposition, and believe that
a falling body acquires force [vires] in its descent, its velocity increasing
in proportion to the space, and that the momentum [momento] of the
falling body is doubled when it falls from a doubled height; these proposi-
tions, it appears to me, ought to be conceded without hesitation or
confroversy.

SALv. And yet they are as false and impossible as that motion should
be completed instantaneously; and here is a very clear demonstration of it.
If the velocities are in proportion to the spaces traversed, or to be tra-
versed, then these spaces are traversed in equal intervals of time; if,
therefore, the velocity with which the falling body traverses a space of
eight feet were double that with which it covered the first four feet (just
as the one distance is double the other) then the time-intervals required
for these passages would be equal. But for one and the same body to fall
eight feet and four feet in the same time is possible only in the case of
instantaneous [discontinuous] motion; but observation shows us that the
motion of a falling body occupies time, and less of it in covering a dis-
tance of four feet than of eight feet; therefore it is not true that its
velocity increases in proportion to the space.

The falsity of the other proposition may be shown with equal clearness.
For if we consider a single striking body the difference of momentum in
its blows can depend only upon difference of velocity; for if the striking
body falling from a double height were to deliver a blow of double
momentum, it would be necessary for this body to strike with a doubled
velocity; but with this doubled speed it would traverse a doubled space
in the same time-interval; observation however shows that the time
required for fall from the greater height is longer.

SAGR. You present these recondite matters with too much evidence
and ease; this great facility makes them less appreciated than they would
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be had they been presented in a more abstruse manner. For, in my opin-
ion, people esteem more lightly that knowledge which they acquire with
so little labor than that acquired through long and obscure discussion.

SaLv. If those who demonstrate with brevity and clearness the fallacy
of many popular beliefs were treated with contempt instead of gratitude
the injury would be quite bearable; but on the other hand it is very
unpleasant and annoying to see men, who claim to be peers of anyone in
a certain field of study, take for granted certain conclusions which later
are quickly and easily shown by another to be false. I do not describe
such a feeling as one of envy, which usually degenerates into hatred and
anger against those who discover such fallacies; I would call it a strong
desire to maintain old errors, rather than accept newly discovered truths.
This desire at times induces them to unite against these truths, although
at heart believing in them, merely for the purpose of lowering the esteem
in which certain others are held by the unthinking crowd. Indeed, I have
heard from our Academician many such fallacies held as true but easily
refutable; some of these I have in mind.

SAGR. You must not withhold them from us, but, at the proper time,
tell us about them even though an extra session be necessary. But now,
continuing the thread of our talk, it would seem that up to the present
we have established the definition of uniformly accelerated motion which
is expressed as follows:

A motion is said to be equally or uniformly accelerated when, start-
ing from rest, its momentum (celeritatis momenta) receives equal
increments in equal times.

SaLv. This definition established, the Author makes a single assump-
tion, namely,

The speeds acquired by one and the same body moving down planes
of different inclinations are equal when the heights of these planes
are equal.

By the height of an inclined plane we mean the perpendicular let fall
from the upper end of the plane upon the horizontal line drawn through
the lower end of the same plane. Thus, to illustrate, let the line AB be
horizontal, and let the planes CA and CD be inclined to it; then the
Author calls the perpendicular CB the “height” of the planes CA and CD;
he supposes that the speeds acquired by one and the same body, descend-
ing along the planes CA and CD to the terminal points A and D are
equal since the heights of these planes are the same, CB; and also it must
be understood that this speed is that which would be acquired by the
same body falling from C to B.

SaGr. Your assumption appears to me so reasonable that it ought to be
conceded without question, provided of course there are no chance or
outside resistances, and that the planes are hard and smooth, and that
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the figure of the moving body is perfectly round, so that neither plane
nor moving body is rough. All resistance and opposition having been
removed, my reason tells me at once that a heavy and perfectly round
ball descending along the lines CA, CD, CB would reach the terminal
points A, D, B, with equal momenta [impeti eguali].

SaLv. Your words are very plausible; but I hope by experiment to
increase the probability to an extent which shall be little short of a rigid
demonstration.

Imagine this page to represent a vertical wall, with a nail driven into
it; and from the nail let there be suspended a lead bullet of one or two
ounces by means of a fine vertical thread, AB, say from four to six feet
long, on this wall draw a horizontal line DC, at right angles to the
vertical thread AB, which hangs about two finger-breadths in front of
the wall. Now bring the thread AB with the attached ball into the posi-
tion AC and set it free; first it will be observed to descend along the arc
CBD, to pass the point B, and to travel along the arc BD, till it almost
reaches the horizontal CD, a slight shortage being caused by the resistance
of the air and the string; from this we may rightly infer that the ball in
its descent through the arc CB acquired a momentum [impeto] on reach-
ing B, which was just sufficient to carry it through a similar arc BD to
the same height. Having repeated this experiment many times, let us now
drive a nail into the wall close to the perpendicular AB, say at E or F,
so that it projects out some five or six finger-breadths in order that the
thread, again carrying the bullet through the arc CB, may strike upon
the nail E when the bullet reaches B, and thus compel it to traverse
the arc BG, described about E as center. From this we can see what can
be done by the same momentum [impeto] which previously starting at
the same point B carried the same body through the arc BD to the hori-
zontal CD. Now, gentlemen, you will observe with pleasure that the ball
swings to the point G in the horizontal, and you would see the same
thing happen if the obstacle were placed at some lower point, say at F,
about which the ball would describe the arc BI, the rise of the ball always
terminating exactly on the line CD. But when the nail is placed so low
that the remainder of the thread below it will not reach to the height CD
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FIGURE 2

(which would happen if the nail were placed nearer B than to the inter-
section of AB with the horizontal CD) then the thread leaps over the
nail and twists itself about it.

This experiment leaves no room for doubt as to the truth of our
supposition; for since the two arcs CB and DB are equal and similarly
placed, the momentum [momento] acquired by the fall through the arc
CB is the same as that gained by fall through the arc DB; but the momen-
tum [momento] acquired at B, owing to fall through CB, is able to lift
the same body [mobile] through the arc BD; therefore, the momentum
acquired in the fall BD is equal to that which lifts the same body through
the same arc from B to D; so, in general, every momentum acquired by
fall through an arc is equal to that which can lift the same body through
the same arc. But all these momenta [momenti] which cause a rise
through the arcs BD, BG, and BI are equal, since they are produced by
the same momentum, gained by fall through CB, as experiment shows.
Therefore all the momenta gained by fall through the arcs DB, GB, IB
are equal.

SAGR. The argument seems to me so conclusive and the experiment so
well adapted to establish the hypothesis that we may, indeed, consider it
as demonstrated.

SaLv. I do not wish, Sagredo, that we trouble ourselves too much
about this matter, since we are going to apply this principle mainly in
motions which occur on plane surfaces, and not upon curved, along
which acceleration varies in a manner greatly different from that which
we have assumed for planes.

So that, although the above experiment shows us that the descent of
the moving body through the arc CB confers upon it momentum
[momento] just sufficient to carry it to the same height through any of
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the arcs BD, BG, BI, we are not able, by similar means, to show that the
event would be identical in the case of a perfectly round ball descending
along planes whose inclinations are respectively the same as the chords
of these arcs. It seems likely, on the other hand, that, since these planes
form angles at the point B, they will present an obstacle to the ball which
has descended along the chord CB, and starts to rise along the chord
BD, BG, BIL

In striking these planes some of its momentum [impeto] will be lost
and it will not be able to rise to the height of the line CD; but this obsta-
cle, which interferes with the experiment, once removed, it is clear that
the momentum [impeto] (which gains in strength with descent) will be
able to carry the body to the same height. Let us then, for the present,
take this as a postulate, the absolute truth of which will be established
when we find that the inferences from it correspond to and agree per-
fectly with experiment. The Author having assumed this single principle
passes next to the propositions which he clearly demonstrates; the first of
these is as follows:

THEOREM 1, PROPOSITION 1

The time in which any space is traversed by a body starting from rest
and uniformly accelerated is equal to the time in which that same space
would be traversed by the same body moving at a uniform speed whose
value is the mean of the highest speed and the speed just before accelera-
tion began.

Let us represent by the line AB the time in which the space CD is
traversed by a body which starts from rest at C and is uniformly acceler-
ated; let the final and highest value of the speed gained during the interval
AB be represented by the line EB drawn at right angles to AB; draw the
line AE, then all lines drawn from equidistant points on AB and parallel
to BE will represent the increasing values of the speed, beginning with the
instant A. Let the point F bisect the line EB; draw FG parallel to BA,
and GA parallel to FB, thus forming a parallelogram AGFB which will
be equal in area to the triangle AEB, since the side GF bisects the
side AE at the point I; for if the parallel lines in the triangle AEB are
extended to GI, then the sum of all the parallels contained in the quadri-
lateral is equal to the sum of those contained in the triangle AEB; for
those in the triangle IEF are equal to those contained in the triangle GIA,
while those included in the trapezium AIFB are common. Since each and
every instant of time in the time-interval AB has its corresponding point
on the line AB, from which points parallels drawn in and limited by the
triangle AEB represent the increasing values of the growing velocity, and
since parallels contained within the rectangle represent the values of a
speed which is not increasing, but constant, it appears, in like manner,
that the momenta [momenti] assumed by the moving body may also be
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represented, in the case of the accelerated motion, by the increasing
parallels of the triangle AEB, and, in the case of the uniform motion,
by the parallels of the rectangle GB. For, what the momenta may lack
in the first part of the accelerated motion (the deficiency of the momenta
being represented by the parallels of the triangle AGI) is made up by the
momenta represented by the parallels of the triangle IEF.

Hence it is clear that equal spaces will be traversed in equal times by
two bodies, one of which, starting from rest, moves with a uniform
acceleration, while the momentum of the other, moving with uniform
speed, is one-half its maximum momentum under accelerated motion.

Q. E. D.

THEOREM II, PROPOSITION II

The spaces described by a body falling from rest with a uniformly
accelerated motion are to each other as the squares of the time-intervals
employed in traversing these distances.

Let the time beginning with any instant A be represented by the straight
line AB in which are taken any two time-intervals AD and AE. Let HI
represent the distance through which the body, starting from rest at H,
falls with uniform acceleration. If HL represents the space traversed dur-
ing the time-interval AD, and HM that covered during the interval AE,
then the space MH stands to the space LH in a ratio which is the square
of the ratio of the time AE to the time AD; or we may say simply that
the distances HM and HL are related as the squares of AE and AD.

Draw the line AC making any angle whatever with the line AB; and
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from the points D and E, draw the parallel lines DO and EP; of these two
lines, DO represents the greatest velocity attained during the interval AD,
while EP represents the maximum velocity acquired during the interval
AE. But it has just been proved that so far as distances traversed are
concerned it is precisely the same whether a body falls from rest with a
uniform acceleration or whether it falls during an equal time-interval
with a constant speed which is one-half the maximum speed attained dur-
ing the accelerated motion. It follows therefore that the distances HM
and HL are the same as would be traversed, during the time-intervals AE
and AD, by uniform velocities equal to one-half those represented by DO
and EP respectively. If, therefore, one can show that the distances HM
and HL are in the same ratio as the squares of the time-intervals AE and
AD, our proposition will be proven.

But in the fourth proposition of the first book it has been shown that
the spaces traversed by two particles in uniform motion bear to one an-
other a ratio which is equal to the product of the ratio of the velocities by
the ratio of the times. But in this case the ratio of the velocities is the same
as the ratio of the time-intervals (for the ratio of AE to AD is the same
as that of % EP to % DO or of EP to DO). Hence the ratio of the spaces
traversed is the same as the squared ratio of the time-intervals. Q. E. D.
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Evidently then the ratio of the distances is the square of the ratio of the
final velocities, that is, of the lines EP and DO, since these are to each
other as AE to AD.

COROLLARY I

Hence it is clear that if we take any equal intervals of time whatever,
counting from the beginning of the motion, such as AD, DE, EF, FG, in
which the spaces HL, LM, MN, NI are traversed, these spaces will bear
to one another the same ratio as the series of odd numbers, 1, 3, 5, 7;
for this is the ratio of the differences of the squares of the lines [which
represent time], differences which exceed one another by equal amounts,
this excess being equal to the smallest line [viz. the one representing a
single time-interval]: or we may say [that this is the ratio] of the differ-
ences of the squares of the natural numbers beginning with unity.

While, therefore, during equal intervals of time the velocities increase
as the natural numbers, the increments in the distances traversed during
these equal time-intervals are to one another as the odd numbers begin-
ning with unity. . . .

Simp. I am convinced that matters are as described, once having ac-
cepted the definition of uniformly accelerated motion. But as to whether
this acceleration is that which one meets in nature in the case of falling
bodies, I am still doubtful; and it seems to me, not only for my own
sake but also for all those who think as I do, that this would be the
proper moment to introduce one of those experiments—and there are
many of them, I understand—which illustrate in several ways the
conclusions reached.

SaLv. The request which you, as a man of science, make, is a very
reasonable one; for this is the custom—and properly so—in those sciences
where mathematical demonstrations are applied to natural phenomena,
as is seen in the case of perspective, astronomy, mechanics, music, and
others where the principles, once established by well-chosen experiments,
become the foundations of the entire superstructure. I hope therefore it
will not appear to be a waste of time if we discuss at considerable length
this first and most fundamental question upon which hinge numerous
consequences of which we have in this book only a small number, placed
there by the Author, who has done so much to open a pathway hitherto
closed to minds of speculative turn. So far as experiments go they have
not been neglected by the Author; and often, in his company, I have
attempted in the following manner to assure myself that the acceleration
actually experienced by falling bodies is that above described.

A piece of wooden moulding or scantling, about 12 cubits long, half a
cubit wide, and three finger-breadths thick, was taken; on its edge was
cut a channel a little more than one finger in breadth; having made this
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groove very straight, smooth, and polished, and having lined it with
parchment, also as smooth and polished as possible, we rolled along it a
hard, smooth, and very round bronze ball. Having placed this board in a
sloping position, by lifting one end some one or two cubits above the
other, we rolled the ball, as I was just saying, along the channel, noting,
in a manner presently to be described, the time required to make the
descent. We repeated this experiment more than once in order to measure
the time with an accuracy such that the deviation between two observa-
tions never exceeded one-tenth of a pulse-beat. Having performed this
operation and having assured ourselves of its reliability, we now rolled
the ball only one-quarter the length of the channel; and having measured
the time of its descent, we found it precisely one-half of the former.
Next we tried other distances, comparing the time for the whole length
with that for the half, or with that for two-thirds, or three-fourths, or
indeed for any fraction; in such experiments, repeated a full hundred
times, we always found that the spaces traversed were to each other as
the squares of the times, and this was true for all inclinations of the
plane, i.e., of the channel, along which we rolled the ball. We also ob-
served that the times of descent, for various inclinations of the plane,
bore to one another precisely that ratio which, as we shall see later, the
Author had predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of water
placed in an elevated position; to the bottom of this vessel was soldered
a pipe of small diameter giving a thin jet of water, which we collected
in a small glass during the time of each descent, whether for the whole
length of the channel or for a part of its length; the water thus collected
was weighed, after each descent, on a very accurate balance; the differ-
ences and ratios of these weights gave us the differences and ratios of the
times, and this with such accuracy that although the operation was
repeated many, many times, there was no appreciable discrepancy in the
results.

Simp. I would like to have been present at these experiments; but
feeling confidence in the care with which you performed them, and in
the fidelity with which you relate them, I am satisfied and accept them
as true and valid.

SaLv. Then we can proceed without discussion.

COROLLARY II

Secondly, it follows that, starting from any initial point, if we take any
two distances, traversed in any time-intervals whatsoever, these time-
intervals bear to one another the same ratio as one of the distances to
the mean proportional of the two distances.

For if we take two distances ST and SY measured from the initial
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point S, the mean proportional of which is SX, the time of fall through
ST is to the time of fall through SY as ST is to SX; or one may say the
time of fall through SY is to the time of fall through ST as SY is to SX.
Now since it has been shown that the spaces traversed are in the same
ratio as the squares of the times; and since, moreover, the ratio of the
space SY to the space ST is the square of the ratio SY to SX, it follows
that the ratio of the times of fall through SY and ST is the ratio of the
respective distances SY and SX.

SCHOLIUM

The above corollary has been proven for the case of vertical fall; but
it holds also for planes inclined at any angle; for it is to be assumed that
along these planes the velocity increases in the same ratio, that is, in pro-
portion to the time, or, if you prefer, as the series of natural numbers. . . .

THEOREM 111, PROPOSITION III

If one and the same body, starting from rest, falls along an inclined
plane and also along a vertical, each having the same height, the times
of descent will be to each other as the lengths of the inclined plane and
the vertical.

Let AC be the inclined plane and AB the perpendicular, each having
the same vertical height above the horizontal, namely, BA; then I say, the
time of descent of one and the same body along the plane AC bears a
ratio to the time of fall along the perpendicular AB, which is the same
as the ratio of the length AC to the length AB. Let DG, EI and LF be
any lines parallel to the horizontal CB; then it follows from what has
preceded that a body starting from A will acquire the same speed at the
point G as at D, since in each case the vertical fall is the same; in like
manner the speeds at I and E will be the same; so also those at L and F.
And in general the speeds at the two extremities of any parallel drawn
from any point on AB to the corresponding point on AC will be equal.
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Thus the two distances AC and AB are traversed at the same speed.
But it has already been proved that if two distances are traversed by a
body moving with equal speeds, then the ratio of the times of descent
will be the ratio of the distances themselves; therefore, the time of descent
along AC is to that along AB as the length of the plane AC is to the
vertical distance AB. Q. E. D.

SAGR. It seems to me that the above could have been proved clearly
and briefly on the basis of a proposition already demonstrated, namely,
that the distance traversed in the case of accelerated motion along AC or
AB is the same as that covered by a uniform speed whose value is one-
half the maximum speed, CB; the two distances AC and AB having been
traversed at the same uniform speed it is evident, from Proposition I,
that the times of descent will be to each other as the distances.

COROLLARY

Hence we may infer that the times of descent along planes having
different inclinations, but the same vertical height stand to one another
in the same ratio as the lengths of the planes. For consider any plane AM
extending from A to the horizontal CB; then it may be demonstrated in
the same manner that the time of descent along AM is to the time along
AB as the distance AM is to AB; but since the time along AB is to that
along AC as the length AB is to the length AC, it follows, ex equali, that
as AM is to AC so is the time along AM to the time along AC.

THEOREM 1V, PROPOSITION 1V

~ The times of descent along planes of the same length but of different
inclinations are to each other in the inverse ratio of the square roots of
their heights.

From a single point B draw the planes BA and BC, having the same
length but different inclinations; let AE and CD be horizontal lines drawn
to meet the perpendicular BD; and let BE represent the height of the
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plane AB, and BD the height of BC; also let BI be a mean proportional
to BD and BE; then the ratio of BD to BI is equal to the square root of
the ratio of BD to BE. Now, I say, the ratio of the times of descent along
BA and BC is the ratio of BD to BI; so that the time of descent along BA
is related to the height of the other plane BC, namely BD as the time
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along BC is related to the height BI. Now it must be proved that the time
of descent along BA is to that along BC as the length BD is to the length
BL

Draw IS parallel to DC; and since it has been shown that the time of
fall along BA is to that along the vertical BE as BA is to BE; and also
that the time along BE is to that along BD as BE is to BI; and likewise
that the time along BD is to that along BC as BD is to BC, or as BI to
BS; it follows, ex @quali, that the time along BA is to that along BC as
BA to BS, or BC to BS. However, BC is to BS as BD is to BI; hence
follows our proposition.

THEOREM V, PROPOSITION V

The times of descent along planes of different length, slope and height
bear to one another a ratio which is equal to the product of the ratio of
the lengths by the square root of the inverse ratio of their heights.

Draw the planes AB and AC, having different inclinations, lengths, and
heights. My theorem then is that the ratio of the time of descent along
AC to that along AB is equal to the product of the ratio of AC to AB
by the square root of the inverse ratio of their heights.

For let AD be a perpendicular to which are drawn the horizontal lines
BG and CD; also let AL be a mean proportional to the heights AG and
AD; from the point L draw a horizontal line meeting AC in F; accord-
ingly AF will be a mean proportional between AC and AE. Now since the
time of descent along AC is to that along AE as the length AF is to AE;
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and since the time along AE is to that along AB as AE is to AB, it is clear
that the time along AC is to that along AB as AF is to AB.

Thus it remains to be shown that the ratio of AF to AB is equal to
the product of the ratio of AC to AB by the ratio of AG to AL, which
is the inverse ratio of the square roots of the heights DA and GA. Now
it is evident that, if we consider the line AC in connection with AF and
AB, the ratio of AF to AC is the same as that of AL to AD, or AG to AL
which is the square root of the ratio of the heights AG and AD; but the
ratio of AC to AB is the ratio of the lengths themselves. Hence follows
the theorem.

THEOREM VI, PROPOSITION VI

If from the highest or lowest point in a vertical circle there be drawn
any inclined planes meeting the circumference the times of descent along
these chords are each equal to the other.

On the horizontal line GH construct a vertical circle. From its lowest
point—the point of tangency with the horizontal—draw the diameter FA
and from the highest point, A, draw inclined planes to B and C, any
points whatever on the circumference; then the times of descent along
these are equal. Draw BD and CE perpendicular to the diameter; make
Al a mean proportional between the heights of the planes, AE and AD;
and since the rectangles FA.AE and FA.AD are respectively equal to the
squares of AC and AB, while the rectangle FA.AE is to the rectangle
FA.AD as AE is to AD, it follows that the square of AC is to the square
of AB as the length AE is to the length AD. But since the length AE is
to AD as the square of AI is to the square of AD, it follows that the
squares on the lines AC and AB are to each other as the squares on the
lines Al and AD, and hence also the length AC is to the length AB as Al
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is to AD. But it has previously been demonstrated that the ratio of the
time of descent along AC to that along AB is equal to the product of the
two ratios AC to AB and AD to AI; but this last ratio is the same as
that of AB to AC. Therefore the ratio of the time of descent along AC
to that along AB is the product of the two ratios, AC to AB and AB to
AC. The ratio of these times is therefore unity. Hence follows our
proposition.

By use of the principles of mechanics [ex mechanicis] one may obtain
the same result. . . .

SCHOLIUM

We may remark that any velocity once imparted to a moving body will
be rigidly maintained as long as the external causes of acceleration or
retardation are removed, a condition which is found only on horizontal
planes; for in the case of planes which slope downwards there is already
present a cause of acceleration, while on planes sloping upward there is
retardation; from this it follows that motion along a horizontal plane is
perpetual; for, if the velocity be uniform, it cannot be diminished or
slackened, much less destroyed. Further, although any velocity which a
body may have acquired through natural fall is permanently maintained
so far as its own nature [suapte natura)] is concerned, yet it must be re-
membered that if, after descent along a plane inclined downwards, the
body is deflected to a plane inclined upward, there is already existing in
this latter plane a cause of retardation; for in any such plane this same
body is subject to a natural acceleration downwards. Accordingly we have
here the superposition of two different states, namely, the velocity ac-
quired during the preceding fall which if acting alone would carry the
body at a uniform rate to infinity, and the velocity which results from a
natural acceleration downwards common to all bodies. It seems altogether
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reasonable, therefore, if we wish to trace the future history of a body
which has descended along some inclined plane and has been deflected
along some plane inclined upwards, for us to assume that the maximum
speed acquired during descent is permanently maintained during the
ascent. In the ascent, however, there supervenes a natural inclination
downwards, namely, a motion which, starting from rest, is accelerated at
the usual rate. If perhaps this discussion is a little obscure, the following
figure will help to make it clearer.

Let us suppose that the descent has been made along the downward
sloping plane AB, from which the body is deflected so as to continue its
motion along the upward sloping plane BC; and first let these planes be
of equal length and placed so as to make equal angles with the horizontal
line GH. Now it is well known that a body, starting from rest at A, and
descending along AB, acquires a speed which is proportional to the time,
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which is a maximum at B, and which is maintained by the body so long as
all causes of fresh acceleration or retardation are removed; the accelera-
tion to which I refer is that to which the body would be subject if its
motion were continued along the plane AB extended, while the retarda-
tion is that which the body would encounter if its motion were deflected
along the plane BC inclined upwards; but, upon the horizontal plane GH,
the body would maintain a uniform velocity equal to that which it had
acquired at B after fall from A; moreover this velocity is such that, during
an interval of time equal to the time of descent through AB, the body will
traverse a horizontal distance equal to twice AB. Now let us imagine this
same body to move with the same uniform speed along the plane BC so
that here also during a time-interval equal to that of descent along AB,
it will traverse along BC extended a distance twice AB; but let us suppose
that, at the very instant the body begins its ascent it is subjected, by its
very nature, to the same influences which surrounded it during its descent
from A along AB, namely, it descends from rest under the same accelera-
tion as that which was effective in AB, and it traverses, during an equal
interval of time, the same distance along this second plane as it did along
AB; it is clear that, by thus superposing upon the body a uniform motion
of ascent and an accelerated motion of descent, it will be carried along
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the plane BC as far as the point C where these two velocities become
equal.

If now we assume any two points D and E, equally distant from the
vertex B, we may then infer that the descent along BD takes place in the
same time as the ascent along BE. Draw DF parallel to BC; we know that,
after descent along AD, the body will ascend along DF; or, if, on reach-
ing D, the body is carried along the horizontal DE, it will reach E with
the same momentum [impetus] with which it left D; hence from E the
body will ascend as far as C, proving that the velocity at E is the same
as that at D.

From this we may logically infer that a body which descends along any
inclined plane and continues its motion along a plane inclined upwards
will, on account of the momentum acquired, ascend to an equal height
above the horizontal; so that if the descent is along AB the body will be
carried up the plane BC as far as the horizontal line ACD: and this is true
whether the inclinations of the planes are the same or different, as in the
case of the planes AB and BD. But by a previous postulate the speeds
acquired by fall along variously inclined planes having the same vertical
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height are the same. If therefore the planes EB and BD have the same
slope, the descent along EB will be able to drive the body along BD as
far as D; and since this propulsion comes from the speed acquired on
reaching the point B, it follows that this speed at B is the same whether
the body has made its descent along AB or EB Evidently then the body
will be carried up BD whether the descent has been made along AB or
along EB. The time of ascent along BD is however greater than that
along BC, just as the descent along EB occupies more time than that
along AB; moreover it has been demonstrated that the ratio between the
lengths of these times is the same as that between the lengths of the
planes. . . .

FOURTH DAY

SaLv. Once more, Simplicio is here on time; so let us without delay
take up the question of motion. The text of our Author is as follows:
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THE MoTiOoN OF PROJECTILES

In the preceding pages we have discussed the properties of uniform
motion and of motion naturally accelerated along planes of all inclina-
tions. I now propose to set forth those properties which belong to a body
whose motion is compounded of two other motions, namely, one uniform
and one naturally accelerated; these properties, well worth knowing, I
propose to demonstrate in a rigid manner. This is the kind of motion seen
in a moving projectile; its origin I conceive to be as follows:

Imagine any particle projected along a horizontal plane without friction;
then we know, from what has been more fully explained in the preceding
pages, that this particle will move along this same plane with a motion
which is uniform and perpetual, provided the plane has no limits. But if
the plane is limited and elevated, then the moving particle, which we
imagine to be a heavy one, will on passing over the edge of the plane
acquire, in addition to its previous uniform and perpetual motion, a
downward propensity due to its own weight; so that. the resulting motion
which I call projection [projectio], is compounded of one which is uniform
and horizontal and of another which is vertical and naturally accelerated.
We now proceed to demonstrate some of its properties, the first of which
is as follows:

THEOREM 1, PROPOSITION 1

A projectile which is carried by a uniform horizontal motion com-
pounded with a naturally accelerated vertical motion describes a path
which is a semi-parabola.

SAGR. Here, Salviati, it will be necessary to stop a little while for my
sake and, I believe, also for the benefit of Simplicio; for it so happens that
I have not gone very far in my study of Apollonius and am merely aware
of the fact that he treats of the parabola and other conic sections, without
an understanding of which I hardly think one will be able to follow the
proof of other propositions depending upon them. Since even in this first
beautiful theorem the author finds it necessary to prove that the path of a
projectile is a parabola, and since, as I imagine, we shall have to deal with
only this kind of curves, it will be absolutely necessary to have a thorough
acquaintance, if not with all the properties which Apollonius has demon-
strated for these figures, at least with those which are needed for the
present treatment.

SaLv. You are quite too modest, pretending ignorance of facts which
not long ago you acknowledged as well known—I mean at the time when
we were discussing the strength of materials and needed to use a certain
theorem of Apollonius which gave you no trouble.



156 Galileo Galilei

Sacr. I may have chanced to know it or may possibly have assumed it,
so long as needed, for that discussion; but now when we have to follow all
these demonstrations about such curves we ought not, as they say, to
swallow it whole, and thus waste time and energy.

Simp. Now even though Sagredo is, as I believe, well equipped for all
his needs, I do not understand even the elementary terms; for although
our philosophers have treated the motion of projectiles, I do not recall
their having described the path of a projectile except to state in a general
way that it is always a curved line, unless the projection be vertically up-
wards. But if the little Euclid which I have learned since our previous
discussion does not enable me to understand the demonstrations which are
to follow, then I shall be obliged to accept the theorems on faith without
fully comprehending them.

SaLv. On the contrary, I desire that you should understand them from
the Author himself, who, when he allowed me to see this work of his, was
good enough to prove for me two of the principal properties of the parab-
ola because I did not happen to have at hand the books of Apollonius.
These properties, which are the only ones we shall need in the present dis-
cussion, he proved in such a way that no prerequisite knowledge was re-
quired. These theorems are, indeed, given by Apollonius, but after many
preceding ones, to follow which would take a long while. I wish to shorten
our task by deriving the first property purely and simply from the mode
of generation of the parabola and proving the second immediately from
the first.

Beginning now with the first, imagine a right cone, erected upon the cir-
cular base ibke with apex at l. The section of this cone made by a plane
drawn parallel to the side lk is the curve which is called a parabola. The
base of this parabola be cuts at right angles the diameter ik of the circle
ibkc, and the axis ad is parallel to the side lk; now having taken any
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point f in the curve bfa draw the straight line fe parallel to bd; then, I
say, the square of bd is to the square of fe in the same ratio as the axis ad
is to the portion ae. Through the point e pass a plane parallel to the circle
ibke, producing in the cone a circular section whose diameter is the line
geh. Since bd is at right angles to ik in the circle ibk, the square of bd is
equal to the rectangle formed by id and dk; so also in the upper circle
which passes through the points gfh the square of fe is equal to the rec-
tangle formed by ge and eh; hence the square of bd is to the square of fe
as the rectangle id.dk is to the rectangle ge.eh. And since the line ed is
parallel to hk, the line eh, being parallel to dk, is equal to it; therefore the
rectangle id.dk is to the rectangle ge.eh. And since the line ed is parallel
to hk, the line eh, being parallel to dk, is equal to it; therefore the
rectangle id.dk is to the rectangle ge.eh as id is to ge, that is, as da is to ae;
whence also the rectangle id.dk is to the rectangle ge.eh, that is, the square
of bd is to the square of fe, as the axis da is to the portion ae. Q. E. D.

The other proposition necessary for this discussion we demonstrate as
follows. Let us draw a parabola whose axis ca is prolonged upwards to a
point d; from any point b draw the line bc parallel to the base of the parab-
ola; if now the point 4 is chosen so that da = ca, then, I say, the straight
line drawn through the points b and d will be tangent to the parabola at b.
For imagine, if possible, that this line cuts the parabola above or that its
prolongation cuts it below, and through any point g in it draw the straight
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line fee. And since the square of fe is greater than the square of ge, the
square of fe will bear a greater ratio to the square of bc than the square
of ge to that of bc; and since, by the preceding proposition, the square of
fe is to that of bc as the line ea is to ca, it follows that the line ea will
bear to the line ca a greater ratio than the square of ge to that of be, or,
than the square of ed to that of cd (the sides of the triangles deg and dcb
being proportional). But the line ea is to ca, or da, in the same ratio as
four times the rectangle ea.ad is to four times the square of ad, or, what
is the same, the square of cd, since this is four times the square of ad;
hence four times the rectangle ea.ad bears to the square of cd a greater
ratio than the square of ed to the square of cd; but that would make four
times the rectangle ea.ad greater than the square of ed; which is false, the
fact being just the opposite, because the two portions ea and ad of the
line ed are not equal. Therefore the line db touches the parabola without
cutting it. Q. E.D.

Simp. Your demonstration proceeds too rapidly and, it seems to me,
you keep on assuming that all of Euclid’s theorems are as familiar and
available to me as his first axioms, which is far from true. And now this
fact which you spring upon us, that four times the rectangle ea.ad is less
than the square of de because the two portions ea and ad of the line de
are not equal brings me little composure of mind, but rather leaves me in
suspense.

SaLv. Indeed, all real mathematicians assume on the part of the reader
perfect familiarity with at least the elements of Euclid; and here it is nec-
essary in your case only to recall a proposition of the Second Book in
which he proves that when a line is cut into equal and also into two
unequal parts, the rectangle formed on the unequal parts is less than that
formed on the equal (i.e., less than the square on half the line), by an
amount which is the square of the difference between the equal and un-
equal segments. From this it is clear that the square of the whole line
which is equal to four times the square of the half is greater than four
times the rectangle of the unequal parts. In order to understand the fol-
lowing portions of this treatise it will be necessary to keep in mind the
two elemental theorems from conic sections which we have just demon-
strated; and these two theorems are indeed the only ones which the Author
uses. We can now resume the text and see how he demonstrates his first
proposition in which he shows that a body falling with a motion com-
pounded of a uniform horizontal and a naturally accelerated [naturale
descendente] one describes a semi-parabola.

Let us imagine an elevated horizontal line or plane ab along which a
body moves with uniform speed from a to b. Suppose this plane to end
abruptly at b; then at this point the body will, on account of its weight,
acquire also a natural motion downwards along the perpendicular bn.
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Draw the line be along the plane ba to represent the flow, or measure, of
time; divide this line into a number of segments, bc, cd, de, representing
equal intervals of time; from the points b, ¢, d, e, let fall lines which are
parallel to the perpendicular bn. On the first of these lay off any distance
ci, on the second a distance four times as long, df; on the third, one nine
times as long, eh; and so on, in proportion to the squares of cb, db, eb,
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or, we may say, in the squared ratio of these same lines. Accordingly we
see that while the body moves from b to ¢ with uniform speed, it also falls
perpendicularly through the distance ci, and at the end of the time-interval
bc finds itself at the point i. In like manner at the end of the time-interval
bd, which is the double of bc, the vertical fall will be four times the first
distance ci; for it has been shown in a previous discussion that the distance
traversed by a freely falling body varies as the square of the time; in like
manner the space eh traversed during the time be will be nine times ci;
thus it is evident that the distances eh, df, ci will be to one another as the
squares of the lines be, bd, bc. Now from the points i, f, h draw the
straight lines io, fg, hl parallel to be; these lines hl, fg, io are equal to
eb, db and cb, respectively; so also are the lines bo, bg, bl respectively
equal to ci, df, and eh. The square of Al is to that of fg as the line /b is to
bg; and the square of fg is to that of io as gb is to bo; therefore the points
iy f, h, lie on one and the same parabola. In like manner it may be shown
that, if we take equal time-intervals of any size whatever, and if we
imagine the particle to be carried by a similar compound motion, the posi-
tions of this particle, at the ends of these time-intervals, will lie on one
and the same parabola. Q. E. D.

SALv. This conclusion follows from the converse of the first of the two
propositions given above. For, having drawn a parabola through the points
b and h, any other two points, f and i, not falling on the parabola must
lie either within or without; consequently the line fg is either longer or
shorter than the line which terminates on the parabola. Therefore the
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square of hl will not bear to the square of fg the same ratio as the line Ib
to bg, but a greater or smaller; the fact is, however, that the square of
hl does bear this same ratio to the square of fg. Hence the point f does
lie on the parabola, and so do all the others.

SAGR. One cannot deny that the argument is new, subtle and conclusive,
resting as it does upon this hypothesis, namely, that the horizontal motion
remains uniform, that the vertical motion continues to be accelerated
downwards in proportion to the square of the time, and that such motions
and velocities as these combine without altering, disturbing, or hindering
each other,3 so that as the motion proceeds the path of the projectile
does not change into a different curve: but this, in my opinion, is impos-
sible. For the axis of the parabola along which we imagine the natural
motion of a falling body to take place stands perpendicular to a horizontal
surface and ends at the center of the earth; and since the parabola de-
viates more and more from its axis no projectile can ever reach the center
of the earth or, if it does, as seems necessary, then the path of the pro-
jectile must transform itself into some other curve very different from the
parabola,

Simp. To these difficulties, I may add others. One of these is that we
suppose the horizontal plane, which slopes neither up nor down, to be
represented by a straight line as if each point on this line were equally
distant from the center, which is not the case; for as one starts from the
middle [of the line] and goes toward either end, he departs farther and
farther from the center [of the earth] and is therefore constantly going
uphill. Whence it follows that the motion cannot remain uniform through
any distance whatever, but must continually diminish. Besides, I do not
see how it is possible to avoid the resistance of the medium which must
destroy the uniformity of the horizontal motion and change the law of
acceleration of falling bodies. These various difficulties render it highly
improbable that a result derived from such unreliable hypotheses should
hold true in practice.

SaLv. All these difficulties and objections which you urge are so well
founded that it is impossible to remove them; and, as for me, I am ready
to admit them all, which indeed I think our Author would also do. I
grant that these conclusions proved in the abstract will be different when
applied in the concrete and will be fallacious to this extent, that neither
will the horizontal motion be uniform nor the natural acceleration be in
the ratio assumed, nor the path of the projectile a parabola, etc. But, on
the other hand, I ask you not to begrudge our Author that which other
eminent men have assumed even if not strictly true. The authority of
Archimedes alone will satisfy everybody. In his Mechanics and in his first
quadrature of the parabola he takes for granted that the beam of a balance

3 A very near approach to Newton’s Second Law of Motion. [Trans.]
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or steelyard is a straight line, every point of which is equidistant from the
common center of all heavy bodies, and that the cords by which heavy
bodies are suspended are parallel to each other.

Some consider this assumption permissible because, in practice, our
instruments and the distances involved are so small in comparison with the
enormous distance from the center of the earth that we may consider a
minute of arc on a great circle as a straight line, and may regard the per-
pendiculars let fall from its two extremities as parallel. For if in actual
practice one had to consider such small quantities, it would be necessary
first of all to criticise the architects who presume, by use of a plumbline,
to erect high towers with parallel sides. I may add that, in all their discus-
sions, Archimedes and the others considered themselves as located at an
infinite distance from the center of the earth, in which case their assump-
tions were not false, and therefore their conclusions were absolutely cor-
rect. When we wish to apply our proven conclusions to distances which,
though finite, are very large, it is necessary for us to infer, on the basis
of demonstrated truth, what correction is to be made for the fact that our
distance from the center of the earth is not really infinite, but merely
very great in comparison with the small dimensions of our apparatus. The
largest of these will be the range of our projectiles—and even here we
need consider only the artillery—which, however great, will never exceed
four of those miles of which as many thousand separate us from the
center of the earth; and since these paths terminate upon the surface of
the earth only very slight changes can take place in their parabolic figure
which, it is conceded, would be greatly altered if they terminated at the
center of the earth.

As to the perturbation arising from the resistance of the medium this
is more considerable and does not, on account of its manifold forms, sub-
mit to fixed laws and exact description. Thus if we consider only the re-
sistance which the air offers to the motions studied by us, we shall see that
it disturbs them all and disturbs them in an infinite variety of ways cor-
responding to the infinite variety in the form, weight, and velocity of the
projectiles. For as to velocity, the greater this is, the greater will be the
resistance offered by the air; a resistance which will be greater as the
moving bodies become less dense [men gravi]. So that although the falling
body ought.to be displaced [andare accelerandosi] in proportion to the
square of the duration of its motion, yet no matter how heavy the body,
if it falls from a very considerable height, the resistance of the air will
be such as to prevent any increase in speed and will render the motion
uniform; and in proportion as the moving body is less dense [men grave]
this uniformity will be so much the more quickly attained and after a
shorter fall. Even horizontal motion which, if no impediment were offered,
would be uniform and constant is altered by the resistance of the air and
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finally ceases; and here again the less dense [piu leggiero] the body the
quicker the process. Of these properties [accidenti] of weight, of velocity,
and also of form [figura], infinite in number, it is not possible to give any
exact description; hence, in order to handle this matter in a scientific way,
it is necessary to cut loose from these difficulties; and having discovered
and demonstrated the theorems, in the case of no resistance, to use them
and apply them with such limitations as experience will teach. And the
advantage of this method will not be small; for the material and shape of
the projectile may be chosen, as dense and round as possible, so that it
will encounter the least resistance in the medium. Nor will the spaces and
velocities in general be so great but that we shall be easily able to correct
them with precision.

In the case of those projectiles which we use, made of dense [grave]
material and round in shape, or of lighter material and cylindrical in
shape, such as arrows, thrown from a sling or crossbow, the deviation
from an exact parabolic path is quite insensible. Indeed, if you will allow
me a little greater liberty, 1 can show you, by two experiments, that the
dimensions of our apparatus are so small that these external and incidental
resistances, among which that of the medium is the most considerable, are
scarcely observable.

I now proceed to the consideration of motions through the air, since
it is with these that we are now especially concerned; the resistance of the
air exhibits itself in two ways: first by offering greater impedance to less
dense than to very dense bodies, and secondly by offering greater resist-
ance to a body in rapid motion than to the same body in slow motion.

Regarding the first of these, consider the case of two balls having the
same dimensions, but one weighing ten or twelve times as much as the
other; one, say, of lead, the other of oak, both allowed to fall from an
elevation of 150 or 200 cubits.

Experiment shows that they will reach the earth with slight difference in
speed, showing us that in both cases the retardation caused by the air is
small; for if both balls start at the same moment and at the same elevation,
and if the leaden one be slightly retarded and the wooden one greatly re-
tarded, then the former ought to reach the earth a considerable distance
in advance of the latter, since it is ten times as heavy. But this does not
happen; indeed, the gain in distance of one over the other does not amount
to the hundredth part of the entire fall. And in the case of a ball of stone
weighing only a third or half as much as one of lead, the difference in
their times of reaching the earth will be scarcely noticeable. Now since the
speed [impeto] acquired by a leaden ball in falling from a height of 200
cubits is so great that if the motion remained uniform the ball would, in
an interval of time equal to that of the fall, traverse 400 cubits, and since
this speed is so considerable in comparison with those which, by use of
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bows or other machines except fire arms, we are able to give to our pro-
jectiles, it follows that we may, without sensible error, regard as absolutely
true those propositions which we are about to prove without considering
the resistance of the medium.

Passing now to the second case, where we have to show that the re-
sistance of the air for a rapidly moving body is not very much greater
than for one moving slowly, ample proof is given by the following experi-
ment. Attach to two threads of equal length—say four of five yards—two
equal leaden balls and suspend them from the ceiling; now pull them aside
from the perpendicular, the one through 80 or more degrees, the other
through not more than four or five degrees; so that, when set free, the
one falls, passes through the perpendicular, and describes large but slowly
decreasing arcs of 160, 150, 140 degrees, etc.; the other swinging through
small and also slowly diminishing arcs of 10, 8, 6 degrees, etc.

In the first place it must be remarked that one pendulum passes through
its arcs of 180°, 160°, etc., in the same time that the other swings through
its 10°, 8°, etc., from which it follows that the speed of the first ball is 16
and 18 times greater than that of the second. Accordingly, if the air offers
more resistance to the high speed than to the low, the frequency of vibra-
tion in the large arcs of 180° or 160°, etc., ought to be less than in the
small arcs of 10°, 8°, 4°, etc., and even less than in arcs of 2°, or 1°;
but this prediction is not verified by experiment; because if two persons
start to count the vibrations, the one the large, the other the small, they
will discover that after counting tens and even hundreds they will not
differ by a single vibration, not even by a fraction of one.

This observation justifies the two following propositions, namely, that
vibrations of very large and very small amplitude all occupy the same
time and that the resistance of the air does not affect motions of high
speed more than those of low speed, contrary to the opinion hitherto gen-
erally entertained.

SAGR. On the contrary, since we cannot deny that the air hinders both
of these motions, both becoming slower and finally vanishing, we have to
admit that the retardation occurs in the same proportion in each case. But
how? How, indeed, could the resistance offered to the one body be greater
than that offered to the other except by the impartation of more momen-
tum and speed [impeto e velocitd] to the fast body than to the slow? And
if this is so the speed with which a body moves is at once the cause and
measure [cagione e misura] of the resistance which it meets. Therefore, all
motions, fast or slow, are hindered and diminished in the same proportion;
a result, it seems to me, of no small importance.

SALv. We are able, therefore, in this second case to say that the errors,
neglecting those which are accidental, in the results which we are about
to demonstrate are small in the case of our machines where the velocities
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employed are mostly very great and the distances negligible in comparison
with the semi-diameter of the earth or one of its great circles.

Simp. I would like to hear your reason for putting the projectiles of fire
arms, i.e., those using powder, in a different class from the projectiles
employed in bows, slings, and crossbows, on the ground of their not being
equally subject to change and resistance from the air.

SaLv. I am led to this view by the excessive and, so to speak, super-
natural violence with which such projectiles are launched; for, indeed, it
appears to me that without exaggeration one might say that the speed of
a ball fired either from a musket or from a piece of ordnance is super-
natural. For if such a ball be allowed to fall from some great elevation its
speed will, owing to the resistance of the air, not go on increasing indefi-
nitely; that which happens to bodies of small density in falling through
short distances—I mean the reduction of their motion to uniformity—will
also happen to a ball of iron or lead after it has fallen a few thousand
cubits; this terminal or final speed [terminata velocitd] is the maximum
which such a heavy body can naturally acquire in falling through the air.
This speed I estimate to be much smaller than that impressed upon the
ball by the burning powder.

An appropriate experiment will serve to demonstrate this fact. From a
height of one hundred or more cubits fire a gun [archibuso] loaded with a
lead bullet, vertically downwards upon a stone pavement; with the same
gun shoot against a similar stone from a distance of one or two cubits,
and observe which of the two balls is the more flattened. Now if the ball
which has come from the greater elevation is found to be the less flattened
of the two, this will show that the air has hindered and diminished the
speed initially imparted to the bullet by the powder, and that the air will
not permit a bullet to acquire so great a speed, no matter from what height
it falls; for if the speed ijmpressed upon the ball by the fire does not exceed
that acquired by it in falling freely [naturalmente] then its downward blow
ought to be greater rather than less.

This experiment I have not performed, but I am of the opinion that a
musket-ball or cannon-shot, falling from a height as great as you please,
will not deliver so strong a blow as it would if fired into a wall only a few
cubits distant, i.e., at such a short range that the splitting or rending of
the air will not be sufficient to rob the shot of that excess of supernatural
violence given it by the powder.

The enormous momentum [impeto] of these violent shots may cause
some deformation of the trajectory, making the beginning of the parabola
flatter and less curved than the end; but, so far as our Author is concerned,
this is a matter of small consequence in practical operations, the main one
of which is the preparation of a table of ranges for shots of high elevation,
giving the distance attained by the ball as a function of the angle of eleva-
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tion: and since shots of this kind are fired from mortars [mortari] using
small charges and imparting no supernatural momentum [impeto soprana-
turale) they follow their prescribed paths very exactly.

But now let us proceed with the discussion in which the Author invites
us to the study and investigation of the motion of a body [impeto del mo-
bile] when that motion is compounded of two others; and first the case in
which the two are uniform, the one horizontal, the other vertical.

THEOREM 11, PROPOSITION II

When the motion of a body is the resultant of two uniform motions, one
horizontal, the other perpendicular, the square of the resultant momentum
is equal to the sum of the squares of the two component momenta.

Let us imagine any body urged by two uniform motions and let ab
represent the vertical displacement, while bc represents the displacement
which, in the same interval of time, takes place in a horizontal direction.

a
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FIGURE 15

If then the distances ab and bc are traversed, during the same time-
interval, with uniform motions the corresponding momenta will be to each
other as the distances ab and bc are to each other; but the body which is
urged by these two motions describes the diagonal ac; its momentum is
proportional to ac. Also the square of ac is equal to the sum of the squares
of ab and bc. Hence the square of the resultant momentum is equal to the
sum of the squares of the two momenta ab and bc. Q. E. D.

SiMp. At this point there is just one slight difficulty which needs to be
cleared up; for it seems to me that the conclusion just reached contradicts
a previous proposition in which it is claimed that the speed [impeto] of a
body coming from a to b is equal to that in coming from a to ¢; while
now you conclude that the speed [impeto] at c is greater than that at b.

SALv. Both propositions, Simplicio, are true, yet there is a great dif-
ference between them. Here we are speaking of a body urged by a single
motion which is the resultant of two uniform motions, while there we
were speaking of two bodies each urged with naturally accelerated mo-
tions, one along the vertical ab the other along the inclined plane ac. Be-
sides the time-intervals were there not supposed to be equal, that along the
incline ac being greater than that along the vertical ab; but the motions
of which we now speak, those along ab, bc, ac, are uniform and simul-
taneous.
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Simp. Pardon me; I am satisfied; pray go on.

SaLv. Our Author next undertakes to explain what happens when a
body is urged by a motion compounded of one which is horizontal and
uniform and of another which is vertical but naturally accelerated; from
these two components results the path of a projectile, which is a parabola.
The problem is to determine the speed [impeto] of the projectile at each
point. With this purpose in view our Author sets forth as follows the
manner, or rather the method, of measuring such speed [impeto] along the
path which is taken by a heavy body starting from rest and falling with
a naturally accelerated motion.

THEOREM 11I, PROPOSITION III

Let the motion take place along the line ab, starting from rest at a,
and in this line choose any point c¢. Let ac represent the time, or the
measure of the time, required for the body to fall through the space ac;
let ac also represent the velocity [impetus seu momentum]) at ¢ acquired
by a fall through the distance ac. In the line ab select any other point b.
The problem now is to determine the velocity at b acquired by a body in
falling through the distance ab and to express this in terms of the velocity
at ¢, the measure of which is the length ac. Take as a mean proportional
between ac and ab. We shall prove that the velocity at b is to that at ¢
as the length as is to the length ac. Draw the horizontal line cd, having
twice the length of ac, and be, having twice the length of ba. It then fol-
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FIGURE 16

lows, from the preceding theorems, that a body falling through the dis-
tance ac, and turned so as to move along the horizontal c¢d with a uni-
form speed equal to that acquired on reaching ¢ will traverse the distance
cd in the same interval of time as that required to fall with accelerated
motion from a to c. Likewise be will be traversed in the same time as ba.
But the time of descent through ab is as; hence the horizontal distance be
is also traversed in the time as. Take a point / such that the time as is to
the time ac as be is to bl; since the motion along be is uniform, the dis-
tance bl, if traversed with the speed [momentum celeritatis] acquired at b,
will occupy the time ac; but in this same time-interval, ac, the distance cd
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is traversed with the speed acquired in ¢. Now two speeds are to each
other as the distances traversed in equal intervals of time. Hence the speed
at c is to the speed at b as cd is to bl. But since dc is to be as their halves,
namely, as ca is to ba, and since be is to bl as ba is to sa; it follows that
dc is to bl as ca is to sa. In other words, the speed at c is to that at b as
ca is to sa, that is, as the time of fall through ab.

The method of measuring the speed of a body along the direction of its
fall is thus clear; the speed is assumed to increase directly as the time. . . .

PROBLEM I, PROPOSITION 1V

SaLv. Concerning motions and their velocities or momenta [movimenti
e lor velocita o impeti] whether uniform or naturally accelerated, one can-
not speak definitely until he has established a measure for such velocities
and also for time. As for time we have the already widely adopted hours,
first minutes and second minutes. So for velocities, just as for intervals of
time, there is need of a common standard which shall be understood and
accepted by everyone, and which shall be the same for all. As has already
been stated, the Author considers the velocity of a freely falling body
adapted to this purpose, since this velocity increases according to the same
law in all parts of the world; thus for instance the speed acquired by a
leaden ball of a pound weight starting from rest and falling vertically
through the height of, say, a spear’s length is the same in all places; it
is therefore excellently adapted for representing the momentum [impeto]
acquired in the case of natural fall.

It still remains for us to discover a method of measuring momentum
in the case of uniform motion in such a way that all who discuss the
subject will form the same conception of its size and velocity [grandezza
e velocita). This will prevent one person from imagining it larger, another
smaller, than it really is; so that in the composition of a given uniform
motion with one which is accelerated different men may not obtain dif-
ferent values for the resultant. In order to determine and represent such
a momentum and particular speed [impeto e velocita particolare] our
Author has found no better method than to use the momentum acquired
by a body in naturally accelerated motion. The speed of a body which
has in this manner acquired any momentum whatever will, when converted
into uniform motion, retain precisely such a speed as, during a time-
interval equal to that of the fall, will carry the body through a distance
equal to twice that of the fall. But since this matter is one which is funda-
mental in our discussion it is well that we make it perfectly clear by means
of some particular example.

Let us consider the speed and momentum acquired by a body falling
through the height, say, of a spear [picca] as a standard which we may
use in the measurement of other speeds and momenta as occasion de-
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mands; assume for instance that the time of such a fall is four seconds
[minuti secondi d’oral; now in order to measure the speed acquired from
a fall through any other height, whether greater or less, one must not con-
clude that these speeds bear to one another the same ratio as the heights
of fall; for instance, it is not true that a fall through four times a given
height confers a speed four times as great as that acquired by descent
through the given height; because the speed of a naturally accelerated
motion does not vary in proportion to the time. As has been shown above,
the ratio of the spaces is equal to the square of the ratio of the times.

If, then, as is often done for the sake of brevity, we take the same
limited straight line as the measure of the speed, and of the time, and also
of the space traversed during that time, it follows that the duration of fall
and the speed acquired by the same body in passing over any other dis-
tance, is not represented by this second distance, but by a mean propor-
tional between the two distances. This I can better illustrate by an example.

.y
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FIGURE 17

In the vertical line ac, lay off the portion ab to represent the distance
traversed by a body falling freely with accelerated motion: the time of fall
may be represented by any limited straight line, but for the sake of brevity,
we shall represent it by the same length ab; this length may also be em-
ployed as a measure of the momentum and speed acquired during the
motion; in short, let ab be a measure of the various physical quantities
which enter this discussion.

Having agreed arbitrarily upon ab as a measure of these three different
quantities, namely, space, time, and momentum, our next task is to find
the time required for fall through a given vertical distance ac, also the
momentum acquired at the terminal point ¢, both of which are to be ex-
pressed in terms of the time and momentum represented by ab. These two
required quantities are obtained by laying off ad, a mean proportional
between ab and ac; in other words, the time of fall from a to ¢ is repre-
sented by ad on the same scale on which we agreed that the time of fall
from a to b should be represented by ab. In like manner we may say that
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the momentum [impeto o grado di velocitd) acquired at c is related to that
acquired at b, in the same manner that the line ad is related to ab, since
the velocity varies directly as the time, a conclusion, which although em-
ployed as a postulate in Proposition III, is here amplified by the Author.

This point being clear and well-established we pass to the consideration
of the momentum [impeto] in the case of two compound motions, one of
which is compounded of a uniform horizontal and a uniform vertical mo-
tion, while the other is compounded of a uniform horizontal and a natu-
rally accelerated vertical motion. If both components are uniform,and one
at right angles to the other, we have already seen that the square of the
resultant is obtained by adding the squares of the components [p. 765]
as will be clear from the following illustration.

Let us imagine a body to move along the vertical ab with a uniform
momentum [impeto] of 3, and on reaching b to move toward ¢ with a
momentum [velocita ed impeto] of 4, so that during the same time-interval
it will traverse 3 cubits along the vertical and 4 along the horizontal. But
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FIGURE 18

a particle which moves with the resultant velocity [velocita] will, in the
same time, traverse the diagonal ac, whose length is not 7 cubits—the
sum of ab (3) and bc (4)—but 5, which is in potenza equal to the sum
of 3 and 4, that is, the squares of 3 and 4 when added make 25, which is
the square of ac, and is equal to the sum of the squares of ab and be.
Hence ac is represented by the sidle—or we may say the root—of a square
whose area is 25, namely 5.

As a fixed and certain rule for obtaining the momentum which results
from two uniform momenta, one vertical, the other horizontal, we have
therefore the following: take the square of each, add these together, and
extract the square root of the sum, which will be the momentum resulting
from the two. Thus, in the above example, the body which in virtue of its
vertical motion would strike the horizontal plane with a momentum
[forza] of 3, would owing to its horizontal motion alone strike at ¢ with
a momentum of 4; but if the body strikes with a momentum which is the
resultant of these two, its blow will be that of a body moving with a
momentum [velocitd e forza] of 5; and such a blow will be the same at all
points of the diagonal ac, since its components are always the same and
never increase or diminish.



770 Galileo Galilei

Let us now pass to the consideration of a uniform horizontal motion
compounded with the vertical motion of a freely falling body starting from
rest. It is at once clear that the diagonal which represents the motion com-
pounded of these two is not a straight line, but, as has been demonstrated,
a semi-parabola, in which the momentum [impeto] is always increasing
because the speed [velocita] of the vertical component is always increasing.
Wherefore, to determine the momentum [impeto] at any given point in the
parabolic diagonal, it is necessary first to fix upon the uniform horizontal
momentum [impeto] and then, treating the body as one falling freely, to
find the vertical momentum at the given point; this latter can be deter-
mined only by taking into account the duration of fall, a consideration
which does not enter into the composition of two uniform motions where
the velocities and momenta are always the same; but here where one of
the component motions has an initial value of zero and increases its speed
[velocita] in direct proportion to the time, it follows that the time must
determine the speed [velocitd] at the assigned point. It only remains to
obtain the momentum resulting from these two components (as in the case
of uniform motions) by placing the square of the resultant equal to the
sum of the squares of the two components. . . .



COMMENTARY ON

THE BERNOULLIS

N EIGHT generations the Bach family produced at least two dozen
eminent musicians and several dozen more of sufficient repute to find
their way into musical dictionaries. So numerous and so eminent were they
that, according to the Britannica, musicians were known as “Bachs” in
Erfurt even when there were no longer any members of the family in the
town. What the Bachs were to music, the Bernoulli clan was to science.
In the course of a century eight of its members pursued mathematical
studies, several attaining the foremost rank in various branches of this
science as well as in related disciplines. From this group came a “swarm
of descendants about half of whom were gifted above the average and
nearly all of whom, down to the present day, have been superior human
beings.” 1
The Bernoullis were a Protestant family driven from Antwerp in the
last quarter of the sixteenth century by religious persecution. In 1583 they
found asylum in Frankfurt; after a few years they moved to Basel in
Switzerland. Nicolaus Bernoulli (1623-1708) was a wealthy merchant and
a town councilor. This in itself is not a noteworthy achievement; he de-
serves rather to be remembered for his three sons Jacob, Nicolaus and
John, and their descendants.? It is peculiar that nothing is ever said about
the women the Bernoullis married; they must have made at least a genetic
contribution to this illustrious spawn.
Jacob (I), for eighteen years professor of mathematics at Basel, had
started out at his father’s insistence as a theologian, but soon succumbed
to his passion for science. He became a master of the calculus, developing

1 E. T. Bell, Men of Mathematics, N. Y., 1937, p. 131, “No fewer than 120 of the
descendants of the mathematical Bernoullis have been traced genealogically, and of
this considerable posterity the majority achieved distinction—sometimes amounting to
eminence—in the law, scholarship, science, literature, the learned professions, admin-
istration and the arts. None were failures.”

2 There is a confusion, understandable, about the Bernoulli genealogical lines, and
another, less understandable, about their names. Jacob, for example, is also known
as Jakob, Jacques and James; Johannes, as Johann, John and Jean. I shall use the
familiar forms in the following table:

Nicolaus Senior
( 1623i-1 708)

r T 1
Jacob (I) Nicolaus (I) John (1)
(1654-1705) (1662-1716) (1667-1748)
L

I T — 1
Nicolaus (II) Nicolaus (IIT) Daniel John (IT)
(1687-1759) (1695-1726) (1700-1782) (1710-1790)

John (IT)  Jacob (I
(1746-1807)  (1759-1789)

m



772 Editor's Comment

and applying it successfully to a considerable number of problems. Among
his more celebrated investigations were those into the properties of the
curve known as the catenary (it is formed by a heavy chain hanging freely
from its two extremities), into isoperimetrical figures (those enclosing, for
any given perimeter, the greatest area) and into various spiral curves. His
other works include a great treatise on probability, the Ars Conjectandi
(a selection from it appears elsewhere in these pages: see pp. 1452-1455),
A Method of Teaching Mathematics to the Blind, based on his experience
teaching the elements of science to a blind girl at Geneva, and many
verses in Latin, German and French, regarded as “elegant” in their time
but now forgotten. Jacob, according to Francis Galton, suffered from
“a bilious and melancholic temperament”; 3 his brother John did nothing
to soothe it. John also was an exceptional mathematician. He was more
prolific than Jacob, made many independent and important mathematical
discoveries, and enlarged scientific knowledge in chemistry, physics and
astronomy. The Bernoullis, Galton says, “were mostly quarrelsome and
unamiable”; John was a prime example. He was violent, abusive, jealous,
and, when necessary, dishonest. He claimed a reward Jacob had offered
for a solution of the isoperimetrical problem. The solution he presented
was wrong; he waited until Jacob died and then published another solution
which he knew to be wrong—a fact he admitted seventeen years later. His
son Daniel, again a brilliant mathematician, had the temerity to win a
French Academy of Sciences prize which his father had sought. John gave
him a special reward by throwing him out of the house.* These agreeable
traits were “lived out,” as psychoanalysts might observe, and thus did
nothing to shorten John's life. He died at the age of eighty, retaining his
powers and his meanness to the end.

It is with Daniel Bernoulli that we are here mainly concerned. He was
a second son, born at Groningen—where his father was then professor of
mathematics—in 1700. His father did everything possible to turn him
from mathematical pursuits. The program consisted of cruel mistreatment,
when Daniel was a child, to destroy his self-confidence, and of later
attempts to force him into business. John should have known this wouldn't
work; the Bernoullis were tough as well as dedicated. When he was eleven,
Daniel got instruction in geometry from his brother Nicolaus.’ He studied

3 Francis Galton, Hereditary Genius; London, reprint of 1950, p. 195.

4 E. T. Bell, op. cir., p. 134,

5 Nicolaus Bernoulli (1695-1726) was no exception to the Bernoulli rule of extraor-
dinariness. At the age of eight he could speak German, Dutch, French and Latin; at
sixteen he became a Doctor of Philosophy at the University of Basel, he was ap-
pointed professor of mathematics at St. Petersburg at the same time as Daniel. His
early death (of a “lingering fever”) prevented him from developing his evident
powers. As the eldest son he was better treated by his father than Daniel; at any rate
he was permitted, even encouraged, to study mathematics. When he was twenty-one
his father pronounced him “worthy of receiving the torch of science from his own
hands.”
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medicine, became a physician and finally, at the age of twenty-five, ac-
cepted an appointment as professor of mathematics at St. Petersburg. In
1733 he returned to Basel to become professor of anatomy, botany, and
later, “experimental and speculative philosophy,” i.e., physics. He re-
mained at this post until he was almost eighty, publishing a large number
of important memoirs on physical problems and doing first-rate work in
probability theory, calculus, differential equations and related fields. He
won, or divided equally, no less than ten prizes put up by the French
Academy of Sciences, including the one which so infuriated his father.
Late in life, he particularly enjoyed recalling that, in his youth, a stranger
once answered his self-introduction, “I am Daniel Bernoulli,” with an
“incredulous and mocking” “and I am Isaac Newton.”

Bernoulli's most famous book is the Hydrodynamica, in which he laid
the foundations, theoretical and practical, for the “equilibrium, pressure,
reaction and varied velocities” of fluids. The Hydrodynamica is notable
also for presenting the first formulation of the kinetic theory of gases, a
keystone of modern physics. Bernoulli showed that, if a gas be imagined
to consist of “very minute corpuscles,” “practically infinite in number,”
“driven hither and thither with a very rapid motion,” their myriad colli-
sions with one another and impact on the walls of the containing vessel
would explain the phenomenon of pressure. Moreover, if the volume of
the container were slowly decreased by sliding in one end like a piston, the
gas would be compressed, the number of collisions of the corpuscles would
be increased per unit of time, and the pressure would rise. The same effect
would follow from heating the gas; heat, as Bernoulli perceived, being
nothing more than “an increasing internal motion of the particles.” This
“astonishing prevision of a state of physics which was not actually reached
for 110 years” (notably by Joule, who calculated the statistical averages
of the enormous number of molecular collisions and thus derived Boyle’s
law—pressure X volume = constant—from the laws of impact) was fully
sustained by Bernoulli’s remarkable experimental and theoretical labors.®
He provided an algebraic formulation of the relation between impacts and
pressure; he even calculated the magnitude of the pressure increase result-
ing from decreased volume and found it corresponded to the hypothesis
Boyle had confirmed by experiment, that “the pressures and expansions
are in reciprocal proportions.” 7

The following selection covers these topics; it is from the tenth section
of the Hydrodynamica, (1738).

® Lloyd W. Taylor, Physics—The Pioneer Science, Boston, 1941, p. 109,

7 “Bernoulli in effect had made in his thinking two enormous jumps, for which the
temper of his time was not ready for over three generations: first the equivalence
between heat and energy, and, secondly, the idea that a well-deﬁned relauonshi‘p, such
as Boyle's simple law, could be deduced from the chaotic picture of randomly m
particles.” Gerald Hnlton. Introduction to Concepts and Theories in Physical Scicm:c.
Cambridge (Mass.), 1952, p. 376.



Daniel Bernoulli has been called the father of mathematical physics.
—Eric TEmPLE BELL

So many of the properties of matter, especially when in the gaseous form,
can be deduced from the hypothesis that their minute parts are in rapid
motion, the velocity increasing with the temperature, that the precise nature
of this i b a subject of rational curiosity. Daniel Bernoulli,
Herapath, Joule, Krinig, Clausius, &c., have shewn that the relations be-
tween pressure, temperature and density in a perfect gas can be explained
by supposing the particles to move with uniform velocity in straight lines,
striking against the sides of the containing vessel and thus producing
pressure. —JaMES CLERK MAXWELL ([llustrations of the Dynamical

Theory of Gases)

2 Kinetic Theory of Gases
By DANIEL BERNOULLI

1. IN the consideration of elastic fluids we may assign to them such a
constitution as will be consistent with all their known properties, that so
we may approach the study of their other properties, which have not yet
been sufficiently investigated. The particular properties of elastic fluids are
as follows: 1. They are heavy; 2. they expand in all directions unless they
are restrained; and 3. they are continually more and more compressed
when the force of compression increases. Air is a body of this sort, to
which especially the present investigation pertains.

2.. Consider a cylindrical vessel ACDB (Figure 44) set vertically, and a
movable piston EF in it, on which is placed a weight P: let the cavity
ECDF contain very minute corpuscles, which are driven hither and thither
with a very rapid motion; so that these corpuscles, when they strike
against the piston EF and sustain it by their repeated impacts, form an
elastic fluid which will expand of itself if the weight P is removed or
diminished, which will be condensed if the weight is increased, and which
gravitates toward the horizontal bottom CD just as if it were endowed with
no elastic powers: for whether the corpuscles are at rest br are agitated
they do not lose their weight, so that the bottom sustains not only the
weight but the elasticity of the fluid. Such therefore is the fluid which we
shall substitute for air. Its properties agree with those which we have al-
ready assumed for elastic fluids, and by them we shall explain other prop-
erties which have been found for air and shall point out others which have
not yet been sufficiently considered.

3. We consider the corpuscles which are contained in the cylindrical
cavity as practically infinite in number, and when they occupy the space
ECDF we assume that they constitute ordinary air, to which as a standard

174



Kinetic Theory of Gases 775

L &

all our measurements are to be referred: and so the weight P holding the
piston in the position EF does not differ from the pressure of the super-
incumbent atmosphere, which therefore we shall designate by P in what
follows.

It should be noticed that this pressure is not exactly equal to the abso-
lute weight of a vertical cylinder of air resting on the piston EF, as hith-
erto most authors have asserted without sufficient consideration; rather it
is equal to the fourth proportional to the surface of the earth, to the size
of the piston EF, and to the weight of all the atmosphere on the surface of
the earth.

4. We shall now investigate the weight xt, which is sufficient to condense
the air ECDF into the space eCDf, on the assumption that the velocity of
the particles is the same in both conditions of the air, the natural condition
as well as the condensed. Let EC = 1 and eC = s. When the piston EF is
moved to ef, it appears that a greater effort is made by the fluid for two
reasons: first, because the number of particles is now greater in the ratio
of the space in which they are contained, and secondly, because each
particle repeats its impacts more often. That we may properly calculate
the increment which depends on the first cause we may consider the
particles as if they were at rest. We shall set the number of them which
are contiguous to the piston in the position EF = n; then the like number

eC\%
when the piston is in the position ef will be = n : (—-—-) or=n: sh
EC
It should be noticed that the fluid is no more condensed in the lower
part than in the upper part, because the weight P is infinitely greater than
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the weight of the fluid itself: hence it is plain that for this reason the
force of the fluid is in the ratio of the numbers n and n : s% that is, as s%
is to 1. Now in reference to the other increment arising from the second
cause, this is found by considering the motion of the particles, and it
appears that their impacts are made more often by as much as the particles
are closer together: therefore the numbers of the impacts will be recipro-
cally as the mean distances between the surfaces of the particles, and these
mean distances will be thus determined.

We assume that the particles are spheres. We represent by D the mean
distance between the centers of the spheres when the piston is in the posi-
tion EF, and by d the diameter of a sphere. Then the mean distance
between the surfaces of the spheres will be D — d. But it is evident that
when the piston is in the position ef, the mean distance between the
centers of the spheres = D\¥s and therefore the mean distance between
the surfaces of the spheres = D\¥s — d. Therefore, with respect to the
second cause, the force of the natural air in ECDF will be to the force of

1 1
the compressed air in eCDf as to
D—d D~Ys —d
D — d. When both causes are joined the predicted forces will be as
5% X (D¥/s —d) to D — d.

For the ratio of D to d we may substitute one which is easier to under-
stand: for if we think of the piston EF as depressed by an infinite weight,
so that it descends to the position mn, in which all the particles are in
contact, and if we represent the line mC by m, we shall have D is to d as
1 is to \¥m. If we substitute this in the ratio above, we shall find that the
force of the natural air in ECDF is to the force of the compressed air in

, or as D\¥s —d to

eCDf as s% X (/s —¥m) is to 1 —~¥/m, or as s —¥/mss is to 1~
1 —¥m

\¥m. Therefore 1 = ——— X P,
s — Y mss

5. From all the facts known we may conclude that natural air can be
very much condensed and compressed into a practically infinitely small
space; so that we may set m = 0, and hence n = P/s; so that the com-
pressing weights are almost in the inverse ratio of the spaces which air
occupies when compressed by different amounts. This law has been proved
by many experiments. It certainly may be safely adopted for air that is
less dense than natural air; whether it holds for considerably denser air
I have not sufficiently investigated: nor have there yet been experiments
instituted with the accuracy which is necessary in this case. There is
special need of an experiment to find the value of m, but this experiment
must be most accurately carried out and with air under very high pressure;
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and the temperature of the air while it is being compressed must be care-
fully kept constant,

6. The elasticity of air is not only increased by condensation but by
heat supplied to it, and since it is admitted that heat may be considered
as an increasing internal motion of the particles, it follows that if the
elasticity of air of which the volume does not change is increased, this
indicates a more intense motion in the particles of air; which fits in well
with our hypothesis; for it is plain that so much the greater weight P is
needed to keep the air in the condition ECDF, as the aerial particles are
agitated by the greater velocity. It is not difficult to see that the weight P
should be in the duplicate ratio of this velocity because, when the velocity
increases, not only the number of impacts but also the intensity of each
of them increases equally, and each of them is proportional to the
weight P.

Therefore, if the velocity of the particles is called v, the weight which
is able to sustain the piston in the position EF = vvP and in the position

1—~¥m vvP
= —————— X vvP, or approximately = —, because as we have seen

s — \Ymss s
the number m is very small in comparison with unity or with the number s.

7. This theorem, as I have presented it in the preceding paragraph, in
which it is shown that in air of any density but at a fixed temperature,
the elasticities are proportional to the densities, and further that the incre-
ments of elasticity which are produced by equal changes of temperature
are proportional to the densities, this theorem, I say, D. Amontons discov-
ered by experiment and presented it in the Memoirs of the Royal Academy
of Sciences of Paris in 1702.

ef



COMMENTARY ON

A Great Prize, a Long-Suffering
Inventor and the First
Accurate Clock

HE reckoning of latitude—the distance north or south from the

equator of a point on the earth’s surface—was well understood by the
ancients. Since the Pole Star holds approximately the same position in the
heavens throughout every night, and since the earliest sailors observed
that it dipped toward the horizon as they sailed south, they measured its
angle with the horizon (its altitude), using an astrolabe, cross-staff or
other angle-measuring device, and thus fixed their position with reference
to the equator. Over the centuries the ancient methods were modified and
improved, but their basic features are retained by sea and air navigators to
the present day.!

Longitude, the measure of distance east or west from an arbitrary line,
presented much greater difficulties and defied exact calculation until the
eighteenth century. The combined efforts of astronomers, physicists, math-
ematicians and clock makers were required to solve this important problem
upon which scientific cartography, sound navigation and systematic ex-
ploration and discovery depended. Curiously enough, it was not until
almost half a century after Columbus had made his “long voyage” that
anyone connected the fixing of longitude with the construction of reliable
and portable timekeepers. The relationship between clocks and longitude
is doubtless obvious to many readers, but I had better be safe and explain
what is involved. Longitude is determined, in effect, by translating space
into time. Take as a baseline from which east-west distances are to be
measured a meridian (half a great circle included between the poles)
passing through a convenient place; the modern convention fixes on
Greenwich. Designate this line as the zero or prime meridian and imagine
other meridians marking off the globe at intervals of 15°. Since it takes
the earth twenty-four hours to complete a rotation of 360°, each meridian
may be regarded as separated from its immediate neighbors to the east
and west by one hour. Finding your longitude then, is “merely a matter

! “The quadrants, sextants and octants, developed throughout the centuries, were
little more than segments of the ancient astrolabe, refined and adapted to meet the
special requirements of surveyors and navigators. The modern Nautical Almanac,
with its complex and multifarious tables that make it possible to find the latitude at
any hour of the day or night, is nothing more than the sum total of ancient astrology,
streamlined and perfected by astronomical instruments, including telescopes.” Lloyd
A. Brown, The Story of Maps, Boston, 1949, p. 180.
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of comparing noons with Greenwich. You are just as long a distance from
Greenwich as your noon is long a time from the Greenwich noon.” 2
Nowadays Greenwich noon is ascertained by radio; but a clock set to run
on Greenwich time will do the job almost as well. Starting out on a sea
voyage, you take along a chronometer set to Greenwich time; after sailing
west for a few days you observe, let us suppose, that when the sun is
directly overhead (12 noon), your Greenwich chronometer says 3 p.M.
This means that the sun has required three hours to “move” from directly
above Greenwich to directly above the spot where you find yourself. To
be accurate, it means that the earth has turned for three hours. Thus you
have reached a point three times 15° west longitude. To give another
illustration, if it is noon where you are when it is midnight in Greenwich,
you are halfway around the globe, at longitude 180°.

It is easy to see, therefore, that precise clocks were needed to calculate
longitude. The search for a reliable method of keeping time at sea pro-
duced its share of fantastic as well as sensible suggestions. Sir Kenelm
Digby, for example, invented a “powder of sympathy” which, by a
method I shall not attempt to repeat, caused a dog on shipboard to “yelp
the hour on the dot.” This was not the final answer to the problem. John
Harrison, a Yorkshire carpenter, did better with his famous No. 4
chronometer, which took fifty years to make but lost only one second per
month in trials at sea. Parliament had offered a prize of £20,000 for a
dependable chronometer and Harrison—this “very ingenious and sober
man,” a contemporary called him—quite properly claimed the money.
He thereupon became the victim of a series of unsurpassed chicaneries
perpetrated by scientists and politicians in concert. He got his reward but
only after a parliamentary crisis and direct intervention by the King.

The story of “The Longitude,” a chronicle of science, politics, mathe-
matics, human determination and brilliant craftsmanship, is admirably told
by Lloyd A. Brown, a leading cartographer, in The Story of Maps. The
following material is selected from his book.

2 David Greenhood, Down to Earth: Mapping for Everybody, New York, 1951,
p. 15.



The Art of Navigation is to be perfected by the Solution of this Problem.
To find, at any Time, the Longitude of a Place at Sea. A Public Reward
is promised for the Discovery. Let him obtain it who is able.

~—BERNHARD VARENIUS (Geographia Generalis, 1650)

3  The Longitude
By LLOYD A. BROWN

SCIENTIFIC cartography was born in France in the reign of Louis XIV
(1638-1715), the offspring of astronomy and mathematics. The principles
and methods which had been used and talked about for over two thousand
years were unchanged; the ideal of Hipparchus and Ptolemy, to locate
each place on earth scientifically, according to its latitude and longitude,
was still current. But something new had been introduced into the picture
in the form of two pieces of apparatus—a telescope and a timekeeper.
The result was a revolution in map making and a start towards an accu-
rate picture of the earth. With the aid of these two mechanical contriv-
ances it was possible, for the first time, to solve the problem of how to
determine longitude, both on land and at sea.

The importance of longitude, the distance of a place east or west from
any other given place, was fully appreciated by the more literate naviga-
tors and cartographers of history, but reactions to the question of how to
find it varied from total indifference to complete despondency. Pigafetta,
who sailed with Magellan, said that the great explorer spent many hours
studying the problem of longitude, “but,” he wrote, “the pilots content
themselves with knowledge of the latitude, and are so proud [of them-
selves], they will not hear speak of the longitude.” Many explorers of the
time felt the same way, and rather than add to their mathematical burdens
and observations, they were content to let well enough alone. However,
“there be some,” says an early writer, “that are very inquisitive to have
a way to get the longitude, but that is too tedious for seamen, since it
requireth the deep knowledge of astronomy, wherefor 1 would not have
any man think that the longitude is to be found at sea by any instrument;
so let no seamen trouble themselves with any such rule, but (according to
their accustomed manner) let them keep a perfect account and reckoning
of the way of their ship.” What he meant was, let them keep their dead
reckoning with a traverse board, setting down the ship’s estimated daily
speed and her course.!

Like the elixir of life and the pot of gold, longitude was a will-o-the-
wisp which most men refused to pursue and others talked about with awe.

1 W, R. Martin, article *Navigation™ in Encyclopaedia Britannica, 11th Edition.
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“Some doo understand,” wrote Richard Eden, “that the Knowledge of the
Longitude myght be founde, a thynge doubtlesse greatly to be desyred,
and hytherto not certaynly knowen, although Sebastian Cabot, on his
death-bed told me that he had the knowledge thereof by divine revelation,
yet so, that he myght not teache any man. But,” adds Eden, with a certain
amount of scorn, “I thinke that the good olde man, in that extreme age,
somewhat doted, and had not yet even in the article of death, vtterly
shaken off all wordly vayne glorie.” 2

Regardless of pessimism and indifference, the need for a method of
finding the longitude was fast becoming urgent. The real trouble began
in 1493, less than two months after Columbus returned to Spain from his
first voyage to the west. On May 4 of that year, Pope Alexander VI issued
the Bull of Demarcation to settle the dispute between Spain and Portugal,
the two foremost maritime rivals in Europe. With perfect equanimity His
Holiness drew a meridian line from pole to pole on a chart of the
Western Ocean one hundred leagues from the Azores. To Spain he as-
signed all lands not already belonging to any other Christian prince which
had been or would be discovered west of the line, and to Portugal all
discoveries to the east of it; a masterful stroke of diplomacy, except for
the fact that no one knew where the line fell. Naturally both countries
suspected the worst, and in later negotiations each accused the other of
pushing the line a little in the wrong direction. For all practical purposes,
the term “100 leagues west of the Azores” was meaningless, as was the
Line of Demarcation and all other meridians in the New World laid down
from a line of reference in the Old.

Meanwhile armed convoys heavily laden with the wealth of the Indies
ploughed the seas in total darkness so far as their longitude was concerned.
Every cargo was worth a fortune and all the risk involved, but too many
ships were lost. There were endless delays because a navigator was never
sure whether he had overreached an island or was in imminent danger
of arriving in the middle of the night without adequate preparations made
for landing. The terrible uncertainty was wearing. In 1598 Philip IIT of
Spain offered a perpetual pension of 6000 ducats, together with a life
pension of 2000 ducats and an additional gratuity of 1000 more to the
“discoverer of longitude.” Moreover, there would be smaller sums avail-
able in advance for sound ideas that might lead to the discovery and for
partially completed inventions that promised tangible results, and no
questions asked. It was the clarion call for every crank, lunatic and under-
nourished inventor in the land to begin research on “the fixed point” or
the “East and West navigation” as it was called. In a short time the

2 See Richard Eden's “Epistle Dedicatory” in his translation of John Taisnier’s
A very necessarie and profitable book concerning nauigation . . . London, 1579 (?).
(Quoted from Bibliotheca Americana. A catalogue of books . . . in the library of
the late John Carter Brown. Providence, 1875, Part I, No. 310.)



782 Lloyd A. Brown

Spanish government was so deluged with wild, impractical schemes and
Philip was so bored with the whole thing that when an Italian named
Galileo wrote the court in 1616 about another idea, the king was un-
impressed. After a long, sporadic correspondence covering sixteen years,
Galileo reluctantly gave up the idea of selling his scheme to the court of
Spain.?

Portugal and Venice posted rewards, and drew the same motley array
of talent and the same results as Spain. Holland offered a prize of 30,000
scudi to the inventor of a reliable method of finding the longitude at sea,
and Willem Blaeu, map publisher, was one of the experts chosen by the
States General to pass on all such inventions. In August, 1636, Galileo
came forward again and offered his plan to Holland, this time through his
Paris friend Diodati, as he did not care to have his correspondence investi-
gated by the Inquisition. He told the Dutch authorities that some years
before, with the aid of his telescope, he had discovered what might be a
remarkable celestial timekeeper—Jupiter. He, Galileo, had first seen the
four satellites, the “Cosmian Stars” (Sidera Medicea, as he called them),
and had studied their movements. Around and around they went, first on
one side of the planet, then on the other, now disappearing, then reap-
pearing. In 1612, two years after he first saw them, he had drawn up
tables, plotting the positions of the satellites at various hours of the night.
These, he found, could be drawn up several months in advance and used
to determine mean time at two different places at once. Since then, he
had spent twenty-four years perfecting his tables of the satellites, and now
he was ready to offer them to Holland, together with minute instructions
for the use of any who wished to find the longitude at sea or on land.4

The States General and the four commissioners appointed to investigate
the merits of Galileo’s proposition were impressed, and requested further
details. They awarded him a golden chain as a mark of respect and
Hortensius, one of the commissioners, was elected to make the journey to
Ttaly where he could discuss the matter with Galileo in person. But the
Holy Office got wind of things and the trip was abandoned. In 1641 after
a lapse of nearly three years, negotiations were renewed by the Dutch
scientist Christian Huygens, but Galileo died a short time after and the
idea of using the satellites of Jupiter was set aside.’

In the two thousand year search for a solution of the longitude problem

2], 1. Fahie, Galileo. His life and work, New York, 1903, pp. 172, 372 ff.; Rupert
T. Gould, The marine chronometer: Its history and development, London, 1923,
pp. 11, 12,

4 ]. J. Fahie, op. cit., pp. 372 ff. Galileo named the satellites of Jupiter the “Cosmian
Stars"” after Cosmo Medici (Cosmo 11, grandduke of Tuscany). See Galileo's Opere
edited by Eugenio Alberi, 16 vols.. Firenze, 1842-56. Tome IlI contains his “Sydereus
Nuncius,” pp. 59-99, describing his observations of Jupiter's satellites, and his sugges-
tion that they be used in the determination of longitude.

3], J. Fahie, op. cir., pp. 373-75.



The Longitude 783

it was never a foregone conclusion that the key lay in the transportation
of timekeepers. But among the optimistic who believed that a solution
could somehow be found, it was agreed that it would have to come from
the stars, especially for longitude at sea, where there was nothing else to
observe. It might be found in the stars alone or the stars in combination
with some terrestrial phenomenon. However, certain fundamental prin-
ciples were apparent to all who concerned themselves with the problem.
Assuming that the earth was a perfect sphere divided for convenience into
360 degrees, a mean solar day of 24 hours was equivalent to 360 degrees
of arc, and 1 hour of the solar day was equivalent to 15 degrees of arc or
15 degrees of longitude. Likewise, 1 degree of longitude was the equivalent
of 4 minutes of time. Finer measurements of time and longitude (minutes
and seconds of time, minutes and seconds of arc) had been for centuries
the stuff that dreams were made of. Surveys of the earth in an east-west
direction, expressed in leagues, miles or some other unit of linear measure,
would have no significance unless they could be translated into degrees and
minutes of arc, fractional parts of the circumference of the earth. And
how big was the earth?

The circumference of the earth and the length of a degree (1/360th part
of it) had been calculated by Eratosthenes and others but the values
obtained were questionable. Hipparchus had worked out the difference
between a solar day and a sidereal day (the interval between two successive
returns of a fixed star to the meridian), and had plotted a list of 44 stars
scattered across the sky at intervals of right ascension equal to exactly one
hour, so that one or more of them would be on the meridian at the begin-
ning of every sidereal hour. He had gone a step further and adopted a
meridian line through Rhodes, suggesting that longitudes of other places
could be determined with reference to his prime meridian by the simulta-
neous observation of the moon’s eclipses. This proposal assumed the exist-
ence of a reliable timekeeper which was doubtless nonexistent.

The most popular theoretical method of finding longitude, suggested by
the voyages of Columbus, Cabot, Magellan, Tasman and other explorers,
was to plot the variation or declination of the compass needle from the
true north. This variation could be found by taking a bearing on the pole-
star and noting on the graduated compass card the number of points, half
and quarter points (degree and minutes of arc) the needle pointed east
or west of the pole. Columbus had noted this change of compass variation
on his first voyage, and later navigators had confirmed the existence of a
“line of no variation” passing through both poles and the fact that varia-
tion changed direction on either side of it. This being so, and assuming
that the variation changed at a uniform rate with a change of longitude, it
was logical to assume that here at last was a solution to the whole problem.
All you had to do was compare the amount of variation at your place of
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observation with the tabulated variation at places whose longitude had
already been determined. It was this fond hope that induced Edmund
Halley and others to compile elaborate charts showing the supposed lines
of equal variation throughout the world. However, it was by no means
that simple, as Gellibrand and others discovered. Variation does not
change uniformly with a change of longitude; likewise, changes in varia-
tion occur very slowly; so slowly, in fact, that precise east-west measure-
ments are impractical, especially at sea. And, too, it was found that lines
of equal variation do not always run north and south; some run nearly
east and west. However, in spite of the flaws that cropped up, one by one,
the method had strong supporters for many years, but finally died a
painful, lingering death.®

In addition to discovering Jupiter’s satellites, Galileo made a second
important contribution to the solution of longitude by his studies of the
pendulum and its behavior, for the application of the swinging weight to
the mechanism of a clock was the first step towards the development of an
accurate timekeeper.” The passage of time was noted by the ancients and
their astronomical observations were “timed” with sundials, sandglasses
and water clocks but little is known about how the latter were controlled.
Bernard Walther, a pupil of Regiomontanus, seems to have been the first
to time his observations with a clock driven by weights. He stated that on
the 16th of January, 1484, he observed the rising of the planet Mercury,
and immediately attached the weight to a clock having an hour-wheel with
fifty-six teeth. By sunrise one hour and thirty-five teeth had passed, so that
the elapsed time was an hour and thirty-seven minutes, according to his
calculations. The next important phase in the development of a time-
keeper was the attachment of a pendulum as a driving force. This clock
was developed by Christian Huygens, Dutch physicist and astronomer,
the son of Constantine Huygens. He built the first one in 1656 in order to
increase the accuracy of his astronomical observations, and later presented
it to the States General of Holland on the 16th of June, 1657. The follow-
ing year he published a full description of the principles involved in the
mechanism of his timekeeper and the physical laws governing the pendu-
lum. It was a classic piece of writing, and established Huygens as one of
the leading European scientists of the day.8

By 1666 there were many able scientists scattered throughout Europe.
Their activities covered the entire fields of physics, chemistry, astronomy,
mathematics, and natural history, experimental and applied. For the most

®R. T. Gould, op. cit.. pp. 4 and 4 n.

7 See Galileo’s Dialogues concerning two new sciences, by Galileo Galilei, trans-
lated by Henry Crew and Alfonso de Salvio, introduction by Antonio Favaro, New
York, 1914, pp. 84, 95, 170, 254.

# See John L. E. Dreyer's article “Time, Measurement of” (in the Encyclopaedia
Britannica, 11th edition, pp. 983d, 984a).
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part they worked independently and their interests were widely diversified.
Occasionally the various learned societies bestowed honorary memberships
on worthy colleagues in foreign countries, and papers read in the various
societies were exchanged with fellow scientists in foreign lands. The stage
was set for the transition of cartography from an art to a science. The
apparatus was at hand and the men to use it.

Pleading for the improvement of maps and surveys, Thomas Burnet
made a useful distinction between the popular commercial map publica-
tions of the day and what he considered should be the goal of future map
makers. “I do not doubt,” he wrote, “but that it would be of very good
use to have natural Maps of the Earth . . . as well as civil. . . . Our
common Maps I call Civil, which note the distinction of Countries and of
Cities, and represent the Artificial Earth as inhabited and cultivated: But
natural Maps leave out all that, and represent the Earth as it would be if
there were not an Inhabitant upon it, nor ever had been; the Skeleton of
the Earth, as I may so say, with the site of all its parts. Methinks also
every Prince should have such a Draught of his Country and Dominions,
to see how the ground lies in the several parts of them, which highest,
which lowest; what respect they have to one another, and to the Sea; how
the Rivers flow, and why; how the Mountains lie, how Heaths, and how
the Marches. Such a Map or Survey would be useful both in time of War
and Peace, and many good observations might be made by it, not only as
to Natural History and Philosophy, but also in order to the perfect
improvement of a Country.” ?

These sentiments regarding “natural” maps were fully appreciated and
shared by the powers in France, who proceeded to do something about it.
All that was needed was an agency to acquire the services and direct the
work of the available scientific talent, and someone to foot the bills. The
agency was taken care of by the creation of the Académie Royale des
Sciences, and the man who stood prepared to foot the bills for better
maps was His Majesty Louis XIV, king of France.

Louis XIV ascended the throne when he was five years old, but had to
wait sixteen years before he could take the reins of government. He had
to sit back and watch the affairs of state being handled by the queen-
mother and his minister, Cardinal Mazarin. He saw the royal authority
weakened by domestic troubles and the last stages of the Thirty Years’
War. Having suffered through one humiliation after another without being
able to do anything about it, Louis resolved, when he reached the age of
twenty-one, to rule as well as reign in France. He would be his own first
minister. Foremost among his few trusted advisors was Jean Baptiste
Colbert, minister for home affairs, who became, in a short time, the chief
power behind the throne. Colbert, an ambitious and industrious man with

9 Thomas Burnet: The theory of the earth . . . London, 1684, p. 144,
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expensive tastes, contrived to indulge himself in literary and artistic
extravagances while adding to the stature and glory of his monarch. As
for the affairs of state over which he exercised control, there were two
enterprises in particular which entitle Colbert to an important place in
the history of France. The first was the establishment of the French Marine
under a monarch who cared little for naval exploits or the importance of
sea power in the growth and defense of his realm; the second was the
founding, in 1666, of the Académie Royale des Sciences, now the Institut
de France.l?

The Académie Royale was Colbert’s favorite project. An amateur scien-
tist, he realized the potential value of a distinguished scientific body close
to the throne, and with his unusual skill and seemingly unlimited funds
he set out to make France pre-eminent in science as it was in the arts and
the art of war. He scoured Europe in search of the top men in every
branch of science. He addressed personal invitations to such figures as
Gottfried Wilhelm von Leibnitz, German philosopher and mathematician;
Niklaas Hartsoeker, Dutch naturalist and optician; Ehrenfried von
Tschirnhausen, German mathematician and manufacturer of optical lenses
and mirrors; Joannes Hévélius, one of Europe’s foremost astronomers;
Vincenzo Viviani, Italian mathematician and engineer; Isaac Newton,
England’s budding mathematical genius. The pensions that went with the
invitations were without precedent, surpassing in generosity those estab-
lished by Cardinal Richelieu for the members of the Académie Frangaise,
and those granted by Charles II for the Royal Society of London. Addi-
tional funds were available for research, and security and comfort were
assured to those scientists who would agree to work in Paris, surrounded
by the most brilliant court in Europe. Colbert’s ambition to make France
foremost in science was realized, though some of the invitations were
declined with thanks. Christian Huygens joined the Académie in 1666
and received his pension of 6000 livres a year until 1681, when he returned
to Holland. Olaus Romer, Dutch astronomer, also accepted. These celeb-
rities were followed by Marin de la Chambre who became physician to
Louis XIV; Samuel Duclos and Claude Bourdelin in chemistry; Jean
Pecquet and Louis Gayant in anatomy; Nicholas Marchant in botany.!?

In spite of the broad scope of its activities, the avowed purpose of
founding the Académie Royale, according to His Majesty, was to correct
and improve maps and sailing charts. And the solution of the major prob-
lems of chronology, geography and navigation, whose practical importance
was incontestable, lay in the further study and application of astronomy.?

10 See Charles J. E. Wolf, Histoire de I'observatoire de Paris de sa fondation a 1793,
Paris, 1902; also L'Institut de France by Gaston Darboux, Henry Roujon and George
Picot, Paris, 1907 (“Les Grandes Institutions de France").

11C, J. E. Wolf, op. cit., pp. 5 fi.
12 Mémoires de I'Académie Royale des Sciences, Vol. VIII, Paris, 1730.
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To this end, astronomical observations and conferences were begun in
January, 1667. The Abbé Jean Picard, Adrian Auzout, Jacques Buot and
Christian Huygens were temporarily installed in a house near the Corde-
liers, the garden of which was taken over for astronomical observations.
There the scientists set up a great quadrant, a mammoth sextant and a
highly refined version of the sundial. They also constructed a meridian
line. Sometimes observations were made in the garden of the Louvre. On
the whole, facilities for astronomical research were far from good, and
there was considerable grumbling among the academicians.

As early as 1665, before the Académie was founded, Auzout had written
Colbert an impassioned memorandum asking for an observatory, remind-
ing him that the progress of astronomy in France would be as nothing
without one. When Colbert finally made up his mind, in 1667, and the
king approved the money, events moved rapidly. The site chosen for the
observatory was at Faubourg St. Jacques, well out in the country, away
from the lights and disconcerting noises of Paris. Colbert decided that the
Observatory of Paris should surpass in beauty and utility any that had
been built to date, even those in Denmark, England and China, one which
would reflect the magnificence of a king who did things on a grand scale.
He called in Claude Perrault, who had designed the palace at Versailles
with accommodations for 6000 guests, and told him what he and his
Académie wanted. The building should be spacious; it should have ample
laboratory space and comfortable living quarters for the resident astrono-
mers and their families.1?

On the 21st of June, 1667, the day of the summer solstice, the members
of the Académie assembled at Faubourg St. Jacques, and with great pomp
and circumstance made observations for the purpose of “locating” the new
observatory and establishing a meridian line through its center, a line
which was to become the official meridian of Paris. The building was to
have two octagonal towers flanking the southern facade, and eight azi-
muths were carefully computed so that the towers would have astronom-
ical as well as architectural significance. Then, without waiting for their
new quarters, the resident members of the Académie went back to work,
attacking the many unsolved riddles of physics and natural history, as well
as astronomy and mathematics. They designed and built much of the
apparatus for the new observatory. They made vast improvements in the
telescope as an astronomical tool; they solved mechanical and physical
problems connected with the pendulum and what gravity does to it, helping
Huygens get the few remaining “bugs” out of his pendulum timekeeper.
They concentrated on the study of the earth, its size and shape and place
in the universe; they investigated the nature and behavior of the moon
and other celestial bodies; they worked towards the establishment of a

13C. J. E. Wolf, op. cit., p. 4.
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standard meridian of longitude for all nations, the meridian of Paris
running through the middle of their observatory. They worked on the
problem of establishing the linear value of a degree of longitude which
would be a universally acceptable constant. In all these matters the
Académie Royale des Sciences was fortunate in having at its disposal the
vast resources of the court of France as well as the personal patronage of
Louis XIV.

An accurate method of determining longitude was first on the agenda of
the Académie Royale, for obviously no great improvement could be made
in maps and charts until such a method was found. Like Spain and the
Netherlands, France stood ready to honor and reward the man who could
solve the problem. In 1667, an unnamed German inventor addressed him-
self to Louis XIV, stating that he had solved the problem of determining
longitude at sea. The king promptly granted him a patent (brevet) on his
invention, sight unseen, and paid him 60,000 livres in cash. More than
this, His Majesty contracted to pay the inventor 8000 livres a year
(Huygens was getting 6000!) for the rest of his life, and to pay him four
sous on every ton of cargo moved in a ship using the new device, reserving
for himself only the right to withdraw from the contract in consideration
of 100,000 livres. All this His Majesty would grant, but on one condition:
the inventor must demonstrate his invention before Colbert, Abraham
Duquesne, Lieutenant-General of His Majesty’s naval forces, and Messrs.
Huygens, Carcavi, Roberval, Picard and Auzout of the Académie Royale
des Sciences.!4

The invention proved to be nothing more than a variation on an old
theme, an ingenious combination of water wheel and odometer to be
inserted in a hole drilled in the keel of a ship. The passage of water under
the keel would turn the water wheel, and the distance traversed by the
ship in a given period would be recorded on the odometer. The inventor
also claimed that by some strange device best known to himself his
machine would make any necessary compensations for tides and cross-
currents of one kind and another; it was, in fact, an ideal and perfect solu-
tion to the longitude problem. The royal examiners studied the apparatus,
praised its ingenuity and then submitted their report to the king in writing.
They calmly pointed out, among other things, that if a ship were moving
with a current, it might be most stationary with respect to the water under
the keel and yet be carried along over an appreciable amount of longitude
while the water wheel remained motionless. If, on the other hand, the ship
were breasting a current, the odometer would register considerable prog-
ress when actually the ship might be getting nowhere. The German

14 Histoire de I' Académie Royale des Sciences, Vol. 1, pp. 45--46.



The Longitude 789

inventor departed from Paris richer by 60,000 livres and the members of
the Académie went back to work.18

In 1669, after three years of intensive study, the scientists of the
Académie Royale had gathered together considerable data on the eelestial
bodies, and had studied every method that had been suggested for the
determination of longitude. The measurement of lunar distances from the
stars and the sun was considered impractical because of the complicated
mathematics involved. Lunar eclipses might be all right except for the
infrequency of the phenomenon and the slowness of eclipses, which in-
crease the chance of error in the observer. Moreover, lunar eclipses were
utterly impractical at sea. Meridional transits of the moon were also tried
with indifferent success. What the astronomers were looking for was a
celestial body whose distance from the earth was so great that it would
present the same appearance from any point of observation. Also wanted
was a celestial body which would move in a constantly predictable fashion,
exhibiting at the same time a changing picture that could be observed
and timed simultaneously from different places on the earth. Such a body
was Jupiter, whose four satellites, discovered by Galileo, they had observed
and studied. The serious consideration of Jupiter as a possible solution of
the longitude problem brought to mind a publication that had come out
in 1668 written by an Italian named Cassini. While the members of the
Académie continued their study of Jupiter’s satellites with an eye to
utilizing their frequent eclipses as a method of determining longitude,
Colbert investigated the possibilities of luring Cassini to Paris.

Giovanni Domenico Cassini was born in Perinaldo, a village in the
Comté of Nice, June 8, 1625, the son of an Italian gentleman. After com-
pleting his elementary schooling under a preceptor he studied theology
and law under the Jesuits at Genoa and was graduated with honors. He
developed a decided love of books, and while browsing in a library one
day he came across a book on astrology. The work amused him, and after
studying it he began to entertain his friends by predicting coming events.
His phenomenal success as an astrologer plus his intellectual honesty
made him very suspicious of his new-found talent, and he promptly aban-
doned the hocus-pocus of astrology for the less dramatic study of astron-

15 Justin Winsor, Narrative and Critical History of America, Boston, 1889, Vol. II,
pp. 98-99 has an interesting note on the “log.” In Pigafetta’s journal (January, 1521),
he mentions the use of a chain dragged astern on Magellan's ships to measure their
speed. The “log"” as we know it was described in Bourne’s Regiment of the Sea, 1573,
and Humphrey Cole is said to have invented it. In Eden’s translation of Taisnier he
speaks of an artifice “not yet divulgate, which, placed in the pompe of a shyp,
whyther the water hath recourse, and moved by the motion of the shypp, with wheels
and weyghts, doth exactly shewe what space the shyp hath gone.” See the article
“Navigation” in the Encyclopaedia Britannica, 9th edition. For further comments on

the history of the log, see L. C. Wroth, The Way of a Ship, Portland, Maine, 1937,
pp. 72-74.
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omy. He made such rapid progress and displayed such remarkable
aptitude, that in 1650, when he was only twenty-five years old, he was
chosen by the Senate of Bologna to fill the first chair of astronomy at the
university, vacant since the death of the celebrated mathematician Bona-
ventura Cavalieri. The Senate never regretted their choice.16

One of Cassini's first duties was to serve as scientific consultant to the
Church for the precise determination of Holy Days, an important applica-
tion of chronology and longitude. He retraced the meridian line at the
Cathedral of Saint Petronius constructed in 1575 by Ignazio Dante, and
added a great mural quadrant which took him two years to build. In 1655
when it was completed, he invited all the astronomers in Italy to observe
the winter solstice and examine the new tables of the sun by which the
equinoxes, the solstices and numerous Holy Days could now be accurately
determined.

Cassini was next appointed by the Senate of Bologna and Pope Alex-
ander VII to determine the difference in level between Bologna and
Ferrara, relative to the navigation of the Po and Reno rivers. He not only
did a thorough job of surveying, but wrote a detailed report on the two
rivers and their peculiarities as well. The Pope next engaged Cassini, in
the capacity of a hydraulic engineer, to straighten out an old dispute be-
tween himself and the Duke of Tuscany relative to the diversion of the
precious water of the Chiana River, alternate affluent of the Arno and the
Tiber. Having settled the dispute to the satisfaction of the parties con-
cerned, he was appointed surveyor of fortifications at Perugia, Pont Felix
and Fort Urbino, and was made superintendent of the waters of the Po,
a river vital to the conservation and prosperity of the country. In his spare
time Cassini busied himself with the study of insects and to satisfy his
curiosity repeated several experiments on the transfusion of blood from
one animal to another, a daring procedure that was causing a flurry of
excitement in the scientific world. But his major hobby was astronomy and
his favorite planet was Jupiter. While he worked on the Chiana he spent
many evenings at Citta della Piéve observing Jupiter’s satellites. His tele-
scope was better than Galileo’s and with it he was able to make some
additional discoveries. He noted that the plane of the revolving satellites
was such that the satellites passed across Jupiter's disc close to the equator;
he noted the size of the orbit of each satellite. He was certain he could see
a number of fixed spots on Jupiter’s orb, and on the strength of his findings
he began to time the rotation of the planet as well as the satellites, using
a fairly reliable pendulum clock.1”

'8 Oeuvres de Fontenelle. Eloges. Paris, 1825, Vol. 1, p. 254,

17 Joseph Frangois Michaud: Biographie Universelle, Paris, 1854-65. Cassini gave
Jupiter's rotation as 9" 56™. The correct time is not yet known with certainty. Slightly

different results are obtained by using different markings. The value 9" 55™ is fre-
quently used in modern texts.
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After sixteen years of patient toil and constant observations, Cassini
published his tables (Ephemerides) of the eclipses of Jupiter’s satellites
for the year 1668, giving on one page the appearance of the planet in a
diagram with the satellites grouped around it and on the opposite page the
time of the eclipse (immersion) of each satellite in hours, minutes and
seconds, and the time of each emersion.18

Cassini, then forty-three years old, had become widely known as a
scholar and skilled astronomer, and when a copy of his Ephemerides
reached Paris Colbert decided he must get him for the Observatory and
the Académie Royale. In this instance, however, it took considerable diplo-
macy as well as gold to get the man he wanted, for Cassini was then in the
employ of Pope Clement IX, and neither Louis XIV nor Colbert cared to
offend or displease His Holiness. Three distinguished scholars, Vaillant,
Auzout and Count Graziani, were selected to negotiate with the Pope and
the Senate of Bologna for the temporary loan of Cassini, who was to
receive 9000 livres a year as long as he remained in France. The arrange-
ments were finally completed, and Cassini arrived in Paris on the 4th of
April, 1669. Two days later he was presented to the king. Although Cassini
had no intention of staying indefinitely, Colbert was insistent, and in spite
of the remonstrances of the Pope and the Senate of Bologna, Cassini
became a naturalized citizen of France in 1673, and was thereafter known
as Jean Domenique Cassini.1?

Observations were in full swing when Cassini took his place among the
savants of the Académie Royale who were expert mechanics as well as
physicists and mathematicians. Huygens and Auzout had ground new
lenses and mirrors, and had built vastly improved telescopes for the ob-
servatory. With the new instruments Huygens had already made some
phenomenal discoveries. He had observed the rotation period of Saturn,
discovered Saturn’s rings and the first of the satellites. Auzout had built
other instruments and applied to them an improved filar micrometer, a
measuring device all but forgotten since its invention by Gascoyne
(Gascoigne) about 1639. After Cassini’s arrival, more apparatus was
ordered, including the best telescopes available in Europe, made by
Campani in Italy.20

One of the first important steps toward the correction of maps and
charts was the remeasurement of the circumference of the earth and the
establishment of a new value for a degree of arc in terms of linear meas-
ure. There was still a great deal of uncertainty as to the size of the earth,

18 The first edition of Cassini's work was published under the title Ephemerides
Bononiensés Mediceorvm sydervm ex hypothesibvs, et tabvlis lo: Deominici Cassini
. . . Bononiae [Bologne], 1668,

19C. J. E. Wolf, op. cit., p. 6.

29 For a detailed inventory of the equipment built and purchased by the Académie
Royale, see C. J. E. Wolf, op. cit.
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and the astronomers were reluctant to base their new data on a funda-
mental value which might negate all observations made with reference to
it. After poring over the writings of Hipparchus, Poseidonius, Ptolemy
and later authorities such as Snell, and after studying the methods these
men had used, the Académie worked out a detailed plan for measuring
the earth, and in 1669 assigned Jean Picard to do the job.

The measurement of the earth at the equator, from east to west, was
out of the question; no satisfactory method of doing it was known. There-
fore the method used by Eratosthenes was selected, but with several impor-
tant modifications and with apparatus that the ancients could only have
dreamed of. Picard was to survey a line by triangulation running approxi-
mately north and south between two terminal points; he would then
measure the arc between the two points (that is, the difference in latitude)
by astronomical observations. After looking over the country around Paris,
Picard decided he could run his line nearly northward to the environs of
Picardy without encountering serious obstructions such as heavy woods
and high hills.2!

Picard selected as his first terminal point the “Pavillon” at Malvoisine
near Paris, and for his second point the clock tower in Sourdon near
Amiens, a distance of about thirty-two French leagues. Thirteen great
triangles were surveyed between the two points, and for the purpose Picard
used a stoutly reinforced iron quadrant with a thirty-eight inch radius
fixed on a heavy standard. The usual pinhole alidades used for sighting
were replaced by two telescopes with oculars fitted with cross hairs, an
improved design of the instrument used by Tycho Brahe in Denmark. The
limb of the quadrant was graduated into minutes and seconds by trans-
versals. For measuring star altitudes involving relatively acute angles,
Picard used a tall zenith sector made of copper and iron with an amplitude
of about 18°. Attached to one radius of the sector was a telescope ten feet
long. Also part of his equipment were two pendulum clocks, one regulated
to beat seconds, the other half-seconds. For general observations and for
observing the satellites of Jupiter, he carried three telescopes: a small one
about five feet long and two larger ones, fourteen and eighteen feet long.
Picard was well satisfied with his equipment. In describing his specially
fitted quadrant, he said it did the work so accurately that during the two
years it took to measure the arc of the meridian, there was never an error
of more than a minute of arc in any of the angles measured on the entire
circumference of the horizon, and that in many cases, on checking the
instrument for accuracy, it was found to be absolutely true. And as for the

2! For a complete account of Picard's measurement of the earth, including tables of
data and a historical summary, see the Mémoires de I'Académie Royale des Sciences,
Vol. VII, Pt. 1, Paris, 1729. See also the article “Earth, Figure of the” by Alexander

Ross Clarke and Frederick Robert Helmert in the Encyclopaedia Britannica, 11th
edition, p. 801,
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pendulum clocks he carried, Picard was pleased to report that they
“marked the seconds with greater accuracy than most clocks mark the
half hours.” 22

When the results of Picard’s survey were tabulated, the distance between
his two terminal points was found to be 68,430 toises 3 pieds. The differ-
ence in latitude between them was measured, not by taking the altitude
of the sun at the two terminal points, but by measuring the angle between
the zenith and a star in the kneecap of Cassiopeia, first at Malvoisine and
then at Sourdon. The difference was 1° 11’ 57”. From these figures the
value of a degree of longitude was calculated as 57,064 toises 3 pieds.
But on checking from a second base line of verification which was sur-
veyed in the same general direction as the first, this value was revised to
57,060 toises, and the diameter of the earth was announced as 6,538,594
toises. All measurements of longitude made by the Académie Royale
were based on this value, equivalent to about 7801 miles, a remarkably
close result,2s

In 1676, after the astronomers had revised and enlarged his Ephemeri-
des of 1668, Cassini suggested that the corrected data might now be used
for the determination of longitude, and Jupiter might be given a trial as a
celestial clock. The idea was approved by his colleagues and experimental
observations were begun, based on a technique developed at the Observa-
tory and on experience acquired by a recent expedition to Cayenne for
the observation of the planet Mars. The scientists were unusually optimistic
as the work began, and in a rare burst of enthusiasm one of them wrote,
“Si ce n'est pas -la le véritable secret des Longitudes, au-moins en
approche-t-il de bien prés.”

Because of his tremendous energy, skill and patience, Cassini had by
this time assumed the leadership of the scientists working at the observa-
tory, even though he did not have the title of Director. He carried on an
extensive correspondence with astronomers in other countries, particularly
in Italy where the best instruments were available and where he and his
work were well known. Astronomers in foreign parts responded with
enthusiasm when they learned of the work that was being done at the
Paris Observatory. New data began to pour in faster than the resident
astronomers could appraise and tabulate it. Using telescopes and the satel-
lites of Jupiter, hundreds of cities and towns were now being located for
the first time with reference to a prime meridian and to each other. All
of the standard maps of Europe, it seemed, would have to be scrapped.24

22 Mémoires de I' Académie Royale des Sciences, Vol. VII, Pt. 1. Pagination varies
widely in different editions of this series.

23 Ibid., pp. 30607, gives a table of the linear measures used by Picard in making
his computations. Measurements were made between the zenith and a star in the
kneecap of Cassiopeia, probably & (Al Rukbah). See the Mémoires de I' Académi
Royale des Sciences, Vol. V11, Pt. II, Paris, 1730, p. 305.

24 For Cassini's status in the Académie Royale, see C. J. E. Wolf, op. cir.
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With so much new information available, Cassini conceived the idea of
compiling a large-scale map of the world (planisphere) on which revised
geographical information could be laid down as it came in from various
parts of the world, especially the longitudes of different places, hitherto
unknown or hopelessly incorrect. For this purpose the third floor of the
west tower of the Observatory was selected. There was plenty of space,
and the octagonal walls of the room had been oriented by compass and
quadrant when the foundation of the building was laid. The planisphere,
on an azimuthal projection with the North Pole at the center, was executed
in ink by Sédileau and de Chazelles on the floor of the tower under the
watchful eye of Cassini. The circular map was twenty-four feet in diam-
eter, with meridians radiating from the center to the periphery, like the
spokes of a wheel, at intervals of 10°. The prime meridian of longitude
(through the island of Ferro) was drawn from the center at any angle
“half way between the two south windows of the tower” to the point
where it bisected the circumference of the map. The map was graduated
into degrees from zero to 360 in a counterclockwise direction around the
circle. The parallels of latitude were laid down in concentric circles at
intervals of 10°, starting with zero at the equator and numbering both
ways. For convenient and rapid “spotting” of places, a cord was attached
to a pin fastened to the center of the map with a small rider on it, so that
by swinging the cord around to the proper longitude and the rider up or
down to the proper latitude, a place could be spotted very quickly.

On this great planisphere the land masses were of course badly dis-
torted, but it did not matter. What interested the Académie was the precise
location, according to latitude and longitude, of the important places on
the earth’s surface, places that could be utilized in the future for bases of
surveying operations. For this reason it was much more important to
have the names of a few places strategically located and widely distributed,
according to longitude, than it was to include a great many places that were
scientifically unimportant. For the same reason, most of the cities and
towns that boasted an astronomical observatory, regardless of how small,
were spotted on the map.

The planisphere was highly praised by all who saw it. The king came to
see it with Colbert and all the court. His Majesty graciously allowed Cas-
sini, Picard and de la Hire to demonstrate the various astronomical instru-
ments used by the members of the Académie to study the heavens and to
determine longitude by remote control, as it were. They showed him their
great planisphere and explained how the locations of different places were
being corrected on the basis of data sent in from the outside world. It was
enough to make even Louis pause.?’

23 Ibid., pp. 62-65. For an account of the great planisphere, see the Histoire de
I'Académie Royale des Sciences, Vol. 1, pp. 225-26; C. I, E. Wolf, op. cit. A facsimile
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What effect the king’s visit had on future events it is difficult to estimate,
but in the next few years a great deal of surveying was done. Many survey-
ing expeditions were sent out from the Observatory, and the astronomers
went progressively further afield. Jean Richer led an expedition to Cayenne
and Jean Mathieu de Chazelles went to Egypt. Jesuit missionaries observed
at Madagascar and in Siam. Edmund Halley, who was in close touch with
the work going on in France, made a series of observations at the Cape
of Good Hope. Thevenot, the historian and explorer, communicated data
on several lunar eclipses observed at Goa. About this time, Louis-Abel
Fontenay, a Jesuit professor of mathematics at the College of Louis le
Grand, was preparing to leave for China. Hearing of the work being done
by Cassini and his colleagues, Fontenay volunteered to make as many
observations as he could without interfering with his missionary duties.
Cassini trained him and sent him on his way prepared to contribute data
on the longitudes to the Orient. Thus the importance of remapping the
world and the feasibility of the method devised by the Académie Royale
began to dawn on the scholars of Europe, and many foreigners volunteered
to contribute data. Meanwhile Colbert raised more money and Cassini
sent more men into the field.

One of the longest and most difficult expeditions organized by the
Académie Royale was led by Messrs. Varin and des Hayes, two of His
Majesty’s engineers for hydrography, to the island of Gorée and the West
Indies. Tt was also one of the most important for the determination of
longitudes in the Western Hemisphere, involving as it did the long jump
across the Atlantic Ocean, a span where some of the most egregious errors
in longitude had been made. Cassini’s original plan, approved by the king,
was to launch the expedition from Ferro, on the extreme southwest of the
Canary Islands, an island frequently used by cartographers as a prime
meridian of longitude. But as there was some difficulty about procuring
passage for the expedition, it was decided to take a departure from Gorée,
a small island off Cape Verde on the west coast of Africa, where a French
colony had recently been established by the Royal Company of Africa.?®

Before their departure, Varin and des Hayes spent considerable time at
the Observatory, where they were thoroughly trained by Cassini and where
they could make trial observations to perfect their technique. They re-
ceived their final instructions in the latter part of 1681, and set out for

of one of the printed versions of the map, reduced, was issued with Christian Sandler’s
Die Reformation der Kartographie um 1700, Munich, 1905; a second one, colored, was
published in 1941 by the University of Michigan from the original in the William L.
Clements Library. For bibliographical notes regarding the publication of the map, see
L. A. Brown, Jean Domenique Cassini . . . pp. 62-73.

26 The island of Ferro, the most southwest of the Canary Islands, was a common
prime meridian among cartographers as late as 1880. It was considered the dividing
line between the Eastern and Western hemispheres! (See Lippincott's 4 complete
pronouncing gazetteer or geographical dictionary of the world. Philadelphia, 1883.)
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Rouen equipped with a two and a half foot quadrant, a pendulum clock,
and a nineteen foot telescope. Among the smaller pieces of apparatus they
carried were a thermometer, a barometer and a compass. From Rouen
they moved to Dieppe, where they were held up more than a month by
storm weather and contrary winds. With time on their hands, they made a
series of observations to determine the latitude and longitude of the city.
The two men finally arrived at Gorée in March, 1682, and there they
were joined by M. de Glos, a young man trained and recommended by
Cassini. De Glos brought along a six foot sextant, an eighteen foot tele-
scope, a small zenith sector, an astronomical ring and another pendulum
clock. Although the primary object of the expedition was to determine
longitudes by observing the eclipses of the satellites of Jupiter, the three
men had orders to observe the variation of the compass at every point in
their travels, especially during the ocean voyage, and to make thermo-
metrical and barometric observations whenever possible; in short, they
were to gather all possible scientific data that came their way. From Gorée
the expedition sailed for Guadeloupe and Martinique, and for the next
year extensive observations were made. The three men returned to Paris
in March, 1683.27

Cassini’s instructions to the party were given in writing. They furnish a
clear picture of the best seventeenth century research methods and at the
same time explain just how terrestrial longitudes were determined by
timing the eclipses of the satellites of Jupiter. The object was simple
enough: to find the difference in mean or local time between a prime
meridian such as Ferro or Paris and a second place such as Guadeloupe,
the difference in time being equivalent to the difference in longitude. Two
pendulum clocks were carried on the expedition, and before leaving they
were carefully regulated at the Observatory. The pendulum of one was
adjusted so that it would keep mean time, that is twenty-four hours a day.
The second clock was set to keep sidereal or star time (23" 56m 45) .28 The
rate of going for the two timekeepers was carefully tabulated over a long
period so that the observers might know in advance what to expect when
the temperature, let us say, went up or down ten degrees in a twenty-four
hour period. These adjustments were made by raising or lowering the
pendulum bob to speed up or slow down the clock. After the necessary
adjustments were made, the position of the pendulum bobs on the rods was
marked and the clocks were taken apart for shipping.

Having arrived at the place where observations were to be made, the

27T L. A, Brown: Jean Domenique Cassini . . . pp. 42-44,

28 Cassini suggested two methods of adjusting a clock to mean time. The first was
to make a series of observations of the sun (equal altitudes) and afterwards correct
them with tables of the equation of time, and second, to regulate one clock to keep
sidereal time by observing two successive transits of a star and correct the second
clock from it.
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astronomers selected a convenient, unobstructed space and set up their
instruments. They fixed their pendulum bobs in position and started their
clocks, setting them at the approximate hour of the day. The next opera-
tion was to establish a meridian line, running true north and south, at the
place of observation. This was done in several ways, each method being
used as a check against the accuracy of the others. The first was to take
a series of equal altitude observations of the sun, a process which would
also give a check on the accuracy of the clock which was to keep mean
time. To do this, the altitude of the sun was taken with a quadrant or
sextant approximately three (or four) hours before apparent noon. At the
moment the sight was taken the hour, minute and second were recorded in
the log. An afternoon sight was taken when the sun had descended to
precisely the same angle recorded in the morning observation. Again the
time was taken at the instant of observation. The difference in time be-
tween the two observations divided by two and added to the morning time
gave the hour, minute and second indicated at apparent noon. This obser-
vation was repeated two days in succession, and the difference in minutes
and seconds recorded by the clock on the two days (always different
because of the declination of the sun) divided by two and added to the
first gave the observers what the clock did in twenty-four hours; in other
words, it gave them mean time. A very simple check on the arrival of
apparent noon, when the sun reaches the meridian, was to drop a plumb
line from the fixed quadrant and note the shadow on the ground as each
observation was taken. These observations were repeated daily so that the
observers always knew their local time,

The second pendulum clock was much simpler to adjust. All they had
to do was set up a telescope in the plane of the meridian, sight it on a
fixed star and time two successive transits of the star. When the pendulum
was finally adjusted so that 23 56m 4s elapsed between two successive
transits, the job was done. The latitude of the place of observation was
equally simple to determine. The altitude of the sun at apparent noon was
taken with a quadrant and the angle, referred to the tables of declination,
gave the observers their latitude. A check on the latitude was made at
night, by observing the height of the polestar.

With the meridian line established, and a clock regulated to keep mean
time, the next thing was to observe and time the eclipses of the satellites
of Jupiter, at least two of which are eclipsed every two days. As Cassini
pointed out, this was not always a simple matter, because not all eclipses
are visible from the same place and because bad weather often vitiates the
observations. Observations called for a very fussy technique.

The most satisfactory time observations of Jupiter, in Cassini’s opinion,
could be made of the immersions and emersions of the first satellite. Six
phases of the eclipse should be timed: during the immersion of the satellite
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(1) when the satellite is at a distance from the limb of Jupiter equal to its
own diameter; (2) when the satellite just touches Jupiter; (3) when it first
becomes entirely hidden by Jupiter’s disc. During the emersion of the
satellite (4) the instant the satellite begans to reappear; (5) when it be-
comes detached from Jupiter’s disc; (6) when the satellite has moved away
from Jupiter a distance equal to its own diameter. To observe and time
these phases was a two-man job: one to observe and one to keep a record
of the time in minutes and seconds. If an observer had to work alone,
Cassini recommended the “eye and ear” method of timing observations,
which is still good observational practice. The observer begins to count
out loud “one-five-hundred, two-five-hundred, three-five-hundred” and so
on, the instant the eclipse begins, and he continues to count until he can
get to his clock and note the time. Then by subtracting his count from the
clock reading, he has the time at which the observation was made.

The emersion of the satellite, Cassini warned, always requires very care-
ful observation, because you see nothing while you are waiting for it. At
the instant you see a faint light in the region where the satellite should
reappear, you should begin counting without leaving the telescope until
you are sure you are seeing the actual emersion. You may make several
false starts before you actually see and can time the actual emersion.
Other observations worth using, according to Cassini, were the conjune-
tions of two satellites going in opposite directions. A conjunction was said
to occur when the centers of the two satellites were in a straight perpen-
dicular line. In all important observations requiring great accuracy, Cassini
recommended a dress rehearsal the day before and at the same hour, so
that if the instruments did not behave or the star was found to be in a
difficult position, all necessary adjustments would have been made in
advance,2?

In addition to the observations for the determination of longitude, all
expeditions sent out from the Paris Observatory were cautioned to note
any variation in the functioning of their pendulum clocks. This did not
mean normal variations caused by changes in temperature. Such variations
could be predicted in advance by testing the metal pendulum rods: deter-
mining the coefficient of expansion at various temperatures. What they
were watching for was a change caused by a variation in gravity. There
were two reasons involved, one practical and one theoretical. The pendu-
lum was an extremely important engine, since it was the driving force of
the best clocks then in use. And too, the whole subject of gravitation,
whose leading exponents were Christian Huygens, Isaac Newton and

2% Cassini's “Instructions” were printed in full in the Mémoires de I Académie
Royale des Sciences, Vol. VIII, Paris, 1730. For a translation into English see L. A.
Brown, Jean Domenique Cassini, . . pp. 48-60.
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The planet Jupiter showing the six positions of the first satellite used by seventeenth-century as-
tronomers to determine the difference in longitude between two places.

Robert Hooke, was causing a stir in the scientific world. The idea of using
the pendulum experimentally for studying gravitation came from Hooke,
and the theories of Newton and Huygens might well be proved or dis-
proved by a series of experiments in the field. What no one knew was
that these field trials would result in the discovery that the earth is not a
perfect sphere but an oblate spheroid, a sphere flattened at the poles.
What effect, if any, did a change of latitude produce in the oscillations
of a pendulum if the temperature remained unchanged? Many scientists
said none, and experiments seemed to prove it. Members of the Académie
had transported timekeepers to Copenhagen and The Hague to try them
at different latitudes, and a series of experiments had been conducted in
London. The results were all negative; at every place a pendulum of a
given length (39.1 inches) beat seconds or made 3600 oscillations an
hour. However, there was one exception. In 1672, Jean Richer had made
an expedition to Cayenne (4° 56" 5” N.) to observe the opposition of
Mars. On the whole the expedition was a success, but Richer had had
trouble with his timekeeper. Although the length of the pendulum had
been carefully adjusted at the Observatory before he sailed, Richer found
that in Cayenne his clock lost about two minutes and a half a day, and
that in order to get it to keep mean time he had to shorten the pendulum
(raise the bob) by more than a “ligne” (about %42 of an inch). All this
was very trying to Cassini, who was a meticulous observer. “It is sus-
pected,” he wrote, “that this resulted from some error in the observation.”
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Had he not been a gentleman as well as a scholar, he would have said
that Richer was just plain careless.3®

The following year, 1673, Huygens published his masterpiece on the
oscillation of the pendulum, in which he set down for the first time a
sound theéory on the subject of centrifugal force, principles which Newton
later applied to his theoretical investigation of the earth.?! The first oppor-
tunity to.confirm the fallacy of Richer’s observations on the behavior of
his timekeeper came when Varin and des Hayes sailed for Martinique
(14° 48’ N.) and Guadeloupe (between 15° 47’ and 16° 30’ N.). Cassini
cautioned them to check their pendulums with the greatest possible care
and they. did. But, unfortunately, their clocks behaved badly, and they,
too, had to shorten the pendulums in order to make them beat mean time.
Cassini was still dubious, but not Isaac Newton. In the third book of his
Principia he concluded that this variation of the pendulum in the vicinity
of the equator must be caused either by a diminution of gravity resulting
from a bulging of the earth at the equator, or from the strong, counter-
acting effect of centrifugal force in that region.??

The discoveries made by the Académie Royale des Sciences set a fast
pace in the scientific world and pointed the way towards many others.
The method of finding longitude by means of the eclipses of Jupiter's
satellites had proved to be feasible and accurate, but it was not accepted
by foreign countries without a struggle. Tables of Jupiter’s satellites were
finally included in the English Nautical Almanac and remained there in
good standing for many years, along with tables of lunar distances and
other star data associated with rival methods of finding longitude. It was
generally. conceded, however, that Jupiter could not be used for finding
longitude at sea, in spite of Galileo's assertions to the contrary. Many
inventors besides the great Italian had come up with ingenious and wholly
impractical devices to provide a steady platform on shipboard from which
astronomical observations could be made. But the fact remained that the
sea was too boisterous and unpredictable for astronomers and their
apparatus.

England made her official entry in the race for the longitude when
Charles I ordered the construction of a Royal Observatory, for the
advancement of navigation and nautical astronomy, in Greenwich Park,
overlooking the Thames and the plain of Essex.3® In England things
moved slowly at first, but they moved. The king was determined to have
the tables of the heavenly bodies corrected for the use of his seamen and

30 L, A, Brown: Jean Domenigue Cassini . . . p. 57.

31 Christian Huygens: Horologivm oscillatorivim; sive de motu pendulorvim ad
horologia aptato demonstrationes geometricae, Paris, 1673,

32 [saac Newton: Philosophiae Naturalis Principia Mathematica, 3 vols., London,
1687.

33 R. T. Gould, op. cit., p. 9; also Henry S. Richardson's Greenwich: its history,
antiguities, improvements and public buildings, London, 1834,
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so appointed John Flamsteed “astronomical observator” by a royal war-
rant dated March 4, 1675, at the handsome salary of £100 a year, out of
which he paid £10 in taxes. He had to provide his own instruments, and
as an additional check to any delusions of grandeur he might have, he
was ordered to give instruction to two boys from Christ's Hospital. Stark
necessity made him take several private pupils as well. Dogged by ill
health and the irritations common to the life of a public servant, Flam-
steed was nevertheless buoyed up by the society of Newton, Halley, Hooke
and the scientists of the Académie Royale, with whom he corresponded.
A perfectionist of the first magnitude, Flamsteed was doomed to a life of
unhappiness by his unwillingness to publish his findings before he had had
a chance to check them for accuracy. To Flamsteed, no demand was
sufficiently urgent to justify such scientific transgression.

Flamsteed worked under constant pressure. Everybody, it seemed,
wanted data of one sort of another, and wanted it in a hurry. Newton
needed full information on “places of the moon” in order to perfect his
lunar theory. British scientists, as a group, had set aside the French
method of finding longitude and all other methods requiring the use of
sustained observations at sea. They were approaching the problem from
another angle, and demanded complete tables of lunar distances and a
complete catalogue of star places. Flamsteed did as he was told, and for
fifteen years (1689-1704) spent most of his time at the pedestrian task
of compiling the first Greenwich star catalogue and tables of the moon,
meanwhile reluctantly doling out to his impatient peers small doses of
what he considered incomplete if not inaccurate data.34

The loudest clamors for information came from the Admiralty and
from the waterfront. In 1689 war broke out with France. In 1690 (June
30) the English fleet was defeated by the French at the battle of Beachy
Head. Lord Torrington, the English admiral, was tried by court-martial
and acquitted, but nevertheless dismissed from the service. In 1691 several
ships of war were lost off Plymouth because the navigators mistook the
Deadman for Berry Head. In 1707 Sir Cloudesley Shovel, returning with
his fleet from Gibraltar, ran into dirty weather. After twelve days of
groping in a heavy overcast, all hands were in doubt as to the fleet’s
position. The Admiral called for the opinion of his navigators, and with
one exception they agreed that the fleet was well to the west of Ushant,
off the Brittany peninsula. The fleet stood on, but that night, in a heavy
fog, they ran into the Scilly Islands off the southwest coast of England.
Four ships and two thousand men were lost, including the Admiral.
There was a story current, long after, that a seaman on the flagship had
estimated from his own dead reckoning that the fleet was in a dangerous
position. He had the temerity to point this out to his superiors, who

34 See Francis Baily's Account of the Rev. John Flamsteed, London, 1835.
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sentenced him forthwith to be hanged at the yardarm for mutiny. The
longitude had to be found! 3%

There was never a shortage of inventive genius in England, and many
fertile minds were directed towards the problem of finding longitude at
sea. In 1687 two proposals were made by an unknown inventor which
were novel, to say the least. He had discovered that a glass filled to the
brim with water would run over at the instant of new and full moon, so
that the longitude could be determined with precision at least twice a
month. His second method was far superior to the first, he thought, and
involved the use of a poprlar nostrum concocted by Sir Kenelm Digby
called the “powder of sympathy.” This miraculous healer cured open
wounds of all kinds, but unlike ordinary and inferior brands of medicine,
the powder of sympathy was applied, not to the wound but to the weapon
that inflicted it. Digby used to describe how he made one of his patients
jump sympathetically merely by putting a dressing he had taken from the
patient’s wound into a basin containing some of his curative powder. The
inventor who suggested using Digby’s powder as an aid to navigation
proposed that before sailing every ship should be furnished with a
wounded dog. A reliable observer on shore, equipped with a standard
clock and a bandage from the dog’s wound, would do the rest. Every
hour, on the dot, he would immerse the dog’s bandage in a solution of
the powder of sympathy and the dog on shipboard would yelp the hour.3®

Another serious proposal was made in 1714 by William Whiston, a
clergyman, and Humphrey Ditton, a mathematician. These men suggested
that a number of lightships be anchored in the principal shipping lanes at
regular intervals across the Atlantic ocean. The lightships would fire at
regular intervals a star shell timed to explode at 6440 feet. Sea captains
could easily calculate their distance from the nearest lightship merely by
timing the interval between the flash and the report. This system would
be especially convenient in the North Atlantic, they pointed out, where
the depth never exceeded 300 fathoms! For obvious reasons, the proposal
of Whiston and Ditton was not carried out, but they started something.
Their plan was published, and thanks to the publicity it received in vari-
ous periodicals, a petition was submitted to Parliament on March 25,
1714, by “several Captains of Her Majesty’s Ships, Merchants of London,
and Commanders of Merchantmen,” setting forth the great importance of
finding the longitude and praying that a public reward be offered for

some practicable method of doing it.37 Not only the petition but the
35R. T. Gould, op. cit.,, p. 2.

38 See Curionus Enquiries, London, 1687; R. T, Gould, op. cit., p. 11, The title of
Sir Kenelm Digby's famous work, which appeared in French as well as English, was

A late discourse . . . touching the cure of wounds by the powder of sympathy; with
iml;ucfions how to make the said powder . . . Second edition, augmented, London,
1658,

37 See Whiston and Ditton’s A new method for discovering the longitude. London,
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proposal of Whiston and Ditton were referred to a committee, who in
turn consulted a number of eminent scientists including Newton and
Halley.

That same year Newton prepared a statement which he read to the
committee. He said, “That, for determining the Longitude at Sea, there
have been several Projects, true in the Theory, but difficult to execute.”
Newton did not favor the use of the eclipses of the satellites of Jupiter,
and as for the scheme proposed by Whiston and Ditton, he pointed out
that it was rather a method of “keeping an Account of the Longitude at
Sea, than for finding it, if at any time it should be lost.” Among the
methods that are difficult to execute, he went on. “One is, by a Watch to
keep time exactly: But, by reason of the Motion of a Ship, the Variation
of Heat and Cold, Wet and Dry, and the Difference of Gravity in Differ-
ent Latitudes, such a Watch hath not yet been made.” That was the
trouble: such a watch had not been made.®

The idea of transporting a timekeeper for the purpose of finding longi-
tude was not new, and the futility of the scheme was just as old. To the
ancients it was just a dream. When Gemma Frisius suggested it in 1530
there were mechanical clocks, but they were a fairly new invention, and
crudely built, which made the idea improbable if not impossible.3? The
idea of transporting “some true Horologie or Watch, apt to be carried in
journeying, which by an Astrolabe is to be rectified . . .” was again stated
by Blundeville in 1622, but still there was no watch which was “true” in
the sense of being accurate enough to use for determining longitude.4® If
a timekeeper was the answer, it would have to be very accurate indeed.
According to Picard’s value, a degree of longitude was equal to about
sixty-eight miles at the equator, or four minutes, by the clock. One minute
of time meant seventeen miles—towards or away from danger. And if on
a six weeks' voyage a navigator wanted to get his longitude within half a
degree (thirty-four miles) the rate of his timekeeper must not gain or lose
more than two minutes in forty-two days, or three seconds a day.

Fortified by these calculations, which spelled the impossible, and the
report of the committee, Parliament passed a bill (1714) “for providing
a publick reward for such person or persons as shall discover the Longi-
tude.” It was the largest reward ever offered, and stated that for any
practical invention the following sum would be paid: ¢
p £10,000 for any device that would determine the longitude within 1
egree.

1714, The petition appeared in various periodicals: The Guardian, July 14; The
Englishman, Dec. 19, 1713 (R. T. Gould, op. cit., p. 13).

38 R. T. Gould, op. cit., p. 13.

39 Gemma Frisius: De principiis astronomiae et cosmographiae, Antwerp, 1530,

40 Thomas Blundeville, M. Blundeville his exercises . . ., Sixth Edition, London,
1622, p. 390.

4112 Anne, Cap. 15; R. T. Gould, op. cit., p. 13.
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£15,000 for any device that would determine the longitude within 40
minutes.

£20,000 for any device that would determine the longitude within 30
minutes (2 minutes of time or 34 miles).

As though aware of the absurdity of their terms, Parliament authorized

the formation of a permanent commission—the Board of Longitude—and
empowered it to pay one half of any of the above rewards as soon as a
majority of its members were satisfied that any proposed method was
practicable and useful, and that it would give security to ships within
eighty miles of danger, meaning land. The other half of any reward would
be paid as soon as a ship using the device should sail from Britain to a
port in the West Indies without erring in her longitude more than the
amounts specified. Moreover, the Board was authorized to grant a smaller
reward for a less accurate method, provided it was practicable, and to
spend a sum not to exceed £2000 on experiments which might lead to a
useful invention.

For fifty years this handsome reward stood untouched, a prize for the
impossible, the butt of English humorists and satirists. Magazines and
newspapers used it as a stock cliché. The Board of Longitude failed to see
the joke. Day in and day out they were hounded by fools and charlatans,
the perpetual motion lads and the geniuses who could quarter a circle
and trisect an angle. To handle the flood of crackpots, they employed a
secretary who handed out stereotyped replies to stereotyped proposals.
The members of the Board met three times a year at the Admirality, con-
tributing their services and their time to the Crown. They took their
responsibilities seriously and frequently called in consultants to help them
appraise a promising invention. They were generous with grants-in-aid to
struggling inventors with sound ideas, but what they demanded was re-
sults.42 Neither the Board nor any one else knew exactly what they were
looking for, but what everyone knew was that the longitude problem had
stopped the best minds in Europe, including Newton, Halley, Huygens,
von Leibnitz and all the rest. It was solved, finally, by a ticking machine
in a box, the invention of an uneducated Yorkshire carpenter named John
Harrison. The device was the marine chronometer.

Early clocks fell into two general classes: nonportable timekeepers
driven by a falling weight, and portable timekeepers such as table clocks
and crude watches, driven by a coiled spring. Gemma Frisius suggested
the latter for use at sea, but with reservations. Knowing the unreliable
temperament of spring-driven timekeepers, he admitted that sand and
water clocks would have to be carried along to check the error of a

42 R, T. Gould, op. cit.,, p. 16. According to the Act of 1712 the Board was com-
prised of: “The Lord High Admiral or the First Lord of the Admiralty; The Speaker
of the House of Commons; The First Commissioner of the Navy; The First Com-
missioner of Trade; The Admirals of the Red, White and Blue Squadrons; The
Master of the Trinity House: The President of the Royal Society; The Astronomer-
Royal; The Savilian, Lucasian, and Plumian Professors of Mathematics.”
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spring-driven machine. In Spain, during the reign of Philip II, clocks were
solicited which would run exactly twenty-four hours a day, and many
different kinds had been invented. According to Alonso de Santa Cruz
there were “some with wheels, chains and weights of steel: some with
chains of catgut and steel: others using sand, as in sandglasses: others
with water in place of sand, and designed after many different fashions:
others again with vases or large glasses filled with quicksilver: and, lastly,
some, the most ingenious of all, driven by the force of the wind, which
moves a weight and thereby the chain of the clock, or which are moved
by the flame of a wick saturated with oil: and all of them adjusted to
measure twenty-four hours exactly.” 48

Robert Hooke became interested in the development of portable time-
keepers for use at sea about the time Huygens perfected the pendulum
clock. One of the most versatile scientists and inventors of all time, Hooke
was one of those rare mechanical geniuses who was equally clever with a
pen. After studying the faults of current timekeepers and the possibility
of building a more accurate one, he slyly wrote a summary of his investi-
gations, intimating that he was completely baffled and discouraged. “All
I could obtain,” he said, “was a Catalogue of Difficulties, first in the
doing of it, secondly in the bringing of it into publick use, thirdly, in
making advantage of it. Difficulties were proposed from the alteration
of Climates, Airs, heats and colds, temperature of Springs, the nature of
Vibrations, the wearing of Materials, the motion of the Ship, and divers
others.” Even if a reliable timekeeper were possible, he concluded, “it
would be difficult to bring it to use, for Sea-men know their way already
to any Port. . . .” As for the rewards: “the Praemium for the Longitude,”
there never was any such thing, he retorted scornfully. “No King or
State would pay a farthing for it.”

In spite of his pretended despondency, Hooke nevertheless lectured in
1664 on the subject of applying springs to the balance of a watch in order
to render its vibrations more uniform, and demonstrated, with models,
twenty different ways of doing it. At the same time he confessed that he
had one or two other methods up his sleeve which he hoped to cash in
on at some future date. Like many scientists of the time, Hooke expressed
the principle of his balance spring in a Latin anagram; roughly: Ut tensio,
sic vis, “as the tension is, so is the force,” or, “the force exerted by a
spring is directly proportional to the extent to which it is tensioned.” 44

The first timekeeper designed specifically for use at sea was made by
Christian Huygens in 1660. The escapement was controlled by a pendu-

43 Ibid., p. 20; this translation is from a paraphrase by Duro in his Disquisiciones
Nauticas.

44 Ibid., p. 25. The anagram was a device commonly used in the best scientific circles
of the time to establish priority of invention or discovery without actually disclosing
anything that might be seized upon by a zealous colleague.
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lum instead of a spring balance, and like many of the clocks that followed,
it proved useless except in a flat calm. Its rate was unpredictable; when
tossed around by the sea it either ran in jerks or stopped altogether. The
length of the pendulum varied with changes of temperature, and the rate
of going changed in different latitudes, for some mysterious reason not yet
determined. But by 1715 every physical principal and mechanical part
that would have to be incorporated in an accurate timekeeper was under-
stood by watchmakers. All that remained was to bridge the gap between
a good clock and one that was nearly perfect. It was that half degree of
longitude, that two minutes of time, which meant the difference between
conquest and failure, the difference between £20,000 and just another
timekeeper.5

One of the biggest hurdles between watchmakers and the prize money
was the weather: temperature and humidity. A few men included baro-
metric pressure. Without a doubt, changes in the weather did things to
clocks and watches, and many suggestions were forthcoming as to how
this principal source of trouble could be overcome. Stephen Plank and
William Palmer, watchmakers, proposed keeping a timekeeper close to a
fire, thus obviating errors due to change in temperature. Plank suggested
keeping a watch in a brass box over a stove which would always be hot.
He claimed to have a secret process for keeping the temperature of the
fire uniform. Jeremy Thacker, inventor and watchmaker, published a
book on the subject of the longitude, in which he made some caustic
remarks about the efforts of his contemporaries.*® He suggested that one
of his colleagues, who wanted to test his clock at sea, should first arrange
to have two consecutive Junes equally hot at every hour of every day.
Another colleague, referred to as Mr. Br . . . e, was dubbed the Cor-
rector of the Moon’s Motion. In a more serious vein, Thacker made
several sage observations regarding the physical laws with which watch-
makers were struggling. He verified experimentally that a coiled spring
loses strength when heated and gains it when cooled. He kept his own
clock under a kind of bell jar connected with an exhaust pump, so that it
could be run in a partial vacuum. He also devised an auxiliary spring
which kept the clock going while the mainspring was being wound. Both
springs were wound outside the bell by means of rods passed through
stuffing boxes, so that neither the vacuum nor the clock mechanism

45 Ibid., pp. 27-30; Huygens described his pendulum clock in his Horologium
Oscillatorium, Paris, 1673,

46 1bid., pp. 32, 33; Jeremy Thacker wrote a clever piece entitled: The Longitudes
Examined, beginning with a short epistle to the Longitudinarians and ending with
the description of a smart, pretty Machine of my Own which I am (almost) sure will
do for the Longitude and procure me The Twenty Thousand Pounds. By Jeremy
Thacker, of Beverly in Yorkshire. “. . . quid non mortalia pectora cogis Auri sacra
Fames . . " London. Printed for J. Roberts at the Oxford Arms in Warwick Lane,
1714, Price Sixpence.
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would have to be disturbed. In spite of these and other devices, watch-
makers remained in the dark and their problems remained unsolved until
John Harrison went to work on the physical laws behind them. After that
they did not seem so difficult.?

Harrison was born at Foulby in the parish of Wragby, Yorkshire, in
May, 1693, He was the son of a carpenter and joiner in the service of Sir
Rowland Winn of Nostell Priory. John was the oldest son in a large
family. When he was six years old he contracted smallpox, and while
convalescing spent hours watching the mechanism and listening to the
ticking of a watch laid on his pillow. When his family moved to Barrow
in Lincolnshire, John was seven years old. There he learned his father’s
trade and worked with him for several years. Occasionally he earned a
little extra by surveying and measuring land, but he was much more
interested in mechanics, and spent his evenings studying Nicholas Saun-
derson’s published lectures on mathematics and physics. These he copied
out in longhand including all the diagrams. He also studied the mecha-
nism of clocks and watches, how to repair them and how they might be
improved. In 1715, when he was twenty-two, he built his first grandfather
clock or “regulator.” The only remarkable feature of the machine was
that all the wheels except the escape wheel were made of oak, with the
teeth, carved separately, set into a groove in the rim.48

Many of the mechanical faults in the clocks and watches that Harrison
saw around him were caused by the expansion and contraction of the
metals used in their construction. Pendulums, for example, were usually
made of an iron or steel rod with a lead bob fastened at the end. In
winter the rod contracted and the clock went fast, and in summer the rod
expanded, making the clock lose time. Harrison made his first important
contribution to clockmaking by developing the “gridiron” pendulum, so
named because of its appearance. Brass and steel, he knew, expand for a
given increase in temperature in the ratio of about three to two (100 to

47 The invention of a “maintaining power” is erroneously attributed to Harrison.
See R. T. Gould, op. cit., p. 34, who says that Thacker antedates Harrison by twenty
years on the invention of an auxiliary spring to keep a machine going while it was
being wound. In spite of the magnitude of John Harrison’s achievement, the inventive
genius of Pierre Le Roy of Paris produced the prototype of the modern chronometer.
As Rupert Gould points out, Harrison’s Number Four was a remarkable piece of
mechanism, “a satisfactory marine timekeeper, one, too, which was of permanent
usefullness, and which could be duplicated as often as necessary. But No. 4, in spite of
its fine performance and beautiful mechanism, cannot be compared, for efficiency and
design, with Le Roy's wonderful machine. The Frenchman, who was but little
indebted to his precessors, and not at all to his contemporaries, evolved, by sheer
force of genius, a timekeeper which contains all the essential mechanism of the
modern chronometer.” (See R. T. Gould, op. cir., p. 65.)

48 For a biographical sketch of Harrison see R. T. Gould, op. cit., pp. 40 ff. Saun-
derson (1682-1739) was Lucasian professor of mathematics at Cambridge. Harrison’s
first “regulator” is now in the museum of the Clockmakers’ Co. of London. “The
term ‘regulator’ is used to denote any high-class pendulum clock designed for use
solely as an accurate time-measurer. without any additions such as striking mechanism,
calendar work, &c.” (Gould, p. 42 n.)
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62). He therefore built a pendulum with nine alternating steel and brass
rods, so pinned together that expansion or contraction caused by variation
in the temperature was eliminated, the unlike rods counteracting each
other.*?

The accuracy of a clock is no greater than the efficiency of its escape-
ment, the piece which releases for a second, more or less, the driving
power, such as a suspended weight or a coiled mainspring. One day Harri-
son was called out to repair a steeple clock that refused to run. After
looking it over he discovered that all it needed was some oil on the pallets
of the escapement. He oiled the mechanism and soon after went to work
on a design for an escapement that would not need oiling. The result was
an ingenious “grasshopper” escapement that was very nearly frictionless
and also noiseless. However, it was extremely delicate, unnecessarily so,
and was easily upset by dust or unnecessary oil. These two improved
parts alone were almost enough to revolutionize the clockmaking indus-
try. One of the first two grandfather clocks he built that were equipped
with his improved pendulum and grasshopper escapement did not gain or
lose more than a second a month during a period of fourteen years.

Harrison was twenty-one years old when Parliament posted the £20,000
reward for a reliable method of determining longitude at sea. He had not
finished his first clock, and it is doubtful whether he seriously aspired to
winning such a fortune, but certainly no young inventor ever had such a
fabulous goal to shoot at, or such limited competition. Yet Harrison never
hurried his work, even after it must have been apparent to him that the
prize was almost within his reach. On the contrary, his real goal was the
perfection of his marine timekeeper as a precision instrument and a thing
of beauty. The monetary reward, therefore, was a foregone conclusion.

His first two fine grandfather clocks were completed by 1726, when he
was thirty-three years old, and in 1728 he went to London, carrying with
him full-scale models of his gridiron pendulum and grasshopper escape-
ment, and working drawings of a marine clock he hoped to build if he
could get some financial assistance from the Board of Longitude. He
called on Edmund Halley, Astronomer Royal, who was also a member of
the Board. Halley advised him not to depend on the Board of Longitude,
but to talk things over with George Graham, England’s leading horolo-
gist.?® Harrison called on Graham at ten o'clock one morning, and to-
gether they talked pendulums, escapements, remontoires and springs until
eight o'clock in the evening, when Harrison departed a happy man.
Graham had advised him to build his clock first and then apply to the

49 Ibid., pp. 40-41. Graham had experimented with a gridiron pendulum and in
1725 had produced a pendulum with a small jar of mercury attached to the bob which
was supposed to counteract the expansion of the rod caused by a rise in temperature.

30 Ibid., pp. 42, 43; Graham and Tompion are the only two horologists buried in
Westminster Abbey.
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Board of Longitude. He had also offered to loan Harrison the money to
build it with, and would not listen to any talk about interest or security
of any kind. Harrison went home to Barrow and spent the next seven
years building his first marine timekeeper, his “Number One,” as it was
later called.

In addition to heat and cold, the archenemies of all watchmakers, he
concentrated on eliminating friction, or cutting it down to a bare mini-
mum, on every moving part, and devised many ingenious ways of doing
it; some of them radical departures from accepted watchmaking practice.
Instead of using a pendulum, which would be impractical at sea, Harrison
designed two huge balances weighing about five pounds each, that were
connected by wires running over brass arcs so that their motions were
always opposed. Thus any effect on one produced by the motion of the
ship would be counteracted by the other. The “grasshopper” escapement
was modified and simplified and two mainsprings on separate drums were
installed. The clock was finished in 1735.

There was nothing beautiful or graceful about Harrison’s Number One.
It weighed seventy-two pounds and looked like nothing but an awkward,
unwieldly piece of machinery. However, everyone who saw it and studied
its mechanism declared it a masterpiece of ingenuity, and its performance
certainly belied its appearance. Harrison mounted its case in gimbals and
for a while tested it unofficially on a barge in the Humber River. Then he
took it to London where he enjoyed his first brief triumph. Five members
of the Royal Society examined the clock, studied its mechanism and then
presented Harrison with a certificate stating that the principles of this
timekeeper promised a sufficient degree of accuracy to meet the require-
ments set forth in the Act of Queen Anne. This historic document, which
opened for Harrison the door to the Board of Longitude, was signed by
Halley, Smith, Bradley, Machin and Graham.

On the strength of the certificate, Harrison applied to the Board of
Longitude for a trial at sea, and in 1736 he was sent to Lisbon in H.M.S.
Centurion, Captain Proctor. In his possession was a note from Sir Charles
Wager, First Lord of the Admiralty, asking Proctor to see that every
courtesy be given the bearer, who was said by those who knew him best
to be “a very ingenious and sober man.” Harrison was given the run of
the ship, and his timekeeper was placed in the Captain’s cabin where he
could make observations and wind his clock without interruption. Proctor
was courteous but skeptical. “The difficulty of measuring Time truly,” he
wrote, “where so many unequal Shocks and Motions stand in Opposition
to it, gives me concern for the honest Man, and makes me feel he has
attempted Impossibilities.” 51

No record of the clock’s going on the outward voyage is known, but

51 1bid., pp. 45-46.
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after the return trip, made in H.M.S. Orford, Robert Man, Harrison was
given a certificate signed by the master (that is, navigator) stating: “When
we made the land, the said land, according to my reckoning (and others),
ought to have been the Start; but before we knew what land it was, John
Harrison declared to me and the rest of the ship’s company, that accord-
ing to his observations with his machine, it ought to be the Lizard—the
which, indeed, it was found to be, his observation showing the ship to be
more west than my reckoning, above one degree and twenty-six miles.”
It was an impressive report in spite of its simplicity, and yet the voyage
to Lisbon and return was made in practically a north and south direction;
one that would hardly demonstrate the best qualities of the clock in the
most dramatic fashion. It should be noted, however, that even on this
well-worn trade route it was not considered a scandal that the ship’s
navigator should make an error of 90 miles in his landfall.

On June 30, 1737, Harrison made his first bow to the mighty Board of
Longitude. According to the official minutes, “Mr. John Harrison pro-
duced a new invented machine, in the nature of clockwork, whereby he
proposes to keep time at sea with more exactness than by any other instru-
ment or method hitherto contrived . . . and proposes to make another
machine of smaller dimensions within the space of two years, whereby he
will endeavour to correct some defects which he hath found in that already
prepared, so as to render the same more perfect . . ." The Board voted
him £500 to help defray expenses, one half to be paid at once and the
other half when he completed the second clock and delivered same into
the hands of one of His Majesty’s ship’s captains.52

Harrison’s Number Two contained several minor mechanical improve-
ments and this time all the wheels were made of brass instead of wood.
In some respects it was even more cumbersome than Number One, and it
weighed one hundred and three pounds. Its case and gimbal suspension
weighed another sixty-two pounds. Number Two was finished in 1739, but
instead of turning it over to a sea captain appointed by the Board to
receive it, Harrison tested it for nearly two years under conditions of
“great heat and motion.” Number Two was never sent to sea because
by the time it was ready, England was at war with Spain and the Ad-
miralty had no desire to give the Spaniards an opportunity to capture it.

In January, 1741, Harrison wrote the Board that he had begun work on
a third clock which promised to be far superior to the first two. They
voted him another £500. Harrison struggled with it for several months,
but seems to have miscalculated the “moment of inertia” of its balances.
He thought he could get it going by the first of August, 1741, and have it
ready for a sea trial two years later. But after five years the Board learned
“that it does not go well, at present, as he expected it would, yet he plainly

52 Ibid., p. 47.
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perceived the Cause of its present Imperfection to lye in a certain part
[the balances] which, being of a different form from the corresponding
part in the other machines, had never been tried before.” Harrison had
made a few improvements in the parts of Number Three and had incor-
porated in it the same antifriction devices he had used on Number Two,
but the clock was still bulky and its parts were far from delicate; the
machine weighed sixty-six pounds and its case and gimbals another thirty-
five.58

Harrison was again feeling the pinch, even though the Board had given
him several advances to keep him going, for in 1746, when he reported on
Number Three, he laid before the Board an impressive testimonial signed
by twelve members of the Royal Society including the President, Martin
Folkes, Bradley, Graham, Halley and Cavendish, attesting the importance
and practical value of his inventions in the solution of the longitude
problem. Presumably this gesture was made to insure the financial support
of the Board of Longitude. However, the Board needed no prodding.
Three years later, acting on its own volition, the Royal Society awarded
Harrison the Copley medal, the highest honor it could bestow. His mod-
esty, perseverance and skill made them forget, at least for a time, the total
lack of academic background which was so highly revered by that august
body.5¢

Convinced that Number Three would never satisfy him, Harrison pro-
posed to start work on two more timekeepers, even before Number Three
was given a trial at sea. One would be pocketsize and the other slightly
larger. The Board approved the project and Harrison went ahead. Aban-
doning the idea of a pocketsize chronometer, Harrison decided to concen-
trate his efforts on a slightly larger clock, which could be adapted to the
intricate mechanism he had designed without sacrificing accuracy. In 1757
he began work on Number Four, a machine which “by reason alike of its
beauty, its accuracy, and its historical interest, must take pride of place
as the most famous chronometer that ever has been or ever will be made.”
It was finished in 1759.58

Number Four resembled an enormous “pair-case” watch about five
inches in diameter, complete with pendant, as though it were to be worn.
The dial was white enamel with an ornamental design in black. The hour
and minute hands were of blued steel and the second hand was polished.
Instead of a gimbal suspension, which Harrison had come to distrust, he
used only a soft cushion in a plain box to support the clock. An adjustable

N“ ;ba‘d.. pp. 47-49, for details of the technical improvements made in No. 2 and
o. 3.

54 Ibid., p. 49. Some years later he was offered the honor of Fellow of the Royal
Society, but he declined it in favor of his son William.

55 Ibid., pp. 50, 53; for a full description of No. 4 see H. M. Frodsham in the
Horological Journal for May, 1878—with drawings of the escapement, train and
remontoire taken from the duplicate of No. 4 made by Larcum Kendall.
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outer box was fitted with a divided arc so that the timekeeper could be
kept in the same position (with the pendant always slightly above the
horizontal) regardless of the lie of the ship. When it was finished, Number
Four was not adjusted for more than this one position, and on its first
voyage it had to be carefully tended. The watch beat five to the second
and ran for thirty hours without rewinding. The pivot holes were jeweled
to the third wheel with rubies and the end stones were diamonds. En-
graved in the top-plate were the words “John Harrison & Son, A.p. 1759.”
Cunningly concealed from prying eyes beneath the plate was a mechanism
such as the world had never seen; every pinion and bearing, each spring
and wheel was the end product of careful planning, precise measurement
and exquisite craftsmanship. Into the mechanism had gone “fifty years of
self-denial, unremitting toil, and ceaseless concentration.” To Harrison,
whose singleness of purpose had made it possible for him to achieve the
impossible, Number Four was a satisfactory climax to a lifetime of effort.
He was proud of this timekeeper, and in a rare burst of eloquence he
wrote, “I think I may make bold to say, that there is neither any other
Mechanical or Mathematical thing in the World that is more beautiful
or curious in texture than this my watch or Time-keeper for the Longitude

. and I heartily thank Almighty God that I have lived so long, as in
some measure to complete it.” 56

After checking and adjusting Number Four with his pendulum clock
for nearly two years, Harrison reported to the Board of Longitude, in
March 1761, that Number Four was as good as Number Three and that
its performance greatly exceeded his expectations. He asked for a trial at
sea. His request was granted, and in April, 1761, William Harrison, his
son and right-hand man, took Number Three to Portsmouth. The father
arrived a short time later with Number Four. There were numerous delays
at Portsmouth, and it was October before passage was finally arranged
for young Harrison aboard H.M.S. Deptford, Dudley Digges, bound for
Jamaica. John Harrison, who was then sixty-eight years old, decided not
to attempt the long sea voyage himself; and he also decided to stake
everything on the performance of Number Four, instead of sending both
Three and Four along. The Deptford finally sailed from Spithead with a
convoy, November 18, 1761, after first touching at Portland and
Plymouth. The sea trial was on.

Number Four had been placed in a case with four locks, and the four
keys were given to William Harrison, Governor Lyttleton of Jamaica,
who was taking passage on the Deptford, Captain Digges, and his first
lieutenant. All four had to be present in order to open the case, even for
winding. The Board of Longitude had further arranged to have the longi-
tude of Jamaica determined de novo before the trial, by a series of obser-

58 Ibid., p. 63.
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vations of the satellites of Jupiter, but because of the lateness of the
season it was decided to accept the best previously established reckoning.
Local time at Portsmouth and at Jamaica was to be determined by taking
equal altitudes of the sun, and the difference compared with the time
indicated by Harrison’s timekeeper.

As usual, the first scheduled port of call on the run to Jamaica was
Madeira. On this particular voyage, all hands aboard the Deptford were
anxious to make the island on the first approach. To William Harrison
it meant the first crucial test of Number Four; to Captain Digges it
meant a test of his dead reckoning against a mechanical device in which
he had no confidence; but the ship’s company had more than a scientific
interest in the proceedings. They were afraid of missing Madeira alto-
gether, “the consequence of which, would have been Inconvenient.” To
the horror of all hands, it was found that the beer had spoiled, over a
thousand gallons of it, and the people had already been reduced to drink-
ing water. Nine days out from Plymouth the ship’s longitude, by dead
reckoning, was 13° 50’ west of Greenwich, but according to Number Four
and William Harrison it was 15° 19 W. Captain Digges naturally favored
his dead reckoning calculations, but Harrison stoutly maintained that
Number Four was right and that if Madeira were properly marked on the
chart they would sight it the next day. Although Digges offered to bet
Harrison five to one that he was wrong, he held his course, and the follow-
ing morning at 6 A.M. the lookout sighted Porto Santo, the northeastern
island of the Madeira group, dead ahead.

The Deptford’s officers were greatly impressed by Harrison’s uncanny
predictions throughout the voyage. They were even more impressed when
they arrived at Jamaica three days before H.M.S. Beaver, which had
sailed for Jamaica ten days before them. Number Four was promptly
taken ashore and checked. After allowing for its rate of going (2% sec-
onds per day losing at Portsmouth), it was found to be 5 seconds slow,
an error in longitude of 1%’ only, or 1% nautical miles.57

The official trial ended at Jamaica. Arrangements were made for Wil-
liam Harrison to make the return voyage in the Merlin, sloop, and in a
burst of enthusiasm Captain Digges placed his order for the first Harrison-
built chronometer which should be offered for sale. The passage back to
England was a severe test for Number Four. The weather was extremely
rough and the timekeeper, still carefully tended by Harrison, had to be
moved to the poop, the only dry place on the ship, where it was pounded
unmercifully and “received a number of violent shocks.” However, when
it was again checked at Portsmouth, its total error for the five months’
voyage, through heat and cold, fair weather and foul (after allowing for
its rate of going), was only 1™ 53%s#, or an error in longitude of 28%’

57 Ibid., pp. 55-56 and 56 n.
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(28% nautical miles). This was safely within the limit of half a degree
specified in the Act of Queen Anne. John Harrison and son had won the
fabulous reward of £20,000.

The sea trial had ended, but the trials of John Harrison had just begun.
Now for the first time, at the age of sixty-nine, Harrison began to feel the
lack of an academic background. He was a simple man; he did not know
the language of diplomacy, the gentle art of innuendo and evasion. He
had mastered the longitude but he did not know how to cope with the
Royal Society or the Board of Longitude. He had won the reward and
all he wanted now was his money. The money was not immediately
forthcoming.

Neither the Board of Longitude nor the scientists who served it as
consultants were at any time guilty of dishonesty in their dealings with
Harrison; they were only human. £20,000 was a tremendous fortune, and
it was one thing to dole out living expenses to a watchmaker in amounts
not exceeding £500 so that he might contribute something or other to the
general cause. But it was another thing to hand over £20,000 in a lump
sum to one man, and a man of humble birth at that. It was most extraor-
dinary. Moreover, there were men on the Board and members of the
Royal Society who had designs on the reward themselves or at least a cut
of it. James Bradley and Johann Tobias Mayer had both worked long and
hard on the compilation of accurate lunar tables. Mayer's widow was
paid £3000 for his contribution to the cause of longitude, and in 1761
Bradley told Harrison that he and Mayer would have shared £10,000 of
the prize money between them if it had not been for his blasted watch.
Halley had struggled long and manfully on the solution of the longitude
by compass variation, and was not in a position to ignore any part of
£20,000. The Reverend Nevil Maskelyne, Astronomer Royal, and com-
piler of the Nautical Almanac, was an obstinate and uncompromising
apostle of “lunar distances” or “lunars” for finding the longitude, and had
closed his mind to any other method whatsoever. He loved neither Harri-
son nor his watch. In view of these and other unnamed aspirants, it was
inevitable that the Board should decide that the amazing performance of
Harrison’s timekeeper was a fluke. They had never been allowed to exam-
ine the mechanism, and they pointed out that if a gross of watches were
carried to Jamaica under the same conditions, one out of the lot might
perform equally well—at least for one trip. They accordingly refused to
give Harrison a certificate stating that he had met the requirements of
the Act until his timekeeper was given a further trial, or trials. Meanwhile,
they did agree to give him the sum of £2500 as an interim reward, since
his machine had proved to be a rather useful contraption, though myste-
rious beyond words. An Act of Parliament (February, 1763) enabling
him to receive £5000 as soon as he disclosed the secret of his invention,
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was completely nullified by the absurdly rigid conditions set up by the
Board. He was finally granted a new trial at sea.58

The rules laid down for the new trial were elaborate and exacting. The
difference in longitude between Portsmouth and Jamaica was to be deter-
mined de novo by observations of Jupiter's satellites. Number Four was
to be rated at Greenwich before sailing, but Harrison balked, saying “that
he did not chuse to part with it out of his hands till he shall have reaped
some advantage from it.” However, he agreed to send his own rating,
sealed, to the Secretary of the Admiralty before the trial began. After
endless delays the trial was arranged to take place between Portsmouth
and Barbados, instead of Jamaica, and William Harrison embarked on
February 14, 1764, in H.M.S. Tartar, Sir John Lindsay, at the Nore. The
Tartar proceeded to Portsmouth, where Harrison checked the rate of
Number Four with a regulator installed there in a temporary observatory.
On March 28, 1764, the Tartar sailed from Portsmouth and the second
trial was on.

It was the same story all over again. On April 18, twenty-one days out,
Harrison took two altitudes of the sun and announced to Sir John that
they were forty-three miles east of Porto Santo. Sir John accordingly
steered a direct course for it, and at one o'clock the next morning the
island was sighted, “which exactly agreed with the Distance mentioned
above.” They arrived at Barbados May 13, “Mr. Harrison all along in the
Voyage declaring how far he was distant from that Island, according to
the best settled longitude thereof. The Day before they made it, he de-
clared the Distance: and Sir John sailed in Consequence of this Declara-
tion, till Eleven at Night, which proving dark he thought proper to lay
by. Mr. Harrison then declaring they were no more than eight or nine
Miles from the Land, which accordingly at Day Break they saw from that
Distance.” 59

When Harrison went ashore with Number Four he discovered that none
other than Maskelyne and an assistant, Green, had been sent ahead to
check the longitude of Barbados by observing Jupiter’s satellites. More-
over, Maskelyne had been orating loudly on the superiority of his own
method of finding longitude, namely, by lunar distances. When Harrison
heard what had been going on he objected strenuously, pointing out to
Sir John that Maskelyne was not only an interested party but an active
and avid competitor, and should not have anything to do with the trials.
A compromise was arranged, but, as it turned out, Maskelyne was sud-
denly indisposed and unable to make the observations.

58 Ibid., pp. 57 ff. On August 17, 1762, the Board refused to give Harrison a certifi-
cate stating that he had complied with the terms set forth in the Act of Queen Anne.

59 Ibid., p. 59; see also A narrative of the proceedings relative to the discovery of

the longitude at sea; by Mr. John Harrison's time-keeper . . . [By James Short]
London: printed for the author, 1765, pp. 7, 8.
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After comparing the data obtained by observation with Harrison’s
chronometer, Number Four showed an error of 38.4 seconds over a
period of seven weeks, or 9.6 miles of longitude (at the equator) between
Portsmouth and Barbados. And when the clock was again checked at
Portsmouth, after 156 days, elapsed time, it showed, after allowing for its
rate of going, a total gain of only 54 seconds of time. If further allowance
were made for changes of rate caused by variations in temperature, infor-
mation posted beforehand by Harrison, the rate of Number Four would
have been reduced to an error of 15 seconds of loss in 5 months, or less
than %o of a second a day.8?

The evidence in favor of Harrison’s chronometer was overwhelming,
and could no longer be ignored or set aside. But the Board of Longitude
was not through. In a Resolution of February 9, 1765, they were unani-
mously of the opinion that “the said timekeeper has kept its time with
sufficient correctness, without losing its longitude in the voyage from
Portsmouth to Barbados beyond the nearest limit required by the Act
12th of Queen Anne, but even considerably within the same.” Now, they
said, all Harrison had to do was demonstrate the mechanism of his clock
and explain the construction of it, “by Means whereof other such Time-
keepers might be framed, of sufficient Correctness to find the Longitude
at Sea. . . .” In order to get the first £10,000 Harrison had to submit,
on oath, complete working drawings of Number Four; explain and dem-
onstrate the operation of each part, including the process of tempering
the springs; and finally, hand over to the Board his first three timekeepers
as well as Number Four.®!

Any foreigner would have acknowledged defeat at this juncture, but
not Harrison, who was an Englishman and a Yorkshireman to boot. “I
cannot help thinking,” he wrote the Board, after hearing their harsh
terms, “but I am extremely ill used by gentlemen who I might have
expected different treatment from. . . . It must be owned that my case
is very hard, but I hope I am the first, and for my country’s sake, shall
be the last that suffers by pinning my faith on an English Act of Parlia-
ment.” The case of “Longitude Harrison” began to be aired publicly, and
several of his friends launched an impromptu publicity campaign against
the Board and against Parliament. The Board finally softened their terms
and Harrison reluctantly took his clock apart at his home for the edifica-
tion of a committee of six, nominated by the Board; three of them,
Thomas Mudge, William Matthews and Larcum Kendall, were watch-
makers. Harrison then received a certificate from the Board (October 28,
1765) entitling him to £7500, or the balance due him on the first half of
the reward. The second half did not come so easily.

80 R. T. Gould, op. cir., pp. 59, 60.
61 Ibid., pp. 60 ff.; Act of Parliament 5 George III, Cap. 20; see also James Short.
op. cit., p. 15.
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Number Four was now in the hands of the Board of Longitude, held in
trust for the benefit of the people of England. As such, it was carefully
guarded against prying eyes and tampering, even by members of the Board.
However, that learned body did its humble best. First they set out to publi-
cize its mechanism as widely as possible. Unable to take the thing apart
themselves, they had to depend on Harrison’s own drawings, and these were
redrawn and carefully engraved. What was supposed to be a full textual
description was written by the Reverend Nevil Maskelyne and printed in
book form with illustrations appended: The Principles of Mr. Harrison’s
Time-Keeper, with Plates of the Same. London, 1767. Actually the book
was harmless enough, because no human being could have even begun to
reproduce the clock from Maskelyne's description. To Harrison it was
just another bitter pill to swallow. “They have since published all my
Drawings,” he wrote, “without giving me the last Moiety of the Reward,
or even paying me and my Son for our Time at a rate as common
Mechanicks; an Instance of such Cruelty and Injustice as I believe never
existed in a learned and civilised Nation before.” Other galling experiences
followed.52

With great pomp and ceremony Number Four was carried to the Royal
Observatory at Greenwich. There it was scheduled to undergo a prolonged
and exhaustive series of trials under the direction of the Astronomer
Royal, the Reverend Nevil Maskelyne. It cannot be said that Maskelyne
shirked his duty, although he was handicapped by the fact that the time-
keeper was always kept locked in its case, and he could not even wind it
except in the presence of an officer detailed by the Governor of Green-
wich to witness the performance. Number Four, after all, was a £10,000
timekeeper. The tests went on for two months. Maskelyne tried the watch
in various positions for which it was not adjusted, dial up and dial down.
Then for ten months it was tested in a horizontal position, dial up. The
Board published a full account of the results with a preface written by
Maskelyne, in which he gave it as his studied opinion “That Mr. Harri-
son’s Watch cannot be depended upon to keep the Longitude within a
Degree, in a West-India Voyage of six weeks, nor to keep the Longitude
within Half a Degree for more than a Fortnight, and then it must be kept
in a Place where the Thermometer is always some Degrees above freez-
ing.” (There was still £10,000 prize money outstanding.)%®

The Board of Longitude next commissioned Larcum Kendall, watch-
maker, to make a duplicate of Number Four. They also advised Harrison
that he must make Number Five and Number Six and have them tried at

82 R. T. Gould, op. cit., pp. 61-62; 62 »; the unauthorized publication of Harrison’s
drawings with a preface by the Reverend Maskelyne, appeared under the title: The
principles of Mr. Harrison’s time-keeper, with plates of the same, London, 1767,

83 R. T. Gould, op. cit., p. 63; see also Nevil Maskelyne's An account of the going
of Mr. John Harrison’s watch . . . London, 1767.
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sea, intimating that otherwise he would not be entitled to the other haif
of the reward. When Harrison asked if he might use Number Four for
a short time to help him build two copies of it, he was told that Kendall
needed it to work from and that it would be impossible. Harrison did the
best he could, while the Board laid plans for an exhaustive series of tests
for Number Five and Number Six. They spoke of sending them to Hud-
son’s Bay and of letting them toss and pitch in the Downs for a month or
two as well as sending them out to the West Indies.

After three years (1767-1770) Number Five was finished. In 1771,
just as the Harrisons were finishing the last adjustments on the clock, they
heard that Captain Cook was preparing for a second exploring cruise, and
that the Board was planning to send Kendall's duplicate of Number Four
along with him. Harrison pleaded with them to send Number Four and
Number Five instead, telling them he was willing to stake his claim to the
balance of the reward on their performance, or to submit “to any mode
of trial, by men not already proved partial, which shall be definite in its
nature.” The man was now more than ever anxious to settle the business
once and for all. But it was not so to be. He was told that the Board did
not see fit to send Number Four out of the kingdom, nor did they see any
reason for departing from the manner of trial already decided upon.

John Harrison was now seventy-eight years old. His eyes were failing
and his skilled hands were not as steady as they were, but his heart was
strong and there was still a lot of fight left in him. Among his powerful
friends and admirers was His Majesty King George the Third, who had
granted Harrison and his son an audience after the historic voyage of
the Tartar. Harrison now sought the protection of his king, and “Farmer
George,” after hearing the case from start to finish, lost his patience. “By
God, Harrison, I'll see you righted,” he roared. And he did. Number Five
was tried at His Majesty’s private observatory at Kew. The king attended
the daily checking of the clock’s performance, and had the pleasure of
watching the operation of a timekeeper whose total error over a ten week's
period was 4% seconds.®4

Harrison submitted a memorial to the Board of Longitude, November
28, 1772, describing in detail the circumstances and results of the trial
at Kew. In return, the Board passed a resolution to the effect that they
were not the slightest bit interested; that they saw no reason to alter the
manner of trial they had already proposed and that no regard would be
paid for a trial made under any other conditions. In desperation Harrison
decided to play his last card—the king. Backed by His Majesty’s personal
interest in the proceedings, Harrison presented a petition to the House
of Commons with weight behind it. It was heralded as follows: “The Lord
North, by His Majesty's Command, acquainted the House that His Maj-

¢4 R. T. Gould, op. cit., pp. 64-65.
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esty, having been informed of the Contents of the said Petition, recom-
mended it to the Consideration of the House.” Fox was present to give
the petition his full support, and the king was willing, if necessary, to
appear at the Bar of the House under an inferior title and testify in
Harrison’s behalf. At the same time, Harrison circulated a broadside, The
Case of Mr. John Harrison, stating his claims to the second half of the
reward.®5

The Board of Longitude began to squirm. Public indignation was
mounting rapidly and the Speaker of the House informed the Board that
consideration of the petition would be deferred until they had an oppor-
tunity to revise their proceedings in regard to Mr. Harrison. Seven
Admiralty clerks were put to work copying out all the Board’s resolutions
concerning Harrison. While they worked day and night to finish the job,
the Board made one last desperate effort. They summoned William Harri-
son to appear before them; but the hour was late. They put him through
a catechism and tried to make him consent to new trials and new condi-
tions. Harrison stood fast, refusing to consent to anything they might pro-
pose. Meanwhile a money bill was drawn up by Parliament in record
time; the king gave it the nod and it was passed. The Harrisons had won
their fight.

83 Ibid., p. 66; see also the Journal of the House of Commons, 6. 5. 1772.



COMMENTARY ON

JOHN COUCH ADAMS

HE discovery in 1846 of the planet Neptune was a dramatic and

spectacular achievement of mathematical astronomy. The very exist-
ence of this new member of the solar system, and its exact location, were
demonstrated with pencil and paper; there was left to observers only the
routine task of pointing their telescopes at the spot the mathematicians
had marked. It is easy to understand the enthusiastic appraisal of Sir John
Herschel, who, on the occasion of the presentation of gold medals of the
Royal Astronomical Society to Leverrier and Adams, said that their
codiscovery of Neptune “surpassed by intelligible and legitimate means,
the wildest pretensions of clairvoyance.” 1

As early as about 1820 it had been recognized that irregularities in the
motion of Uranus, deviations of its observed orbit from its calculated
positions, could be accounted for only by an outside disturbing force.
The German astronomer Bessel at that time remarked to Humboldt that
sooner or later the “mystery of Uranus” would “be solved by the discov-
ery of a new planet.” 2 The problem was solved by two astronomers work-
ing entirely independently of each other: Urban Jean Leverrier, director
of the Paris Observatory, and John Couch Adams, a twenty-six-year-old
Fellow of St. John's College in Cambridge. The conquest of this intricate
and incredibly laborious problem of “inverse perturbations”—i.e., given
the perturbations, to find the planet—was an intellectual feat deservedly
acclaimed as “sublime™; but the personal behavior of various participants
in the event falls short of sublimity. The affair was marked by episodes of
confusion and fecklessness, of donnish hairpulling and Gallic backbiting,
of stuffiness, jealousy and general academic blight. Sir Harold Spencer
Jones gives a balanced account; as the present Astronomer Royal he is
understandably charitable to Sir George Airy, the Astronomer Royal in
Adams’ day, who almost succeeded—more or less innocently—in doing
Adams out of proper recognition for his work.

I add a few biographical details about Adams not covered in Jones’
lecture. While the discovery of Neptune was his most sensational achieve-
ment, it came at the beginning of a long and distinguished service to
astronomy and mathematics. Adams succeeded George Peacock, the noted
algebraist, as professor of astronomy and geometry at Cambridge. This
post, as well as a fellowship in mathematics at Pembroke College, he held
until his death. His researches are represented by important memoirs on

! Nature, Vol. XXXIV, p. 565.

2 Giorgio Abetti, The History of Astronomy, 1952, New York, p. 214.
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lunar motion, on the effect of planetary perturbations on the orbits and
periods of certain meteors, on various problems of pure mathematics.
Adams was a stylish craftsman in his mathematical work; even the exami-
nation questions he set in prize competitions were admired for their
finish. Like Euler and Gauss, he found pleasure in undertaking immense
numerical calculations, which he carried out with consummate accuracy.
But he was not chained to his specialty. He read widely in history,
biology, geology and general literature; he took a deep interest in political
questions. During the Franco-Prussian war, he was so moved “that he
could scarcely work or sleep.” * Adams was a shy, gentle and unaffected
man. He refused knighthood in 1847, just as he had refused to be drawn
into the bitter controversy over the question of who was first to discover
Neptune. The honor was tendered in a foolish attempt to settle a foolish
question. The entire business was beneath Adams. “He uttered no com-
plaint; he laid no claim to priority; Leverrier had no warmer admirer.” 4
He died after a long illness on January 21, 1892.5

3J. W. L. Glaisher, biographical mecmoir in The Scientific Papers of John Couch
Adams, ed. by William Grylls Adams, Cambridge, 1896, p. XLIV.
, ‘1 g‘he Dictionary of National Biography; Vol. XXII, Supplement, article on Adams,

5 For further information on the Adams-Airy affair see J. E. Littlewood, A4
Mathematician’s Miscellany, London, 1953, pp. 116-134.



There are seven windows in the head, two nostrils, two eyes, two ears, and
a mouth; so in the heavens there are two favorable stars, two unpropitious,
two luminaries, and Mercury alone undecided and indifferent. From which
and many other similar phenomena of nature, such as the seven metals,
etc., which it were tedious to enumerate, we gather that the number of
planets is necessarily seven—FRANCESCO S1zZ1 (argument against Galileo™s

discovery of the satellites of Jupiter)

4 John Couch Adams and the
Discovery of Neptune

By SIR HAROLD SPENCER JONES

ON the night of 13 March 1781 William Herschel, musician by profes-
sion but assiduous observer of the heavens in his leisure time, made a
discovery that was to bring him fame. He had for some time been
engaged upon a systematic and detailed survey of the whole heavens,
using a 7 in. telescope of his own construction; he carefully noted every-
thing that appeared in any way remarkable. On the night in question, in
his own words:

‘In examining the small stars in the neighbourhood of H Geminorum
I perceived one that appeared visibly larger than the rest; being struck
with its uncommon appearance I compared it to H Geminorum and the
small star in the quartile between Auriga and Gemini, and finding it so
much larger than either of them, I suspected it to be a comet.’

Most observers would have passed the object by without noticing any-
thing unusual about it, for the minute disk was only about 4 sec. in
diameter. The discovery was made possible by the excellent quality of
Herschel’s telescope, and by the great care with which his observations
were made.

The discovery proved to be of greater importance than Herschel sus-
pected, for the object he had found was not a comet, but a new planet,
which revolved round the Sun in a nearly circular path at a mean distance
almost exactly double that of Saturn; it was unique, because no planet
had ever before been discovered; the known planets, easily visible to the
naked eye, did not need to be discovered.

After the discovery of Uranus, as the new planet was called, it was
ascertained that it had been observed as a star and its position recorded
on a score of previous occasions. The earliest of these observations was
made by Flamsteed at Greenwich in 1690. Lemonnier in 1769 had ob-
served its transit six times in the course of 9 days and, had he compared
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the observations with one another, he could not have failed to anticipate
Herschel in the discovery. As Uranus takes 84 years to make a complete
revolution round the Sun, these earlier observations were of special value
for the investigation of its orbit.

The positions of the planet computed from tables constructed by
Delambre soon began to show discordances with observation, which be-
came greater as time went on. As there might have been error or incom-
pleteness in Delambre’s theory and tables, the task of revision was
undertaken by Bouvard, whose tables of the planet appeared in 1821.
Bouvard found that, when every correction for the perturbations in the
motion of Uranus by the other planets was taken into account, it was not
possible to reconcile the old observations of Flamsteed, Lemonnier,
Bradley, and Mayer with the observations made subsequently to the dis-
covery of the planet in 1781.

‘The construction of the tables, then,’ said Bouvard, ‘involves this
alternative: if we combine the ancient observations with the modern,
the former will be sufficiently well represented, but the latter will not be
so, with all the precision which their superior accuracy demands; on the
other hand, if we reject the ancient observations altogether, and retain
only the modern, the resulting tables will faithfully conform to the mod-
ern observations, but will very inadequately represent the more ancient.
As it was necessary to decide between these two courses, I have adopted
the latter, on the ground that it unites the greatest number of probabilities
in favour of the truth, and I leave to the future the task of discovering
whether the difficulty of reconciling the two systems is connected with
the ancient observations, or whether it depends on some foreign and
unperceived cause which may have been acting upon the planet.’

Further observations of Uranus were for a time found to be pretty well
represented by Bouvard’s Tables, but systematic discordances between
observations and the tables gradually began to show up. As time went
on, observations continued to deviate more and more from the tables. It
began to be suspected that there might exist an unknown distant planet,
whose gravitational attraction was disturbing the motion of Uranus. An
alternative suggestion was that the inverse square law of gravitation might
not be exact at distances as great as the distance of Uranus from the Sun.

The problem of computing the perturbations in the motion of one
planet by another moving planet, when the undisturbed orbits and the
masses of the planets are known is fairly straightforward, though of some
mathematical complexity. The inverse problem, of analysing the pertur-
bations in the motion of one planet in order to deduce the position, path
and mass of the planet which is producing these perturbations, is of much
greater complexity and difficulty. A little consideration will, I think, show
that this must be so. If a planet were exposed solely to the attractive
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influence of the Sun, its orbit would be an ellipse. The attractions of the
other planets perturb its motion and cause it to deviate now on the one
side and now on the other side of this ellipse. To determine the elements
of the elliptic orbit from the positions of the planet as assigned by obser-
vation, it is necessary first to compute the perturbations produced by the
other planets and to subtract them from the observed positions.

The position of the planet in this orbit at any time, arising from its
undisturbed motion, can be calculated; if the perturbations of the other
planets are then computed and added, the true position of the planet is
obtained. The whole procedure is, in practice, reduced to a set of tables.
But if Uranus is perturbed by a distant unknown planet, the observed
positions when corrected by the subtraction of the perturbations caused by
the known planets are not the positions in the true elliptic orbit; the
perturbations of the unknown planet have not been allowed for. Hence
when the corrected positions are analysed in order to determine the ele-
ments of the elliptic orbit, the derived elements will be falsified. The
positions of Uranus computed from tables such as Bouvard's would be in
error for two reasons; in the first place, because they are based upon
incorrect elements of the elliptic orbit; in the second place, because the
perturbations produced by the unknown planet have not been applied.
The two causes of error have a common origin and are inextricably
entangled in each other, so that neither can be investigated independ-
ently of the other. Thus though many astronomers thought it probable
that Uranus was perturbed by an undiscovered planet, they could not
prove it. No occasion had arisen for the solution of the extremely com-
plicated problem of what is termed inverse perturbations, starting with
the perturbed positions and deducing from them the position and motion
of the perturbing body.

The first solution of this intricate problem was made by a young Cam-
bridge mathematician, John Couch Adams. As a boy at school Adams
had shown conspicuous mathematical ability, an interest in astronomy,
and skill and accuracy in numerical computation. At the age of 16 he had
computed the circumstances of an annular eclipse of the Sun, as visible
from Lidcot, near Launceston, where his brother lived. He entered St
John's College in October, 1839, at the age of 20, and in 1843 graduated
Senior Wrangler, being reputed to have obtained more than double the
marks awarded to the Second Wrangler. In the same year he became first
Smith’s Prizeman and was elected Fellow of his College.

Whilst still an undergraduate his attention had been drawn to the
irregularities in the motion of Uranus. After his death there was found
among his papers this memorandum, written at the beginning of his
second long vacation:
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‘1841, July 3. Formed a design in the beginning of this week, of
investigating, as soon as possible after taking my degree, the irregularities
in the motion of Uranus, which are yet unaccounted for; in order to find
whether they may be attributed to the action of an undiscovered planet
beyond it; and if possible thence to determine the elements of its orbit,
etc. approximately, which would probably lead to its discovery.’

As soon as Adams had taken his degree he attempted a first rough
solution of the problem, with the simplifying assumptions that the un-
known planet moved in a circular orbit, in the plane of the orbit of
Uranus, and that its distance from the Sun was twice the mean distance
of Uranus, this being the distance to be expected according to the empiri-
cal law of Bode. This preliminary solution gave a sufficient improvement
in the agreement between the corrected theory of Uranus and observation
to encourage him to pursue the investigation further. In order to make
the observational data more complete application was made in February
1844 by Challis, the Plumian Professor of Astronomy, to Airy, the
Astronomer Royal, for the errors of longitude of Uranus for the years
1818-26. Challis explained that he required them for a young friend,
Mr Adams of St John's College, who was working at the theory of
Uranus. By return of post, Airy sent the Greenwich data not merely for
the years 1818-26 but for the years 1754-1830.

Adams now undertook a new solution of the problem, still with the
assumption that the mean distance of the unknown planet was twice that
of Uranus but without assuming the orbit to be circular. During term-
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time he had little opportunity to pursue his investigations and most of
the work was undertaken in the vacations. By September 1845, he had
completed the solution of the problem, and gave to Challis a paper with
the elements of the orbit of the planet, as well as its mass and its position
for 1 October 1845. The position indicated by Adams was actually within
2° of the position of Neptune at that time. A careful search in the vicinity
of this position should have led to the discovery of Neptune. The com-
parison between observation and theory was satisfactory and Adams,
confident in the validity of the law of gravitation and in his own mathe-
matics, referred to the ‘new planet’.

Challis gave Adams a letter of introduction to Airy, in which he said
that ‘from his character as a mathematician, and his practice in calcula-
tion, I should consider the deductions from his premises to be made in a
trustworthy manner’. But the Astronomer Royal was in France when
Adams called at Greenwich. Airy, immediately on his return, wrote to
Challis saying: ‘would you mention to Mr Adams that I am very much
interested with the subject of his investigations, and that I should be
delighted to hear of them by letter from him?’

Towards the end of October Adams called at Greenwich, on his way
from Devonshire to Cambridge, on the chance of seeing the Astronomer
Royal. At about that time Airy was occupied almost every day with
meetings of the Railway Gauge Commission and he was in London when
Adams called. Adams left his card and said that he would call again.
The card was taken to Mrs Airy, but she was not told of the intention
of Adams to call later. When Adams made his second call, he was
informed that the Astronomer Royal was at dinner; there was no message
for him and he went away feeling mortified. Airy, unfortunately, did not
know of this second visit at the time. Adams left a paper summarizing
the results which he had obtained and giving a list of the residual errors
of the mean longitude of Uranus, after taking account of the disturbing
action of the new planet. These errors were satisfactorily small, except for
the first observation by Flamsteed in 1690. A few days later Airy wrote
to Adams acknowledging the paper and enquiring whether the perturba-
tions would explain the errors of the radius vector of Uranus as well as
the errors of longitude; in the reduction of the Greenwich observations,
Airy had shown that not only the longitude of Uranus but also its distance
from the Sun (called the radius vector) showed discordances from the
tabular values. Airy said at a later date that he waited with much anxiety
for the answer to this query, which he looked upon as an experimentum
crucis, and that if Adams had replied in the affirmative, he would at once
have exerted all his influence to procure the publication of Adams’s
theory. It should be emphasized that neither Challis nor Airy knew any-
thing about the details of Adams’s investigation. Adams had attacked this
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difficult problem entirely unaided and without guidance. Confident in his
own mathematical ability he sought no help and he needed no help.
Adams never replied to the Astronomer Royal’s query; but for this
failure to reply, he would almost certainly have had the sole glory of the
discovery of Neptune. Airy and Adams were looking at the same prob-
lem from different points of view; Adams was so convinced that the dis-
cordances between the theory of Uranus and observation were due to the
perturbing action of an unknown planet that no alternative hypothesis was
considered by him; Airy, on the other hand, did not exclude the possi-
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bility that the law of gravitation might not apply exactly at great distances.
The purpose of his query, to which he attached great importance, was
to decide between the two possibilities. As he later wrote to Challis
(21 December 1846):

‘There were two things to be explained, which might have existed each
independently of the other, and of which one could be ascertained inde-
pendently of the other: viz. error of longitude and error of radius vector.
And there is no a priori reason for thinking that a hypothesis which will
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explain the error of longitude will also explain the error of radius vector.
If, after Adams had satisfactorily explained the error of longitude he had
(with the numerical values of the elements of the two planets so found)
converted his formula for perturbation of radius vector into numbers, and
if these numbers had been discordant with the observed numbers of
discordances of radius vector, then the theory would have been false, NoT
from any error of Adams’s BUT from a failure in the law of gravitation.
On this question therefore turned the continuance or fall of the law of
gravitation.’

What were the reasons for Adams’s failure to reply? There were several;
he gave them himself at a later date (18 November 1846) in a letter to
Airy. He wrote as follows:

‘I need scarcely say how deeply I regret the neglect of which I was
guilty in delaying to reply to the question respecting the Radius Vector
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of Uranus, in your note of November 5th, 1845. In palliation, though not
in excuse of this neglect, I may say that I was not aware of the impor-
tance which you attached to my answer on this point and I had not the
smallest notion that you felt any difficulty on it. . . . For several years
past, the observed place of Uranus has been falling more and more rapidly
behind its tabular place. In other words, the real angular motion of
Uranus is considerably slower than that given by the Tables. This ap-
peared to me to show clearly that the Tabular Radius Vector would be
considerably increased by any Theory which represented the motion in
Longitude. . . . Accordingly, I found that if I simply corrected the
elliptic elements, so as to satisfy the modern observations as nearly as
possible without taking into account any additional perturbations, the
corresponding increase in the Radius Vector would not be very different
from that given by my actual Theory. Hence it was that I waited to defer
writing to you till I could find time to draw up an account of the method
employed to obtain the results which I had communicated to you. More
than once I commenced writing with this object, but unfortunately did
not persevere. I was also much pained at not having been able to see you
when I called at the Royal Observatory the second time, as I felt that
the whole matter might be better explained by half an hour's conversation
than by several letters, in writing which I have always experienced a
strange difficulty. I entertained from the first the strongest conviction
that the observed anomalies were due to the action of an exterior planet;
no other hypothesis appeared to me to possess the slightest claims to
attention. Of the accuracy of my calculations I was quite sure, from the
care with which they were made and the number of times I had exam-
ined them. The only point which appeared to admit of any doubt was
the assumption as to the mean distance and this I soon proceeded to
correct. The work however went on very slowly throughout, as I had
scarcely any time to give to these investigations, except during the
vacations.

‘I could not expect, however, that practical astronomers, who were al-
ready fully occupied with important labours, would feel as much confi-
dence in the results of my investigation, as I myself did; and I therefore
had our instruments put in order, with the express purpose, if no one else
took up the subject, of undertaking the search for the planet myself,
with the small means afforded by our observatory at St John's.’

Airy was a man with a precise and orderly mind, extremely methodical
and prompt in answering letters. Another person might have followed
the matter up, but not Airy. In a letter of later date to Challis, he said that
‘Adams’s silence . . . was so far unfortunate that it interposed an effec-
tual barrier to all further communication. It was clearly impossible for
me to write to him again.’
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Meanwhile, another astronomer had turned his attention to the prob-
lem of accounting for the anomalies in the motion of Uranus. In the
summer of 1845 Arago, Director of the Paris Observatory, drew the
attention of his friend and protégé, Le Verrier, to the importance of
investigating the theory of Uranus. Le Verrier was a young man, 8 years
older than Adams, with an established reputation in the astronomical
world, gained by a brilliant series of investigations in celestial mechanics.
In contrast, Adams was unknown outside the circle of his Cambridge
friends and he had not yet published anything.

Le Verrier decided to devote himself to the problem of Uranus and
laid aside some researches on comets, on which he had been engaged. His
investigations received full publicity, for the results were published, as
the work proceeded, in a series of papers in the Comptes Rendus of the
French Academy. In the first of these, communicated in November 1845
(a month after Adams had left his solution of the problem with the
Astronomer Royal), Le Verrier recomputed the perturbations of Uranus
by Jupiter and Saturn, derived new orbital elements for Uranus, and
showed that these perturbations were not capable of explaining the ob-
served irregularities of Uranus. In the next paper, presented in June 1846,
Le Verrier discussed possible explanations of the irregularities and con-
cluded that none was admissible, except that of a disturbing planet exte-
rior to Uranus. Assuming, as Adams had done, that its distance was twice
the distance of Uranus and that its orbit was in the plane of the ecliptic,
he assigned its true longitude for the beginning of 1847; he did not obtain
the elements of its orbit nor determine its mass.

The position assigned by Le Verrier differed by only 1° from the posi-
tion which Adams had given seven months previously. Airy now felt no
doubt about the accuracy of both calculations; he still required to be
satisfied about the error of the radius vector, however, and he accordingly
addressed to Le Verrier the query that he had addressed to Adams, but
this time in a more explicit form. He asked whether the errors of the
tabular radius vector were the consequence of the disturbance produced
by an exterior planet, and explained why, by analogy with the moon’s
variation, this did not seem to him necessarily to be so. Le Verrier replied
a few days later giving an explanation which Airy found completely satis-
factory. The errors of the tabular radius vector, said Le Verrier, were
not produced actually by the disturbing planet; Bouvard's orbit required
correction, because it had been based on positions which were not true
elliptic positions, including, as they did, the perturbations by the outer
planet; the correction of the orbit, which was needed on this account,
removed the discordance between the observed and tabular radius vector.

Airy was a man of quick and incisive action. He was now fully con-
vinced that the true explanation of the irregularities in the motion of
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Uranus had been provided and he felt confident that the new planet would
soon be found. He had already, a few days before receiving the reply
from Le Verrier, informed the Board of Visitors of the Royal Observa-
tory, at their meeting in June, of the extreme probability of discovering a
new planet in a very short time. It was in consequence of this strongly
expressed opinion of Airy that Sir John Herschel (a member of the
Board) in his address on 10 September to the British Association, at its
meeting at Southampton, said: ‘We see it [a probable new planet] as
Columbus saw America from the shores of Spain. Its movements have
been felt, trembling along the far-reaching line of our analysis, with a
certainty hardly inferior to that of ocular demonstration.’

Airy considered that the most suitable telescope with which to make
the search for the new planet was the Northumberland telescope of the
Cambridge Observatory, which was larger than any telescope at Green-
wich and more likely to detect a planet whose light might be feeble. Airy
offered to lend Challis one of his assistants, if Challis was too busy to
undertake the search himself. He pointed out that the most favourable
time for the search (when the undiscovered planet would be at opposi-
tion) was near at hand. A few days later, Airy sent Challis detailed direc-
tions for carrying out the search and in a covering letter said that, in his
opinion, the importance of the inquiry exceeded that of any current
work, which was of such a nature as not to be totally lost by delay.

Challis decided to prosecute the search himself and began observing
on 29 July 1846, three weeks before opposition. The method adopted
was to make three sweeps over the area to be searched, mapping the
positions of all the stars observed, and completing each sweep before
beginning the next. If the planet was observed it would be revealed, when
the different sweeps were compared, by its motion relative to the stars.

What followed was not very creditable to Challis. He started by observ-
ing in the region indicated by Adams: the first four nights on which
observations were made were 29 July, 30 July, 4 August and 12 August.
But no comparison was made, as the search proceeded, between the obser-
vations on different nights. He did indeed make a partial comparison
between the nights of 30 July and 12 August, merely to assure himself that
the method of observation was adequate. He stopped short at No. 39 of
the stars observed on 12 August; as he found that all these had been
observed on 30 July, he felt satisfied about the method of observation.
If he had continued the comparison for another ten stars he would have
found that a star of the 8th magnitude observed on 12 August was miss-
ing in the series of 30 July. This was the planet: it had wandered into
the zone between the two dates. Its discovery was thus easily within his
grasp. But 12 August was not the first time on which Challis had observed
the planet; he had already observed it on 4 August and if he had com-
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pared the observations of 4 August with the observations of either 30
July or of 12 August, the planet would have been detected.

When we recall Airy’s strong emphasis on carrying on the search in
preference to any current work, Challis’s subsequent excuses to justify his
failure were pitiable. He had delayed the comparisons, he said, partly
from being occupied with comet reductions (which could well have
waited), and partly from a fixed impression that a long search was re-
quired to ensure success. He confessed that, in the whole - )f the under-
taking, he had too little confidence in the indications of theory. Oh!
man of little faith! If only he had shared Airy’s conviction of the great
importance of the search.

But we have anticipated somewhat. While Challis was laboriously con-
tinuing his search, Adams wrote on 2 September an important letter to
Airy who, unknown to Adams, was then in Germany. He referred to the
assumption in his first calculations that the mean distance of the supposed
disturbing planet was twice that of Uranus. The investigation, he said,
could scarcely be considered satisfactory while based on anything arbi-
trary. He had therefore repeated his calculations, assuming a somewhat
smaller mean distance. The result was very satisfactory in that the agree-
ment between theory and observations was somewhat improved and, at
the same time, the eccentricity of the orbit, which in the first solution
had an improbably large value, was reduced. He gave the residuals for
the two solutions, and remarked that the comparison with recent Green-
wich observations suggested that a still better agreement could be ob-
tained by a further reduction in the mean distance. He asked for the
results of the Greenwich observations for 1844 and 1845. He then gave
the corrections to the tabular radius vector of Uranus and remarked that
they were in close agreement with those required by the Greenwich
observations.

Two days earlier, on 31 August, Le Verrier had communicated a third
paper to the French Academy which was published in a number of the
Comptes Rendus that reached England near the end of September. Challis
received it on 29 September. Le Verrier gave the orbital elements of the
hypothetical planet, its mass, and its position. From the mass and distance
of the planet he inferred, on the reasonable assumption that its mean
density was equal to the mean density of Uranus, that it should show a
disk with an angular diameter of about 3-3 sec. Le Verrier went on to
remark as follows:

‘It should be possible to see the new planet in good telescopes and also
to distinguish it by the size of its disk. This is a very important point. For
if the planet could not be distinguished by its appearance from the stars
it would be necessary, in order to discover it, to examine all the small
stars in the region of the sky to be explored, and to detect a proper motion



834 Sir Harold Spencer Jones

of one of them. This work would be long and wearisome. But if, on the
contrary, the planet has a sensible disk which prevents it from being
confused with a star, if a simple study of its physical appearance can
replace the rigorous determination of the positions of all the stars, the
search will proceed much more rapidly.’

After reading this memoir on 29 September, Challis searched the
same night in the region indicated by Le Verrier (which was almost
identical with that indicated by Adams, in the first instance, a year
earlier), looking out particularly for a visible disk. Of 300 stars observed
he noted one and one only as seeming to have a disk. This was, in actual
fact, the planet. Its motion might have been detected in the course of a
few hours, but Challis waited for confirmation until the next night, when
no observation was possible because the Moon was in the way. On 1 Octo-
ber he learnt that the planet had been discovered at Berlin on 23 Sep-
tember. His last chance of making an independent discovery had gone.

For on 23 September Galle, Astronomer at the Berlin Observatory, had
received a letter from Le Verrier suggesting that he should search for
the unknown planet, which would probably be easily distinguished by a
disk. D’Arrest, a keen young volunteer at the Observatory, asked to share
in the search, and suggested to Galle that it might be worth looking among
the star charts of the Berlin Academy, which were then in course of publi-
cation, to verify whether the chart for Hour 21 was amongst those that
were finished. It was found that this chart had been printed at the begin-
ning of 1846, but had not yet been distributed; it was therefore available
only to the astronomers at the Berlin Observatory. Galle took his place
at the telescope, describing the configurations of the stars he saw, while
d’Arrest followed them on the map, until Galle said: ‘And then there is
a star of the 8th magnitude i~ such a such a position’, whereupon d’Arrest
exclaimed: ‘That star is not on the map.” An observation the following
night showed that the object had changed its position and proved that it
was the planet. Had this chart been available to Challis, as it would have
been but for the delay in distribution, he would undoubtedly have found
the planet at the beginning of August, some weeks before Le Verrier's
third memoir was presented to the French Academy.

On 1 October, Le Verrier wrote to Airy informing him of the discov-
ery of the planet. He mentioned that the Bureau des Longitudes had
adopted the name Neptune, the figure a trident, and that the name Janus
(which had also been suggested) would have the inconvenience of making
it appear that the planet was the last in the solar system, which there
was no reason to believe.

The discovery of the planet, following the brilliant researches of Le
Verrier, which were known to the scientific world through their publica-
tion by the French Academy, was received with admiration and delight,
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and was acclaimed as one of the greatest triumphs of the human intellect.
The prior investigations of Adams, his prediction of the position of the
planet, the long patient search by Challis were known to only a few people
in England. Adams had published nothing; he had communicated his
results to Challis and to Airy, but neither of them knew anything of the
details of his investigations; his name was unknown in astronomical circles
outside his own country. Adams had actually drawn up a paper to be
read at the meeting of the British Association at Southampton early in
September, but he did not arrive in sufficient time to present it, as Section
A closed its meetings one day earlier than he had expected.

The first reference in print to the fact that Adams had independently
reached conclusions similar to those of Le Verrier was made in a letter
from Sir John Herschel, published in the Athenaeum of 3 October. It
came as a complete surprise to the French astronomers and ungenerous
aspersions were cast upon the work of Adams. It was assumed that his
solution was a crude essay which would not stand the test of rigorous
examination and that, as he had not published any account of his re-
searches, he could not establish a claim to priority or even to a share in
the discovery. Some justification seemed to be afforded by an unfortunate
letter from Challis to Arago, of 5 October, stating that he had searched
for the planet, in conformity with the suggestions of Le Verrier, and had
observed an object on 29 September which appeared to have a disk and
which later was proved to have been the planet. No reference was made
in this letter to the investigations of Adams or to his own earlier searches
during which the planet had twice been observed. Airy, moreover, wrote
to Le Verrier on 14 October, mentioning that collateral researches, which
had led to the same result as his own, had been made in England. He
went on to say: ‘If in this I give praise to others I beg that you will not
consider it as at all interfering with my acknowledgment of your claims.
You are to be recognized, without doubt, as the real predictor of the
planet’s place. I may add that the English investigations, as I believe, were
not so extensive as yours. They were known to me earlier than yours.’
It is difficult to understand why Airy wrote in these terms; he had ex-
pressed the highest admiration for the manner in which the problem had
been solved by Le Verrier, but he was not in a position to express any
opinion about the work of Adams, which he had not yet seen.

At the meeting of the French Academy on 12 October, Arago made a
long and impassioned defence of his protégé, Le Verrier, and a violent
attack on Adams, referring scornfully to what he described as his clandes-
tine work. ‘Le Verrier is to-day asked to share the glory, so loyally, so
rightly earned, with a young man who has communicated nothing to the
public and whose calculations, more or less incomplete, are, with two
exceptions, totally unknown in the observatories of Europe! No! no! the
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friends of science will not allow such a crying injustice to be perpetrated.
He concluded by saying that Adams had no claim to be mentioned, in the
history of Le Verrier’s planet, by a detailed citation nor even by the slight-
est allusion. National feeling ran very high in France. The paper Le
National asserted that the three foremost British astronomers (Herschel,
Airy and Challis) had organized a miserable plot to steal the discovery
from M. Le Verrier and that the researches of Adams were merely a
myth invented for this purpose.

In England opinion was divided; some English astronomers contended
that because Adams’s results had not been publicly announced he could
claim no share in the discovery. But for the most part it was considered
that the credit for the successful prediction of the position of the unknown
planet should be shared equally between Adams and Le Verrier. Adams
himself took no part in the heated discussions which went on for some
time with regard to the credit for the discovery of the new planet; he
never uttered a single word of criticism or blame in connexion with the
matter.

The controversy was lifted to a higher plane by a letter from Sir John
Herschel to The Guardian in which he said:

‘The history of this grand uiscovery is that of thought in one of its
highest manifestations, of science in one of its most refined applications.
So viewed, it offers a deeper interest than any personal question. In pro-
portion to the importance of the step, it is surely interesting to know that
more than one mathematician has been found capable of taking it. The
fact, thus stated, becomes, so to speak, a measure of the maturity of our
science; nor can I conceive anything better calculated to impress the
general mind with a respect for the mass of accumulated facts, laws, and
methods, as they exist at present, and the reality and efficiency of the
forms into which they have been moulded, than such a circumstance. We
need some reminder of this kind in England, where a want of faith in the
higher theories is still to a certain degree our besetting weakness.’

At the meeting of the Royal Astronomical Society on 13 November
1846, three important papers were read. The first, by the Astronomer
Royal, was an ‘Account of some Circumstances historically connected
with the Discovery of the Planet Exterior to Uranus’. All the correspond-
ence with Adams, Challis and Le Verrier was given, as well as the two
memoranda from Adams, the whole being linked together by Airy’s own
comments. The account made it perfectly clear that Adams and Le Verrier
had independently solved the same problem, that the positions which they
had assigned to the new planet were in close agreement, and that Adams
had been the first to solve the problem. The second was Challis’s ‘Account
of Observations undertaken in search of the Planet discovered at Berlin
on September 23, 1846, which showed that in the course of the search
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for the planet, he had twice observed it before its discovery at Berlin,
and that he had observed it a third time before the news of this discovery
reached England. The third paper was by Adams and was entitled ‘An
Explanation of the observed Irregularities in the Motion of Uranus, on
the Hypothesis of Disturbances caused by a more Distant Planet; with a
determination of the Mass, Orbit, and Position of the Disturbing Body’.

Adams’s memoir was a masterpiece; it showed a thorough grasp of the
problem; a mathematical maturity which was remarkable in one so young;
and a facility in dealing with complex numerical computations. Lieut.
Stratford, Superintendent of the Nautical Almanac, reprinted it as an
Appendix to the Nautical Almanac for 1851, then in course of publica-
tion, and sent sufficient copies to Schumacher, editor of the Astrono-
mische Nachrichten, for distribution with that periodical. Hansen, the
foremost exponent of the lunar theory, wrote to Airy to say that, in his
opinion, Adams’s investigation showed more mathematical genius than
Le Verrier's. Airy, a competent judge, gave his own opinion in a letter to
Biot, who had sent to Airy a paper he had written about the new planet.
He sent it, he said, with some diffidence because he had expressed a more
favourable opinion of the work of Adams than Airy had given. In reply,
Airy wrote: ‘On the whole I think his [Adams's] mathematical investiga-
tion superior to M. Le Verrier’s. However, both are so admirable that it is
difficult to say.” He went on to state that ‘I believe I have done more than
any other person to place Adams in his proper position’.

With the independent investigations of both men published, there was
no difficulty in agreeing that each was entitled to an equal share of the
honour. The verdict of history agrees with that of Sir John Herschel who,
in addressing the Royal Astronomical Society in 1848, said:

‘As genius and destiny have joined the names of Le Verrier and Adams,
I shall by no means put them asunder; nor will they ever be pronounced
apart so long as language shall celebrate the triumphs of science in her
sublimest walks. On the great discovery of Neptune, which may be said
to have surpassed, by intelligible and legitimate means, the wildest preten-
sions of clairvoyance, it would now be quite superfluous for me to dilate.
That glorious event and the steps which led to it, and the various lights
in which it has been placed, are already familiar to everyone having the
least tincture of science. I will only add that as there is not, nor hence-
forth ever can be, the slightest rivalry on the subject of these two illustri-
ous men—as they have met as brothers, and as such will, I trust, ever
regard each other—we have made, we could make, no distinction between
them on this occasion. May they both long adorn and augment our
science, and add to their own fame, already so high and pure, by fresh
achievements.’

Although on 1 October, Le Verrier had informed Airy that the Bureau
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des Longitudes had assigned the name Neptune to the new planet, Arago
announced to the French Academy on 5 October that Le Verrier had
delegated to him the right of naming the planet and that he had decided,
in the exercise of this right, to call it Le Verrier. ‘I pledge myself’, he
said, ‘never to call the new planet by any other name than Le Verrier's
Planet.’ As though to justify this name, Le Verrier’s collected memoirs
on the perturbations of Uranus, which were published in the Connaissance
des Temps for 1849 were given the title ‘Recherches sur les mouvements
de la planéte Herschel (dite Uranus)' with a footnote to say that Le
Verrier considered it as a strict duty, in future publications, to ignore the
name of Uranus entirely and to call the planet only by the name of
Herschel!

The name Le Verrier for the planet was not welcomed outside France.
It was not in accordance with the custom of naming planets after mytho-
logical deities, and it ignored entirely the claims of Adams. Moreover, it
might set a precedent. As Smyth said to Airy: ‘Mythology is neutral
ground. Herschel is a good name enough. Le Verrier somehow or other
suggests a Fabriquant and is therefore not so good. But just think how
awkward it would be if the next planet should be discovered by a German,
by a Bugge, a Funk, or your hirsute friend Boguslawski!’

The widespread feeling against the name of Le Verrier was shared in
Germany by Encke, Gauss and Schumacher and in Russia by Struve. Airy
therefore wrote to Le Verrier:

‘From my conversation with lovers of astronomy in England and from
my correspondence with astronomers in Germany, I find that the name
assigned by M. Arago is not well received. They think, in the first place,
that the character of the name is at variance with that of the names of all
the other planets. They think in the next place that M. Arago, as your
delegate, could do only what you could do, and that you would not have
given the name which M. Arago has given. They are all desirous of
receiving a mythological name selected by you. In these feelings I do
myself share. It was believed at first that you approved of the name
Neptune, and in that supposition we have used the name Neptune when
it was necessary to give a name. Now if it was understood that you still
approve of the name Neptune (or Oceanus as some English mythologists
suggested—or any other of the same class), I am sure that all England
and Germany would adopt it at once. I am not sure that they will adopt
the name which M. Arago has given.’

Airy might have added, but did not, that there was a general feeling,
not merely in England, but also in Germany and Russia, that the name
Le Verrier by implication denied any credit to the work of Adams and
that, for this reason also, it was inappropriate.

Le Verrier, in reply, said that since one spoke of Comet Halley, Comet
Encke, etc., he saw nothing inappropriate in Planet Le Verrier; that the
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Bureau des Longitudes had given the name Neptune without his consent
and had now withdrawn it; ! and that, since he had delegated the selec-
tion of the name to Arago, it was a matter that no longer concerned him.
At a later date, when relations between Arago and Le Verrier had become
strained, the true story was told by Arago. It appears that Arago had at
first agreed to the name Neptune, but Le Verrier had implored him, in
order to serve him as a friend and as a countryman, to adopt the name
Le Verrier. Arago had in the end agreed, but on condition that Uranus
should always be called Planet Herschel, a name which Arago himself
had frequently used. The greatest men are liable to human weaknesses and
failings; Le Verrier was described by his friends as a mauvais coucheur,
an uncomfortable bedfellow. By the general consensus of astronomers
the name Neptune was adopted for the new planet; the name Le Verrier
did not long survive.

In the history of the discovery of Neptune so many chances were
missed which might have changed completely the course of events, that
it is perhaps not surprising to find that the planet might have been dis-
covered 50 years earlier. When sufficient observations of Neptune had
been obtained to enable a fairly accurate orbit to be computed, a search
was made to find out whether the planet had been observed as a star
before its discovery. It was discovered that a star recorded in the Histoire
Céleste of Lalande as having been observed on 10 May 1795 was missing
in the sky; its position was marked as uncertain but was in close agree-
ment with the position to be expected for Neptune. The original manu-
scripts of Lalande at the Paris Observatory were consulted; it was found
that Lalande had, in fact, observed Neptune not only on 10 May but also
on 8 May. The two positions, being found discordant and thought to
refer to one and the same star, Lalande rejected the observation of 8 May
and printed in the Histoire Céleste only the observation of 10 May mark-
ing it as doubtful, although it was not so marked in the manuscript. The
change in position in the two days agreed closely with the motion of
Neptune in the interval. If Lalande had taken the trouble to make a
further observation to check the other two, he could scarcely have failed
to discover the planet. Airy’'s comment, when sending the information
about the two observations to Adams, was ‘Let no one after this blame
Challis’.

! This statement by Le Verrier was not correct, The minutes of the Bureau des
Longitudes show that the Bureau had not considered assigning a name by 1 October,
when Le Verrier had written not only to Airy but also to various other astronomers
in Germany and Russia informing them that the Bureau des Longitudes ‘had adopted
the name Neptune, the figure a trident’. The Bureau neither assigned the name
Neptune nor subsequently withdrew it. The minutes of the Bureau des Longitudes
show that Le Verrier's statements were repudiated by the Bureau at a subsequent
meeting, It seems that the name Neptune was Le Verrier's own choice in the first
instance but that he soon decided that he would like the planet to be named Le
Verrier. There is no explanation of his reasons for stating that the name Neptune
had been assigned by the Bureau des Longitudes; it was, in fact, outside the compe-
tence of the Bureau to assign a name to a newly discovered planet.



COMMENTARY ON

H. G. J. MOSELEY

N August 10, 1915, the twenty-eight-year-old British physicist, Henry
Gwyn-Jeffreys Moseley, died in the trenches of Gallipoli. This
extraordinarily gifted young scientist had left the laboratory of Sir Ernest
Rutherford in Manchester to join the army in 1914. He was the victim
not only of a Turkish bullet but of an incomparably stupid recruitment
program which permitted a scientist of such proven talent to become a
soldier. For Moseley’s brilliance was known. He had worked with Ruther-
ford for some years, and at the age of twenty-seven had made discoveries
in physics as important as any achieved in this century. Thus was squan-
dered a life of the greatest promise to the history of science. It was from
such spectacular instances of waste that both Great Britain and the U. S.
learned to keep their best scientists out of the firing lines of the Second
World War.

Moseley’s researches on atomic structure are reported in two communi-
cations to the Philosophical Magazine, from which the excerpts below
have been selected. Although comparatively easy to explain, they are
written in the usual terse and difficult idiom of the physicist. Therefore,
I had better summarize their content and say a few words about how
Moseley’s work fitted into the scene of contemporary physics.

After Roentgen discovered X-rays in 1895 a number of scientists de-
voted themselves to comparing these radiations with light waves. Attempts
were made to reflect and refract X-rays, to determine whether they pro-
duced interference phenomena as does light. The attempts failed. If a
parallel beam of light is allowed to fall on a grating, a surface on which
many thousands of fine lines have been drawn to the inch, the transmitted
or reflected light is broken up into its component colors, or wave lengths,
and appears as a spectrum. When this procedure was applied to X-rays
it also failed. These experiments indicated either that X-rays were not
waves or that the waves were so short that the methods of study used for
light were unsuitable. In 1912 Max von Laue suggested that, while a
man-made grating was too crude for the job, a grating provided by nature
in the form of crystals might catch waves less than a thousandth as long
as the shortest light waves. Von Laue worked out the mathematics of his
theory and Friedrich and Knipping confirmed it in a series of beautiful
experiments. The array of regular lines of atoms in the crystal served as
a supergrating (“of very minute dimensions™) and yielded characteristic
diffraction spectra for X-rays. These spectra could be photographed and
their lines analyzed. Thus, the wave nature of X-rays was established and,
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incidentally, a way was opened into the great new field of the structure of
crystals.!

Now we come to Moseley's experiments. X-rays are produced by per-
mitting a stream of electrons emitted by the negative pole (cathode) in a
vacuum tube to impinge on a solid target. Roentgen had used platinum
for the target but it soon became clear that if other elements were substi-
tuted they would also respond to cathode bombardment by emitting
X-rays. Moseley successively used forty-two different elements as targets.
He passed each set of X-rays through a crystal, photographed the result-
ing diffraction patterns and analyzed the waves emanating from each
sample. He noticed that his figures were falling into a remarkable order.
As he moved element by element up the Periodic Table—in which
the elements are arranged by atomic weight and bracketed in groups
according to their chemical properties—he found a regular increase in
the square roots of the frequency of vibration of the characteristic spec-
trum lines. If this square root is multiplied by an appropriate constant
so as to convert the regular increase to unity, one gets what is known as
the series of atomic numbers ranging from 1 for hydrogen to 98 for
californium. (Moseley went only as far as 79, for gold, when he was called
away on more urgent business. The remaining places in the table were
gradually filled in by other physicists.)

What are these numbers which match so smoothly the order of the
Periodic Table? (A few irregularities crop up but they have been ex-
plained and do not shake the theory.) The little arithmetic trick of con-
verting the increase to unity should not mislead anyone to believe that the
numbers merely represent a superimposed order. For the fact is that the
atomic number of each element, representing the square root of frequency
of an atom “suitably excited” to emit X radiation, assigns to the element
its true place in the Table because it is the number of the unit positive
charges in the nucleus of the atom. It is this charge which determines the
element’s chemical behavior. All subsequent advances in nuclear physics
depend upon and are an outgrowth of the fundamental insight gained by
Moseley. The beauty and simplicity of his theory, its revelation of the
existence of an almost uncanny step-by-step order in the arrangement of
the basic structures of matter, would have pleased the ancient Greek
philosophers who held that number ruled the universe. “In our own day,”
says Dampier, “Aston with his integral atomic weights, Moseley with his
atomic numbers, Planck with his quantum theory, and Einstein with his
claim that physical facts such as gravitation are exhibitions of local space-
time properties, are reviving ideas that, in older, cruder forms, appear in
Pythagorean philosophy.”

! For a further discussion of X-rays, von Laue's experiment, and the structure of
crystals, see the selections by Bragg and Le Corbeiller, and the introduction preceding
them, pp. 851-881.



The most important discoveries of the laws, methods and progress of Nature
have nearly always sprung from the examination of the smallest objects
which she contains. —J. B. LAMARCK

5 Atomic Numbers
By H. G. J. MOSELEY

THE HIGH FREQUENCY SPECTRA OF THE ELEMENTS

IN the absence of any available method of spectrum analysis, the charac-
teristic types of X radiation, which an atom emits if suitably excited, have
hitherto been described in terms of their absorption in aluminium. The
interference phenomena exhibited by X-rays when scattered by a crystal
have now, however, made possible the accurate determination of the
frequencies of the various types of radiation. This was shown by W. H.
and W, L. Bragg, who by this method analysed the line spectrum emitted
by the platinum target of an X-ray tube. C. G. Darwin and the author
extended this analysis and also examined the continuous spectrum, which
in this case constitutes the greater part of the radiation. Recently Prof.
Bragg has also determined the wave-lengths of the strongest lines in the
spectra of nickel, tungsten, and rhodium. The electrical methods which
have hitherto been employed are, however, only successful where a con-
stant source of radiation is available. The present paper contains a de-
scription of a method of photographing these spectra, which makes the
analysis of the X-rays as simple as any other branch of spectroscopy. The
author intends first to make a general survey of the principal types of
high-frequency radiation, and then to examine the spectra of a few ele-
ments in greater detail and with greater accuracy. The results already
obtained show that such data have an important bearing on the question
of the internal structure of the atom, and strongly support the views of
Rutherford and of Bohr.

Kaye has shown that an element excited by a stream of sufficiently fast
cathode rays emits its characteristic X radiation. He used as targets a
number of substances mounted on a truck inside an exhausted tube. A
magnetic device enabled each target to be brought in turn into the line of
fire. This apparatus was modified to suit the present work. The cathode
stream was concentrated on to a small area of the target, and a platinum
plate furnished with a fine vertical slit placed immediately in front of the
part bombarded. The tube was exhausted by a Gaede mercury pump,
charcoal in liquid air being also sometimes used to remove water vapour.
The X-rays, after passing through the slit marked § in Figure 1, emerged
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FIGURE 1

through an aluminum window of -02 mm. thick. The rest of the radiation
was shut off by a lead box which surrounded the tube. The rays fell on
the cleavage face, C, of a crystal of potassium ferrocyanide which was
mounted on the prism-table of a spectrometer. The surface of the crystal
was vertical and contained the geometrical axis of the spectrometer.

Now it is known that X-rays consist in general of two types, the hetero-
geneous radiation and characteristic radiations of definite frequency. The
former of these is reflected from such a surface at all angles of incidence,
but at the large angles used in the present work the reflexion is of very
little intensity. The radiations of definite frequency, on the other hand, are
reflected only when they strike the surface at definite angles, the glancing
angle of incidence 6, the wave-length A, and the “grating constant” d of
the crystal being connected by the relation

nA=2dsinf, ...........0.0... (1)

where n, an integer, may be called the “order” in which the reflexion
occurs. The particular crystal used, which was a fine specimen with face
6 cm. square, was known to give strong reflexions in the first three
orders, the third order being the most prominent.

If then a radiation of definite wave-length happens to strike any part P
of the crystal at a suitable angle, a small part of it is reflected. Assuming
for the moment that the source of the radiation is a point, the locus of P
is obviously the arc of a circle, and the reflected rays will travel along
the generating lines of a cone with apex at the image of the source. The
effect on a photographic plate L will take the form of the arc of an hyper-
bola, curving away from the direction of the direct beam. With a fine slit
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at §, the arc becomes a fine line which is slightly curved in the direction
indicated.

The photographic plate was mounted on the spectrometer arm, and
both the plate and the slit were 17 cm. from the axis. The importance of
this arrangement lies in a geometrical property, for when these two dis-
tances are equal the point L at which a beam reflected at a definite angle
strikes the plate is independent of the position of P on the crystal surface.
The angle at which the crystal is set is then immaterial so long as a ray
can strike some part of the surface at the required angle. The angle @ can
be obtained from the relation 24 = 180° — SPL = 180° — SAL.

The following method was used for measuring the angle SAL. Before
taking a photograph a reference line R was made at both ends of the
plate by replacing the crystal by a lead screen furnished with a fine slit
which coincided with the axis of the spectrometer. A few seconds’ expo-
sure to the X-rays then gave a line R on the plate, and so defined on it
the line joining § and 4. A second line RQ was made in the same way
after turning the spectrometer arm through a definite angle. The arm was
then turned to the position required to catch the reflected beam and the
angles LAP for any lines which were subsequently found on the plate
deduced from the known value of RAP and the position of the lines on
the plate. The angle LAR was measured with an error of not more than
0°-1, by superposing on the negative a plate on which reference lines had
been marked in the same way at intervals of 1°. In finding from this the
glancing angle of reflexion two small corrections were necessary in prac-
tice, since neither the face of the crystal nor the lead slit coincided accu-
rately with the axis of the spectrometer. Wave-lengths varying over a range
of about 30 per cent. could be reflected for a given position of the
crystal.

In almost all cases the time of exposure was five minutes. Ilford X-ray
plates were used and were developed with rodinal. The plates were
mounted in a plate-holder, the front of which was covered with black
paper. In order to determine the wave-length from the reflexion angle @
it is necessary to know both the order n in which the reflexion occurs
and the grating constant d. n was determined by photographing every
spectrum both in the second order and the third. This also gave a useful
check on the accuracy of the measurements; d cannot be calculated di-
rectly for the complicated crystal potassium ferrocyanide. The grating
constant of this particular crystal had, however, previously been accurately
compared with &’, the constant of a specimen of rock-salt. It was found
that
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Now W. L. Bragg has shown that the atoms in a rock-salt crystal are in
simple cubical array. Hence the number of atoms per c.c.

No 1

2—=—
M (a)3
N, the number of molecules in a gram-mol., = 6:05 X 1028 assuming the
charge (e) on an electron to be 4:89 X 10—19; ¢, the density of this crystal
of rock-salt, was 2:167, and M the molecular weight = 58-46.

This gives d’ = 2814 X 108 and d = 8454 X 10—8 cm. It is seen
that the determination of wave-length depends on e'% so that the effect of
uncertainty in the value of this quantity will not be serious. Lack of
homogeneity in the crystal is a more likely source of error, as minute
inclusions of water would make the density greater than that found
experimentally.

Twelve elements have so far been examined. . . .

The Plate shows the spectra in the third order placed approximately in
register. Those parts of the photographs which represent the same angle
of reflexion are in the same vertical line. . . . It is to be seen that the
spectrum of each element consists of two lines. Of these the stronger has
been called q in the table, and the weaker 8. The lines found on any of
the plates besides a and 8 were almost certainly all due to impurities.
Thus in both the second and third order the cobalt spectrum shows Nia
very strongly and Feq faintly. In the third order the nickel spectrum shows
Mna, faintly. The brass spectra naturally show a and g both of Cu and
of Zn, but Zng, has not yet been found. In the second order the ferro-
vanadium and ferro-titanium spectra show very intense third-order Fe
lines, and the former also shows Cue, faintly. The Co contained Ni and
0-8 per cent. Fe, the Ni 2:2 per cent. Mn, and the V only a trace of Cu.
No other lines have been found; but a search over a wide range of wave-
lengths has been made only for one or two elements, and perhaps pro-
longed exposures, which have not yet been attempted, will show more
complex spectra. The prevalence of lines due to impurities suggests that
this may prove a powerful method of chemical analysis. Its advantage
over ordinary spectroscopic methods lies in the simplicity of the spectra
and the impossibility of one substance masking the radiation from an-
other. It may even lead to the discovery of missing elements, as it will be
possible to predict the position of their characteristic lines. . . .

Phil. Mag. (1914), p. 703.

The first part of this paper dealt with a method of photographing X-ray
spectra, and included the spectra of a dozen elements. More than thirty
other elements have now been investigated, and simple laws have been
found which govern the results, and make it possible to predict with
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FIGURE 2—X-ray spectra.

confidence the position of the principal lines in the spectrum of any ele-
ment from aluminium to gold. The present contribution is a general
preliminary survey, which claims neither to be complete nor very
accurate. . . .

The results obtained for radiations belonging to Barkla’s K series are
given in Table I, and for convenience the figures already given in Part ]
are included. The wave-length A\ has been calculated from the glancing
angle of reflexion # by means of the relation n\ = 2d sin §, where d has
been taken to be 8:454 X 10—% cm. As before, the strongest line is called
a and the next line B. The square root of the frequency of each line is
plotted in Figure 3, and the wave-lengths can be read off with the help
of the scale at the top of the diagram.

The spectrum of Al was photographed in the first order only. The very
light elements give several other fainter lines, which have not yet been
fully investigated, while the results for Mg and Na are quite complicated,
and apparently depart from the simple relations which connect the spectra
of the other elements. In the spectra from yttrium onwards only the « line
has so far been measured, and further results in these directions will be
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Aluminium
Silicon
Chlorine
Potassium
Calcium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Yttrium
Zirconium
Niobium

Molybdenum

Ruthenium
Palladium
Silver

Zirconium
Niobium
Molybdenum
Ruthenium
Rhodium
Palladium
Silver

Tin
Antimony
Lanthanum
Cerium
Praseodymium
Neodymium
Samarium
Europium
Gadolinium
Holmium
Erbium
Tantalum
Tungsten
Osmium
Iridium
Platinum
Gold

« line

AX 108 cm,

364
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-750
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-368
-758
519
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-111
+946
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549
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721
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-584
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given in a later paper. The spectra both of K and Cl were obtained
by means of a target of KCI, but it is very improbable that the observed
lines have been attributed to the wrong elements. The « line for elements
from Y onwards appeared to consist of a very close doublet, an effect
previously observed by Bragg in the case of rhodium.

The results obtained for the spectra of the L series are given in Table Il
and plotted in Figure 3. These spectra contain five lines, a, 8, ¥, 4, e
reckoned in order of decreasing wave-length and decreasing intensity.
There is also always a faint companion «’ on the long wave-length side of
«, a rather faint line ¢ between B and y for the rare earth elements at
least, and a number of very faint lines of wave-length greater than a. Of
these, a, B, ¢, and y have been systematically measured with the object
of finding out how the spectrum alters from one element to another. The
fact that often values are not given for all these lines merely indicates
the incompleteness of the work. The spectra, so far as they have been
examined, are so entirely similar that without doubt a, B, and y at least
always exist. Often y was not included in the limited range of wave-
lengths which can be photographed on one plate. Sometimes lines have
not been measured, either on account of faintness or of the confusing
proximity of lines due to impurities. . . .

CONCLUSIONS

In Figure 3 the spectra of the elements are arranged on horizontal lines
spaced at equal distances. The order chosen for the elements is the order
of the atomic weights, except in the cases of A, Co, and Te, where this
clashes with the order of the chemical properties. Vacant lines have been
left for an element between Mo and Ru, an element between Nd and Sa,
and an element between W and Os, none of which are yet known, while
Tm, which Welsbach has separated into two constituents, is given two
lines. This is equivalent to assigning to successive elements a series of
successive characteristic integers. On this principle the integer N for Al,
the thirteenth element, has been taken to be 13, and the values of N then
assumed by the other elements are given on the left-hand side of Figure 3.
This proceeding is justified by the fact that it introduces perfect regularity
into the X-ray spectra. Examination of Figure 3 shows that the values of
v* for all the lines examined both in the K and the L series now fall on
regular curves which approximate to straight lines. The same thing is
shown more clearly by comparing the values of N in Table I with those of

v
Ox = \/—.
K Yove

v being the frequency of the line and v, the fundamental Rydberg fre-
quency. It is here plain that @ = N — 1 very approximately, except for
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the radiations of very short wave-length which gradually diverge from this
relation. Again, in Table II a comparison of N with

v
QL = L]
H4evg
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where v is the frequency of the La line, shows that @, = N — 7+4 approx-
imately, although a systematic deviation clearly shows that the relation
is not accurately linear in this case.

Now if either the elements were not characterized by these integers, or
any mistake had been made in the order chosen or in the number of
places left for unknown elements, these regularities would at once dis-
appear. We can therefore conclude from the evidence of the X-ray spectra
alone, without using any theory of atomic structure, that these integers
are really characteristic of the elements. Further, as it is improbable
that two different stable elements should have the same integer, three,
and only three, more elements are likely to exist between Al and Au. As
the X-ray spectra of these elements can be confidently predicted, they
should not be difficult to find. The examination of keltium would be of
exceptional interest, as no place has been assigned to this element.

Now Rutherford has proved that the most important constituent of an
atom is its central positively charged nucleus, and van den Broek has put
forward the view that the charge carried by this nucleus is in all cases an
integral multiple of the charge on the hydrogen nucleus. There is every
reason to suppose that the integer which controls the X-ray spectrum is
the same as the number of electrical units in the nucleus, and these experi-
ments therefore give the strongest possible support to the hypothesis of
van den Broek. Soddy has pointed out that the chemical properties of the
radio-elements are strong evidence that this hypothesis is true for the
elements from thaliium to uranium, so that its general validity would now
seem to be established.



COMMENTARY ON

The Small Furniture of Earth

HE next two selections deal with the wave theory of X-rays and the

atomic theory of crystals. The bringing together and verification of
these theories in a single famous experiment was one of the major events
of the twentieth-century renaissance in physics.

Crystals were the subject of much attention in the eighteenth and nine-
teenth centuries, their optical properties and geometric relations being
carefully studied by mineralogists, crystallographers and mathematicians.
As early as 1824 the hypothesis was advanced that crystals consist of
layers of atoms distributed in regular patterns; ! in the 1890s mathemati-
cians had worked out fully the number of possible ways the atoms inside
a crystal could be distributed. However, experimental proof of these
fundamental ideas was still lacking in 1910. Attempts to confirm the
theory of crystals by diffraction experiments with light were unsuccessful
because the waves were too long for the job; it was as if one were to try
to measure the inside of a thimble with a foot-rule.

Another important hypothesis, also in a doubtful status at that time,
related to X-rays. The majority of physicists were convinced that X-rays
were waves of a length much shorter than light rays, but again early
attempts to prove the conjecture were unsuccessful.

The crucial experiment testing both hypotheses was proposed by the
German physicist Von Laue, who was then assistant lecturer in Professor
Sommerfeld’s department at the University of Munich.2 He reasoned that
if X-rays were short waves and crystals three-dimensional lattices of
atoms, a pencil of X-rays passed through a crystal would produce a char-
acteristic pattern on a photographic plate. The X-rays, in other words,
could be made to report the arrangement of the tiny furniture encountered
inside the crystal. The experiment, performed in 1912, was an extraor-
dinary triumph.® The X-rays portrayed the interior of the crystals, and the
crystals repaid the favor by disclosing the form of the X-rays. Von Laue

! Max von Laue, History of Physics, New York, 1950, p. 119: “The first scientist
to combine the newly created concept of the chemical atom with this idea [of the
building-block structure of crystals] and to assume that space lattices are made up
of chemical atoms was the physicist Ludwig August Seeber. . . . He published his
ideas in 1824, i.., thirty-two years prior to the entry of atomistics into modern
physics in the form of the kinetic theory of gases.”

2 See also the introduction to the paper by H. G. J. Moseley, pp. 840-841.

2 The experiment, though conceived by Laue, was actually performed by two young
Munich research students, Friedrich and Knipping, who had just taken their doc-
torates under Rontgen. See Kathleen Lonsdale, Crystals and X-Rays, London, 1948,
pp. 1-22, for an authoritative historical introduction to the subject; also the standard

work for the advanced student: Sir Lawrence Bragg, The Crystalline State, a General
Survey, London, 1949,

851
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described this reciprocal disclosure as “one of those surprising events to
which physics owes its power of conviction.”

The first of the selections below, on Von Laue’s experiment and its
relation to the geometry of X-rays and crystals, is by the great physicist
Sir William Bragg. The history of modern crystallography is in large part
the history of his researches. Bragg was born in Cumberland in 1862
and after a brilliant school career accepted a professorship in physics at
the University of Adelaide, Australia. His first research paper did not
appear, remarkably enough, until 1904, when he was forty-two. It is
unusual for a physicist so long to defer his original investigations, but the
paper itself—it was concerned with alpha particles—was immediately
recognized as a first-class achievement and marked the beginning of a
prolific output of creative studies. In 1907 Bragg was elected a Fellow
of the Royal Society, and a year later returned to England to take the
Cavendish chair at Leeds. It was there that he became interested in X-rays,
which he then regarded, contrary to prevailing opinion, as particles rather
than waves. The Laue experiment of 1912 convinced him he was mis-
taken, and in the same year Bragg and his son took up the research on
X-rays and crystals for which in 1915 they jointly received the Nobel prize
in physics. Their work “laid the foundation of one of the most beautiful
structures of modern science™; it was used for fundamental advances in
both inorganic and organic chemistry, metallurgy is deeply indebted to it,
as are other branches of pure and applied science.*

Bragg had a crowded and happy career during which he worked on
many other subjects besides X-rays and raised a crop of distinguished
pupils who enriched many parts of physics. In 1915 he held a chair at
University College, London; during the First World War he directed
acoustic research on submarine detection; in 1923 he became director of
the Royal Institution and of the Davy-Faraday Research Laboratory. Not
the least of his gifts was in popular exposition. He enjoyed nothing more
than to give lectures and experimental demonstrations to youngsters and
general audiences; his connection with the Royal Institution (he served
as president from 1935 to 1940) fortunately facilitated his exercise of
this art.

The article which follows is a chapter from Bragg’s book, The Universe
of Light, based on Christmas Lectures delivered in 1931,

The second selection is a simple and attractive account by Philippe Le
Corbeiller of the mathematics of crystals. A suitable complement to
Bragg’s discussion, it emphasizes the experimental proof of the theory of
space groups. In the development of crystallography the mathematics of
group theory and of symmetry has, as I remarked earlier, played a remark-
able part. Just as Adams and Leverrier, for example, decreed the motion

4 E. N. daC. Andrade, “Sir William Bragg™ (obituary), Narure, March 28, 1942,
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and position of the planet Neptune before it was discovered, so mathema-
ticians by an exhaustive logical analysis of certain properties of space and
of the possible transformations (motions) within space, decreed the
permissible variations of internal structure of crystals before observers
were able to discover their actual structure. Mathematics, in other words,
not only enunciated the applicable physical laws, but provided an invalua-
ble syllabus of research to guide future experimenters. The history of the
physical sciences contains many similar instances of mathematical previ-
sion. Models, concepts, theories are initially expressed in mathematical
form; later they are tested by observation and either confirmed, or dis-
proved and discarded. Not uncommonly, of course, the model is over-
hauled to conform more closely to experimental data and the tests are
then repeated. The theory of space groups and crystal classes is among the
most successful and striking examples of mathematical model making.

Mr. Le Corbeiller is professor of general education and of applied
physics at Harvard University. He was born and educated in France, has
served as a member of the engineering staff of the Département des Com-
munications, as an official of the French Government Broadcasting System
and in other administrative and academic posts. His publications include
papers on algebra, number theory, oscillating generators, electroacoustics
and other scientific topics. The article on crystals, cast in the congenial
framework of a mock-Socratic dialogue, first appeared in Scientific
American, January 1953.



Why think? Why not try the experiment? —Joun HUNTER (Letter to
Edward lenner)

The true worth of an experimenter consists in his pursuing not only what
he seeks in his experiment, but also what he did not seek.
—CLAUDE BERNARD

6 The Rontgen Rays
By SIR WILLIAM BRAGG

. . . X-RAYS are generally produced as a consequence of the electric
spark or discharge in a space where the pressure of the air or other gas is
extremely low. The electric spark has for centuries been a subject of
interested observation, but no great step forward was made until it was
arranged that the discharge should take place in a glass tube or bulb
from which the air had been pumped out more or less completely. The
spark became longer, wider, and more highly coloured as the pressure

FIGURE 1—The cathode or negative terminal is on the right at a. The rays proceed in straight
lines across the tube and excite Auorescence on the opposite wall. A metal cross b

casts a sharp shadow.

diminished. When Crookes so improved the air pump that pressures of
the order of the millionth part of atmospheric pressure became attainable
a phenomenon appeared which had not been previously observed. The
negative terminal became the source of a radiation which shot in a straight
line across the bulb and had mechanical effects. It generated heat when-
ever it struck the opposite wall or some body placed to intercept it: it
excited vivid fluorescence in glass and many minerals: it could turn a
light mill wheel if it struck the vanes. And, a most important property,
the stream could be deflected by bringing a magnet near it. This was an

854
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extremely important observation for it suggested that the stream consisted
of electrified particles in flight. Such a stream would be equivalent to an
electric current and would therefore be susceptible to the force of a
magnet. Illustrations of Crookes's experiments are given in Figures 1, 2,
3, and 4. They are taken from the original blocks used in the published

FIGURE 2—The rays excite a vivid fl in the di d d in the centre of the tube.

account of a discourse which he gave at the Royal Institution in April
1879. Crookes believed that the stream consisted of molecules of some
kind. He argued that his air pump had attained such perfection that the
comparatively few molecules left in the tube could move over distances
comparable with the length of the tube without coming into collision
with other molecules. Such a condition, he said, was as different from
that of a gas as the latter from that of a liquid. At the end of a paper
contributed to the Royal Society in the same year (1879) he wrote in a
dim but interesting foreshadowing of the future which was partly to be
verified:

“The phenomena in these exhausted tubes reveal to physical science a
new world—a world where matter exists in a fourth state, where the
corpuscular theory of light holds good, and where light does not always
move in a straight line; but where we can never enter, and in which we
must be content to observe and experiment from the outside.’

J. J. Thomson, Wiechert and others showed that the stream consisted
of particles carrying negative charges of electricity, and that these carriers
were far smaller than even the hydrogen atom. The name ‘electron’ was
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FIGURE 3—The cathode rays are limited to a narrow pencil by means of a slot placed
in front of the cathode at a. The deflecti of the byah hoe are
then observed easily.

given to them. It appeared that electrons could be torn away from any
kind of atom, if sufficient electric force was supplied by the induction coil
or other electric contrivance for producing the requisite power; and that
the electrons from all sources were exactly alike. Evidently the electron
was a fundamental constituent of matter. The stream of electrons was
called the cathode ray because it issued from the negative or cathode
terminal.

Rontgen was investigating the cathode ray phenomena when he found
that photographic plates near by became fogged although no light could

FIGURE 4—The cathode a is made in the shape of a saucer: this is found to have the effect of
concentrating the rays to a point. Normally a screen ¢ intercepts the rays. but the
magnet g deflects them so that they get over the top of the screen and strike the
vanes of the little wheel ef, which then spins rapidly. If the disposition of the magnet
is reversed, the rays go under ¢ and the wheel spins the opposite way.

have reached them. He traced the cause to a radiation issuing from his

glass bulb, and in particular from the place where the cathode rays struck

the wall: and proceeded to examine the general characteristics of the new
rays upon which he had stumbled.
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In many respects they resembled light. They moved in straight lines and
cast sharp shadows, they traversed space without any obvious transference
of matter, they acted on a photographic plate, they excited certain mate-
rials to fluorescence, and they could, like ultra-violet light, discharge
electricity from conductors. In other ways the rays seemed to differ from
light. The mirrors, prisms and lenses which deflected light had no such
action on X-rays: gratings as ordinarily constructed did not diffract them:
neither double refraction, nor polarisation was produced by the action of
crystals. Moreover they had an extraordinary power of penetrating matter.
Nothing seemed to hold them up entirely, though everything exerted some
power of absorption: heavier atoms were more effective than lighter.
Hence arose the quickly observed power of revealing the inner constitu-
tion of bodies opaque to light: bones cast shadows much deeper than
those due to the surrounding flesh.

If the velocity of X-rays could have been shown without question to
have been the same as that of light it would have established their iden-
tity: but the experiment though attempted was too difficult. Barkla showed
that a pencil of X-rays could have ‘sides’ or be polarised if the circum-
stances of their origin were properly arranged, but the polarisation differed
in some of its aspects from that which light could be made to exhibit.
Laue’s experiment brought the controversy to an end, by proving that a
diffraction of X-rays could be produced which was in every way parallel
to the diffraction of light: if the diffraction phenomena could be depended
upon to prove the wave theory of light, exactly the same evidence existed
in favour of a wave theory of X-rays.

LAUE’S EXPERIMENT

Let us now consider the details of Laue’s famous experiment which
has had such striking consequences. The plan of it was very simple. A fine
pencil of X-rays was to be sent through a crystal and a photographic
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FIGURE 5—The X-rays pass through a fine opening in a lead screen and impinge upon the crystal
as shown. Laue's diffraction pattern is formed upon the photographic plate.
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plate was to be placed to receive the pencil after it had emerged on the
other side, Figure 5. Laue surmised that beside the main image on the
plate which would be caused by the incidence of the pencil there might
be other subsidiary images. He based his forecast on a consideration of
effects of this kind, which occur in the case of light. When a train of
ether waves falls upon a plate on which parallel lines are ruled, or is
transmitted through such a plate, or passes through an atmosphere in
which fine particles of uniform size are suspended, there are regular de-
flections of the energy in various directions constituting ‘diffracted’ pencils.
. . . In all cases of this kind it is a necessity that there should be no great
disparity between the length of the wave on the one hand, and that of
the regular spacing or particle diameter on the other. Laue thought that
previous failures to find diffraction in the case of X-rays might be due to
a want of observance of this condition. If the X-ray wave-lengths were
thousands of times shorter than those of light, as he had reason for
believing, it was useless to look for diffraction effects with ordinary grat-
ings in the ordinary way. One ought to employ gratings in which the
lines were drawn thousands of times closer together than in the usual
practice. This is not practicable: no one can draw millions of parallel lines
to the inch.

It was possible, however, that Nature had already provided the tool
which could not be constructed in the workshop. The crystal might be
the appropriate grating for the X-rays, because its atoms were supposed
to be in regular array, and the distances that separated them were, so far
as could be calculated, of the same order as the wave-length of the X-ray.
Whether these anticipations were well or ill founded, they became of little
consequence when the experiment was made in 1912 by Laue’s colleagues,
Friedrich and Knipping, and was completely successful. A complicated
but symmetrical pattern of spots appeared upon the photographic plate,
which, though unlike any diffraction pattern due to light, was clearly of
the same nature. It was soon found that every crystal produced its own
pattern and that the experiment opened up not only a new method for
the investigation of the nature of X-rays, but also a new means of analysis
of the structure of crystals. Examples of these patterns are given in Plate
I A, B; they may be compared with Plate II C (pp. 866, 867).

In order that these points may be clear it is necessary to examine, at
not too great length, the details of the experiment and its implications.
We have already examined certain phenomena of crystalline structure in
the case of Iceland spar; but it will be convenient to reconsider the
subject and to discuss it more generally.

The most striking and characteristic features of a crystal are its regu-
larity of form, the polished evenness of its faces and the sharpness of its
edges. If we compare crystals of the same composition we find that the
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angles between faces are always exactly the same from crystal to crystal:
while the relative values of the areas of the faces may vary considerably.
In technical terms, the faces of different specimens may be unequally
developed. It is natural to infer that there is an underlying regularity of
structure, involving the repetition in space of a unit which is too small
to be visible. As a simple analogy we might take a piece of material woven,
as is customary, with warp and weft at right angles to each other. How-
ever it might be torn, it would form pieces with right angles at all the
corners: but the pieces would not necessarily be square. There would be
two principal directions at right angles to each other: and all tears would
take place at right angles to one or other of them. If the two directions
were exactly alike, in all the characteristics that could be examined, if
for example, they tore with equal ease, and if the frayed edges were the
same on all sides, the warp and weft must be identical: they must be
composed of the same threads and have the same spacings. We could
rightly say that the material is founded on a ‘square’ pattern. This would
still be the case even if both warp and weft were not simple but complex:
if for example, each of them contained coloured threads at various inter-
vals. So long as the scheme of repetition was the same in both we should
still say the pattern was square: as for example a tartan might be.

The analogy of a woven material is insufficient to represent all the
complications of a crystal structure; because warp and weft cannot be
inclined to each other at any angle except ninety degrees: but it illustrates
the important point that in any structure built of repetitions in space, the
angles of the whole must be always the same; while no such restriction
applies to the areas of the faces. The unit that is repeated in every direc-
tion determines the angular form. If, for example, the unit of a composi-
tion in a plane had the form of the small unit (Figure 6), the whole
might have various shapes such as are illustrated in the same figure. The
edges need not always include the same angles as the edges of A but they
would necessarily be inclined to one another at angles which from speci-
men to specimen would be invariable.

So also in the solid crystal various faces might be developed which
would, in regard to the angles made with each other, display the same
constancy of mutual inclination. As this is what we should expect if the
crystal is composed of units repeated regularly in all directions, and as
the facts agree with expectations, we assume that our preliminary concep-
tions of crystal structure are correct.

What will happen when a train of ether waves meets such a crystalline
arrangement?

A crystal can be thought of as a series of layers spaced at regular inter-
vals, just as in two dimensions a regular assemblage of points can be
thought of as a set of rows equally spaced. Also, just as in the simpler case
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FIGURE 6—The unit of a planar design is included in the outline A. The multiplication of the
unit may assume various forms, a few of which are shown. The mutual inclinations

of the edges are limited to certain definite angles.

the rows might be made up in various ways as in Figure 7, so also any
one crystal can be divided up in an infinite number of ways into parallel
sheets.

It is convenient to consider the problem of the diffraction of X-rays
in stages: first taking the scattering by a single unit, then by a sheet of
units, then by the whole crystal which is made up of a succession of
sheets.

The unit in a crystal is made up of a certain number of atoms arranged
in a certain way: the composition and arrangement vary from crystal to
crystal. When the train of waves meets the unit each atom in it scatters
and can be regarded as the centre of a series of ripples spreading out-
wards in spherical form. At a little distance these melt into one another,
and in the end there is but one spherical wave having its centre some-
where within the unit. There is however this peculiarity about the wave,
that it is not equally strong in all directions. To take a simple case,
imagine the unit to consist of two atoms A and B, separated by a distance

FIGURE 7—The points in the figure can be arranged in rows in various ways.
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equal to half the length of a wave, as in Figure 8. The oncoming waves
arrive simultaneously at the two. The waves scattered by A and B start
off together. In the direction ABC the two systems are always in opposi-
tion: a crest of one set fits into a hollow in the other. In this direction
they destroy each other’s effects. The same happens in the reverse direc-
tion BAD. But in every other direction there is no such complete inter-
ference: in a direction such as that marked by the arrow P they support
each other to some extent, and more so as the direction P is separated
from C or D. In this case the combination of the scattered waves will have
a spherical form, but it will not be equally intense all round. There will

A\

4

FIGURE 8—Waves represented by the vertical lines are moving upon the two atoms A and B
which scatter a small fraction of their energy. The two are half a wave-length distant
from one another. The spherical waves that spread away annul one another in the
direction A B C or B A D, because the crest of one fits into the hollow of the other.
But energy is scattered in all other directions such as are indi d by the
marked P.

be points C and D where the wave vanishes as the figure shows.

Other arrangements of the atoms lead to other distributions of intensity
on the spherical surface: and the more complicated the arrangement the
more complicated the distribution.

This complexity has however no effect on the development of our
argument and is described only to make the picture more real. The one
important point is that whatever the composition and arrangement of the
unit, all the units behave alike. As far as we are concerned for the moment
we may disregard the inequality of the distribution of the energy on the
surface of the scattered wave, and remember only that the waves are in
the end spherical, and that they may be regarded as originating from
regularly arranged points which represent the positions of the units.
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FIGURE 9—Waves. ‘pp.’ 'p'p"' . . . sweep over a row of points where some scattering takes place.
The most of the energy goes on, but a fraction is reflected in the form of waves
‘qq.’ ‘q'q"." . . .

We now go on to cor-ider the combined effect of the units in a sheet.
Suppose that the dots in Figure 9 represent some of the units of pattern in
a sheet which is at right angles to the paper. A set of waves is shown in
section by the straight lines pp, p’p’, etc. As each wave sweeps over the
points, spherical waves spread away from the point in turn, and a reflected
wave is formed by their combination. This is in fact another instance
of the application of the Huygens principle. We have a case of simple
reflection, differing only from reflection by a mirror in the fact that only
a portion of the original energy is carried away by the reflected wave.
We know by experiment that in the case of a single sheet this portion is
extremely small: the X-rays often sweep over millions of sheets before
they are finally spent.

An analogous effect is frequently to be observed in the case of sound.
A regular reflection can take place at a set of iron railings, the bulk of
the energy going through. We hear such a reflection when we pass the
railings in a car.

It is to be observed that the even spacing of the units, and of the dots
which stand for them in Figure 9 is not necessary so far as the effect of
a sheet is concerned. Nor need the railings be regularly arranged, in order
to produce an echo: a reflection can even be observed from a hedge.
Regularity is not important until we consider the possibility of reflection
by many different sets of planes within the crystal.
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In the diagram Figure 10 we represent a section of these sheets by the
lines S; S, S;, and so on; we draw them as full lines and not as rows of
dots because it is of no importance where the units or the representative
dots lie in each sheet. For convenience also we show by straight lines the
directions in which the waves are travelling instead of the waves them-
selves. Thus aPa, represents a case of reflection in a single sheet which
we have just been considering. Besides the set represented by aPg, there
is another case of reflection represented by bQb,, another by cRc,, and
so on. The dimensions of the figure are grossly exaggerated in certain
directions so as to show the argument more clearly. The distances between
the layers are in actuality minute compared to the width of the pencil.
Each ray, like bQb, represents a train of waves moving on so broad a
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FIGURE 10—The diagram illustrates the reflection of a train of waves by a series of regular
spaced sheets, each capable of reflecting a small fraction of the energy of the train.

front that the various reflected trains overlap one another sideways.

The reflected set represented by #Qb, has had further to go than aPa,,
before it re-appears and joins the latter. If we draw perpendicular dis-
tances PM and PN the extra distance is MN.

And again the set cRc; lags behind bQb; just as much again as this
lags behind aPa,, because the sheets are spaced at even distances. Behind
this other reflections follow at regular intervals. The wave reflected by
the crystal is the sum of all these. We may represent the summation by
Figure 11 in which curves representing the reflected sets of waves are
put one below another: each lagging behind the one above it by the
distance MN. These waves are to be added up; for instance, along the
vertical line shown in Figure 11 we are to add together Oa, Ob, Oc, etc.,
giving positive signs to those that are above the horizontal line and nega-
tive to those that are below. Usually the sum of those quantities will be
zero, because they are just as likely to be above as below the line, and
in their millions every possible size up to a maximum is to be found. The
meaning of this is that there is no reflected pencil: its constituents have
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FIGURE 11—A diagram to show how the reflected waves of Figure 10 add up to nothing unless
they are all exactly in phase with one another. The quantity Oa 4+ Ob + Oc 4 . . .
is zero because there are as many positive as negative terms in the millions that
must be added together. The exception is when the reflections are all in phase, the
crests of one set being exactly above or below (in this kind of figure) crests of all

the other sets.

destroyed one another. There is one exception to this rule. If the lag is
exactly one wave-length or two, or three, or any whole number of wave-
lengths, so that the curves shown in Figure 11 lie exactly below one
another, then the sum of them all is just a multiple of one of them, and
as the multiplier is large the reflection is large also. The reflected energy
cannot of course be greater than the incident, but calculation shows that
over a very small range on either side of the reflecting angle the reflection
is complete.

The amount of the lag depends on two things, the angle at which the
rays strike the crystal and the spacing of the sheets. If they are nearly
perpendicular to the sheets, the lag is twice the distance between two
sheets that are neighbours: and this is its maximum value. The more
oblique the incidence the smaller the lag; at glancing incidence it becomes
very small. Thus provided the wave-length is not too great there must
always be some particular angle of incidence at which the lag is exactly
one wave-length or even more wave-lengths: and at these angles the
reflection leaps out strongly.

If our primary rays are of one wave-length we must turn the crystal
round until the angle is right. If the angle of incidence has a fixed value
we may get a reflection by throwing a mixed beam upon the crystal, out
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of which rays of the right wave-length will be selected for reflection while
the rest pass on. The late Lord Rayleigh once showed at a lecture in the
Royal Institution an analogous experiment in acoustics. As its dimensions
are on a scale so much larger than those of X-rays and crystals, it helps
to an appreciation of the latter case. Sound waves are produced by a
whistle of very high pitch, known as a bird-call. The waves are only an
inch or so in length, much shorter than the waves of ordinary speech, but
hundreds of millions of times longer than the ether waves of X-rays. The
note is so high that many ears, especially those of older people cannot
perceive it. A set of muslin screens, about a foot square are arranged
in parallel sequence, upon a system of lazy-tongs which allows the com-
mon spacing to be varied. The screens may for our purpose be taken to
correspond to the sheets of Figure 10: each can reflect a small fraction
of an incident sound wave, but allows the bulk of it to go on.

If now the whistle and the set of screens are arranged as in the photo-
graph, Plate 1 C, the sound may be reflected by the screen. The reflected
sound, if it exists, is very easily detected by means of the ‘sensitive flame.’
This is a luminous gas jet issuing under great pressure from a long narrow
tube with a fine nozzle. The pressure is adjusted until the flame is on the
point of flaring, under which circumstances a high pitched sound causes
it to duck and flare in a most striking way. The rapid alternations of
pressure in the sound wave are the direct cause of the effect. The sensitive
flame is so placed that it can detect the reflected sound if there is any, but
it is screened from any direct action of the bird-call.

It is then found that if, by means of the lazy-tongs, the common spac-
ing of the screens is altered gradually and continuously the flame passes
through successive phases of flaring and silence. The explanation is the
same as that of the X-ray effect just described. If there is flaring it means
that the reflections from the successive screens all conspire, and this hap-
pens if the spacing is so adjusted that the lag of one reflection behind
another is a whole number of wave-lengths.

Rayleigh used the analogy for the purpose of explaining the brilliant
colours of crystals of chlorate of potash. These crystals have a peculiar
formation, being composed of alternating layers of the crystalline material
differing only in the orientation of their crystalline axes. The thickness of
the layer is thousands of times smaller than the spacing of the muslin
screen, but again thousands of times larger than the spacings of the layers
in which the crystalline units are disposed. It is of the order of the wave-
length of visible light. The same argument holds in all three cases.

We have one more point to consider before we can appreciate Laue’s
experiment. We have to remember that there is not only one way, there
are an infinite number of ways in which a crystal can be divided into
parallel sheets. Suppose that Figure 12 represents for example the disposi-



A. X-ray diffraction spectrum of rocksalt. B. An X-ray diffraction spectrum of kaliophilite
Bannister

C. A photograph of the apparatus used by Lord Rayleigh and described on pp. 864-865. The whistle

is at W, the set of screens at S, and the luminous gas jet at J. The dotted lines show roughly the

course of the sound waves that affect the jet. The photograph shows the appearance of the Jet

when there is no sound, or when the screens (seen edgeways in the picture) are not placed so

that their reflecti infi one her. Owing to a peculiarity in the form of the nozzle at J.

the jet does not respond to sound proceeding directly from W to J. When the screens are properly
spaced the jet broadens and ducks to a fraction of its normal height.
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ourselves. Here, for instance, the rule is to use nothing but regular poly-
gons to limit our solids. I see nothing surprising in the fact that there
should be exactly five solids obeying that arbitrary rule. But in physics
we don't make the rules; therefore we shall never be able to say that a
chapter of physics is closed.”

FIGURE 2—Regular solids, of which each face is regular, are five in number,

“Your argument,” 1 answered, “is perfectly plausible. But it does not
fit the case. There are ‘regular solids’ in physics also; we call them crystals.
So here we have geometry again, and arithmetic, but this time it does not
all take place in our heads. Here nature invents the rules of the mathe-
matical game, and of course it finds itself bound by the consequences of
the rules.”

“Sounds like nonsense to me,” said Empeiros.

“The ancients,” I continued, disregarding the comment, “noticed sev-
eral beautifully shaped crystals, such as quartz, growing, as it were, out
of shapeless rocks. The first scientific crystallographer was a Danish
bishop called Steno, who in 1669 published a dissertation Concerning
Solids Naturally Contained within Solids. Other naturalists carried on his
research, and by 1782 a Frenchman, the Abbé René Just Haiiy, had
found the basic rule of the game of crystals: he had found how to obtain
the shape of any crystal from that of some standard simple form.
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