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éOMMENTARY ON
An Ingenious Army Captain and on
a Generous and Many-sided Man

TATISTICS was founded by John Graunt of London, a “haberdasher
of small-wares,” in a tiny book called Natural and Political Observa-
tions made upon the Bills of Mortality? It was the first attempt to
interpret mass biological phenomena and social behavior from numerical
data—in this case, fairly crude figures of births and deaths in London
from 1604 to 1661. Graunt's tract appeared in 1662. Thirty years later,
the Royal Society published in its “Philosophical Transactions” a paper
on mortality rates written by the eminent astronomer Edmund Halley.
This famous article was entitled “An Estimate of the Degrees of the
Mortality of Mankind, drawn from curious Tables of the Births and
Funerals at the City of Breslaw; with an Attempt to ascertain the Prices
of Annuities upon Lives.” It was followed by “Some further Considera-
tions on the Breslaw Bills of Mortality.” Together, the papers are the
foundation for all later work on life expectancy, indispensable of course
to the solvency of life-insurance companies.?

John Graunt was born in 1620 in Birchin Lane, London, “at the Sign
of the Seven Stars,” where his father kept a shop and home. He was
early apprenticed to a merchant in small wares—buttons, needles and
the like—and prospered in the trade. Success gave him the leisure to
indulge interests somewhat broader than those of the notions counter.
Aubrey describes him as “a very ingenious and studious person . .
[who] rose early'in the morning to his Study before shoptime.” 3 He
became a friend of Sir William Petty, later the author of a well-known
book on the new study of political arithmetic, and probably discussed
with him the ideas to be expressed in the Observations. The Bills of
Mortality which attracted Graunt’s attention were issued weekly by the
company of parish clerks and listed the number of deaths in each parish,
the causes, and also an “Accompt of all the Burials and Christnings,

! The full title is, Natural and Political Observations Mentioned in a following
Index, and made upon the Bills of Mortality.

2*“He not only gave a sound analysis of this problem (the calculation of annuity
prices), but he put his results in such a convenient form that this first table of
mortality has remained the pattern for all subsequent tables, as to its fundamental
form of expression.”—Lowell J. Reed in the introduction to Degrees of Mortality of
Mankind by Edmund Halley, a reprint of the papers noted, issued by the Johns
Hopkins Press, Baltimore, 1942; p. iv. The selection by Halley is based on this reprint.

3 Aubrey’s Brief Lives, edited by Oliver Lawson Dick; London, 1950, p. 114.
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An Ingenious Army Capiain and a Generous and Many-sided Man 1417

hapning that Week.” They are described fully in the material selected
from Graunt's book.

Charles II was so favorably impressed by the Observations that he
specially proposed Graunt as an original member of the newly incor-
porated Royal Society. To forestall any possible objections on the ground
that Graunt was a shopkeeper, “his Majesty gave this particular charge
to his Society, that if they found any more such Tradesmen, they should
be sure to admit them all, without any more ado.” * He was elected
F.R. S. in 1662.

The merit of the Observations was immediately recognized and en-
couraged the gathering and study of vital statistics on the Continent—
particularly in France—as well as in England. The book went through
several editions, the fifth of which, published after Graunt's death, was
enlarged by Petty. Historians have long been vexed to decide how much
Petty contributed to the original work. Aubrey, who delighted in retailing
small malices, says only that Graunt had his “Hint” from Petty, but he
implies much more. There seems no doubt that the book was a joint
production. Graunt wrote by far the greater part, including the most
valuable scientific portions; Petty, it may be supposed, added what
Thomas Browne would have called “elegancy” and thereby increased the
popularity of the book. Sir William was a bumptious and somewhat
inflated man, unable to decide whether to patronize Graunt or to claim
credit for his work. There is no evidence that he even understood the
importance and originality of what his friend had done.® The last sentence
of the preface is unmistakably Graunt’s: “For herein 1 have, like a silly
Scholeboy, coming to say my Lesson to the World (that Peevish, and
Tetchie Master) brought a bundle of Rods wherewith to be whipt, for
every mistake I have committed.”

Graunt served as a member of the city common council and in other
offices, but on turning Catholic—he was raised a Puritan—"layd down
trade and all other publique Employment.” Aubrey tells us that he was
a man generally beloved, “a faythfull friend,” prudent and just. “He had
an excellent working head, and was very facetious and fluent in his
conversation.” He was accused of having had “some hand” in the great
fire of London, and the fact that he was a Catholic gave impetus to the
charge. It was said that, as an officer of a water company, he had given
orders stopping the water supply just before the fire started. A diligent
eighteenth-century historian proved this false by showing that Graunt had

4 Tho. Sprat, The History of the Royal Society of London, for the improving of
Natural Knowledge; 3rd Edition, London, 1722, p. 67.

5 For a meticulous sifting of the evidence as to Graunt vs. Petty see the introduc-
tion to a reprint of the Observations (Baltimore, The Johns Hopkins Press, 1939),

by Walter F. Willcox. As to Petty, no inconsiderable person even if he was inflated
:;5‘14 bumptious, see E. Strauss, Sir William Petty, Portrait of a Genius, Glencoe (IIL.),
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had no connection with the company until a month after the fire. Graunt
died of jaundice on Easter-eve 1674, and was buried “under the piewes”
in St. Dunstan’s church. “What pitty ’tis,” wrote Aubrey, “so great an
Ornament of the Citty should be buryed so obscurely!”

L] * - L] -

Unlike poor Graunt, whom my edition of the Britannica does not deign
even to notice, Edmund Halley has been amply celebrated. I shall dispose
of him as briefly as possible. He was born in London in 1658, the son of
a wealthy “Soape-boyler,” and he enjoyed every advantage, including an
excellent education, that rich and indulgent parents could confer. His
passion for mathematics and astronomy showed itself in his youth: when
he arrived at Queen’s College, Oxford, he brought with him a large assort-
ment of astronomical instruments, including a 24-foot telescope, whose
use he had already mastered. His reputation as a theoretician and observer
was established by the time he was twenty. He left the college before
finishing his course, to make southern hemisphere observations at St.
Helena. On his return, and by the King’s command, he was awarded a
Master of Arts degree; a few days later he was elected a Fellow of the
Royal Society. He was then twenty-two. The next few years were spent
on various astronomical labors which required him to travel widely on
the Continent. Becoming deeply interested in the problem of gravity, he
visited Newton at Cambridge in August 1684. It was a momentous meet-
ing, for it resulted in the Principia, a work which might never have
appeared except for Halley’s extraordinary exertions. He suggested the
project in the first place; he averted suppression of the third book; he
bore all the expenses of printing and binding, corrected the proofs, and
laid his own work entirely aside to see Newton's masterpiece through
the press. The expense was assumed at a time when Halley could ill afford
it. His father had suffered serious reverses before he died and had left an
encumbered and almost worthless estate.

Halley's long life was crowded with literary and scientific activity. He
was a classical scholar, hydrographer, mathematician, physicist, and
astronomer. His writings include, besides a vast output in his specialty,
such diverse items as “An Account of the Circulation of the Watery
Vapours of the Sea, and of the Cause of Springs”; “Discourse tending
to prove at what Time and Place Julius Caesar made his first Descent
upon Britain”; “New and General Method of finding the Roots of Equa-
tions”; a translation from the Arabic—which language he learned for
this purpose—of Apollonius’ treatise De sectione rationis and a brilliant
restoration of his two lost books De sectione spatii; an admirable edition
of the same author’s Conics; and more than eighty miscellaneous papers
published by the Royal Society, which he served as secretary. In 1698
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he commanded the war-sloop Paramour Pink in an expedition to the
South Atlantic to study variations of the compass and to find new lands,
if possible. On this journey he “fell in with great islands of ice, of so
incredible a height and magnitude that I scarce dare write my thoughts
of it.” He was made Savilian professor of geometry at Oxford in 1703
and astronomer royal in 1721. One of his greatest achievements was a
study of the orbits of comets, of which he described no less than twenty-
four. Three of these were so much alike that he was convinced that the
comets of 1531, 1607, and 1682 were one body. Assuming its period to
be seventy-six years, he predicted its return in 1758. On Christmas Day
of that year his conjecture was verified, and Halley’s comet has since
appeared in 1835 and 1910.

Halley died at the age of eighty-six. He was a generous, easygoing
person, “free from rancor or jealousy,” who spoke and acted with an
‘“uncommon degree of sprightliness and vivacity.” He enjoyed his work,
had excellent health and owned a large circle of friends, among them
Peter the Great of Russia to whose table he always had access. Bishop
Berkeley thought Halley an “infidel,” and it is true that in 1691 he was
refused the Savilian professorship of astronomy at Oxford because of his
alleged “materialistic views.” The evidence is that he was a sensible man
who spoke his mind freely—a dangerous practice in any age.

Halley’s concern with the “curious tables” of Breslaw was one of his
lesser diversions. This Silesian city had, for more than a century before
his entry into the problem, kept regular records of its births and deaths.
Dr. Caspar Neumann, a scientist and clergyman of Breslaw had analyzed
some of these data, “disproving certain current superstitions with regard
to the effect of the phases of the moon and the so-called ‘climacteric’
years, on health.” @ His results were submitted to Leibniz who sent them
to the Royal Society. It was at about this time that the Society resumed
publication of the “Transactions” after a lapse of several years. Halley
promised to furnish five sheets in twenty of the forthcoming issues. He
was never hard up for ideas, nor for the energy and ingenuity to express
them. His Breslaw papers may therefore be regarded as a kind of filler
for the “Transactions,” to keep his word until something better came
along. Nevertheless, the analysis reflects the exceptional power of his
mind.

& Lowell J. Reed, op. cit.






Qur days on earth are as a shadow, and there is none abiding.
—I CHRONICLES XXIX

And so from hour to hour we ripe and ripe,
And then, from hour to hour, we rot and rot;
And thereby hangs a tale. —SHAKESPEARE (As You Like It)

Let nature and let art do what they please,
When all is done, life’s an incurable disease. —ABRAHAM COWLEY

1 Foundations of Vital Statistics
By JOHN GRAUNT

TO THE RIGHT HONOURABLE JOHN LORD ROBERTS,
BARON OF TRURO, LORD PRIVIE-SEAL,
AND ONE OF HIS MAJESTIE'S MOST HONOURABLE PRIVIE COUNCIL.

My Lord,

AS the favours I have received from your Lordship oblige me to present
you with some token of my gratitude: so the especial Honour I have for
your Lordship hath made me sollicitous in the choice of the Present. For,
if I could have given your Lordship any choice Excerptions out of the
Greek, or Latine Learning, I should (according to our English Proverb)
thereby but carry Coals to Newcastle, and but give your Lordship Puddle-
water, who, by your own eminent Knowledge in those learned Languages,
can drink out of the very Fountains your self.

Moreover, to present your Lordship with tedious Narrations, were but
to speak my own Ignorance of the Value, which his Majesty, and the
Publick have of your Lordship’s Time. And in brief, to offer any thing
like what is already in other Books, were but to derogate from your Lord-
ship’s learning, which the World knows to be universal, and unacquainted
with few useful things contained in any of them.

Now having (I know not by what accident) engaged my thoughts upon
the Bills of Mortality, and so far succeeded therein, as to have reduced
several great confused Volumes into a few perspicuous Tables, and
abridged such Observations as naturally flowed from them, into a few
succinct Paragraphs, without any long Series of multiloquious Deductions,
I have presumed to sacrifice these my small, but first publish'd, Labours
unto your Lordship, as unto whose benigne acceptance of some other of
my Papers, even the Birth of these is due; hoping (if I may without vanity
say it) they may be of as much use to Persons in your Lordship’s place,
as they are of little or none to me, which is no more then the fairest

1421
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Diamonds are to the Journey-man Jeweller that works them, or the poor
Labourer that first dig'd them from the Earth. For with all humble sub-
mission to your Lordship, I conceive, That it doth not ill-become a Peer
of the Parliament, or Member of his Majestie's Council, to consider how
few starve of the many that beg: That the irreligious Proposals of some,
to multiply People by Polygamy, is withall irrational, and fruitless: That
the troublesome seclusions in the Plague-time is not a remedy to be pur-
chased at vast inconveniences: That the greatest Plagues of the City are
equally, and quickly repaired from the Country: That the wasting of
Males by Wars, and Colonies do not prejudice the due proportion be-
tween them and Females: That the Opinions of Plagues accompanying
the Entrance of Kings is false, and seditious: That London, the Me-
tropolis of England, is perhaps a Head too big for the Body, and possibly
too strong: That this Head grows three times as fast as the Body unto
which it belongs, that is, It doubles its People in a third part of the
time: That our Parishes are now grown madly disproportionable: That
our Temples are not sutable to our Religion: That the Trade, and very
City of London removes Westward: That the walled City is but a one
fifth of the whole Pyle: That the old Streets are unfit for the present
frequencie of Coaches: That the passage of Ludgate is a throat too
straight for the Body: That the fighting men about London, are able to
make three as great Armies as can be of use in this Island: That the
number of Heads is such, as hath certainly much deceived some of our
Senatours in their appointments of Pole-money, &c. Now, although your
Lordship’s most excellent Discourses have well informed me, That your
Lordship is no stranger to all these Positions; yet because I knew not that
your Lordship had ever deduced them from the Bills of Mortality; 1
hoped it might not be ungratefull to your Lordship, to see unto how
much profit that one Talent might be improved, besides the many curi-
osities concerning the waxing, and waning of Diseases, the relation be-
tween Healthfull, and fruitfull Seasons, the difference between the City
and Country Air, &c. All which, being new, to the best of my knowledge,
and the whole Pamphlet, not two hours reading, I did make bold to
trouble your Lordship with a perusal of it, and by this humble Dedication
of it, let your Lordship and the world see the Wisdom of our City, in
appointing, and keeping these Accompts, and with how much affection
and success I am
My Lord,
Your Lordship’s most obedient, and
most faithfull Servant,
Birchin-Lane,
25 January 166%.
JoHN GRAUNT.
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THE PREFACE

Having been born, and bred in the City of London, and having always
observed, that most of them who constantly took in the weekly Bills of
Mortality, made little other use of them, then to look at the foot, how
the Burials increased, or decreased; And, among the Casualties, what had
happened rare, and extraordinary in the week currant: so as they might
take the same as a Text to talk upon, in the next Company; and withall,
in the Plague-time, how the Sickness increased, or decreased, that so the
Rich might judge of the necessity of their removal, and Trades-men might
conjecture what doings they were like to have in their respective deal-
ings:

Now, I thought that the Wisdom of our City had certainly designed
the laudable practice of takeing, and distributing these Accompts, for
other, and greater uses then those above-mentioned, or at least, that some
other uses might be made of them: And thereupon I casting mine Eye
upon so many of the General Bills, as next came to hand, I found en-
couragement from them, to look out all the Bills I could, and (to be
short) to furnish my self with as much matter of that kind, even as the
Hall of the Parish-Clerks could afford me; the which, when I had reduced
into Tables (the Copies whereof are here inserted) so as to have a view
of the whole together, in order to the more ready comparing of one Year,
Season, Parish, or other Division of the City, with another, in respect of
all the Burials, and Christnings, and of all the Diseases, and Casualties
happening in each of them respectively; I did then begin, not onely to
examine the Conceits, Opinions, and Conjectures, which upon view of a
few scattered Bills I had taken up; but did also admit new ones, as I
found reason, and occasion from my Tables.

Moreover, finding some Truths, and not commonly-believed Opinions,
to arise from my Meditations upon these neglected Papers, I proceeded
further, to consider what benefit the knowledge of the same would bring
to the World; that I might not engage my self in idle, and useless Specula-
tions, but like those Noble Virtuosi of Gresham-Colledge (who reduce
their subtile Disquisitions upon Nature into downright Mechanical
uses) present the World with some real fruit from those ayrie Blos-
soms.

How far I have succeeded in the Premisses, I now offer to the World’s
censure. Who, I hope, will not expect from me, not professing Letters,
things demonstrated with the same certainty, wherewith Learned men
determine in their Scholes; but will take it well, that I should offer at a
new thing, and could forbear presuming to meddle where any of the
Learned Pens have ever touched before, and that I have taken the pains,
and been at the charge, of setting out those Tables, whereby all men
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may both correct my Positions, and raise others of their own: For herein
I have, like a silly Scholeboy, coming to say my Lesson to the World
(that Peevish, and Tetchie Master) brought a bundle of Rods wherewith
to be whipt, for every mistake I have committed.

OF THE BILLS OF MORTALITY, THEIR BEGINNING, AND PROGRESS

The first of the continued weekly Bills of Mortality extant at the Parish-
Clerks Hall, begins the 29. of December, 1603, being the first year of
James his Reign; since when, a weekly Accompt hath been kept there of
Burials and Christnings. It is true, There were Bills before, viz. for the
years 1592, -93, -94. but so interrupted since, that I could not depend
upon the sufficiencie of them, rather relying upon those Accompts
which have been kept since, in order, as to all the uses I shall make of
them.

I believe, that the rise of keeping these Accompts, was taken from the
Plague: for the said Bills (for ought appears) first began in the said year
1592. being a time of great Mortality; And after some disuse, were
resumed again in the year 1603, after the great Plague then happening
likewise.

These Bills were Printed and published, not onely every week on
Thursdays, but also a general Accompt of the whole Year was given in,
upon the Thursday before Christmas Day: which said general Accompts
have been presented in the several manners following, viz. from the Year
1603, to the Year 1624, inclusive . . .

We have hitherto described the several steps, whereby the Bills of
Mortality are come up to their present state; we come next to shew how
they are made, and composed, which is in this manner, viz. When any
one dies, then, either by tolling, or ringing of a Bell, or by bespeaking
of a Grave of the Sexton, the same is known to the Searchers, corre-
sponding with the said Sexton.

The Searchers hereupon (who are antient Matrons, sworn to their
Office) repair to the place, where the dead Corps lies, and by view of
the same, and by other enquiries, they examine by what Disease, or
Casualty the Corps died. Hereupon they make their Report to the Parish-
Clerk, and he, every Tuesday night, carries in an Accompt of all the
Burials, and Christnings, hapning that Week, to the Clerk of the Hall.
On Wednesday the general Accompt is made up, and Printed, and on
Thursdays published, and dispersed to the several Families, who will pay
four shillings per Annum for them. . . .
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The Diseases, and Casualties this year being 1632.
Bortive, and Stilborn .. 445 | Grief .................... 11
Affrighted .......... 1| Jaundies................. 43
Aged ... ...iiiiiiianns 628 | Jawfaln ................. 8
Ague ...........0iinnnnnn 43 | Impostume ............... 74
Apoplex, and Meagrom .... 17 | Kil’d by several accidents 46
Bit with a mad dog....... 1| King's Evil............... 38
Bleeding ................. 3 | Lethargie ..........c...0n 2
Bloody flux, scowring, and Livergrown .............. 87
flux ...l 348 | Lunatique ............... 5
Brused, Issues, sores, and Made away themselves..... 15
ulcers, ......covvviennnn 28 | Measles .............. .... 80
Burnt, and Scalded........ 5| Murthered ............... 7

Burst, and Rupture........ 9 | Over-laid, and starved at
Cancer, and Wolf.......... 10 TUTSE tvvvvvrennvsrnnns .1
Canker ...........cov0ues 1| Palsie ...ocvvvenninnnnnns 25
Childbed .............c..0. 171 | Piles.....covivunnnnnn N |
Chrisomes, and Infants..... 2268 | Plague...........connuiu 8
Cold, and Cough.......... 55 | Planet ........ I £ 1
Colick, Stone, and Strangury 56 | Pleurisie, and Spleen...... 388
Consumption ............. 1797 | Purples, and spotted Feaver 38
Convulsion ..........0vuus 24]1 | Quinsie .............00.. 7
Cut of the Stome.......... 5 | Rising of the Lighta ...... 08
Dead in the street, and Sciatiea ........cc.000nn 1
starved ...........0... . 6| Scurvey, and Itch......... 9
Dropsie, and Swelling...... 267 | Suddenly ................ 62
Drowned ........co00uunns 34 | Surfet .............00nnnn 86
Executed, and prest to death 18 | Swine Pox............... 8
Falling Sickness........... 7] Teeth ................... 470
Fever ......coviiinnninnns 1108 | Thrush, and Sore mouth 40
Fistula .................. 13| Tympany ................ 13
Flocks, and small Pox.. 531 | Tissick ..........covuunn. 34
French Pox............... 12 | Vomiting ................ 1
Gangrene ................ 5| Worms .................. 27

Gout .........oovinnnnn.. 4
Males....4094 Males . ...4932 | Whereof,
Christened < Females..4590 » Buried < Females..4603 »of the

In all....0584 In sll....0535 | Plague.8

Increased in the Burials in the 122 Parishes, and at the Pest-
house this year...............co0niens consacnissnns cev.. 993

Decreased of the Plague in the 122 Parishes, and at the Pest-

house this year....... -

266 [10]
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GENERAL OBSERVATIONS UPON THE CASUALTIES

In my Discourses upon these Bills 1 shall first speak of the Casualties,
then give my Observations with reference to the Places, and Parishes
comprehended in the Bills; and next of the Years, and Seasons.

1. There seems to be good reason, why the Magistrate should himself
take notice of the numbers of Burials, and Christnings, viz. to see, whether
the City increase or decrease in people; whether it increase proportionably
with the rest of the Nation; whether it be grown big enough, or too big,
&c. But why the same should be made known to the People, otherwise
then to please them as with a curiosity, I see not.

2. Nor could I ever yet learn (from the many I have asked, and those
not of the least Sagacity) to what purpose the distinction between Males
and Females is inserted, or at all taken notice of; or why that of Mar-
riages was not equally given in? Nor is it obvious to everybody, why the
Accompt of Casualties (whereof we are now speaking) is made? The
reason, which seems most obvious for this latter, is, That the state of
health in the City may at all times appear.

3. Now it may be Objected, That the same depends most upon the
Accompts of Epidemical Diseases, and upon the chief of them all,
the Plague; wherefore the mention of the rest seems onely matter of
curiosity.

4. But to this we answer; That the knowledg even of the numbers,
which die of the Plague, is not sufficiently deduced from the meer Report
of the Searchers, which onely the Bills afford; but from other Ratiocina-
tions, and comparings of the Plague with some other Casualties.

5. For we shall make it probable, that in Years of Plague a quarter
part more dies of that Disease then are set down; the same we shall also
prove by the other Casualties. Wherefore, if it be necessary to impart to
the World a good Accompt of some few Casualties, which since it cannot
well be done without giving an Accompt of them all, then is our common
practice of so doing very apt, and rational.

6. Now, to make these Corrections upon the perhaps, ignorant, and
careless Searchers Reports, I considered first of what Authority they were
in themselves, that is, whether any credit at all were to be given to their
Distinguishments: and finding that many of the Casualties were but matter
of sense, as whether a Childe were Abortive, or Stilborn; whether men
were Aged, that is to say, above sixty years old, or thereabouts, when they
died, without any curious determination, whether such Aged persons died
purely of Age, as for that the Innate heat was quite extinct, or the Radical
moisture quite dried up (for I have heard some Candid Physicians com-
plain of the darkness, which themselves were in hereupon) 1 say, that
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these Distinguishments being but matter of sense, I concluded the
Searchers Report might be sufficient in the Case.

7. As for Consumptions, if the Searchers do but truly Report (as they
may) whether the dead Corps were very lean, and worn away, it matters
not to many of our purposes, whether the Disease were exactly the same,
as Physicians define it in their Books. Moreover, In case a man of seventy
five years old died of a Cough (of which had he been free, he might have
possibly lived to ninety) I esteem it little errour (as to many of our
purposes) if this Person be, in the Table of Casualties, reckoned among
the Aged, and not placed under the Title of Coughs.

8. In the matter of Infanits 1 would desire but to know clearly, what
the Searchers mean by Infants, as whether Children that cannot speak, as
the word Infants seems to signifie, or Children under two or three years
old, although I should not be satisfied, whether the Infant died of Winde,
or of Teeth, or of the Convulsion, &c. or were choak’d with Phlegm, or
else of Teeth, Convulsion, and Scowring, apart or together, which, they
say, do often cause one another: for, I say, it is somewhat, to know how
many die usually before they can speak, or how many live past any
assigned number of years.

9. I say, it is enough, if we know from the Searchers but the most
predominant Symptomes; as that one died of the Head-Ache, who was
sorely tormented with it, though the Physicians were of Opinion, that the
Disease was in the Stomach. Again, if one died suddenly, the matter is
not great, whether it be reported in the Bills, Suddenly, Apoplexie, or
Planet-strucken, &c.

10. To conclude, In many of these cases the Searchers are able to
report the Opinion of the Physician, who was with the Patient, as they
receive the same from the Friends of the Defunct, and in very many cases,
such as Drowning, Scalding, Bleeding, Vomiting, making-away them
selves, Lunatiques, Sores, Small-Pox, &c. their own senses are sufficient,
and the generality of the World, are able prettie well to distinguish the
Gowt, Stone, Dropsie, Falling-Sickness, Palsie, Agues, Plurisy, Rickets,
&c. one from another.

11. But now as for those Casualties, which are aptest to be con-
founded, and mistaken, I shall in the ensuing Discourse presume to
touch upon them so far, as the Learning of these Bills hath enabled
me.

12. Having premised these general Advertisements, our first Observa-
tion upon the Casualties shall be, that in twenty Years there dying of all
diseases and Casualties, 229250. that 71124, dyed of the Thrush, Convul-
sion, Rickets, Teeth, and Worms; and as Abortives, Chrysomes, Infants,
Liver-grown, and Over-laid; that is to say, that about %. of the whole died
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of those Diseases, which we guess did all light upon Children under four
or five Years old.

13. There died also of the Small-Pox, Swine-Pox, and Measles, and of
Worms without Convulsions, 12210. of which number we suppose like-
wise, that about 2. might be Children under six Years old. Now, if we
consider that 16. of the said 229 thousand died of that extraordinary and
grand Casualty the Plague, we shall finde that about thirty six per centum
of all quick conceptions, died before six years old.

14. The second Observation is; That of the said 229250. dying of all
Diseases, there died of acute Diseases (the Plague excepted) but about
50000. or % parts. The which proportion doth give a measure of the
state, and disposition of this Climatre, and Air, as to health, these acute,
and Epidemical Diseases happening suddenly, and vehemently, upon the
like corruptions, and alterations in the Air.

15. The third Observation is, that of the said 229. thousand about 70.
died of Chronical Diseases, which shews (as I conceive) the state, and
disposition of the Country (including as well it's Food, as Air) in refer-
ence to health, or rather to longevity: for as the proportion of Acute
and Epidemical Diseases shews the aptness of the Air to suddain and
vehement Impressions, so the Chronical Diseases shew the ordinary tem-
per of the Place, so that upon the proportion of Chronical Diseases seems
to hang the judgment of the fitness of the Country for long Life. For, 1
conceive, that in Countries subject to great Epidemical sweeps men may
live very long, but where the proportion of the Chronical distempers is
great, it is not likely to be so; because men being long sick, and alwayes
sickly, cannot live to any great age, as we see in several sorts of Meral-
men, who although they are less subject to acute Diseases then others,

Table of notorious Diseases. Table of Casualties.
Apoplex ................ 1306 | Bleeding ..........c..... 069
Cut of the Stone. ......... 0038 | Burnt, and Scalded. . ... ... 125
Falling Sickness .......... 0074 | Drowned ............... 829
Dead in the Streets . ...... 0243 | Excessive drinking . ....... 002
GOWE v iiiiiiieiinirnnnn 0134 | Frighted ................ 022
Head-Ach ............... 0051 | Grief «.voviviennnennnns 279
Jaundice ................ 0998 | Hanged themselves ....... 222
Lethargy ................ 0067 | Kil'd by several accidents. .. 1021
Leprosy ................ 0006 | Murthered .............. 0086
Lunatique .............. 0158 | Poysoned ............... 014
Overlaid, and Starved. . . ... 0529 | Smothered .............. 026
Palsy .................. 0423 | Shot ...........cvviinn. 007
Rupture ................ 0201 | Starved ................. 051
Stone and Strangury. ...... 0863 | Vomiting ............... 136
Sciatica ........... ... ... 0005
Sodainly ................ 0454
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yet seldome live to be old, that is, not to reach unto those years, which
David saies is the age of man.

16. The fourth Observation is; That of the said 229000. not 4000. died
of outward Griefs, as of Cancers, Fistulaes, Sores, Ulcers, broken and
bruised Limbs, Impostumes, Itch, King's-evil, Leprosie, Scald-head, Swine-
Pox, Wens, &c. viz. not one in 60.

17. In the next place, whereas many persons live in great fear, and
apprehension of some of the more formidable, and notorious diseases
following; I shall onely set down how many died of each: that the
respective numbers, being compared with the Total 229250, those persons
may the better understand the hazard they are in.

OF PARTICULAR CASUALTIES

My first Observation is, That few are starved. This appears, for that of
the 229250 which have died, we find not above fifty one to have been
starved, excepting helpless Infants at Nurse, which being caused rather by
carelessness, ignorance, and infirmity of the Milch-women, is not properly
an effect, or sign of want of food in the Countrey, or of means to
get it.

The Observation, which I shall add hereunto, is, That the vast numbers
of Beggars, swarming up and down this City, do all live, and seem to be
most of them healthy and strong; whereupon I make this Question,
Whether, since they do all live by Begging, that is, without any kind of
labour; it were not better for the State to keep them, even although they
earned nothing; that so they might live regularly, and not in that De-
bauchery, as many Beggars do; and that they might be cured of their
bodily Impotencies, or taught to work, &c. each according to his condi-
tion, and capacity; or by being employed in some work (not better un-
done) might be accustomed, and fitted for labour. . . .

My next Observation is; That but few are Murthered, viz. not above
86 of the 22950 [sic). which have died of other diseases, and casualties:
whereas in Paris few nights scape without their Tragedie.

The Reasons of this we conceive to be Two: One is the Government,
and Guard of the City by Citizens themselves, and that alternately. No
man settling into a Trade for that employment. And the other is, The
natural, and customary abhorrence of that inhumane Crime, and all
Bloodshed by most Englishmen: for of all that are Executed few are for
Murther. Besides the great and frequent Revolutions, and Changes of
Government since the year 1650, have been with little bloodshed; the
Usurpers themselves having Executed few in comparison, upon the
Accompt of disturbing their Innovations.
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In brief, when any dead Body is found in England, no Algebraist, or
Uncipherer of Letters, can use more subtile suppositions, and varietie of
conjectures to finde out the Demonstration, or Cipher; then every common
unconcerned Person doth to finde out the Murtherers, and that for ever,
untill it be done.

The Lunaticks are also but few, viz. 158 in 229250. though I fear many
more then are set down in our Bills, few being entred for such, but those
who die at Bedlam; and there all seem to die of their Lunacie, who died
Lunaticks; for there is much difference in computing the number of
Lunaticks, that die (though of Fevers, and all other Diseases, unto
which Lunacie is no Supersedeas) and those, that die by reason of their
Madness.

So that, this Casualty being so uncertain, I shall not force my self to
make any inference from the numbers, and proportions we finde in our
Bills concerning it: onely I dare ensure any man at this present, well in
his Wits, for one in the thousand, that he shall not die a Lunatick in
Bedlam, within these seven years, because I finde not above one in about
one thousand five hundred have done so.

The like use may be made of the Accompts of men, that made away
themselves, who are another sort of Madmen, that think to ease them-
selves of pain by leaping into Hell; or else are yet more Mad, so as to
think there is no such place; or that men may go to rest by death, though
they die in self-murther, the greatest Sin.

We shall say nothing of the numbers of those, that have been Drowned,
Killed by falls from Scaffolds, or by Carts running over them, &c. because
the same depends upon the casual Trade, and Employment of men, and
upon matters, which are but circumstantial to the Seasons, and Re-
gions we live in; and affords little of that Science, and Certainty we
aim at.

We finde one Casualty in our Bills, of which though there be daily
talk, there is little effect, much like our abhorrence of Toads, and Snakes,
as most poisonous Creatures, whereas few men dare say upon their own
knowledge, they ever found harm by either; and this Casualty is the
French-Pox, gotten, for the most part, not so much by the intemperate
use of Venery (which rather causeth the Gowf) as of many common
Women.

I say, the Bills of Mortality would take off these Bars, which keep some
men within bounds, as to these extravagancies: for in the afore-mentioned
229250 we finde not above 392 to haved died of the Pox. Now, forasmuch
as it is not good to let the World be lulled into a security, and belief of
Impunity by our Bills, which we intend shall not be onely as Death’s-
heads to put men in minde of their Mortality, but also as Mercurial
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Statues to point out the most dangerous ways, that lead us into it, and
misery. We shall therefore shew, that the Pox is not as the Toads, and
Snakes afore-mentioned, but of a quite contrary nature, together with the
reason, why it appears otherwise.

17. Forasmuch as by the ordinary discourse of the world it seems a
great part of men have, at one time, or other, had some species of this
disease, I wondering why so few died of it, especially because I could not
take that to be so harmless, whereof so many complained very fiercely;
upon inquiry I found that those who died of it out of the Hospitals
(especially that of King’s-Land, and the Lock in Southwark) were re-
turned of Ulcers, and Sores. And in brief I found, that all mentioned to
die of the French-Pox were retured by the Clerks of Saint Giles’s, and
Saint Martin’s in the Fields onely; in which place I understood that most
of the vilest, and most miserable houses of uncleanness were: from
whence I concluded, that onely hated persons, and such, whose very
Noses were eaten of, were reported by the Searchers to have died of this
too frequent Maladie. . .

OF THE DIFFERENCE BETWEEN THE NUMBERS
OF MALES, AND FEMALES

The next Observation is, That there be more Males then Females.

There have been Buried from the year 1628, to the year 1662, exclu-
sive, 209436 Males, and but 190474 Females: but it will be objected,
that in London it may indeed be so, though otherwise elsewhere; because
London is the great Stage and Shop of business, wherein the Masculine
Sex bears the greatest part. But we Answer, That there have been also
Christned within the same time, 139782 Males, and but 130866 Females,
and that the Country Accompts are consonant enough to those of London
upon this matter.

What the Causes hereof are, we shall not trouble our selves to conjec-
ture, as in other Cases, onely we shall desire, that Travellers would
enquire whether it be the same in other Countries.

We should have given an Accompt, how in every Age these proportions
change here, but that we have Bills of distinction but for 32 years, so
that we shall pass from hence to some inferences from this Conclusion;
as first,

I. That Christian Religion, prohibiting Polygamy, is more agreeable to
the Law of Nature, that is, the Law of God, then Mahumetism, and
others, that allow it; for one man his having many women, or wives by
Law, signifies nothing, unless there were many women to one man in
Nature also.
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II. The obvious Objection hereunto is, That one Horse, Bull, or Ram,
having each of them many Females, do promote increase. To which I
Answer, That although perhaps there be naturally, even of these species,
more Males then Females, yet artificially, that is, by making Geldings,
Oxen, and Weathers, there are fewer. From whence it will follow, That
when by experience it is found how many Ews (suppose twenty) one
Ram will serve, we may know what proportion of male-Lambs to castrate,
or geld, viz. nineteen, or thereabouts: for if you emasculate fewer, viz.
but ten, you shall by promiscuous copulation of each of those ten with
two Females, (in such as admit the Male after conception) hinder the
increase so far, as the admittance of two Males will do it: but, if you
castrate none at all, it is highly probable, that every of the twenty Males
copulating with every of the twenty Females, there will be little, or no
conception in any of them all.

ITI. And this I take to be the truest Reason, why Foxes, Wolves, and
other Vermin Animals that are not gelt, increase not faster than Sheep,
when as so many thousands of these are daily Butchered, and very few
of the other die otherwise then of themselves.

We have hitherto said there are more Males, then Females; we say
next, That the one exceed the other by about a thirteenth part; so that
although more men die violent deaths then women, that is, more are
slain in Wars, killed by mischance, drowned at Sea, and die by the Hand
of Justice. Moreover, more men go to Colonies, and travel into foreign
parts, then women. And lastly, more remain unmarried, then of women,
as Fellows of Colleges, and Apprentises, above eighteen, &c. yet the said
thirteenth part difference bringeth the business but to such a pass, that
every woman may have an Husband, without the allowance of Polygamy.

Moreover, although a man be Prolifique fourty years, and a woman
but five and twenty, which makes the Males to be as 560 to 325 Females,
yet the causes above named, and the later marriage of the men, reduce
all to an equality. . . .

It is a Blessing to Man-kind, that by this overplus of Males there is this
natural Bar to Polygamy: for in such a state Women could not live in that
parity, and equality of expence with their Husbands, as now, and here
they do.

The reason whereof is, not, that the Husband cannot maintain as splen-
didly three, as one; for he might, having three Wives, live himself upon a
quarter of his Income, that is in a parity with all three, as-well as, having
but one, live in the same parity at half with her alone: but rather, because
that to keep them all quiet with each other, and himself, he must keep
them all in greater awe, and less splendor which power he having will
probably use it to keep them all as low, as he pleases, and at no more
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cost then makes for his own pleasure; the poorest Subjects (such as this
plurality of Wives must be) being most easily governed.

THE CONCLUSION

It may be now asked, to what purpose tends all this laborious buzzling,
and groping? To know,

. The number of the People?

. How many Males, and Females?

. How many Married, and single?

. How many Teeming Women?

. How many of every Septenary, or Decad of years in age?

How many Fighting Men?

How much London is, and by what steps it hath increased?

. In what time the housing is replenished after a Plague?

What proportion die of each general and perticular Casualties?

. What years are Fruitfull, and Mortal, and in what Spaces, and In-
tervals, they follow each other?

. In what proportion Men neglect the Orders of the Church, and
Sects have increased?

12. The disproportion of Parishes?

13. Why the Burials in London exceed the Christnings, when the con-

trary is visible in the Country?

COVPNA YLD WN -

p—
—

To this I might answer in general by saying, that those, who cannot
apprehend the reason of these Enquiries, are unfit to trouble themselves
to ask them.

I might answer by asking; Why so many have spent their times, and
estates about the Art of making Gold? which, if it were much known,
would onely exalt Silver into the place, which Gold now possesseth; and
if it were known but to some one Person, the same single Adeptus could
not, nay, durst not enjoy it, but must be either a Prisoner to some Prince,
and Slave to some Voluptuary, or else skulk obscurely up and down for
his privacie, and concealment.

I might Answer; That there is much pleasure in deducing so many
abstruse, and unexpected inferences out of these poor despised Bills of
Mortality; and in building upon that ground, which hath lain waste these
eighty years. And there is pleasure in doing something new, though never
so little, without pestering the World with voluminous Transcriptions.

But, I Answer more seriously; by complaining, That whereas the Art
of Governing, and the true Politiques, is how to preserve the Subject in
Peace, and Plenty, that men study onely that part of it, which teacheth
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how to supplant, and over-reach one another, and how, not by fair out-
running, but by tripping up each other’s heels, to win the Prize.

Now, the Foundation, or Elements of this honest harmless Policy is to
understand the Land, and the hands of the Territory to be governed, ac-
cording to all their intrinsick, and accidental differences: as for example;
It were good to know the Geometrical Content, Figure, and Scituation of
all the Lands of a Kingdom, especially, according to its most natural,
permanent, and conspicuous Bounds. It were good to know, how much
Hay an Acre of every sort of Meadow will bear? how many Cattel the
same weight of each sort of Hay will feed, and fatten? what quantity of
Grain, and other Commodities the same Acre will hear in one, three, or
seven years communibus Annis? unto what use each soil is most proper?
All which particulars I call the intrinsick value: for there is also another
value meerly accidental, or extrinsick, consisting of the Causes, why a
parcel of Land, lying near a good Market, may be worth double to
another parcel, though but of the same intrinsick goodness; which answers
the Queries, why Lands in the North of England are worth but sixteen
years purchase, and those of the West above eight and twenty. It is no
less necessary to know how many People there be of each Sex, State, Age,
Religion, Trade, Rank, or Degree, &c. by the knowledg whereof Trade, and
Government may be made more certain, and Regular; for, if men knew
the People as aforesaid, they might know the consumption they would
make, so as Trade might not be hoped for where it is impossible. As for
instance, I have heard much complaint, that Trade is not set up in some
of the South-western, and North-western Parts of Ireland, there being so
many excellent Harbours for that purpose, whereas in several of those
Places I have also heard, that there are few other Inhabitants, but such
as live ex sponte creatis, and are unfit Subjects of Trade, as neither em-
ploying others, nor working themselves.

Moreover, if all these things were clearly, and truly known (which I
have but guessed at) it would appear, how small a part of the People
work upon necessary Labours, and Callings, viz. how many Women, and
Children do just nothing, onely learning to spend what others get? how
many are meer Voluptuaries, and as it were meer Gamesters by Trade?
how many live by puzling poor people with unintelligible Notions in
Divinity, and Philosophie? how many by perswading credulous, delicate,
and Litigious Persons, that their Bodies, or Estates are out of Tune, and
in danger? how many by fighting as Souldiers? how many by Ministeries
of Vice, and Sin? how many by Trades of meer Pleasure, or Ornaments?
and how many in a way of lazie attendance, &c. upon others? And on the
other side, how few are employed in raising, and working necessary food,
and covering? and of the speculative men, how few do truly studie Nature,
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and Things? The more ingenious not advancing much further then to
write, and speak wittily about these matters.

I conclude, That a clear knowledge of all these particulars, and many
more, whereat I have shot but at rovers, is necessary in order to good,
certain, and easie Government, and even to balance Parties, and factions
both in Church and State. But whether the knowledge thereof be neces-
sary to many, or fit for others, then the Sovereign, and his chief Min-
isters, I leave to consideration.






Factual science may collect statistics and make charts. But its predictions
are, as has been well said, but past history reversed. —JouN DEWEY

2  First Life Insurance Tables
By EDMUND HALLEY

AN ESTIMATE OF THE DEGREES OF THE MORTALITY OF MANKIND, DRAWN
FROM CURIOUS TABLES OF THE BIRTHS AND FUNERALS AT THE CITY OF
BRESLAW; WITH AN ATTEMPT TO ASCERTAIN THE PRICE OF ANNUITIES UPON
LIVES. BY MR. E. HALLEY, R.S.S.

THE Contemplation of the Mortality of Mankind, has besides the Moral,
its Physical and Political Uses, both which have been some years since
most judiciously considered by the curious Sir William Petty, in his
Natural and Political Observations on the Bills of Mortality of London,
owned by Captain John Graunt. And since in a like Treatise on the Bills
of Mortality of Dublin. But the Deduction from those Bills of Mortality
seemed even to their Authors to be defective: First, In that the Number
of the People was wanting. Secondly, That the Ages of the People dying
was not to be had. And Lastly, That both London and Dublin by reason
of the great and casual Accession of Strangers who die therein, (as ap-
peared in both, by the great Excess of the Funerals above the Births)
rendred them incapable of being Standards for this purpose; which re-
quires, if it were possible, that the People we treat of should not at all
be changed, but die where they were born, without any Adventitious
Increase from Abroad, or Decay by Migration elsewhere.

This Defect seems in a great measure to be satisfied by the late curious
Tables of the Bills of Mortality at the City of Breslaw, lately communi-
cated to this Honourable Society by Mr. Justell, wherein both the Ages
and Sexes of all that die are monthly delivered, and compared with the
number of the Births, for Five Years last past, viz. 1687, 88, 89, 90, 91,
seeming to be done with all the Exactness and Sincerity possible.

This City of Breslaw is the Capital City of the Province of Silesia; or,
as the Germans call it, Schlesia, and is scituated on the Western Bank of
the River Oder, anciently called Viadrus; near the Confines of Germany
and Poland, and very nigh the Latitude of London. It is very far from
the Sea, and as much a Mediterranean Place as can be desired, whence
the Confluence of Strangers is but small, and the Manufacture of Linnen
employs chiefly the poor People of the place, as well as of the Country
round about: whence comes that sort of Linnen we usually call your
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Sclesie Linnen; which is the chief, if not the only Merchandize of the
place. For these Reasons the People of this City seem most proper for a
Standard; and the rather, for that the Births do, a small matter, exceed the
Funerals. The only thing wanting is the Number of the whole People,
which in some measure I have endeavoured to supply by comparison of
the Mortality of the People of all Ages, which I shall from the said Bills
trace out with all the Acuracy possible.

It appears that in the Five Years mentioned, viz. from 87 to 91 inclu-
sive, there were born 6193 Persons, and buried 5869; that is, born per
Annum 1238, and buried 1174; whence an Encrease of the People may
be argued of 64 per Annum, or of about a 20th part, which may perhaps
be ballanced by the Levies for the Emperor's Service in his Wars. But this
being contingent, and the Births certain, I will suppose the People of
Breslaw to be encreased by 1238 Births annually. Of these it appears by
the same Tables, that 348 do die yearly in the first Year of their Age,
and that but 890 do arrive at a full Years Age; and likewise, that 198 do
die in the Five Years between 1 and 6 compleat, taken at a Medium; so
that but 692 of the Persons born do survive Six whole Years. From this
Age the Infants being arrived at some degree of Firmness, grow less and
less Mortal; and it appears that of the whole People of Breslaw there die
yearly, as in the following Table, wherein the upper Line shews the Age,
and the next under it the Number of Persons of that Age dying yearly.

7. 8.9. . 14 . 18 .21 . 27.28.. 35.36.

11 .11 .6.5% . 2.3% 564%6% 9. 8.7. 7. 8.
42 . 45 49 54 .55 .56 . 63 70 71 . 72

9% 8.9. 7.7.1011. 9. 9.10.129% 14 9 .11
77 81 84 . 90 91 .98 .99 . 100.

9% 6.7. 3.4. 2.1. 1. 1. 0.%. %

And where no Figure is placed over, it is to be understood of those
that die between the Ages of the preceding and consequent Column.

From this Table it is evident, that from the Age of 9 to about 25
there does not die above 6 per Annum of each Age, which is much about
one per Cent. of those that are of those Ages: And whereas in the 14, 15,
16, 17 Years there appear to die much fewer, as 2 and 3%, yet that seems
rather to be attributed to Chance, as are the other Irregularities in the
Series of Ages, which would rectifie themselves, were the number of
Years much more considerable, as 20 instead of 5. And by our own
Experience in Christ-Church Hospital, 1 am informed there die of the
Young Lads, much about one per Cent. per Annum, they being of the
foresaid Ages. From 25 to 50 there seem to die from 7 to 8 and 9 per
Annum of each Age; and after that to 70, they growing more crasie,
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though the number be much diminished, yet the Mortality encreases,
and there are found to die 10 or 11 of each Age per Annum: From

thence the number of the Living being grown very small, they gradually
decline till there be none left to die; as may be seen at one View in the

Table.

From these Considerations I have formed the adjoyned Table, whose
Uses are manifold, and give a more just Idea of the State and Condition
of Mankind, than any thing yet extant that I know of. It exhibits the
Number of People in the City of Breslaw of all Ages, from the Birth
to extream Old Age, and thereby shews the Chances of Mortality at all
Ages, and likewise how to make a certain Estimate of the value of
Annuities for Lives, which hitherto has been only done by an imaginary
Valuation: Also the Chances that there are that a Person of any Age
proposed does live to any other Age given; with many more, as I shall
hereafter shew. This Table does shew the number of Persons that are
living in the Age current annexed thereto, as follows:

Age Per- Age Per- Age Per- Age Per- Age Per- Age Per- Age Persons
Curt. sons Curt. sons Curt. sons Curt. sons Curt. sons Curt. sons 7 5547

11000 8 680 15 628 22 586 29 539 36 481 14 4584
855 9 670 16 622 23 579 30 531 37 472 21 4270
798 10 661 17 616 24 573 31 523 38 463 28 3964
760 11 653 18 610 25 567 32 515 39 454 35 3604
732 12 646 19 604 26 560 33 507 40 445 42 3178
710 13 640 20 598 27 553 34 499 41 436 49 2709
692 14 634 21 592 28 546 35 490 42 427 56 2194

Age Per- Age Per- Age Per- Age Per- Age Per- Age Per- % igg:

Curt. sons Curt, sons Curt. sons Curt. sons Curt. sons Curt, sons 77 692

43 417 50 346 57 272 64 202 71 131 78 S8 84 253

44 407 51 335 58 262 65 192 72 120 79 49 100 107

45 397 52 324 59 252 66 182 73 109 80 41 ———————
46 387 53 313 60 242 67 172 74 98 Bl 34 34000

47 377 54 302 61 232 68 162 75 88 82 28 Sum Total
48 367 55 292 62 222 69 152 76 78 83 23

49 357 56 282 63 212 70 142 77 68 84 20

e BRI

Thus it appears, that the whole People of Breslaw does consist of 34000
Souls, being the Sum Total of the Persons of all Ages in the Table: The
first use hereof is to shew the Proportion of Men able to bear Arms in
any Multitude, which are those between 18 and 56, rather than 16 and 60;
the one being generally too weak to bear the Fatigues of War and the
Weight of Arms, and the other too crasie and infirm from Age, notwith-
standing particular Instances to the contrary. Under 18 from the Table,
are found in this City 11997 Persons, and 3950 above 56, which together
make 15947. So that the Residue to 34000 being 18053 are Persons be-
tween those Ages. At least one half thereof are Males, or 9027: So that
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the whole Force this City can raise of Fencible Men, as the Scotch call
them, is about 9000, or %4, or somewhat more than a quarter of the
Number of Souls, which may perhaps pass for a Rule for all other places.

The Second Use of this Table is to shew the differing degrees of Mor-
tality, or rather Vitality in all Ages; for if the number of Persons of any
Age remaining after one year, be divided by the difference between that
and the number of the Age proposed, it shews the odds that there is, that
a Person of that Age does not die in a Year. As for Instance, a Person of
25 Years of Age has the odds of 560 to 7 or 80 to 1, that he does not
die in a Year: Because that of 567, living of 25 years of Age, there do
die no more than 7 in a Year, leaving 560 of 26 Years old.

So likewise for the odds, that any Person does not die before he attain
any proposed Age: Take the number of the remaining Persons of the Age
proposed, and divide it by the difference between it and the number of
those of the Age of the Party proposed; and that shews the odds there is
between the Chances of the Party’s living or dying. As for Instance; What
is the odds that a Man of 40 lives 7 Years: Take the number of Persons
of 47 years, which in the Table is 377, and subtract it from the number
of Persons of 40 years, which is 445, and the difference is 68: Which
shews that the Persons dying in that 7 years are 68, and that it is 377 to
68 or 5% to 1, that a Man of 40 does live 7 Years. And the like for any
other number of Years.

Use 111, But if it be enquired at what number of Years, it is an even
Lay that a Person of any Age shall die, this Table readily performs it:
For if the number of Persons living of the Age proposed be halfed, it will
be found by the Table at what Year the said number is reduced to half
by Mortality; and that is the Age, to which it is an even Wager, that a
Person of the Age proposed shall arrive before he die. As for Instance;
A Person of 30 Years of Age is proposed, the number of that Age is 531,
the half thereof is 265, which number I find to be between 57 and 58
Years; so that a Man of 30 may reasonably expect to live between 27
and 28 Years.

Use IV. By what has been said, the Price of Insurance upon Lives
ought to be regulated, and the difference is discovered between the price
of ensuring the Life of a Man of 20 and 50, for Example: it being 100
to 1 that a Man of 20 dies not in a year, and but 38 to 1 for a Man of
50 Years of Age.

Use V. On this depends the Valuation of Annuities upon Lives; for it
is plain that the Purchaser ought to pay for only such a part of the value
of the Annuity, as he has Chances that he is living; and this ought to be
computed yearly, and the Sum of all those yearly Values being added
together, will amount to the value of the Annuity for the Life of the
Person proposed. Now the present value of Money payable after a term
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of years, at any given rate of Interest, either may be had from Tables
already computed; or almost as compendiously, by the Table of Loga-
rithms: For the Arithmetical Complement of the Logarithm of Unity and
its yearly Interest (that is, of 1, 06 for Six per Cent. being 9, 974694.)
being multiplied by the number of years proposed, gives the present value
of One Pound payable after the end of so many years. Then by the fore-
going Proposition, it will be as the number of Persons living after that
term of years, to the number dead; so are the Odds that any one Person
is Alive or Dead. And by consequence, as the Sum of both or the number
of Persons living of the Age first proposed, to the number remaining after
s0 many years, (both given by the Table) so the present value of the
yearly Sum payable after the term proposed, to the Sum which ought to
be paid for the Chance the person has to enjoy such an Annuity after
so many Years. And this being repeated for every year of the persons
Life, the Sum of all the present Values of those Chances is the true Value
of the Annuity. This will without doubt appear to be a most laborious
Calculation, but it being one of the principal Uses of this Speculation, and
having found some Compendia for the Work, I took the pains to compute
the following Table, being the short Result of a not ordinary number of
Arithmetical Operations; It shews the Value of Annuities for every Fifth
Year of Age, to the Seventieth, as follows.

Age Years Purchase Age Years Purchase Age Years Purchase

1 10,28 25 12,27 50 9,21
5 13,40 30 11,72 55 8,51
10 13,44 35 11,12 60 7,60
15 13,33 40 10,57 65 6,54
20 12,78 45 9,91 70 532

This shews the great Advantage of putting Money into the present
Fund lately granted to their Majesties, giving 14 per Cent. per Annum,
or at the rate of 7 years purchase for a Life; when young Lives, at the
usual rate of Interest, are worth above 13 years Purchase. It shews like-
wise the Advantage of young Lives over those in Years; a Life of Ten
Years being almost worth 13% years purchase, whereas one of 36 is
worth but 11.

Use VI. Two Lives are likewise valuable by the same Rule; for the
number of Chances of each single Life, found in the Table, being multi-
plied together, become the Chances of the Two Lives. And after any
certain Term of Years, the Product of the two remaining Sums is the
Chances that both the Persons are living. The Product of the two Dif-
ferences, being the numbers of the Dead of both Ages, are the Chances
that both the Persons are dead. And the two Products of the remaining
Sums of the one Age multiplied by those dead of the other, shew the
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Chances that there are that each Party survives the other: Whence is
derived the Rule to estimate the value of the Remainder of one Life after
another. Now as the Product of the Two Numbers in the Table for the
Two Ages proposed, is to the difference between that Product and the
Product of the two numbers of Persons deceased in any space of time,
so is the value of a Sum of Money to be paid after so much time, to the
value thereof under the Contingency of Mortality. And as the aforesaid
Product of the two Numbers answering to the Ages proposed, to the
Product of the Deceased of one Age multiplied by those remaining alive
of the other; So the Value of a Sum of Money to be paid after any time
proposed, to the value of the Chances that the one Party has that he
survives the other whose number of Deceased you made use of, in the
second Term of the proportion. This perhaps may be better understood,
by putting N for the number of the younger Age, and n for that of the
Elder; Y, y the deceased of both Ages respectively, and R, r for the Re-
mainders; and R + Y = N and r 4+ y = n. Then shall N n be the whole
number of Chances; N n — Y y be the Chances that one of the two Per-
sons is living, Y y the Chances that they are both dead; R y the Chances
that the elder Person is dead and the younger living; and r ¥ the Chances
that the elder is living and the younger dead. Thus two Persons of 18 and
35 are proposed, and after 8 years these Chances are required. The Num-
bers for 18 and 35 are 610 and 490, and there are 50 of the First Age
dead in 8 years, and 73 of the Elder Age. There are in all 610 X 490 or
298900 Chances; of these there are 50 X 73 or 3650 that they are both
dead. And as 298900, to 298900 — 3650, or 295250: So is the present
value of a Sum of Money to be paid after 8 years, to the present value of
a Sum to be paid if either of the two live. And as 560 X 73, so are the
Chances that the Elder is dead, leaving the Younger; and as 417 X 50, so
are the Chances that the Younger is dead, leaving the Elder. Wherefore
as 610 X 490 to 560 X 73, so is the present value of a Sum to be paid
at eight years end, to the Sum to be paid for the Chance of the Youngers
Survivance; and as 610 X 490 to 417 X 50, so is the same present value
to the Sum to be paid for the Chance of the Elders Survivance.

This possibly may be yet better explained by expounding these
Products by Rectangular Parallelograms, as in Figure 1, wherein A B or
C D represents the number of persons of the younger Age, and D E, B H
those remaining alive after certain term of years; whence C E will answer
the number of those dead in that time: So 4 C, B D may represent the
number of the Elder Age; A F, B[ the Survivors after the same term;
and C F, D I, those of that Age that are dead at that time. Then shall the
whole Parallelogram 4 B C D be N n, or the Product of the two Numbers
of persons, representing such a number of Persons of the two Ages given;
and by what was said before, after the Term proposed the Rectangle H D
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shall be as the number of Persons of the younger Age that survive, and
the Rectangle 4 E as the number of those that die. So likewise the Rec-
tangles A4 I, F D shall be as the Numbers, living and dead, of the other
Age. Hence the Rectangle H I shall be as an equal number of both Ages
surviving. The Rectangle F E being the Product of the deceased, or Y y,
an equal number of both dead. The Rectangle G D or Ry, a number
living of the younger Age, and dead of the Elder: And the Rectangle 4 G
or r Y a number living of the Elder Age, but dead of the younger. This
being understood, it is obvious, that as the whole Rectangle 4 D or Nn
is to the Gnomon FABDEG or Nn—Y y, so is the whole number of
Persons or Chances, to the number of Chances that one of the two Persons
is living: Andas A D or Nnisto FE or Y y, so are all the Chances, to
the Chances that both are dead; whereby may be computed the value of
the Reversion after both Lives. And as A D to G D or R y, so the whole
number of Chances, to the Chances that the younger is living and the
other dead; whereby may be cast up what value ought to be paid for the
Reversion of one Life after another, as in the case of providing for
Clergy-mens Widows and others by such Reversions. And as A D to 4 G
or r Y, so are all the Chances, to those that the Elder survives the younger.
I have been the more particular, and perhaps tedious, in this matter, be-
cause it is the Key to the Case of Three Lives, which of it self would not
have been so easie to comprehend.

VIL If Three Lives are proposed, to find the value of an Annuity dur-
ing the continuance of any of those three Lives. The Rule is, As the
Product of the continual multiplication of the Three Numbers, in the
Table, answering to the Ages proposed, is to the difference of that Product
and of the Product of the Three Numbers of the deceased of those Ages,
in any given term of Years; So is the -present value of a Sum of Money to
be paid certainly after so many Years, to the present value of the same
Sum to be paid, provided one of those three Persons be living at the Ex-
piration of that term. Which proportion being yearly repeated, the Sum
of all those present values will be the value of an Annuity granted for
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three such Lives. But to explain this, together with all the Cases of Sur-
vivance in three Lives: Let N be the Number in the Table for the Younger
Age, n for the Second, and » for the Elder Age; let Y be those dead of
the Younger Age in the term proposed, y those dead of the Second Age,
and » those of the Elder Age; and let R be the Remainder of the younger
Age, r that of the middle Age, and § the Remainder of the Elder Age.
Then shall R + Y be equal to N, r+ y to n, and § + v to », and the con-
tinual Product of the three Numbers N n » shall be equal to the continual
Product of R+ Y X r+ Y X J + v,! which being the whole number of
Chances for three Lives is compounded of the eight Products following.
(1) Rr{, which is the number of Chances that all three of the Persons
are living. (2) r J Y, which is the number of Chances that the two Elder
Persons are living, and the younger dead. (3) Rpy the number of
Chances that the middle Age is dead, and the younger and Elder living.
(4) R r v being the Chances that the two younger are living, and the
elder dead. (5) § Y y the Chances that the two younger are dead, and
the elder living. (6) r ¥ v the Chances that the younger and elder are
dead, and the middle Age living. (7) R y v, which are the Chances that
the younger is living, and the two other dead. And Lastly and Eightly,
Y y v, which are the Chances that all three are dead. Which latter sub-
tracted from the whole number of Chances N nv, leaves Nnv—Y yv
the Sum of all the other Seven Products; in all of which one or more of
the three Persons are surviving:

To make this yet more evident, I have added Figure 2, wherein these
Eight several Products are at one view exhibited. Let the rectangled
Parallelepipedon A BC D E F G H be constituted of the sides A B, G H,
&c. proportional to N the number of the younger Age; A C, B D, &c.
proportional to n; and A G, C E, &c. proportional to the number of the
Elder, or ». And the whole Parallelepipedon shall be as the Product N n »,
or our whole number of Chances. Let BPbeas R,and 4 Pas Y: let CL
be as r, and Ln as y; and GN as §, and N A as v} and let the Plain
P R e a be made parallel to the plain 4 C G E; the plain N V b Y parallel
to A BC D; and the plain L X T Q parallel to the plain 4 BG H. And
our first Product R r § shall be as the Solid ST W 1F Z e b. The Second,
or r J Y will be as the Solid EY ZeQ SM 1. The Third, R | y, as the
Solid RHOV WI1ST. And the Fourth, Rrv, as the Solid ZabD W
X I K. Fifthly, { Yy, as the Solid GQRSIM N O. Sixthly, rY v, as
IKLMGYZA. Seventhly, Ry v, as the Solid I KPOBX V W. And
Lastly, A1 KL M N O P will be as the Product of the 3 numbers of per-
sons dead, or Y yv. I shall not apply this in all the cases thereof for
brevity sake; only to shew in one how all the rest may be performed, let

! Epitor’s NoTe: The manuscript for the 9th line of this page contains a misprint.
It should read R + Y X r + y, etc. Likewise, in line 13, R p y should read R { y.
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it be demanded what is the value of the Reversion of the younger Life
after the two elder proposed. The proportion is as the whole number of
Chances, or N n » to the Product R y v, so is the certain present value of
the Sum payable after any term proposed, to the value due to such
Chances as the younger person has to bury both the elder, by the term
proposed; which therefore he is to pay for. Here it is to be noted, that

Years Present value Years Present value Years Present value

of 11 of 11 of1l
1 0,9434 19 0,3305 37 0,1158
2 0,8900 20 0,3118 38 0,1092
3 0,8396 21 0,2941 39 0,1031
4 0,7921 22 0,2775 40 0,0972
5 0,7473 23 0,2618 45 0,0726
6 0,7050 24 0,2470 50 0,0543
7 0,6650 25 0,2330 55 0,0406
8 0,6274 26 0,2198 60 0,0303
9 0,5919 27 0,2074 65 0,0227
10 0,5584 28 0,1956 70 0,0169
11 0,5268 29 0,1845 75 0,0126
12 0,4970 30 0,1741 80 0,0094
13 0,4688 31 0,1643 85 0,0071
14 0,4423 32 0,1550 90 0,0053
15 0,4173 33 0,1462 95 0,0039
16 0,3936 34 0,1379 100 0,0029
17 0,3714 35 0,1301

18 0,3503 36 0,1227
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the first term of all these Proportions is the same throughout, viz. N n».
The Second changing yearly according to the Decrease of R, r, §, and
Encrease of Y, y, v. And the third are successively «he present values of
Money payable after one, two, three, &c. years, according to the rate of
Interest agreed on. These numbers, which are in all cases of Annuities of
necessary use, I have put into the following Table, they being the Decimal
values of One Pound payable after the number of years in the Margent,
at the rate of 6 per Cent. . .

I. SOME FURTHER CONSIDERATIONS ON THE BRESLAW BILLS OF
MORTALITY. BY THE SAME HAND, &C.

SIR,

What I gave you in my former Discourse on these Bills, was chiefly
designed for the Computation of the Values of Annuities on Lives,
wherein I believe I have performed what the short Period of my Observa-
tions would permit, in relation to exactness, but at the same time do
earnestly desire, that their Learned Author Dr. Newman of Breslaw would
please to continue them after the same manner for yet some years further,
that so the casual Irregularities and apparent Discordance in the Table,
[p. 1438] may by a certain number of Chances be rectified and ascertain’d.

Were this Calculus founded on the Experience of a very great number
of Years, it would be very well worth the while to think of Methods for
facilitating the Computation of the Value of two, three, or more Lives;
which as proposed in my former, seems (as I am inform’d) a Work of
too much Difficulty for the ordinary Arithmetician to undertake. I have
sought, if it were possible, to find a Theorem that might be more concise
than the Rules there laid down, but in vain; for all that can be done to
expedite it, is by Tables of Logarithms ready computed, to exhibit the
Rationes of N to Y in each single Life, for every third, fourth or fifth
Year of Age, as occasion shall require; and these Logarithms being added
to the Logarithms of the present Value of Money payable after so many
Years, will give a Series of Numbers, the Sum of which will shew the
Value of the Annuity sought. However for each Number of this Series
two Logarithms for a single Life, three for two Lives, and four for three
Lives, must necessarily be added together. If you think the matter, under
the uncertainties I have mentioned, to deserve it, I shall shortly give you
such a Table of Logarithms as I speak of, and an Example or two of the
use thereof: But by Vulgar Arithmetick the labour of these Numbers
were immense; and nothing will more recommend the useful Invention
of Logarithms to all Lovers of Numbers, than the advantage of Dispatch
in this and such like Computations.
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Besides the uses mentioned in my former, it may perhaps not be an
unacceptable thing to infer from the same Tables, how unjustly we repine
at the shortness of our Lives, and think our selves wronged if we attain
not Old Age; whereas it appears hereby, that the one half of those that
are born are dead in Seventeen years time, 1238 being in that time
reduced to 616. So that instead of murmuring at what we call an untimely
Death, we ought with Patience and unconcern to submit to that Dissolu-
tion which is the necessary Condition of our perishable Materials, and of
our nice and frail Structure and Composition: And to account it as a
Blessing that we have survived, perhaps by many Years, that Period of
Life, whereat the one half of the whole Race of Mankind does not arrive.

A second Observation I make upon the said Table, is that the Growth
and Encrease of Mankind is not so much stinted by any thing in the
Nature of the Species, as it is from the cautious difficulty most People
make to adventure on the state of Marriage, from the prospect of the
Trouble and Charge of providing for a Family. Nor are the poorer sort
of People herein to be blamed, since their difficulty of subsisting is occa-
sion’d by the unequal Distribution of Possessions, all being necessarily fed
from the Earth, of which yet so few are Masters. So that besides them-
selves and Families, they are yet to work for those who own the Ground
that feeds them: And of such does by very much the greater part of
Mankind consist; otherwise it is plain, that there might well be four times
as many Births as we now find. For by computation from the Table, I find
that there are nearly 15000 Persons above 16 and under 45, of which at
least 7000 are Women capable to bear Children. Of these notwithstanding
there are but 1238 born yearly, which is but little more than a sixth part:
So that about one in six of these Women do breed yearly; whereas were
they all married, it would not appear strange or unlikely, that four of six
should bring a Child every year. The Political Consequences hereof I shall
not insist on, only the Strength and Glory of a King being in the multitude
of his Subjects, I shall only hint, that above all things, Celibacy ought to
be discouraged, as, by extraordinary Taxing and Military Service: And
those who have numerous Families of Children to be countenanced and
encouraged by such Laws as the Jus trium Liberorum among the Romans.
But especially, by an effectual Care to provide for the Subsistence of the
Poor, by finding them Employments, whereby they may earn their Bread,
without being chargeable to the Publick.



COMMENTARY ON

The Law of
Large Numbers

N Jacob Bernoulli’s famous book, Ars Conjectandi, appears a theorem
of cardinal significance to the theory of probability. Usually called
Bernoulli’s Theorem, it is also known as the Law of Large Numbers, a
name given to it by the French mathematician, Siméon Poisson (1781-
1840). This theorem was the first attempt to deduce statistical measures
from individual probabilities and Bernoulli claimed that it took him
twenty years to perfect it. The time was not ill spent considering the
central importance of the result, but mathematicians, scientists and philos-
ophers have since then devoted many more than twenty years to examin-
ing and debating the exact meaning of the theorem and the proper range
of its application in statistics.

The theorem is quite simple to state. Indeed, on first seeing it you may
wonder what Bernoulli could have been stewing over for twenty years,
and why it should have stirred so much controversy later on. The fact is,
it is a nest of subtleties and traps; the harder one thinks about it, the
more one grows uneasy. Bernoulli, of course, had his hands full making
the machinery; he was entirely unaware of the logical and philosophical
snares he was setting.

Here, then, is a fairly simple statement of Bernoulli’s Theorem: If the
probability of an event’s occurrence on a single trial is p, and if a number
of trials are made, independently and under the same conditions, the
most probable proportion of the event’s occurrences to the total number
of trials is also p; further, the probability that the proportion in question
will differ from p by less than a given amount, however small, increases
as the number of trials increases.! By “throwing mathematical discretion
to the winds,” a well-known student of the subject arrives at this rough
everyday definition: “If the probability of an event is p, and if an infinity
of trials are made, the proportion of successes is sure to be p.” 2 Nothing
bad will happen to you if you adopt this as a reference point in my dis-
cussion and in reading the selection from Bernoulli. Nevertheless, I should
like to make one more definition available. This one is a skillful com-
promise between a mathematical and a nonmathematical formulation:
*‘In a sufficiently large set of a things it is almost certain that the relative

! For two excellent definitions, from which mine has been synthesized, see John
Maynard Keynes, A Treatise on Probability, London, 1921, pp. 337-338; and Thorn-

ton C. Fry, Probability and Its Engineering Uses, New York, 1928, p. 100.
2 Fry, op. cit., p. 100,
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frequency of 8 things will approximate to the probability of an a thing's
being B within any degree of approximation which may be desired.” Here
the phrase ‘almost certain’ is to be understood as a convenient way of
saying that there is a probability as near as we like to 1.” 3

Each of these definitions raises several difficult questions. I cannot begin
to state, let alone answer, them all adequately. But a few points should be
set forth briefly to give the reader an inkling of the importance of
Bernoulli’s result and of the problems surrounding it.

1. The first thing to notice is that the theorem has to do with proportions
or frequencies and not with the absolute number of times an event
occurs. Increase the number of trials and it becomes increasingly likely
(i.e., the probability approaches 1) that the ratio of successes to total
trials will differ from p (the probability of the single event) by less
than a fixed amount, no matter how small; but as the number of trials
increases, it becomes increasingly unlikely (i.e., the probability ap-
proaches zero) that the number of successes will differ from p by
less than a fixed amount, no matter how large. This point is easily
illustrated. In tossing a coin, one may assume that the probability of
getting a head is %. On this assumption the most probable number of
heads in a series of trials is half the total number of tosses. It is not
surprising, however, to find a deviation from this ratio: six heads in
ten tosses, forty-eight in a hundred, and so on. The question is, what
is the probability that in n successive throws the proportion of heads
will differ from % by, for example, not more than %0? According to
Bernoulli’s theorem, the probability approaches 1 as the number n
(of successive throws) increases. In other words the probability of a
relative deviation of at least %o “sinks rapidly.” Six heads in ten
exceeds our limit, but it is much less likely that the relative frequency
of heads will differ from % by more than %o in 100 throws, and even
more unlikely in 1,000 throws. At the same time, it grows more
probable as n increases that the absolute deviation of the number of
heads from half the total number of throws will exceed any given
number. For example, there is a much greater chance of a deviation
of 1 in 100 tosses (i.e., 51 or 49 heads instead of 50), than of 1 in
10 tosses (i.e., 6 or 4 heads instead of 5); of 10 in 1,000 tosses than
10 in 100; and so on. That is the essence of the theorem.5

2. Bernoulli’s theorem is the subject of gross misconceptions, some of

2 William Kneale, Probability and Induction, Oxford, 1949, p. 139,

4 See Fry, op. cit., p. 101, for an instructive table comparing facts about number
and proportion of successes.

© See Kneale, op. cit., pp. 139-140; also Ernest Nagel, Principles of the Tbmr; of
Probability, in International Encyclopaedia of Unified Science, Vol. 1, no. 6, p! 3.
Each of these studies presents an admirable analysis not only of Bernoulli's theorem
but of current problems of probability.
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them due to the picturesque name coined by Poisson. It is often
supposed, for example, that the theorem is “a mysterious law of nature
which guarantees that in a sufficiently large number of trials a prob-
ability will be ‘realized as a frequency.’ " ¢ This odd opinion derives
apparently from the conviction that in the long run nature is bound
to imitate man. The theorem is a part of the mathematical calculus
of probability. The propositions of this calculus are not statements of
fact or experience. They are formal arithmetical propositions, valid
in their own domain, and neither capable of validating “facts” nor of
being invalidated by them.” It is no more to be expected that the
theorem can be proved by experiment than that the multiplication
table or binomial theorem can be so proved.

Another fallacious inference from the theorem is the so-called “law
of averages.” This is an article of faith widely and fervently adhered
to. It is the basis for the belief that when a player has had a bad run
at cards, his luck is bound to turn; that after red has come up five
times in a row at the roulette table, it is prudent to bet on black; that
if a coin falls heads three or four times in succession, the chances are
that tails will come up more frequently in the next three or four
throws to “even things up.” The only safe thing to say about these
beliefs is that the player who acts on them consistently is more likely
to be ruined than the player whose guide of action is erratic impulse.
Bernoulli's Theorem is itself the sole ground for expecting a particular
proportion of heads in the coin-tossing game, and it is an essential
condition of the theorem that the trials be independent, i.e., without
influence on each other. It is patently foolish, then, to invoke the
theorem that sets out from the premise that the probability of a head
at every toss is %2, to prove that the probability is less than 2 after a
consecutive run of heads. Yet this is the muddleheaded idea under-
lying all gambling systems. “In a genuine game of chance there can
be no system for improving one’s chances of winning. That is part of
what we mean by calling it a game of chance.” 8

3. While the theorem of Bernoulli (and certain generalizations of it by
Poisson, Tchebycheff, Markoff and others) has proved exceptionally

¢ Kneale, op. cirt., p. 139.

7 “The calculus of probability has the same general function as a demonstrative
geometry or a demonstrative arithmetic: given certain initial probabilities, the calculus
of probability makes it possible to calculate the probabilities of certain properties
which are related to the initial ones in various ways. Thus, arithmetic cannot tell us
how many people live in either China or Japan; but if the population of China and
the population of Japan are given, we can compute the combined populations of
these countries. The calculus of probability functions in the same way.” Nagel,
op. cit.,, p. 27.

& The example is from Kneale, op. cit., p. 140. See also Julian Lowell Coolidge,
“The Gambler's Ruin,” Annals of Mathematrics, Vol. X, Series 2, 1909; and the same
author’s An Introduction to Mathematical Probability, Oxford, 1925, pp. 52-59.
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important in practical affairs—insurance, for example,® and in scien-
tific research—e.g., the kinetic theory of gases, its limitations and

weaknesses have repeatedly been stressed. Among the points raised

most frequently are these: that the theorem applies only in special
cases (e.g., where the events are truly independent) and under condi-
tions which are the exception rather than the rule; “that a knowledge
of what has occurred at some of the trials would not affect the prob-
ability of what may occur at any of the others”;° that the law of
large numbers is useless as a tool of prediction concerning “sequences
of observations” unless the concept of probability itself is defined in
terms of relative frequency as against the formulation employed in
classical probability theory.l! None of these limitations, it should be
observed, affect the mathematical validity of the theorem, nor do they
depreciate either its contribution to the growth of statistical theory
or its continuing indispensability as an instrument of inquiry. A sound
grasp of the theorem is essential to an appreciation of the mathematics
of probability and statistics—which, in turn, carries an increasingly
responsible part in almost every branch of modern science, in industry,
commerce, government and other activities. That is why I have devoted
so much space to introducing the selection which follows.

°“As an illustration of the importance of the law of large numbers in practical
affairs it will be sufficient to mention the business of insurance. Let us suppose that
the probability that a man of a certain age and constitution will die within a year
is 1/10. If such an individual considers insuring his life, this is the fraction which
he should bear in mind and use in making his decision. But the insurance company
which offers to cover the risk of his dying within the year considers another prob-
ability derived from this probability. If there are a great many people of the same
characteristics insuring their lives with that company, there is a very high probability
that the company will not have to pay claims on more than about one tenth of the
policies, If, therefore, the company charges in each case a premium of rather more
than one tenth of the amount of the policy, it is very likely that it will have enough
over after all claims are paid to meet its administrative expenses and distribute a
dividend to its sharcholders. The greater the number of persons insuring with the
company, the greater the probability that the company’s finances will remain sound,
provided always that its premiums are calculated in the way described. This is the
all-important consideration which distinguishes the business of an insurance company
from gambling.” Kneale, op. cit., p. 141.

10 Keynes, op. cit., p. 342; also, generally, pp. 341-345.
. 11 A strong protagonist of this view argues his case persuasively in a most interest-
ing book written for nonmathematicians: Richard von Mises, Probability, Statistics
and 1}'2;!;.3 1939. See especially Lecture Four, “The Laws of Large Numbers,”
pP- .



Defendit numerus: There is safety in numbers. —AUTHOR UNKNOWN

The number is certainly the cause., The apparent disorder augments the
grandeur. —EDMUND BURKE (On the Sublime and the Beautiful)

It doesn't depend on size, or a cow would catch a rabbit.
—PENNSYLVANIA GERMAN PROVERB

3 The Law of Large Numbers'
By JACOB BERNOULLI

WE have now reached the point where it seems that, to make a correct
conjecture about any event whatever, it is necessary only to calculate
exactly the number of possible cases,2 and then to determine how much
more likely it is that one case will occur than another. But here at once
our main difficulty arises, for this procedure is applicable to only a very
few phenomena, indeed almost exclusively to those connected with games
of chance. The original inventors of these games designed them so that
all the players would have equal prospects of winning, fixing the number
of cases that would result in gain or loss and letting them be known
beforehand, and also arranging matters so that each case would be equally
likely. But this is by no means the situation as regards the great majority
of the other phenomena that are governed by the laws of nature or the
will of man. In the game of dice, for instance, the number of possible
cases [or throws] is known, since there are as many throws for each
individual die as it has faces; moreover all these cases are equally likely
when each face of the die has the same form and the weight of the die is
uniformly distributed. (There is no reason why one face should come up
more readily than any other, as would happen if the faces were of differ-
ent shapes or part of the die were made of heavier material than the rest.)
Similarly, the number of possible cases is known in drawing a white or a
black ball from an urn, and one can assert that any ball is equally likely
to be drawn: for it is known how many balls of each kind are in the jar,
and there is no reason why this or that ball should be drawn more readily
than any other. But what mortal, T ask, could ascertain the number of
diseases, counting all possible cases, that afflict the human body in every
one of its many parts and at every age, and say how much more likely

! Translated from “Klassische Sticke der Mathematik, ausgewihlt von A. Speiser”
(Ziirich, 1925), pp. 90-95. The selection is from the German translation of the
Ars Conjectandi by R. Haussner in Ostwald's Klassiker der exakten Wissenschaften,
Leipzig, 1899, nr. 108.

2 For “case,” the correct translation of the German, one may read result or out-
come. ED.
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one disease is to be fatal than another—plague than dropsy, for instance,
or dropsy than fever—and on that basis make a prediction about the
relationship between life and death in future generations? Or who could
enumerate the countless changes that the atmosphere undergoes every
day, and from that predict today what the weather will be a month or
even a year from now? Or again, who can pretend to have penetrated so
deeply into the nature of the human mind or the wonderful structure of
the body that in games which depend wholly or partly on the mental
acuteness or the physical agility of the players he would venture to predict
when this or that player would win or lose? These and similar forecasts
depend on factors that are completely obscure, and which constantly
deceive our senses by the endless complexity of their interrelationships,
so that it would be quite pointless to attempt to proceed along this road.

There is, however, another way that will lead us to what we are looking
for and enable us at least to ascertain a posteriori what we cannot deter-
mine a priori, that is, to ascertain it from the results observed in numerous
similar instances. It must be assumed in this connection that, under similar
conditions, the occurrence (or nonoccurrence) of an event in the future
will follow the same pattern as was observed for like events in the past.
For example, if we have observed that out of 300 persons of the same
age and with the same constitution as a certain Titius, 200 died within
ten years while the rest survived, we can with reasonable certainty con-
clude that there are twice as many chances that Titius also will have to
pay his debt to nature within the ensuing decade as there are chances
that he will live beyond that time. Similarly, if anyone has observed the
weather over a period of years and has noted how often it was fair and
how often rainy, or has repeatedly watched two players and seen how
often one or the other was the winner, then on the basis of those observa-
tions alone he can determine in what ratio the same result will or will not
occur in the future, assuming the same conditions as in the past.

This empirical process of determining the number of cases by observa-
tion is neither new nor unusual; in chapter 12 and following of L'art de
penser 3 the author, a clever and talented man, describes a procedure that
is similar, and in our daily lives we can all see the same principle at work.
It is also obvious to everyone that it is not sufficient to take any single
observation as a basis for prediction about some [future] event, but that
a large number of observations are required. There have even been in-
stances where a person with no education and without any previous
instruction has by some natural instinct discovered—quite remarkably—
that the larger the number of pertinent observations available, the smaller

3 La logique, ou L'art de penser, by Antoine Arnauld and Pierre Nicole. 1662.
(Makes use of Pascal, Fragment no. 14.) There are in fact rwo authors but Bernoulli
makes it appear there is only one.
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the risk of falling into error. But though we all recognize this to be the
case from the very nature of the matter, the scientific proof of this prin-
ciple is not at all simple, and it is therefore incumbent on me to present
it here. To be sure I would feel that I were doing too little if I were to
limit myself to proving this one point with which everyone is familiar.
Instead there is something more that must be taken into consideration—
something that has perhaps not yet occurred to anyone. What is still to be
investigated is whether by increasing the number of observations we
thereby also keep increasing the probability that the recorded proportion
of favorable to unfavorable instances will approach the true ratio, so that
this probability will finally exceed any desired degree of certainty, or
whether the problem has, as it were, an asymptote. This would imply
that there exists a particular degree of certainty that the true ratio has
been found which can never be exceeded by any increase in the number
of observations: thus, for example, we could never be more than one-half,
two-thirds, or three-fourths certain that we had determined the true ratio
of the cases. The following illustration will make clear what I mean: We
have a jar containing 3000 small white pebbles and 2000 black ones, and
we wish to determine empirically the ratio of white pebbles to the black—
something we do not know—by drawing one pebble after another out
of the jar, and recording how often a white pebble is drawn and often a
black. (I remind you that an important requirement of this process is
that you put back each pebble, after noting its color, before drawing the
next one, so that the number of pebbles in the urn remains constant.)
Now we ask, is it possible by indefinitely extending the trials to make it
10, 100, 1000, etc., times more probable (and ultimately “morally certain™)
that the ratio of the number of drawings of a white pebble to the number
of drawings of a black pebble will take on the same value (3:2) as the
actual ratio of white to black pebbles in the urn, than that the ratio of
the drawings will take on a different value? If the answer is no, then I
admit that we are likely to fail in the attempt to ascertain the number of
instances of each case [i.e., the number of white and of black pebbles]
by observation. But if it is true that we can finally attain moral certainty
by this method ¢ . . . then we can determine the number of instances a
posteriori with almost as great accuracy as if they were known to us
a priori. Axiom 9 [presented in an earlier chapter] shows that in our every-
day lives, where moral certainty is regarded as absolute certainty, this con-
sideration enables us to make a prediction about any event involving
chance that will be no less scientific than the predictions made in games of
chance. If, instead of the jar, for instance, we take the atmosphere or the
human body, which conceal within themselves a multitude of the most
varied processes or diseases, just as the jar conceals the pebbles, then for
4 Bernoulli demonstrates that this is true in his next chapter.
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these also we shall be able to determine by observation how much more
frequently one event will occur than another.

Lest this matter be imperfectly understood, it should be noted that the
ratio reflecting the actual relationship between the numbers of the cases—
the ratio we are seeking to determine through observation—can never be
obtained with absolute accuracy; for if this were possible, the ruling prin-
ciple would be opposite to what I have asserted: that is, the more obser-
vations were made, the smaller the probability that we had found the
correct ratio. The ratio we arrive at is only approximate: it must be
defined by two limits, but these limits can be made to approach each other
as closely as we wish. In the example of the jar and the pebbles, if we
take two ratios, 301,/200 and 299/200, 3001/2000 and 2999/2000, or any
two similar ratios of which one is slightly less than 1% and the other
slightly more, it is evident that we can attain any desired degree of prob-
ability that the ratio found by our many repeated observations will lie
between these limits of the ratio 1%, rather than outside them.

It is this problem that I decided to publish here, after having meditated
on it for twenty years. . . .

. . . If all events from now through eternity were continually observed
(whereby probability would ultimately become certainty), it would be
found that everything in the world occurs for definite reasons and in
definite conformity with law, and that hence we are constrained, even for
things that may seem quite accidental, to assume a certain necessity and,
as it were, fatefulness. For all I know that is what Plato had in mind
when, in the doctrine of the universal cycle, he maintained that after the
passage of countless centuries everything would return to its original state.



COMMENTARY ON

Statistics and the Lady
with a Fine Palate

TATISTICS has shot up like Jack’s beanstalk in the present century.
And as fast as the theory has developed, politics, economics, social
affairs, business and science have taken it over for their special purposes.
The anthologist must survey a literature so new and so vast that even
the expert can scarcely comprehend it. It is impossible to know where to
begin, let alone how to make a representative choice. I have tried to sub-
due the problem by a gross expedient. The selections which follow do no
more than discuss a few fundamental concepts; the history of statistics,
the great bulk of theoretical considerations and the applications of statis-
tical method are scarcely mentioned. This procedure is justified on
grounds other than expediency. Statistics, as Tippett observes, resembles
arithmetic in its impact on science and human affairs.! But while arith-
metic “is so woven into our thinking that we use it almost subconsciously,”
statistics is invariably regarded as a separate branch of study, and even
its basic ideas are grasped by only a small proportion of educated persons.
The material presented below may clarify a few essential principles for
readers who, though they recognize the importance of the subject, would
not dream of working through an entire book on statistics.

The first two selections are from two very good primers, L. H. C.
Tippett's Statistics, and M. J. Moroney's Facts from Figures. Tippett, a
leading British statistician, explains what is meant by sampling, theory
of random errors, the nature of statistical laws. Two chapters are ex-
cerpted from Moroney’s fat little volume in the Pelican series. They treat
the concept of averages, scatter, mean and standard deviations. Both
Tippett and Moroney—the latter is a British statistician, industrial con-
sultant and lecturer in mathematics at Leicester College of Technology
and Commerce—write for the nonmathematician and express themselves
with commendable clarity.

The selection by R. A. Fisher is more advanced. It has to do with the
design of experiments, a branch of scientific inquiry dealing with the
nature of scientific inquiry itself. This study of method represents one of
the most fruitful advances of scientific thought in the past two or three
decades.

The theory of experimental design does not of course represent the

1L. H. C. Tippett, Statistics, Oxford University Press, 1944, p. 178,
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first effort of scientists to examine and systematize their methods of
observation and inference. It has long been known, for example, that
scientific measurements, however careful and precise (such as those of
astronomy), never yield the same results in successive determinations.
These irregularities or “errors” are regarded as unavoidable accompani-
ments of experiment due to small, undetectable causes. Mathematicians
have lumped together the various mysterious disturbances under the name
of chance and have invented brilliant theories to control the mischief and
confusion caused by chance. Laplace and Gauss, shortly after the opening
of the nineteenth century, laid the foundation for the theory of errors of
observation, a mathematical achievement of the first order. These matters
are considered in the selections from Tippett and Moroney and I need
dwell on them no further.

The design of experiments is also concerned with observational error,
but it moves along a somewhat broader front than the classical mathe-
matical attack on the problem. It may help to an appreciation of the
difference in approach if I say that the theory of experimental design is
less “complacent” than the theory of random errors. The latter thrives on
errors, merely fixing limits within which experimental results are accept-
able despite variations. The former worries the experiment itself to make
certain that its structure is logical, that it is broad enough to serve as a
foundation for inference, that the objects studied are fully and fairly
exploited, that every recognizable and avoidable source of error, however
small, has in fact been eliminated. Concretely, the designer must consider
such factors as the variables of the system to be examined (e.g., do they
form the simplest set compatible with the objective of telling the experi-
menter what he really wants to know?), the adequacy and representative-
ness of the sample, the sources of psychological bias in subjects, instru-
ments or experimenter, the selection of suitable controls to serve as
standards of comparison for the significant variables in the main
experiment, the appropriate “level of significance” for the given test (ie.,
what is the minimum probability the experimenter would require “before
he would be willing to admit that his observations have demonstrated a
positive result”?), the value of enlarging and repeating the experiment to
increase its “sensitiveness.” These and other points like them apply gen-
erally to all experiments, whether laid out in the physics, chemistry,
biology or psychology laboratory, the hospital, the agricultural station, the
schoolroom, or the lagoon at Bikini. One feels that the earlier experi-
mental geniuses—Galileo, Faraday, Boyle, Galton, Pasteur, to name a
few—avoided almost instinctively many of the pitfalls now carefully
fenced off by the modern theories of experimental procedure. At the
same time, one must recognize that they had less to fret about when
they performed their experiments. The great increase in the complexity
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of experiments multiplies the opportunities for going astray as much as it
enlarges the effectiveness and scope of scientific research.

The Fisher excerpt has to do with a specific example of testing design.
Sir Ronald Fisher, one of the foremost statisticians of the century, is the
pioneer of the theory of design of experiments. He is professor of genetics
at Cambridge University, a Fellow of the Royal Society and a Foreign
Associate of the U. S. National Academy of Sciences. His name is asso-
ciated prominently with the development of elaborate experimental tech-
niques in agriculture at the famous Rothamsted Experimental Station,
with important advances in genetics and the mathematical theory of
natural selection, with searching reforms and innovations of statistical
method such as factorial design, the “confounding” procedure, the use of
Latin Squares, the exploitation of small samples and substantial refine-
ments of randomization. (For enlightenment as to these terms I refer the
reader to the selection from Fisher and also to a recently published book
by E. Bright Wilson: Introduction to Scientific Research, New York,
1952.) Fisher's writings include the standard textbook Statistical Methods
for Research Workers 2 and The Design of Experiments, regarded as a
classic work of statistics and scientific method. The second chapter of
the latter book is entitled “The Principles of Experimentation, Illustrated
by a Psycho-Physical Experiment.” It concerns a lady who says that when
a cup of tea is made with milk she is able to tell whether the tea or milk
was first added to the cup. The surpassing nicety of taste displayed by this
hypothetical lady provides Sir Ronald with the excuse for a most remark-
able series of experiments. Fisher is not an easy writer; the presentation
of this case, however, is a model of lucidity and requires no mathematics
other than elementary arithmetic. It demands of the reader the ability to
follow a closely reasoned argument, but it will repay the effort by giving
a vivid understanding of the richness, complexity and subtlety of modern
experimental medhod.

2 Eleventh Revised Edition, 1951, Oliver and Boyd Ltd., Edinburgh.



It is then, but an exceeding little Way, and in but a very few Respects,
that we can trace up the natural Course of things before us, to general
Laws. And it is only from Analogy, that we conclude, the Whole of it
to be capable of being reduced into them; only from our seeing, that Part
is so. It is from our finding, that the Course of Nature, in some Respects
and so far, goes on by general Laws, that we conclude this of the Whole,

—BisHop BUTLER

4  Sampling and Standard Error
By L. C. TIPPETT

SAMPLING

THE practice of taking a small part of a large bulk to represent the whole
is fairly generally understood and widely used. The housewife will
‘sample’ a piece of cheese at the shop before making a purchase; and a
cotton spinner will buy a bale of cotton, having seen only a small sample
of it. The sample is also a very important tool of the statistician.

There are two general reasons for working with samples instead of the
bulk. (1) Some appraisals of the thing in question involve destructive
tests, and there is no point in appraising it if the whole is destroyed in
the process; the housewife cannot eat her cheese and have it. (2) It is
very much more economical to investigate a sample than the whole bulk.
In social and economic work, for example, it is usually prohibitively
expensive to investigate the whole field of inquiry in any detail. Even the
population census, which has behind it the financial and coercive resources
of the state, is made only at infrequent intervals, and the questions asked
are few and comparatively simple. If a sample inquiry is made, on the
other hand, it is feasible to employ experienced field workers who can
collect information that is comparatively detailed and elaborate, and can
ensure that the records are reasonably accurate.

Unfortunately, however, the method of inquiry by sample is somewhat
mistrusted, sometimes honestly and sometimes, I suspect, because a sam-
ple has in some instance given a result the sceptic does not like. Yet a
sample may give reliable results. For example, an earthquake disaster in
1923 interrupted the tabulation of the results of the Japanese census of
1920 and interim figures were given based on a sample containing one
family in every thousand. These results agreed well with those given later
when the regular tabulations were completed. Nevertheless it must be
agreed that samples do not represent the bulk exactly, and that they may
sometimes be much in error.
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In the present discussion [of sampling methods] I shall follow the usual
practice of statisticians of referring to the bulk that is being sampled as
the population. The population in this chapter is to be thought of specially
as contrasting with the sample. I shall refer only to populations consisting
of recognizably discrete individuals, e.g., men or electric lamps.

The ideal sample is the simple random one in which chance alone
decides which of the individuals in the population are chosen. Suppose we
wish to obtain a random sample of the people of England and Wales in
order to make an estimate of their average height. To do this we may, in
principle, take forty-odd million exactly similar cards, one for each person,
and write each person’s national registration number on the appropriate
card. These cards may then be put in a large churn, thoroughly mixed,
and (say) one thousand cards be drawn, somewhat in the way the names
are drawn for the Irish sweepstake. The thousand people whose numbers
are on the cards are a random sample, and we can measure their heights,
find the average, and so obtain a figure which is an estimate of the average
height for the population.

To investigate the error in the average so estimated we could, again in
principle, subsequently measure the heights of all individuals in the popu-
lation and so obtain the true average. An easier thing to do is to draw a
number of samples, each of one thousand, and calculate the several
averages. These will vary above and below the true, or population value,
and the extent to which they vary gives some idea of the error with which
any one sample estimates the true average.

To do such an experiment in fact requires far greater resources than I
can command, but there are other experiments that are similar in prin-
ciple and are easier to do. What we really want to know is how chance
works in deciding the choice of the sample, and chance also operates in
games of the table, with such things as cards, dice and roulette wheels. In
these games, a population does not exist in the sense that the population
of England and Wales does, but we may use the concept of a hypothetical
population. Suppose, for example, we threw a perfectly balanced six-sided
die millions of times. We should expect one-sixth of the throws to score
aces, one-sixth to score twos, and so on, and the average score would be
%(1+2+3+4+4+5+ 6) =3-5. These millions of throws are a popu-
lation, and any thousand of them including the first thousand is a random
sample. But the millions of throws need not, in fact, be made; they need
only be imagined as a hypothetical population, of which any number of
actual throws form a sample.

To illustrate the way in which random sampling errors arise I have
made an experiment which I need not describe in exact detail. The
experiment is equivalent to that described here, which is not quite so easy
to perform but easier to imagine. The imagined apparatus consists of ten
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packs, each of ten cards, the cards in each pack being numbered respec-
tively 1, 2, 3 . . . 10. The packs are shuffled separately, one card is
drawn from each, and the ten numbers on the cards are added to give a
score. For example, the numbers might be 2, 4, 2, 10,2, 5,9, 2, 9, 8 and
the score would then be 53. Then the cards are put back in their packs,
the packs are reshuffled, and again ten cards are drawn to give another
score. This is repeated, so that a large number of scores results, which
are individuals from a hypothetical population consisting of the very large
number of scores that could conceivably be obtained. The lowest conceiv-
able score is 10, resulting from ten aces; the highest is 100, resulting from
ten tens; and the true average score is 55. Now let us consider the results
of the experiment.

It would take too much space to give in full the results of a really
extensive experiment, but enough are given in Table 1 to show the kind
of thing that happens. The top part of the table gives the first thirty indi-
vidual scores. Chance has not given a score as high as 100 or as low as
10, as it might have done, and presumably would have done had I con-
tinued long enough with the experiment. The first thirty scores vary
between 36 and 72, the range being 36. Now, in order to see what
happens when we take samples and find the averages, I took 30 samples,
each of ten scores. Such samples are far too small for most statistical
inquiries (although statisticians sometimes have to be content with small

TABLE 1
Individual Scores and Average Scores in Samples of Ten and Forty

Individual Scores

52 46 72 53 36 55 42 56 61 53
56 65 48 54 62 65 48 65 61 60
58 42 58 46 63 61 68 53 54 43

Averages of Samples of Ten

52-6 58-4 54-6 52-6 48-6 54-0 52-8 50-8 46-0 55-8
53-4 59-4 55-0 56-2 61:6 53:6 54-2 56-8 52-3 54-0
56-7 55-2 56-3 52-3 53-8 57-8 55-9 61-8 58-6 49:2

Averages of Samples of Forty

54-6 516 53-6 56-6 54-3 55-1 57-3 54-4 56-0 55:4
55-3 54-1 55-8 55-4 56:0 53-2 55-1 54-3 54.8 54.2
54-3 57-2 53-2 56-0 54-5 51-5 53-7 56-0 54-8 55:4

samples) but they illustrate the errors of random sampling. The average
scores are in the middle section of Table 1. The first average of 526 is
obtained from the ten individual scores in the top row of the table. The
thirty averages vary between 46-0 and 61-8, the range being 15-8, and
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no average differs from the population value of 55 by more than 9-0. In
so far as these thirty samples show the variations we are likely to get in
the averages of the millions of samples we could draw, we may say that
the biggest error with which the average of any one sample of ten scores
estimates the population average is 9+0. When I took larger samples, each
of forty scores, I obtained results given in the lowest section of Table 1.
They vary between 51-5 and 57-3 with a range of 5-8, and the biggest
error with which any one sample of forty scores estimates the population
average is 55 — 51-5=3-5. Thus we see that the averages estimated
from random samples vary among themselves and differ from the average
for the population, but that the biggest error decreases as the size of the
sample is increased from ten to forty; and you may take on trust that this
tendency would have continued had I extended the experiment to deal
with still larger samples. For example, by calculating the average of the
thirty averages of samples of forty, we have the average of a single sample
of 1,200 scores, which comes to 54 -8—very close to the population value
of 55.

These results are shown in the frequency distributions of Figure 1
where, instead of a frequency for each sub-range, there are dots, each
dot representing an individual score or the average of a sample. Notice
how the averages tend to be clustered more closely round the population
value as the size of the sample is increased. A frequency distribution of
sample averages for any given size of sample is called the sampling
distribution of the average.

The errors of random sampling, which in an experiment like that just
described show themselves as variations between sample means arise from
the variation between the individuals in the original population. Other
things being equal, such sampling errors are proportional to the amount
of variation in the population. As an extreme example, it is easy to see
that had there been no variation between the individual scores and they
had all been 55, the means of all samples of all sizes would have been
55 and there would have been no sampling errors.

When the statistician thinks of the random error of the average of a
sample he thinks of a whole collection of possible values of error, any
one of which the given sample may have: of the sampling distribution of
errors. The actual error of the given sample probably exceeds the smallest
of these values; it may easily exceed the intermediate values; and it is
unlikely to exceed the very largest values. There is a whole list of prob-
abilities with which the various values of error are likely to be exceeded,
and these can be calculated from a quantity called the standard error.
The standard error is a measure of the variation in the sampling distribu-
tion analogous to the standard deviation 1 and for the statistician it sums

! [See selection by M. J. Moroney, p. 1487, Ep.]
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FIGURE 1—Frequency distributions giving results of sampling experiments.

up the whole distribution of errors. If the standard error of a sample is
large, the errors to which that sample is liable are, as a whole, large; if the
standard error is small, the likely errors are small. This quantity, carrying
with it the idea of errors occurring with various probabilities, should
replace the cruder ‘biggest error’ I introduced in describing the results
of the experiment.

It is not usually necessary to do an actual experiment to measure
sampling errors, as the mathematical theory of probability enables statis-
ticians to deduce sampling distributions and standard errors theoretically.
This method is better because it is less laborious and more exact, giving
results as accurate as an experiment involving millions of samples. The
results of the theoretical calculations are of the same kind as those given
by the experiment, and in some instances they have been checked by very
large-scale experiments.

I have considered only the sampling errors of the average, but the same
principles apply to other statistical quantities such as ratios, and the
measures of variation and correlation. The theoretical deduction of sam-
pling distributions of the many statistical quantities in use is a very highly
developed branch of mathematical statistics; and sometimes the problems
have proved so difficult to solve that statisticians have had to fall back
upon actual sampling experiments.

With the ability to calculate errors of sampling, statisticians can make
allowances for them when making deductions from sample results. It is a
standard procedure to examine the results of a sample to see how far they
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can be explained by random errors. This is called testing the significance
of the results, and only such results as cannot reasonably be attributed to
errors of random sampling are held to be statistically significant.

Before going on to the more practical problems of sampling, I will
summarize the ground covered so far. When many samples of the same
size are taken from a population of variable individuals, the sample
averages show variation which may be described by a sampling distribu-
tion and measured by the standard error. A given sample of that size may
have any one of the averages in the distribution, and the probability that
its error will exceed any stated value can be calculated from the standard
error. The standard error of the average is a measure of the errors to
which a sample average is liable. For a sample of given size, this standard
error increases as the variation between the individuals in the original
population increases; for a given population, the standard error becomes
smaller as the size of the sample is increased. (For the sake of the
mathematically minded it may be stated that the standard error is in-
versely proportional to the square root of the number in the sample.)
Consequently the random errors can be made as small as we please by
making the sample large enough, and for a given population it is possible
to calculate the size of sample necessary to reduce these errors to any
desired value. Similar remarks apply to quantities other than the average.

The tendency for large samples from some population to have averages
that vary little amongst themselves and differ but little from the population
value is the reality behind the popular conception of the Law of Averages.
This law does not operate, as some people think, so that an abnormally
high individual score or run of scores is followed by an abnormally low
score or run, correcting the average by compensation. In a random series,
the scores following an abnormal score or run are quite unaffected by
what has gone before; they tend to be nearer the general average than
the abnormal scores are, i.e. to be more normal, so that when included
in the average they reduce the effect of the abnormal scores. Averaging
has more of a swamping than a compensating effect. Thus, if we may
regard the days of weather as individuals from a population, the average
weather for the population being the general type experienced at a given
time of the year and place, the law of averages does not require that a
very wet spell shall be followed by a very dry spell. For all I know,
there may be a law to that effect, but if so, it is not the law of averages.

If the individuals in a statistical population are well mixed up, no
known method of investigation can give more accurate results for a given
cost than the method of purely random sampling just described, unless
something is known about the individuals to enable some sort of selection
to be made. Sometimes, however, a more complex form of random sample
called the representative sample gives greater accuracy. Suppose, for
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example, that in a housing survey we wish to find the average number
of rooms per family in some town. Some families at one end of the scale
of wealth will live in one room each and at the other end there may be
families that have say twelve rooms each; and this variation over a range
of eleven rooms per family will give rise to a certain standard error in a
simple random sample. Suppose further that we can divide the town into
three districts—‘poor,’ ‘middle-class,” and ‘wealthy'—in each of which the
total number of families is known, and that the range of variation of
rooms per family is from one to seven in the poor, from four to ten in the
middle class, and from six to twelve in the wealthy district. Then if we
take a random sample from any one district, the district average is esti-
mated with a smaller standard error than that just mentioned, resulting
from a range of variation of six rooms per family (i.e. 7 minus 1, 10
minus 4, or 12 minus 6). Further, it can be proved that if a representative
sample of the same size is taken, in which the proportion of families from
each district is the same as in the whole town, the standard error of the
average of that sample will be the same as the smaller error resulting
from a range of variation of six rooms per family. This is because the
proportion of families from each district is left to chance in the simple
random sample; in the representative sample it is not, and that source of
error is removed.

Random sampling is the basis of the representative sample, however,
which is nothing more than a weighted combination of random sub-
samples.

Representative sampling is used in the Gallup polls of public opinion,
where care is taken to see that the opinions of various classes of people
are represented in appropriate proportions instead of leaving it to chance
to determine what these proportions shall be.

If it is granted that the ideal random sample can be a reliable instru-
ment of investigation, the questions remain: Can the ideal be attained?
Are the actual samples that are used as reliable as random samples? As a
random sample is increased in size, it gives a result that progressively
comes closer to the population value, whereas samples taken in some of
the ways that are used give results that progressively come closer to some
value other than the population value, results that may for some kinds
of sample be too high, or for others too low. A sample of this kind is
said to be biased, and the difference between the value given by a very
large sample and the corresponding population value is called an error of
bias. A biased die, for example, is one for which the fraction of throws
showing an ace, say, tends to a value other than one-sixth (the value for
the hypothetical population), and the greater the number of throws, the
clearer is it that the fraction of actual aces is not one-sixth. Errors of
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bias are added to the random errors, and since they follow no laws from
which they can be calculated, they must be eliminated entirely or reduced
so that they become unimportant. This may be difficult to do, and it is
often necessary to use very elaborate sampling methods to avoid errors of
bias.

It is nearly impossible for anyone to select individuals at random with-
out some randomizing apparatus. If a teacher tries to select a few children
from a class, he will tend to choose too many clever ones, or dull ones,
or average ones; or if he tries to be random he may select too many
clever and dull children and too few intermediate ones. In selecting a
sample of houses ‘at random,’ the investigator will be very unlikely to
select anything like the right proportions of large and small ones, shabby
and smart ones, new and old ones, and so on. Bias almost inevitably will
creep in. This is illustrated by the results of large experiments conducted
on several thousands of school children in Lanarkshire in 1930 to measure
the effect of feeding them with milk, on their growth during the period
of the experiment—about six months. At each school the children were
divided into two comparable groups; one group received the milk and the
other did not, and the effect of the milk was to be measured by compar-
ing the growth rates of the two groups. The results for a number of
schools were combined. In an experiment of this kind, the accuracy
depends very much on the two groups or samples of children being similar
on the average before the feeding with milk begins, i.e. on one being
unbiased with respect to the other. To secure this, the children were
selected for the two groups either by ballot or by a system based on the
alphabetical order of the names. Usually, these are both good ways of
making unbiased random samples of the two groups, but the whole thing
was spoilt by giving the teachers discretionary powers, where either
method gave an undue proportion of well-fed or ill-nourished children,
‘to substitute others to obtain a more level selection.” Presumably the
substitution was not done on the basis of the actual weights of the chil-
dren, but was left to the personal judgement of the teachers. The result
was that at the start of the experiment, the children in the group that
were later fed with milk were smaller than those in the other group, the
average difference being an amount that represented three months of
growth. It has been suggested that teachers tended, perhaps subcon-
sciously, to allow their natural sympathies to cause them to put into the
‘milk’ group more of the children who looked as though they needed
nourishment. This bias did not ruin the experiment, but unfortunately the
interpretation of some of the results was left somewhat a matter of con-
jecture instead of relative certainty, and there was later a certain amount
of controversy about some of the interpretations. The substitutions of
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the children could have been done without introducing bias had the
actual weights been made the bagis, and there would have been an im-

provement on the purely random sampling; but by unwittingly introducing
the bias, it seems that the teachers actually made matters worse.

A sampling method that is very liable to give biased results, particularly
when testing opinion on controversial matters, is that of accepting volun-
tary returns. An undue proportion of people with strong views one way
or the other are likely to make the returns, and people with moderate
views are not so likely to take the trouble to represent them. For this
reason, the post-bags of newspapers and Members of Parliament do not
give random samples of public opinion.

A spectacular example of a biased sample is provided by the attempt
of the American magazine, the Literary Digest, to forecast the results of
the Presidential election of 1936 by means of a ‘straw vote.’ Some ten
millions of ballot post cards were sent to people whose names were in
telephone directories and lists of motor-car owners, and several million
cards were returned each recording a vote for one of the candidates. Of
those votes, only 40-9 per cent were in favour of President Roosevelt,
whereas a few weeks later in the actual election he actually polled 60-7
per cent of the votes. Those from among telephone users and motor-car
owners who returned voting cards did not provide a random sample of
American public opinion on this question,

Bias does not result only from obviously bad sampling methods; it
may arise in more subtle ways when a perfectly satisfactory method is
modified slightly, perhaps because practical conditions make this neces-
sary. In some Ministry of Labour samples of the unemployed, a 1 per
cent sample was made by marking every hundredth name in the register
of claims, which was in alphabetical order. Bias was introduced by not
confining the inquiry to the marked names; instead, the first claimant
appearing at the Exchange whose name was marked or was among the
five names on either side of the marked one, was interviewed to provide
the necessary data. Claimants who are in receipt of benefit attend at the
exchange several days in a week, whereas those whose claims are dis-
allowed but who are maintaining registration only attend once a week.
The effect of this and of the latitude allowed in the choice of persons for
interview was that too many claimants in receipt of benefit were included
in the sample. It was only when the existence of this bias was realized
that some of the results that were apparently inconsistent with other
known facts made sense. A similar kind of effect can arise in surveys of
households if no one is at home when the investigator first calls at some
house chosen to be one of the sample. Such houses are likely to contain
small families with few or no young children, since in large households
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someone is almost certain to be at home to answer the door; and unless
the houses with no one at home are re-visited, the sample will be biased in
respect of size and character of household.

Although there is no general theory of errors of bias by which the
amount of such errors can be calculated in any particular instance, as
can be done for random errors, statisticians do not work entirely in the
dark. Sometimes the sample gives, as part of its results, information that
is also known accurately from a full census, and the sample is usually
regarded as free from bias in all respects if in this one respect it agrees
with the census. The soundness of the results of a sample inquiry may
sometimes be checked by comparing them with data obtained in other
ways, perhaps by other investigators. Where none of these checks are
available, it may be necessary to rely on the statistician’s general experi-
ence of sampling methods in deciding whether the sample in question is
a good one. I have given enough examples to show that a good deal is
known of the ways in which errors of bias arise, and what must be done
to avoid them.

It is implicit in my definition of errors of bias that they cannot be
‘drowned’ by taking very large samples, in the way that random errors
can; a fact that the experience of the Literary Digest's straw-vote on the
American Presidential election of 1936 amply confirms. From this point
of view, a good sample can be arrived at only by employing a good
sampling method. I have already mentioned some methods incidentally,
and it is only necessary here to give it as a warning that when a statistician
advises adherence to an elaborate method with a closeness that may seem
to the layman to be ‘fussy,’ that advice had better be followed; failure to
do so has been known to lead to biased results.

Altogether, the method of inquiry by sample is difficult and full of
pitfalls. But statisticians could not get on without it and experience of its
use is both wide and deep, so that in competent hands the method is
capable of giving results that are reasonably accurate. Moreover, the
inevitable errors in the results can be estimated, and allowance can be
made for them in arriving at conclusions.

TAKING ACCOUNT OF CHANCE

Chance operates in many fields besides that of random sampling, and
many of its effects can be calculated by applying the same general
methods as are used to calculate the errors of random sampling. Some of
the further applications of those methods will be described in the present
chapter.

The effects of chance can be calculated only because they follow certain
laws, but these differ in kind from the exact laws of subjects like physics.



Sampling and Standard Error 1469

Events that follow exact laws can be described or predicted precisely; but
we can only specify probabilities that chance events will occur, or specify
limits within which chance variations will probable lie. Newton's laws
of motion, for example, are exact because they describe exactly the rela-
tions between the motions of bodies and the forces acting upon them;
the errors of random sampling follow chance laws because we cannot
predict exactly what average a random sample will have; we can only
state, as I have suggested on p. 1462, the probability that it will lie within
certain limits.

I cannot embark upon a full discussion of what we mean by chance,
but as a preliminary I shall indicate a few ideas associated with the word.
Statisticians attribute to chance, phenomena (events or variations) that
are not exactly determined, or do not follow patterns described by known
exact laws, or are not the effects of known causes. That is to say, the
domain of chance varies with our state of knowledge—or rather of igno-
rance. Such ignorance may be fundamental because the relevant exact
laws or causes are unknowable; it may be non-essential or temporary,
and exist because the exact laws do not happen to have been discovered;
or the ignorance may be deliberately assumed because the known exact
laws and causes are not of such a character that they can profitably be
used in the particular inquiry in hand.

An example of ignorance that, according to present-day ideas, is funda-
mental, is in the Principle of Indeterminacy of modern physics; we do
not and cannot know the precise motion of an electron. We do not know
what determines the position of a shot on a target, but that ignorance is
non-essential and in some degree temporary. The variations in the posi-
tions of the shots depend on a host of factors such as variations in the
primary aim of the marksman, the steadiness of his hand, the weight,
size, and shape of the bullets, the propelling charges, the force of the wind,
and so on; but presumably these factors can be investigated and laws be
discovered. Indeed, this has happened; and the history of gunnery shows
the temporary character of the ignorance. Gunnery is much more of a
science and more exact than it was in the days of the Battle of Waterloo,
or even during the 1914-18 War; and as knowledge has increased, unpre-
dictable variations in placing of shots have been reduced; but at each stage
these variations are regarded as due to chance. Ignorance of causes is
assumed by an insurance company in using its past experience of accident
claims to establish future premiums for motor-car insurance. The com-
pany has considerable knowledge of the circumstances surrounding every
accident on which a claim is made, but is unable to make more than
limited use of that knowledge, and so treats accidents largely as chance
events, except for a few special allowances such as ‘no claims bonuses’ or
extra premiums charged to people with bad accident records.
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Usually, events regarded as coming within the domain of chance are
those governed by a complicated system of many causes, each of which
produces only a small variation; and one frequent characteristic of such
events is that small changes in the circumstances surrounding them make
a big difference to the results.

Chance as I have described it operates in a very wide field, covering
the whole of the unknown; but mathematical calculations can be made
and chance laws be propounded only for comparatively simple systems
covering a portion of this field. Nevertheless, such calculations have a
wide range of usefulness, which the following examples will illustrate.
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FIGURE 2—Percentage of insured workers unemployed, Great Britain 1924-38,

One use of chance calculations is for deciding which of the fluctuations
in a time series are random and which are trends having some signifi-
cance. As an example of a time series, consider the unemployment data
represented in Figure 2. Readers will have no difficulty in recognizing the
broad changes, viz. the minor waves in 1925 and towards the end of 1928,
the large upward sweep in 1930, the improvement from the end of 1932
to the end of 1937, and the upward movement again in 1938. For the
time being we shall omit 1926, the year of the General Strike, as being
exceptional. These changes are reasonably attributed to fundamental
causes that operate fairly slowly and may be represented by a smooth
curve drawn through the actual points of the graph. There are a number
of mathematically determined curves that have the property of changing
in level in such a slow, regular way, and are of the nature of exact laws
or descriptions.

Let us imagine such a curve to be drawn through the points of Figure 2.
Then the actual points will be seen to deviate from this curve. They may
in some degree follow a seasonal pattern (another exact law), but in
Figure 2 that pattern is not very evident, and most of the deviations are
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irregular. Presumably many of them can be explained in terms of a minor
strike in some industry, a political change in some country affecting an-
other industry, an exceptionally hard winter, and so on; but we cannot
bring such knowledge into a system, and so we assume ignorance. Hence,
having tried all the known kinds of exact laws that are relevant, we con-
sider the deviations to be due to a complex system of chance causes that
operate we know not how; and we apply to them the same laws as de-
scribe the results of games of chance and sampling experiments. This is
the argument for applying the theory of errors of random sampling to
testing the statistical significance of fluctuations in time series. For ex-
ample, there was a sudden and temporary rise in unemployment in the
beginning of 1936; is it significant? It actually occurred, and therefore is
real, but when we ask the above question we in effect ask: Can the rise
be reasonably considered as a random fluctuation arising from that system
of causes we have labelled chance, or has some unusual event happened?
And so we apply the theory of random errors. If this theory had been
applied to testing the statistical significance of the sudden rise in unem-
ployment in 1926 it would have shown the operation of something
unusual—we know that to be the General Strike.

This kind of application of the theory enables us, in retrospect, to
decide whether any particular events with which we try to associate fluc-
tuations have had important effects compared with the system of random
fluctuations. When following changes week by week or month by month
as they occur it is useful, too, to be able to decide whether the last in-
crease or decrease is large enough to call for action, or whether it is
random. At one period, for example, a local newspaper used to publish
weekly figures of deaths due to road accidents in a certain town, and the
number used to fluctuate about an average of four or five per week.
Should we worry if between two particular weeks the number rises from
three to six, or rejoice if it falls from five to two? No! Such changes are
no greater than any that can be attributed to chance, and do not indicate
a real change in conditions. Sometimes the chance coincidence of random
fluctuations may give rise to several consecutive small increases or de-
creases, giving a spurious appearance of a trend. Sampling theory can
show when such is the case.

To arrive at results of these kinds, it is necessary to analyse the time
series so as to separate the random fluctuations from the secular move-
ments; and additional complications occur if the system of random fluctu-
ations changes. Some would say, for example, that in trade the random
fluctuations during a slump and a boom are different. The whole analysis
is only approximate, but it is based on ideas that are sufficiently close to
reality to give useful results.

The theory of random errors was used for measuring the accuracy of
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astronomical measurements long before it was applied to statistical
samples, and it is used somewhat in measuring the errors of experimental
observations in general. When the astronomer measures, say, the position
of a star, he finds that in spite of the precision of his apparatus, and the
care with which he adjusts it and makes his observations, he does not get
the same answer from successive determinations. He repudiates the idea
that the position is varying and attributes the variations in his results to
unavoidable errors of observation. The question arises: What is the true
position? And if it cannot be measured exactly, how accurately can it be
estimated? A similar situation arises in the other so-called exact sciences:
e.g., in physics and chemistry. Several determinations have been made of
the velocity of light, but they do not agree exactly; and a chemist would
be very surprised if he got exactly the same result every time he measured
an atomic weight.

This interpretation of experimental results as being due to an invariable
quantity plus observational or experimental errors is purely a mental con-
ception. The only reality is the set of observations, the characteristics of
which can, if desired, be expressed by any statistical constants such as the
average, or a measure of variation, or by a frequency distribution. For
most experiments, however, it is useful and (within limits) valid to adopt
the more common conception.

The errors do not follow any known exact laws, and so the laws of
chance are sometimes used to describe them. In applying these laws, the
results are regarded as a random sample from a hypothetical population
of results, the average of this population being the true value. Then, the
average of the sample is an estimate of the true value, and the error in
that estimate can be calculated as for any statistical sample. Is this idea
valid? On the face of things, it seems as reasonable to imagine the millions
of results that would have been obtained had the experiment been re-
peated millions of times under the same conditions as to imagine the
results of millions of tosses of a die. But it is not so certain that the vari-
ations between experimental results are entirely of the same kind as those
we get when we toss dice.

On this question there are differences of opinion among experimen-
talists, Some refuse to admit any similarities between experimental and
random errors. Others, faced with otherwise intractable results, use the
theory of random errors as the only way out. Experimental errors are not,
in general, random. There are ‘personal’ factors, and any one person
shows a bias that changes from time to time. I prefer to regard a set of
experimental results as a biased sample from a population, the extent of
the bias varying from one kind of experiment and method of observation
to another, from one experimenter to another, and, for any one experi-
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menter, from time to time. If this view is accepted, experimental errors
can be regarded as forming a chance system, but the system is not as
simple as that assumed in calculating the errors of random sampling.

In general the bias cannot be estimated and the theory of random errors
is therefore not enough. Sometimes, however, one can say that the bias is
likely to be small compared with the random errors, and then the theory
may give useful, if approximate, results. For example, if, say, five separate
chemists were to determine the atomic weight of an element independ-
ently, in different times and places, and possibly by different methods, the
results would vary because of the cffects of random errors and bias. But
the separate biases for the five chemists would differ and so would appear
as the random errors between the results, the group as a whole would
probably exhibit but little bias, and the theory of errors would provide
a reasonably close measure of the precision with which the average of the
five results estimates the true atomic weight. This might not be so, on
the other hand, for the average of, say, twenty consecutive determinations
made by one chemist in one laboratory.

Errors of bias are often relatively unimportant when the observed
quantity is the difference between two similar quantities. In measuring the
distance between two lines in a spectrum, for example, the main error is
often due to the uncertainty of setting the cross-hairs of the measuring
microscope on the centres of the lines. If there is a bias in doing this, it is
likely to be similar for the two lines (provided they are not too dissimilar
in width and appearance), and the difference in the two settings will prob-
ably be practically unbiased. The theory of errors gave a result that was
at least qualitatively right, when applied to Lord Rayleigh’s measurements
of the density of nitrogen. He made a number of determinations on ‘at-
mospheric’ and ‘chemical’ nitrogen and found a difference in the two
averages. Subsequent treatment by the theory of errors has shown that
the difference is greater than can be attributed to random variations, and
this result is in accordance with a real difference we now know to exist,
owing to the presence of the rarer inert gases in ‘atmospheric’ nitrogen.

Where the bias is completely unknown, I doubt if it is possible to do
more than hope that the true value lies somewhere between the highest
and lowest of the actual values, and regard the average as an estimate of
the true value, that is as good as, but no better than, any other single
estimate that could be made from the data. It is, of course, the experi-
menter’s job to reduce bias and random errors to a minimum.

To sum up, the theory of random errors may be usefully applied to
some experimental observations, particularly of differences in values, but
great caution must be observed on account of bias. Certainly such an
application is no substitute for careful experimental control.
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Much experimental work, particularly in biological subjects, is now
done under conditions, many of which can be well controlled, and the
observations can be made accurately; but the material is inherently vari-
able and the results have to be treated statistically. The Lanarkshire ex-
periment made to measure the effect of milk on the growth of children,
already mentioned on p. 1466, is of this kind. The amount of milk fed
can be controlled, children fed and not fed with milk can be kept in the
same environment, and the changes in weight can be measured accurately;
but it would not do to base conclusions on an experiment on, say, two
children. Children vary, and it is necessary to observe a large number and
take averages.

The problem of interpreting the results of such experiments is essen-
tially statistical, and it has fallen to the lot of statisticians to study the
general questions of arranging experiments with variable material, of
drawing conclusions from the results, and of testing them. Under the
leadership of Professor R. A. Fisher, who started this work at the Roth-
amsted Experimental Station (for agriculture), an elaborate technique for
doing this has been developed and is very widely used. I propose to give
some description of this subject.

There are three main principles to be observed in designing such an
experiment; they are replication, randomization, and economy in arrange-
ment.

The necessity for replication has already been stated. The problem first
arose chiefly in agricultural field trials made to measure such things as the
effects of various fertilizers on wheat yield. It was early seen that different
plots treated in the same way gave different yields. Hence, it was not
sufficient to have two plots, say, to treat one with a fertilizer, to grow the
crops and measure the yields, and to regard the difference as measuring
the effect of the fertilizer. The experiment had to be replicated by treating
several plots in each way and measuring the difference between the
average yields.

Even differences in such averages can be affected by variations between
plots, as we can see from the results of the sampling experiment described
in the last chapter; and it is desirable to estimate the accuracy of the ob-
served difference. The only known way of doing this is by the theory of
random errors. It was found, however, that variations in plot fertility
were not random. There was usually a fertility pattern, e.g. a gradient
in fertility across the field. In order that the theory of sampling could be
applied, an element of randomization was introduced artificially by using
some such device as a ballot to decide which plots should receive the
various experiment treatments. This is a ‘trick of the trade' for making
fertility variations into a comparatively simple chance system. A statis-
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tician might apply this principle to the above-mentioned experiment of
feeding milk to school children by tossing a coin once for each child,
giving that child milk if the result is ‘heads,” say, and no milk if the result
is ‘tails.’

The pattern in fertility differences between plots in a field was used
to increase the accuracy of experimental comparisons. Adjacent plots tend
to be more alike than those in different parts of the field, and by com-
paring the treatments on adjacent plots the random variations affecting
the comparison were reduced, with an increase in accuracy. The other
way of increasing accuracy is to increase the number of plots, and hence
the expense of the experiments; the arrangement using adjacent plots is
therefore more economical. In the same way, had it been possible in the
Lanarkshire milk experiment to use identical twins, giving milk to one of
each pair, far fewer children would have given the same accuracy as thou-
sands chosen at random. This kind of arrangement can be made to satisfy
the condition of randomness sufficiently for the application of the theory
of random errors in an appropriate form.

The above are the elementary principles of the modern approach to
the design of what I shall term statistical-experimental investigations. The
whole subject has, however, become very complicated as several treat-
ments of one kind have been included, and treatments of several kinds.
Thus, experiments may be done with various quantities and combinations
of several kinds of fertilizer on several varieties of wheat. Further com-
plication arises when experiments are done on different farms and in dif-
ferent years, and it is necessary to consider to what extent results obtained
on one group of farms in one year apply to other farms and other years.

In spite of the fact that sound methods are available, experimenters
continue to work with variable material on non-statistical lines, and they
get discordant results which they cannot fit into a system. Different
workers sometimes get different results in the same subject, and contro-
versies arise. When, in such circumstances, the experimenters turn to
sound methods of statistical analysis, involving proper experimental ar-
rangements, difficulties of these kinds tend to disappear. Then, experi-
ments which were previously done on an inadequate scale are increased
in size, often they are designed more economically than before, and the
advancement of knowledge is made more orderly and certain.

Statistical methods are often regarded as applying only to very large
numbers of observations, but that is no longer true. It would be far too
costly to replicate some experiments hundreds and thousands of times,
and statisticians have had to make do with small numbers. They have,
however, developed the theory of errors to apply to small samples as well
as to large ones.
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There are many chance events that occur in life, to which the general
theory of random errors may in some degree be applied.

For example, many telephone subscribers have access to one trunk line,
and a multitude of causes determine how many will want to use it at any
given instant, i.e. it is to some extent a question of chance whether more
than one subscriber will want to use it at once and thus cause delay. In
so far as this is true, the extent of delays of this kind can be calculated
from the theory of probability which is the basis of the theory of errors.
This is typical of a number of congestion problems that arise in telephony,
in road and rail traffic, and so on; and although many of them are difficult
mathematically, the theory is being applied.

Accidents have a large element of chance in their causation—the cir-
cumstances preceding a ‘near shave’ often differ by only a hairbreadth
from those preceding a catastrophically fatal accident, and the theory of
probability has been useful for studying accident problems in calculating
the effects of chance and showing the importance of other factors. The
following is an example.

Records were kept of the numbers of accidents that happened during
the course of one year to 247 men workers engaged in moulding choco-
late in a factory. Some of the men had no accident, some had one, some
two, and so on, a few having as many as twenty-one accidents. The data
are arranged in a frequency distribution in the first two columns of
Table 2. Now we ask: Were all the variations between the men in the
numbers of accidents they suffered due to chance, or were there differ-
ences between the men in their tendency to have accidents? Were the 42
men who had no accidents exceptionally skilful or just lucky; and were
the 22 men who had ten accidents or more clumsy or unlucky? The
average number of accidents per man is 3-94, and even if all the men
were equally skilful in avoiding accidents, chance would give rise to some
variation. It has been calculated from the extended theory of random
sampling that this variation would result in the frequency distribution of
the last column of figures of Table 2. This is very different from the actual
distribution. We may say, roughly, that 5 of the 42 men with no accidents
were lucky and the remaining 37 skilful; that one of the 22 men with ten
or more accidents was unlucky and the remainder clumsy. Comparisons
of this kind between actual and calculated chance distributions have led
to investigations that have shown how people differ in ‘accident prone-
ness,’ i.e. in their tendency under given circumstances to suffer accidents.
The chance distribution given in Table 2 is calculated by assuming a very
simple system of chance variations; more complicated systems taking into
account variations in accident proneness have been used in the more ad-
vanced investigations on the subject.
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TABLE 2

FREQUENCY DISTRIBUTION OF MEN WHO HAD
YARIOUS NUMBERS OF ACCIDENTS. COMPARISON
BETWEEN ACTUAL AND CHANCE DISTRIBUTIONS

(Data by E. M. Newbold. Report No. 34, Industrial
Fatigue (Now Health) Research Board)

Number of Frequency of Men
Accidents Actual Chance

0 42 5

1 44 21

2 30 40

3 30 50

4 25 48

5 11 37

6 12 23

7 15 13

8 8 6

9 8 3

10-15 19 1

15-21 3 -

Total 247 247

STATISTICAL LAWS

The central problem of statistics is dealing with groups variously de-
scribed as collections, crowds, aggregates, masses, or populations, rather
than with individual .or discrete entities; with events that happen on the
average or in the long run rather than with those that happen on par-
ticular occasions; with the general rather than with the particular. A fuller
consideration of this aspect of statistics is the subject of the present
chapter.

Again I shall use the language common in statistical writings and refer
to populations of individuals. The population is regarded (in the discus-
sion of sampling) as something from which samples are taken, but here
as an aggregate of individuals, which will in most instances be represented
by a sample, i.e. I shall not distinguish between the population and the
sample.

The population has characteristics and properties of its own, which are
essentially derived from and are an aggregate of those of the individuals,
although the two sets of properties may be different in kind. In the popu-
lation, the individuals merge and their individuality is dissolved, but from
the dissolution rises a new entity like a phoenix from the flames. The
population is at the same time less and more than the totality of the
individuals.
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This conception is not peculiar to statistics. Rousseau, for example, dis-
tinguishes in The Social Contract between the General Will and the wills
of all the people:

‘In fact, each individual, as a man, may have a particular will contrary
or dissimilar to the general will which he has as a citizen. His particular
interest may speak to him quite differently from the common interest.’

‘There is often a great deal of difference between the will of all and the
general will; the latter considers only the common interest, while the
former takes private interest into account, and is no more than a sum of
particular wills: but take away from these same wills the pluses and
minuses that cancel one another, and the general will remains as the sum
of the differences.’

The general idea is expressed in another way in the following passage
from Old Junk by Mr. H. M. Tomlinson:

‘His shop had its native smell. It was of coffee, spices, rock-oil, cheese,
bundles of wood, biscuits and jute bags, and yet was none of these things,
for their separate essences were so blended by old association that they
made one indivisible smell, peculiar, but not unpleasant, when you were
used to it.’

The loss of individuality results from the method of the statistician in
confining his attention to only a few characteristics of the individuals and
grouping them into classes. Consider a married couple, say Mr. and Mrs.
Tom Jones. As a couple their individuality consists of a unique combina-
tion of a multitude of characteristics. Mr. Jones is tall and thin, is aged 52
years, has brown hair turning grey, and is a farmer. Mrs. Jones is called
Mary and at 38 years is still handsome; she is blonde and is really a little
too ‘flighty’ for a farmer’s wife. The couple have been married for 16
years and have three children: two boys aged 14% and 11 years, and a
girl aged 2. In addition to these and similar attributes the couple have a
number of moral and spiritual qualities that we may or may not be able
to put down on paper. It is by all these, and a host of other qualities that
their relatives and neighbours know Mr. and Mrs. Jones; the uniqueness
of the combination of qualities is the individuality of the couple.

The statistician who is investigating, say, the ages of husbands and
wives in England and Wales is interested only in the ages, and does not
wish to describe even these accurately. So he puts our couple in that
class for which the age of the husband is 45-55 years and that of the wife
is 35-45 years. Mr. and Mrs. Jones are now merely one of a group of
some 320,000 other couples, and are indistinguishable from the others in
their group.

Statistical investigations are not always confined to one or two char-
acters of the individuals, and elaborate methods have been developed for
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dealing with many attributes, e.g. the ages of married couples at mar-
riage, income, number of children, fertility of the grandparents of the
children, and so on, but however many attributes are included, they are
very few compared with the number that make up the individuality of
each couple.

A population of individuals is the most characteristic and simplest
chance system the statistician has to deal with. We do not know, or do
not take any account of, the causes of the differences between the indi-
viduals, and so we dismiss them as being due to chance, and fasten our
attention on the population.

Statistics is essentially totalitarian because it is not concerned with indi-
vidual values of even the few characters measured, but only with classes.
However much we analyse the data to show the variation between the
parts, we still deal with sub-groups and sub-averages; we never get back
to the individnals. In studying the death rate of a country, for example,
we may decompose the general average into sub-averages for the two
sexes, for the separate age-groups, for different localities, industries, and
social classes; but the death rate of an individual has no meaning. When
we think of variation, we think of a mass of variable individuals rather
than of one or two being very different from the remainder.

This part of statistical technique in selecting only a few characteristics
for investigation, and in classifying the data, is not only necessary because
of the limited power of the human brain to apprehend detail, but is a
part of the general scientific method. It is an essential step in the develop-
ment of general scientific laws. However much we know of Mr. and Mrs.
Jones in particular, if we know nothing more we have no basis for draw-
ing conclusions about married couples in general. It is only by paying
attention to such features as individuals have in common with others that
we can generalize. Individuals are important, as such, to themselves, to
their neighbours and relations, and to professional consultants—the par-
son, the doctor, and the lawyer; they have no importance for the statis-
tician, nor indeed for any scientist, except that they, with a host of other
individuals, provide data.

Our first and, for most of us, our only reactions to our environment
are individualistic. We are individuals, our experience is mostly with indi-
viduals, and even when considering a group we are conscious mostly of
our personal relationship to it. The concept of the population as an entity
does not come easily, and our ordinary education does little to correct this
defect. The mental effort required to realize this concept is perhaps some-
thing like that necessary to appreciate a fugue with its contrapuntal
pattern, as compared with the ease of following a tune with simple
harmonies.

The characteristics of the population are described by frequencies and
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by the statistical constants and averages already described, but it is ap-
parently so difficult to think of the reality behind these constants—the
mass of individuals—that we personify the population and speak in such
terms as ‘the average man.’ This is only possible because of a similarity
between some of the measures of a population and those of an individual;
the average height of a group of men is expressed in feet and inches, just
as the height of one man is; but the similarity is only superficial.

We have already seen the inadequacy of the average as a description of
variable material,® but the average individual sometimes is also a rather
absurd figure. In 1938, for example, he was among those comparatively
rare individuals who died at the age of 58 years. His age in England and
Wales in 1921 was 299, and in 1938 it was 33 -6 years; i.e., in 17 years
the average man aged by only 3:7 years! The average family can have
fractions of a person. Books on the upbringing of babies usually contain a
curve showing the growth in weight of an average baby; but few actual
curves are like that. The curve for a real baby may be above or below
that for the average and it may have a different slope in various parts. It
will also usually have ‘kinks’ due to teething troubles and minor illnesses,
whereas the curve for the average baby is fairly smooth; this paragon
among children has no troubles!

Variation is, of course, an important characteristic of populations that
individuals cannot have. I have already been at pains to describe this,?
and to point out how, for example, the deviations from any relationship
shown by a contingency or correlation table are as characteristic of the
data as the relationship itself. Indeed, without variation, a collection of
individuals is scarcely a population in the statistical sense. A thousand
exactly similar steel bearing balls (if such were possible) would be no
more than one ball multiplied one thousand fimes. It is the quality of
variation that makes it difficult at first to carry in mind a population in
its complexity. .

All the special properties of populations I have considered arise in
aggregates of independent individuals, but there are additional character-
istics due to interactions between individuals. The behaviour of men in
the mass is often different from their behaviour as individuals. Some men
affect (or ‘infect’) others and such phenomena as mass enthusiasms and
panics arise, We speak of mass-psychology. Similarly the effect of an in-
fectious disease on a community of people in close contact is different
from its effect on a number of more or less isolated individuals. Statis-
tical description can take account of interactions between individuals, but
it is seldom necessary to do so.

2 Discussed in an earlier chapter of Tippett’s book. Eb.
2 Discussed in an earlier chapter of Tippett's book. Eb.
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Although the individuals in a population vary, the characteristics of
the population itself are very stable. Sir Arthur Eddington has well said:
‘Human life is proverbially uncertain; few things are more certain than
the solvency of a life-insurance company.” This means that we do not
know when any individual will die, but an insurance company can esti-
mate the incidence of death in its population of policy-holders with great
accuracy.

This contrast between individualistic variability and statistical stability,
and the fact that the latter emerges from the former, this apparent para-
dox of order coming out of chaos, has from time to time given rise to
metaphysical speculations. People in the eighteenth century, accustomed
to considering the variations between individuals, seem to have been
struck by the statistical regularities and saw evidences of a Divine order.
Sir Arthur Eddington, on the other hand, presumably taking for granted
the regularity of the laws of physics, is more struck by the compatibility
with these laws of the unpredictable variation in the behaviour of indi-
vidual electrons, and offers comfort to those who want to believe in free
will and scientific law at the same time. The practical statistician may
accept it as a fact requiring no special metaphysical explanation, that
mass regularities can often be discerned where the individuals apparently
follow no regular laws.

Galton writes of the regularity of form of the frequency distribution in
the following terms:

‘T know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the “Law of Frequency of
Error.” The law would have been personified by the Greeks and deified,
if they had known of it. It reigns with serenity and in complete self-
effacement, amidst the wildest confusion. The huger the mob, and the
greater the apparent anarchy, the more perfect is its sway. It is the
supreme law of Unreason. Whenever a large sample of chaotic elements
are taken in hand and marshalled in the order of their magnitude, an
unsuspected and most beautiful form of regularity proves to have been
latent all along.’

Let us re-examine the data from the sampling experiment described
on pp. 1460-1462 and see if we can repeat Galton's experience and recap-
ture something of his mood.

I have extended the experiment to obtain 4,000 scores altogether. The
first thirty are given in the top part of Table 1 (p. 1461) in the order in
which they occurred, and these together with the 3,970 other scores are
the ‘large sample of chaotic elements'—and chaotic they undoubtedly
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appear. 1 then proceeded to marshal the scores in the order of their mag-
nitude by forming a frequency distribution, and stage by stage stopped to
look at the result as the distribution began to grow. The results for 50,
200, 1,000, and 4,000 scores are in Figure 3. Since the scores are whole
numbers, I have not grouped them into sub-ranges; the scales of the dis-
tributions in the vertical direction have been reduced as the numbers of
scores have increased. At 50 scores, there is no sign of any regularity or
form in the distribution, but at 200 scores, a vague suggestion of a form
seems to be emerging; the scores show a slight tendency to pile up in
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FIGURE 3—Frequency distribution of vanous numbers of observations from the same population,

the middle of the range. At 1,000 scores, the form is clearly apparent,
although irregularities are still pronounced; but at 4,000 scores, the ‘most
beautiful form of regularity’ is there, almost in perfection. It is not diffi-
cult to imagine the regularity that would be apparent were the sample so
large as to be indistinguishable from the population.

The formulae and laws that describe populations and their behaviour
as opposed to individuals are termed statistical laws. The various statistical
constants (e.g. standard deviation, mean deviation, measures of associ-
ation and correlation) are elementary statistical laws. Other laws of a
higher order of complexity describe how populations change with time or
place, or other circumstances. Laws of heredity, for example, are a way
of describing how some characters in populations of plants or animals
change from generation to generation.

Some statistical laws are discovered by simple observation of the popu-
lation as a whole. For example, the change in the death rate for the
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country may be recorded from year to year, without any consideration
being given to the changes in the chances of death from various causes,
to which the individual is exposed. A public lighting authority could com-
pare two batches of electric lamps by counting how many of each are
burnt out after having been in use for, say, 500 hours. Or a colony of the
banana fly may be kept in a bottle under standard conditions, and the
growth in numbers observed. However, there is nothing necessarily sta-
tistical in the technique applied in such experiments, although investi-
gations of this character are often classed as statistical in the widest sense
of the word. The introduction of the concept of pieces of matter as
populations of electrons or atoms does not necessarily turn an ordinary
physical investigation of the macroscopic properties of matter into a
statistical one.

Statistical methods and calculations are involved, however, when the
laws for the population are deduced from those for individuals. The cal-
culation of statistical constants is a case in point, and the estimation of
some quality of a batch of electric lamps from calculations made on the
full frequency distribution of lives is another. Estimates, made by demog-
raphers, of the size and age composition of the future population from a
consideration of the characteristics of the present population and the
various birth and death rates, are an important example of the statistical
deduction of statistical laws. Such calculations may involve complicated
mathematics.

It is implicit in all I have written that statistical laws have nothing to
do with individuals. It is no exception to the statistical law that old men
have old wives, on the average, if one old man of one's acquaintance has
a young wife. A failure to recognize the distinction between the two
types of laws sometimes leads to attempts to apply statistical laws to indi-
viduals, with paradoxical results.

We now return to the starting-point of this chapter—a consideration of
individuals. They in the aggregate are the population, and from their
characteristics we can calculate those of the population. We cannot per-
form the reverse process. Individuality is lost, as far as the statistician is
concerned, for good and all. Does this mean we know absolutely nothing
of the individual when we know the population? Not quite.

Consider a single electric lamp taken at random from the batch repre-
sented by the distribution of Table 3. Even if we do not know its life, we
know that it will be an exceptional lamp if its life is greater than, say,
2,800 hours—it will be one of #soths of the batch. Indeed, it is more
likely to be one of the #%soths of the lamps with lives between, say, 1,000
and 2,000 hours.

We are used, in ordinary life, to dealing with data of this kind by
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TaBLE 3
LENGTH OF LIFE OF ELECTRIC LAMPS

(Data by E. S. Pearson, Journal of the Royal
Statistical Society, 96, 1933, p. 21)

Life (hours) Frequency of Lamps

0- 200 1
200~ 400 3
400- 600 2
600- 800 10
800-1,000 19

1,000-1,200 21
1,200-1,400 23
1,400-1,600 18
17
10
8
5
5
4
2
1
1

1,600-1,800
1,800-2,000
2,000-2,200
2,200-2,400
2,400-2,600
2,600-2,800
2,800-3,000
3,000-3,200
3,200-3,400

Total 150

introducing the concept of probability. In the example quoted we would
say that the probability of any one lamp having a life greater than 2,800
hours is %150 = 0-027, and that the probability of the life being between
1,000 and 2,000 hours is 5%s0 = 0-593.

This is an application of what is commonly regarded as the statistician’s
definition of probability as a ratio of frequencies. Corresponding to any
frequency distribution there can be calculated a whole series of prob-
abilities of a random individual lying within various stated limits, and
statistical probability is a device (a verbal trick!) for attaching to the
random individual the characteristics of the whole distribution. In this
way, a population is epitomized in an individual much more satisfactorily
than in the concept of ‘the average man.’ But statistical probability does
more than this. It corresponds closely to the more popular idea of prob-
ability as a measure of the strength of belief in a thing. Most people if
asked what is the probability of a tossed penny falling heads uppermost
would reflect that heads was as likely as tails and would reply: one-half.
The statistician, if in a pedantic mood, would reply: in the hypothetical
population of tosses, one-half of the total give heads, therefore the prob-
ability of a head is one-half. An alternative method of expression is to
state that the chances of a head are even, or for the lamps, that they are
593 to 407 in favour of a life of between 1,000 and 2,000 hours.
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Probability is, in ordinary life, also applied to events that do not occur
as frequencies. We speak of the probability of, or the chances in favour
of, a particular horse winning a race. Even in such instances, however, I
think that people carry at the backs of their minds the idea of frequencies;
they in effect imagine a lot of races, in a given proportion of which the
particular horse wins. The idea is described in the following quotation
from a lecture given by Karl Pearson in 1892:

‘A friend is leaving us, say in Chancery Lane at 4 o'clock in the after-
noon, and we tell him that he will find a Hansom cab at the Fleet Street
corner. There is no hesitation in our assertion. We speak with knowledge,
because an invariable experience has shown us Hansom cabs at 4 o'clock
in Fleet Street. But given the like conditions within reach of a suburban
cab-stand, and our statement becomes less definite. We hesitate to say
absolutely that there will be a cab: “You are sure to find a cab,” “I believe
there will be a cab on the stand,” “There is likely to be a cab on the
stand,” “There will possibly be a cab on the stand,” “There might perhaps
be a cab,” “I don’t expect there will be a cab,” “It’s very improbable,”
“You are sure not to find a cab,” etc., etc. In each and every case we go
through some rough kind of statistics, once we remember to have seen
the stand without a cab; on occasions few and far between, “perhaps on
an average once a month,” “perhaps once a week,” “every other day,”
“more often than not there has been no cab there.” Certainty in the case
of Fleet Street passes through every phase of belief to disbelief in the
case of the suburban cab-stand. If once a month is the very maximum of
times I have seen an empty cab-stand, my belief that my friend will find
a cab there to-day is far stronger than if I have seen it vacant once a
week. A measure of my belief in the occurrence of some event in the
future is thus based upon my statistical experience of its occurrence or
failure in the past.’

Thus probability in its most general use is a measure of our degree of
confidence that a thing will happen. If the probability is 1-0, we know the
thing will certainly happen, and if the probability is high, say 0-9, we
feel that the event is likely to happen. A probability of 0-5 denotes that
the event is as likely to happen as not, and one of zero means that it
certainly will not. This interpretation, applied to statistical probabilities
calculated from frequencies, is the only way of expressing what we know
of the individual from our knowledge of the population.

Statistical laws, which describe the characters and behaviour of popu-
lations in one way or another, may be transformed into probabilities—
i.e. from them the probabilities and frequencies in the population may
be calculated. Thus, statistical laws are the chance laws referred to earlier.

It may have been noticed that probabilities have been calculated from
the frequencies of a distribution, either known as for the lamps, or as-
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sumed as for the penny. In general, it is necessary to have some data on
which to calculate probabilities. I am often asked what is the probability
of some queer or interesting event, without being given any data. Statisti-
cians do not evolve probabilities out of their inner consciousness, they
merely calculate them.



“Let us sit on this log at the roadside, says 1, and forget the inhumanity
and the ribaldry of the poets. It is in the glorious columns of ascertained
facts and legalized measures that beauty is to be found. In this very log
that we sit upon, Mrs. Sampson, says 1, is statistics more wonderful than
any poem. The ring shows it was sixty years old. At the depth of two thou-
sand feet it would become coal in three thousand years. The deepest coal
mine in the world is at Killingworth, near Newcastle. A box four feet long,
three feet wide, and two feet eight inches deep will hold one ton of coal.
If an artery is cut, compress it above the wound. A man's leg contains
thirty bones. The Tower of London was burned in 1841."
“Go on, Mr. Pratt,” says Mrs. Sampson. “Them ideas is so original and
soothing. I think statistics are just as lovely as they can be.”
—0. HeENrY (The Handbook of Hymen)

When Tennyson wrote The Vision of Sin, Babbage read it. After doing so,
it is said he wrote the following extraordinary letter to the poet:

“In your otherwise beautiful poem, there is a verse which reads:

‘Every moment dies a man,
Every moment one is born.

“It must be manifest that, were this true, the population of the world
would be at a standstill. In truth the rate of birth is slightly in excess of
that of death. I would suggest that in the next edition of your poem you
have it read:

‘Every moment dies a man,
Every moment 1% is born.!

“Strictly speaking this is not correct. The actual figure is a decimal so
long that I cannot get it in the line, but I believe 1%s will be sufficiently
accurate for poetry. I am etc.” —MATHEMATICAL GAZETTE

5 On the Average and Scatter
By M. J. MORONEY

ON THE AVERAGE

‘The figure of 2-2 children per adult female was felt to be in some
respects absurd, and a Royal Commission suggested that the middle classes
be paid money to increase the average to a rounder and more convenient
number.' (Punch)

IN former times, when the hazards of sea voyages were much more
serious than they are today, when ships buffeted by storms threw a portion
of their cargo overboard, it was recognized that those whose goods were
sacrificed had a claim in equity to indemnification at the expense of those
whose goods were safely delivered. The value of the lost goods was paid
for by agreement between all those whose merchandise had been in the
same ship. This sea damage to cargo in transit was known as ‘havaria’
and the word came naturally to be applied to the compensation money
which each individual was called upon to pay. From this Latin word
1487
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derives our modern word average. Thus the idea of an average has its
roots in primitive insurance. Quite naturally, with the growth of shipping,
insurance was put on a firmer footing whereby the risk was shared, not
simply by those whose goods were at risk on a particular voyage, but by
large groups of traders. Eventually the carrying of such risks developed
into a separate skilled and profit-making profession. This entailed the
payment to the underwriter of a sum of money which bore a recognizable
relation to the risk involved.

The idea of an average is common property. However scanty our
knowledge of arithmetic, we are all at home with the idea of goal aver-
ages, batting and bowling averages, and the like. We realize that the
purpose of an average is fo represent a group of individual values in a
simple and concise manner so that the mind can get a quick understanding
of the general size of the individuals in the group, undistracted by fortui-
tous and irrelevant variations. It is of the utmost importance to appreciate
this fact that the average is to act as a representative. It follows that it is
the acme of nonsense to go through all the rigmarole of the arithmetic to
calculate the average of a set of figures which do not in some real sense
constitute a single family. Suppose a prosperous medical man earning
£3,000 a year had a wife and two children none of whom were gainfully
employed and that the doctor had in his household a maid to whom he
paid £150 a year and that there was a jobbing gardener who received £40
a year. We can go through all the processes of calculating the average
income for this little group. Six people between them earn £3,190 in the
year. Dividing the total earnings by the number of people we may deter-
mine the average earnings of the group to be £531 13s. 4d. But this figure
is no more than an impostor in the robes of an average. It represents not
a single person in the group. It gives the reader a totally meaningless
figure, because he cannot make one single reliable deduction from it.
This is an extreme example, but mock averages are calculated with great
abandon. Few people ask themselves: What conclusions will be drawn
from this average that I am about to calculate? Will it create a false
impression?

The idea of an average is so handy that it is not surprising that several
kinds of average have been invented so that as wide a field as possible
may be covered with the minimum of misrepresentation. We have a
choice of averages; and we pick out the one which is appropriate both
to our data and our purpose. We should not let ourselves fall into the
error that because the idea of an average is easy to grasp there is no more
to be said on the subject. Averages can be very misleading.

The simplest average is that which will be well known to every reader.
This common or garden average is also called the mean, a word meaning
‘centre.” (All averages are known to statisticians as ‘measures of central
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tendency,’ for they tell us the point about which the several different
values cluster.) The arithmetic mean or average of a set of numbers is
calculated by totalling the items in the set and dividing the total by the
number of individuals in the set. No more need be said on this point,
save that the items to be averaged must be of the same genus. We cannot,
for example, average the wages of a polygamist with the number of his
wives.

A second kind of average is the harmonic mean, which is the recip-
rocal ! of the arithmetic mean of the reciprocals of the values we wish to
average. The harmonic mean is the appropriate average to use when we
are dealing with rates and prices. Consider the well-known academic
example of the aeroplane which flies round a square whose side is 100
miles long, taking the first side at 100 m.p.h., the second side at 200
m.p.h., the third side at 300 m.p.h., and the fourth side at 400 m.p.h.
What is the average speed of the plane in its flight around the square? If
we average the speeds using the arithmetic average in the ordinary way,
we get:

100 4 200 + 300 + 400

Average speed = = 250 m.p.h.
4
But this is not the correct result as may easily be seen as follows.
Time to travel along the first side =1 hour
Time to travel along the second side = 30 minutes
Time to travel along the third side = 20 minutes

Time to travel along the fourth side = 15 minutes
Hence total time to travel 400 miles = 2 hours 5 minutes
= 2842 hours

From this it appears that the average velocity is 0% = 232 = 192 m.p.h.
The ordinary arithmetic average, then, gives us the wrong result. A clue
as to the reason for this will be found in the fact that the different speeds
are not all maintained for the same time—only for the same distance.
The correct average to employ in such a case is the harmonic mean.

In order to give the formula for this we shall here introduce a little
more mathematical notation which will be of great benefit to us later in
this book. In calculating averages we have to add up a string of items
which make up the set whose average is required. The mathematician uses
a shorthand sign to tell us when to add up. He calls adding up ‘summing’
and uses the Greek letter § which is written % and called ‘sigma’ to indi-
cate when terms are to be added. (This is actually the capital sigma. Later
we shall have a lot to say about the small letter sigma which is written o.)
Each of the numbers which have to be taken into account in our calcula-

! The reciprocal of a number is found by dividing that number into unity,
the reciprocal of 4 = % = 0-25. &
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tion is denoted by the letter x. If we wish to differentiate between the
various quantities we can number them thus: x;, x, x;, xj, etc,, the
labelling numbers being written as subscripts so that they will not be con-
fused with actual numbers entering into the calculation. (This may sound
as confusing to the novice as it will be boring to the learned. Let the
learned turn over the pages till they find something interesting, while we
explain this simple and useful shorthand to the novice.) Let us take as an
example the calculation of the arithmetic average of the five numbers
5, 6, 8, 7, 6. We could, if there were any reason for keeping track of
these, label them as follows:

xn=35 Xy =26 x3=28 x, =1 x5=6

Now the advantage of using algebraic notation (i.e., letters to stand for
any numbers we care to substitute for them according to the problem in
hand) is that we can write down in a very compact way the rules for
performing the calculation which will give us the correct answer to the
type of problem we are dealing with. In fact, a formula is nothing else
than the answer to every problem of the type to which it applies. We
solve the problem once and for all when we work out a formula. The
formula is the answer. All we have to do is to substitute for the letters
the actual quantities they stand for in the given problem. Suppose, now,
we denote the number of quantities which are to be averaged in our
problem by the letter n (in our case here, n = 5). To calculate the arith-
metic average we have to add up all the five quantities thus: 5+ 6 + 8 +
7 + 6 = 32. This adding part of the calculation would appear in algebraic
form as x; 4+ xa + x3 + x4 + x;3. The next step would be to divide the
total by the number of items to be averaged, viz. 5, giving the result 6.4
for the average. In algebraic notation this would appear as

Xy + X+ x5+ x,+ x5
Average =

n

This method of writing the formula would be very inconvenient if there
were a large number of items to be averaged; moreover, there is no need
to keep the individual items labelled, for in an average the identity of the
individuals is deliberately thrown away as irrelevant. So we introduce the
summation sign, X, and write our formula in the very compact form:
2x
Average = —
n
The formula thus tells us that to get the average we ‘add up all the x
values and divide their total by the number of items, n.’
In similar fashion, now, the harmonic mean, which we have said is the
average to be used in averaging speeds and so on and which is defined
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1
as the reciprocal (the reciprocal of a number x is equal to -) of the
X
arithmetic mean of the reciprocals of the values, x, which we wish to

average, has the formula:

To illustrate the use of this formula let us use it on our aeroplane
problem. The four speeds, which were each maintained over the same
distance, were 100, 200, 300, and 400 m.p.h. These are our x values.
Since there are four of them the value of n in our formula is 4, and we
get:

Harmonic mean =

n 4 4
Harmonic mean = = =
2(1) (Y400 + Y400 + Y400 + Yioo)  (*34200)
X
4 X 1200
= ————=192 m.p.h.
25

which we know to be the correct answer.

The reader should note carefully that the harmonic mean is here appro-
priate because the times were variable, with the distances constant. Had it
been that times were constant and distances variable the ordinary arith-
matic average would have been the correct one to use. The type of average
which is appropriate always depends on the terms of the problem in
hand. Formulae should never be applied indiscriminately.

Yet a third type of average is the geometric mean. This is the appro-
priate average to use when we wish to average quantities which are drawn
from a situation in which they follow what W. W. Sawyer in Mathema-
tician's Delight calls the ‘gangster law of growth,’ i.e., a geometric pro-
gression or the exponential law. Many quantities follow this type of law.
For example, the population of a city, given a stable birth-rate and
death-rate with no migration, will increase at a rate proportional to the
number of people in the city. Suppose that in the year 1940 a certain city
had a population of 250,000 and that in the year 1950 its population were
490,000. If we wished to estimate the population in the year 1945 (esti-
mating populations at various times between successive censuses is an
important matter in public health statistics) then we might, as a rough

approximation, take the average of the populations at the two known
dates, thus:
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250,000 <+ 490,000
Population at 1945 = 5 = 370,000

This would only be a sensible method if we were able to assume that the
population increased by the same number every year. This is not likely,
however, for, as the city grows in size, so the number of citizens is likely
to grow at an ever increasing rate (see Figure 1). A better estimate is
likely to be obtained, in normal circumstances, by calculating the geo-
metric mean of the population at the two known dates. To calculate the
geometric mean, we multiply together all the quantities which it is desired
to average. Then, if there are n such quantities, we find the nth root of
the product. Denoting our n quantities by x;, x,, x3, ... X,, We may write
the formula for the geometric mean as follows:

Geometric mean = \/x; X X3 X X3 X ... X,

Applying this to the problem given above where we wish to estimate the
population of a city in 1945, given that in 1940 the population was
250,000 and in 1950 was 490,000, we have n = 2 items to average, and
we find:

Geometric mean = /250,000 X 490,000 = 350,000

as our estimate for the population at 1945. This result, it will be noted,
is appreciably lower than we obtained using the arithmetic average
(370,000). If the reader considers Figure 1 he will see that it is the
more likely estimate.
Collecting together, at this point, our three different averages, we have:
Arithmetic Mean (usually denoted as® and called x-bar)

3x
X=—
n
Harmonic Mean (usually denoted by H)

Geometric Mean (usually denoted by G)

n
G =\ft; Xx, Xx3X ...x,

Each of these measures of central tendency has its own special applica-
tions. All of them are obtained by simple arithmetical processes which
take into account the magnitude of every individual item.

We emphasized the important idea of any average or measure of cen-
tral tendency as the representative of a homogeneous group in which the
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FIGURE 1—Comparison of Interpolation by Arithmetic Mean and Geometric Mean. The popula-
tion of a city often grows according to the exponential law, This would certainly be
true with stable birth-rate and death-rate and in absence of migratibn. Under these
conditions, the geometric average would be more appropriate than the arithmetic aver-
age to interpolate the population at a given date between two dates at which the
population was known.

members are recognizably similar. Now many distributions, -while being

undoubtedly homogeneous in the sense that there is continuity between

the various members of the group, nevertheless are such that very great
differences exist between the largest and smallest members, and, more-
over, exhibit a marked lack of symmetry, the family tending to cluster
much nearer to one extreme than the other. Figure 2 is a typical example.
It shows the way in which annual income is distributed. There is certainly
continuity, but small incomes are the norm. The reader will appreciate
at once that to calculate averages for distributions of this type using the
arithmetic mean would be very misleading. The relatively few people with
extremely high incomes would pull up the average appreciably, so that it
could not be taken as truly representative of the population in general.

Figure 3, which shows the relative frequency of different sizes of family,

presents the same difficulty. Some families are very well off for children

and the calculation of an arithmetic average might well be misleading—
particularly if our purpose is purely descriptive.

It is evident that what we need in such cases is a measure of central
tendency which is unaffected by the relatively few extreme values in the

‘tail’ of the distribution. Two ideas suggest themselves. The first is that if
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FIGURE 2—Numbers of people in different income ranges forming a positively skew distribution.

we were to take all our families and set them down in a long column
starting with the smallest and working up to the largest, we could then
use the size of that family which came halfway down the column as our
measure of central tendency. This measure is called the median (mean-
ing ‘middle item'). Half of all families would have a size not less than that
of the median family and half not more than that of the median family.
Notice that in this way we do not take account at all of the actual numbers
of children except for ranking purposes. It is evident that the number of
children in the largest family could be increased to 50,000 without in any
way disturbing our measure of central tendency, which would still be the
middle item.

A second method of getting a measure of central tendency which is not
upset by extreme values in the distribution is to use the most commonly
occurring value. This is the fashionable value, the value 4 la mode, so to
say. It is called the mode or modal value. For example, in Figure 3 the
modal value for the size of family is seen to be two children. This is really
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FIGURE 3—Distribution of number of children per family is also positively skewed.

a typical value and seems real to us compared with the arithmetic average
which in this case works out to 2-96. It is difficult to imagine 2-96 chil-
dren. Notice that the arithmetic mean is markedly affected by the rela-
tively few very large families. Which is correct? Neither and both. Both
averages serve a purpose. The mode would form a very poor basis for
any further calculations of an arithmetical nature, for it has deliberately
excluded arithmetical precision in the interests of presenting a typical
result. The arithmetic average, on the other hand, excellent as it is for
numerical purposes, has sacrificed its desire to be typical in favour of
numerical accuracy. In such a case it is often desirable to quote both
measures of central tendency. Better still, go further and present a histo-
gram of the distribution as in Figure 3.

A problem which not infrequently arises is to make an estimate of the
median value of a distribution when we do not have the actual values of
each individual item given, but only the numbers of items in specified
ranges.

We shall now say a few words about frequency distributions. If we
have a large group of items each of which has connected with it some
numerical value indicative of its magnitude, which varies as between one
member of the group and another (as, for example, when we consider
the heights of men or the amount of income tax paid by them), and if
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we draw up a table or graph showing the relative frequency with which
members of the group have the various possible values of the variable
quantity (e.g., proportion of men at each different height, or proportions
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FIGURE 4—Distribution for bursting strength of samples of vinyl coated nylon exhibiting symmetry.
of the population, falling into various income tax groups), then we have
what is called a frequency distribution for the variable quantity in ques-
tion. This is usually called simply the distribution. Thus we have distribu-
tions for height, weight, chest size, income, living rooms per person, and
so on. Similarly we have distributions for the number of deaths according
to age for different diseases, number of local government areas with
specified birthrates and deathrates and so on. The quantity which varies

OF GOALS PER MATCH

NUMBER OF TEAMS WITH THE STATED

NUMBER

COALS PER MATCH

FIGURE 5—The number of goals scored per team per match gives a positively skewed distribution
of a discontinuous variable.
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(height, birthrate, income, and so on) is called the variate. Some variates
are continuous, i.e., they can assume any value at all within a certain
range. Income, height, birth-rate, and similar variates are continuous.

0P

15

PERCENTAGE OF ALL DEATHS OCCURRING

IN THE STATED AGE CGRour

©- 10~ 20- 30- 40- 50- $O- ?0-”-10-:00-
AGE AT DEATH
FIGURE 6—Example of a Bimodal (double peaked) Distribution. The peak in the first years of
life reflects the serious loss of potential life due to the infantile mortality rate. (From
the “Registrar General’s Report, Years 1930-32," quoted by M. G. Kendall in “Ad-
vanced Statistics.”)

Other variates are said to be discontinuous, because they can only assume
isolated values. For example, the number of children in a family can only
be a whole number, fractions being impossible. Families grow in distinct
jumps. An addition to the family is an event. Goals scored in football
matches, articles lost in buses, the number of petals on a flower—all such
variable quantities are discontinuous.

When we collect together information for the purposes of statistical
analysis it is rare that we have information about all the individuais in a
group. Census data are perhaps the nearest to perfection in this sense;
but even in this case the information is already getting out of date as it is
collected. We may say that the census count in a certain country taken
on a certain day came to 43,574,205, but it would be nothing short of
silly to keep quoting the last little figure 5 for the next ten years—or even
the next ten minutes. Such accuracy would be spurious. In general it is
not possible to investigate the whole of a population. We have to be con-
tent with a sample. We take a sample with the idea of making inferences
from it about the population from which it was drawn, believing, for ex-
ample, that the average of a good sample is closely related to the average
of the whole population. The word population is used in statistics to refer
not simply to groups of people, but, by a natural extension, to groups of



1498 M. I. Moroney

g

3

-
.
]

?

-
L

NUMBER OF WOMEN ABOATING

AT THE STATED TIME

| “ll lmll

4 &6 8 O 2 W W B 0 2 M B
TERM IN WEEKS

FIGURE 7—Abortion in women, Data given by T. V. Pearce (1930) and guoted by M. G. Ken-
dall, ""Advanced Statistics.” The reader may care to speculate about possible periodicity
in these data. Is there reasonable suggestion of a cycle whose duration is roughly one
month? What other conclusion can you draw?

measurements associated with any collection of inanimate objects. By

drawing a sufficiently large sample of measurements, we may arrive at a

frequency distribution for any population. Figures 4-8 give examples of

various types of distribution.
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FIGURE 8—Peculiar distribution of cloudiness at Greenwich. Based on data given by Gertrude
Pearse (1928) for month of July 1890-1904 (excluding 1901) and quoted by M. G.
Kendall, “Advanced Statistics,”” Vol. 1. Note tendency for sky to be either very clear

or very cloudy.
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Some distributions, as will be seen from the diagrams, are symmetrical
about their central value. Other distributions have marked asymmetry and
are said to be skew. Skew distributions are divided into two types. If the
‘tail’ of the distribution reaches out into the larger values of the variate,
the distribution is said to show positive skewness, if the tail extends
towards the smaller values of the variate, the distribution is called nega-
tively skew. In the next chapter we shall take up the question of the con-
centration of the members of the distribution about their central value,
for it is clearly a matter of the greatest importance to be able to measure
the degree to which the various members of a population may differ from
each other.

Figure 9 illustrates an interesting relationship which is found to hold
approximately between the median, mode, and mean of moderately skew
distributions. Figures 10 and 11 illustrate geometrical interpretations of
the three measures of central tendency.

We shall close this chapter with an elementary account of Index Num-
bers, which are really nothing more than a special kind of average. The

FREQUENCY DENSITY

FIGURE 9—Mean, Median and Mode in moderately skew cases. For moderately skew distributions
we have the simple approximate relation: Mean — Mode = 3 (Mean — Median). For
a perfectly symmetrical distribution they all coincide.

best known index number is the Cost of Living Index, which, as readers
will know, is a rough measure of the average price of the basic necessities
of life. In many industries, the Cost of Living Index is a strong chain
which keeps a man’s reward tied strictly to his necessity rather than to his
ambition. But index numbers are a widespread disease of modern life, or,
we might better say, a symptom of the modern disease of constantly try-
ing to keep a close check on everything. We have index numbers for
exports, for imports, for wage changes and for consumption. We have
others for wholesale and retail prices. The Board of Trade has an index.
The Ministry of Labour has an index. The Economist has another. It is
scarcely possible to be respectable nowadays unless one owns at least one



1500 M. J. Moroney

index number. It is a corporate way of ‘keeping up with the Joneses'—the
private individual having been forced by taxation to give up this inspiring
aim long ago.
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FIGURE 10—Geometnical interpretation of Mode and Median. The wertical line at the median
value divides the area under the frequency curve into halves (area i1s proportional to
frequency). The vertical line at the modal value passes through the peak of the curve,
Le., it is the value at which the frequency density is a maximum.
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FIGURE 11—Geometnical interpretatuion of the Mean The vertical line at the mean will pass
through the centre of grawvity of a sheet of umiform thickness and density cut to the
shape of the distribution. The mean 1s the abscissa of the centre of gravity “G."

It is really questionable—though bordering on heresy to put the ques-
tion—whether we would be any the worse off if the whole bag of tricks
were scrapped. So many of these index numbers are so ancient and so
out of date, so out of touch with reality, so completely devoid of prac-
tical value when they have been computed, that their regular calculation
must be regarded as a widespread compulsion neurosis. Only lunatics
and public servants with no other choice go on doing silly things and
liking it. Yet, since we become more and more the servants of our
servants, and since they persist in tying us down to this lugubrious system
whereby the housewife, the business man, and the most excellent groups
of the citizenry have all their difficulties compressed into the brevity of
an index number, we reluctantly ask the reader to bear with us while we
explain, briefly, this academic tomfoolery of telling us in cryptic form
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what we knew already from hard experience: namely, that the cost of
living has risen in the last couple of months, sufficiently for us to be
able to submit a humble claim for higher wages to offset part of our
increased burden.

Consider the question of the changes which take place in retail prices.
As every housewife knows, the price we are asked to pay bears only the
faintest resemblance in many cases to the worth of the article. She knows,
too, that for many commodities it is more accurate to speak of prices
rather than price. Tomatoes in one shop may be 6d. per pound; the same
tomatoes in another shop may be 10d. or 1s. Some people are well enough
off to be able to shop by price. They like lots of service and servility and
are willing to pay for it. Yet, even if these sections of the community are
excluded, there still remains a fair variation between one district and an-
other for the same article, things like fish and fruit being notorious in this
respect. In addition to this variation in the price of the articles, we have
to recognize that different families have different spending patterns. If
cheese were made as dear as gold it would not matter one iota to the
family that hates cheese like poison. Conscientious vegetarians would
probably regard it as an excellent thing if the price of meat rose to pro-
hibitive levels. Total abstainers positively loathe the idea of beer and
spirits being cheap. Non-smokers love to see the Chancellor raise the
money by piling the tax on ‘non-essentials’ like tobacco. It is evident that
we shall get nowhere if all this individuality is to run riot. It is far too
inconvenient for the statistician.

We get over the difficulty by shutting our eyes to it. All we have to do
is to invent a ‘standard family.’ 2 We might, for example, choose the stand-
ard urban working-class family. We then do a sample survey, to find out
what quantities of the various articles we are considering they consume in
a week under normal conditions, and draw up a table as follows:

EXPENDITURE OF THE STANDARD WORKING-CLASS FAMILY

(1949)
Quantity Price Expenditure ~ Weight

Bread and Flour 391b. 4d./1b. 156d. 31-2
Meat 7 Ib. 24d./1b. 168d. 33-6
Potatoes 351b. 2d./1b. 70d. 14-0
Tea 11b. 36d./1b. 36d. 7-2
Sugar 21b. 5d./1b. 10d. 2-0
Butter 11b. 18d./1b. 18d. 36
Margarine 11b. 12d./1b. 12d. 2:4
Eggs 1 doz. 30d./doz. 30d. 6-0

Total 500d. 100-0

? Composed of one underpaid male, one overworked female, and 2:2 underfed
children.
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Now, it is a relatively simple matter to keep track of the changes in
prices as time goes on. It would be very much more troublesome to keep
a check on whether the spending pattern, as indicated by the amounts of
the various items bought by the standard family, was tending to change.
One line of approach would be to assume that our standard family will
not change its demands from year to year. Suppose for the year 1950 the
prices were as in the following table.

EXPENDITURE OF THE STANDARD WORKING-CLASS FAMILY

(1950)

Quantity Price Expenditure =~ Weight

Bread and Flour 391b. 5d./1b. 194d. 30-1
Meat 71b. 30d./1b. 210d. 32-6
Potatoes 351b. 3d./lb. 105d. 16-3
Tea 11b. 36d./1b. 36d. 5-6
Sugar 21b. 6d./1b. 12d. 1-9
Butter 11b. 27d./1b. 27d. 4-2
Margarine 11b. 15d./1b. 15d. 2-3
Eggs 1 doz. 45d./doz. 45d. 7-0
Total 644d. 100-0

The reader should ignore, for the moment, the last column, headed
‘Weight,’ in each table. The obvious thing, at once, is that to buy the same
quantities of the same articles, and therefore to get the same ‘satisfaction,’
as the economists have it, cost the standard family 644d. in 1950 as
against 500d. in 1949, i.e., the cost in 1950 as compared with 1949 was
44500 X 100 = 128-8%. We could then say that the index of retail prices,
as represented by this group of items, stood at 129 in 1950 (1949 = 100).

We could get a similar indication of the rise in retail prices as follows.
Consider, first, the amount of money our standard family spent on the
various items in our ‘base year, 1949.” These can be reduced to percent-
ages of the total expenditure (on the group of items considered in the
index). For instance, out of a total expenditure of 500d., bread and flour
claimed 156d. or 31:2%. Similarly, meat took 33:6% of the total ex-
penditure, potatoes 14-0%, and so on. These figures are entered in the
column headed ‘Weight’ since they tell us the relative importance of the
different items in the household budget. Meat is a very heavy item, sugar
a relatively small one. These weights give us a pattern of expenditure as it
actually appeared to the standard housewife in the base year. They take
account of both quantity and price. The first thing that is obvious from
this pattern of weights is that, while a 50% increase in the cost of sugar
is not a matter of great importance to the housewife, even a 10% increase
in the price of meat would be a serious extra burden to carry in the
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standard family where income is usually closely matched to expenditure.
We must remember that our standard family is a standardized family. Its
wants are not supposed to change. It is supposed to be devoid of ambition.
It only gets a rise in salary when such a rise is absolutely necessary.

Now while it is true (in the absence of subsidies and purchase tax or
price fixing by combines) that all commodities tend to rise in price to-
gether, nevertheless, superimposed on this general tendency, there will be
a certain irregularity. Comparing the price of bread and flour in our two
years we find that the ‘price relative,’ as it is called, of this item is % X
100 = 125% in 1950 as compared with the base year, 1949,

The following table shows the ‘prices relative’ for the several items,
together with the weights corresponding to the base year. The weights
have been quoted to the first decimal place, further places being con-
demned as coming under the heading ‘delusions of accuracy.’

Price Base year Price-rel. X

relative weight weight

Bread and Flour 125 31-2 3,900
Meat 125 33-6 4,200
Potatoes 150 14.0 2,100
Tea 100 7-2 720
Sugar 120 2-0 240
Butter 150 3-6 540
Margarine 125 2-4 300
Eggs 150 6-0 900
Total 100-0 12,900

If, now, we divide the total of the ‘prices relative X weight’ by the total of
the weights, we get the average prices of the commodities in 1950, as
compared with the base year, 1949, equals 129-00, which we certainly
quote no more accurately than 129. This would now be our index of retail
prices. For every hundred pennies spent in 1949 we need to spend 129 in
1950 to get the same amount of ‘satisfaction.’ Evidently, every succeeding
year—or month, for that matter—can be compared with our base year.

The economists, of course, have great fun—and show remarkable skill
—in inventing more refined index numbers. Sometimes they use geometric
averages instead of arithmetic averages (the advantage here being that
the geometric average is less upset by extreme oscillations in individual
items), sometimes they use the harmonic average. But these are all refine-
ments of the basic idea of the index number which we have indicated in
this chapter. Most business men seem to thrive without understanding this
simple matter. Perhaps they half realize that it doesn’t mean a lot, except
in regard to wage negotiations between themselves and Trade Unions—
and in such cases experts on both sides of the fence do all the statistics
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required. The employer and employee don’t much mind how much of this
arithmetic goes on, so long as the final agreement is reasonably fair to
both sides.

The snags in this index number game will be apparent to the reader.
First of all, if he will inspect the pattern of weights in the tables for 1949
and 1950, he will see that they are not identical. Over a reasonable period
of years the pattern can change appreciably. Then, again, if we try to
measure the cost of living of our standard family by including heating,
lighting, rent, beer, cigarettes, football pools, and the rest, we soon get
into deep water. For example, if we find that in the base year the standard
family spends one-tenth of its income on football pools, are we to argue
that since this is a heavy item of expenditure it shall be supported some-
how in the cost of living calculations? Until very recently the cost of
living index in this country took account of the cost of paraffin and
candles for lighting purposes, and assumed that no working-class family
had heard of electricity. Then there is the difficulty that the standard
family tends to become a standardized family in so far as its wages are
tied to an index which is slow to recognize the right of its standard family
to be anything but standard in its requirements from year to year. The
reader should consider carefully the full implication of ‘subsidies on essen-
tials’ (included in cost of living index) and ‘purchase tax on non-essentials’
(not included in the index or only modestly represented). The pernicious
nature of tying wages to cost of living indexes while this jiggery-pokery
is official policy will be apparent. The whole scheme is positively Machi-
avellian in its acceptance of deception as a necessity in politics. And does
it really work so well, after all? The truth is that it is too inefficient even
to keep the worker standardized. As new items are available from manu-
facturers, the public has to be given the power to purchase them, whether
they are included in the cost of living index or not. Shall we ask the
economists: What good do your indexes do—really?

SCATTER

‘The words figure and fictitious both derive from the same Latin root,
fingere. Beware!™—M., J. M.

We have discussed various ways of measuring the central tendency of
distributions and have seen that such measures are characteristic of the
distribution of any quantity, so that different populations are distinguished
from each other by different values of these measures. For example, the
average value for the height of women differs from the average height for
men. Numerical characteristics of populations are called parameters. Hav-
ing dealt with parameters of central tendency, we now turn to the no less
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FIGURE 12—Ogive for heights for young men (LQ.R. == interquartile range). Based on W. T.
Martin, “Physique of the Young Male,”” by permission of H.M.5.0.)

important matter of parameters of dispersion. According to Memoran-
dum No. 20 issued by the Medical Research Council (W. J. Martin: The
Physique of Young Males) the height of young males, aged between 20
and 21 years, has an average value of 5 feet 7% inches. This is informa-
tion. But we should like to know more,? for it is evident that not all the
young men were exactly of this height. The adjoining ogive (Figure 12)
shows the percentages of men less than stated heights in a total of 91,163
who were measured. Figure 13 shows the data displayed in histogram
form. It is evident that very considerable variability exists, so that, whilst
the great majority of men differ relatively little from the average height,
very noticeable departures from it are not at all infrequent. How are we
to get a measure of the variability about the mean value?

The easiest way is to state the height of the tallest man seen and the
shortest, thus. Tallest: 6 feet 9 inches. Average: 5 feet 7% inches.
Shortest: 4 feet 0 inches. Alternatively, we might state the range, i.e., the
difference between the tallest and the shortest, viz. 6 feet 9 inches minus
4 feet 0 inches = 2 feet 9 inches. This is not a very good way. A moment’s
thought will make it clear that we might very easily not have met these
two extreme heights. It might well have been that we should have found
the shortest man to be 4 feet 4 inches and the tallest 6 feet 6 inches.
This would give us a range of 6 feet 6 inches minus 4 feet 4 inches = 2
feet 2 inches—a result which is appreciably different from the previous
one. Again, it might have happened that among those examined in this
group for military service were the giant and the dwarf from some circus.

3 The author does not disappoint us in this desire.
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FIGURE 13—Histogram corresponding to the ogive of Figure 12,

Supposing the giant to be 9 feet 7 inches and the dwarf 3 feet 2 inches,
we should have obtained for our range the value 6 feet 5 inches. It is
obviously undesirable to have a measure which will depend entirely on the
value of any freaks that may occur. It is impossible for a measure based
on freaks to speak as the representative of the ordinary population. The
range, then, although it is used in certain circumstances, is not ideal as a
measure of dispersion.t It would be better to have a parameter less likely
to be upset by extreme values.

We may tackle this problem by devising a measure for dispersion along
the same line that we took for the median when we were discussing meas-
ures of central tendency. The median was the value above which 50%
of the population fell and below which the other 50% fell. Suppose, now,
we divide the population, after it has been set out in order of size, into
four equal groups. The value above which only 25% of the population
falls we call the upper quartile, and the value below which only 25% of
the population falls we call the lower quartile. Evidently, 50% of the
population falls between the upper and lower quartile values. The reader
may care to check for himself that the upper and lower quartiles, for the
table of heights we are using as an example, are roughly 5 feet 9 inches
and 5 feet 6 inches respectively. Thus, we may see at once that roughly
50% of the population differ in height by amounts not exceeding three
inches, despite the fact that the tallest man observed was no less than
2 feet 9 inches taller than the shortest man. This, of course, is a conse-
quence of the way in which the large majority of heights cluster closely
to the average. This is a very common effect. Intelligence Quotients be-

4 The range is very efficient when the samples contain very few items.
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have in the same sort of way. Most people are little removed from average
intelligence, but geniuses and morons tend to occur in splendid isolation.
(We may recall here that the modal (‘fashionable’) value tends to co-
incide with the arithmetic mean when the distribution is fairly symmetri-
cal.) Thus the interquartile range, i.e., the difference between the upper
and lower quartile values, makes a good measure of dispersion. It is im-
mune from the disturbances occasioned by the incidence of extreme
values. It is easy to calculate. It has a simple and meaningful significance
in that it tells us the range of variability which is sufficient to contain
50% of the population. The interquartile range is frequently used in eco-
nomic and commercial statistics for another reason. Often, data are col-
lected in such a way that there are indeterminate ranges at one or both

11 - 14 I 2245
25 -4 I | 449
50 - 99 NN 771

100 =199 I 439

200 =299 NN 164

300-399 W75

AVERAGE NUMBER OF EMPLOYEES

400 € OVER HENN 173

FIGURE 14—Showing numbers of firms with the stated number of employees in the food, drink,
and tobacco trades of Great Britain. (Based on Census of Production 1930, quoted by
M. G. Kendall, "“Advanced Statistics,” Vol. L.)

ends of the table. An example is shown in Figure 14. The largest group
is labelled ‘400 and over.’ This is vague, and it would obviously be impos-
sible to do a precise calculation for any measure depending on arith-
metical processes involving the actual values in the unbounded upper
class. (We shall show in the next chapter how the limited vagueness in
the other bounded classes is dealt with.) The median and the interquartile
range provide us with measures of central tendency and scatter respec-
tively in such cases.

Median and quartiles are simply special cases of a quite general scheme
for dividing up a distribution by quantiles. Thus, we may arrange our dis-
tribution in order of size and split it up into ten groups containing equal
numbers of the items. The values of the variable at which the divisions
occur are known then as the first, second, third, and so on, deciles. This
idea is used by educational psychologists to divide pupils into ‘top 10%,
second 10%, third 10%,’ and so on, with regard to inherent intelligence
in so far as that characteristic may be measured by tests.



1508 M. J. Moroney

Yet another measure of dispersion, which depends on all the measure-
ments, is the mean deviation. In order to calculate this parameter, we first
of all find the arithmetic mean of the quantities in the distribution. We
then find the difference between each of the items and this average, call-
ing all the differences positive. We then add up all the differences thus
obtained and find the average difference by dividing by the number of
differences. Thus the mean deviation is the average difference of the sev-
eral items from their arithmetic mean. In mathematical form we have

Ilx— x|
Mean Deviation = ———
n
where as before the symbol X stands for the arithmetic mean of the
various values of x. The sign |x —7%| indicates that we are to find the dif-
ference between x and the average of the x values, ignoring sign. The
sign £ means ‘add'up all the terms like.’
Example. Find the arithmetic mean and mean deviation for the set of

numbers: 11, 8, 6, 7, 8.

Here we have n =5 items to be averaged. As previously shown, the
average of the items is

ix 11+846+7+8 40
r=—= =—=2§
n 5 5
In order to get the mean difference, we calculate the several differences
of the items from their average value of 8 and sum them, thus:

[11—8|+ |8 —8]+|6—8|+|7—8|+|8 —8|
= 3 + 0 + 2 4+ 1 + 0 =6

We then calculate the mean deviation by dividing this total of the devia-
tions by n = 5, and so find the mean deviation as 9% = 1-2.

The mean deviation is frequently met with in economic statistics.

The measures so far suggested are often used in elementary work on
account of their being easy to calculate and easy to understand. They are,
however, of no use in more advanced work because they are extremely
difficult to deal with in sampling theory, on which so much of advanced
work depends. The most important measure of dispersion is the standard
deviation, which is a little more difficult to calculate and whose signifi-
cance is less obvious at first sight. Calculation and interpretation, how-
ever, soon become easy with a little practice, and then the standard
deviation is the most illuminating of all the parameters of dispersion. The
standard deviation will be familiar to electrical engineers and mathema-
ticians as the root-mean-square deviation.® The general reader will do well
to remember this phrase as it will help him to remember exactly how the

51t is strictly analogous to radius of gyration in the theory of moments of inertia.
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standard deviation is calculated. We shall detail the steps for the calcula-
tion of the standard deviation of a set of values thus:

Step 1. Calculate the arithmetic average of the set of values.

Step 2. Calculate the differences of the several values from their arith-
metic average.

Step 3. Calculate the squares of these differences (the square of a
number is found by multiplying it by itself. Thus the square of 4 is written
42 and has the value 4 X 4 = 16).

Step 4. Calculate the sum of the squares of the differences to get a
quantity known as the sample sum of squares.

Step 5. Divide this ‘sample sum of squares’ by the number of items, n,
in the set of values. This gives a quantity known as the sample variance.

Step 6. Take the square root of the variance and so obtain the standard
deviation, (The square root of any number, x, is a number such that when
it is multiplied by itself it gives the number x. Thus, if the square root of
x is equal to a number y then we shall have y2 =y X y = x.)

This sounds much more complicated than it really is. Let us work out
an example, step by step.

Example. Find the standard deviation of the set of values 11, 8, 6, 7, 8.
Step 1. We calculated the arithmetic average previously as ¥ = 8.
Step 2. The differences of the items from this average (sign may be

ignored) are: 3,0, 2, 1, 0.
Step 3. The squares of these differences are:
3IxX3=9 0x0=0 2x2=4 1xX1=1 0x0=0
Step 4. The sample sum of squares is: 9+ 0+ 4 + 1 4+0= 14.
Step 5. Dividing the sample sum of squares by the number of items,
n =35, we get the sample variance as s? =14 = 2-8 (s2 is the accepted
symbol for sample variance).
Step 6. The standard deviation is found as the square root of the
sample variance thus: s =+/2-8 = 1-673.
The formula for the standard deviation is:

Ex—x)2
s= ,\/—_
n

We have seen how to calculate the standard deviation. What use is it
to us in interpretation? Actually it is very easy to visualize. If we are given
any distribution which is reasonably symmetrical about its average and
which is unimodal (i.e., has one single hump in the centre, as in the
histogram shown in Figure 13) then we find that we make very little
error in assuming that two-thirds of the distribution lies less than one
standard deviation away from the mean, that 95% of the distribution lies
less than two standard deviations away from the mean, and that less than
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1% of the distribution lies more than three standard deviations away from
the mean. This is a rough rule, of course, but it is one which is found to
work very well in practice. Let us suppose, for example, that we were told
no more than that the distribution of intelligence, as measured by Intelli-

Mental Age

gence Quotients (a person’s 1.Q. is defined as X 100)
Chronological Age

has an average value ¥ = 100, with standard deviation s = 13. Then we
might easily picture the distribution as something like the rough sketch
shown in Figure 15.

The reader may care to compare the rough picture thus formed from
a simple knowledge of the two measures ¥ and s with the histogram shown
in Figure 16 which is based on results obtained by L. M. Terman and

=100
$= 3

AVERAGE
1a.

FIGURE 15—Knowing only that we have a fairly symmetrical, unimodal distribution whose mean
value is 1.Q. 100 units and whose standard deviation is 1.Q. 13 units, we can at once

picture in our minds that the distribution looks something as shown.

quoted by J. F. Kenney from his book The Measurement of Intelligence.
This is typical of the use of measures of central tendency and dispersion
in helping us to carry the broad picture of a whole distribution (provided
it be reasonably symmetrical and unimodal) in the two values ¥ and s.
Such measures properly may be said to represent the distribution for
which they were calculated.

The measures of dispersion which we have so far dealt with are all
expressed in terms of the units in which the variable quantity is measured.
It sometimes happens that we wish to ask ourselves whether one distribu-
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tion is relatively more variable than another. Let us suppose, for example,
that for the heights of men in the British Isles we find a mean value 57
inches with standard deviation 2-5 inches, and that for Spaniards the
mean height is 54 inches with standard deviation 2-4 inches. It is evident
that British men are taller than Spaniards and also slightly more variable
in height. How are we to compare the relative variability bearing in mind

40
Z=100
s=0

FREQUENCY PER CENT IN
STATED CLASS RANGE

FIGURE 16—Distribution of Intelligence Quotient (compare with Figure 15). Distribution of 1.Q.
with X == 100, s = 13. Based on data by L. M, Terman and quoted by J. F, Kenney,
““Mathematics of Statistics,” Vol. I).

that the Spaniards are shorter in height than the British? Karl Pearson’s

coefficient of variation is the most commonly used measure in practice for
such a case.

100s
It is defined as: v =
x
If we calculate the coefficient of variation for our two cases, we get:
100 X 2-5
British V= —=137-3%
67
100 X 2-4
Spaniards v = ———— =37-5%
64

We conclude that, though the British are more variable in an absolute
sense, the variability of the Spaniards, expressed as a percentage of the
mean height, is just slightly greater.



For her own breakfast she'll project a scheme
Nor take her tea without a stratagem. —Epwarp Youn: (1683-1765)

“Come little girl, you seem

To want my cup of tea

And will you take a little cream?

Now tell the truth to me"

She had a rustic woodland grin

Her cheek was soft as silk,

And she replied, "Sir, please put in

A little drop of milk.” —BaRRY PAIN (The Poets at Tea)

6 Mathematics of a Lady

Tasting Tea
By SIR RONALD A. FISHER

STATEMENT OF EXPERIMENT

A LADY declares that by tasting a cup of tea made with milk she can
discriminate whether the milk or the tea infusion was first added to the
cup. We will consider the problem of designing an experiment by means
of which this assertion can be tested. For this purpose let us first lay
down a simple form of experiment with a view to studying its limitations
and its characteristics, both those which appear to be essential to the
experimental method, when well developed, and those which are not
essential but auxiliary.

Our experiment consists in mixing eight cups of tea, four in one way
and four in the other, and presenting them to the subject for judgment
in a random order. The subject has been told in advance of what the test
will consist, namely that she will be asked to taste eight cups, that these
shall be four of each kind, and that they shall be presented to her in a
random order, that is in an order not determined arbitrarily by human
choice, but by the actual manipulation of the physical apparatus used in
games of chance, cards, dice, roulettes, etc., or, more expeditiously, from
a published collection of random sampling numbers purporting to give the
actual results of such manipulation. Her task is to divide the 8 cups into
two sets of 4, agreeing, if possible, with the treatments received.

INTERPRETATION AND ITS REASONED BASIS

In considering the appropriateness of any proposed experimental design,
it is always needful to forecast all possible results of the experiment, and
1512
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to have decided without ambiguity what interpretation shall be placed
upon each one of them. Further, we must know by what argument this
interpretation is to be sustained. In the present instance we may argue as
follows. There are 70 ways of choosing a group of 4 objects out of 8.
This may be demonstrated by an argument familiar to students of
“permutations and combinations,” namely, that if we were to choose the
4 objects in succession we should have successively 8, 7, 6, 5 objects to
choose from, and could make our succession of choices in 8 X 7 X 6 X 5,
or 1680 ways. But in doing this we have not only chosen every possible
set of 4, but every possible set in every possible order; and since 4 objects
can be arranged in order in 4 X 3 X 2 X 1, or 24 ways, we may find the
number of possible choices by dividing 1680 by 24. The result, 70, is
essential to our interpretation of the experiment. At best the subject can
judge rightly with every cup and, knowing that 4 are of each kind, this
amounts to choosing, out of the 70 sets of 4 which might be chosen, that
particular one which is correct. A subject without any faculty of discrimi-
nation would in fact divide the 8 cups correctly into two sets of 4 in one
trial out of 70, or, more properly, with a frequency which would approach
1 in 70 more and more nearly the more often the test were repeated.
Evidently this frequency, with which unfailing success would be achieved
by a person lacking altogether the faculty under test, is calculable from
the number of cups used. The odds could be made much higher by
enlarging the experiment, while, if the experiment were much smaller
even the greatest possible success would give odds so low that the result
might, with considerable probability, be ascribed to chance.

THE TEST OF SIGNIFICANCE

It is open to the experimenter to be more or less exacting in respect
of the smallness of the probability he would require before he would be
willing to admit that his observations have demonstrated a positive result.
It is obvious that an experiment would be useless of which no possible
result would satisfy him. Thus, if he wishes to ignore results having prob-
abilities as high as 1 in 20—the probabilities being of course reckoned
from the hypothesis that the phenomenon to be demonstrated is in fact
absent—then it would be useless for him to experiment with only 3 cups
of tea of each kind. For 3 objects can be chosen out of 6 in only 20 ways,
and therefore complete success in the test would be achieved without
sensory discrimination, i.e., by “pure chance,” in an average of 5 trials
out of 100. It is usual and convenient for experimenters to take 5 per
cent. as a standard level of significance, in the sense that they are pre-
pared to ignore all results which fail to reach this standard, and, by this
means, to eliminate from further discussion the greater part of the fluctu-
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ations which chance causes have introduced into their experimental re-
sults. No such selection can eliminate the whole of the possible effects of
chance coincidence, and if we accept this convenient convention, and
agree that an event which would occur by chance only once in 70 trials
is decidedly “significant,” in the statistical sense, we thereby admit that
no isolated experiment, however significant in itself, can suffice for the
experimental demonstration of any natural phenomenon; for the “cne
chance in a million” will undoubtedly occur, with no less and no more
than its appropriate frequency, however surprised we may be that it
should occur to us. In order to assert that a natural phenomenon is ex-
perimentally demonstrable we need, not an isolated record, but a reliable
method of procedure. In relation to the test of significance, we may say
that a phenomenon is experimentally demonstrable when we know how to
conduct an experiment which will rarely fail to give us a statistically
significant result. .

Returning to the possible results of the psycho-physical experiment,
having decided that if every cup were rightly classified a significant posi-
tive result would be recorded, or, in other words, that we should admit
that the lady had made good her claim, what should be our conclusion
if, for each kind of cup, her judgments are 3 right and 1 wrong? We may
take it, in the present discussion, that any error in one set of judgments
will be compensated by an error in the other, since it is known to the
subject that there are 4 cups of each kind. In enumerating the number
of ways of choosing 4 things out of 8, such that 3 are right and 1 wrong,
we may note that the 3 right may be chosen, out of the 4 available, in 4
ways and, independently of this choice, that the 1 wrong may be chosen,
out of the 4 available, also in 4 ways. So that in all we could make a
selection of the kind supposed in 16 different ways. A similar argument
shows that, in each kind of judgment, 2 may be right and 2 wrong in
36 ways, 1 right and 3 wrong in 16 ways and none right and 4 wrong in
1 way only. It should be noted that the frequencies of these five possible
results of the experiment make up together, as it is obvious they should,
the 70 cases out of 70.

It is obvious, too, that 3 successes to 1 failure, although showing a bias,
or deviation, in the right direction, could not be judged as statistically
significant evidence of a real sensory discrimination. For its frequency of
chance occurrence is 16 in 70, or more than 20 per cent. Moreover, it is
not the best possible result, and in judging of its significance we must take
account not only of its own frequency, but also of the frequency for any
better result. In the present instance “3 right and 1 wrong” occurs 16
times, and “4 right” occurs once in 70 trials, making 17 cases out of 70
as good as or better than that observed. The reason for including cases
better than that observed becomes obvious on considering what our con-



Mathematics of a Lady Tasting Tea 1515

clusions would have been had the case of 3 right and 1 wrong only 1
chance, and the case of 4 right 16 chances of occurrence out of 70. The
rare case of 3 right and 1 wrong could not be judged significant merely
because it was rare, seeing that a higher degree of success would fre-
quently have been scored by mere chance.

THE NULL HYPOTHESIS

Our examination of the possible results of the experiment has therefore
led us to a statistical test of significance, by which these results are divided
into two classes with opposed interpretations. Tests of significance are
of many different kinds, which need not be considered here. Here we are
only concerned with the fact that the easy calculation in permutations
which we encountered, and which gave us our test of significance, stands
for something present in every possible experimental arrangement; or, at
least, for something required in its interpretation. The two classes of
results which are distinguished by our test of significance are, on the one
hand, those which show a significant discrepancy from a certain hy-
pothesis; namely, in this case, the hypothesis that the judgments given
are in no way influenced by the order in which the ingredients have been
added; and on the other hand, results which show no significant discrep-
ancy from this hypothesis. This hypothesis, which may or may not be
impugned by the result of an experiment, is again characteristic of all
experimentation. Much confusion would often be avoided if it were ex-
plicitly formulated when the experiment is designed. In relation to any
experiment we may speak of this hypothesis as the “null hypothesis,” and
it should be noted that the null hypothesis is never proved or established,
but is possibly disproved, in the course of experimentation. Every experi-
ment may be said to exist only in order to give the facts a chance of
disproving the null hypothesis.

It might be argued that if an experiment can disprove the hypothesis
that the subject possesses no sensory discrimination between two different
sorts of object, it must therefore be able to prove the opposite hypothesis,
that she can make some such discrimination. But this last hypothesis,
however reasonable or true it may be, is ineligible, as a null hypothesis to
be tested by experiment, because it is inexact. If it were asserted that the
subject would never be wrong in her judgments we should again have an
exact hypothesis, and it is easy to see that this hypothesis could be dis-
proved by a single failure, but could never be proved by any finite amount
of experimentation. It is evident that the null hypothesis must be exact,
that is free from vagueness and ambiguity, because it must supply the
basis of the “problem of distribution,” of which the test of significance
is the solution. A null hypothesis may, indeed, contain arbitrary elements,
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and in more complicated cases often does so: as, for example, if it
should assert that the death-rates of two groups of animals are equal,
without specifying what these death-rates usually are. In such cases it is
evidently the equality rather than any particular values of the death-rates
that the experiment is designed to test, and possibly to disprove.

In cases involving statistical “‘estimation” these ideas may be extended
to the simultaneous consideration of a series of hypothetical possibilities.
The notion of an error of the so-called “second kind,” due to accepting
the null hypothesis “when it is false” may then be given a meaning in
reference to the quantity to be estimated. It has no meaning with respect
to simple tests of significance, in which the only available expectations are
those which flow from the null hypothesis being true.

RANDOMISATION; THE PHYSICAL BASIS OF THE VALIDITY OF THE TEST

We have spoken of the experiment as testing a certain null hypothesis,
namely, in this case, that the subject possesses no sensory discrimination
whatever of the kind claimed; we have, too, assigned as appropriate to
this hypothesis a certain frequency distribution of occurrences, based on
the equal frequency of the 70 possible ways of assigning 8 objects to two
classes of 4 each; in other words, the frequency distribution appropriate
to a classification by pure chance. We have now to examine the physical
conditions of the experimental technique needed to justify the assumption
that, if discrimination of the kind under test is absent, the result of the
experiment will be wholly governed by the laws of chance. It is easy to
see that it might well be otherwise. If all those cups made with the milk
first had sugar added, while those made with the tea first had none, a
very obvious difference in flavour would have been introduced which
might well ensure that all those made with sugar should be classed alike.
These groups might either be classified all right or all wrong, but in such
a case the frequency of the critical event in which all cups are classified
correctly would not be 1 in 70, but 35 in 70 trials, and the test of sig-
nificance would be wholly vitiated. Errors equivalent in principle to this
are very frequently incorporated in otherwise well-designed experiments.

It is no sufficient remedy to insist that “all the cups must be exactly
alike” in every respect except that to be tested. For this is a totally im-
possible requirement in our example, and equally in all other forms of
experimentation. In practice it is probable that the cups will differ per-
ceptibly in the thickness or smoothness of their material, that the quan-
tities of milk added to the different cups will not be exactly equal, that
the strength of the infusion of tea may change between pouring the first
and the last cup, and that the temperature also at which the tea is tasted
will change during the course of the experiment. These are only examples
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of the differences probably present; it would be impossible to present an
exhaustive list of such possible differences appropriate to any one kind of
experiment, because the uncontrolled causes which may influence the
result are always strictly innumerable. When any such cause is named, it
is usually perceived that, by increased labour and expense, it could be
largely eliminated. Too frequently it is assumed that such refinements
constitute improvements to the experiment. Our view, which will be much
more fully exemplified in later sections, is that it is an essential character-
istic of experimentation that it is carried out with limited resources, and
an essential part of the subject of experimental design to ascertain how
these should be best applied; or, in particular, to which causes of dis-
turbance care should be given, and which ought to be deliberately ignored.
To ascertain, too, for those which are not to be ignored, to what extent
it is worth while to take the trouble to diminish their magnitude. For our
present purpose, however, it is only necessary to recognise that, whatever
degree of care and experimental skill is expended in equalising the condi-
tions, other than the one under test, which are liable to affect the result,
this equalisation must always be to a greater or less extent incomplete,
and in many important practical cases will certainly be grossly defective.
We are concerned, therefore, that this inequality, whether it be great or
small, shall not impugn the exactitude of the frequency distribution, on
the basis of which the result of the experiment is to be appraised.

THE EFFECTIVENESS OF RANDOMISATION

The element in the experimental procedure which contains the essen-
tial safeguard is that the two modifications of the test beverage are to be
prepared “in random order.” This, in fact, is the only point in the ex-
perimental procedure in which the laws of chance, which are to be in
exclusive control of our frequency distribution, have been explicitly intro-
duced. The phrase “random order” itself, however, must be regarded as
an incomplete instruction, standing as a kind of shorthand symbol for the
full procedure of randomisation, by which the validity of the test of sig-
nificance may be guaranteed against corruption by the causes of dis-
turbance which have not been eliminated. To demonstrate that, with
satisfactory randomisation, its validity is, indeed, wholly unimpaired, let
us imagine all causes of disturbance—the strength of the infusion, the
quantity of milk, the temperature at which it is tasted, etc.—to be pre-
determined for each cup; then since these, on the null hypothesis, are the
only causes influencing classification, we may say that the probabilities
of each of the 70 possible choices or classifications which the subject can
make are also predetermined. If, now, after the disturbing causes are
fixed, we assign, strictly at random, 4 out of the 8 cups to each of our
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experimental treatments, then every set of 4, whatever its probability of
being so classified, will certainly have a probability of exactly 1 in 70 of
being the 4, for example, to which the milk is added first. However im-
portant the causes of disturbance may be, even if they were to make it
certain that one particular set of 4 should receive this classification, the
probability that the 4 so classified and the 4 which ought to have been so
classified should be the same, must be rigorously in accordance with our
test of significance.

It is apparent, therefore, that the random choice of the objects to be
treated in different ways would be a complete guarantee of the validity
of the test of significance, if these treatments were the last in time of the
stages in the physical history of the objects which might affect their ex-
perimental reaction. The circumstance that the experimental treatments
cannot always be applied last, and may come relatively early in their
history, causes no practical inconvenience; for subsequent causes of dif-
ferentiation, if under the experimenter's control, as, for example, the
choice of different pipettes to be used with different flasks, can either be
predetermined before the treatments have been randomised, or, if this has
not been done, can be randomised on their own account; and other causes
of differentiation will be either (a) consequences of differences already
randomised, or (b) natural consequences of the difference in treatment
to be tested, of which on the null hypothesis there will be none, by defi-
nition, or (c) effects supervening by chance independently from the
treatments applied. Apart, therefore, from the avoidable error of the
experimenter himself introducing with his test treatments, or subsequently,
other differences in treatment, the effects of which the experiment is not
intended to study, it may be said that the simple precaution of randomisa-
tion will suffice to guarantee the validity of the test of significance, by
which the result of the experiment is to be judged.

THE SENSITIVENESS OF AN EXPERIMENT. EFFECTS OF
ENLARGEMENT AND REPETITION

A probable objection, which the subject might well make to the experi-
ment so far described, is that only if every cup is classified correctly will
she be judged successful. A single mistake will reduce her performance
below the level of significance. Her claim, however, might be, not that
she could draw the distinction with invariable certainty, but that, though
sometimes mistaken, she would be right more often than not; and that
the experiment should be enlarged sufficiently, or repeated sufficiently
often, for her to be able to demonstrate the predominance of correct
classifications in spite of occasional errors.

An extension of the calculation upon which the test of significance was
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based shows that an experiment with 12 cups, six of each kind, gives, on
the null hypothesis, 1 chance in 924 for complete success, and 36 chances
for 5 of each kind classified right and 1 wrong. As 37 is less than a twen-
tieth of 924, such a test could be counted as significant, although a pair
of cups have been wrongly classified; and it is easy to verify that, using
larger numbers still, a significant result could be obtained with a still
higher proportion of errors. By increasing the size of the experiment, we
can render it more sensitive, meaning by this that it will allow of the
detection of a lower degree of sensory discrimination, or, in other words,
of a quantitatively smaller departure from the null hypothesis. Since in
every case the experiment is capable of disproving, but never of proving
this hypothesis, we may say that the value of the experiment is increased
whenever it permits the null hypothesis to be more readily disproved.

The same result could be achieved by repeating the experiment, as
originally designed, upon a number of different occasions, counting as a
success all those occasions on which 8 cups are correctly classified. The
chance of success on each occasion being 1 in 70, a simple application of
the theory of probability shows that 2 or more successes in 10 trials would
occur, by chance, with a frequency below the standard chosen for testing
significance; so that the sensory discrimination would be demonstrated,
although, in 8 attempts out of 10, the subject made one or more mistakes.
This procedure may be regarded as merely a second way of enlarging
the experiment and, thereby, increasing its sensitiveness, since in our final
calculation we take account of the aggregate of the entire series of results,
whether successful or unsuccessful. It would clearly be illegitimate, and
would rob our calculation of its basis, if the unsuccessful resuits were not
all brought into the account.

QUALITATIVE METHODS OF INCREASING SENSITIVENESS

Instead of enlarging the experiment we may attempt to increase its
sensitiveness by qualitative improvements; and these are, generally speak-
ing, of two kinds: (a) the reorganisation of its structure, and (b) refine-
ments of technique. To illustrate a change of structure we might consider
that, instead of fixing in advance that 4 cups should be of each kind, de-
termining by a random process how the subdivision should be effected,
we might have allowed the treatment of each cup to be determined inde-
pendently by chance, as by the toss of a coin, so that each treatment has
an equal chance of being chosen. The chance of classifying correctly 8
cups randomised in this way, without the aid of sensory discrimination, is
1 in 28, or 1 in 256 chances, and there are only 8 chances of classifying
7 right and 1 wrong; consequently the sensitiveness of the experiment has
been increased, while still using only 8 cups, and it is possible to score a
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significant success, even if one is classified wrongly. In many types of ex-
periment, therefore, the suggested change in structure would be evidently
advantageous. For the special requirements of a psycho-physical experi-
ment, however, we should probably prefer to forego this advantage, since
it would occasionally occur that all the cups would be treated alike, and
this, besides bewildering the subject by an unexpected occurrence, would
deny her the real advantage of judging by comparison.

Another possible alteration to the structure of the experiment, which
would, however, decrease its sensitiveness, would be to present deter-
mined, but unequal, numbers of the two treatments. Thus we might
arrange that 5 cups should be of the one kind and 3 of the other, choosing
them properly by chance, and informing the subject how many of each
to expect. But since the number of ways of choosing 3 things out of 8
is only 56, there is now, on the null hypothesis, a probability of a com-
pletely correct classification of 1 in 56. It appears in fact that we cannot
by these means do better than by presenting the two treatments in equal
numbers, and the choice of this equality is now seen to be justified by its
giving to the experiment its maximal sensitiveness.

With respect to the refinements of technique, we have seen above that
these contribute nothing to the validity of the experiment, and of the test
of significance by which we determine its result. They may, however, be
important, and even essential, in permitting the phenomenon under test
to manifest itself. Though the test of significance remains valid, it may be
that without special precautions even a definite sensory discrimination
would have little chance of scoring a significant success. If some cups
were made with India and some with China tea, even though the treat-
ments were properly randomised, the subject might not be able to dis-
criminate the relatively small difference in flavour under investigation,
when it was confused with the greater differences between leaves of dif-
ferent origin. Obviously, a similar difficulty could be introduced by using
in some cups raw milk and in others boiled, or even condensed milk, or
by adding sugar in unequal quantities. The subject has a right to claim,
and it is in the interests of the sensitiveness of the experiment, that gross
differences of these kinds should be excluded, and that the cups should,
not as far as possible, but as far as is practically convenient, be made
alike in all respects except that under test.

How far such experimental refinements should be carried is entirely a
matter of judgment, based on experience. The validity of the experiment
is not affected by them. Their sole purpose is to increase its sensitiveness,
and this object can usually be achieved in many other ways, and particu-
larly by increasing the size of the experiment. If, therefore, it is decided
that the sensitiveness of the experiment should be increased, the experi-
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menter has the choice between different methods of obtaining equivalent
results; and will be wise to choose whichever mrethod is easiest to him,
irrespective of the fact that previous experimenters may have tried, and
recommended as very important, or even essential, various ingenious and
troublesome precautions.



COMMENTARY ON
The Scientific Aptitude of
Mr. George Bernard Shaw

ERNARD SHAW was not at his best as a scientific thinker. Science

interested him but he was inclined to be erratic. Though science
offered a fertile field for the exercise of his talents as a controversialist, a
foe of pretense and a joker, he was often unable to distinguish between
the stuffed robe and the honest scientist, between theories that merited
serious attention and theories that were pure humbug. Moreover he him-
self espoused the most incredible nonsense. He fought vivisection and
vaccination; he had a low opinion of medical knowledge and an even
lower opinion of its practitioners; he had his own astonishing theories of
biology, physiology, bacteriology and hygiene, and nothing would per-
suade him that the sun was burning itself out (since he expected to live
longer than Methuselah he felt he had a personal stake in the catas-
trophe); he dismissed laboratory experiments generally as mere “put-up
jobs,” performances rigged for the purpose of proving preconceived
theories regardless of the weight of evidence.

But for all his prejudices and eccentric notions, Shaw did not close his
mind to the important works of science. He followed the advances of
research in fields as varied as Pavlov's work on dogs and the Michelson-
Morley interferometer experiments on ether drift. He “liked visiting
laboratories and peeping at bacteria through the microscope.” ! He was
curious about how things work: automobiles, radios, machine tools,
motorcycles, phonographs. He was an enthusiastic photographer and
camera tinkerer. Every efficient labor-saving device won his admiration
but “for old-fashioned factory machinery his contempt was boundless: he
said a louse could have invented it all if it had been keen enough on
profits.” 2

Shaw and Jonathan Swift were much alike in their attitudes to science.
Both men lived in periods of great scientific advance; both respected
science; neither had any special aptitude for it. Both approached the sub-
ject as social reformers and satirists; both despised pretentiousness; neither
had much use for science as a purely speculative activity. Swift aimed his
wit at mathematics, which in its advanced forms seemed to him com-
pletely trivial; Shaw waged war on biological practices which he thought

! Hesketh Pearson, G.B.S., A Full Length Portrait, New York, 1942, p. 270. I have
drawn on this biography for many of the details of this sketch; also on Bernard Shaw,
Sixteen Self-Sketches, New York, 1949,

2 Pearson, op. cit., p. 270.
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cruel and stupid. That he exaggerated is understandable. He enjoyed ex-
aggeration and he regarded it as an essential tool of reform. “If you do
not say a thing in an irritating way, you may just as well not say it at all,
since nobody will trouble themselves about anything that does not trouble
them.” (The grammar is bizarre, even for G.B.S.)

There was, however, one branch of science which Shaw neither tilted
at nor enlarged with theories of his own. The subject he spared was
mathematics. He did not minimize its importance and he admitted, drop-
ping at least this once the pose of omniscience, that he knew very little
about it. He blamed his ignorance on the wretched instruction he received
at the Wesleyan Connexional School. “Not a word was said to us about
the meaning or utility of mathematics: we were simply asked to explain
how an equilateral triangle could be constructed by the intersection of
two circles, and to do sums in a, b, and x instead of in pence and shillings,
leaving me so ignorant that I concluded that a and b must mean eggs and
cheese and x nothing, with the result that I rejected algebra as nonsense,
and never changed that opinion until in my advanced twenties Graham
Wallas and Karl Pearson convinced me that instead of being taught
mathematics I had been made a fool of.”

The influence of these distinguished men was highly beneficial. To be
sure Shaw never became unduly proficient as a calculator: “I never used
a logarithm in my life, and could not undertake to extract the square
root of four without misgivings.” But he learned to appreciate the impor-
tance of at least one division of higher mathematics, the theory of prob-
ability and statistics. The following selection presents a Shavian version
of the development and practical application of the calculus of chance. It
is a delightful account and very sensible. No one else, so far as I know,
has treated the history of mathematics in this way. I suspect that if there
were more Shaws teaching the subject it would become popular. But the
mathematical probability of this compound circumstance is admittedly
small.



Let the king prohibit gambling and betting in his kingdom, for these are
viees that destroy the kingdoms of princes. —THe Cobe oF MaNU (c. 100)

In play there are two pleasures for your choosing—
The one is winning, and the other losing. —ByRON

7  The Vice of Gambling and the
Virtue of Insurance
By GEORGE BERNARD SHAW

INSURANCE, though founded on facts that are inexplicable, and risks
that are calculable only by professional mathematicians called actuaries, is
nevertheless more’ congenial as a study than the simpler subjects of bank-
ing and capital. This is because for every competent politician in our
country there must be at least a hundred thousand gamblers who make
bets every week with turf bookmakers. The bookmaker’s business is to bet
against any horse entered for a race with anybody who thinks it will win
and wants to bet that it will. As only one horse can win, and all the rest
must lose, this business would be enormously lucrative if all the bets were
for even money. But the competition among bookmakers leads them to
attract customers by offering “odds,” temptingly “long,” against horses
unlikely to win: whilst giving no odds at all on the most likely horse,
called the favorite. The well-known cry, puzzling to novices, of “two to
one bar one” means that the bookmaker will bet at odds of two to one
against any horse in the race except the favorite. Mostly, however, he will
bet at odds of ten to one or more against an “outsider.” In that case, if,
as sometimes happens, the outsider wins, the bookmaker may lose on his
bet against it all that he gained on his bets against the favorites. On the
scale between the possible extremes of gain and loss he may come out
anywhere according to the number of horses in the race, the number of
bets made on each of them, and the accuracy of his judgment in guessing
the odds he may safely offer. Usually he gains when an outsider wins, be-
cause mostly there is more money laid on favorites and fancies than on
outsiders; but the contrary is possible; for there may be several outsiders
as well as several favorites; and, as outsiders win quite often, to tempt
customers by offering too long odds against them is gambling; and a
bookmaker must never gamble, though he lives by gambling. There are
practically always enough variable factors in the game to tax the book-
maker's financial ability to the utmost. He must budget so as to come out
at worst still solvent. A bookmaker who gambles will ruin himself as cer-
1524
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tainly as a licensed victualler (publican) who drinks, or a picture dealer
who cannot bear to part with a good picture.

The question at once arises, how is it possible to budget for solvency in
dealing with matters of chance? The answer is that when dealt with in
sufficient numbers matters of chance become matters of certainty, which
is one of the reasons why a million persons organized as a State can do
things that cannot be dared by private individuals. The discovery of this
fact nevertheless was made in the course of ordinary private business.

In ancient days, when travelling was dangerous, and people before start-
ing on a journey overseas solemnly made their wills and said their prayers
as if they were going to die, trade with foreign countries was a risky busi-
ness, especially when the merchant, instead of staying at home and con-
signing his goods to a foreign firm, had to accompany them to their desti-
nation and sell them there. To do this he had to make a bargain with a
ship owner or a ship captain.

Now ship captains, who live on the sea, are not subject to the terrors
it inspires in the landsman. To them the sea is safer than the land; for
shipwrecks are less frequent than diseases and disasters on shore. And
ship captains make money by carrying passengers as well as cargo.
Imagine then a business talk between a merchant greedy for foreign trade
but desperately afraid of being shipwrecked or eaten by savages, and a
skipper greedy for cargo and passengers. The captain assures the merchant
that his goods will be perfectly safe, and himself equally so if he accom-
panies them. But the merchant, with his head full of the adventures of
Jonah, St. Paul, Odysseus, and Robinson Crusoe, dares not venture. Their
conversation will be like this:

CAPTAIN. Come! I will bet you umpteen pounds that if you sail with me
you will be alive and well this day year.

MERCHANT. But if I take the bet I shall be betting you that sum that I
shall die within the year.

CAPTAIN. Why not if you lose the bet, as you certainly will?

MERCHANT. But if I am drowned you will be drowned too; and then
what becomes of our bet?

CAPTAIN. True. But I will find you a landsman who will make the bet
with your wife and family.

MERCHANT. That alters the case of course; but what about my cargo?

CAPTAIN. Pooh! The bet can be on the cargo as well. Or two bets: one
on your life, the other on the cargo. Both will be safe, I assure you,
Nothing will happen; and you will see all the wonders that are to be seen
abroad.

MERCHANT. But if I and my goods get through safely I shall have to pay
you the value of my life and of the goods into the bargain. If 1T am not
drowned I shall be ruined.
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CAPTAIN. That also is very true. But there is not so much for me in it
as you think. If you are drowned I shall be drowned first; for I must be
the last man to leave the sinking ship. Still, let me persuade you to venture.
I will make the bet ten to one. Will that tempt you?

MERCHANT, Oh, in that case—

The captain has discovered insurance just as the goldsmiths discovered
banking.

It is a lucrative business; and, if the insurer’s judgment and information
are sound, a safe one. But it is not so simple as bookmaking on the turf,
because in a race, as all the horses but one must lose and the bookmaker
gain, in a shipwreck all the passengers may win and the insurer be
ruined. Apparently he must therefore own, not one ship only, but several,
so that, as many more ships come safely to port than sink, he will win on
half a dozen ships and lose on one only. But in fact the marine insurer
need no more own ships than the bookmaker need own horses. He can
insure the cargoes and lives in a thousand ships owned by other people
without his having ever owned or even seen as much as a canoe. The
more ships he insures the safer are his profits; for half a dozen ships may
perish in the same typhoon or be swallowed by the same tidal wave; but
out of a thousand ships most by far will survive. When the risks are in-
creased by war the odds on the bets can be lowered.

When foreign trade develops to a point at which marine insurers can
employ more capital than individual gamesters can supply, corporations
like the British Lloyds are formed to supply the demand. These corpora-
tions soon perceive that there are many more risks in the world than the
risk of shipwreck. Men who never travel nor send a parcel across the seas,
may lose life or limb by accident, or have their houses burnt or robbed.
Insurance companies spring up in all directions; and the business extends
and develops until there is not a risk that cannot be insured. Lloyds will
bet not only against shipwreck but against almost any risk that is not
specifically covered by the joint stock companies, provided it is an in-
surable risk: that is, a safe one.

This provision is a contradiction in terms; for how can a safe trans-
action involve a risk or a risk be run safely?

The answer takes us into a region of mystery in which the facts are un-
reasonable by any method of ratiocination yet discovered. The stock
example is the simplest form of gambling, which is tossing a coin and
betting on which side of it will be uppermost when it falls and comes to
rest. Heads or tails they call it in England, head or harp in Ireland. Every
time the coin is tossed, each side has an equal chance with the other of
winning. If head wins it is just as likely to win the next time and the
next and so on to the thousandth; so that on reasonable grounds a thou-
sand heads in succession are possible, or a thousand tails; for the fact that
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head wins at any toss does not raise the faintest reasonable probability
that tails will win next time. Yet the facts defy this reasoning. Anyone
who possesses a halfpenny and cares to toss it a hundred times may find
the same side turning up several times in succession; but the total result
will be fifty-fifty or as near thereto as does not matter. I happen to have
in my pocket ten pennies; and 1 have just spilt them on the floor ten
times. Result: forty nine heads and fifty one tails, though five-five occurred
only twice in the ten throws, and heads won three times in succession to
begin with. Thus though as between any two tosses the result is completely
uncertain, in ten throws it may be six-four or seven-three often enough to
make betting a gamble; but in a hundred the result will certainly be close
enough to fifty-fifty to leave two gamblers, one crying heads and the other
tails every time, exactly or very nearly where they were when they
started, no richer and no poorer, unless the stakes are so high that only
players out of their senses would hazard them.

An insurance company, sanely directed, and making scores of thou-
sands of bets, is not gambling at all; it knows with sufficient accuracy at
what age its clients will die, how many of their houses will be burnt every
year, how often their houses will be broken into by burglars, to what
extent their money will be embezzled by their cashiers, how much com-
pensation they will have to pay to persons injured in their employment,
how many accidents will occur to their motor cars and themselves, how
much they will suffer from illness or unemployment, and what births and
deaths will cost them: in short, what will happen to every thousand or ten
thousand or a million people even when the company cannot tell what
will happen to any individual among them.

In my boyhood I was equipped for an idle life by being taught to play
whist, because there were rich people who, having nothing better to do,
escaped from the curse of boredom (then called ennui) by playing whist
every day. Later on they played bezique instead. Now they play bridge.
Every gentleman’s club has its card room. Card games are games of
chance; for though the players may seem to exercise some skill and judg-
ment in choosing which card to play, practice soon establishes rules by
which the stupidest player can learn how to choose correctly: that is, not
to choose at all but to obey the rules. Accordingly people who play every
day for sixpences or shillings find at the end of the year that they have
neither gained nor lost sums of any importance to them, and have killed
time pleasantly instead of being bored to death. They have not really been
gambling any more than the insurance companies.

At last it is discovered that insurers not only need not own ships or
horses or houses or any of the things they insure, but that they need not
exist. Their places can be taken by machines. On the turf the bookmaker,
flamboyantly dressed and brazenly eloquent, is superseded by the Total-
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izator (Tote for short) in which the gamblers deposit the sums they are
prepared to stake on the horses they fancy. After the race all the money
staked on the winner is divided among its backers. The machine keeps
the rest. On board pleasure ships young ladies with more money than they
know what to do with drop shillings into gambling machines so con-
structed that they occasionally return the shilling ten or twentyfold. These
are the latest successors of the roulette table, the “little horses,” the dice
casters, and all other contraptions which sell chances of getting money for
nothing. Like the Tote and the sweepstake, they do not gamble: they
risk absolutely nothing, though their customers have no certainty except
that in the lump they must lose, every gain to Jack and Jill being a loss
to Tom and Susan.

How does all this concern the statesman? In this way. Gambling, or
the attempt to get money without earning it, is a vice which is economi-
cally (that is, fundamentally) ruinous. In extreme cases it is a madness
which persons of the highest intelligence are unable to resist: they will
stake all they possess though they know that the chances are against them.
When they have beggared themselves in half an hour or half a minute,
they sit wondering at the folly of the people who are doing the same
thing, and at their own folly in having done it themselves.

Now a State, being able to make a million bets whilst an individual
citizen can afford only one, can tempt him or her to gamble without itself
running the slightest risk of losing financially; for, as aforesaid, what will
happen in a million cases is certain, though no one can foresee what will
happen in any one case. Consequently governments, being continually in
pressing need of money through the magnitude of their expenses and the
popular dislike of taxation, are strongly tempted to replenish the Treasury
by tempting their citizens to gamble with them.

No crime against society could be more wickedly mischievous. No
public duty is more imperative than the duty of creating a strong public
conscience against it, making it a point of bare civic honesty not to spend
without earning nor consume without producing, and a point of high
civic honor to earn more than you spend, to produce more than you
consume, and thus leave the world better off than you found it. No other
real title to gentility is conceivable nowadays.

Unfortunately our system of making land and capital private property
not only makes it impossible for either the State or the Church to incul-
cate these fundamental precepts but actually drives them to preach just
the opposite. The system may urge the energetic employer to work hard
and develop his business to the utmost; but his final object is to become
a member of the landed gentry or the plutocracy, living on the labor of
others and enabling his children to do the same without ever having
worked at all. The reward of success in life is to become a parasite and
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found a race of parasites. Parasitism is the linchpin of the Capitalist apple-
cart: the main Incentive without which, we are taught, human society
would fall to pieces. The boldest of our archbishops, the most democratic
of our finance ministers, dares not thunder forth that parasitism, for
peers and punters alike, is a virus that will rot the most powerful civiliza-
tion, and that the contrary doctrine is diabolical. Our most eminent
churchmen do not preach very plainly and urgently against making selfish-
ness the motive power of civilization; but they have not yet ventured to
follow Ruskin and Proudhon in insisting definitely that a citizen who is
neither producing goods nor performing services is in effect either a
beggar or a thief. The utmost point yet reached in England is the ruling
out of State lotteries and the outlawing of the Irish sweepstakes.

But here again the matter is not simple enough to be disposed of by
counsels of Socialist perfection in the abstract. There are periods in every
long lifetime during which one must consume without producing. Every
baby is a shamelessly voracious parasite. And to turn the baby into a
highly trained producer or public servant, and make its adult life worth
living, its parasitism must be prolonged well into its teens. Then again old
people cannot produce. Certain tribes who lay an excessive stress on Man-
chester School economics get over this difficulty easily by killing their
aged parents or turning them out to starve. This is not necessary in mod-
ern civilization. It is quite possible to organize society in such a manner
as to enable every ablebodied and ableminded person to produce enough
not only to pay their way but to repay the cost of twenty years education
and training, making it a first-rate investment for the community, besides
providing for the longest interval between disablement by old age and
natural death. To arrange this is one of the first duties of the modern
statesman.

Now childhood and old age are certainties. What about accidents and
illnesses, which for the individual citizen are not certainties but chances?
Well, we have seen that what are chances for the individual are certainties
for the State. The individual citizen can share its certainty only by
gambling with it. To insure myself against accident or illness I must make
a bet with the State that these mishaps will befall me; and the State must
accept the bet, the odds being fixed by the State actuaries mathematically,
I shall at once be asked Why with the State? Why not with a private in-
surance company? Clearly because the State can do what no private
company can do. It can compel every citizen to insure, however improvi-
dent or confident in his good luck he may happen to be, and thus, by
making a greater number of bets, combine the greatest profit with the
greatest certainty, and put the profit into the public treasury for the gen-
eral good. It can effect an immense saving of labor by substituting a single
organization for dozens of competing ones. Finally it can insure at cost
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price, and, by including the price in the general rate of taxation, pay for
all accidents and illnesses directly and simply without the enormous cleri-
cal labor of collecting specific contributions or having to deal in any way
with the mass of citizens who lose their bets by having no accidents nor
illnesses at any given moment.

The oddity of the situation is that the State, to make insurance certain
and abolish gambling, has to compel everyone to gamble, becoming a
Supertote and stakeholder for the entire population.

As ship insurance led to life insurance, life insurance to fire insurance
and so on to insurance against employer’s liability, death duties, and un-
employment, the list of insurable risks will be added to, and insurance
policies will become more comprehensive from decade to decade, until
no risks that can worry a reasonably reckless citizen are left uncovered.
And when the business of insurance is taken on by the State and lumped
into the general taxation account, every citizen will be born with an un-
written policy of insurance against all the common risks, and be spared
the painful virtues of providence, prudence, and self-denial that are now
so oppressive and demoralizing, thus greatly lightening the burden of
middle-class morality. The citizens will be protected whether they like it
or not, just as their children are now educated and their houses now
guarded by the police whether they like it or not, even when they have
no children to be educated nor houses to be guarded. The gain in freedom
from petty cares will be immense. Our minds will no longer be crammed
and our time wasted by uncertainty as to whether there will be any
dinners for the family next week or any money left to pay for our funerals
when we die.

There is nothing impossible or even unreasonably difficult in all this.
Yet as I write, a modest and well thought-out plan of national insurance
by Sir William Beveridge, whose eminence as an authority on political
science nobody questions, is being fiercely opposed, not only by the
private insurance companies which it would supersede, but by people
whom it would benefit; and its advocates mostly do not understand it and
do not know how to defend it. If the schooling of our legislators had in-
cluded a grounding in the principles of insurance the Beveridge scheme
would pass into law and be set in operation within a month. As it is, if
some mutilated remains of it survive after years of ignorant squabbling we
shall be lucky, unless, indeed, some war panic drives it through Parlia-
ment without discussion or amendment in a few hours. However that may
be, it is clear that nobody who does not understand insurance and com-
prehend in some degree its enormous possibilities is qualified to meddle in
national business. And nobody can get that far without at least an ac-
quaintance with the mathematics of probability, not to the extent of
making its calculations and filling examination papers with typical equa-
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tions, but enough to know when they can be trusted, and when they are
cooked. For when their imaginary numbers correspond to exact quan-
tities of hard coins unalterably stamped with heads and tails, they are
safe within certain limits; for here we have solid certainty and two simple
possibilities that can be made practical certainties by an hour’s trial (say
one constant and one variable that does not really vary); but when the
calculation is one of no constant and several very capricious variables,
guesswork, personal bias, and pecuniary interests, come in so strongly that
those who began by ignorantly imagining that statistics cannot lie end by
imagining, equally ignorantly, that they never do anything else.
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The Supreme Art of
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COMMENTARY ON
Certain Important Abstractions

HE Theory of Groups is a branch of mathematics in which one does

something to something and then compares the result with the result
obtained from doing the same thing to something else, or something else
to the same thing. This is a broad definition but it is not trivial. The
theory is a supreme example of the art of mathematical abstraction. It
is concerned only with the fine filigree of underlying relationships; it is the
most powerful instrument yet invented for illuminating structure.

The term group was first used in a technical sense by the French mathe-
matician Evariste Galois in 1830. He wrote his brilliant paper on the
subject at the age of twenty, the night before he was killed in a stupid
duel.! The concept was strongly developed in the nineteenth century by
leading mathematicians, among them Augustin-Louis Cauchy (1789-
1857),2 Sir Arthur Cayley (see p. 341), Camille Jordan (1838-1922), and
two eminent Norwegians, Ludwig Sylow (1832-1918) and Marius Sophus
Lie (1842-1899). In a little more than a century it has effected a remark-
able unification of mathematics, revealing connections between parts of
algebra and geometry that were long considered distinct and unrelated.
“Wherever groups disclosed themselves, or could be introduced, simplicity
crystallized out of comparative chaos.” 3 Group theory has also helped
physicists penetrate to the basic structure of the phenomenal world, to
catch glimpses of innermost pattern and relationship. This is as deep, it
should be observed, as science is likely to get. Even if we do not accept
the idea that the ultimate essence of things is pattern, we may conclude
with Bertrand Russell that any other essence is an individuality “which
always eludes words and baffles description, but which, for that very
reason, is irrelevant to science.”

Let us return briefly to our somewhat dreamy definition and make it
more concrete and explicit. The best plan, perhaps, is to give a specific
example of a group and then to erase most of its details until nothing is
left but essentials. This is the famous Carrollian method of defining a
grin as what remains after the Cheshire cat, the vehicle of the grin, has
vanished.

The class or set of all the positive and negative integers, including zero,

1 The story of his tragic life is dramatically told by E. T. Bell in Men of Mathe-
matics, New York, 1937.

2“To Cauchy has been given the credit of being the founder of the theory of
groups of finite order, even though fundamental results had been previously reached
by J. L. Lagrange, Pietro Abbati, P. Ruffini, N. H. Abel, and Galois." Florian Cajori,
A History of Mathematics, New York, 1919, p. 352,

3E. T. Bell, Mathematics, Queen and Servant of Science, New York, 1951, p. 164.
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in conjunction with the ordinary arithmetic operation of addition, consti-
tutes a familiar group. Its defining properties are these: (1) The sum of
any two integers of the set is an integer of the set; (2) in adding three
(or more) integers, any set of them may be added first without varying
the result; you will recognize this as the associative rule of arithmetic (e.g.,
(347 +9=3+(7+9)); (3) the set contains an “identity” or “unit”
element (namely zero) such that the sum of this element and any other
element in the set is again the latter element (e.g., 4 +0=4,0+8 =38,
etc.); (4) every integer in the set has an inverse or reciprocal, such that
the sum of the two is the identity element (e.g., 2 + (=2) =0, =77 +
77 =0, etc.). These are the attributes of our particular group. Now for
some erasures. (1) The elements of the set may be arithmetic objects
(e.g., numbers), geometric objects (e.g., points), physical entities (e.g.,
atoms), or they may be undefined; 4 (2) their number may be finite or
infinite; (3) the operation or rule of combining the elements may be an
arithmetic process (e.g., addition, multiplication), a geometric process
(e.g., rotation, translation), or it may be undefined. Two further condi-
tions are essential: (4) the combining rule must be associative; (5) every
element of the set must have an inverse. Besides these five conditions, a
set may be Abelian or non-Abelian according as the combining rule is
commutative or noncommutative (i.e., for addition, either 2 +3 =342
or 2+ 3 %3+ 2, and, for multiplication, either 2-3=13-2 or 2:3 +
3:2). These are the bare bones of the group concept. It is hard to believe
how much unification of bewildering details has been achieved by the
theory; “what a wealth, what a grandeur of thought may spring from
what slight beginnings.”

A few words should be added concerning two other fundamental mathe-
matical terms which arise frequently in group theory. The first is trans-
formation, which embodies the idea of change or motion. An algebraic
expression is transformed by changing it to another having different form,
by substituting for the variables their values in terms of another set of
variables; a geometric figure is transformed by changing its co-ordinates,
by mapping one space on another, by moving the figure pursuant to a
procedural rule, e.g., projection, rotation, translation.® More generally,

4 It should be emphasized that while both the elements and operations of a group
may theoretically be undefined, if the group is to be useful in science they must in
some way correspond to elements and operations of observable experience. Other-
wise manipulating the group amounts to nothing more than a game, and a pretty
vague and arid game at that, suitable only for the most withdrawn lunatics.

5'The British geometer H. F. Baker, as quoted by Florian Cajori in A History of
Mnumnaﬂc:. New York, 1919, p. 283.

8 This definition of tnmformanou suffices for our purposes, but the concept is
much more comprehensive than I have indicated. Any problem, process or operation,
as Keyser says (see next note), having to do with ordinary functions is a problem,
process or operation having to do with relations or transformations. A pairing or
coupling is a transformation; so is a relation, a function, a mathematical calculation,
a deductive inference.
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any object of thought may be transformed by associating it with or con-
verting it into another object of thought.

The second important term is invariance. The invariant properties of an
algebraic expression, geometric figure, class, or other object of thought
are those which remain the same under transformations. Suppose the ele-
ments of the class of positive integers (1, 2, 3 « - ) are transformed by
the rule of doubling each element

1234.
I BER
246 8-

The transforms constitute the class of even integers: 2, 4, 6, - - -. Since
the integers are transformed into integers, the property of being an integer
is evidently preserved; which is to say it is an invariant under the doubling
transformation. However, the value of each integer of the original class
is not preserved; it is doubled; thus value is not an invariant under this
transformation. Another example of an invariant in our case are the ratios
of the elements of each class: if the elements of the first class are called
x's and those of the transformed class y's then under the rule y = 2x,

Yo 2xp X

A geometric invariant is similar. Take a rigid object such as a glass
paper-weight and move it by sliding from one end of the table to the
other. This is a transformation. The paper-weight retains its shape and
dimensions; the retained properties are therefore invariants. The mathe-
matician describes these facts by saying that the metric properties of rigid
bodies are invariant under the transformation of motion. Since the paper-
weight’s position and distance from an object such as the mirror on the
wall or the Pole Star are changed by the transformation, they are not
invariant. If the object moved were a blob of mercury it is unlikely that it
would retain its shape or dimensions, but its mass would probably be
invariant and certainly its atomic structure. (For a further discussion of
this point see pp. 581-598, selection on topology.)

Group theory has to do with the invariants of groups of transforma-
tions. One studies the properties of an object, the features of a problem
unaffected by changes of condition. The more drastic the changes, the
fewer the invariants. What better way to get at the fundamentals of struc-
ture than by successive transformations to strip away the secondary prop-
erties. It is a method analogous to that used by the archaeologist who
clears away hills to get at cities, digs into houses to uncover ornaments,
utensils and potsherds, tunnels into tombs to find sarcophagi, the winding

7 The example is from Cassius J. Keyser, Mathematical Philosophy, New York,
1922, pp. 183-185.
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sheets they hold and the mummies within. Thus he reconstructs the
features of an unseen society; and so the mathematician and scientist
create a theoretical counterpart of the unseen structure of the phenomenal
world. Whitehead has characterized these efforts in a famous observation:
“To see what is general in what is particular and what is permanent in
what is transitory is the aim of scientific thought.”

. * * * -

I have selected two essays to illustrate group theory. The first is a
chapter from Cassius J. Keyser's lectures on mathematical philosophy.®
Keyser, a prominent American mathematician, was born in Rawson, Ohio,
in 1862. He was educated in Ohio schools and at Missouri University; for
a time he studied law but then turmed to mathematics and earned his
graduate degrees at Columbia. After five years as superintendent of
schools in Ohio and Montana (1885-90), he became professor of mathe-
matics at the New York State Normal School, and in 1897 joined the staff
of Columbia. He was appointed Adrain professor in 1904, serving in this
post until 1927 when he was made emeritus. He died in 1947, aged eighty-
five. Keyser had broad interests in mathematics, as a geometer, historian
and philosopher. He was much admired as a teacher for the care he took
to his lectures, their breadth, clarity and honesty. He is a little old-
fashioned in his style and a trifle long-winded. Keyser was not the man
to drop a point until he had squeezed it dry both as to its scientific con-
tent and cultural bearings; the reader may also come to feel a little
squeezed. But he had an unfailingly interesting and reflective mind, and 1
have nowhere found a better survey of the group concept than in the
selection below. The second essay, by Sir Arthur Eddington, is one of the
Messenger Lectures given at Cornell University, appearing in a book titled
New Pathways of Science. The discussion of groups exhibits the usual
dazzling Eddington virtuosity; it is one of his best pieces of popularization
in one of his best books.

® Mathematical Philosophy, A Study of Fate and Freedom, New York, 1922.



Mazes intricate.
Eccentric, interwov'd, yet regular
Then most, when most irregular they seem. —MILTON

1 The Group Concept
By CASSIUS J. KEYSER

I INVITE your attention during the present hour to the notion of group.
Even if I were a specialist in group theory,—which I am not,—I could
not in one hour give you anything like an extensive knowledge of it, nor
facility in its technique, nor a sense of its intricacy and proportions as
known to its devotees, the priests of the temple. But the hour should
suffice to start you on the way to acquiring at least a minimum of what a
respectable philosopher should know of this fundamental subject; and
such a minimum will include: a clear conception of what the term
“group” means; ability to illustrate it copiously by means of easily under-
stood examples to be found in all the cardinal fields of interest—number,
space, time, motion, relation, play, work, the world of sense-data and the
world of ideas; a glimpse of its intimate connections with the ideas of
transformation and invariance; an inkling of it both as subject-matter and
as an instrument for the delimitation and discrimination of doctrines; and
discernment of the concept as vaguely prefigured in philosophic specula-
tion from remote antiquity down to the present time.

I believe that the best way to secure a firm hold of the notion of group
is to seize upon it first in the abstract and then, by comparing it with
concrete examples, gradually to win the sense of holding in your grasp a
living thing. In presenting the notion of group in the abstract, it is con-
venient to use the term system. This term has many meanings in mathe-
matics and so at the outset we must clearly understand the sense in which
the term is to be employed here. The sense is this: as employed in the
definition of group, the term system means some definite class of things
together with some definite rule, or way, in accordance with which any
member of the class can be combined with any member of it (either with
itself or any other member). For a simple example of such a system we
may take for the class the class of ordinary whole numbers and for the
rule of combination the familiar rule of addition. You should note that
there are three and only three respects in which two systems can differ:
by having different classes, by having different rules of combination, and
by differing in both of these ways.

1538
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The definition of the term *“group” is as follows.

Let S denote a system consisting of a class C (whose members we will
denote by a, b, c and so on) and of a rule of combination (which rule we
will denote by the symbol o, so that by writing, for example, aob, we
shall mean the result of combining b with a). The system § is called a
group if and only if it satisfies the following four conditions:

(a) If a and b are members of C, then aob is a member of C; that is,
aob = ¢, where ¢ is some member of C.

(b) If a, b, ¢ are members of C, then (aob)oc = ao(boc); that is,
combining ¢ with the result of combining b with a yields the same as com-
bining with a the result of combining ¢ with b; that is, the rule of combina-
tion is associative.

(¢) The class C contains a member i (called the identical member or
element) such that if a be a member of C, then aoi = ioa = ag; that is, C
has a member such that, if it be combined with any given member, or
that member with it, the result is the given member.

(d) If a be a member of C, then there is a member " (called the re-
ciprocal of a) such that aoa’ = a’oa = i; that is, each member of C is
matched by a member such that combining the two gives the identical
member.

Other definitions of the term “group” have been proposed and are
sometimes used. The definitions are not all of them equivalent but they all
agree that to be a group a system must satisfy condition (a).

Systems satisfying condition (a) are many of them on that account so
important that in the older literature of the subject they are called groups,
or closed systems, and are now said to have “the group property,” even
if they do not satisfy conditions (b), (¢) and (d). The propriety of the
term “closed system” is evident in the fact that a system satisfying (a)
is such that the result of combining any two of its members is itself a
member—a thing in the system, not out of it.

Various Simple Examples of Groups and of Systems that Are Not
Groups.—You observe that by the foregoing definition of group every
group is a system; groups, as we shall see, are infinitely numerous; yet it
is true that relatively few systems are groups or have even the group prop-
erty—so few relatively that, if you select a system at random, it is highly
probable you will thus hit upon one that is neither a group nor has the
group property.

Take, for example, the system S, whose class C is the class of integers
from 1 to 10 inclusive and whose rule of combination is that of ordinary
multiplication X; 3 X 4 = 12; 12 is not a member of C, and so §, is not
closed—it has not the group property.

Let S, have for its C the class of all the ordinary integers, 1, 2, 3, . . .
ad infinitum, and let o be X as before; as the product of any two integers
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is an integer, (a) is satisfied—S, is closed, has the group property; (b),
too, is evidently satisfied, and so is (c), the identity element being 1 for,
if n be any integer, n X 1 =1 X n = n; but (d) is not satisfied—none of
the integers (except 1) composing C has a reciprocal in C—there is, for
example, no integer n such that 2 X n=n X 2 =1; and so S,, though it
has the group property, is not a group.

Let Sy be the system consisting of the class C of all the positive and
negative integers including zero and of addition as the rule of combina-
tion; you readily see that Sy is a group, zero being the identical element,
and each element having its own negative for reciprocal.

A group is said to be finite or infinite according as its C is a finite or an
infinite class and it is said to be Abelian or non-Abelian according as its
rule of combination is or is not commutative—according, that is, as we
have or do not have aob = boa, where a and b are arbitrary members of
C. You observe that the group S; is both infinite and Abelian.

For an example of a group that is finite and Abelian it is sufficient to
take the system S, whose C is composed of the four numbers, 1, —1, i,
—i, where i is \/=1, and whose rule of combination is multiplication; you
notice that the identical element is 1, that 1 and —1 are each its own
reciprocal and that i and —i are each the other’s reciprocal.

Let S; have the same C as Sy and suppose o to be subtraction instead of
addition; show that §; has the group property but is not a group. Show
the like for S5 in which C is the same as before and o denotes multiplica-
tion. Show that S, where C is the same as before and o means the rule of
division, has not even the group property.

Consider Sg where C is the class of all the rational numbers (that is,
all the integers and all the fractions whose terms are integers, it being un-
derstood that zero can not be a denominator) and where o denotes +;
you will readily find that Sg is a group, infinite and Abelian. Examine the
systems obtained by keeping the same C and letting o denote subtraction,
then multiplication, then division. Devise a group system where o means
division.

If 5 and 5 be two groups having the same rule of combination and if
the class C of S be a proper part of the class C’ of § (i.e., if the members
of C are members of C’ but some members of C’ are not in C), then §
is said to be a sub-group of §’. Observe that §; is a sub-group of §;.

Show that S, is a group if its C is the class of all real numbers and its
o is +; note that S is a sub-group of Sy and hence that §; is a sub-group
of a sub-group of a group. Is Sy itself a sub-group? If so, of what group
or groups? Examine the systems derived from S, by altering the rule of
combination.

The most difficult thing that teaching has to do is to give a worthy
sense of the meaning and scope of a great idea. A great idea is always
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generic and abstract but it has its living significance in the particular and
concrete—in a countless multitude of differing instances or examples of
it; each of these sheds only a feeble light upon the idea, leaving the in-
finite range of its significance in the dark; whence the necessity of ex-
amining and comparing a large number of widely differing examples in
the hope that many little lights may constitute by union something like a
worthy illustration; but to present these numerous examples requires an
amount of time and a degree of patience that are seldom at one’s disposal,
and so it is necessary to be content with a selected few. And now here is
the difficulty: if the examples selected be complex and difficult, they repel;
if they be simple and easy, they are not impressive; in either case, the
significance of the general concept in question remains ungrasped and
unappreciated. I am going, however, to take the risk—to the foregoing
illustrations of the group concept I am going to add a few further ones,—
some of them very simple, some of them more complex,—trusting that
the former may not seem to you too trivial nor the latter too hard.

Every one has seen the pretty phenomenon of a grey squirrel rapidly
rotating a cylindrical wire cage enclosing it. It may rotate the cage in
either of two opposite ways, senses or directions. Let us think of rotation
in only one of the ways, and let us call any rotation, whether it be much
or little, a rurn. Each turn carries a point of the cage along a circle-arc of
some length, short or long. Denote by R the special turn (through 360°)
that brings each point of the cage back to its starting place. Let S,, be
the system whose C is the class of all possible turns and whose o is
addition of turns so that aob shall be the whole turn got by following turn
a by turn b. You see at once that S has the group property for the sum
of any two turns is a turn; it is equally evident that the associative law—
condition (b)—is satisfied. Note that R is equivalent to no turn,—equiva-
lent to rest,—equivalent to a zero turn, if you please; note that, if @ be a
turn greater than R and less than 2R, then a is equivalent to a's excess
over R; that, if a be greater than 2R and less than 3R, then a is equivalent
to a's excess over 2R; and so on; thus any turn greater than R and not
equal to a multiple of R is equivalent to a turn less than R; let us regard
any turn that is thus greater than R as identical with its equivalent less
than R; we have, then, to consider no turns except R and those less than
R—of which there are infinitely many; you see immediately that, if a be
any turn, aoR = Roa = a, which means that condition (c) is satisfied with
R for identical element. Next notice that for any turn a there is a turn &
such that aoa” = a’oa = R. Hence S, is, as you see, a group. Show it to
be Abelian. You will find it instructive to examine the system derived from
8,0 by letting C be the class of all turns (forward or backward).

Perhaps, you will consider the system suggested by the familiar spectacle
of a ladybug or a measuring-worm moving round the rim or edge of a
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