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Preface

In January 2018 I started the preparation of a programming course targeting students
without programming experience. I wanted to use Julia, but I found that there existed
no book with the purpose of learning to program with Julia as the first programming
language. There are wonderful tutorials that explain Julia's key concepts, but none of
them pay sufficient attention to learning how to think like a programmer.

I knew the book Think Python by Allen Downey, which contains all the key ingredi-
ents to learn to program properly. However, this book was based on the Python pro-
gramming language. My first draft of the course notes was a melting pot of all kinds
of reference works, but the longer I worked on it, the more the content started to
resemble the chapters of Think Python. Soon, the idea of developing my course notes
as a port of that book to Julia came to fruition.

All the material was available as Jupyter notebooks in a GitHub repository. After I
posted a message on the Julia Discourse site about the progress of my course, the
feedback was overwhelming. A book about basic programming concepts with Julia as
the first programming language was apparently a missing link in the Julia universe. I
contacted Allen to ask if I could start an official port of Think Python to Julia, and his
answer was immediate: “Go for it!” He put me in touch with his editor at O’'Reilly
Media, and a year later I was putting the finishing touches on this book.

It was a bumpy ride. In August 2018 Julia v1.0 was released, and like all my fellow
Julia programmers I had to do a migration of the code. All the examples in the book
were tested during the conversion of the source files to O’Reilly-compatible AsciiDoc
files. Both the toolchain and the example code had to be made Julia v1.0-compliant.
Luckily, there are no lectures to give in August....

I hope you enjoy working with this book, and that it helps you learn to program and
think like a computer scientist, at least a little bit.

— Ben Lauwens
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Why Julia?
Julia was originally released in 2012 by Alan Edelman, Stefan Karpinski, Jeff Bezan-
son, and Viral Shah. It is a free and open source programming language.
Choosing a programming language is always subjective. For me, the following char-
acteristics of Julia are decisive:

« Julia is developed as a high-performance programming language.

« Julia uses multiple dispatch, which allows the programmer to choose from differ-
ent programming patterns adapted to the application.

+ Julia is a dynamically typed language that can easily be used interactively.
« Julia has a nice high-level syntax that is easy to learn.

« Julia is an optionally typed programming language whose (user-defined) data
types make the code clearer and more robust.

« Julia has an extended standard library and numerous third-party packages are
available.

Julia is a unique programming language because it solves the so-called “two languages
problem” No other programming language is needed to write high-performance
code. This does not mean it happens automatically. It is the responsibility of the pro-
grammer to optimize the code that forms a bottleneck, but this can done in Julia
itself.

Who Is This Book For?

This book is for anyone who wants to learn to program. No formal prior knowledge
is required.

New concepts are introduced gradually and more advanced topics are described in
later chapters.

Think Julia can be used for a one-semester course at the high school or college level.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

All code used in this book is available from a Git repository on GitHub. If you are not
familiar with Git, it is a version control system that allows you to keep track of the
files that make up a project. A collection of files under Git’s control is called a “reposi-
tory.” GitHub is a hosting service that provides storage for Git repositories and a con-
venient web interface.

A convenience package is provided that can be directly added to Julia. Just type add
https://github.com/BenLauwens/ThinkJulia.jl in the REPL in Pkg mode, see
“Turtles” on page 35.

The easiest way to run Julia code is by going to https://juliabox.com and starting a free
session. Both the REPL and a notebook interface are available. If you want to have
Julia locally installed on your computer, you can download JuliaPro for free from
Julia Computing. It consists of a recent Julia version, the Juno interactive develop-
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ment environment based on Atom, and a number of preinstalled Julia packages. If
you are more adventurous, you can download Julia from https://julialang.org, install
the editor you like (e.g., Atom or Visual Studio Code), and activate the plug-ins for
Julia integration. To a local install, you can also add the IJulia package and run a
Jupyter notebook on your computer.

This book is here to help you get your job done. In general, you may use example
code in your programs and documentation. You do not need to contact us for per-
mission unless youre reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Think Julia by Ben Lauwens and
Allen B. Downey (O'Reilly). Copyright 2019 Allen B. Downey, Ben Lauwens,
978-1-492-04503-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0’Reilly Online Learning

R For almost 40 years, O'Reilly Media has provided technology
O RE I LLY and business training, knowledge, and insight to help compa-
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil ly/think-julia.

To comment or ask technical questions about this book, please send an email to book-
questions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1
The Way of the Program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natural
science. Like mathematicians, computer scientists use formal languages to denote
ideas (specifically computations). Like engineers, they design things, assembling
components into systems and evaluating trade-offs among alternatives. Like scien-
tists, they observe the behavior of complex systems, form hypotheses, and test predic-
tions.

The single most important skill for a computer scientist is problem solving. Problem
solving means the ability to formulate problems, think creatively about solutions, and
express a solution clearly and accurately. As it turns out, the process of learning to
program is an excellent opportunity to practice problem-solving skills. That’s why
this chapter is called “The Way of the Program.

On one level, you will be learning to program, a useful skill by itself. On another level,
you will use programming as a means to an end. As we go along, that end will
become clearer.

What Is a Program?

A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, such as solving a system of
equations or finding the roots of a polynomial, but it can also be a symbolic computa-
tion, such as searching for and replacing text in a document, or something graphical,
like processing an image or playing a video.

The details look different in different languages, but a few basic instructions appear in
just about every language:




Input
Get data from the keyboard, a file, the network, or some other device.

Output
Display data on the screen, save it in a file, send it over the network, etc.

Math
Perform basic mathematical operations like addition and multiplication.

Conditional execution
Check for certain conditions and run the appropriate code.

Repetition
Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of instructions that look pretty much like
these. So you can think of programming as the process of breaking a large, complex
task into smaller and smaller subtasks until the subtasks are simple enough to be per-
formed with one of these basic instructions.

Running Julia

One of the challenges of getting started with Julia is that you might have to install it
and related software on your computer. If you are familiar with your operating sys-
tem, and especially if you are comfortable with the command-line interface, you will
have no trouble installing Julia. But for beginners, it can be painful to learn about sys-
tem administration and programming at the same time.

To avoid that problem, I recommend that you start out running Julia in a browser.
Later, when you are comfortable with Julia, I'll make suggestions for installing Julia
on your computer.

In the browser, you can run Julia on JuliaBox. No installation is required—just point
your browser there, log in, and start computing (see Appendix B).

The Julia REPL (Read-Eval-Print Loop) is a program that reads and executes Julia
code. You can start the REPL by opening a terminal on JuliaBox and typing julia on
the command line. When it starts, you should see output like this:

2 | Chapter1:The Way of the Program



Documentation: https://docs.julialang.org

|

) - |

|l _—_ _ | Type "?" for help, "]?" for Pkg help.

T T I A A

[ 1 1_1 111 ¢l | | version 1.1.0 (2019-01-21)

JOIN I 2Nl | Oofficial https://julialang.org/ release
|/ I
julia>

The first lines contain information about the REPL, so it might be different for you.
But you should check that the version number is at least 1.0.0.

The last line is a prompt that indicates that the REPL is ready for you to enter code. If
you type a line of code and hit Enter, the REPL displays the result:

julia> 1 + 1
2

Code snippets can be copied and pasted verbatim, including the julia> prompt and
any output.

Now you're ready to get started. From here on, I assume that you know how to start
the Julia REPL and run code.

The First Program

Traditionally, the first program you write in a new language is called “Hello, World!”
because all it does is display the words “Hello, World!” In Julia, it looks like this:

julia> println("Hello, World!")
Hello, World!

This is an example of a print statement, although it doesn’t actually print anything on
paper. It displays a result on the screen.

The quotation marks in the program mark the beginning and end of the text to be
displayed; they don't appear in the result.

The parentheses indicate that println is a function. We'll get to functions in Chap-
ter 3.

Arithmetic Operators

After “Hello, World!” the next step is arithmetic. Julia provides operators, which are
symbols that represent computations like addition and multiplication.

The operators +, -, and * perform addition, subtraction, and multiplication, as in the
following examples:
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julia> 40 + 2
42

julia> 43 - 1
42

julia> 6 * 7
42

The operator / performs division:

julia> 84 / 2
42.0

You might wonder why the result is 42.0 instead of 42. T'll explain in the next section.
Finally, the operator » performs exponentiation; that is, it raises a number to a power:

julia> 672 + 6
42

Values and Types

A value is one of the basic things a program works with, like a letter or a number.
Some values we have seen so far are 2, 42.0, and "Hello, World!".

These values belong to different types: 2 is an infeger, 42.0 is a floating-point number,
and "Hello, World!" is a string, so called because the letters it contains are strung
together.

If you are not sure what type a value has, the REPL can tell you:

julia> typeof(2)

Int64

julia> typeof(42.0)

Floate4

julia> typeof("Hello, World!")
String

Integers belong to the type Inté64, strings belong to String, and floating-point num-
bers belong to Float64.

What about values like "2" and "42.0"? They look like numbers, but they are in quo-
tation marks like strings. These are strings too:

julia> typeof("2")

String

julia> typeof("42.0")

String
When you type a large integer, you might be tempted to use commas between groups
of digits, as in 1,000,000. This is not a legal integer in Julia, but it is legal:

julia> 1,000,000

(1, 0, 0)

4 | Chapter1:The Way of the Program



That’s not what we expected at all! Julia parses 1,000,000 as a comma-separated
sequence of integers. We'll learn more about this kind of sequence later.

You can get the expected result using 1_000_000, however.

Formal and Natural Languages

Natural languages are the languages people speak, such as English, Spanish, and
French. They were not designed by people (although people try to impose some order
on them); they evolved naturally.

Formal languages are languages that are designed by people for specific applications.
For example, the notation that mathematicians use is a formal language that is partic-
ularly good at denoting relationships among numbers and symbols. Chemists use a
formal language to represent the chemical structure of molecules. And most impor-
tantly, programming languages are formal languages that have been designed to
express computations.

Formal languages tend to have strict syntax rules that govern the structure of state-
ments. For example, in mathematics the statement 3 + 3 = 6 has correct syntax, but
3+ =3$6 does not. In chemistry, H,O is a syntactically correct formula, but ,Zz is

not.

Syntax rules come in two flavors: fokens and structure. Tokens are the basic elements
of the language, such as words, numbers, and chemical elements. One of the prob-
lems with 3 + = 3%6 is that $§ is not a legal token in mathematics (at least as far as I
know). Similarly, ,Zz is not legal because there is no element with the abbreviation

Zz.

The second type of syntax rule pertains to the way tokens are combined. The equa-
tion 3 + =3 is illegal because even though + and = are legal tokens, you can’t have
one right after the other. Similarly, in a chemical formula the subscript comes after
the element name, not before.

This is @ well-structured Engli$h sentence with invalid t*kens in it. This sentence all
valid tokens has, but invalid structure with.

When you read a sentence in English or a statement in a formal language, you have to
figure out the structure (although in a natural language you do this subconsciously).
This process is called parsing.

Although formal and natural languages have many features in common—tokens,
structure, and syntax—there are some differences:

Ambiguity
Natural languages are full of ambiguity, which people deal with by using contex-
tual clues and other information. Formal languages are designed to be nearly or
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completely unambiguous, which means that any statement has exactly one mean-
ing, regardless of context.

Redundancy
In order to make up for ambiguity and reduce misunderstandings, natural lan-
guages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

Literalness
Natural languages are full of idiom and metaphor. If I say, “The penny dropped,”
there is probably no penny and nothing dropping (this idiom means that some-
one understood something after a period of confusion). Formal languages mean
exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to adjust to
formal languages. The difference between formal and natural language is like the dif-
ference between poetry and prose, but more so:

Poetry
Words are used for their sounds as well as for their meaning, and the whole
poem together creates an effect or emotional response. Ambiguity is not only
common but often deliberate.

Prose
The literal meaning of words is more important, and the structure contributes
more meaning. Prose is more amenable to analysis than poetry but still often
ambiguous.

Programs
The meaning of a computer program is unambiguous and literal, and can be
understood entirely by analysis of the tokens and structure.

Formal languages are more dense than natural languages, so it takes longer to read
them. Also, the structure is important, so it is not always best to read from top to bot-
tom, left to right. Instead, you'll learn to parse the program in your head, identifying
the tokens and interpreting the structure. Finally, the details matter. Small errors in
spelling and punctuation, which you can get away with in natural languages, can
make a big difference in a formal language.

Debugging

Programmers make mistakes. For whimsical reasons, programming errors are called
bugs and the process of tracking them down is called debugging.
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Programming, and especially debugging, sometimes brings out strong emotions. If
you are struggling with a difficult bug, you might feel angry, despondent, or embar-
rassed.

There is evidence that people naturally respond to computers as if they were people.
When they work well, we think of them as teammates, and when they are obstinate or
rude, we respond to them the same way we respond to rude, obstinate people."

Preparing for these reactions might help you deal with them. One approach is to
think of the computer as an employee with certain strengths, like speed and preci-
sion, and particular weaknesses, like lack of empathy and inability to grasp the big
picture.

Your job is to be a good manager: find ways to take advantage of the strengths and
mitigate the weaknesses. And find ways to use your emotions to engage with the
problem, without letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many
activities beyond programming. At the end of each chapter there is a section, like this
one, with my suggestions for debugging. I hope they help!

Glossary

problem solving
The process of formulating a problem, finding a solution, and expressing it.

program
A sequence of instructions that specifies a computation.

REPL
A program that repeatedly reads input, executes it, and outputs results.

prompt
Characters displayed by the REPL to indicate that it is ready to take input from
the user.

print statement
An instruction that causes the Julia REPL to display a value on the screen.

operator
A symbol that represents a simple computation like addition, multiplication, or
string concatenation.

1 Reeves, Byron, and Clifford Ivar Nass. 1996. “The Media Equation: How People Treat Computers, Television,
and New Media Like Real People and Places.” Chicago, IL: Center for the Study of Language and Information;
New York: Cambridge University Press.
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value
A basic unit of data, like a number or string, that a program manipulates.

type
A category of values. The types we have seen so far are integers (Int64), floating-
point numbers (Float64), and strings (String).

integer
A type that represents whole numbers.

floating-point
A type that represents numbers with a decimal point.

string
A type that represents sequences of characters.

natural language
Any one of the languages that people speak that evolved naturally.

formal language
Any one of the languages that people have designed for specific purposes, such as
representing mathematical ideas or computer programs. All programming lan-
guages are formal languages.

syntax
The rules that govern the structure of a program.

token
One of the basic elements of the syntactic structure of a program, analogous to a
word in a natural language.

structure
The way tokens are combined.

parse
To examine a program and analyze the syntactic structure.

bug
An error in a program.
debugging
The process of finding and correcting bugs.
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Exercises

It is a good idea to read this book in front of a computer so you can
try out the examples as you go.

Exercise 1-1

Whenever you are experimenting with a new feature, you should try to make mis-
takes. For example, in the “Hello, World!” program, what happens if you leave out
one of the quotation marks? What if you leave out both? What if you spell println
wrong?

This kind of experiment helps you remember what you read; it also helps when you
are programming, because you get to know what the error messages mean. It is better
to make mistakes now and on purpose rather than later and accidentally.

1. In a print statement, what happens if you leave out one of the parentheses, or
both?

2. If you are trying to print a string, what happens if you leave out one of the quota-
tion marks, or both?

3. You can use a minus sign to make a negative number like -2. What happens if
you put a plus sign before a number? What about 2++2?

4. In math notation, leading zeros are okay, as in 2. What happens if you try this in
Julia?

5. What happens if you have two values with no operator between them?

Exercise 1-2

Start the Julia REPL and use it as a calculator.

1.
2.

3.

How many seconds are there in 42 minutes 42 seconds?

How many miles are there in 10 kilometers? Note that there are 1.61 kilometers
in a mile.

If you run a 10-kilometer race in 37 minutes 48 seconds, what is your average
pace (time per mile in minutes and seconds)? What is your average speed in
miles per hour?
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CHAPTER 2
Variables, Expressions, and Statements

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

Assignment Statements

An assignment statement creates a new variable and gives it a value:

julia> message = "And now for something completely different”

"And now for something completely different"

julia> n = 17

17

julia> n_val = 3.141592653589793

3.141592653589793
This example makes three assignments. The first assigns a string to a new variable
named message, the second assigns the integer 17 to n, and the third assigns the

(approximate) value of m to n_val (\pi TAB).

A common way to represent variables on paper is to write the name of each with an
arrow pointing to its value. This kind of figure is called a state diagram because it
shows what state each of the variables is in (think of it as the variable’s state of mind).
Figure 2-1 shows the result of the previous example.

message ——— "And now for something completely different”

n——m 17

n_val —— 3.141592653589793

Figure 2-1. State diagram

n



Variable Names

Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for.

Variable names can be as long as you like. They can contain almost all Unicode char-
acters (see “Characters” on page 87), but they can't begin with a number. It is legal to
use uppercase letters, but it is conventional to use only lowercase for variable names.

Unicode characters can be entered via tab completion of LaTeX-like abbreviations in
the Julia REPL.

The underscore character, _, can appear in a name. It is often used in names with
multiple words, such as your_name or airspeed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error:

julia> 76trombones = "big parade”

ERROR: syntax: "76" is not a valid function argument name
julia> more@ = 1000000

ERROR: syntax: extra token "@" after end of expression
julia> struct = "Advanced Theoretical Zymurgy"

ERROR: syntax: unexpected "="

76trombones is illegal because it begins with a number. more@ is illegal because it con-

tains an illegal character, @ But what's wrong with struct?

It turns out that struct is one of Julia’s keywords. The REPL uses keywords to recog-
nize the structure of the program, and they cannot be used as variable names.

Julia has these keywords:
abstract type baremodule begin break catch
const continue do else elseif
end export finally for false
function global if import in
let local macro module mutable struct
primitive type quote return true try
using struct where while

You don't have to memorize this list. In most development environments, keywords
are displayed in a different color; if you try to use one as a variable name, you’ll know.

Expressions and Statements

An expression is a combination of values, variables, and operators. A value all by itself
is considered an expression, and so is a variable, so the following are all legal expres-
sions:

julia> 47

42
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julia> n

17

julia> n + 25

42
When you type an expression at the prompt, the REPL evaluates it, which means that
it finds the value of the expression. In this example, n has the value 17 and n + 25 has
the value 42.

A statement is a unit of code that has an effect, like creating a variable or displaying a
value:

julia> n = 17

17

julia> println(n)

17
The first line here is an assignment statement that gives a value to n. The second line
is a print statement that displays the value of n.

When you type a statement, the REPL executes it, which means that it does whatever
the statement says.

Script Mode

So far we have run Julia in inferactive mode, which means that you interact directly
with the REPL. Interactive mode is a good way to get started, but if you are working
with more than a few lines of code, it can be clumsy.

The alternative is to save code in a file called a script and then run Julia in script mode
to execute the script. By convention, Julia scripts have names that end with jL

If you know how to create and run a script on your computer, you are ready to go.
Otherwise I recommend using JuliaBox again. Open a text file, write the script, and
save the file with a .jl extension. The script can be executed in a terminal with the
command julia name_of_the_script.jl.

Because Julia provides both modes, you can test bits of code in interactive mode
before you put them in a script. But there are differences between interactive mode
and script mode that can be confusing.

For example, if you are using Julia as a calculator, you might type:

julia> miles = 26.2
26.2

julia> miles * 1.61
42.182
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The first line assigns a value to miles and displays the value. The second line is an
expression, so the REPL evaluates it and displays the result. It turns out that a mara-
thon is about 42 kilometers.

But if you type the same code into a script and run it, you get no output at all. In
script mode an expression, all by itself, has no visible effect. Julia actually evaluates
the expression, but it doesn't display the value unless you tell it to:

miles = 26.2
println(miles * 1.61)

This behavior can be confusing at first.

A script usually contains a sequence of statements. If there is more than one state-
ment, the results appear one at a time as the statements execute.

For example, the script:

println(1)
X =2
println(x)

produces the output:

1

The assignment statement produces no output.

Exercise 2-1

To check your understanding, type the following statements in the Julia REPL and see
what they do:

X =

X + 1
Now put the same statements in a script and run it. What is the output? Modify the
script by transforming each expression into a print statement and then run it again.

Operator Precedence

When an expression contains more than one operator, the order of evaluation
depends on the operator precedence. For mathematical operators, Julia follows mathe-
matical convention. The acronym PEMDAS is a useful way to remember the rules:

o Parentheses have the highest precedence and can be used to force an expression
to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2%(3-1) is 4, and (1+1)~(5-2) is 8. You can also use parentheses to make an
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expression easier to read, as in (minute * 100) / 60, even if it doesn’t change
the result.

« Exponentiation has the next highest precedence, so 1+2+3 is 9, not 27, and 2*3/2
is 18, not 36.

« Multiplication and Division have higher precedence than Addition and Subtrac-
tion. So, 2*¥3-11is 5, not 4, and 6+4/2 is 8, not 5.

» Operators with the same precedence are evaluated from left to right (except
exponentiation). So in the expression degrees / 2 * n, the division happens
first and the result is multiplied by n. To divide by 27, you can use parentheses, or
write degrees / 2 / nordegrees / 2n.

I don’t work very hard to remember the precedence of operators. If
I can't tell by looking at the expression, I use parentheses to make it
obvious.

String Operations

In general, you can’t perform mathematical operations on strings, even if the strings
look like numbers, so the following are illegal:

"2t - "t "eggs" / "easy" "third" + "a charm"
But there are two exceptions, * and *.

The * operator performs string concatenation, which means it joins the strings by
linking them end-to-end. For example:

julia> first_str = "throat”

"throat"

julia> second_str = "warbler”
"warbler"

julia> first_str * second_str
"throatwarbler"

The ~ operator also works on strings; it performs repetition. For example, "Spam"~3 is
"SpamSpamSpam". If one of the values is a string, the other has to be an integer.

This use of * and » makes sense by analogy with multiplication and exponentiation.
Just as 473 is equivalent to 4*4*4, we expect "Spam"~3 to be the same as
"Spam"*"Spam"*"Spam", and it is.
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Comments

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out
what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing. These notes are called comments, and they start
with the # symbol:

# compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at
the end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the execu-
tion of the program.

Comments are most useful when they document nonobvious features of the code. It
is reasonable to assume that the reader can figure out what the code does; it is more
useful to explain why.

This comment is redundant with the code and useless:
v=>5 #assign 5 tov
This comment contains useful information that is not in the code:

v=>5 # velocity in meters/second

Good variable names can reduce the need for comments, but long
names can make complex expressions hard to read, so there is a
trade-off.

Debugging

Three kinds of errors can occur in a program: syntax errors, runtime errors, and
semantic errors. It is useful to distinguish between them in order to track them down
more quickly:

Syntax error
“Syntax” refers to the structure of a program and the rules about that structure.
For example, parentheses have to come in matching pairs, so (1 + 2) is legal, but
8) is a syntax error.
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If there is a syntax error anywhere in your program, Julia displays an error mes-
sage and quits, and you will not be able to run the program. During the first few
weeks of your programming career, you might spend a lot of time tracking down
syntax errors. As you gain experience, you will make fewer errors and find them
faster.

Runtime error
The second type of error is a runtime error, so called because the error does not
appear until after the program has started running. These errors are also called
exceptions because they usually indicate that something exceptional (and bad) has
happened.

Runtime errors are rare in the simple programs you will see in the first few chap-
ters, so it might be a while before you encounter one.

Semantic error
The third type of error is “semantic,” which means related to meaning. If there is
a semantic error in your program, it will run without generating error messages,
but it will not do the right thing. It will do something else. Specifically, it will do
what you told it to do.

Identifying semantic errors can be tricky because it requires you to work back-
ward by looking at the output of the program and trying to figure out what it is
doing.

Glossary

variable
A name that refers to a value.

assignment
A statement that assigns a value to a variable.

state diagram
A graphical representation of a set of variables and the values they refer to.

keyword

A reserved word that is used to parse a program; you cannot use keywords like
if, function, and while as variable names.

expression
A combination of variables, operators, and values that represents a single result.

evaluate
To simplify an expression by performing the operations in order to yield a single
value.
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statement
A section of code that represents a command or action. So far, the statements we
have seen are assignments and print statements.

execute
To run a statement and do what it says.

interactive mode
A way of using the Julia REPL by typing code at the prompt.

script mode
A way of using Julia to read code from a script and run it.

script
A program stored in a file.

operator precedence
Rules governing the order in which expressions involving multiple mathematical
operators and operands are evaluated.

concatenate
To join two strings end-to-end.

comment
Information in a program that is meant for other programmers (or anyone read-
ing the source code) and has no effect on the execution of the program.

syntax error
An error in a program that makes it impossible to parse (and therefore impossi-
ble to interpret).

runtime error or exception
An error that is detected while the program is running,.

semantics
The meaning of a program.

semantic error
An error in a program that makes it do something other than what the program-
mer intended.
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Exercises

Exercise 2-2

Repeating my advice from the previous chapter, whenever you learn a new feature,
you should try it out in interactive mode and make errors on purpose to see what
goes wrong.

1.
2.
3.

We've seen that n = 42 is legal. What about 42 = n?
How aboutx = y = 17?

In some languages every statement ends with a semicolon, ;. What happens if
you put a semicolon at the end of a Julia statement?

. What if you put a period at the end of a statement?
. In math notation you can multiply x and y like this: x y. What happens if you try

that in Julia? What about 5x?

Exercise 2-3

Practice using the Julia REPL as a calculator:

1.

The volume of a sphere with radius r is %m’e’. What is the volume of a sphere
with radius 5?

. Suppose the cover price of a book is $24.95, but bookstores get a 40% discount.

Shipping costs $3 for the first copy and 75 cents for each additional copy. What is
the total wholesale cost for 60 copies?

. If I leave my house at 6:52 a.m. and run 1 mile at an easy pace (8:15 per mile),

then 3 miles at tempo (7:12 per mile) and 1 mile at easy pace again, what time do
I get home for breakfast?
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CHAPTER 3
Functions

In the context of programming, a function is a named sequence of statements that
performs a computation. When you define a function, you specify the name and the
sequence of statements. Later, you can “call” the function by name.

Function Calls

We have already seen one example of a function call:

julia> println("Hello, World!")
Hello, World!

The name of the function is println. The expression in parentheses is called the
argument of the function.

It is common to say that a function “takes” an argument and “returns” a result. The
result is also called the return value.

Julia provides functions that convert values from one type to another. The parse
function takes a string and converts it to any number type, if it can, or complains
otherwise:

julia> parse(Int64, "32")

32

julia> parse(Floaté4, "3.14159")

3.14159

julia> parse(Int64, "Hello")

ERROR: ArgumentError: invalid base 10 digit 'H' in "Hello"

trunc can convert floating-point values to integers, but it doesn't round off; it chops
off the fraction part:

julia> trunc(Int64, 3.99999)
3
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julia> trunc(Int64, -2.3)
-2

float converts integers to floating-point numbers:

julia> float(32)
32.0

Finally, string converts its argument to a string:

julia> string(32)

n3pn

julia> string(3.14159)
"3,14159"

Math Functions

In Julia, most of the familiar mathematical functions are directly available. The fol-
lowing example uses log10 to compute a signal-to-noise ratio in decibels (assuming
that signal_power and noise_power are defined). log, which computes natural loga-
rithms, is also provided:

ratio = signal_power / noise_power
decibels = 10 * log1@(ratio)

This next example finds the sine of radians. The name of the variable is a hint that
sin and the other trigonometric functions (cos, tan, etc.) take arguments in radians:

radians = 0.7
height = sin(radians)

To convert from degrees to radians, divide by 180 and multiply by 7

AL
45

julia> degrees
45

julia> radians = degrees / 1808 * n
0.7853981633974483

julia> sin(radians)
0.7071067811865475

The value of the variable n is a floating-point approximation of m, accurate to about

16 digits.

If you know trigonometry, you can check the previous result by comparing it to the
square root of 2 divided by 2:

julia> sqrt(2) / 2
0.7071067811865476
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Composition

So far, we have looked at the elements of a program—variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take
small building blocks and compose them. For example, the argument of a function
can be any kind of expression, including arithmetic operators:

X = sin(degrees [/ 360 * 2 * n)
and even function calls:
x = exp(log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one
exception: the left side of an assignment statement has to be a variable name. We'll see
exceptions to this later, but as a general rule any other expression on the left side is a
syntax error:

julia> minutes = hours * 60 # right

120

julia> hours * 60 = minutes # wrong!

ERROR: syntax: "60" is not a valid function argument name

Adding New Functions

So far, we have only been using the functions that come with Julia, but it is also possi-
ble to add new functions. A function definition specifies the name of a new function
and the sequence of statements that run when the function is called. Here is an exam-
ple:

function printlyrics()
println("I'm a lumberjack, and I'm okay.")
println("I sleep all night and I work all day.")
end

function is a keyword that indicates that this is a function definition. The name of
the function is printlyrics. The rules for function names are the same as for vari-
able names: they can contain almost all Unicode characters (see “Characters” on page
87), but the first character can't be a number. You can’t use a keyword as the name of a
function, and you should avoid having a variable and a function with the same name.

The empty parentheses after the name indicate that this function doesn’t take any
arguments.

The first line of the function definition is called the header; the rest is called the body.
The body is terminated with the keyword end, and it can contain any number of
statements. For readability the body of the function should be indented.
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The quotation marks must be "straight quotes," usually located next to Enter on the
keyboard. “Curly quotes,” like the ones in this sentence, are not legal in Julia.

If you type a function definition in interactive mode, the REPL indents to let you
know that the definition isn’t complete:

julia> function printlyrics()
println("I'm a lumberjack, and I'm okay.")

To end the function, you have to enter end.
The syntax for calling the new function is the same as for built-in functions:

julia> printlyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For exam-
ple, to repeat the previous refrain, we could write a function called repeatlyrics:

function repeatlyrics()
printlyrics()
printlyrics()

end

And then call repeatlyrics:

julia> repeatlyrics()

I'ma lumberjack, and I'm okay.

I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

Definitions and Uses

Pulling together the code fragments from the previous section, the whole program
looks like this:

function printlyrics()
println("I'm a lumberjack, and I'm okay.")
println("I sleep all night and I work all day.")
end

function repeatlyrics()
printlyrics()
printlyrics()

end

repeatlyrics()

24 | Chapter3: Functions



This program contains two function definitions: printlyrics and repeatlyrics.
Function definitions get executed just like other statements, but the effect is to create
function objects. The statements inside the function do not run until the function is
called, and the function definition generates no output.

As you might expect, you have to create a function before you can run it. In other
words, the function definition has to run before the function gets called.

Exercise 3-1

Restart the REPL and move the last line of this program to the top, so the function
call appears before the definitions. Run the program and see what error message you
get.

Now move the function call back to the bottom and move the definition of
printlyrics after the definition of repeatlyrics. What happens when you run this
program?

Flow of Execution

To ensure that a function is defined before its first use, you have to know the order
statements run in, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are run one
at a time, in order, from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember
that statements inside a function don’t run until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next
statement, the flow jumps to the body of the function, runs the statements there, and
then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to run the statements
in another function. Then, while running that new function, the program might have
to run yet another function!

Fortunately, Julia is good at keeping track of where it is, so each time a function com-
pletes, the program picks up where it left off in the function that called it. When it
gets to the end of the program, it terminates.

In summary, when you read a program, you don't always want to read from top to
bottom. Sometimes it makes more sense it you follow the flow of execution.
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Parameters and Arguments

Some of the functions we have seen require arguments. For example, when you call
sin you pass a number as an argument. Some functions take more than one argu-
ment: parse takes two, a number type and a string.

Inside the function, the arguments are assigned to variables called parameters. Here is
a definition for a function that takes an argument:

function printtwice(bruce)
println(bruce)
println(bruce)

end

This function assigns the argument to a parameter named bruce. When the function
is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed:

julia> printtwice("Span")
Spam

Spam

julia> printtwice(42)

42

42

julia> printtwice(n)

n = 3.1415926535897...

n = 3.1415926535897...

The same rules of composition that apply to built-in functions also apply to
programmer-defined functions, so we can use any kind of expression as an argument
for printtwice:

julia> printtwice("Spam "~4)
Spam Spam Spam Spam

Spam Spam Spam Spam

julia> printtwice(cos(n))
-1.0

-1.0

The argument is evaluated before the function is called, so in these examples the
expressions "Spam "~4 and cos(n) are only evaluated once.

You can also use a variable as an argument:

julia> michael = "Eric, the half a bee."
"Eric, the half a bee."

julia> printtwice(michael)

Eric, the half a bee.

Eric, the half a bee.
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The name of the variable we pass as an argument (michael) has nothing to do with
the name of the parameter (bruce). It doesn’t matter what the value was called back
home (in the caller); here in printtwice, we call everybody bruce.

Variables and Parameters Are Local

When you create a variable inside a function, it is local, which means that it only
exists inside the function. For example:

function cattwice(partl, part2)
concat = partl * part2
printtwice(concat)

end

This function takes two arguments, concatenates them, and prints the result twice.
Here is an example that uses it:

julia> linel = "Bing tiddle "

"Bing tiddle "

julia> line2 = "tiddle bang."

"tiddle bang."

julia> cattwice(linel, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

When cattwice terminates, the variable concat is destroyed. If we try to print it, we
get an exception:

julia> println(concat)

ERROR: UndefVarError: concat not defined
Parameters are also local. For example, outside printtwice, there is no such thing as
bruce.

Stack Diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a
stack diagram. Like state diagrams, stack diagrams show the value of each variable,
but they also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
beside it and the parameters and variables of the function inside it. The stack diagram
for the previous example is shown in Figure 3-1.
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linel — "Bing tiddle "
Main
line2 — "tiddle bang"
partl ——— "Bing tiddle "
cattwice part2z ——— "tiddle bang"
concat — "Bing tiddle tiddle bang"
printtwice bruce —— "Bing tiddle tiddle bang"

Figure 3-1. Stack diagram

The frames are arranged in a stack that indicates which function called which. In this
example, printtwice was called by cattwice, and cattwice was called by Main,
which is a special name for the topmost frame. When you create a variable outside of
any function, it belongs to Main.

Each parameter refers to the same value as its corresponding argument. So, part1 has
the same value as linel, part2 has the same value as 1ine2, and bruce has the same
value as concat.

If an error occurs during a function call, Julia prints the name of the function, the
name of the function that called it, and the name of the function that called that, all
the way back to Main.

For example, if you try to access concat from within printtwice, you get an
UndefVarError:

ERROR: UndefVarError: concat not defined
Stacktrace:
[1] printtwice at ./REPL[1]:2 [inlined]
[2] cattwice(::String, ::String) at ./REPL[2]:3
This list of functions is called a stacktrace. It tells you what program file the error
occurred in, and what line, and what functions were executing at the time. It also
shows the line of code that caused the error.

The order of the functions in the stacktrace is the inverse of the order of the frames in
the stack diagram. The function that is currently running is at the top.

Fruitful Functions and Void Functions

Some of the functions we have used, such as the math functions, return results; for
lack of a better name, I call them fruitful functions. Other functions, like printtwice,
perform an action but don’t return a value. They are called void functions.
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When you call a fruitful function, you almost always want to do something with the
result. For example, you might assign it to a variable or use it as part of an expression:

x = cos(radians)
golden = (sqrt(5) + 1) / 2

When you call a function in interactive mode, Julia displays the result:

julia> sqrt(5)
2.23606797749979

But in a script, if you call a fruitful function all by itself, the return value is lost for-
ever!

sqrt(s)

This script computes the square root of 5, but since it doesn’t store or display the
result, it is not very useful.

Void functions might display something on the screen or have some other effect, but
they don’t have a return value. If you assign the result to a variable, you get a special
value called nothing:

julia> result = printtwice("Bing")
Bing

Bing

julia> show(result)

nothing

To print the value nothing, you have to use the function show, which is like print but
can handle this special value.

The value nothing is not the same as the string "nothing". It is a special value that
has its own type:

julia> typeof(nothing)
Nothing

The functions we have written so far are all void. We will start writing fruitful func-
tions in a few chapters.

Why Functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are several reasons:

« Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read and debug.

« Functions can make a program smaller by eliminating repetitive code. Later, if
you make a change, you only have to make it in one place.
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« Dividing a long program into functions allows you to debug the parts one at a
time and then assemble them into a working whole.

« Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

+ In Julia, functions can improve performance a lot.

Debugging

One of the most important skills you will acquire is debugging. Although it can be
frustrating, debugging is one of the most intellectually rich, challenging, and interest-
ing parts of programming.

In some ways debugging is like detective work. You are confronted with clues and
you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is
going wrong, you modify your program and try again. If your hypothesis was correct,
you can predict the result of the modification, and you take a step closer to a working
program. If your hypothesis was wrong, you have to come up with a new one. As
Sherlock Holmes pointed out,

When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.

—A. Conan Doyle, The Sign of Four

For some people, programming and debugging are the same thing. That is, program-
ming is the process of gradually debugging a program until it does what you want.
The idea is that you should start with a working program and make small modifica-
tions, debugging them as you go.

For example, Linux is an operating system that contains millions of lines of code, but
it started out as a simple program Linus Torvalds used to explore the Intel 80386 chip.
According to Larry Greenfield in The Linux Users’ Guide (version beta-1), “One of
Linus’s earlier projects was a program that would switch between printing AAAA and
BBBB. This later evolved to Linux”

Glossary

function
A named sequence of statements that performs some useful operation. Functions
may or may not take arguments and may or may not produce a result.
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function call
A statement that runs a function. It consists of the function name followed by an
argument list in parentheses.

argument
A value provided to a function when the function is called. This value is assigned
to the corresponding parameter in the function.

return value
The result of a function. If a function call is used as an expression, the return
value is the value of the expression.

composition
Using an expression as part of a larger expression, or a statement as part of a
larger statement.

function definition
A statement that creates a new function, specifying its name, parameters, and the
statements it contains.

header
The first line of a function definition.

body

The sequence of statements inside a function definition.

Junction object
A value created by a function definition. The name of the function is a variable
that refers to a function object.

flow of execution
The order statements run in.

parameter
A name used inside a function to refer to the value passed as an argument.

local variable
A variable defined inside a function. A local variable can only be used inside its

function.

stack diagram
A graphical representation of a stack of functions, their variables, and the values

they refer to.

frame
A box in a stack diagram that represents a function call. It contains the local vari-

ables and parameters of the function.
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stacktrace
A list of the functions that are executing, printed when an exception occurs.

Sruitful function
A function that returns a value.

void function
A function that always returns nothing.

nothing
A special value returned by void functions.

Exercises

These exercises should be done using only the statements and other
features introduced so far.

Exercise 3-2

Write a function named rightjustify that takes a string named s as a parameter and
prints the string with enough leading spaces so that the last letter of the string is in
column 70 of the display:

julia> rightjustify("monty")
monty

Use string concatenation and repetition. Also, Julia provides a
built-in function called length that returns the length of a string,
so the value of length("monty") is 5.

Exercise 3-3

A function object is a value you can assign to a variable or pass as an argument. For
example, dotwice is a function that takes a function object as an argument and calls it
twice:

function dotwice(f)
fO
()

end

Heres an example that uses dotwice to call a function named printspam twice:
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function printspam()
println("spam")
end

dotwice(printspam)

1. Type this example into a script and test it.

2. Modify dotwice so that it takes two arguments, a function object and a value,
and calls the function twice, passing the value as an argument.

3. Copy the definition of printtwice from earlier in this chapter to your script.

4. Use the modified version of dotwice to call printtwice twice, passing "spam" as
an argument.

5. Define a new function called dofour that takes a function object and a value and
calls the function four times, passing the value as a parameter. There should be
only two statements in the body of this function, not four.

Exercise 3-4

1. Write a function printgrid that draws a grid like the following:
julia> printgrid()

I
I I I
| I I
I I I
I I I
I
I I I
| | I
I I I
| | |
I

2. Write a function that draws a similar grid with four rows and four columns.

Credit: This exercise is based on an exercise in Pracfical C Programming, by Steve
Oualline (O’Reilly).
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To print more than one value on a line, you can print a comma-
separated sequence of values:

println(“"’”, II_II)
The function print does not advance to the next line:

print("+ ")

println("-")
The output of these statements is "+ -" on the same line. The out-
put from the next print statement would begin on the next line.
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CHAPTER 4
Case Study: Interface Design

This chapter presents a case study that demonstrates a process for designing func-
tions that work together.

It introduces turtle graphics, a way to create programmatic drawings. Turtle graphics
are not included in the standard library, so to use them you’ll have to add the ThinkJu
1ia module to your Julia setup.

The examples in this chapter can be executed in a graphical notebook on JuliaBox,
which combines code, formatted text, math, and multimedia in a single document
(see Appendix B).

Turtles

A module is a file that contains a collection of related functions. Julia provides some
modules in its standard library. Additional functionality can be added from a grow-
ing collection of packages.

Packages can be installed in the REPL by entering the Pkg REPL mode using the
key ] and using the add command:

(v1.0) pkg> add https://github.com/BenLauwens/ThinkJulia.jl

This can take some time.

Before we can use the functions in a module, we have to import it with a using state-
ment:

julia> using ThinkJulia

julia> <= = Turtle()
Luxor.Turtle(0.0, 0.0, true, 0.0, (0.0, 0.0, 0.0))
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The ThinkJulia module provides a function called Turtle that creates a
Luxor.Turtle object, which we assign to a variable named 4= (\:turtle: TAB).

Once you create a turtle, you can call a function to move it around. For example, to
move the turtle forward:
begin

forward (==, 100)
end

The @svg keyword runs a macro that draws an SVG picture (Figure 4-1). Macros are
an important but advanced feature of Julia.

Figure 4-1. Moving the turtle forward

The arguments of forward are the turtle and a distance in pixels, so the actual size of
the line that’s drawn depends on your display.

Each turtle is holding a pen, which is either down or up; if the pen
is down (the default), the turtle leaves a trail when it moves.
Figure 4-1 shows the trail left behind by the turtle. To move the
turtle without drawing a line, first call the function penup. To start
drawing again, call pendown.

Another function you can call with a turtle as an argument is turn for turning. The
second argument for turn is an angle in degrees.

To draw a right angle, modify the macro call:

e = Turtle()
begin
forward(e=m, 100)
turn(=, -90)
forward(==, 100)
end

Exercise 4-1

Now modify the macro to draw a square. Don't go on until you've got it working!

Simple Repetition
Chances are you wrote something like this:
= = Turtle()

begin
forward(s=, 100)
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turn(e, -90)

forward(s, 100)

turn(em, -90)

forward(e=m, 100)

turn(en, -90)

forward(==, 100)
end

We can do the same thing more concisely with a for statement:

julia> for i in 1:4
println("Hello!™)
end
Hello!
Hello!
Hello!
Hello!

This is the simplest use of the for statement; we will see more later. But that should
be enough to let you rewrite your square-drawing program. Don’t go on until you do.

Here is a for statement that draws a square:

= = Turtle()
begin
for 1 in 1:4
forward(a=, 100)
turn(em, -90)
end
end

The syntax of a for statement is similar to a function definition. It has a header and a
body that ends with the keyword end. The body can contain any number of state-
ments.

A for statement is also called a loop because the flow of execution runs through the
body and then loops back to the top. In this case, it runs the body four times.

This version is actually a little different from the previous square-drawing code
because it makes another turn after drawing the last side of the square. The extra turn
takes more time, but it simplifies the code if we do the same thing every time through
the loop. This version also has the effect of leaving the turtle back in the starting posi-
tion, facing in the starting direction.

Exercises

The following is a series of exercises using turtles. They are meant to be fun, but they
have a point, too. While you are working on them, think about what the point is.
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The following sections contain solutions to the exercises, so don't
look until you have finished (or at least tried them).

Exercise 4-2

Write a function called square that takes a parameter named t, which is a turtle. It
should use the turtle to draw a square.

Exercise 4-3
Write a function call that passes ¢= as an argument to square, and then run the
macro again.

Exercise 4-4

Add another parameter, named len, to square. Modify the body so the length of the
sides is len, and then modify the function call to provide a second argument. Run the
macro again. Test with a range of values for len.

Exercise 4-5

Make a copy of square and change the name to polygon. Add another parameter
named n and modify the body so it draws an n-sided regular polygon.

. . 360
The exterior angles of an n-sided regular polygon are == degrees.

Exercise 4-6

Write a function called circle that takes a turtle, t, and radius, r, as parameters and
that draws an approximate circle by calling polygon with an appropriate length and
number of sides. Test your function with a range of values of r.

Figure out the circumference of the circle and make sure that len
* n == circumference.
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Exercise 4-7

Make a more general version of circle called arc that takes an additional parameter
angle, which determines what fraction of a circle to draw. angle is in units of
degrees, so when angle = 360, arc should draw a complete circle.

Encapsulation

The first exercise asks you to put your square-drawing code into a function definition
and then call the function, passing the turtle as a parameter. Here is a solution:

function square(t)
for 1 in 1:4
forward(t, 100)
turn(t, -90)
end
end
s = Turtle()
begin
square(s=)
end

The innermost statements, forward and turn, are indented twice to show that they
are inside the for loop, which is inside the function definition.

Inside the function, t refers to the same turtle «=, so turn(t, -90) has the same
effect as turn(sz, -90). In that case, why not call the parameter s=? The idea is that
t can be any turtle, not just <= so you could create a second turtle and pass it as an
argument to square:

9 = Turtle()
begin
square())

end
Wrapping a piece of code up in a function is called encapsulation. One of the benefits
of encapsulation is that it attaches a name to the code, which serves as a kind of docu-
mentation. Another advantage is that if you reuse the code, it is more concise to call a
function twice than to copy and paste the body!

Generalization

The next step is to add a Llen parameter to square. Here is a solution:

function square(t, len)
for 1 in 1:4
forward(t, len)
turn(t, -90)
end
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end
= = Turtle()
begin
square(sm, 100)

end
Adding a parameter to a function is called generalization because it makes the func-
tion more general. In the previous version, the square is always the same size; in this
version it can be any size.

The next step is also a generalization. Instead of drawing squares, polygon draws reg-
ular polygons with any number of sides. Here is a solution:

function polygon(t, n, len)
angle = 360 / n
for 1 in 1:n
forward(t, len)
turn(t, -angle)
end
end
= = Turtle()
begin
polygon(ss, 7, 70)
end

This example draws a 7-sided polygon with side length 70.

Interface Design

The next step is to write circle, which takes a radius, r, as a parameter. Here is a
simple solution that uses polygon to draw a 50-sided polygon:
function circle(t, r)
circumference = 2 * n * r
n = 50
len = circumference / n
polygon(t, n, len)
end
The first line computes the circumference of a circle with radius r using the formula
2nr. n is the number of line segments in our approximation of a circle, so len is the
length of each segment. Thus, polygon draws a 50-sided polygon that approximates a
circle with radius r.

One limitation of this solution is that n is a constant, which means that for very big
circles, the line segments are too long, and for small circles, we waste time drawing
very small segments. One solution would be to generalize the function by taking n as
a parameter. This would give the user (whoever calls circle) more control, but the
interface would be less clean.
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The interface of a function is a summary of how it is used: What are the parameters?
What does the function do? And what is the return value? An interface is “clean” if it
allows the caller to do what he wants without dealing with unnecessary details.

In this example, r belongs in the interface because it specifies the circle to be drawn. n
is less appropriate because it pertains to the details of how the circle should be ren-
dered.

Rather than cluttering up the interface, it is better to choose an appropriate value of n
depending on circunference:

function circle(t, r)
circumference = 2 * n * r
n = trunc(circumference / 3) + 3
len = circumference / n
polygon(t, n, len)

end

Now the number of segments is an integer near circumference/3, so the length of

each segment is approximately 3, which is small enough that the circles look good but
big enough to be efficient, and acceptable for any size circle.

Adding 3 to n guarantees that the polygon has at least three sides.

Refactoring

When I wrote circle, I was able to reuse polygon because a many-sided polygon is a
good approximation of a circle. But arc is not as cooperative; we can't use polygon or
circle to draw an arc.

One alternative is to start with a copy of polygon and transform it into arc. The
result might look like this:

function arc(t, r, angle)
arc_len = 2 * n * r * angle / 360
n = trunc(arc_len / 3) + 1
step_len = arc_len / n
step_angle = angle / n
for 1 in 1:n
forward(t, step_len)
turn(t, -step_angle)
end
end

The second half of this function looks like polygon, but we can’t reuse polygon
without changing the interface. We could generalize polygon to take an angle as a

third argument, but then polygon would no longer be an appropriate name! Instead,
let’s call the more general function polyline:
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function polyline(t, n, len, angle)
for 1 in 1:n
forward(t, len)
turn(t, -angle)
end
end

Now we can rewrite polygon and arc to use polyline:
function polygon(t, n, len)
angle = 260 / n

polyline(t, n, len, angle)
end

function arc(t, r, angle)

arc_len = 2 * n * r * angle / 360

n = trunc(arc_len / 3) + 1

step_len = arc_len / n

step_angle = angle / n

polyline(t, n, step_len, step_angle)
end

Finally, we can rewrite circle to use arc:

function circle(t, r)
arc(t, r, 360)
end
This process—rearranging a program to improve interfaces and facilitate code reuse
—is called refactoring. In this case, we noticed that there was similar code in arc and
polygon, so we “factored it out” into polyline.

If we had planned ahead, we might have written polyline first and avoided refactor-
ing, but often you don’t know enough at the beginning of a project to design all the
interfaces. Once you start coding, you understand the problem better. Sometimes
refactoring is a sign that you have learned something,

A Development Plan

A development plan is a process for writing programs. The process we used in this
case study is “encapsulation and generalization.” The steps of this process are:
1. Start by writing a small program with no function definitions.

2. Once you get the program working, identify a coherent piece of it, encapsulate
the piece in a function, and give it a name.

3. Generalize the function by adding appropriate parameters.

4. Repeat steps 1-3 until you have a set of working functions. Copy and paste work-
ing code to avoid retyping (and redebugging).
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5. Look for opportunities to improve the program by refactoring. For example, if
you have similar code in several places, consider factoring it into an appropriately
general function.

This process has some drawbacks—we will see alternatives later—but it can be useful
if you don't know ahead of time how to divide the program into functions. This
approach lets you design as you go along.

Docstring

A docstring is a string before a function that explains the interface (“doc” is short for
“documentation”). Here is an example:

polyline(t, n, len, angle)

Draws n line segments with the given length and
angle (in degrees) between them. t is a turtle.

function polyline(t, n, len, angle)
for 1 in 1:n
forward(t, len)
turn(t, -angle)
end
end
Documentation can be accessed in the REPL or in a notebook by typing ? followed by
the name of a function or macro, and pressing Enter:
help?> polyline
search:

polyline(t, n, len, angle)

Draws n line segments with the given length and angle (in degrees) between
them. t is a turtle.
Docstrings are often triple-quoted strings, also known as “multiline” strings because
the triple quotes allow the string to span more than one line.

A docstring contains the essential information someone would need to use the func-
tion. It explains concisely what the function does (without getting into the details of
how it does it). It explains what effect each parameter has on the behavior of the func-
tion and what type each parameter should be (if it is not obvious).
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Writing this kind of documentation is an important part of inter-
face design. A well-designed interface should be simple to explain;
if you have a hard time explaining one of your functions, maybe
the interface could be improved.

Debugging

An interface is like a contract between a function and a caller. The caller agrees to
provide certain parameters and the function agrees to do certain work.

For example, polyline requires four arguments: t has to be a turtle; n has to be an
integer; len should be a positive number; and angle has to be a number, which is
understood to be in degrees.

These requirements are called preconditions because they are supposed to be true
before the function starts executing. Conversely, conditions at the end of the function
are postconditions. Postconditions include the intended effect of the function (like
drawing line segments) and any side effects (like moving the turtle or making other
changes).

Preconditions are the responsibility of the caller. If the caller violates a (properly doc-
umented!) precondition and the function doesn't work correctly, the bug is in the
caller, not the function.

If the preconditions are satisfied and the postconditions are not, the bug is in the
function. If your pre- and postconditions are clear, they can help with debugging.

Glossary

module
A file that contains a collection of related functions and other definitions.

package
An external library with additional functionality.

using statement
A statement that reads a module file and creates a module object.

loop
A part of a program that can run repeatedly.

encapsulation
The process of transforming a sequence of statements into a function definition.
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generalization
The process of replacing something unnecessarily specific (like a number) with
something appropriately general (like a variable or parameter).

interface
A description of how to use a function, including the name and descriptions of
the arguments and return value.

refactoring
The process of modifying a working program to improve function interfaces and
other qualities of the code.

development plan
A process for writing programs.

docstring
A string that appears at the top of a function definition to document the func-
tion’s interface.

precondition
A requirement that should be satisfied by the caller before a function starts.

postcondition
A requirement that should be satisfied by the function before it ends.

Exercises

Exercise 4-8

Enter the code in this chapter in a notebook.

1. Draw a stack diagram that shows the state of the program while executing

circle(s=m, radius). You can do the arithmetic by hand or add print statements
to the code.

2. The version of arc in “Refactoring” on page 41 is not very accurate because the
linear approximation of the circle is always outside the true circle. As a result, the
turtle ends up a few pixels away from the correct destination. The solution shown
here illustrates a way to reduce the effect of this error. Read the code and see if it
makes sense to you. If you draw a diagram, you might see how it works.

nwun

arc(t, r, angle)
Draws an arc with the given radius and angle:

t: turtle
r: radius
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angle: angle subtended by the arc, in degrees
function arc(t, r, angle)

arc_len = 2 * n * r * abs(angle) / 360

n = trunc(arc_len / 4) + 3

step_len = arc_len / n

step_angle = angle / n

# making a slight left turn before starting reduces
# the error caused by the linear approximation of the arc
turn(t, -step_angle/2)
polyline(t, n, step_len, step_angle)
turn(t, step_angle/2)
end

Exercise 4-9

Write an appropriately general set of functions that can draw flowers as in Figure 4-2.

Figure 4-2. Turtle flowers

Exercise 4-10

Write an appropriately general set of functions that can draw shapes as in Figure 4-3.

KD

Figure 4-3. Turtle pies
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Exercise 4-11

The letters of the alphabet can be constructed from a moderate number of basic ele-
ments, like vertical and horizontal lines and a few curves. Design an alphabet that can
be drawn with a minimal number of basic elements and then write functions that
draw the letters.

You should write one function for each letter, with names draw_a, draw_b, etc., and

put your functions in a file named letters.jl.

Exercise 4-12

Read about spirals at https://en.wikipedia.org/wiki/Spiral; then write a program that
draws an Archimedean spiral as in Figure 4-4.

Figure 4-4. Archimedean spiral
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