Think
like a
MATHEMATICIAN

Get to grips with the language of
numbers and patterns

Anne Rooney



CONTENTS

[ntroductio

Chapter 1:

n: What is mathematics, really?

You couldn’t make it up — or did we?

Chapter 2:
Chapter 3:

Why do we have numbers at all?

How far can you go?

Chapter 4:
Chapter 5:

How many is 10?

Why are simple questions so hard to answer?

Chapter 6:
Chapter 7:

What did the Babylonians ever do for us?

Are some numbers too large?

Chapter 8:

What use is infinity?

Chapter 9:

Are statistics lies, damned lies or worse?

Chapter 10:

Is that significant?.

Chapter 11:
Chapter 12:

How big is a planet?

How straight is a line?

Chapter 13:

Do you like the wallpaper?

Chapter 14:

What'’s normal?

Chapter 15:
Chapter 16:

How long is a piece of string?

How right is your answer?

Chapter 17:
Chapter 18:

Are we all going to die?

Where are the aliens?

Chapter 19:
Chapter 20:

What’s special about prime numbers?

What are the chances?

Chapter 21:

When’s your birthday?

Chapter 22:

Is it a risk worth taking?

Chapter 23:

How much mathematics does nature know?

Chapter 24
Chapter 25:

[s there a perfect shape?

Are the numbers getting out of hand?




Chapter 26: How much have you drunk?



INTRODUCTION
What is mathematics, really?

Mathematics is all around us. It is the language that lets us work with numbers,
patterns, processes and the rules that govern the universe. It provides a way for us to
understand our surroundings, and both model and predict phenomena. The earliest
human societies began to investigate mathematics as they tried to track the movements
of the Sun, Moon and planets, and to construct buildings, count flocks and develop
trade. From Ancient China, Mesopotamia, Ancient Egypt, Greece and India,
mathematical thought flowered as people discovered the beauty and wonder of the
patterns that numbers make.

Mathematics is a global enterprise and an international language. Today, it
underlies all areas of life.

Trade and commerce are built on numbers. The computers that are integral to all
aspects of society run on numbers. Much of the information we are presented with on a
daily basis i1s mathematical. Without a basic understanding of numbers and
mathematics, it’s impossible to tell the time, plan a schedule or even follow a recipe.
But that’s not all. If you don’t understand mathematical information, you can be

deceived and misled — or you might simply miss out.



Mathematics can be commandeered for both honourable and nefarious purposes.
Numbers can be used to illuminate, explain and clarify — but also to lie, obfuscate and
confuse. It’s good to be able to see what’s going on.

Computers have made mathematics a lot easier by making possible some
calculations that could never have been achieved before. You will meet examples of
this later in the book. For example, pi (symbol 7w, which defines the mathematical
relationship between the circumference of a circle and its radius) can now be
calculated to millions of places using computers. Prime numbers (which are only
divisible by one and themselves) are now listed in their millions, again thanks to
computers. But in some ways computers could be making mathematics less logically

Tigorous.

PURE AND APPLIED MATHEMATICS

Most of the mathematics in this book falls under the heading of ‘applied
mathematics’ — it's mathematics that is being used to solve real-world
problems, applied to practical situations in the world, such as how much
interest is charged on a loan, or how to measure time or a piece of string.
There is another type of mathematics which preoccupies many professional
mathematicians, and that is ‘pure’ mathematics. It is pursued regardless of
whether it will ever have a practical application, to explore where logic can
take us and to understand mathematics for its own sake.

Now that it’s possible to process very large amounts of data, far more reliable
information can be extracted from empirical data (that is, data that can be directly
observed) than ever before. This means that more of our conclusions can be —
apparently safely — based on looking at stuff rather than working stuff out. For
instance, we could examine lots and lots of data about weather and then make
predictions based on what has happened in the past. We would not need any
understanding of weather systems to do this, it would just work from what has been
observed before on the assumption that — whatever forces lie behind it — the same will
happen in the future with a certain degree of probability. It might well work, but that’s

not really science or mathematics.

Look first or think first?
There are two fundamentally different ways of working with data and knowledge, and
so of coming up with mathematical ideas. One starts from thinking and logic, and the

other starts from observations.



Think first: Deduction is the process of reasoning through logic using
specific statements to produce predictions about individual cases. An example
would be starting with the statement that all children have (or once had)
parents, and the fact that Sophie is a child, to deduce that Sophie must
therefore have (or have once had) parents. As long as the two original

statements are verified and the logic is sound, the prediction will be accurate.

Look first: Induction is the process of inferring general information from
specific instances. If we looked at a lot of swans and found they were all
white we might infer from this (as people once did) that all swans must be
white. But this is not robust — it just means we haven’t yet seen a swan that is
not white (see Chapter 10).

Being right and being wrong

Mathematicians are not always right, whether they begin with inductive or deductive
methods. On the whole, though, deduction is more reliable and has been enshrined in
pure mathematics since its origins with the Greek mathematician Euclid of Alexandria.

How it can go wrong



Our ancestors thought the Sun orbited the Earth, rather than the other way round. How
would the movement of the Sun appear if it did go around the Earth? The answer is:
exactly the same.

The model of the universe constructed by the Ancient Greek astronomer Claudius
Ptolemy (¢.AD90-168) accounted for the apparent movements of the Sun, Moon and
planets across the sky. This was an inductive method: Ptolemy looked at the empirical
evidence (what he observed for himself) and constructed a model to fit it.

WHERE’S A PLANET? THERE’S A PLANET!

In 1845-6, the mathematicians Urbain Le Verrier and John Couch Adams
independently predicted the existence and position of Neptune. They used
mathematics, after looking at perturbations (disturbances) in the orbit of the
neighbouring planet Uranus. Neptune was discovered and identified in 1846.

As it became possible to make more accurate measurements of the movements of
the planets, medieval and Renaissance astronomers devised ever more complex
refinements to the mathematics of Ptolemy’s Earth-centred model of the universe to
make it fit their observations. The whole system became a horrible tangle as bits were

added incrementally to explain every new observation.



Putting it right

It was only when the model was overthrown in 1543 by the Polish astronomer and
mathematician Nicolaus Copernicus, who put the Sun at the centre of the solar system,
that the mathematics started to work. But even his calculations were not totally
accurate. Later, the English scientist Isaac Newton (1642-1726) improved on
Copernicus’s ideas to give a mathematically coherent account of the movements of the
planets which doesn’t need lots of fudging to make it work. His laws of planetary
motion have been validated by the observation of planets not discovered when he was
alive. They have accurately predicted the existence of planets even before they were
observed. But the model is not yet perfect; we still can’t quite account for the motion
of the outer planets, using our current mathematical model. There is more to be

discovered, both in space and in mathematics.

Zeno’s paradoxes
The mismatch between the world we experience and the world modelled by
mathematics and logic has long been recognized.

The Greek philosopher Zeno of Elea (¢.490—430BC) used logic to demonstrate the

impossibility of motion. His ‘paradox of the arrow’ states that at any instant of time, an



arrow is in a fixed position. We can take millions of snapshots of the arrow in all its
positions between leaving the bow and reaching its target, and in any infinitely short
instant of time it is motionless. So when does it move?

Another example is the paradox of Achilles and the tortoise. If the speedy Greek
hero Achilles gave a tortoise a head start in a race, he would never be able to catch up
with it. In the time it took Achilles to cover the distance to the tortoise’s original
position, the tortoise would have moved on. This would keep happening, with the
tortoise covering ever-shorter distances as Achilles approached, but Achilles would
never manage to overtake it.

This paradox works by treating the continuity of time and distance as a string of
infinitesimal moments or positions. Logically coherent, it doesn’t match reality as we

experience it.

Achilles vs. Tortoise
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CHAPTER 1
You couldn’t make it up — or did we?

Is mathematics just ‘out there’, waiting to be discovered? Or have
we made it up entirely?

Whether mathematics is discovered or invented has been debated since the time of the

Greek philosopher Pythagoras, in the Sth century BC.

Two positions — if you believe in ‘two’

The first position states that all the laws of mathematics, all the equations we use to
describe and predict phenomena, exist independently of human intellect. This means
that a triangle is an independent entity and its angles actually do add up to 180°.
Mathematics would exist even if humans had never come along, and will continue to
exist long after we have gone. The Italian mathematician and astronomer Galileo

shared this view, that mathematics is ‘true’.

‘Mathematics is the language in which God has written the universe.’

Galileo Galilei

It’s there, but we can’t quite see it



The Ancient Greek philosopher and mathematician Plato proposed in the early 4th
century BC that everything we experience through our senses is an imperfect copy of a
theoretical ideal. This means every dog, every tree, every act of charity, is a slightly
shabby or limited version of the ideal, ‘essential’ dog, tree or act of charity. As
humans, we can’t see the ideals — which Plato called ‘forms’ — but only the examples
that we encounter in everyday ‘reality’. The world around us is ever-changing and
flawed, but the realm of forms is perfect and unchanging. Mathematics, according to
Plato, inhabits the realm of forms.

Although we can’t see the world of forms directly, we can approach it through
reason. Plato likened the reality we experience to the shadows cast on the wall of a
cave by figures passing in front of a fire.

If you are in the cave, facing the wall (chained up so that you can’t turn around, in
Plato’s scenario) the shadows are all you know, so you consider them to be reality. But
in fact reality is represented by the figures near the fire and the shadows are a poor
substitute. Plato considered mathematics to be part of eternal truth. Mathematical rules
are ‘out there’ and can be discovered through reason. They regulate the universe, and

our understanding of the universe relies on discovering them.

What if we made it up?

The other main position is that mathematics is the manifestation of our own attempts to

understand and describe the world we see around us. In this view, the convention that



the angles of a triangle add up to 180° is just that — a convention, like black shoes
being considered more formal than mauve shoes. It is a convention because we defined
the triangle, we defined the degree (and the idea of the degree), and we probably made
up ‘180°, too.

At least if mathematics is made up, there’s less potential to be wrong. Just as we
can’t say that ‘tree’ is the wrong word for a tree, we couldn’t say that made-up
mathematics is wrong — though bad mathematics might not be up to the job.

‘God created the integers. All the rest is the work of Man.’
Leopold Kronecker (1823-91)

Alien mathematics

Are we the only intelligent beings in the universe? Let’s assume not, at least for a
moment (see Chapter 18).

If mathematics is discovered, any aliens of a mathematical bent will discover the
same mathematics that we use, which will make communication with them feasible.
They might express it differently — using a different number base, for example (see
Chapter 4) — but their mathematical system will describe the same rules as ours.

If we make up mathematics, there is no reason at all why any alien intelligence
should come up with the same mathematics. Indeed, it would be rather a surprise if
they did — perhaps as much of a surprise as if they turned out to speak Chinese, or
Akkadian, or killer whale.

For if mathematics is simply a code we use to help us describe and work with the
reality we observe, it is similar to language. There is nothing that makes the word ‘tree’
a true signifier for the object that is a tree. Aliens will have a different word for ‘tree’
when they see one. If there is nothing ‘true’ about the elliptical orbit of a planet, or
about the mathematics of rocket science, an alien intelligence will probably have seen

and described phenomena in very different terms.

How amazing!

Perhaps it is amazing that mathematics is such a good fit for the world around us — or
perhaps it is inevitable. The ‘it’s amazing’ argument doesn’t really support either view.
If we invented mathematics, we would create something that adequately describes the
world around us. If we discovered mathematics, it would obviously be appropriate to

the world around us as it would be ‘right’ in a way that is larger than us. Mathematics



is ‘so admirably appropriate to the objects of reality’ either because it’s true or because

that’s what it was designed for.

How can it be that mathematics, being after all a product of human thought
which is independent of experience, is so admirably appropriate to the objects
of reality?’

Albert Einstein (1879-1955)

Look out — it’s behind you!

Another possibility is that mathematics seems astonishingly good at representing the
real world because we only look at the bits that work. It’s rather like seeing
coincidences as evidence of something supernatural going on. Yes, it’s really amazing
that you went abroad on holiday to an obscure village in Indonesia and bumped into a
friend — but only because you are not thinking about all the times you and other people
have gone somewhere and not bumped into anyone you knew. We only remark on the
remarkable; unremarkable events go unnoticed. In the same way, no one thinks to fault
mathematics because it can’t describe the structure of dreams. So it would be
reasonable to collate a list of areas where mathematics fails if we want to assess its
level of success.

‘The unreasonable effectiveness of mathematics’

If mathematics is made up, how can we explain the fact that some mathematics,
developed without reference to real-world applications, has been found to account for
real phenomena often decades or centuries after its formulation?

As the Hungarian-American mathematician Eugene Wigner pointed out in 1960,
there are many examples of mathematics developed for one purpose — or for no
purpose — that have later been found to describe features of the natural world with
great accuracy. One example is knot theory. Mathematical knot theory involves the
study of complex knot shapes in which the two ends are connected. It was developed
in the 1770s, yet is now used to explain how the strands of DNA (the material of
inheritance) unzip themselves to duplicate. There are still counter-arguments. We only
see what we look for. We choose the things to explain, and choose those that can be
explained with the tools we have.

Perhaps evolution has primed us to think mathematically and we can’t help doing

S0.
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Knot theory: the simplest possible true knot is the trefoil or overhand knot, in which the
string crosses three times (3; below). There are no knots with fewer crossings. The
number of knots increases rapidly thereafter.

‘How do we know that, if we made a theory which focuses its attention on
phenomena we disregard and disregards some of the phenomena now
commanding our attention, that we could not build another theory which has
little in common with the present one but which, nevertheless, explains just as
many phenomena as the present theory?’

Reinhard Werner (b.1954)

Does it matter?
If you are just working out your household accounts or checking a restaurant bill, it
doesn’t much matter whether mathematics is discovered or invented. We operate
within a consistent mathematical system — and it works. So we can, in effect, ‘keep
calm and carry on calculating’.

For pure mathematicians, the question is of philosophical rather than practical
interest: are they dealing with the greatest mysteries that define the fabric of the
universe? Or are they playing a game with a kind of language, trying to write the most

elegant and eloquent poems that might describe the universe?



‘The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.’

Eugene Wigner

Where the ‘reality’ of mathematics matters most is where humans are pushing against
the boundaries of knowledge and of technical achievement. If mathematics is made up,
we might come up against the limitations of our system and not be able to push
through them to answer certain questions. We might never achieve time travel, zip to
the other side of the universe, or create artificial consciousness, simply because our
mathematics is not up to the task. We will deem impossible things which, with a
different system of mathematics, might be perfectly easy.

On the other hand, if mathematics is discovered we can, potentially, uncover all of
it and achieve right to the edges of what is possible, of what is allowed by the physical
laws of the universe. It would be nice, then, if mathematics were discovered. But we

can’t be certain.

A DREADFUL POSSIBILITY

One possibility that doesn’t usually get much consideration is that
mathematics is real, but we've got it all wrong, just as Ptolemy got the model
of the solar system wrong. What if the mathematics we have developed is the
equivalent of the Ptolemaic Earth-centred universe? Could we throw it away
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CHAPTER 2
Why do we have numbers at all?

Getting to grips with numbers came early in the development of
human society.

e . ® ® & 0 0 0 ” o—

We are so used to numbers that we rarely give them a second thought. Children learn
to count at a very early age, with numbers and colours being among the first abstract

ideas they encounter.

Tally ho!

The first human engagement with numbers that we know of was in the form of
tallying. Our distant ancestors kept tallies of their flocks by marking a stick, stone or
bone, with one cut for each animal, or by moving pebbles or shells from one pile to
another.

Tallying doesn’t need words for the numbers — it’s not the same as counting. It’s a
simple system of correspondence, using one object or mark to represent another object
or phenomenon. If you have a shell that represents each sheep, and you drop a shell
into the pot as each sheep passes, it’s easy to see if you have shells left over, and so
sheep missing, at the end. You don’t need to know whether you should have 58 sheep
or 79 sheep — you just keep looking for the missing sheep and dropping a shell in the
pot each time one is found until there are no shells left over.

We still use tallies to keep score in games, to keep a record of days shipwrecked,

and in other circumstances in which a number is only needed at the end of a process.



Counting comes after tallying.

Counting 1, tallying 0
Tallying was used by various Stone Age cultures for at least 40,000 years. Then at
some point it became useful to have numbers with names.

We don’t know quite when counting began, but it’s easy to see that once people
started keeping animals it would be more useful to be able to say ‘three sheep are
missing’ than just ‘some sheep are missing’. If you have three children and want a
spear for each, it’s easier to know you have to make three spears, then set out to find
three strong sticks, and so on, than to make one spear, give it to the first child, realize
there are still spearless children, make another spear, and so on. Once people started to
trade, numbers would have been essential.

The first known written numbers emerged in the Middle East in the Zagros region
of Iran around 10,000BC. Clay tokens used in counting sheep have survived. The token
for a single sheep was a ball of clay with a + sign scratched into it. Clearly that’s great
if you have a few sheep, but needing 100 tokens for 100 sheep would be cumbersome.
They developed tokens with different symbols to represent 10 sheep and 100 sheep,
and could then account for any number of sheep with far fewer tokens — even 999
sheep could be represented with only 27 tokens (9 x 100-sheep tokens; 9 x 10-sheep
tokens; 9 x single-sheep tokens).

The tokens could be strung on a cord, or were often baked into a hollow clay ball.
The outside of the ball was impressed with symbols showing the number of ‘sheep’
inside, but it could be broken to verify the number if there was a dispute. These
numbers on the outside of sheep-counting balls are the oldest surviving written number

system.




Making up numbers

Many early number systems developed directly from tallies and so used a symbol
repeated for units, a different symbol for tens, and another for hundreds. Some had
symbols for 5, or other intermediate numbers.

The system of Roman numerals, familiar from clockfaces and the copyright date
shown at the end of a movie, began with the vertical strokes of a tallying system. The
numbers 1-4 were originally represented as I, I1, III, IITI. X is used for 10 and C for
100. The intermediates V (5), L (50) and D (500) make large numbers a bit shorter to
write. After a while, a convention emerged of putting a I before a V or X to denote
subtraction, so IV is 5 — 1, or 4. IV is shorter to write and easier to read than IIII. You
can only do it within the same power of ten, so IX is 9 but you can’t write IC for 99 — it
has to be XCIX (or 100 - 10 and 10— 1).

| Il 1] il Vv Wi Vil VI VIl X
later later

11 19 20 40 50 88 99 | 100 | 149 | 150

Xl XIX XX XL L DOV XCIX C CXLIX | CL

Limited by numbers

Using repeated symbols to stand for extra units, tens and hundreds, makes numbers
cumbersome to write and makes arithmetic difficult. With a system, like the Roman
one, of preceding a symbol with one to be subtracted, addition can’t even be achieved
by just counting up the total number of each type of symbol: XCIV + XXIX (94 + 29)
would give the same answer as CXVI + XXXI (116 + 31) if we just counted Cs, Xs,
Vs and Is. Although the Romans managed, the system has clear limitations: their
mathematics was too inflexible. Fractions were all based on division by 12, there were
no decimal fractions — and can you imagine trying to deal with complex concepts such
as powers (see box on page 28) or quadratic equations using Roman numerals and with

no figure for 0?7

EGYPTIAN FRACTIONS

The Ancient Egyptian writing system used hieroglyphs (picture symbols). Like
the Roman system, the Egyptians used accumulating symbols. They had a



form of fraction, too.

To show a fraction, the Egyptian scribe drew the ‘mouth’ glyph above a
number of down strokes. There was a problem, though. This method only
provided unit fractions (1 over a number), and repeating a unit fraction wasn't
allowed. This meant you could represent % (= V2 4), but not fractions such as
o

The exception was %, represented by a mouth glyph over two strokes of
different sizes.

— -

— 111 =T 1111

1/2 1/3 2/3 1/4

Vil = LXIV
XX+ IVx = IX=1-1

Not surprisingly, Roman mathematics didn’t develop very far.

Place value

The Indo—Arabic numeral system we use today has only nine figures, which can be
reused ad infinitum. It developed slowly in India from the 3rd century BC and was later
refined by Arabian mathematicians before being adopted in Europe. In this system, the
status of a number is indicated by its position, called place value. Place value increases

moving towards the left. This is a much more flexible system than the Roman one.

POWERS
A squared number is a number multiplied by itself. For example, three
squared is: 3 x 3.

We can also write it as 32.

This is read as ‘three to the power two’, meaning we multiply two threes
together.

A cubed number is a number multiplied by itself again, so three cubed is:
3 x 3 x 3 and can also be written 33, ‘three to the power three’. The
superscript number (the small, raised number) is called the power or
exponent.



Squared and cubed numbers have obvious applications as they relate to
objects in two and three dimensions. Higher powers are used in mathematics,
but unless you are a theoretical physicist you probably don't think of extra
dimensions in the real world.

Thousands Hundreds Tens Units

5 6 9 1

We can make a number such as 5,691 by combining:

5,000 (5 x 1,000)
600 (6 x 100)
90 (9 x 10)
1(1x1)

Using place value, it’s possible to represent even very large numbers with a small

number of figures. Compare the Roman and Arabic representations:

88 = LXXXVIII
797 = DCCXCVII
3,839 = MMMDCCCXXXIX

Nothing there — the start of zero

Place value is all very well as long as there is a digit in each place. If there are gaps —
nothing in the 10s column (308, for instance) — how can we show this? Leaving a
space, as the Chinese did, can be ambiguous unless the numbers line up carefully in
columns: 9 2 could be 902 or possibly 9002, and there’s a big difference between the

two.

‘From place to place each is ten times the preceding.’

The first description of place value in the Indo—Arabic method of
counting, Aryabhata, Indian mathematician (AD476-550)

A space indicated an empty column in Indian numbers, too, but was later replaced
by a dot or small circle. This was given the Sanskrit name sunya, meaning empty.
When the Arabs adopted the Indian numerals, around AD800, they also took the empty



place-marker, still calling it empty, which was sifr in Arabic and is the origin of the

modern word ‘zero’.

The earliest surviving use of a symbol for zero in decimal figures is a Cambodian
inscription on stone dating from 683. The large dot stands for O between the figures for
6 and 5, denoting 605.

‘The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures, and
with the sign 0... any number may be written.’

Fibonacci, Liber Abaci (1202)

Indo—Arabic numerals first appeared in Europe around AD1000, but it was several
centuries before they were universally adopted. The Italian mathematician Leonardo
Bonacci, better known today as ‘Fibonacci’, promoted their use as early as the 1200s,
yet merchants continued to use Roman numerals until the 16th century.



CHAPTER 3
How far can you go?

Not all number systems are infinitely extendable.

u-

Our number system is unlimited — it can go up to any number you care to imagine, just

by putting down more and more digits. That has not always been the case.

Not enough numbers?

The simplest counting systems are called 2-count. They don’t provide a way of doing
calculations, but allow counting of small quantities. A 2-count system has words for 1,
2 and sometimes ‘many’ (meaning an uncountably large number). The 2-count system
used by bushmen in South Africa builds in a series of 2s and Is. Its usefulness is

limited by how many 2s people can keep track of.

1 xa
2toa

3 ’'quo

4 toa-toa

5 t'oa-t'oa-ta



6 t'oa-foa-t'oa

Supyire, a language spoken in Mali, has basic number-words for i, 5, 10, 20, 80 and
400. The rest of the numbers are built up from these. For example, 600 is kdmpwdd nd
kwuu shuuni nd beeshuunni, which means 400 + (80 x 2) + (20 x 2).

The Toba in Paraguay use a system which has words for numbers up to 4, and then

starts reusing words extravagantly:

1 nathedac

2 cacayni or nivoca

3 cacaynilia

4 nalotapegat

5=2+3 nivoca cacaynilia

6=2x%x3 cacayni cacaynilia
7=1+2x3 nathedac cacayni cacaynilia
8=2x4 nivoca nalotapegat
9=2x4+1 nivoca nalotapegat nathedac
10=2+2x4 cacayni nivoca nalotapegat

This sort of system is fine for counting your children or other things that come in

relatively small quantities, but it has clear limitations.

A small infinity

Infinity is often considered to be an uncountably large number (see Chapters 7 and 8).
For the Toba and the South African bushmen using 2-count, that might well be a
number below 100. In a society not concerned with abstract mathematics, there is no
need to raise the bar for infinity much further than the size of a family or herd of

animals.

Less than zero

In early run-of-the-mill counting, there was no need for negative numbers. Indeed, the

Ancient Greeks were highly distrustful of them, and the mathematician Diophantus, in



the 3rd century AD, said that an equation such as 4x + 20 = 0 (which is solved with a
negative value for x) is absurd.

A TAXONOMY OF NUMBERS
Mathematicians now recognize several categories of numbers.

» Natural numbers are those you first learn about, the numbers we count with:
1, 2, 3, and so on.

» Whole numbers are the natural numbers with zero chucked in: 0, 1, 2, 3,
and so on. (This might seem a bit odd, as how whole is zero? It's a lack of a
number, a hole rather than a whole. Never mind, that's mathematicians for

you.)

* Integers are whole numbers and the numbers below zero, the negative
numbers: ... -3, -2,-1,0,1, 2, 3...

* Rational or fractional numbers are numbers that can be written as fractions,
such as 'z, ¥5, and so on. They include the integers as they can be written as
fractions: 1/1, 2/1, etc. They include all the fractions between whole numbers,
as they can be written as fractions, too: 1 %z can be written as 3/2, and so on.
All rational numbers can be written as either terminating or repeating
decimals. So %2 is 0.5 and " is 0.33333...

* Irrational numbers are those which can’t be written as terminating or
repeating decimals or expressed as a ratio between two whole numbers.
They are decimals that go on and on in a non-repeating sequence. Examples
are m, V2, and e, which can be calculated by computer to trillions of places
without revealing a repeating pattern.

* Real numbers: all of the above.
» Imaginary numbers: numbers that include /, defined as the square root of -1.

(We won’t worry about that one.)

Certainly the early, tallying farmer who noticed that three sheep were missing did
not need to say he or she had -3 sheep; it was good enough to say they were three short

of a full flock. With commerce, though, came a need to show a debt. If you borrowed



100 coins, your account stood at -100; if you paid back 50 of them, your account stood
at -50. Negative numbers were used for this purpose in India from the 7th century AD.
The first known appearance of negative numbers is even earlier. The Chinese
mathematician Liu Hui established rules for arithmetic using negative numbers in the
3rd century. He used counting rods in two colours, one for gains and one for losses,
which he called positive and negative. He used red counting rods for positive numbers
and black for negative numbers — the opposite of the modern accounting convention.

Counting and measuring

While many things can be counted, not all can be counted easily and some can’t be
counted at all. In nature, there are perhaps more things that can’t easily be counted than
can be.

We can count people, animals, plants and small numbers of stones or seeds. But
although in theory we could count the grains of wheat in a harvest or the number of
trees in a forest or ants in an anthill, it’s unlikely that we would. These are things we
are likely to measure instead. Humans began measuring grain by weight or volume
long ago. Some things can only be measured in this way: we measure the volume of
liquids, the weight (or mass) of rocks and the area of land (see Chapter 15).

Further still from counting are the arbitrary scales for measurements such as
temperature. Scales provide another use for negative numbers. Unless a scale starts at
some form of absolute zero, a negative number can be useful. Thermometers most
certainly need negative numbers, if working in Celsius or even Fahrenheit. Negative
numbers are needed with vectors (a quantity that also includes direction), as we
express one direction as positive and the opposite as negative. If we turn clockwise
through 45°, that is a positive rotation, but if we then turn back 30°, that’s a rotation of
-30°. Tons (electrically charged particles) can have a positive or negative charge, and
which charge they have indicates how they will react with other substances. You might

come across negative numbers on a daily basis in circumstances such as:

* Floor -1 in a lift — a floor below ground level, which is considered to be 0

* A soccer club with a negative goal difference — more goals conceded than scored
* A negative altitude, indicating that a geographical location is below sea level

* Negative inflation (deflation) showing that retail prices are dropping.

Who counts?



Although we think of mathematics as a uniquely human activity, some other animals
seem to be able to count. Scientists have found that some types of salamander and fish
can distinguish between different sized groups as long as the ratio of one to the other is
greater than two. Honeybees can apparently distinguish numbers up to four. Lemurs
and some types of monkey have limited numerical abilities, and some types of bird can
count well enough to know if their eggs or chicks are missing.

This sort of system is fine for counting things that come in relatively small

quantities, but it has clear limitations.

ARE NUMBERS REAL?

Of all the candidates for reality in mathematics, the whole numbers seem to
have the best claim. Even the Polish mathematician Leopold Kronecker
accepted them.

Whole numbers seem quite healthy until you look closely, as though they
could be found in nature. Perhaps three wolves run through the forest. That's
an event in the natural world which looks as though it works with whole
numbers. But we can’t actually put a rigid boundary around each wolf. There
are always atoms flying off the wolf, moving in and out of it; it's picking up
more electrons from getting a static charge by rubbing against another wolf;
even most of its cells are not actually bits of wolf. There is an entity that is
approximately one wolf, but it's ever-changing. We can go smaller and
smaller, down to subatomic particles, and even then we find a ‘thing’ is a
cloud or pulse of energy that might or might not be in a particular position at
any moment. Hard to count.

Are whole numbers a snapshot of a moment? How short is the moment?
How are we measuring it? The measurement of a continuity such as time is
entirely arbitrary. And, as Zeno’s paradoxes show (see page 13), if we break
time into ever shorter moments the logical results don’t match the reality we
observe.






CHAPTER 4
How many is 10?

Ten is generally considered to be one more than nine — but it
doesn’t have to be.

We say our number system uses base-10, which means that when we get as far as nine,
we start again with O in the units column and 1 in the next column, which we designate
‘tens’. Succeeding numbers use two digits, one showing the tens and one showing the
units. When we get to 99, we’ve run out of digits we can put in both places and start
another column, for hundreds.

It doesn’t have to be this way — there is no rule that says 9 has to be the highest

digit we can put in a column. We could use more or fewer digits.

What is base 10?

The name ‘base 10’ tells us nothing; at whichever number we stop counting units, the
first number using a new column is always going to be ‘10’. An alien race that counts
in base 9 will also call their system base-10 and will have no digit for, say, ‘9’ (0, 1, 2,
3,4,5,6,7, 8, 10). We really need a new name (and squiggle) for the ‘10 we use just

to name the base.



Fingers, toes, legs and tentacles

We have probably developed a base-10 number system because we have ten fingers
and thumbs, so that makes counting in tens easy. If, instead of humans, three-toed
sloths had become the dominant species, perhaps they would have developed a base-6
or base-3 number system — or even base-12 if they were happy to use the toes on their

hind limbs as well as those on their forelimbs. A base-3 system would count like this:

Base 3 - counting in sloth #1

0 1 2 10 i1 12 20 21 22 | 100

Base 6 — counting in sloth #2

0 : 4 2 3 4 5 10 11 12 13

Base 10 - counting in human

0 1 2 3 - 5 6 7 8 9

If octopuses had become the dominant species, they might have counted in base-8
(octal). In fact, as they are very intelligent creatures, they might well count in base-8

for all we know.



Base 8 — counting in octopus

0 1 2 3 4 5 6 7 10 11

Base 10 - counting in human

0 1 2 3 - 5 6 7 8 9

10, 20, 60...

We don’t even need to switch species to see different bases at work. The Babylonians
worked in base 60 (see Chapter 6) and the Mayans used base 20.

Two-count systems use base-2 (see page 42). We have used base 12 as the basis
for quite a few systems of measurement (12 inches in a foot, 12 pennies in an old
shilling, 12 eggs in a dozen). Starting with the human body doesn’t mean we have to
end up with base 10, either.

The Oksapmin of New Guinea use base 27, derived from counting body parts
starting with the thumb of one hand and moving up the arm to the face and down the

other side to the opposite hand (see image below).
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Computer counting
We don’t use base-10 for everything. Many computing tasks use base-16, called
hexadecimal. As we don’t have any digits for numbers above 9, the letters at the start

of the alphabet are co-opted to stand for the numbers from 10 to 15 in hexadecimal.



Base 10 - counting in human

0|1(2(3|4|5|6|7|8|9|10|11/12/13(14|15|16

Base 16 - counting in computer #1

0(1/2(3|4|5|6|7 8|9 A|B|C|D|E|F|10

You might have noticed codes such as #a712bb labelling colours on the computer.
These are triplets of hexadecimal numbers — a7, 12, bb — which give a value for each
of the three principal colours — red, green and blue — from which all other colours are
built on a computer. These numbers, if converted to decimal (base-10) would be 23
(a7=16+7); 18 (12=16+2); and 191(bb=(11x16)+15). Using hexadecimal means that
larger numbers (up to 255=ff) can be stored using only two digits.

Ultimately, all operations on a computer are reduced to binary, or base-2. This
uses only two digits — 0 and 1 — as counting starts again with a new place every time
we reach 2.

Base 2 - counting in computer #2

0 1 10 11 | 100 | 101 | 110 | 111 | 1000 | 1001

Base 10 - counting in human

0 1 2 3 - 5 6 7 8 9

Binary allows all numbers to be represented by one of two states, on/off or
positive/negative. It means that anything can be coded on a magnetic disk or tape by
the presence or absence of a charge.

Alien alert

If there are intelligent beings anywhere else in the universe, which seems quite
possible (see Chapter 18), how would they count? They might have 17 tentacles and
count in base-17. It is highly likely, though, that at some point they will have
discovered and used binary (assuming numbers are not just a human construct). It
could be that binary is the way we will be able to communicate with them.

The plaques fixed to the outside of the Pioneer spacecraft (see image on page 44)
launched in 1972 and 1973 showed the binary states of hydrogen, with electron spin up
and down. The difference between the two is used as a measure of time and distance
and, being the same everywhere in the universe, should be recognized by a civilization

capable of space travel.



All logarithmic graphs, no matter what the base of the logarithms, cross the x-axis

at 1 as any number raised to a power of zero is 1:

10°=1
2'=1
15.67° =1

Clearly, the numbers go below 0, too. Negative powers yield values less than one as

the minus sign tells us to put 1 over the number (the reciprocal of the number), making

21 = %
22 = 12 = ¥

And just in case you thought logarithms have to be in base 10 — they don’t. For

a fraction:

example, the logarithm in base 2 of 16 is 4:
16 = 2%, 50 4 = log,(16)

A lot of science, engineering and even financial applications use so-called ‘natural
logarithms’. These are logarithms to the base e, which is an irrational number (a

number with an unending decimal fraction) that starts 2.718281828459...

All about e

The number called ‘e’, or Euler’s number, is defined by mathematicians with this

scary-looking expression:
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First and prime?
Although ‘first’ and ‘prime’ are synonyms in some contexts, the number 1 is not
actually considered a prime number. The definition of prime numbers excludes it: ‘any
number greater than 1 that has no factors besides itself and 1.” There are other reasons,
that are increasingly complex, but let’s just take it as read that 1 is not a prime because
it’s too special.

In fact, Goldbach did consider 1 to be a prime. He had a second idea, now called
the weak Goldbach conjecture, which stated that every odd number greater than 2
could be expressed as the sum of three primes. That has had to be rephrased to say
every odd whole number greater than 5, so that we don’t have to co-opt 1 into a role
it’s no longer allowed to occupy. (The weak conjecture was proven by the Peruvian
mathematician Harald Helfgott in 2013.)

Euler, unwisely, was rather dismissive of Goldbach’s idea. As it turned out,
although Goldbach could try it out with a lot of numbers and it held up, he could not
prove it. In mathematics, it’s really not good enough for something to work with every

number you try it with — there has to be a proof.
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