OREILLY

-

o

' Perl 6

HOW TO THINK LIKE A COMPUTER SCIENTIST

Laurent Rosenfeld
with Allen B. Downey

Copyrightea materia

Think Perl 6
by Laurent Rosenfeld, with Allen B. Downey

Copyright © 2017 Allen Downey, Laurent Rosenfeld. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles

(http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Dawn Schanafelt and Brian Foster

Production Editor: Kristen Brown

Copyeditor: Charles Roumeliotis

Proofreader: Molly Ives Brower

Indexer: Laurent Rosenfeld and Allen B. Downey

Interior Designer: David Futato

Cover Designer: Karen Montgomery

[llustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition
e 2017-05-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491980552 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Think

Perl 6, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate,

the publisher and the authors disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereot complies with such licenses
and/or rights.

978-1-4951-98055-2
|LSI]

Preface

Welcome to the art of computer programming and to the new Perl 6
language. This will probably be the first published book using Perl 6 (or
one of the first), a powerful, expressive, malleable, and highly extensible
programming language. But this book is less about Perl 6, and more about
learning how to write programs for computers.

This book is intended for beginners and does not require any prior
programming knowledge, but it is my hope that even those of you with

programming experience will benefit from reading it.
The Aim of This Book

This aim of this book is not primarily to teach Perl 6, but instead to teach
the art of programming, using the Perl 6 language. After having completed
this book, you should hopefully be able to write programs to solve
relatively ditficult problems in Perl 6, but my main aim is to teach
computer science, software programming, and problem solving rather than
solely to teach the Perl 6 language itself.

This means that I will not cover every aspect of Perl 6, but only a
(relatively large, but yet incomplete) subset of it. By no means is this book
intended to be a reference on the language.

[t is not possible to learn programming or to learn a new programming
language by just reading a book; practicing is essential. This book contains
a lot of exercises. You are strongly encouraged to make a real effort to do
them. And, whether successful or not in solving the exercises, you should
take a look at the solutions in the Appendix, as, very often, several
solutions are suggested with further discussion on the subject and the issues
involved. Sometimes, the solution section of the Appendix also introduces
examples of topics that will be covered in the next chapter—and sometimes
even things that are not covered elsewhere in the book. So, to get the most
out of the book, I suggest you try to solve the exercises as well as review

the solutions and attempt them.

There are more than one thousand code examples in this book; study them,
make sure to understand them, and run them. When possible, try to change

them and see what happens. You’re likely to learn a lot from this process.
The History of This Book

In the course of the last three to four years, I have translated or adapted to
French a number of tutorials and articles on Perl 6, and I’ve also written a
few entirely new ones in French.! Together, these documents represented
by the end of 2015 somewhere between 250 and 300 pages of material on
Perl 6. By that time, I had probably made public more material on Perl 6 in
French than all other authors taken together.

In late 2015, I began to feel that a Perl 6 document for beginners was
something missing that I was willing to undertake. I looked around and
found that it did not seem to exist in English either. I came to the idea that,
after all, it might be more useful to write such a document initially in
English, to give it a broader audience. I started contemplating writing a
beginner introduction to Perl 6 programming. My idea at the time was
something like a 50- to 70-page tutorial and I started to gather material and
ideas in this direction.

Then, something happened that changed my plans.

In December 2015, friends of mine were contemplating translating into
French Allen B. Downey’s Think Python, Second Edition.” I had read an
earlier edition of that book and fully supported the idea of translating it.> As
it turned out, I ended up being a co-translator and the technical editor of the
French translation of that book.”

While working on the French translation of Allen’s Python book, the idea
came to me that, rather than writing a tutorial on Perl 6, it might be more
useful to make a “Perl 6 translation” of Think Python. Since I was in
contact with Allen in the context of the French translation, I suggested this

to Allen, who warmly welcomed the idea. This is how I started to write this
book late January 2016, just after having completed the work on the French
translation of his Python book.

This book is thus largely derived on Allen’s Think Python, but adapted to
Perl 6. As it happened, it is also much more than just a “Perl 6 translation”
of Allen’s book: with quite a lot of new material, it has become a brand
new book, largely indebted to Allen’s book, but yet a new book for which I
take all responsibility. Any errors are my own, not Allen’s.

My hope is that this will be useful to the Perl 6 community, and more
broadly to the open source and general computer programming
communities. In an interview with LinuxVoice (July 2015), Larry Wall, the
creator of Perl 6, said: “We do think that Perl 6 will be learnable as a first
language.” Hopetully this book will contribute to making this happen.
Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the
user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

Tip

This element signifies a tip or suggestion.
Note

This element signifies a general note.
Caution

This element indicates a warning or caution.
Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/LaurentRosenfeld/thinkperl6/.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Think Perl 6
by Laurent Rosenfeld with Allen B. Downey (O’Reilly). Copyright 2017
Allen Downey, Laurent Rosenfeld, 978-1-491-98055-2.”

[f you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning
Paths, interactive tutorials, and curated playlists from over 250 publishers,
including O’Reilly Media, Harvard Business Review, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/thinkPerl6.

To comment or ask technical questions about this book, send email to

bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http:// www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
Acknowledgments

[just don’t know how I could thank Larry Wall to the level of gratitude he
deserves for having created Perl in the first place, and Perl 6 more recently.
Be blessed for eternity, Larry, for all of that.

And thank you to all of you who took part in this adventure (in no
particular order), Tom, Damian, chromatic, Nathan, brian, Jan, Jarkko,
John, Johan, Randall, Mark Jason, Ovid, Nick, Tim, Andy, Chip, Matt,
Michael, Tatsuhiko, Dave, Rafael, Chris, Stevan, Saraty, Malcolm,
Graham, Leon, Ricardo, Gurusamy, Scott, and too many others to name.

All my thanks also to those who believed in this Perl 6 project and made it
happen, including those who quit at one point or another but contributed for
some time; I know that this wasn’t always easy.

Many thanks to Allen Downey, who very kindly supported my idea of
adapting his book to Perl 6 and helped me in many respects, but also
refrained from interfering into what I was putting in this new book.

[very warmly thank the people at O’Reilly who accepted the idea of this
book and suggested many corrections or improvements. I want to thank
especially Dawn Schanafelt, my editor at O’Reilly, whose advice has truly
contributed to making this a better book. I also want to thank Kristen
Brown for her helpful comments and work on publishing this book, and
Charles Roumeliotis and Molly Ives Brower for their constructive review

and edits.

Thanks a lot in advance to readers who will offer comments or submit

suggestions or corrections, as well as encot

ragement.

[f you see anything that needs to be corrected or that could be improved,
please kindly send your comments to think.perl6@gmail.com.

Contributor List

[would like to thank especially Moritz Len

z and Elizabeth Mattijsen, who

reviewed in detail drafts of this book and suggested quite a number of
improvements and corrections. Liz spent a lot of time on a detailed review
of the full content of this book and I am especially grateful to her for her
numerous and very useful comments. Thanks also to Timo Paulssen and
ryanschoppe who also reviewed early drafts and provided some useful
suggestions. Many thanks also to Uri Guttman, who reviewed this book and

suggested a number of small corrections an
publication.

I See, for example, http://perl.developpez.c

> See http://greenteapress.com/wp/think-py

d improvements shortly before

om/cours/#TutorielsPerl6.

thon-2e/.

31 know, it’s about Python, not Perl. But I don’t believe in engaging in

“language wars” and think that we all have

to learn from other languages;

to me, Perl’s motto, “there is more than one way to do it,” also means that
doing it in Python (or some other language) is truly an acceptable

possibility.
4 See http://allen-downey.developpez.com/I

ivres/python/pensez-python/.

Part |. Starting with the Basics

This book has been divided into two parts. The main reason for that is that I
wanted to make a distinction between, on the one hand, relatively basic
notions that are really necessary for any programmer using Perl 6; and on
the other hand, more advanced concepts that a good programmer needs to
know but are possibly used less often in day-to-day development work.

The first eleven chapters (a bit more than 200 pages) that make up this first
part are meant to teach the concepts that every programmer should know:
variables, expressions, statements, functions, conditionals, recursion,
operator precedence, and loops, as well as commonly used basic data
structures and the most useful algorithms. These chapters can, I believe, be
the basis for a one-semester introductory course on programming.

Of course, the professor or teacher who wishes to use this material is
entirely free to skip some details from Part I (and also to include sections
from Part II), but, at least, I have provided some guidelines on how I think
this book could be used to teach programming with the Perl 6 language.

Part IT focuses on different programming paradigms and more advanced
programming techniques that are (in my opinion) of paramount importance,
but should probably be studied in the context of a second, more advanced,
semester.

For now, let’s get down to the basics. It is my hope that you will enjoy the
trip.

Chapter 1. The Way of the Program

The goal of this book is to teach you to think like a computer scientist. This
way of thinking combines some of the best features of mathematics,
engineering, and natural science. Like mathematicians, computer scientists
use formal languages to denote ideas (specifically computations). Like
engineers, they design things, assembling components into systems and
evaluating tradeoffs among alternatives. Like scientists, they observe the
behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving.
Problem solving means the ability to formulate problems, think creatively
about solutions, and express a solution clearly and accurately. As it turns
out, the process of learning to program is an excellent opportunity to
practice problem-solving skills. That’s why this chapter is called, “The
Way of the Program.”

On one level, you will be learning to program, a usetul skill by itself. On
another level, you will use programming as a means to an end. As we go
along, that end will become clearer.

What Is a Program?

A program is a sequence of instructions that specifies how to perform a
computation. The computation might be something mathematical, such as
solving a system of equations or finding the roots of a polynomial, but it
can also be a symbolic computation, such as searching and replacing text in
a document, or something graphical, like processing an image or playing a
video.

The details look different in different languages, but a few basic
instructions appear in just about every language:

Input

Get data from the keyboard, a file, the network, a sensor, a GPS chip, or
some other device.

Output

Display data on the screen, save it in a file, send it over the network, act
on a mechanical device, etc.

Math

Perform basic mathematical operations like addition and multiplication.

Conditional execution
Check for certain conditions and run the appropriate code.
Repetition

Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve
ever used, no matter how complicated, is made up of instructions that look
pretty much like these. So you can think of programming as the process of
breaking a large, complex task into smaller and smaller subtasks until the
subtasks are simple enough to be performed with one of these basic
Instructions.

Using or calling these subtasks makes it possible to create various levels of
abstraction. You have probably been told that computers only use 0’s and
1’s at the lowest level; but we usually don’t have to worry about that. When
we use a word processor to write a letter or a report, we are interested in
files containing text and some formatting instructions, and with commands
to change the file or to print it; fortunately, we don’t have to care about the
underlying 0’s and 1’s; the word-processing program offers us a much
higher view (files, commands, etc.) that hides the gory underlying details.

Similarly, when we write a program, we usually use and/or create several
layers of abstraction, so that, for example, once we have created a subtask
that queries a database and stores the relevant data in memory, we no

longer have to worry about the technical details of the subtask. We can use
it as a sort of black box that will perform the desired operation for us. The
essence of programming 1is to a large extent this art of creating these
successive layers of abstraction so that performing the higher level tasks
becomes relatively easy.

Running Perl 6

One of the challenges of getting started with Perl 6 is that you might have
to install Perl 6 and related software on your computer. If you are familiar
with your operating system, and especially if you are comfortable with the
shell or command-line interface, you will have no trouble installing Perl 6.
But for beginners, it can be painful to learn about system administration
and programming at the same time.

To avoid that problem, you can start out running Perl 6 in a web browser.
Y ou might want to use a search engine to find such a site. Currently, the
easiest is probably to connect to the glot.io site, where you can type some
Perl 6 code in the main window, run it, and see the result in the output
window below.

Sooner or later, however, you will really need to install Perl 6 on your
computer.

The easiest way to install Perl 6 on your system is to download Rakudo
Star (a distribution of Perl 6 that contains the Rakudo Perl 6 compiler,
documentation and useful modules): follow the instructions for your
operating system at the Rakudo and Perl 6 websites.

As of this writing, the most recent specification of the language is Perl 6
version 6c¢ (v6.c), and the most recent release available for download is
Rakudo Star 2016.07;' the examples in this book should all run with this
version. You can find out the installed version by issuing the following
command at the operating system prompt:

S perlé -v
This 1s Rakudo version 2016.07.1 built on MoarVM version 2016.07
implementing Perl 6.c.

However, you should probably download and install the most recent
version you can find. The output (warnings, error messages, etc.) you’ll get
from your version of Perl might in some cases slightly ditfer from what is
printed in this book, but these possible differences should essentially be
only cosmetic.

Compared to Perl 5, Perl 6 is not just a new version of Perl. It is more like a
new little sister of Perl 5. It does not aim to replace Perl 5. Perl 6 is really a
new programming language, with a syntax that is similar to earlier versions
of Perl (such as Perl 5), but still markedly different. Unless stated
otherwise, this book is about Perl 6 only, not about Perl 5 and preceding
versions of the Perl programming language. From now on, whenever we
speak about Perl with no further qualification, we mean Perl 6.

The Perl 6 interpreter is a program that reads and executes Perl 6 code. It is
sometimes called REPL (for “read, evaluate, print, loop”). Depending on
your environment, you might start the interpreter by clicking on an icon, or

by typing per 16 on a command line.

When it starts, you should see output like this:

To ex1t type 'exit' or '~D’
(Possibly some information about Perl and related software)
-

The last line with > is a prompt that indicates that the REPL is ready for
you to enter code. If you type a line of code and hit Enter, the interpreter
displays the result:

> 1 + 1

You can type exit at the REPL prompt to exit the REPL.

Now you’re ready to get started. From here on, we assume that you know
how to start the Perl 6 REPL and run code.
The First Program

Traditionally, the first program you write in a new language is called
“Hello, World” because all it does is display the words “Hello, World”. In
Perl 6, it looks like this:

> say "Hello, World";
Hello, World

>

This is an example of what is usually called a print statement, although it

doesn’t actually print anything on paper and doesn’t even use the print
keyword? (keywords are words which have a special meaning to the
language and are used by the interpreter to recognize the structure of the
program). The print statement displays a result on the screen. In this case,

the result is the words Hello, World. The quotation marks in the program
indicate the beginning and end of the text to be displayed; they don’t appear
in the result.

The semicolon (“;”) at the end of the line indicates that this is the end of
the current statement. Although a semicolon is technically not needed when
running simple code directly under the REPL, it is usually necessary when
writing a program with several lines of code, so you might as well just get
into the habit of ending code instructions with a semicolon.

Many other programming languages would require parentheses around the
sentence to be displayed, but this is usually not necessary in Perl 6.

Arithmetic Operators

After “Hello, World,” the next step is arithmetic. Perl 6 provides operators,
which are special symbols that represent computations like addition and
multiplication.

The operators +, -, *, and / perform addition, subtraction, multiplication,
and division, as in the following examples under the REPL.:

> 40 + 2
42

> 43 - 1
42

> 6 * 7

42

> 84 [2
42

Since we use the REPL, we don’t need an explicit print statement in these
examples, as the REPL automatically prints out the result of the statements
for us. In a real program, you would need a print statement to display the
result, as we’ll see later. Similarly, if you run Perl statements in the web
browser mentioned in “Running Perl 6”, you will need a print statement to
display the result of these operations. For example:

say 40 + 2; # -> 42

Finally, the operator ** performs exponentiation; that is, it raises a number
to a power:

> 6%*2 + 6
42

CCAN

In some other languages, the caret (“~”) or circumflex accent is used for

exponentiation, but in Perl 6 it is used for some other purposes.
Values and Types

A value is one of the basic things a program works with, like a letter or a

number. Some values we have seen so far are 2, 42, and "Hello, World".

These values belong to different types: 2 is an integer, 40 + 2 is also an

integer, 84/2 is a rational number, and "Hello, World" is a string, so
called because the characters it contains are strung together.

[f you are not sure what type a value has, Perl can tell you:

> say 42.WHAT;

(Int)

> say (40 + 2).WHAT;

(Int)

> say (84 [/ 2).WHAT;

(Rat)

> say (42.0).WHAT

(Rat)

> say ("Hello, World").WHAT;
(Str)

>

In these instructions, .WHAT is known as an introspection method; that is, a
kind of method which will tell you what (of which type) the preceding

expression is. 42 .WHAT is an example of the dot syntax used for method

invocation: it calls the .WHAT built-in on the “42” expression (the invocant)

and provides to the say function the result of this invocation, which in this
case is the type of the expression.

Not surprisingly, integers belong to the type Int, strings belong to Str, and
rational numbers belong to Rat.

Although 40 + 2 and 84 / 2 seem to yield the same result (42), the first
expression returns an integer (Int) and the second a rational number (Rat).

The number 42.0 is also a rational.

The rational type is somewhat uncommon in most programming languages.
Internally, these numbers are stored as two integers representing the
numerator and the denominator (in their simplest terms). For example, the

number 17.3 might be stored as two integers, 173 and 10, meaning that Perl
173
is really storing something meaning the 10 fraction. Although this is

usually not needed (except for introspection or debugging), you might
access these two integers with the following methods:

> my Snum = 17.3;
17.3

> say Snum.WHAT;
(Rat)

> say Snum.numerator,
list

173 10

> say Snum.nude; # "nude" stands for numerator-

denominator
(173 10)

" "

, Snum.denominator; # say can print a

This may seem anecdotal, but, for reasons which are beyond the scope of
this book, this makes it possible for Perl 6 to perform arithmetical
operations on rational numbers with a much higher accuracy than most
common programming languages. For example, if you try to perform the

arithmetical operation 0.3 - 0.2 - 0.1 with most general purpose
programming languages (and depending on your machine architecture), you
might obtain a result such as —2.77555756156289e-17 (in Perl 5), —
2.775558e-17 (in C under GCC), or —2.7755575615628914e-17 (Java,
Python 3, Ruby, TCL). Don’t worry about these values if you don’t
understand them; let us just say that they are extremely small but they are
not 0, whereas, obviously, the result should really be zero. In Perl 6, the
result is 0 (even to the fiftieth decimal digit):

> my Sresult-should-be-zero = 0.3 - 0.2 - 0.1;

0

> printf "%.50f", Sresult-should-be-zero; # prints 50 decimal
digits

0.00000000000000000000000000000000000C00CEOOEEOOALEOO

In Perl 6, you might even compare the result of the operation with 0:

> say Sresult-should-be-zero == 0;
True

Don’t do such a comparison with most common programming languages;
you’re very likely to get a wrong result.

What about values like "2" and "42.0"? They look like numbers, but they
are in quotation marks like strings.

> say '2'.perl; # perl returns a Perlish representation of the

invocant

o

> say 2" .WHAT;
(Str)

> say '42' .WHAT;
(Str)

They’re strings because they are defined within quotes. Although Perl will
often perform the necessary conversions for you, it is generally a good
practice not to use quotation marks if your value is intended to be a
number.

When you type a large integer, you might be tempted to use commas

between groups of digits, as in 1,234,567. This is not a legal integer in
Perl 6, but it is a legal expression:

> 1,234,567

(1 234 567)

>

That’s actually a list of three different integer numbers, and not what we
expected at all!

> say (1,234,567) .WHAT
(List)

Perl 6 interprets 1,234,567 as a comma-separated sequence of three

integers. As we will see later, the comma is a separator used for
constructing lists.

You can, however, separate groups of digits with the underscore character
(“_") tor better legibility and obtain a proper integer:

> 1 234 567

1234567

> say 1 234 567.WHAT
(Int)

>

Formal and Natural Languages

Natural languages are the languages people speak, such as English,
Spanish, and French. They were not designed by people (although people
try to impose some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific
applications. For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among numbers
and symbols. Chemists use a formal language to represent the chemical
structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to
express computations.

Formal languages tend to have strict syntax rules that govern the structure

of statements. For example, in mathematics the statement 3 + 3 — 6

has correct syntax, but not 3 _I— — 3 $ 6 In chemistry H>O is a
syntactically correct formula, but »,Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure.
Tokens are the basic elements of the language, such as words, numbers, and

chemical elements. One of the problems with 3 T = %$ 6 1s that $

is not a legal token in mathematics (at least as far as I know). Similarly, »Zz
is not legal because there is no chemical element with the abbreviation Zz.

The second type of syntax rule, structure, pertains to the way tokens are

combined. The equation 3 ‘|‘ — 3 is illegal in mathematics because

even though —+ and — are legal tokens, you can’t have one right after the
other. Similarly, in a chemical formula, the subscript representing the
number of atoms in a chemical compound comes after the element name,
not before.

This is @ well-structured Engli$h sentence with invalid t*kens in it. This
sentence all valid tokens has, but invalid structure with.

When you read a sentence in English or a statement in a formal language,
you have to figure out the structure (although in a natural language you do
this subconsciously). This process is called parsing.

Although formal and natural languages have many features in common—
tokens, structure, and syntax—there are some differences:

Ambiguity
Natural languages are full of ambiguity, which people deal with by

using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that
any statement has exactly one meaning.

Redundancy

In order to make up for ambiguity and reduce misunderstandings,
natural languages employ lots of redundancy. As a result, they are often
verbose. Formal languages are less redundant and more concise.

[.iteralness

Natural languages are full of idiom and metaphor. If we say, “The
penny dropped,” there is probably no penny and nothing dropping (this
idiom means that someone understood something after a period of
confusion). Formal languages mean exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to
adjust to formal languages. The difference between formal and natural
language is like the difference between poetry and prose, but more so:

Poetry

Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response.
Ambiguity is not only common but often deliberate.

Prose

The literal meaning of words 1s more important, and the structure
contributes more meaning. Prose is more amenable to analysis than
poetry but still often ambiguous.

Programs

The meaning of a computer program is unambiguous and literal, and
can be understood entirely by analysis of the tokens and structure.

Formal languages are more dense than natural languages, so it takes longer
to read them. Also, the structure is important, so it is not always best to
read from top to bottom, left to right. Instead, learn to parse the program in
your head, identifying the tokens and interpreting the structure. Finally, the
details matter. Small errors in spelling and punctuation, which you can get
away with in natural languages, can make a big difference in a formal
language.

Debugging

Programmers make mistakes. Programming errors are called bugs and the
process of tracking them down is called debugging.

Programming, and especially debugging, sometimes brings out strong
emotions. If you are struggling with a ditficult bug, you might feel angry,
despondent, or embarrassed.

There is evidence that people naturally respond to computers as if they
were people. When they work well, we think of them as teammates, and
when they are obstinate or rude, we respond to them the same way we
respond to rude, obstinate people”.

Preparing for these reactions might help you deal with them. One approach

is to think of the computer as an employee with certain strengths, like speed
and precision, and particular weaknesses, like lack of empathy and inability
to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the
strengths and mitigate the weaknesses. And find ways to use your emotions
to engage with the problem, without letting your reactions interfere with
your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful
for many activities beyond programming. At the end of each chapter there

is a section, like this one, with our suggestions for debugging. I hope they
help!

Glossary

abstraction

A way of providing a high-level view of a task and hiding the
underlying technical details so that this task becomes easy.

bug

An error In a program.

compiler

A program that reads another program and transforms it into executable
computer code; there used to be a strong difference between interpreted
and compiled languages, but this distinction has become blurred over
the last two decades or so.

debugging
The process of finding and correcting bugs.

formal language

Any one of the languages that people have designed for specific
purposes, such as representing mathematical ideas or computer
programs; all programming languages are formal languages.

integer
A type that represents whole numbers.

Interpreter

A program that reads another program and executes it.

natural language

Any one of the languages that people speak that evolved naturally.

operator

A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

parse

To examine a program and analyze the syntactic structure.

print statement

An instruction that causes the Perl 6 interpreter to display a value on the
screen.

problem solving

The process of formulating a problem, finding a solution, and
expressing it.

program
A set of instructions that specifies a computation.
prompt

Characters displayed by the interpreter to indicate that it is ready to take
input from the user.

rational

A type that represents numbers with fractional parts. Internally, Perl
stores a rational as two integers representing respectively the numerator
and the denominator of the fractional number.

string

A type that represents sequences of characters.

syntax

The rules that govern the structure of a program.

token

One of the basic elements of the syntactic structure of a program,
analogous to a word in a natural language.

type
A category of values. The types we have seen so far are integers (type
Int), rational numbers (type Rat), and strings (type Str).

value

One of the basic units of data, like a number or string, that a program
manipulates.

Exercises
Exercise 1-1.

[t is a good idea to read this book in front of a computer so you can try out
the examples as you go.

Whenever you are experimenting with a new feature, you should try to
make mistakes. For example, in the “Hello, world!” program, what happens
if you leave out one of the quotation marks? What if you leave out both?

What if you spell say wrong?

This kind of experiment helps you remember what you read; it also helps
when you are programming, because you get to know what the error
messages mean. It is better to make mistakes now and on purpose than later
and accidentally.

Please note that most exercises in this book are provided with a solution in
the appendix. However, the exercises in this chapter and in the next chapter
are not intended to let you solve an actual problem but are designed to
simply let you experiment with the Perl interpreter; there is no good
solution, just try out what is proposed to get a feeling on how it works.

1. If you are trying to print a string, what happens if you leave out one of
the quotation marks, or both?

2. You can use a minus sign to make a negative number like -2. What
happens if you put a plus sign before a number? What about 2++27

3. In math notation, leading zeros are OK, as in 02. What happens if you
try this in Perl?

4. What happens if you have two values with no operator between them,
such as say 2 2;7?

Exercise 1-2.

Start the Perl 6 REPL interpreter and use it as a calculator.

1. How many seconds are there in 42 minutes, 42 seconds?

2. How many miles are there in 10 kilometers? Hint: there are 1.61
kilometers in a mile.

3. If you run a 10-kilometer race in 42 minutes, 42 seconds, what is your
average pace (time per mile in minutes and seconds)? What is your
average speed in miles per hour?

L' As we go to press, the latest version is 2017.01.

> Perl also has a print function, but the say built-in function is used here
because it adds a newline character to the output.

3 Byron Reeves and Clifford Nass, The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and Places
(Center for the Study of Language and Information, 2003)

Chapter 2. Variables, Expressions, and Statements

One of the most powerful features of a programming language is the ability
to manipulate variables. Broadly speaking, a variable is a name that refers
to a value. It might be more accurate to say that a variable is a container
that has a name and holds a value.

Assignment Statements

An assignment statement uses the equals sign (=) and gives a value to a
variable, but, before you can assign a value to a variable, you first need to
create the variable by declaring it (if it does not already exist):

> my Smessage; # variable declaration, no value yet
> Smessage = 'And now for something completely different’;
And now for something completely different

> my Snumber = 42; # variable declaration and assignment
42

> Snumber = 17; # new assignment

17

> my Sphi = 1.618033988;
1.618033988

>

This example makes four assignment statements. The first assigns a string
to a new variable named Smessage, the second assigns the integer 42 to
Snumber, the third reassigns the integer 17 to Snumber, and the fourth
assigns the (approximate) value of the golden ratio to $phi.

There are two important syntax features to understand here.

First, in Perl, variable names start with a so-called sigil, i.e., a special non-

alphanumeric character such as $, @, %, &, and some others. This special
character tells us and the Perl compiler (the program that reads the code of
our program and transforms it into computer instructions) which kind of

variable it is. For example, the $ character indicates that the variables above
are all scalar variables, which means that they can contain only one value

at any given time. We’ll see later other types of variables that may contain
more than one value.

Second, notice that all three variables above are first introduced by the

keyword my, which is a way of declaring a new variable. Whenever you
create a new variable in Perl, you need to declare it, i.e., tell Perl that
you’re going to use that new variable; this is most commonly done with the

my keyword, which declares a lexical variable. We will explain later what a
lexical variable is; let’s just say for the time being that it enables you to
make your variable local to a limited part of your code. One of the good
consequences of the requirement to declare variables before you use them
is that, if you accidentally make a typo when writing a variable name, the
compiler will usually be able to tell you that you are using a variable that
has not been declared previously and thus help you find your error. This has
other far-reaching implications, which we will examine later.

When we wrote at the beginning of this section that a variable has to be
declared before it is used (or just when it is used), it plainly means that the
declaration has to be before (or at the point of) the variable’s first use in the
text file containing the program. We will see later that programs don’t
necessarily run from top to bottom in the order in which the lines or code
appear in the program file; still, the variable declaration must be before its
use In the text file containing the program.

[f you neglect to declare a variable, you get a syntax error:

> Snumber = 5;
===SORRY!=== Error while compiling <unknown file>
Variable 'Snumber' is not declared

at <unknown file>:1

------ > <BOL><HERE>Snumber

d;

Please remember that you may obtain slightly different error messages

depending on the version of Rakudo you run. The above message was
obtained in February 2016; with a newer version (October 2016), the same
error 1s now displayed somewhat more cleanly as:

e
> Snumber = 5;

===SORRY!=== Error while compiling:
Variable 'Snumber' is not declared
at Lline 2

______ > <BOL><HERE>Snumber = 5;

A common way to represent variables on paper is to write the name with an
arrow pointing to its value. This kind of figure is called a state diagram
because it shows what state each of the variables is in (think of it as the
variable’s state of mind). Figure 2-1 shows the result of the previous
example.

$Pmessage —»= 'And now for something completely different’
Snumber —» 17
$phi —» 1.618033988

Figure 2-1. State diagram

Variable Names

Programmers generally choose names for their variables that are
meaningful—they document what the variable is used for.

Variable names can be as long as you like. They can contain both letters
and numbers, but user-defined variable names can’t begin with a number.

Variable names are case-sensitive, 1.e., Smessage is not the same variable

as SMessage or SMESSAGE. It is legal to use uppercase letters, but it is
conventional to use only lowercase for most variables names. Some people

nonetheless like to use $TitleCase for their variables or even pure
SUPPERCASE for some special variables.

Unlike most other programming languages, Perl 6 does not require the
letters and digits used in variable names to be plain ASCII. You can use all
kinds of Unicode letters, i.e., letters from almost any language in the world,

so that, for example, Sbricke, Spayé, or $nifo are valid variable names,
which can be useful for non-English programmers (provided that these
Unicode characters are handled correctly by your text editor and your

screen configuration). Similarly, instead of using $phi for the name of the
golden ratio variable, we might have used the Greek small letter phi,
(Unicode code point U+03C6), just as we could have used the Greek small
letter pi, , for the well-known circle circumference-to-diameter ratio:

>my S¢ = (5 ** 5 + 1)/2; # golden ratio
1.61803398874989
> say 'Variable S = ', So;
Variable S = 1.61803398874989
>my $Sn = 4 * atan 1;
.14159265358979
you could also use the pi or n built-in constant:

3
>
> pl
3.14159265358979
The underscore character, _, can appear anywhere in a variable name. It is

often used in names with multiple words, such as Syour_name or
Ssairspeed of unladen swallow.

You may even use dashes to create so-called “kebab case”! and name those

variables Syour-name or Sairspeed-of-unladen-swallow, and this might
make them slightly easier to read: a dash is valid in variable names
provided it is immediately followed by an alphabetical character and

preceded by an alphanumerical character. For example, Sdouble-click or
Sla-nina are legitimate variable names. Similarly, you can use an

apostrophe ' (or single quote) between letters, so $isn't or So'brien’s-
age are valid identifiers.

[f you give a variable an illegal name, you get a syntax error:

> my S76trombones = 'big parade’

===SORRY!=== Error while compiling <unknown file>
Cannot declare a numeric variable

at <unknown file>:1

------ > my S76<HERE>trombones = "big parade’;

> my Smore§ = 100000;

===SORRY !=== Error while compiling <unknown file>
Bogus postfix

at <unknown file>:1

------ > my Smore<HERE>§ = 100000;

S76trombones is illegal because it begins with a number. Smore§ is illegal
because it contains an illegal character, §.

[f you’ve ever used another programming language and stumbled across a

terse message such as "SyntaxError: invalid syntax", you will notice
that the Perl designers have made quite a bit of effort to provide detailed,
useful, and meaningful error messages.

Many programming languages have keywords or reserved words that are

part of the syntax, such as i1f, while, or for, and thus cannot be used for
identifying variables because this would create ambiguity. There is no such
problem in Perl: since variable names start with a sigil, the compiler is
always able to tell the difference between a keyword and a variable. Names

such as $if or Swhile are syntactically valid variable identifiers in Perl
(whether such names make sense is a different matter).
Expressions and Statements

An expression is a combination of terms and operators. Terms may be

variables or literals, i.e., constant values such as a number or a string. A
value all by itself is considered an expression, and so is a variable, so the
following are all legal expressions:

> 42

42

>my Sn = 17;
1/

> SN;

17

> Sn + 25;

42

>

When you type an expression at the prompt, the interpreter evaluates it,
which means that it finds the value of the expression. In this example, $n
has the value 17 and $n + 25 has the value 42.

A statement is a unit of code that has an effect, like creating a variable or

displaying a value, and usually needs to end with a semicolon ; (but the
semicolon can sometimes be omitted, as we will see later):

> my Sn = 17;
17

> say $Sn;

17

The first line is an assignment statement that gives a value to $n. The
second line is a print statement that displays the value of $n.

When you type a statement and then press Enter, the interpreter executes it,
which means that it does whatever the statement says.

An assignment can be combined with expressions using arithmetic
operators. For example, you might write:

> my Sanswer = 17 + 25;
42

> say Sanswer;
42

The + symbol is obviously the addition operator and, after the assignment

statement, the Sanswer variable contains the result of the addition. The
terms on each side of the operator (here 17 and 25) are sometimes called
the operands of the operation (an addition in this case).

Note that the REPL actually displays the result of the assignment (the first
line with “42”), so the print statement was not really necessary in this
example under the REPL; from now on, for the sake of brevity, we will
generally omit the print statements in the examples where the REPL
displays the result.

In some cases, you want to add something to a variable and assign the
result to that same variable. This could be written:

> my Sanswer = 17;

17

> Sanswer = Sanswer + 25;
42

Here, Sanswer is first declared with a value of 17. The next statement

assigns to Sanswer the current value of Sanswer (i.e., 17) + 25. This is
such a common operation that Perl, like many other programming
languages, has a shortcut for this:

> my Sanswer = 17;
17
> Sanswer += 25;

42

The += operator combines the arithmetic addition operator and the
assignment operator to modify a value and apply the result to a variable in

one go, so that Sn += 2 means take the current value of $n, add 2, and
assign the result to $n. This syntax works with all other arithmetic
operators. For example, -= similarly performs a subtraction and an

assignment, *= a multiplication and an assignment, etc. It can even be used
with operators other than arithmetic operators, such as the string
concatenation operator that we will see later.

Adding 1 to a variable is a very common version of this, so that there is a
shortcut to the shortcut, the increment operator, which increments its
argument by one, and returns the incremented value:

>my Sn = 17;
17

> ++5N;

18

> say $n;

18

This is called the prefix increment operator, because the ++ operator is
placed before the variable to be incremented. There is also a postfix

version, Sn++, which first returns the current value and then increments the
variable by one. It would not make a difference in the code snippet above,
but the result can be very different in slightly more complex expressions.

There is also a decrement operator - -, which decrements its argument by

one and also exists in a prefix and a postfix form.
Script Mode

So far we have run Perl in interactive mode, which means that you interact
directly with the interpreter (the REPL). Interactive mode is a good way to
get started, but if you are working with more than a few lines of code, it can
be clumsy and even tedious.

The alternative is to use a text editor and save code in a file called a script
and then run the interpreter in script mode to execute the script. By

convention, Perl 6 scripts have names that end with .pl, .p6, or .plé.

Please make sure that you’re really using a text editor and not a word-
processing program (such as MS Word, OpenOffice, or LibreOffice
Writer). There is a very large number of text editors available for free. On
Linux, you might use vi (or vim), emacs, gEdit, or nano. On Windows, you
may use notepad (very limited) or notepad++. There are also many Cross-
platform editors or integrated development environments (IDEs) providing
text editor functionality, including padre, eclipse, or atom. Many of these
provide various syntax highlighting capabilities, which might help you use
correct syntax (and find some syntax errors).

Once you’ve saved your code in a file (say, for example, my_script.pl6),
you can run the program by issuing the following command at the operating

system prompt (for example in a Linux console or in a cmd window under
Windows):

perl6 my script.plé6

Because Perl provides both modes, you can test bits of code in interactive
mode before you put them in a script. But there are differences between
interactive mode and script mode that can be confusing.

For example, if you are using Perl 6 as a calculator, you might type:

> my Smiles = 26.2;
26.2

> Smiles * 1.61;

42 .182

The first line assigns a value to $miles and displays that value. The second

line is an expression, so the interpreter evaluates it and displays the result.
[t turns out that a marathon is about 42 kilometers.

But if you type the same code into a script and run it, you get no output at
all. In script mode, an expression, all by itself, has no visible effect. Perl
actually evaluates the expression, but it doesn’t display the value unless you
tell it to:

my Smiles = 26.2;
say Smiles * 1.61;

This behavior can be confusing at first. Let’s examine why.

A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the print statements execute.

For example, consider the following script:

say 1;
my $X = 2;
say S$X;

[t produces the following output:

=

The assignment statement produces no output.

To check your understanding, type the following statements in the Perl
interpreter and see what they do:

>;
my Sx = 5;
SX + 1;

Now put the same statements in a script and run it. What is the output?
Modify the script by transforming each expression into a print statement
and then run it again.

One-Liner Mode

Perl also has a one-liner mode, which enables you to type directly a very

short script at the operating system prompt. Under Windows, it might look
like this:

C:\Users\Laurent>perl6é -e "my Svalue = 42; say 'The answer is ',
Svalue;"
The answer is 42

The -e option tells the compiler that the script to be run is not saved in a
file but instead typed at the prompt between quotation marks immediately
after this option.

Under Unix and Linux, you would replace double quotation marks with
apostrophes (or single quotes) and apostrophes with double quotation
marks:

S perlé -e 'my Svalue = 42; say "The answer is Svalue";'
The answer 1i1s 42

The one-liner above may not seem to be very useful, but throwaway one-
liners can be very practical to perform simple one-off operations, such as
quickly modifying a file not properly formatted, without having to save a
script in a separate file before running it.

We will not give any additional details about the one-liner mode here, but
will give some more useful examples later in this book, for example,
“Words Longer Than 20 Characters (Solution)”, “Exercise 7-3: Caesar’s
Cipher” (solving the “rot-13” exercise), or “Exercise 8-7: Consecutive
Double Letters” (solving the exercise on consecutive double letters).

Order of Operations

When an expression contains more than one operator, the order of
evaluation depends on the order of operations or operator precedence. For
mathematical operators, Perl follows mathematical convention. The
acronym PEMDAS? is a useful way to remember the rules:

e Parentheses have the highest (or tightest) precedence and can be used to
force an expression to evaluate in the order you want. Since expressions

in parentheses are evaluated first, 2 * (3-1) is 4, and (1+1)**(5-2) is
8. You can also use parentheses to make an expression easier to read, as

in (Sminute * 100) / 60, even if it doesn’t change the result.

e EXxponentiation has the next highest precedence, so 1 + 2**31is9 (1 +
8), not 27, and 2 * 3**21is 18, not 36.

e Multiplication and Division have higher precedence than Addition and
Subtraction. So 2*¥3-1is 5, not 4, and 6+4/2 is 8, not 5.

e Operators with the same precedence are usually evaluated from left to
right (except exponentiation). So in the expression $Sdegrees [/ 2 *
pi, the division happens first and the result is multiplied by pi, which is

not the expected result. (Note that pi is not a variable, but a predefined
constant in Perl 6, and therefore does not require a sigil.) To divide by

2:’1, you can use parentheses:

my Sresult = Sdegrees / (2 * pi);

or write Sdegrees / 2 / pior $Sdegrees / 2 fr JT, which will divide
Sdegrees by 2, and then divide the result of that operation by (which

is equivalent Sdegrees by ER.

[don’t work very hard to remember the precedence of operators. If I can’t
tell by looking at the expression, I use parentheses to make it obvious. If I
don’t know for sure which of two operators has the higher precedence, then
the next person reading or maintaining the code may also not know.

String Operations

In general, you can’t perform mathematical operations on strings, unless the
strings look so much like numbers that Perl can transform or coerce them
into numbers and still make sense, so the following are illegal:

'2'-'1a’ 'eggs '/ 'easy’ 'third'*'a charm'

For example, this produces an error:

> !2!_I1al
Cannot convert string to number: trailing characters after number
in '1?7a' (indicated by ?)

in block <unit> at <unknown file>:1

But the following expressions are valid because these strings can be
coerced to numbers without any ambiguity:

> !2!_I11
1

> l3!/l41
0.75

The ~ operator performs string concatenation, which means it joins the
strings by linking them end-to-end. For example:

> my Sfirst = 'throat'
throat

> my Ssecond = 'warbler'
warbler

> Sfirst ~ Ssecond
throatwarbler

The x operator also works on strings; it performs repetition. For example:

> 'ab' x 3;

ababab

> 42 x 3

4242472

> 3 X 42
33

Notice that, although the x operator somewhat looks like the multiplication
operator when we write it by hand, x is obviously not commutative,
contrary to the * multiplication operator. The first operator is a string or is

coerced to a string (i.e., transformed into a string: 42 is coerced to '42"),
and the second operator has to be a number or something that can be
transformed into a number.

Comments

As programs get bigger and more complicated, they get more difficult to
read. Formal languages are dense, and it is often difficult to look at a piece
of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are called

comments, and they start with the # symbol:

compute the percentage of the hour that has elapsed
my Spercentage = (Sminute * 100) / 60;

In this case, the comment appears on a line by itself. You can also put
comments at the end of a line:

Spercentage = (Sminute * 100) / 60; # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on
the execution of the program.

Comments are most useful when they document nonobvious features of the
code. It is reasonable to assume that the reader can figure out what the code
does; it is more useful to explain why.

This comment is redundant with the code and useless:

my Svalue = 5; # assign 5 to Svalue

This comment, by contrast, contains useful information that is not in the
code:

my Svelocity = 5; # velocity i1n meters/second.

Good variable names can reduce the need for comments, but long names
can make complex expressions hard to read, so there is a tradeoff.
Debugging

Three kinds of errors can occur in a program: syntax errors, runtime errors,
and semantic errors. It is useful to distinguish between them in order to
track them down more quickly.

Syntax error

Syntax refers to the structure of a program and the rules about that

structure. For example, parentheses have to come in matching pairs, so

(1 + 2) islegal, but 8) is a syntax error.>

If there is a syntax error anywhere in your program, Perl displays an
error message and quits without even starting to run your program, and

you will obviously not be able to run the program. During the first few
weeks of your programming career, you might spend a lot of time
tracking down syntax errors. As you gain experience, you will make
fewer errors and find them faster.

Runtime error

The second type of error is a runtime error, so called because the error
does not appear until after the program has started running. These errors
are also called exceptions because they usually indicate that something
exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first
few chapters, so it might be a while before you encounter one. We have
seen one example of such errors, though, at the beginning of “String

Operations” , when we tried to subtract '2"'-"'1a".

Semantic error

The third type of error is semantic, which means related to meaning. If
there is a semantic error in your program, it will run without generating
error messages, but it will not do the right thing. It will do something

else. Specifically, it will do what you told it to do, but not what you
intended it to do.

Identifying semantic errors can be tricky because it requires you to
work backward by looking at the output of the program and trying to
figure out what it is doing.

Glossary

assignment

A statement that assigns a value to a variable.

comment

Information in a program that is meant for other programmers (or

anyone reading the source code) and has no effect on the execution of
the program.

concatenate

To join two string operands end-to-end.

evaluate

To simplify an expression by performing the operations in order to
yield a single value.

exception

An error that is detected while the program is running.

execute

To run a statement and do what it says.

expression

A combination of operators and terms that represents a single result.

interactive mode (or interpreter mode)

A way of using the Perl interpreter by typing code at the prompt.

keyword

A reserved word that is used to parse a program; in many languages,

you cannot use keywords like 1f, for, and while as variable names.
This problem usually does not occur in Perl because variable names
begin with a sigil.

one-liner mode

A way of using the Perl interpreter to read code passed at the operating

system prompt and run it.

operand

One of the values used by an operator.

order of operations

Rules governing the order in which expressions involving multiple
operators and operands are evaluated. It is also called operator
precedence.

SCript

A program stored in a file.

script mode

A way of using the Perl interpreter to read code from a script and run it.

semantic error

An error in a program that makes it do something other than what the
programmer intended.

semantics

The meaning of a program.

state diagram

A graphical representation of a set of variables and the values they refer
to.

statement

A section of code that represents a command or action. So far, the
statements we have seen are assignments and print statements.
Statements usually end with a semicolon.

syntax error

An error in a program that makes it impossible to parse (and therefore
impossible to compile and to run).

term

A variable or a literal value.

variable

Informally, a name that refers to a value. More accurately, a variable is
a container that has a name and holds a value.

Exercises
Exercise 2-1.

Repeating our advice from the previous chapter, whenever you learn a new
feature, you should try it out in interactive mode (under the REPL) and
make errors on purpose to see what goes wrong.

e We’ve seen that $Sn = 42 is legal. What about 42 = $n?

e How about $x = Sy = 17? (Hint: note that you will have to declare both
variables, for example with a statement such as my $x; my Sy; or
possibly my ($x, Sy);, before you can run the above.)

e In some languages, statements don’t have to end with a semicolon, ;.
What happens in script mode if you omit a semicolon at the end of a Perl
statement?

e What if you put a period at the end of a statement?

“ 17
e In math notation you can multiply x and y like this: A J’ What happens
if you try that in Perl?

Exercise 2-2.

Practice using the Perl interpreter as a calculator:

-
1. The volume of a sphere with radius ris 3°°° . What is the volume of a
sphere with radius 57

2. Suppose the cover price of a book is $24.95, but bookstores get a 40%
discount. Shipping costs $3 for the first copy and 75 cents for each
additional copy. What is the total wholesale cost for 60 copies?

3. If I leave my house at 6:52 a.m. and run 1 mile at an easy pace (8:15 per
mile), then 3 miles at tempo (7:12 per mile) and 1 mile at easy pace
again, what time is it when I complete my running exercise?

! Because the words appear to be skewered like pieces of food prepared for
a barbecue.

> US students are sometimes taught to use the “Please Excuse My Dear
Aunt Sally” mnemonic to remember the right order of the letters in the
acronym

> We are using “syntax error” here as a quasi-synonym for “compile-time
error”’; they are not exactly the same thing (you may in theory have syntax
errors that are not compile-time errors and the other way around), but they
can be deemed to be the same for practical purposes here. In Perl 6,

compile-time errors have the “===SORRY !===" string at the beginning of
the error message.

Chapter 3. Functions

In the context of programming, a function is usually a named sequence of
statements that performs a computation. In Perl, functions are often also
called subroutines, and the two terms can (for now) be considered more or
less equivalent. When you define a function, you specity the name and the
sequence of statements. Later, when you want to perform a computation,
you can “call” the function by name and this will run the sequence of
statements contained in the function definition.

Perl comes with many built-in functions that are quite handy. You’ve

already seen some of them: for example, say is a built-in function, and we
will see many more in the course of this book. And if Perl doesn’t already
have a function that does what you want, you can build your own. This
teaches you the basics of functions and how to build new ones.

Function Calls

We have already seen examples of function calls:

> Say 42;
42

The name of the function is say. The expression following the function

name is called the argument of the function. The say function causes the
argument to be displayed on the screen. If you need to pass several values
to a function, then just separate the arguments with commas:

> say '"The answer to the ultimate question is ", 42;
The answer to the ultimate question is 42

Many programming languages require the arguments of a function to be
inserted between parentheses. This is not required (and usually not
recommended) in Perl 6 for most built-in functions (except when needed

for precedence), but if you do use parentheses, you should make sure to
avoid inserting spaces between the function name and the opening

parenthesis. For example, the round function usually takes two arguments:
the value to be rounded and the unit or scale. You may call it in any of the
following ways:

> round 42.45, 1;

42

> round 42.45, .1;

42 .5

> round(42.45, .1); # But not: round (42.45, .1);

42 .5

> round(42.45, .1); # Space is OK *after* the opening paren
42.5

Experienced Perl programmers usually prefer to omit the parentheses when
they can. Doing so makes it possible to chain several functions with a
visually cleaner syntax. Consider for example the differences between these
two calls:

> say round 42.45, 1;
42

> say(round(42.45, 1));
42

The second statement is explicitly saying what is going on, but the
accumulation of parentheses actually makes things not very clear. By
contrast, the first statement can be seen as a pipeline to be read from right

to left: the last function on the right, round, is taking two arguments,
42 .45, 1, and the value produced by round is passed as an argument to
say.

[t is common to say that a function “takes” one or several arguments and
“returns” a result. The result is also called the return value.

Perl provides functions that convert values from one type to another. When

called with only one argument, the round function takes any value and
converts it to an integer, if it can, or complains otherwise:

> round 42.3;
42

> round "yes"
Cannot convert string to number: base-10 number must begin with

valid
digits or '.' in '<HERE>yes' (indicated by <HERE>)
in block <unit> at <unknown file> line 1

Note that, in Perl 6, many built-in functions can also use a method
invocation syntax with the so-called dot notation. The following statements

display the same result:

> round 42.7; # Function call syntax

43

> 42.7.round; # Method invocation syntax
43

The round function can round off rational and floating-point values to

integers. There is an Int method that can also convert noninteger numerical
values into integers, but it doesn’t round off; it chops off the fraction part:

> round 42.7
43

> 42.7.1Int
42

We’ll come back to methods in the next section.

The Rat built-in function converts integers and strings to rational numbers
(if possible):

> say 4.Rat;

4

> say 4.Rat.WHAT;
(Rat)

> say Rat(4).WHAT
(Rat)

> say Rat(4).nude

(4 1)

> say Rat('3.14159'")
3.14159

> say Rat('3.14159').nude
(314159 100000)

(As you might remember, the nude method displays the numerator and
denominator of a rational number.)

Finally, Str converts its argument to a string:

> say 42.5tr.WHAT
(Str)

> say Str(42).WHAT;
(Str)

Note that these type conversion functions often don’t need to be called
explicitly, as Perl will in many cases try to do the right thing for you. For
example, if you have a string that looks like an integer number, Perl will
coerce the string to an integer for you if you try to apply an arithmetic
operation on it:

> Say II‘21'II 4 I12H;
42

Similarly, integers will be coerced to strings if you apply the string
concatenation operator to them:

> Say 4 ~ 2;

47
> say (4 ~ 2).WHAT;
(Str)

The coercion can even happen twice within the same expression if needed:

>say (4 ~ 1) + 1;

42

> say ((4 ~ 1) + 1).WHAT;
(Int)

Functions and Methods

A method is similar to a function—it takes arguments and returns a value—
but the calling syntax is different. With a function, you specify the name of
the function followed by its arguments. A method, by contrast, uses the dot
notation: you specify the name of the object on which the method is called,
followed by a dot and the name of the method (and possibly additional
arguments).

A method call is often called an invocation. The deeper differences between
functions and methods will become apparent much later, when studying
object-oriented programming (in Chapter 12).

For the time being, we can consider that the difference is essentially a
matter of a different calling syntax when using Perl’s built-ins. Most Perl
built-ins accept both a function call syntax and a method invocation syntax.
For example, the following statements are equivalent:

> say 42; # function call syntax

42

> 42.say; # method invocation syntax
42

Y ou can also chain built-in routines with both syntactic forms:

> 42 .WHAT.say; # method syntax

(Int)

> say WHAT 42; # function syntax
(Int)

> say 42.WHAT; # mixed syntax
(Int)

[t is up to you to decide whether you prefer one form or the other, but we
will use both forms, if only to get you used to both of them.
Math Functions

Perl provides most of the familiar mathematical functions.

For some less common functions, you might need to use a specialized

module such as Math: :Matrix or Math::Trig. A module is a file that
contains a collection of related functions.

Before we can use the functions in a module, we have to import it with a
use statement:

use Math::Trig;

This statement will import a number of functions that you will then be able
to use as if you had defined them in your main source file, for example
deg2rad to perform conversion of angular values from degrees to radians,
or rad2deg to perform the opposite conversion.

For most common mathematical functions, however, you don’t need any
math module, as they are included in the core of the language:

> my Snoise-power = 5.5;

5.5

> my Ssignal-power = 125.6;

125.6

> my Sdecibels = 10 * logl0 Ssignal-power / Snoise-power;
13.5862694990693

This example uses Log10 (common logarithm) to compute a signal-to-noise
ratio in decibels (assuming that signal-power and noise-power are
defined in the proper units). Perl also provides a Log function which, when
receiving one argument, computes logarithm base e of the argument, and,

when receiving two arguments, computes the logarithm of the first
argument to the base of the second argument:

> say e; # e 1s predefined as Euler's constant
2.71828182845905

> my Sval = e ** g;

15.1542622414793

> say log Sval; # natural logarithm

2.71828182845905

> say log Sval, e; # logarithm base e or natural logarithm
2.71828182845905

> say log 1024, 2; # binary logarithm or logarithm base 2
10

Perl also provides most common trigonometric functions:

> my Sradians = 0.7;

0.7

> my Sheight = sin Sradians;
0.644217687237691

This example finds the sine of $Sradians. The name of the variable is a hint

that sin and the other trigonometric functions (cos, tan, etc.) take
arguments in radians. To convert from degrees to radians, you may use the

deg2rad function of the Math::Trig module, or simply divide by 180 and
multiply by

> my Sdegrees = 45;
45

> my Sradians
constant

Sdegrees / 180.0 * pi; # pi, predefined

0.785398163397448

> say sin S$radians; # should be square root of 2 divided by
2

0.707106781186547

The expression p1i is a predefined constant for an approximation of
accurate to about 14 digits.

[f you know trigonometry, you can check the previous result by comparing
it to the square root of two divided by two:

> say sqrt(2) / 2;
0.707106781186548

Composition

So far, we have looked at the elements of a program—variables,
expressions, and statements—in isolation, without talking about how to
combine them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them, i.e., to combine them in such
a way that the result of one is the input of another one. For example, the
argument of a function can be any kind of expression, including arithmetic
operations:

> my Sdegrees = 45;

45

> my Sheight = sin(Sdegrees / 360.0 * 2 * pi);
0.7071067/81186547

Here, we have used parentheses for the argument to the sin function to
clarify that all the arithmetic operations within the parentheses are

completed before the sin function is actually called, so that it will use the
result of these operations as its argument.

Y ou can also compose function calls:

> my Sx = 10;

10

> Sx = exp log(Sx+1)
11

Almost anywhere you can put a value, you can put an arbitrary expression,
with one exception: the left side of an assignment statement has to be a
variable name, possibly along with its declaration. Almost any other
expression on the left side is a syntax error (we will see rare exceptions to
this rule later):

> my Shours = 1;

i my Sminutes = 0;

S sminutes = Shours * 60; # right
EGShours * 60 = Sminutes; # wrong !!

Cannot modify an immutable Int
in block <unit> at <unknown file> line 1

Adding New Functions (a.k.a. Subroutines)

So far, we have only been using the functions that come with Perl, but it is
also possible to add new functions. In Perl, user-defined functions are often
called subroutines, but you might choose either word for them.

A function definition starts with the sub keyword (for subroutine) and
specifies the name of a new subroutine and the sequence of statements that
run when the function is called.

Here is an example of a subroutine quoting Martin Luther King’s famous “I
Have a Dream” speech at the Lincoln Memorial in Washington (1963):

sub print-speech() {

say "Let freedom ring from the prodigious hilltops of New
Hampshire.";

say '"Let freedom ring from the mighty mountains of New York.";
}

sub is a keyword that indicates that this is a subroutine definition. The

name of the function is print-speech. The rules for subroutine names are
the same as for variable names: letters, numbers, and underscores are legal,
as well as a dash or an apostrophe between letters, but the first character
must be a letter or an underscore. You shouldn’t use a language keyword

(such as 1f or while) as the name of a function (in some cases, it might
actually work, but it would be very confusing, at least for the human
reader).

The empty parentheses after the name indicate that this function doesn’t
take any arguments. They are optional in that case, but are required when
parameters need to be defined for the subroutine.

The first line of the subroutine definition is sometimes called the header;
the rest is called the body. The body has to be a code block placed between
curly braces and it can contain any number of statements. Although there is
no requirement to do so, it is good practice (and highly recommended) to
indent body statements by a few leading spaces, since it makes it easier to
figure out visually where the function body starts and ends.

Please note that you cannot use a method-invocation syntax for subroutines

(such as print-speech) that you write: you must call them with a function
call syntax.

The strings in the print statements are enclosed in double quotes. In this
specific case, single quotes could have been used instead to do the same
thing, but there are many cases where they wouldn’t do the same thing, so
you’ll have to choose one or the other depending on the circumstances.

Most people use double quotes in cases where a single quote (which is also
an apostrophe) appears in the string:

say "And so we've come here today to dramatize a shameful
condition.";

Conversely, you might use single quotes when double quotes appear in the
string:

say 'America has given the Negro people a bad check,
a check which has come back marked "insufficient funds."'

There is, however, a more important difference between single quotes and
double quotes: double quotes allow variable interpolation, and single
quotes don’t. Variable interpolation means that if a variable name appears
within the double-quoted string, this variable name will be replaced by the
variable value; within a single-quoted string, the variable name will appear
verbatim. For example:

my Svar = 42;
say "His age is Svar."; # -> His age 1s 42.
say 'Her age is Svar.'; # -> Her age is Svar.

The reason is not that the lady’s age should be kept secret. In the first

string, $var is simply replaced within the string by its value, 42, because
the string is quoted with double quotes; in the second one, it isn’t because
single quotes are meant to provide a more verbatim type of quoting
mechanism. There are other quoting constructs offering finer control over
the way variables and special characters are displayed in the output, but
simple and double quotes are the most useful ones.

The syntax for calling the new subroutine is the same as for built-in
functions:

> print-speech();
Let freedom ring from the prodigious hilltops of New Hampshire.
Let freedom ring from the mighty mountains of New York.

However, you cannot use the method-invocation syntax with such
subroutines. We will see much later in this book (Chapter 12) how to create
methods. For the time being, we’ll stick to the function-call syntax.

Once you have defined a subroutine, you can use it inside another
subroutine. For example, to repeat the previous excerpts of King’s address,

we could write a subroutine called repeat-speech:

sub repeat-speech() {
print-speech();
print-speech();

And then call repeat-speech:

> repeat-speech();

et freedom ring from the prodigious hilltops of New Hampshire.
et freedom ring from the mighty mountains of New York.

et freedom ring from the prodigious hilltops of New Hampshire.
et freedom ring from the mighty mountains of New York.

But that’s not really how the speech goes.
Definitions and Uses

Pulling together the code fragments from the previous section, the whole
program looks like this:

sub print-speech () {
say "let freedom ring from the prodigious hilltops of New
Hampshire.";

say "Let freedom ring from the mighty mountains of New York.";

}
sub repeat-speech () {

print-speech();
print-speech();
}

repeat-speech();

This program contains two subroutine definitions: print-speech and

repeat-speech. Function definitions get executed just like other
statements, but the effect is to create the function. The statements inside the
function do not run until the function is called, and the function definition
generates no output.

You don’t have to create a subroutine before you can run it; the function
definition may come after its call:

repeat-speech;

sub repeat-speech() {
print-speech;
print-speech;

}

sub print-speech() {
H ...

}

Flow of Execution

To ensure, for example, that a variable is defined (i.e., populated) before its
first use, you have to know the order statements run in, which is called the
flow of execution.

Execution always begins at the first statement of the program (well, really
almost always, but let’s say always for the time being). Statements are run
one at a time, in order from top to bottom.

Subroutine definitions do not alter the flow of execution of the program,

but remember that statements inside a function don’t run until the function
is called.

A function call is like a detour in the flow of execution. Instead of going to
the next statement, the flow jumps to the body of the function, runs the
statements there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call
another. While in the middle of one tunction, the program might have to
run the statements in another function. Then, while running that new
function, the program might have to run yet another function!

Fortunately, Perl is good at keeping track of where it is, so each time a
function completes, the program picks up where it left off in the function
that called it. When it gets to the end of the program, it terminates.

In summary, when you read a program, you don’t always want to read from
top to bottom. Sometimes it makes more sense if you follow the flow of
execution.

Parameters and Arguments

Some of the functions we have seen require arguments. For example, when

you call sin you pass a number as an argument. Some functions take more

than one argument: for example the round function seen at the beginning of
this chapter took two, the number to be rounded and the scale (although the

round function may accept a single argument, in which case the scale is
defaulted to 1).

Inside the subroutine, the arguments are assigned to variables called
parameters. Here is a definition for a subroutine that takes a single
argument:

sub print-twice(Svalue) {
say Svalue;
say Svalue

This subroutine assigns the argument to a parameter named Svalue.
Another common way to say it is that the subroutine binds the parameter
defined in its header to the argument with which it was called. When the
above subroutine is called, it prints the content of the parameter (whatever
it is) twice.

This function works with any argument value that can be printed:

> print-twice("Let freedom ring")
Let freedom ring

Let freedom ring

> print-twice(42)

42

42

> print-twice(pi)
3.14159265358979

3.14159265358979

The same rules of composition that apply to built-in functions also apply to
programmer-defined subroutines, so we can use any kind of expression as

an argument for print-twice:

> print-twice('Let freedom ring! ' x 2)
Let freedom ring! Let freedom ring!

Let freedom ring! Let freedom ring!

> print-twice(cos pi)

-1

-1

The argument is evaluated before the function is called, so in the examples

the expressions 'Let freedom ring! ' x 2 and cos pi are only
evaluated once.

You can also use a variable as an argument:

> my Sdeclaration = 'When in the Course of human events,
> print-twice($declaration)

When in the Course of human events,

When in the Course of human events,

The name of the variable we pass as an argument (Sdeclaration) has
nothing to do with the name of the parameter (Svalue). It doesn’t matter
what the variable was called back home (in the caller); here, within print-

twice, we call the parameter Svalue, irrespective of the name or content of
the argument passed to the subroutine.
Variables and Parameters Are Local

When you create a variable inside a subroutine with the my keyword, it is
local, or, more accurately, lexically scoped, to the function block, which
means that it only exists inside the function. For example:

sub concat twice(Spartl, Spart2) {
my Sconcatenation = Spartl ~ Spart2;
print-twice(Sconcatenation)

This function takes two arguments, concatenates them, and prints the result
twice. Here is an example that uses it:

> my Sstart = 'Let freedom ring from ';

> my Send = 'the mighty mountains of New York.';

> concat_twice(S$start, Send);

Let freedom ring from the mighty mountains of New York.
Let freedom ring from the mighty mountains of New York.

When concat twice terminates, the variable Sconcatenation is
destroyed. If we try to print it, we get an exception:

> say Sconcatenation;

===SORRY!=== Error while compiling <unknown file>
Variable 'Sconcatenation' is not declared

at <unknown file>:1

------ > say <HERE>Sconcatenation;

Parameters are also scoped to the subroutine. For example, outside print-

twice, there is no such thing as Svalue.
Stack Diagrams

To keep track of which variables can be used where, it is sometimes useful
to draw a stack diagram. Like state diagrams, stack diagrams show the
value of each variable, but they also show the function each variable
belongs to.

Each function is represented graphically by a frame. A frame is a box with
the name of a function beside it and the parameters and variables of the
function inside it. The stack diagram for the previous example is shown in
Figure 3-1.

main | $start ——» '| et freedom ring from
$end —» 'the mighty mountains of New York.'
$part1 —» 'Let freedom ring from '

concat_twice | gna 4o —» 'the mighty mountains of New York.

$concatenation —= 'Let freedom ...mountains of New York.

print-twice $value ——» 'Let freedom ring.’

Figure 3-1. Stack diagram

The frames are arranged in a stack that indicates which function called
which, and so on. In this example, print-twice was called by

concat_twice, and concat_twice was called by main, which is a special
name for the topmost frame. When you create a variable outside of any

function, it belongs to main.

Each parameter refers to the same value as its corresponding argument. So,
Spartl has the same value as Sstart, Spart2 has the same value as Send,

and Svalue has the same value as Sconcatenation.
Fruitful Functions and Void Functions

Some of the functions we have used, such as the math functions, return
results and are useful only insofar we use that return value; for lack of a
better name, we may call them fruitful functions. Other functions, like

print-twice, perform an action but don’t appear to return a value (it does

in fact return a value, True, but we don’t care about it). They are sometimes
called empty or void functions in some other programming languages.

In some programming languages, such as Pascal or Ada, there is a strong
distinction between a function (which returns a value) and a procedure
(which doesn’t); they are even defined with different keywords. This
distinction does not apply to Perl and to most modern programming
languages.

[n fact, from a pure syntactic standpoint, Perl functions always return a
result. So the distinction between “fruitful” and “void” functions does not
really exist syntactically, but only semantically, i.e., from the standpoint of
the meaning of the program: maybe we need to use the return value, or
maybe we don’t.

Another distinction commonly made is between functions and mutators:
functions do not change the initial state of the arguments they were called
on, and mutators do modify it. We will not use this distinction here, but it is
useful to keep it in mind.

When you call a fruitful function, you almost always want to do something
with the result; for example, you might assign it to a variable or use it as
part of an expression:

sin Sradians;
(sqrt(5) + 1) / 2;

my Sheight
my Sgolden

il

When you call a function in interactive mode (under the REPL), Perl
usually displays the result:

> sqrt 5;
2.23606797749979

But in a script, if you call a fruitful function all by itself, the return value is
lost forever! In some cases, the compiler will be able to warn you, but not
always. For example, consider the following program:

my Sfive = 5;
sqrt Sfive;
say Sfive;

It produces the following warning:

WARNINGS for /home/Laurent/perlé tests/sqrt.plé6:
Useless use of "sqrt Sfive" in expression "sqgrt Sfive" in sink
context (line 2)

5

This script computes the square root of 5, but since it doesn’t store or
display the result, it is not very useful.

Void functions might display something on the screen, save some data to a
file, modify a variable or an object, or have some other effect, but they
generally don’t have a return value, or at least not a useful one. If you
assign the result to a variable, you may get the return value of the
subroutine, the value of the last expression which was evaluated in the

function, or a special value such as Any, which essentially means something

that has not been defined, or Ni1.

The subroutines we have written so far were essentially printing things to

the screen. In that case, they usually return True, at least when the printing
was successful. Although they return a true value, what they return isn’t
very useful and we can consider them all void for our practical purposes.

The following is an example of a very simple fruitful subroutine:

> sub square(Snumber) { return Snumber ** 2 }
sub square (Snumber) { # (Sub|118134416) ... }
> Say square 5;

25

The Sub|118134416 message displayed by the REPL is just an internal
identifier for the subroutine we’ve just defined.

The return statement instructs the function to terminate the execution of
the function at this statement and to return the value of the following
expression to the caller. In such a simple case where the program is in fact
running the last statement of a function, the return keyword can be omitted
since the function will return the value of the last evaluated statement, so

that the square subroutine could be written this way:

sub square(Snumber) {
Snumber ** 2
}

We will be using fruitful functions more intensively in a few chapters.
Function Signatures

When a function receives arguments, which are stored into parameters, the
part of the function definition describing the parameters between
parentheses is called the function signature. The function signatures we

have seen so far are very simple and consist only of one parameter or
possibly a parameter list.

Signatures can provide a lot more information about the parameters used by
a function. First, you may define the type of the parameters. Some
functions make sense only if their parameters are numeric and should
probably raise an error if they get a string that cannot be converted to a

numeric value. For example, if you define a function half that computes a
value equal to its argument divided by 2, it does not make sense to try to
compute half of a string that is not numeric. It could be written as follows:

sub half(Int Snumber) {
return Snumber / 2
}

say half 84; # -> 42

[f this function is called with a string, we get the following error:

> say half "Douglas Adams”

===SORRY!=== Error while compiling <unknown file>
Calling half(Str) will never work with declared signature (Int
Snumber)

at <unknown file>:1
------ > say <HERE>half "Douglas Adams"

The Int type included in the function signature is a type constraint that can
help prevent subtle bugs. In some cases, it can also be an annoyance.
Consider this code snippet:

sub half(Int Snumber) { Snumber / 2 }
say half "84"; # -> ERROR

Because the argument to the half subroutine is "84", i.e., a string, this
code will fail with a type error. If we had not included the Int type in the

signature, the script would have converted (or coerced) the "84" string to a
number, divided it by two, and printed out the expected result:

sub half(Snumber) { Snumber / 2 }
say half "84"; # -> 42

In some cases, you want this conversion to occur, in others you don’t. It is
up to you to decide whether you want strict typing or not, depending on the
specific situation and needs. It is probably helpful to use parameter typing
in many cases, but it can also become a straitjacket in some situations.

Perl 6 lets you decide how strict you want to be about these things.

Our original half subroutine has another limitation: it can work only on
integers. But a function halving its argument should presumably be useful

for rational or even other numbers. You can use the Real or Numeric types
to make the function more general (the difference between the two types is

that the Numeric type will accept not only Real but also Comp Lex
numbers). As it turns out that this half function will also work correctly
with complex numbers,' choosing a Numeric type opens more possibilities:

sub half(Numeric Snumber) { Snumber / 2 }
say half(3+41); # -> 1.5+21

The following table sums up and illustrates some of the various types we
have seen so far:

: Type Example

String "A string", 'Another string', "42"
Integer -3, -2, 0, 2, 42

Rational 1/2, 0.5, 3,14159, 22/7, 42.0

Real z,e,lﬂg 42,511’1 0.7

Complex 5 _4 —|— 3[.

Immutable and Mutable Parameters

By default, subroutine parameters are immutable aliases for the arguments
passed to the subroutine. In other words, they cannot be changed within the
function and you cannot accidentally modify the argument in the caller:

sub plus-three(Int Snumber) { Snumber += 3}

my Svalue = 5;

say plus-three Svalue; # ERROR: Cannot assign to an immutable
value

In some other languages, this behavior is named a “call by value” semantic:
loosely speaking, the subroutine receives (by default) a value rather than a
variable, and the parameter therefore cannot be modified.

[f you want to change the value of the parameter within the subroutine (but

without changing the argument in the caller) you can add the is copy trait
to the signature:

sub plus-three(Int Snumber is copy) { Snumber += 3}
my Svalue = 5;
say plus-three Svalue; # 8

say Svalue; # 5 (unchanged)

A trait is a property of the parameter defined at compile time. Here, the

Snumber parameter is modified within the subroutine and the incremented
value is returned to the caller and printed as 8, but, within the caller, the

variable used as an argument to the function, $Svalue, is not modified (it is
still 5).

Although this can sometimes be dangerous, you may also want to write a
subroutine that modifies its argument at the caller side. For this, you can

use the 1s rw trait in the signature:

sub plus-three(Int Snumber is rw) { Snumber += 3}
my Svalue = 5;

say plus-three Svalue; # 8

say Svalue; # 8 (Svalue modified)

With the 1s rw trait, the Snumber parameter is now bound to the Svalue
argument, so that any change made using Snumber within the subroutine
will immediately be applied to Svalue at the caller side, because Snumber

and Svalue are just different names for the same thing (they both refer to
the same memory location). The argument is now fully mutable.

In some other languages, this is named a “call by reference” parameter
passing mechanism, because, in those languages, if you pass a reference (or
a pointer) to a variable to a function, then it is possible for the function to
modify the variable referred to by the reference.

Functions and Subroutines as First-Class Citizens

Subroutines and other code objects can be passed around as values, just like
any variable, literal, or object. Functions are said to be first-class objects or
sometimes first-class citizens or higher-order functions. This means that a
Perl function (its code, not the value returned by it) is a value you can

assign to a variable or pass around as an argument. For example, do-twice
is a subroutine that takes a function as an argument and calls it twice:

sub do-twice(Scode) {
Scode();
Scode();

Here, the Scode parameter refers to a function or some other callable code
object. This is an example that uses do-twice to call a function named
greet twice:

sub greet {
say "Hello World!";
}

do-twice &greet;

This will print:

Hello World!
Hello World!

The & sigil placed before the subroutine name in the argument list tells Perl
that you are passing around a subroutine or some other callable code object
(and not calling the subroutine at the moment).

In fact, it would be more idiomatic to also use the & sigil in the do-twice
subroutine definition, to better specify that the parameter is a callable code
object:

sub do-twice(&code) {
&code();
&code();

Or evell.

sub do-twice(&code) {
code();
code();

The syntax with the & sigil has the benefit that it will provide a better error
message if you make a mistake and pass something noncallable to do-
twice.

All the functions we have seen so far had a name, but a function does not
need to have a name and can be anonymous. For example, it may be stored
directly in a scalar variable:

my Sgreet = sub {
say "Hello World!";

¥
Sgreet(); # prints "Hello World"
do-twice Sgreet; # prints "Hello World" twice

[t could be argued that the above $greet subroutine is not really
anonymous, since it is stored in a scalar variable that could in a certain way
be considered its name. But the subroutine really has no name; it just
happens to be assigned to a scalar variable. Just to show that the subroutine
can really have no name at all, consider this:

do-twice(sub {say "Hello World!"});

[t will happily print “Hello World” twice. It the $do-twice function was
declared earlier, you can even simplify the syntax and omit the parentheses:

do-twice sub {say "Hello World!"};

For such a simple case where there is no need to pass an argument or return

a value; you can even omit the sub keyword and pass a code block directly
to the function:

do-twice {say "Hello World!"};
do-twice {say "what's up doc"};

As you can see, do-twice is a generic subroutine in charge of just
performing twice any function or code block passed to it, without any
knowledge about what this function or code block is doing. This is a
powerful concept for some relatively advanced programming techniques
that we will cover later in this book.

Subroutines may also be passed as return values from other subroutines:

> sub create-func (Sperson) { return sub { say "Hello Sperson!"}}
Creating two greeting functions

sub create-func (Sperson) { # (Sub|176738440) ... }
> my Sgreet_world = create-func "World";

sub () { #(Sub|176738592) ... }

> my Sgreet friend = create-func "dear friend";

sub () { # (Sub|176739048) ... }

Using the greet functions

> Sgreet_world();

Hello World!

> Sgreet friend();

Hello dear friend!

Here, create-func returns a subroutine greeting someone. It is called
twice with two different arguments in order to create two different

functions at runtime, Sgreet_world and $Sgreet_friend. A function such
as create-func is sometimes a function factory because you may create as

many functions as you like by just calling create-func. This example may
seem to be a slightly complicated way of doing something quite simple. At
this point, it is just a bit too early to give really useful examples, but this is

also a very powerful programming technique.

We’ll come back to these techniques in various places in this book and
even devote an entire chapter (Chapter 14) to this subject and related topics.
Why Functions and Subroutines?

[t may not be clear why it is worth the trouble to divide a program into
functions or subroutines. There are several reasons:

e (Creating a new subroutine gives you an opportunity to name a group of
statements, which makes your program easier to read and debug.
Subroutines also help make the flow of execution clearer to the reader.

e Subroutines can make a program smaller by eliminating repetitive code.
Later, if you make a change, you only have to make it in one place.

e Dividing a long program into subroutines allows you to debug the parts
one at a time and then assemble them into a working whole.

e Well-designed subroutines are often useful for many programs. Once
you write and debug one, you can reuse it.

e (Creating subroutines is one of the major ways to break up a difficult
problem into smaller easier subtasks and to create successive layers of
abstraction, which are the key to solve complex problems.

e Writing good subroutines lets you create black boxes, with a known
input and a known output. So you don’t have to think about them
anymore when you’re working on something else. They’ve become a
tool. Once you’ve assembled an electric screwdriver, you don’t need to
think about how it works internally when you use it to build or repair
something.

e In the current open source world, chances are that your code will have to
be understood, maintained, or enhanced by people other than you.
Coding has become much more of a social activity than before.

Breaking up your code into small subroutines whose purpose is easy to
understand will make their work easier. And you’ll be even more
delighted when the person having to maintain or refactor your code

1S...yOuU.

Debugging

One of the most important programming skills you will acquire is
debugging. Although it can sometimes be frustrating, debugging is one of
the most intellectually rich, challenging, and interesting parts of
programming.

In some ways debugging is like detective work. You are confronted with
clues and you have to infer the processes and events that led to the results
you see.

Debugging is also like an experimental science. Once you have an idea
about what is going wrong, you modity your program and try again. If your
hypothesis was correct, you can predict the result of the modification, and
you take a step closer to a working program. If your hypothesis was wrong,
you have to come up with a new one. As Sherlock Holmes pointed out,
“...When you have eliminated the impossible, whatever remains, however
improbable, must be the truth” (A. Conan Doyle, The Sign of Four).

In cases where you are not able to come up with a hypothesis on what’s
wrong, you can try to introduce code that you expect to create a certain type
of error, a “negative hypothesis” if you will. Sometimes you can learn a lot
from the fact that it didn’t create the error that was expected. Making a
hypothesis does not necessarily mean you have an idea about how to make
the code work; it could also be a hypothesis on how it should break.

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does
what you want. The idea is that you should start with a working program

and make small modifications, debugging them as you go.

For example, Linux is an operating system that contains millions of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s

earlier projects was a program that would switch between printing AAAA and

BBBB. This later evolved to Linux.” (The Linux Users’ Guide Beta Version
1).
Glossary

anonymous function

A function that has no name.

Any

A special value typically found in variables that haven’t been assigned a
value. It is also a special value returned by some functions that we have

called “void” (because they return something generally useless such as
iiAnyJ!).

argument

A value provided to a function when the function is called. This value is
assigned to the corresponding parameter in the function.

body

The sequence of statements inside a function definition, usually in a
code block delimited by braces.

composition

Using an expression as part of a larger expression, or a statement as part
of a larger statement.

first-class object

Perl’s subroutines are said to be higher order objects or first-class
objects, because they can be passed around as other subroutines’
arguments or return values, just as any other objects.

flow of execution

The order in which statements run.

frame

A box in a stack diagram that represents a subroutine call. It contains
the local variables and parameters of the subroutine.

fruitful function

A function or subroutine that returns a useful value.

function

A named sequence of statements that performs some useful operation.
Functions may or may not take arguments and may or may not produce
a result. Perl comes with many built-in functions, and you can also
create your own. In Perl, user-defined functions are often called
subroutines.

function call

A statement that runs a function. It consists of the function name
followed by an argument list, which may or may not be enclosed within
parentheses.

function definition

A statement that creates a new function, specifying its name,
parameters, and the statements it contains.

function factory

A function that produces other functions as return values.

function signature

The part of the definition of a function (usually between parentheses)
that defines its parameters and possibly their types and other properties.

header

The first line of a function definition.

immutable parameter

A function or subroutine parameter that cannot be changed within the
function body. By default, subroutine parameters are immutable.

lexical variable

A variable defined inside a subroutine or a code block. A lexical
variable defined within a function can only be used inside that function.

module

A file that contains a collection of related functions and other
definitions.

Nil
A special value sometimes returned by some “void” subroutines.

parameter

A name used inside a subroutine to refer to the value passed as an
argument.

return value

The result of a function. If a function call is used as an expression, the
return value is the value of the expression.

stack diagram

A graphical representation of a stack of subroutines, their variables, and
the values they refer to.

trait

A property of a function or subroutine parameter that is defined at
compile time.

use statement

A statement that reads a module file and usually imports some
functions.

void function

A function or subroutine that does not return a useful value.

Exercises
Exercise 3-1.
Write a subroutine named right-justify that takes a string named

Sinput-string as a parameter and prints the string with enough leading
spaces so that the last letter of the string is in column 70 of the display.

> right-justify('Larry Wall')
Larry
Wall

Hint: use string concatenation and repetition. Also, Perl provides a built-in
function called chars that returns the length of a string, so the value of
chars 'Larry Wall' or 'Larry Wall'.chars is 10. Solution: “Exercise

3-1: Subroutine right-justify”.
Exercise 3-2.

We have seen that functions and other code objects can be passed around as
values, just like any object. Functions are said to be first-class objects. For

example, do-twice is a function that takes a function as an argument and
calls it twice:

sub do-twice(Scode) {

Scode();

Scode();
}
sub greet {

say "Hello World!";
}

do-twice(&greet);

1. Type this example into a script and test it.

2. Modity do-twice so that it takes two arguments, a function and a value,
and calls the function twice, passing the value as an argument.

3. Copy the definition of print-twice from earlier in this chapter to your
script.

4. Use the modified version of do-twice to call print-twice twice,
passing “What’s up doc” as an argument.

5. Define a new function called do-four that takes a function and a value
and calls the function four times, passing the value as a parameter. There
should be only two statements in the body of this function, not four.

Solution: “Exercise 3-2: Subroutine do-twice”.

Exercise 3-3.

Note: this exercise should be done using only the statements and other
features we have learned so far.

1. Write a subroutine that draws a grid like the following:

+ - - - -+ - - - -+
| |
| |
| |
| |
+ - - - -+ - - - -+
| |
| |
| |
| |
+ - - - -+ - - - -+

Hint: to print more than one value on a line, you can print a comma-
separated sequence of values:

Say I+[: i

The say function prints its arguments with a newline at the end (it
advances to the next line). If you don’t want to go to the next line, use

the print function instead:

print '+, ;

print '-';

The output of these statements is “+ -”.

A say statement with an empty string argument ends the current line and
goes to the next line.

. Write a subroutine that draws a similar grid with four rows and four
columns.

Solution: “Exercise 3-3: Subroutine print-grid”.

Credit: this exercise is based on an exercise in Practical C Programming,
3rd Edition, by Steve Oualline (O’Reilly, 1997).

! Complex numbers are numbers in the form “a + bi,” where a and b are
real numbers, and i an imaginary number such that i* equals —1.

Chapter 4. Loops, Conditionals, and Recursion

The main topic of this chapter is the 1f statement, which executes different
code depending on the state of the program. But first I want to introduce
two new operators: integer division and modulo.

Integer Division and Modulo

The integer division operator, div, divides two numbers and rounds down
to an integer. For example, suppose the runtime of a movie is 105 minutes.
Y ou might want to know how long that is in hours. In Perl, conventional
division returns a rational number (in many languages, it returns a floating-
point number, which is another kind of internal representation for
noninteger numbers):

> my Sminutes = 105;
> Sminutes / 60;
1.75

But we don’t normally write hours with decimal points. Integer division
returns the integer number of hours, dropping the fraction part:

> my Sminutes = 105;
> my Shours = Sminutes div 60;
1

In arithmetic, integer division is sometimes called Euclidean division,
which computes a quotient and a remainder.

To get the remainder, you could subtract off one hour in minutes:

> my Sremainder = Sminutes - Shours * 60;
45

An alternative is to use the modulo operator, %, which divides two numbers

and returns the remainder:

> my Sremainder = minutes % 60;
45

The modulo operator is very common in programming languages and is
more useful than it seems. For example, you can check whether one number

is divisible by another—if $Sdividend % S$divisor is zero, then

Sdividend is divisible by $Sdivisor. This is commonly used, for example,
with a divisor equal to 2 in order to determine whether an integer is even or
odd. We will see an example of that later in this chapter (see “Alternative
Execution™).

To tell the truth, Perl 6 also has a specific operator for divisibility, %%. The
Sdividend %% Sdivisor expression returns a true value if Sdividend %

Sdivisor is equal to O, that is if $dividend is divisible by $divisor (and
false otherwise).

Also, you can extract the rightmost digit or digits from a number with the

modulo operator. For example, $x % 10 yields the rightmost digit of $x (in
base 10). Similarly, $x % 100 yields the last two digits:

> 642 % 100;
42

Boolean expressions

A Boolean expression is an expression that is either true or false. The
following examples use the operator ==, which compares two numeric
operands and produces True if they are equal and False otherwise:

> 5 == 5;
True

}5::;
False

True and False are special values that belong to the type Bool; they are not
strings:

> say True.WHAT
(Bool)
> say False.WHAT
(Bool)

The == operator is one of the numeric relational operators and checks
whether the operands are equal; the others are:

Sx !'= Sy # Sx 1s not numerically equal to Sy

$x > Sy # Sx 1s numerically greater than Sy

SX < Sy # Sx 1s numerically less than Sy

Sx >= Sy # Sx 1s numerically greater than or
equal to Sy

$X <= Sy # Sx 1s numerically less than or equal
to Sy

SX === Sy # Sx and Sy are truly identical

Although these operations are probably familiar to you, the Perl symbols
are different from the mathematical symbols. A common error is to use a

single equals sign (=) instead of a double equals sign (==). Remember that =

is an assignment operator and == is a relational operator. There is no such

thing as =<, and there exists a => operator, but it is not a relational operator,
but something completely different (it is, as we’ll see later, a pair
constructor).

The difference between == and === is that the former operator checks
whether the values of the operands are equal and the latter checks whether
the operands are truly identical. As an example, consider this:

say 42 == 42; # True

say 42 == 42.0; # True
say 42 === 42; # True
say 42 === 42.0; # False

These relational operators can only compare numeric values (numbers or
variables containing numbers) or values that can be coerced to numeric
values, such as, for example, the string “42” which, if used with these

operators (except ===), will be coerced to the number 42.

For comparing strings (in a lexicographic or “pseudo-alphabetic” type of
comparison), you need to use the string relational operators:

Sx eq Sy # $x is string-wise equal to Sy

$X ne Sy # $x i1s string-wise not equal to Sy

$x gt Sy # Sx 1s greater than Sy (alphabetically
after)

Sx Lt Sy # Sx 1s less than Sy (alphabetically
before)

$X ge Sy # Sx 1s greater than or equal to Sy

Sx le Sy # Sx i1s less than or equal to Sy

SX eqv Sy # Sx i1s truly equivalent to Sy

For example, you may compare (alphabetically) two former US presidents:

> '"FDR' eq 'JFK';

False

> '"FDR" Lt 'JFK'; # alphabetical comparison
True

Unlike most other programming languages, Perl 6 allows you to chain
relational operators transitively, just as in mathematical notation:

12; # True
5; # False

It may be useful to point out that numeric relational operators and string
relational operators don’t work the same way (and that’s a good reason for
having different operators), because they don’t have the same idea of what
is greater than or less than.

When comparing two positive integers, a number with four digits is always
greater than a number with only two or three digits. For example, 1110 is
greater than 886.

String comparisons, in contrast, basically follow (pseudo) alphabetical
rules: “b” is greater than “aaa” because the commonly accepted rule for
string comparisons is to start by comparing the first letter of each string:
which string is greater is known if the two letters are different, irrespective
of what character comes next; you need to proceed to comparing the second
letter of each word only if comparing the first letter of each string led to a
draw, and so on. Thus, any word starting with “a” is less than any word
starting with “b,” irrespective of the length of these words. You may think
that this is nitpicking, but this becomes essential when you start sorting
items: you really have to think about which type of order (numeric or

alphabetical) you want to use.

There are also some so-called “three-way” relational operators, cmp, <=>,

and leg, but we’ll come back to them when we study how to sort the items
in a list. Similarly, we need to learn quite a few other things about Perl

before we can do justice to the incredibly powerful and expressive smart
match operator, ~~.

A final point to be noted about string comparisons is that uppercase letters
are always deemed smaller than lowercase letters. So “A,” “B,” “BB,” and
“C” are all less than “a,” “b,” “bb,” and “c.” We will not go into the details
here, but this becomes more complicated (and sometimes confusing) when

the strings to be compared contain nonalphabetical characters (or non-
ASCII Unicode letters).

Logical Operators

There are three main pairs of logical operators:

e logical and: “and” and &&
e logical or: “or” and | |

e |ogical not: “not” and !

The semantics (meaning) of these operators is similar to their meaning in

English. For example, $x > 0 and $x < 10 is true only if $x is greater
than O and less than 10.

Sn % 2 == 0 and Sn % 3 == 0 is true if both conditions are true, that is,
if the number is divisible by 2 and by 3, i.e., is in fact divisible by 6 (which

could be better written as: $Sn % 6 == 0 or Sn %% 6).

Sn % 2 == 0 or Sn % 3 == 01istrue if either or both of the conditions is
true, that is, if the number is divisible by 2 or by 3 (or both).

Finally, the not operator negates a Boolean expression, so not (x > y) is
true if x > vy is false, that is, if x is less than or equal to y.

The &&, | |, and ! operators have the same meanings, respectively, as and,

or, and not, but they have a tighter precedence, which means that when
they stand in an expression with some other operators, they have a higher
priority of execution. We will come back to precedence later, but let’s say

for the time being that, in most common cases, the and, or, and not
operators will usually do what you want.

Strictly speaking, the operands of the logical operators should be Boolean
expressions, but Perl, just like many languages partly derived from C, is not
very strict on that. The numbers 0 and 0.0 are false; and any nonzero

number or nonempty string is interpreted as True:

> 42 and True;
True

This tlexibility can be very useful, but there are some subtleties to it that
might be confusing. You might want to avoid it unless you know what you
are doing.

The so built-in function returns a Boolean evaluation of its argument:

> say so (0 and True);
False

Here, the expression (0 and True) is false because 0 is false and the

expression could be true only if both arguments of the and operator were
true.

When several Boolean conditions are linked with some logical operator,
Perl will only perform the comparisons that are strictly necessary to figure
out the final result, starting with those on the left. For example, if you
write:

> False and Snumber > 0;
False

there is no need to evaluate the second Boolean expression to know that the
overall expression will be false. In this case, Perl does not try to check
whether the number is positive or even whether it is defined. It is
sometimes said that these operators “short circuit” unnecessary conditions.

Similarly, in the following code, the compute-pension subroutine will not
even be called if the person’s age is less than 65;:

Sage >= 65 and compute-pension();

The same goes with the or operator, but the other way around: if the first

Boolean expression of an or statement is true, then the next expression will
not be evaluated. The following code is thus equivalent to the previous one:

Sage < 65 or compute-pension();

This can be a way of running the compute-pension subroutine
conditionally, depending on the value of the age, and this is sometimes
used, notably in idiomatic constructs such as:

do-something() or die "could not do something";

which aborts the program if do-something returns a false value, meaning
that it was not able to do something so essential that it would not make
sense to try to continue running it.

We will examine now clearer and much more common ways of running
conditional code.

Conditional Execution

In order to write useful programs, we almost always need the ability to
check conditions and change the behavior of the program accordingly.

Conditional statements give us this ability. The simplest form is the i1f
statement:

if Snumber > 0 {
say 'Snumber is positive';
}

The Boolean expression after i1f is called the condition. If it is true, the
subsequent block of code runs. If not, nothing happens. The block of code
may contain any number of statements.

[t is conventional and highly recommended (although not strictly
mandatory from the standpoint of the compiler) to indent the statements in
the block, in order to help visualize the control flow of the program, i.e., its
structure of execution: with such indentation, we can see much better that
the statements within the conditional block will run only if the condition is
(rue.

The condition may be a compound Boolean expression:

if $Sn > 0 and $n < 20 and S$n %% 2 {
say 'Sn 1s an even and positive number smaller than 20’
}

Note that in the print statement above, the final semicolon has been
omitted. When a statement is the last code line of a block, immediately

before the curly brace } closing that code block, the final semicolon is
optional and may be omitted, though it might be considered good form to
include it.

In theory, the overall code snippet above is itself a statement and should
also end with a semicolon after the closing brace. But a closing curly brace
followed by a newline character implies a statement separator, so you don’t
need a semicolon here and it is generally omitted.

Alternative Execution

A second form of the 1f statement is “alternative execution,” in which
there are two possibilities and the condition determines which one runs.

Given a Snumber variable containing an integer, the following code
displays two different messages depending on whether the value of the
integer is even or odd:

if Snumber % 2 == 0 {
say 'Variable Snumber is even'
} else {

say 'Variable Snumber is odd'

[f the remainder when $number is divided by 2 is 0, then we know that

Snumber is even, and the program displays an appropriate message. If the
condition is false, the second set of statements runs. Since the condition
must be true or false, exactly one of the alternatives will run. The
alternatives are called branches, because they are branches in the flow of
execution.

Note that if Snumber is evenly divisible by two, this code will print:

Variable Snumber 1is even

The $Snumber variable value is not interpolated, because we used single
quotes for the purpose of printing out the variable name rather than its
value. We would have to use double quotes if we wanted to display the
variable’s value instead of its name.

Chained Conditionals

Sometimes there are more than two possibilities and we need more than
two branches. One way to express a computation like that is a chained
conditional;

i1f Sx < Sy {
say 'Variable $x is less than variable Sy

} elsif Sx > Sy {
say 'Variable $x is greater than variable Sy’

} else {
say 'Variables $x and Sy are equal'’
}

The elsif keyword is an abbreviation of “else if” that has the advantage of
avoiding nesting of blocks. Again, exactly one branch will run. There is no

limit on the number of elsif statements.

[f there is an else clause, it has to be at the end, but there doesn’t have to
be one:

if Schoice eq 'a' {

draw_a()

} elsif Schoice eq 'b' {
draw _b()

} elsif Schoice eq 'c' {
draw c()

}

Each condition is checked in order. If the first is false, the next is checked,
and so on. If one of them is true, the corresponding branch runs and the
statement ends. Even if more than one condition is true, only the first true
branch runs.

Nested Conditionals

One conditional can also be nested within another. We could have written
the example in the previous section like this:

if Sx == Sy {
say 'Variables Sx and Sy are equal'
} else {
if Sx < Sy {
say 'Variable $x is less than variable S$y'
} else {

say 'Variable $x is greater than variable Sy

¥

The outer conditional contains two branches. The first branch contains a

simple statement. The second branch contains another i1f statement, which
has two branches of its own. Those two branches are both simple
statements, although they could have been conditional statements as well.

The 1f Sx < Sy conditional is said to be nested within the else branch of
the outer conditional.

Such nested conditionals show how critical it is for your own
comprehension to properly indent conditional statements, as it would be
very difficult here to visually grasp the structure without the help of correct
indentation.

Although the indentation of the statements helps make the structure
apparent, nested conditionals become difficult to read very quickly. It is a
good idea to avoid them when you can. Logical operators often provide a
way to simplify nested conditional statements. For example, consider the

following code (which assumes $x to be an integer):

my Int S$x;
... SX = ...;
if 0 < Sx {
if Sx < 10 {
say 'Value of $x is a positive single-digit number.'
}

The say statement runs only if we make it past both conditionals, so we can

get the same effect with the and Boolean operator, and the code can be
rewritten using a single conditional:

if 0 < $Sx and $x < 10 {
say 'Sx 1s a positive single-digit number.'
}

For this kind of condition, Perl 6 provides a more concise option using the
chained relational operators described earlier:

if 0 < Sx < 10 {

say 'Sx is a positive single-digit number.'

If Conditionals as Statement Modifiers

There is also a form of i1f called a statement modifier (or sometimes
“postlix conditional”) form when there is only one conditional statement. In

this case, the i1f and the condition come after the code you want to run
conditionally. Note that the condition is still always evaluated first:

say 'Snumber is negative.' if Snumber < 0;

This is equivalent to:

1f Snumber < 0 {
say 'Snumber 1s negative.'
}

This syntactic form is more concise as it takes only one code line instead of
three. The advantage is that you can see more of your program code on one
screen, without having to scroll up and down. However, this syntax is neat
and clean only when both the condition and the statement are short and
simple, so it is probably best used only in these cases.

The statement modifier form does not allow else and elsif statements.
Unless Conditional Statement

[f you don’t like having to write negative conditions in a conditional if
statement such as:

if not Snumber >= 0 {
say 'Snumber is negative.'
}

you may write this instead:

unless Snumber >= 0 {
say 'Snumber 1s negative.'
}

This unless keyword does exactly what the English says: it will display the

sentence “$number is negative.” unless the number is greater than or equal
to 0.

You cannot use else or elsif statements with unless, because that would
end up getting confusing.

The unless conditional is most commonly used in its statement modifier
(or postfix notation) form:

say 'Snumber is negative.' unless S$Snumber >= 0;

for Loops

Suppose you need to compute and print the product of the first five positive
digits (1 to 5). This product is known in mathematics as the factorial of 5

and is sometimes written as 5 ' You could write this program:

my Sproduct =1 * 2 * 3 % 4 * §5;
say Sproduct; # prints 120

Y ou could make it slightly simpler:

say 2 * 3 *¥ 4 * §; # prints 120

The problem is that this syntactic construct does not scale well and
becomes tedious for the product of the first 10 integers (or factorial 10).

And it becomes almost a nightmare for factorial 100. Calculating the
factorial of a number is a fairly common computation in mathematics
(especially in the fields of combinatorics and probability) and in computer

science. We need to automatize it, and using a for loop is one of the most
obvious ways of doing that:

my Sproduct = 1;
for 1..5 {

Sproduct *= S
}

say Sproduct; # prints 120

Now, if you need to compute factorial 100, you just need to replace the 5 in
the code above with 100. Beware, though, the factorial function is known to
grow extremely rapidly, and you’ll get a truly huge number, with 158 digits
(i.e., a number much larger than the estimated total number of atoms in the
known universe).

In this script, 1. .5 is the range operator, which is used here to generate a
list of consecutive numbers between 1 and 5. The for keyword is used to

iterate over that list, and $_ is a special variable that takes each successive
value of this list: first 1, then 2, etc. until 5. In the code block forming the

body of the loop, the $product variable is multiplied successively by each

value of $_. The loop ends with 5 and the result, 120, is printed on the last
line.

This is a simple use of the for statement, but probably not the most
commonly used in Perl 6; we will see more below. We will also see other
types of loops. But that should be enough for now to let you write some
loops. Loops are found everywhere in computer programming.

The $_ special variable is known as the topical variable or simply the topic.
[t does not need to be declared and many syntactic constructs assign a value

to it without explicitly mentioning it. Also, $_ is an implicit argument to
methods called without an explicit invocant. For example, to print the first
five integers, you might write:

for 1..5 {.say}; # prints numbers 1 to 5, each on its line

Here .say is a syntax shorthand equivalent to $_. say. And since, as we

saw, $_ takes each successive value of the range introduced by the for
keyword, this very short code line prints each number between 1 and 5,

each on a different line. This is a typical example of the $_ topical variable
being used without even being explicitly mentioned. We will see many

other uses of the $_ special variable.

Sometimes, you don’t use the $_ loop variable within the loop, for example
if you just want to do something five times but don’t care each time
through the loop at which iteration you have arrived. A subroutine that
prints a message n times might look like this:

sub print-n-times (Int Sn, Str Smessage) {
for 1..5n { say Smessage }
}

The for loop also has a statement modifier or postfix form, used here to
compute again the factorial of 5:

my Sproduct = 1;
Sproduct *= $_ for 1..5;
say Sproduct; # prints 120

There is another syntax for the for loop, using an explicit loop variable:

sub factorial (Int Snum) {

my Sproduct = 1;
for 1..8num -> $x {

Sproduct *= Sx
}

return Sproduct

}
say factorial 10; # 3628800

The for loop in this subroutine is using what is called a “pointy block™
syntax. It is essentially the same idea as the previous for loops, except that,
instead of using the $_ topical variable, we now declare an explicit $x loop

variable with the 1..$num -> S$x syntax to iterate over the range of values.
Using an explicit loop variable can make your code clearer when things get

more complicated, for example when you need to nest several for loops.
We will see more examples of that later.

We will also see several other ways of computing the factorial of a number
in this book.
Recursion

[t is legal for one function or subroutine to call another; it is also legal for a
subroutine to call itself. It may not be obvious why that is a good thing, but
it turns out to be one of the most magical things a program can do. For
example, look at the following subroutine:

sub countdown(Int Stime-left) {
i1f Stime-left <= 0 {
say 'Blastoff!’;
} else {
say Stime-left;
countdown(Stime-left - 1);

[f Sn is O or negative, it outputs the word “Blastoff!” Otherwise, it outputs
Stime- left and then calls a subroutine named countdown—itself—

passing Sn-1 as an argument.

What happens if we call the subroutine like this?

countdown(3);

The execution of countdown begins with $time-left = 3, and since
Stime- left is greater than O, it outputs the value 3, and then calls itself...

The execution of begins with , and since
is greater than 0, it outputs the value 2, and then calls itself...

The execution of begins with , and since
is greater than 0, it outputs the value 1, and then calls itself...

The execution of begins with , and since

IS not greater than 0, it outputs the word “Blastoff!” and
then returns.

The that got returns.
The that got returns.
The countdown that got Stime-left = 3 returns.

And then you’re back in the main program. So, the total output looks like
this:

3
2
1
Blastoff!

A subroutine that calls itself is recursive; the process of executing it is
called recursion.

As another example, we can write a subroutine that prints a string $n times:

sub print-n-times(Str $sentence, Int $n) {
return i1f Sn <= 0;
say Ssentence;
print-n-times($sentence, Sn - 1);

If Sn <= 0, the return statement exits the subroutine. The flow of execution
immediately returns to the caller, and the remaining lines ot the subroutine

don’t run. This illustrates a feature of the return subroutine that we have
not seen before: it is used here for flow control, i.e., to stop the execution of
the subroutine and pass control back to the caller. Note also that here the

return statement does not return any value to the caller; print-n-times is
a void function.

The rest of the subroutine is similar to countdown: it displays $sentence

and then calls itself to display $sentence $F I — l additional times. So
the number of lines of outputis 1 + ($n - 1), which adds up to $n.

For simple examples like this, it may seem easier to use a for loop. But we

will see examples later that are hard to write with a for loop and easy to
write with recursion, so it is good to start early.
Stack Diagrams for Recursive Subroutines

In “Stack Diagrams”, we used a stack diagram to represent the state of a
program during a subroutine call. The same kind of diagram can help
interpret a recursive subroutine.

Every time a subroutine gets called, Perl creates a frame to contain the
subroutine’s local variables and parameters. For a recursive subroutine,
there might be more than one frame on the stack at the same time.

Figure 4-1 shows a stack diagram for countdown called with n = 3.

main

countdown Stime-left - 3
countdown Stime-left - 2
countdown Stime-left ——» 1
countdown $time-left > 0

Figure 4-1. Stack diagram

As usual, the top of the stack is the frame for the main program. It is empty
because we did not create any variables in it or pass any arguments to it.

The four countdown frames have different values for the parameter $Stime-

left. The bottom of the stack, where Stime-left = 0, is called the base
case. It does not make a recursive call, so there are no more frames.

As an exercise, draw a stack diagram for print-n-times called with
Ssentence = 'Hello' and Sn = 2. Then write a function called do-n-
times that takes a function and a number, Snum, as arguments, and that

calls the given function Snum times. Solution: see “Exercises of Chapter 4:
Conditionals and Recursion”.

Infinite Recursion

[f a recursion never reaches a base case, it goes on making recursive calls

forever, and the program never terminates. This is known as infinite
recursion, and it is generally not a good idea. In fact, your program will not
actually execute forever but will die at some point when the computer runs
out of memory or some other critical resource.

You have to be careful when writing recursive subroutines. Make sure that
you have a base case, and make sure that you are guaranteed to reach it.
Actually, although this is not absolutely required by the language, I would
advise you to make a habit of treating the base case first.

Keyboard Input

The programs we have written so far accept no input from the user. They
just do the same thing every time. Perl provides built-in functions that stop
the program and wait for the user to type something.

For example, the prompt function prompts the user with a question or an
instruction. When the user presses Return or Enter, the program resumes

and prompt returns what the user typed as a string (without the newline
character corresponding to the Return key typed by the user):

my Suser = prompt "Please type in your name: ";
say "Hello Suser”;

This is probably one of the most common ways to obtain interactive user
input, because it is usually a good idea to tell the user what is expected.

Another possibility is to use the get method (which reads a single line) on
standard input:

n

say "Please type in your name: ";
my Suser = S*IN.get;
say "Hello Suser";

or the get function, which reads a line from standard input by default:

say "Please type in your name: ";
my Suser = get;
say "Hello Suser";

Program Arguments and the MAIN Subroutine

There is another (and often better) way to have a program use varying input
defined by the user, which is to pass command-line arguments to the
program, just as we have passed arguments to our subroutines.

The easiest way to retrieve arguments passed to a program is to use a

special subroutine named MAIN. A program that has a defined MAIN
subroutine will usually start its execution with that subroutine and the
command-line arguments supplied to the program will be passed as

arguments to MAIN. The MAIN signature will thus enable you to retrieve the
arguments provided in the command line and possibly also check their
validity.

For example, the greet.pl6 program might look like this:

sub MAIN (Str Sname) {
say "Hello Sname";
}

Y ou may call this program twice with different command-line arguments as
follows:

S perlé greet.plé Larry
Hello Larry

S perlé greet.plé world
Hello world

It is very easy to change the argument, since all you need to do under the
operating system command line is use the up arrow and edit the end of the

previous command line.

[f you forget to supply the argument (or provide the wrong number of
arguments, or arguments not matching the signature), the program will die
and Perl 6 will nicely generate and display a usage method:

S perlé greet.plé6
Usage:
greet.pl6 <name>

Debugging

When a syntax or runtime error occurs, the error message contains a lot of
information, but it can be overwhelming. The most useful parts are usually:

e What kind of error it was

¢ Where it occurred

Syntax errors are usually easy to find, but there are a few gotchas. In
general, error messages indicate where the problem was discovered, but the
actual error might be earlier in the code, sometimes on a previous line or
even many lines before.

For example, the goal of the following code was to display the
multiplication tables:

sub multiplication-tables {
for 1..10 -> Sx {
for 1..10 -> Sy {

say "$x x Sy\t= ", Sx * Sy;

Sdy 5

}
}

multiplication-tables();

It failed at compilation with the following error:

S perlé mult table.plé6

===SORRY !=== Error while compiling /home/Laurent/mult table.pl6
Missing block (taken by some undeclared routine?)

at /home/Laurent/mult_table.pl6:9

—————— > multiplication-tables();<HERE><EOL>

The error message reports an error on line 9 of the program (the last line of
the code), at the end of the line, but the actual error is a missing closing
brace after line 4 and before line 5. The reason for this is that while the
programmer made the mistake on line 4, the Perl interpreter could not
detect this error before it reached the end of the program. The correct
program for displaying multiplication tables might be:

sub multiplication-tables {
for 1..10 -> $x {
for 1..10 -> Sy {

! say "$x x Sy\t= ", Sx * Sy;

sdy
¥
}
multiplication-tables();
When an error is reported on the last line of a program, it is quite
commonly due to a missing closing parenthesis, bracket, brace, or quotation

mark several lines earlier. An editor with syntax highlighting can
sometimes help you.

The same is true of runtime errors. Consider this program aimed at

computing 360 degrees divided successively by the integers between 2 and
D!

my (Sa, $b, Sc, &d) = 2, 3, 5;

my Svalue = 360;
Svalue /= $ for Sa, Sb, S$Sc, $d;
say Svalue;

This program compiles correctly but displays a warning and then an
exception on runtime:

Use of uninitialized value of type Any in numeric context
in block at product.plé line 3
Attempt to divide 12 by zero using div

in block <unit> at product.plé line 4

The error message indicates a “division by zero” exception on line 4, but
there is nothing wrong with that line. The warning on line 3 might give us a
clue that the script attempts to use an undefined value, but the real error is
on the first line of the script, where one of the four necessary integers (4)
was omitted by mistake from the list assignment.

Y ou should take the time to read error messages carefully, but don’t assume
they point to the root cause of the exception; they often point to subsequent
problems.

Glossary

base case

A conditional branch in a recursive function that does not make a
recursive call.

Boolean expression
An expression whose value is either True or False.

branch

One of the alternative sequences of statements in a conditional
Statement.

chained conditional

A conditional statement with a series of alternative branches.

condition

The Boolean expression in a conditional statement that determines
which branch runs.

conditional statement

A statement that controls the flow of execution depending on some
condition,

infinite recursion

A recursion that doesn’t have a base case, or never reaches it.
Eventually, an infinite recursion causes a runtime error, for which you
may not want to wait because it may take a long time.

integer division

An operation, denoted div, that divides two numbers and rounds down
(toward zero) the result to an integer.

logical operator

One of the operators that combines Boolean expressions: and, or, and
not. The equivalent higher-precedence operators are &&, | |, and !.

modulo operator

An operator, denoted with a percent sign (%), that works on integers and
returns the remainder when one number is divided by another.

nested conditional

A conditional statement that appears in one of the branches of another

conditional statement.

recursion

The process of calling the function that is currently executing.

relational operator

One of the operators that compares its operands. The most common
numeric relational operators are ==, !=, >, <, >=, and <=. The equivalent
string relational operators are eq, ne, gt, lt, ge, and le.

return statement

A statement that causes a function to end immediately and return to the
caller.

statement modifier

A postfix conditional expression, i.e., a conditional expression (using

for example if, unless, or for) that is placed after the statement the
execution of which it controls. It can also refer to a postfix looping
expression.

Exercises
Exercise 4-1.

Using the integer division and the modulo operators:

1. Write a subroutine that computes how many days, hours, minutes, and
seconds there are in the number of seconds passed as an argument to the
subroutine.

2. Write a script that computes how many days, hours, minutes, and
seconds there are in 240,000 seconds.

3. Change your script to compute the number of days, hours, minutes, and
seconds there are in a number of seconds entered by the script user when

prompted to give a number of seconds.

Solution: “Exercise 4-1: Days, Hours, Minutes, and Seconds”.

Exercise 4-2.

Fermat’s Last Theorem says that there are no positive integers a, b, and ¢
such that

al+ b ="

for any values of n greater than 2.

1. Write a function named check-fermat that takes four parameters—a, b,

¢, and n—and checks to see if Fermat’s theorem holds. If n is greater
than 2 and

the program should print, “Holy smokes, Fermat was wrong!”
Otherwise the program should print, “No, that doesn’t work.”

2. Write a function that prompts the user to input values for a, b, ¢, and n,

converts them to integers, and uses check-fermat to check whether
they violate Fermat’s theorem.

Solution: “Exercise 4-2: Fermat’s Theorem?”.

Exercise 4-3.

[f you are given three sticks, you may or may not be able to arrange them in
a triangle. For example, if one of the sticks is 12 inches long and the other
two are 1 inch long, you will not be able to get the short sticks to meet in
the middle. For any three lengths, there is a simple test to see if it is

possible to

form a triangle:

If any of the three lengths is greater than the sum of the other two, then you
cannot form a triangle. Otherwise, you can. (If the sum of two lengths

equals the

third, they form what is called a “degenerate” triangle.)

1. Write a function named is-triangle that takes three positive numbers
as arguments, and that prints either “Yes” or “No,” depending on

whether

you can form a triangle from sticks with the given lengths.

2. Write a function that prompts the user to input three stick lengths and

uses is-triangle to check whether sticks with the given lengths can
form a triangle.

Solution: “

Fxercise 4-3: Is It a Triangle?”.

Exercise 4-4.

The Fibonacci numbers were invented by Leonardo Fibonacci (a.k.a.
Leonardo of Pisa or simply Fibonacci), an Italian mathematician of the
thirteenth century.

The Fibonacci numbers are a sequence of numbers such as

1; L

Zs On Dv O 10 &Ly D%

in which the first two numbers are equal to 1 and each subsequent number
of the sequence is defined as the sum of the previous two (for example,

— 2

<1 3,8 —_ 3 “ 5, etc.).

In mathematical notation, the Fibonacci numbers could be defined by
recurrence as follows:

F,=

1, F, = l,andFi"I =40 1 T4 5

1. Write a program using a for loop that prints on screen the first 20
Fibonacci numbers.

2. Write a program which prompts the user to enter a number n and, using
a for loop, computes and displays the nth Fibonacci number.

Solution: “Exercise 4-4: The Fibonacci Numbers”.

Exercise 4-5.

What is the output of the following program? Draw a stack diagram that
shows the state of the program when it prints the result.

sub recurse(Sn, Ss) {

if (Sn == 0) {
say Ss;
} else {

recurse Sn - 1, Sn + S$s;

¥
}

recurse 3, 0;

1. What would happen if you called the function like this: recurse(-1,
0)?

2. Write a documentation comment (maybe in the form of a multiline

comment) that explains everything someone would need to know in
order to use this function (and nothing else).

Solution: “Exercise 4-5: The recurse Subroutine”.

Chapter 5. Fruitful Subroutines

Most of the Perl functions we have used, such as the math functions,
produce return values. But most of the subroutines we’ve written so far are
void: they have an effect, like printing a value, but they don’t have a return
value. In this chapter you will learn to write fruitful functions.

Return Values

Calling a fruittul function generates a return value, which we usually assign
to a variable or use as part of an expression:

my Spi = 4 * atan 1;
my Sheight = Sradius * sin Sradians;

Many of the subroutines we have written so far are void. Speaking casually,
they have no usable return value; more precisely, their return value may be

Any, (), or True.

In this chapter, we are (finally) going to write fruitful subroutines. The first
example is area, which returns the area of a circle with the given radius:

sub area(Sradius) {
my Scircular_area = pi * Sradius**2;
return $circular_area;

We have seen the return statement before, but in a fruitful function the

return statement includes an expression. This statement means: “Return
immediately from this function and use the following expression as a return
value.” The expression can be arbitrarily complicated, so we could have
written this function more concisely:

sub area(Sradius) {
return pi * Sradius**2;

On the other hand, temporary variables like Scircular_area can make
debugging easier. They may also help document what is going on.

Sometimes it is useful to have multiple return statements, for example one
in each branch of a conditional:

sub absolute value(Snum){

if Snum < 0 {
return -Snum;
} else {

return Snum;

}

Since these return statements are in an alternative conditional, only one
runs.

This could also be written more concisely using the statement modifier
syntax:

sub absolute value(Snum){
return -Snum if Snum < 0;
return Snum;

Here again, only one of the return statements runs: if the number is

negative, the first return statement is executed and the subroutine
execution stops there; if the number is positive or zero, then only the

second return statement is executed.

As soon as a return statement runs, the function terminates without
executing any subsequent statements. Code that appears after an

unconditional return statement, or any other place the flow of execution

can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path
through the program hits a return statement. For example:

sub absolute value(Snum){
if Snum < 0 {
return -Snum;
}

if Snum > 0 {
return Snum;
}

This subroutine is incorrect because if Snum happens to be 0, neither

condition is true, and the subroutine ends without hitting a return
statement. If the flow of execution gets to the end of a function, the return

value is (), which basically means “not defined” and is clearly not the
absolute value of O:

> absolute value(0)

)

By the way, Perl provides a built-in function called abs that computes
absolute values.

As an exercise, write a compare subroutine that takes two numbers, $x and

Sy, and returns 1 if $x > Sy, 0if Sx == Sy, and -1 if $x < Sy. Solution:
“Exercise: Compare™.
Incremental Development

As you write larger functions, you might find yourself spending more time
debugging.

To deal with increasingly complex programs, you might want to try a

process called incremental development. The goal of incremental
development is to avoid long debugging sessions by adding and testing
only a small amount of code at a time.

As an example, suppose you want to find the distance between two points,

given by the Cartesian or rectangular coordinates ("1 1» Y 1) and ('1'2’ ¥ E)
. By the Pythagorean theorem, the distance is:

diStanCG = \ (_1*2 — xl)z + (yz - y1)2

The first step is to consider what a distance function should look like in
Perl. In other words, what are the inputs (parameters) and what is the output
(return value)?

In this case, the inputs are two points, which you can represent using four
numbers. The return value is the distance represented by a numeric value.

Immediately you can write an outline of the function:

sub distance(Sx1, Sy1l, $x2, Sy2) {
return 0.0;
}

Obviously, this version doesn’t compute distances; it always returns zero.
But it is syntactically correct, and it runs, which means that you can test it
before you make it more complicated.

To test the new function, call it with sample arguments:

> distance(1, 2, 4, 6);
0.0

I chose these values so that the horizontal distance is 3 and the vertical

distance is 4; that way, the result is 5, the hypotenuse of a 3-4-5 triangle.
When testing a function, it is useful to know the right answer.

At this point we have confirmed that the function is syntactically correct,
and we can start adding code to the body. A reasonable next step is to find

the differences "YE — X land -2) l. The next version stores those
values in temporary variables and prints them:

sub distance(Sx1, Sy1l, $x2, Sy2) {
my Sdx = Sx2 - Sx1;
my Sdy = Sy2 - Syi;
say 'Sdx is', S$Sdx;
say 'Sdy is', $dy;
return 0.0;

[f the function is working, it should display $dx i1s 3 and $dy is 4 (and
still return 0.0). If so, we know that the function is getting the right
arguments and performing the first computation correctly. If not, there are
only a few lines to check.

Next we compute the sum of squares of $Sdx and $dy:

sub distance(Sx1, Syi1, $x2, Sy2) {
my Sdx = Sx2 - S$x1;
my Sdy = Sy2 - Syi;
my Sdsquared = Sdx**2 + Sdy**2;
say 'Sdsquared is: ', Sdsquared;
return 0.0;

Again, you would run the program at this stage and check the output (which

should be 25). Finally, you can use the sqrt built-in function to compute
and return the result:

sub distance($x1, Sy1, $x2, Sy2) {
my Sdx = Sx2 - S$x1;
my Sdy = Sy2 - Syi;
my Sdsquared = Sdx**2 + Sdy**2;
my Sresult = sqrt $dsquared;
return Sresult;

[f that works correctly, you are done. Otherwise, you might want to print
the value of Sresult before the return statement.

The final version of the subroutine doesn’t display anything when it runs; it
only returns a value. The print statements we wrote are useful for
debugging, but once you get the function working, you should remove
them. Code like that is sometimes called scaffolding because it is helpful
for building the program but is not part of the final product.

When you start programming, you should add only a line or two of code at
a time. As you gain more experience, you might find yourself writing and
debugging bigger chunks. Either way, incremental development can save
you a lot of debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At
any point, if there is an error, you should have a good idea where it is.

2. Use variables to hold intermediate values so you can display and check
them.

3. Once the program is working, you might want to remove some of the
scatfolding or consolidate multiple statements into compound
expressions, but only if doing so does not make the program difficult to
read.

Note that, at least for relatively simple cases, you can also use the REPL to

test expressions and even multiline statements or subroutines in interactive
mode before you commit them to your program code. This is usually fast

and can save you some time.
As an exercise, use incremental development to write a function called

hypotenuse that returns the length of the hypotenuse of a right triangle
given the lengths of the other two legs as arguments. Record each stage of
the development process as you go. Solution: “Exercise: Hypotenuse”.

Composition

As you should expect by now, you can call one function from within
another. As an example, we’ll write a function that takes two points, the
center of the circle and a point on the perimeter, and computes the area of
the circle.

Assume that the center point is stored in the variables $x-c and Sy-c¢, and

the perimeter point is in $x-p and Sy-p. The first step is to find the radius
of the circle, which is the distance between the two points. We just wrote a

function, distance, that does that:

my $radius = distance($x-c, $y-c, $x-p, Sy-p);

The next step is to find the area of a circle with that radius; we just wrote
that, too:

my Sresult = area(Sradius);

Encapsulating these steps in a function, we get:

sub circle-area($x-c, Sy-c, $x-p, Sy-p) {
my $radius = distance($x-c, Sy-c, $x-p, Sy-p);
my Sresult = area(Sradius)
return Sresult;

The temporary variables $radius and $Sresult are useful for development
and debugging, but once the program is working, we can make it more
concise by composing the function calls:

sub circle-area($x-c, Sy-c, Sx-p, Sv-p) {
return area distance($x-c, Sy-c, $x-p, Sy-p);
}

The last line of the previous example now works like a data pipeline from
right to left: the distance function takes the four arguments and returns a
distance (the radius) which is fed as an argument to the area; with this
argument, area is now able to return the area, which is then returned by

circle-area to the caller code. We’ll come back later to this very
expressive data pipeline model.
Boolean Functions

Functions can return Boolean values, which is often convenient for hiding
complicated tests inside functions. For example:

sub is-divisible(Int $x, Int $y) {
i1f Sx % Sy == 0 {
return True;

} else {
return False;
{

It is common to give Boolean functions names that sound like yes/no
questions; is-divisible, for instance, returns either True or False to
indicate whether x is divisible by y.

Here is an example:

> 1s-divisible(6, 4);

False
> is-divisible(6, 3);
True

The result of the == operator is a Boolean value, so we can write the
subroutine more concisely by returning it directly:

sub is-divisible(Int $x, Int Sy) {
return $x % Sy ==
}

[f there is no return statement, a Perl subroutine returns the value of
expression on the last code line of the subroutine (provided the last code

line is an expression that gets evaluated), so that the return statement is
not required here. In addition, since 0 is a false value and any other integer
a true value, this could be further rewritten as follows:

sub is-divisible(Int $x, Int Sy) {
not Sx % Sy
}

The Int type declarations in the subroutine signatures above are not
necessary. The subroutine would work without them, but they can provide
some form of protection against using this subroutine with faulty
arguments.

Boolean functions are often used in statement modifiers:

say "S$x 1s divisible by $y" if is-divisible(S$Sx, Sy);

[t might be tempting to write something like:

say "Sx is divisible by Sy" i1f is-divisible($Sx, Sy) == True;

But the extra comparison is unnecessary: 1s-divisible returns a Boolean

value that can be interpreted directly by the 1f conditional.
As an exercise, write a function is-between(x, y, z) that returns True if

— y — Z or False otherwise. Solution:

“Exercise: Chained Relational Operators”.
A Complete Programming Language

We’ve seen in the section above several ways of writing a subroutine to
check the divisibility of two integers.

In fact, Perl 6 has a “is divisible” operator, %%, which returns True if the
number on the left is divisible by the one on the right:

> 9 %% 3
True
> 9 %% 4
False

So there was no need to write the is-divisible subroutine. But don’t
worry, that’s alright if you did not know that. Speakers of natural languages
are allowed to have different skill levels, to learn as they go and to put the
language to good use before they know the whole language. The same is
true with Perl. You (and I) don’t know all about Perl 6 yet, just as we don’t
know all of English. But it is in fact “Officially Okay in Perl Culture” to
use the subset of the language that you know. You are in fact encouraged to
use what is sometimes called “baby Perl” to write programs, even if they
are somewhat clumsy at the beginning. That’s the best way of learning Perl,
just as using “baby talk” is the right way for a child to learn English.

The number of different ways of accomplishing a given task, such as
checking whether one number is divisible by another, is an example of one
of Perl’s mottos: there is more than one way to do it, oft abbreviated

TIMTOWTDI. Some ways may be more concise or more efficient than
others, but, in the Perl philosophy, you are perfectly entitled to do it your
way, especially if you’re a beginner, provided you find the correct result.

We have only covered a small subset of Perl 6 so far, but you might be
interested to know that this subset is a complete programming language,
which means that essentially anything that can be computed can be
expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you
would need a few commands to control devices like the mouse, disks,
networks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan
Turing, one of the first computer scientists (some would argue that he was a
mathematician, but a lot of early computer scientists started as
mathematicians). Accordingly, it is known as the Turing Thesis. For a more
complete (and accurate) discussion of the Turing Thesis, I recommend
Michael Sipser’s book Introduction to the Theory of Computation (Cengage
Learning).

More Recursion

To give you an idea of what you can do with the tools you have learned so
far, we’ll evaluate a few recursively defined mathematical functions. A
recursive definition is similar to a circular definition, in the sense that the
definition contains a reference to the thing being defined. A truly circular
definition is not very useful:

vorpal

An adjective used to describe something that is vorpal.

[f you saw that definition in the dictionary, you might be annoyed. On the
other hand, if you looked up the definition of the factorial function, denoted

with the symbol ., you might get something like this:

0!=1
n!'=nn-1)"»

This definition says that the factorial of 0 is 1, and the factorial of any other

(positive integer) value, n, is n multiplied by the factorial of ¥I — 1
So 3 ' is 3 times 2 !, which is 2 times 1 !, which is 1 times U ’ Putting it
all together, 3 ! equals 3 times 2 times 1 times 1, which is 6.

[f you can write a recursive definition of something, you can write a Perl
program to evaluate it. The first step is to decide what the parameters

should be. In this case it should be clear that factorial takes a number:!

sub factorial(Sn){
}

[f the argument happens to be 0O, all we have to do is return 1:

sub factorial(s$n){
if Sn == 0 {
return 1;
}

Otherwise, and this is the interesting part, we have to make a recursive call

to find the factorial of FI = | and then multiply it by n:

sub factorial($n){
if Sn == 0 {

return 1;

} else {
my Srecurse = factorial($n-1);
my Sresult = Sn * Srecurse;
return Sresult;

The flow of execution for this program is similar to the flow of countdown
in “Recursion”. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of
Sn-1...

Since 2 is not 0, we take the second branch and calculate the factorial of

Since 1 is not 0, we take the second branch and calculate the factorial of

Since 0 equals 0, we take the first branch and return 1 without making
any more recursive calls.

The return value, 1, is multiplied by , which is 1, and the result is
returned.

The return value, 1, is multiplied by , which is 2, and the result is
returned.

The return value, 2, is multiplied by $n, which is 3, and the result, 6,

becomes the return value of the subroutine call that started the whole
process.

Figure 5-1 shows what the stack diagram looks like for this sequence of
function calls.

The return values are shown being passed back up the stack. In each frame,
the return value is the value of result, which is the product of n and

eCuUl S,

In the last frame, the local variables recurse and result do not exist,
because the branch that creates them does not run.

__main__

factorial n—==3 recurse — 2 result —= 6

factornal n — 2 recurse — 1 result —= 2

tactorial n—= 1 recurse — 1 result — 1

factonal n —= 0 i

Figure 5-1. Stack diagram

A seasoned Perl programmer might write a more concise or more idiomatic
subroutine:?

sub factorial(s$n){
return 1 i1f Sn == 0;
return Sn * factorial Sn-1;

This is not better than our initial version, and will probably not run
significantly faster, but this is arguably clearer, at least once you get used to
this type of syntax.

Leap of Faith

Following the flow of execution is one way to read programs, but it can
quickly become overwhelming. An alternative is what may be called the

“leap of faith.” When you come to a subroutine call, instead of following
the flow of execution, you assume that the subroutine works correctly and
returns the right result.

In fact, you are already practicing this leap of faith when you use built-in

functions. When you call math functions such as cos or sqrt, you don’t
examine the bodies of those functions. You just assume that they work
because the people who wrote the built-in functions were likely to be good
programmers (and because you can safely assume that they have been
thoroughly tested).

The same is true when you call one of your own subroutines. For example,

in “Boolean Functions”, we wrote a subroutine called is-divisible that
determines whether one number is divisible by another. Once we have
convinced ourselves that this subroutine is correct—by examining the code
and testing—we can use the subroutine without looking at the body again.

The same is true of recursive programs. When you get to the recursive call,
instead of following the flow of execution, you should assume that the
recursive call works (returns the correct result) and then ask yourself,

“Assuming that I can find the factorial of $n-1, can I compute the factorial
of Sn?” It is clear that you can, by multiplying by $n.

Of course, it’s a bit strange to assume that the subroutine works correctly
when you haven’t finished writing it, but that’s why it’s called a leap of

faith!
One More Example

After factorial, the most common example of a recursively defined

mathematical function is fibonacci, which has the following definition
(see also the Wikipedia entry):

fibonacci(0) = 1
fibonacci(l) = 1
hbonacci(n) = fibonacci(n — 1) 4+ fibonacci(n — 2)

In plain English, a Fibonacci sequence is a sequence of numbers such as:

i, 1, 2, 3, 5, 8, 13, 21, ...

where the two first terms are equal to 1 and any other term is the sum of the
two preceding ones.

We briefly covered the Fibonacci sequence in Exercise 4-4 and

implemented it with a for loop. Let’s now translate the recursive definition
into Perl. It looks like this:

sub fibonacci ($n) {
return 1 if Sn == 0 or $n == 1;
return fibonacci(Sn-1) + fibonacci($n-2);

If you try to follow the flow of execution here, even for fairly small values

of $n, your head explodes. But according to the leap of faith, if you assume
that the two recursive calls work correctly, then it is clear that you get the
right result by adding them together.

Checking Types

What happens if we call factorial and give it 1.5 as an argument?

[t seems that we get an infinite recursion. How can that be? The subroutine

has a base case—when Sn == 0. But if $n is not an integer, we can miss
the base case and recurse forever.

In the first recursive call, the value of $n is 0.5. In the next, it is —0.5. From

there, it gets smaller (more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial function to

work with noninteger numbers, or we can make factorial check its
argument. The first option is called the gamma function, and it’s a little
beyond the scope of this book. So we’ll go for the second.

We have already seen examples of subroutines using the signature to verify
the type of the argument. So we can add the Int type to the parameter in
the signature. While we’re at it, we can also make sure the argument is
positive or zero.

sub factorial(Int $n where $Sn >= 0){
return 1 i1f Sn == 0;
return Sn * factorial Sn-1;

The Int type checking in the signature handles nonintegers; this is not new.

The where Sn >= 0 part is a parameter constraint: if the parameter is
negative, the subroutine should fail. Technically, the constraint is
implemented here within the signature using a syntax feature called a trait,
a property imposed on the parameter at compile time. If the argument
passed to the function is not an integer or if it is negative, the program
prints an error message to indicate that something went wrong:

> say factorial 1.5

Type check failed in binding $n; expected Int but got Rat
in sub factorial at <unknown file> line 1
in block <unit> at <unknown file> line 1

> say factorial -3

Constraint type check failed for parameter 'Sn'

> say factorial "Fred"

Type check failed in binding Sn; expected Int but got Str
in sub factorial at <unknown file> line 1
in block <unit> at <unknown file> line 1

[f we get past both checks, we know that $n is an integer and that it is
positive or zero, so we can prove that the recursion terminates.

Another way to achieve a similar result is to define your own subset of the

built-in types. For example, you can create an Even-int subset of integers
and then use it more or less as if it were a new type for declaring your
variables or typing your subroutine parameters:

subset Even-int of Int where { $§ %% 2 } # or : .. where { S % 2
::@}
Even-int can now be used as a type

my Even-int Sx
my Even-int Sy

Il

2; # OK
3; # Type mismatch error

3

Similarly, in the case of the factorial subroutine, we can create a
nonnegative integer subset and use it for checking the parameter passed to
the subroutine:

subset Non-neg-int of Int where { $_ >= 0}
...

sub factorial(Non-neg-int $n){

return 1 if $Sn == 0;
return $n * factorial $n-1;

[f we pass a negative integer to the subroutine, we get a similar error as
before:

Constraint type check failed for parameter 'Sn'...

This program demonstrates a pattern sometimes called a guardian. The
signature acts as a guardian, protecting the code that follows from values

that might cause an error. The guardians make it possible to prove the
correctness of the code.
Multi Subroutines

[t is possible to write multiple versions of a subroutine with the same name
but with ditferent signatures, for example a ditferent arity (a fancy word for

the number of arguments) or different argument types, using the multi
keyword. In this case, the interpreter will pick the version of the subroutine
whose signature matches (or best matches) the argument list.

For example, we could rewrite the factorial function as follows:

multi sub fact(0) { 1 };

multi sub fact(Int $n where $n > 0) {
sn * fact $Sn - 1;

}

say fact 0; # -> 1
say fact 10; # -> 3628800

Here, we don’t enter into infinite recursion because, when the parameter

passed to fact is 0, it is the first version of the multi subroutine that is
called and it returns an integer value (1), and this ends the recursion.

Similarly, the Fibonacci function can be rewritten with multi subroutines:

multi fibonacci(0) { 0 }

multi fibonacci(1l) { 1 }

multi fibonacci(Int Sn where Sn > 1) {
fibonacci($n - 2) + fibonacci(Sn - 1)

}

say fibonacci 10; # -> 55

Many built-in functions and most operators of Perl 6 are written as multi
subroutines.

Debugging

Breaking a large program into smaller functions or subroutines creates
natural checkpoints for debugging. If a subroutine is not working, there are
three possibilities to consider:

e There is something wrong with the arguments the subroutine is getting;
a precondition is violated.

e There is something wrong with the subroutine; a postcondition is
violated.

e There is something wrong with the return value or the way it is being
used.

To rule out the first possibility, you can add a print statement at the
beginning of the function and display the values of the parameters (and
maybe their types). Or you can write code that checks the preconditions
explicitly.

For the purpose of debugging, it is often useful to print the content of a
variable or of a parameter within a string with surrounding characters, so
that you may visualize characters that are otherwise invisible, such as

spaces or newlines. For example, you think that the Svar should contain
“two,” and run the following test:

if Svar eq "two" {
do-something()
}

But it fails and the do-something subroutine is never called.

Perhaps you want to use a print statement that will ascertain the content of
Svar:

say "[Svar]";

if Svar eq "two" {
do-something()
}

This might print:
[two]

Or.

[two
]

Now, you know that the equality test fails because $var contains a trailing
character (space or newline) that might otherwise be difficult to detect.

[f the parameters look good, add a print statement before each return
statement and display the return value. If possible, check the result by hand.
Consider calling the function with values that make it easy to check the
result (as in “Incremental Development™).

[f the function seems to be working, look at the function call to make sure
the return value is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help
make the flow of execution more visible. For example, here is a version of

factorial with print statements:

sub factorial(Int $Sn) {
my Sspace = ' ' x (4 * Sn);
say Sspace, 'factorial ', Sn;
if Sn == 0 {
say Sspace, 'returning 1°;
return 1;
} else {

my Sresult = Sn * factorial $n-1;
say S$space, 'returning ', Sresult;
return Sresult;

The $space variable is a string of space characters that controls the
indentation of the output. Here is the result of factorial(4) :

factorial 4
factorial 3
factorial 2
factorial 1
factorial ©
returning 1
returning 1
returning 2
returning 6
returning 24

If you are confused about the flow of execution, this kind of output can be
helpful. It takes some time to develop effective scaffolding, but a bit of
scaffolding can save a lot of debugging.

Glossary
dead code

Part of a program that can never run, often because it appears after a
return statement.

guardian

A programming pattern that uses a conditional statement to check for
and handle circumstances that might cause an error.

incremental development

A program development plan intended to avoid debugging by adding

