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DEPARTURE

You HAVE A cHoICE. The obvious path is a long slog, with no
beautiful vistas on the way. It is going to take you forever and
sap all your energy, but it will eventually get you to your
destination. There is a second path, however. You've got to be
sharp to spot it veering off the main path, seemingly taking you
away from your destination. But you spot a signpost that says
sHORTCUT. It promises a quicker off-road route that will get you to
your destination faster and with minimal energy expenditure.
There might even be the chance of a stunning view on the way.
It’s just that you are going to have to keep your wits about you to
navigate this path. It’s your choice.

This book is pointing you toward that second path. It’s your
shortcut to the better thinking you’ll need to negotiate this
unorthodox route and get you to where you want to go.

It was the lure of the shortcut that made me want to become
a mathematician. As a rather lazy teenager, 1 was always looking
for the most efficient path to my destination. It was not that I
wanted to cut corners; I just wanted to achieve my goal with as
little effort as possible.

So when my mathematics teacher revealed to me at the age
of twelve that the subject we were learning in school was really a
celebration of the shortcut, my ears pricked up. It started with a
simple story featuring a nine-year-old boy named Carl Friedrich
Gauss. Our teacher transported us back to 1786 in the town of
Brunswick, near Hanover, where the young Gauss grew up. It was
a small town, and the local school only had one teacher, Herr
Biittner, who had to somehow teach the town’s one hundred
children in just one classroom.

My own teacher, Mr. Bailson, was a rather dour Scot who
kept strict discipline, but it sounded like he was a softy
compared to Herr Biittner. Gauss’s teacher would stride up and
down the benches brandishing a cane to maintain discipline



among the rowdy class. The classroom itself, which I've
subsequently visited on a recent mathematical pilgrimage, was a
drab room with a low ceiling, little light, and uneven floors. It
felt like a medieval prison, and Biittner’s regime sounded as if it
matched the setting.

The story goes that during one arithmetic lesson Biittner
decided to set the class a rather tedious task that would occupy
them long enough so that he could take a nap. “Class, I want you
to add up the numbers from 1 to 100 on your slates. As soon as
you are done, bring your slates to the front of the class and place
them on my desk.”

Before he’d even finished the sentence, Gauss was on his feet
and had placed his slate on the desk, declaring in Low German,
“Ligget se”—there it is. The teacher looked at the boy, shocked at
his impertinence. The hand holding the cane quivered with
anticipation, but he decided to wait until all the students had
submitted their slates for inspection before upbraiding the
young Gauss. Eventually the class had finished and Biittner’s
desk was a tower of slates covered in chalk and calculations.
Biittner began to work his way through the pile, starting with
the last slate placed on the top. Most of the calculations were
wrong, the students having invariably made some arithmetic slip
on the way.

Eventually he arrived at Gauss’s slate. He began preparing
his rant at the young upstart, but when he turned over the slate,
there was the correct answer: 5050. And there were no
extraneous calculations. Biittner was shocked. How had this
nine-year-old found the answer so quickly?

The story goes that the precocious young student had
spotted a shortcut that helped him avoid the hard work of
actually doing much arithmetic. What he had realized was that
if you add up the numbers in pairs:

1+100
2+99
3+98



Time and again a gear change in civilization was effected by
the discovery of new mathematics. The explosion of mathematics
during the Renaissance and beyond, which gave us tools such as
calculus, offered scientists extraordinary shortcuts to efficient
engineering solutions. And today mathematics is behind all the
algorithms being implemented on our computers to assist us
through the modern digital jungle, offering shortcuts that help
us find the best routes to our destinations, the best websites for
our internet searches, and even the best partners for a journey
through life.

It is interesting to note, however, that humans weren’t the
first to exploit the power of mathematics to access the best way
to tackle a challenge. Nature has been using mathematical
shortcuts to solve problems long before we arrived. Many of the
laws of physics are based on Nature always finding a shortcut.
Light travels along the path that gets it to its destination fastest,
even if that involves bending around a large object like the sun.
Soap films create the shapes that cost the lowest amount of
energy—the bubble makes a sphere because this symmetrical
shape is the one with the smallest surface area and therefore
costs the minimum energy. Bees make hexagonal cells in their
hives because the hexagon uses the least amount of wax to
contain a fixed area. Our bodies have found the most energy-
efficient way of walking to transport us from A to B.

Nature is lazy, like humans, and wants to find the lowest-
energy solutions. As the eighteenth-century mathematician
Pierre-Louis Maupertuis wrote: “Nature is thrifty in all its
actions.” It is extremely good at sniffing out shortcuts. Invariably
it has a mathematical rationale to it. And often the discoveries
of shortcuts by humans materialize out of our observations of
how Nature solves a problem.

The Journey Ahead

In this book I want to share with you the arsenal of shortcuts that
mathematicians such as Gauss have developed over the
centuries. Each chapter will introduce a different sort of
shortcut with its own particular flavor. But all of them have the



aim of transforming you from someone who has to slog through
the hard work of solving a problem to someone who can hand in
their slate with the answer before everyone else.

I have chosen to take Gauss as a companion on our journey.
His classroom success launched him on a career that marks him
out for me as the prince of the shortcut. Indeed, the plethora of
breakthroughs he made during his lifetime span many of the
different shortcuts that I will introduce throughout the book.

By telling the stories of the shortcuts that mathematicians
have amassed over the centuries, I hope this book will act as a
tool kit for all those who want to save time doing one thing so
that they can spend more time doing something more exciting.
Very often these shortcuts are transferable to problems that
don't at first glance seem mathematical in nature. Mathematics
is a mindset for navigating a complex world and finding the
pathway to the other side.

This is why mathematics really deserves to be a core subject
in the educational curriculum. Not because it is absolutely
essential that we all know how to solve a quadratic equation;
frankly, when has anyone ever needed to know that? The
essential skill is understanding the power that algebra and
algorithms play in solving such a problem.

I begin the journey to better thinking with one of the most
powerful shortcuts mathematicians have developed: patterns. A
pattern is often the best sort of shortcut. Spot the pattern and
you’ve found the shortcut to continuing the data into the future.
This ability to spot an underlying rule is the basis of
mathematical modeling.

Quite often the role of the shortcut is to understand the
foundational principle that unites a whole slew of seemingly
unrelated problems. The beauty of Gauss’s shortcut is that even
if the teacher tries to make it harder by asking you to add the
numbers up to 1000 or 1,000,000, the shortcut still works. While
adding numbers up one by one would get increasingly time-
consuming, Gauss’s trick is unaffected by an increase in the
number of numbers you're adding up. To add the numbers up to
1,000,000, just pair them up again (1 + 1,000,000, 2 + 999,999...) to
get 500,000 pairs that each add up to 1,000,001. Multiply these
two together (500,000 x 1,000,001) and bingo: you've got your



answer. The tunnel that provides a shortcut through the
mountain is unaffected by the mountain getting taller.

The power of creating and changing language turns out to be
a very effective shortcut. Algebra helps us recognize the
underlying principles behind a whole range of different-looking
problems. The language of coordinates turns geometry into
numbers and often reveals shortcuts that were not visible in the
geometric setting. Creating language is an amazing tool for
understanding. I remember wrestling with an extraordinarily
complex setup that needed many conditions to pin down. My
doctoral supervisor’s suggestion that I “give it a name” was a
revelation—it truly allowed me to shortcut thought.

Whenever 1 mention the idea of the shortcut, invariably
people think I am trying to cheat somehow. The word “cut”
sounds like you could be cutting corners, so it’s important right
from the outset to distinguish between shortcuts and cutting
corners. I'm interested in the clever path to get to the correct
solution. I'm not interested in finding some shoddy
approximation to the answer. I want complete understanding,
but without unnecessary hard work.

That said, some shortcuts are about approximations that are
good enough to solve the problem at hand. In some sense,
language itself is a shortcut. The word “chair” is a shortcut to a
whole host of different sorts of things we can sit on. But it is not
efficient to come up with a different word for every distinct
instance of an example of a chair. Language is a very clever low-
dimensional representation of the world around us that allows
us to efficiently communicate to others and facilitates our path
through the multifaceted world we live in. Without the shortcut
of single words for multiple instances, we would be overwhelmed
by noise.

In mathematics too 1 will reveal how throwing away
information is often essential to finding a shortcut. The idea of
topology is geometry without measurement. If you are on the
London Underground, a map showing how stations are connected
is much more useful for finding your way around London than a
geometrically accurate map. Diagrams are also a powerful
shortcut. Again, the best diagrams discard anything that is
extraneous to navigating the problem at hand. But as I shall



illustrate, there’s often a fine line between a good shortcut and
the dangers of cutting corners.

Calculus is one of humans’ greatest inventions for finding
shortcuts. Many engineers depend on this bit of mathematical
magic to find the optimal solution to an engineering challenge.
Probability and statistics have been a shortcut to knowing a lot
about a huge data set. And mathematics can often help you find
the most efficient path through a complex geometry or tangled
network. One of the staggering revelations I had as I fell in love
with mathematics was its ability to find shortcuts to navigate
even the infinite—a shortcut to get from one end of an infinite
path to the other.

Each chapter begins not with an epigram but a puzzle. Often
these puzzles involve a choice: the long slog or, if you can find it,
the shortcut. Each puzzle has a solution that takes advantage of
the shortcut that is at the heart of that puzzle’s chapter. They
are worth tackling before you read the chapter, as often the
more time you spend battling to get to your destination the
more you appreciate the shortcut when it is finally revealed.

What I have discovered on my own journey is that there are
different sorts of shortcut. Because of this, 1 spend time
highlighting the multiple approaches you might take to the
journey you are about to embark on, and show that you will get
to your destination faster by using the most effective shortcut.
There are shortcuts that are already waiting there in the terrain
for us to take advantage of them; it’s just that you might need a
signpost to point you in the right direction or a map to show you
the way. There are shortcuts that won’t exist if you don’t do a lot
of hard work to carve them out—like the tunnel that takes years
to dig but once there allows everyone else to follow you through
to the other side. There are shortcuts that require totally
escaping the space you are in—the wormhole from one side of
the universe to the other, or the extra dimension that shows how
two things are much closer than you imagine provided you can
step out of the confines of the current world. There are shortcuts
that speed things up, shortcuts that cut down the distance you
need to travel, and shortcuts that reduce the amount of energy
you need to expend. Somewhere there is a saving that is worth
the time to find the shortcut.



But I've also recognized that there are times when the
shortcut misses the point. Maybe you want to take your time.
Maybe the journey is the thing. Maybe you want to expend
energy in an attempt to lose weight. Why go on a walk in Nature
for the day if you curtail the pleasure of the walk by taking a
shortcut home? Why read a novel rather than a synopsis on
Wikipedia? But it’s still good to know you’ve got the option of a
shortcut even if you decide to ignore it.

The shortcut is to some extent about our relationship to
time. What do you want to spend your time doing? Sometimes it
is important to experience something in time and there is little
value to finding a shortcut that cheats you of the feeling.
Listening to a piece of music can’t be shortcutted. It takes time,
But on other occasions life is too brief to spend time getting to
where you want to be. A film can condense a life into ninety
minutes; you don’t want to witness every action of the character
you are following. Taking a flight to the other side of the world is
a shortcut to walking there and means you can begin your
vacation sooner; if you could shorten the flight even further, you
probably would. But there are times when people want to
experience the slow version of getting to their destination.
Pilgrimage abhors the shortcut, for instance. And I never watch
film trailers, because they shortcut the film too much. But it is
still worth having the choice.

Shortcuts in literature are invariably paths that lead to
disaster. Little Red Riding Hood never would have met the wolf
if she hadn’t strayed from the path in search of a shortcut
through the wood. In Bunyan’s Pilgrim’s Progress, those who take a
shortcut around Difficulty Hill get lost and perish. In The Lord of
the Rings Pippin warns that “shortcuts make long delays”
(although Frodo counters that inns make even longer ones).
Homer Simpson swears after his disastrous detour on the way to
Itchy and Scratchy Land, “Let us never speak of the shortcut
again.” The dangers inherent in taking shortcuts are well
summed up in the film Road Trip: “Of course it’s difficult—it’s a
shortcut. If it was easy, it would just be ‘the way.” This book
looks to rescue the idea of a shortcut from these literary tropes.
Rather than the road to disaster, the shortcut is the road to
freedom.



mode of neural processing is to cognitive ability. This mode is
often suppressed when our attention is too focused on the
outside world. The recent surge of interest in mindfulness
suggests the value of stilling the mind as a pathway to
enlightenment. Often it means you prefer to play rather than
work. But play is often the place to foster creativity and new
ideas. It is one of the reasons that the offices of start-ups and
math departments often contain pool tables and board games as
well as desks and computers.

Perhaps society’s disapproval of laziness is a way of
controlling and curtailing those who prefer not to conform. The
real reason the lazy person is regarded with suspicion is that
laziness is the mark of someone not prepared to play by the rules
of the game. Gauss's teacher saw his pupil’s shortcut to doing
hard work as a threat to his authority.

Idleness has not always been shunned. Samuel Johnson very
eloquently argued in favor of laziness: “The Idler... not only
escapes labours which are often fruitless, but sometimes
succeeds better than those who despise all that is within their
reach.” As Agatha Christie admitted in her autobiography,
“Invention, in my opinion, arises directly from idleness, possibly
also from laziness. To save oneself trouble.” Babe Ruth, one of the
best home-run hitters baseball has ever seen, apparently was
motivated to hit the ball out of the stadium because he hated
having to run between bases; when he hit a homer, he could take
his time rounding the bases.

Choosing to Work

I do not wish to imply that all work is bad. Indeed many people
get great value out of the work they do. It defines their identity.
It gives them purpose. But the quality of the work is important.
Generally, the work we find valuable is not a series of tedious,
mindless tasks. Aristotle distinguished between two different
sorts of work: praxis, which is action done for its own sake, and
poiesis, or activity aimed at the production of something useful.
We are happy to look for shortcuts in the second sort of work,
but there seems little point in chasing the shortcut if the



pleasure is in doing the work for its own sake. Most work seems
to fall into the second category. But surely the ideal is to aspire
to work of the first kind. That is where the shortcut aims to take
you. The shortcut is not about eliminating work; it wants to lead
you on a path to meaningful work.

The principle behind the new political movement Fully
Automated Luxury Communism is that with advances in Al and
robotics, machines can take over our menial work, leaving time
for us to indulge in work we find meaningful. Work becomes a
luxury. The cultivation of good shortcuts should be added to the
list of technologies steering us toward a future of work that is
undertaken for the joy of it rather than as a means to an end.
This was Marx’s aim with communism: to remove the difference
between leisure and work. “In a higher phase of communist
society... labour has become not only a means of life but life’s
prime want.” The shortcuts we have created promise to take us
away from what Marx called the “realm of necessity” and lead us
instead into the “realm of freedom.”

But there are some places where you can’t get away from
hard work. How can a lazy person learn a musical instrument?
Write a novel? Climb Everest? Even here, though, 1 shall
illustrate how shortcuts can help you maximize the value of the
hours you put in at your desk or in training. The book is
punctuated by conversations I've had with high achievers to see
whether shortcuts are possible in their professions or if you just
can’t avoid the ten thousand hours of practice that Malcolm
Gladwell says are necessary to get to the top of your profession.
I've been intrigued to find out whether the shortcuts that people
have found resonate with those I've learned in mathematics, or
whether there might be new sorts of shortcuts that I've not been
aware of but which might prompt new modes of thinking in my
own work. But I'm also fascinated by those challenges where no
shortcuts are possible. What is it about certain domains of
human activity that preclude the power of the shortcut? Time
and again, it turns out, the human body is often the limiting
factor. To change or train or push the human body to do new
things quite often takes time and repetition, and there are no
shortcuts to speed up those physical transformations. So as I take
you on the journey through the different shortcuts



mathematicians have discovered, each chapter includes a pit
stop to explore the shortcuts, or lack of them, in different fields
of human activity.

Gauss's schoolroom success at adding the numbers from 1 to 100
using his cunning shortcut fueled his desire to pursue his
mathematical talents. His teacher, Herr Biittner, wasn’t up to
the task of cultivating the budding young mathematician, but he
had an assistant, seventeen-year-old Martin Bartels, who was
equally passionate about mathematics. Although Bartels had
been employed to cut quill pens for the students and assist them
in their first attempts at writing, he was more than happy to
share his mathematical texts with the young Gauss. Together
they explored the mathematical terrain, enjoying the shortcuts
that algebra and analysis provided to reach their destinations.

Bartels soon realized that Gauss needed a more challenging
environment to test his skills. He managed to get Gauss an
audience with the Duke of Brunswick. The Duke was so taken by
the young Gauss that he agreed to become his patron, funding
his education at the local college and then at the University of
Gottingen. It was here that Gauss began to learn some of the
great shortcuts that mathematicians had developed over the
centuries and which would soon become the springboard for his
own exciting contributions to mathematics.

This book is my curated guide through two thousand years of
better thinking. It has taken me decades to learn how to
navigate these cunning tunnels or hidden passes through the
landscape, and it took mathematicians through history
thousands of years to piece them together. But in this book I've
tried to distill some of these clever strategies for attacking the
complex problems we encounter in everyday life. This is your
shortcut to the art of the shortcut.



CHAPTER 1

THE PATTERN SHORTCUT

Puzzle: You have a flight of stairs in your house with
10 steps. You can take one or two steps at a time.
For example, you could do 10 one-steps to get to
the top, or 5 two-steps, or combinations of one-
steps or two-steps. How many different possible
combinations are there to get to the top?

You could do this the long way and try to find all
the combinations, running up and down the stairs.
But how would our young Gauss do it?

WANT TO KNOW A shortcut to getting an extra 15 percent salary
for doing exactly the same work? Or perhaps a shortcut to
growing a small investment into a large nest egg? How about a
shortcut to understanding where a stock price might be heading
in the coming months? Do you feel like you are sometimes
reinventing the wheel again and again, yet sense there is
something that connects all these different wheels you are
making? What about a shortcut to help you with your terrible
memory?

I'm going to dive in and share with you one of the most
potent shortcuts that humans have discovered. It is the power of
spotting a pattern. The ability of the human mind to glean a
pattern in the chaos around us has provided our species with the
most amazing shortcut: knowing the future before it becomes the
present. If you can spot a pattern in data describing the past and
the present, then by extending that pattern further you have
the chance to know the future. No need to wait. The power of the
pattern is for me the heart of mathematics and its most effective
shortcut.



Patterns allow us to see that even though the numbers might
be different, the rule for how they grow can be the same.
Spotting the rule underlying the pattern means that I don’t have
to do the same work every time I encounter a new set of data.
The pattern does the work for me.

Economics is full of data with patterns that, if read properly,
can guide us to a prosperous future—although, as I shall explain,
some patterns can be misleading, as the world witnessed with
the financial crash of 2008. Patterns in the number of those
falling ill with a virus mean we can understand the trajectory of
a pandemic and intervene before it kills too many people.
Patterns in the cosmos allow us to understand our past and our
future. Looking at the numbers that describe the way stars are
moving away from us has revealed a pattern that tells us our
universe began in a big bang and will end with a cold future
called heat death.

It was this ability to sniff out the pattern in astronomical
data that launched the aspiring young Gauss onto the world
stage as the master of the shortcut.

Planetary Patterns

On New Year’s Day, 1801, an eighth planet was detected orbiting
around the sun somewhere between Mars and Jupiter.
Christened Ceres, its discovery was regarded by everyone as a
great omen for the future of science at the beginning of the
nineteenth century.

But excitement turned to despair a few weeks later, when
the small planet (which was in fact just a tiny asteroid)
disappeared from view near the sun, lost among a plethora of
stars. The astronomers had no idea where it had gone.

Then news arrived that a twenty-four-year-old from
Brunswick had announced that he knew where to find this
missing planet. He told the astronomers where to point their
telescopes. And lo, as if by magic, there was Ceres. The young
man was none other than my hero Carl Friedrich Gauss.

Since his classroom successes at age nine, Gauss had gone on
to make numerous fascinating mathematical breakthroughs,



Gauss had discovered the rather extraordinary fact that
every number can be written as three triangular numbers added
together—for example, 1796 = 10 + 561 + 1225. This kind of
observation can lead to powerful shortcuts because rather than
proving that something is true for all numbers, it might be
enough to prove it for triangular numbers and then exploit
Gauss’s discovery that every number is the sum of three
triangular numbers.

Here's another challenge. What’s the next number in this
sequence?

1,2,4,8, 16...

Not too tricky: 32 is the next number. This sequence is
doubling each time. Called exponential growth, this pattern
controls the way a lot of things can grow, and it’s important to
understand how this kind of pattern evolves. For example, the
sequence looks quite innocent to start with. That's certainly
what the king of India thought when he agreed to pay the
creator of the game of chess the price he demanded for his game.
The inventor had asked for a single grain of rice to be placed on
the first square of the chessboard and then to double the number
of grains of rice on each subsequent square on the board. The
first row looked quite innocent, with only a total of 1 +2 + 4 + 8 +
16 + 32 + 64 + 128 = 255 grains of rice. Barely enough for a piece
of sushi.

But as the king’s servants added more and more rice to the
board, they very quickly ran out of supplies. To get to the
halfway point needs about 280,000 kg of rice. And that’s the easy
half of the board. How many grains of rice does the king need in
total to pay the inventor? At first sight this looks like one of
those problems Herr Biittner might give his poor students. There
is the hard way to do this: add up 64 different numbers. Who
wants to do such hard work? How might Gauss go about this sort
of challenge?

There is a beautiful shortcut to making this calculation, but
at first sight the shortcut looks like I'm making life harder. Often
shortcuts begin by seeming to head in the opposite direction



from your destination. First I'm going to give the total grains of
rice a name: x. It’s one of our favorite names in mathematics, and
is in itself a powerful shortcut in the mathematician’s arsenal, as
I shall explain in Chapter 3.

I am going to kick off by doubling the amount that I am
trying to work out:

2x(1+2+4+8+16+..+ 202+ 203)

This looks like it’s made life more difficult. But stick with me.
Let’s multiply this out:

=2+4+8+16+32+..+203 4204

Now comes the smart bit. [ am going to take x away from this.
At first sight that looks like I've just got us back to where we
started: 2x - x = x. So how does that help? A bit of magic happens
when I replace 2x and x by the sums I've got:

2x-x=(2+4+8+16+32+.+2%+ 204
—(1+2+4+8+16+..+2024203)

Most of these terms cancel! There is just the 294 in the first
part and 1 in the second part that doesn’t get canceled. So all 1
am left with is

x=2x-x=264-1

Instead of lots of calculating, all 1 need to do is this one
calculation to discover that the number of grains of rice that the
king needed in total to pay the inventor of chess is

18,446,744,073,709,551,615

That’s more rice than has been produced on our planet in



the last millennium. The message here is that sometimes you can
play hard work off against hard work and be left with something
that is much simpler to analyze.

As the king learned to his cost, doubling starts off looking
innocent and then ramps up very quickly. This is the power of
exponential growth. The effect is felt by those who take out loans
to cover debt. At first sight the offer from a company of a $1,000
loan at 5 percent interest each month might seem like a
lifesaver. After one month you only owe $1,050. But the trouble
is that each month this gets multiplied by 1.05 again. After two
years you already owe $3,225. By the fifth year, the debt is
$18,679. Great for the person who's lending money to you, but
not so great for the borrower.

The fact that people in general don’t understand this
pattern of exponential growth means that it can be a shortcut to
penury. Payday loan companies have successfully exploited this
inability to read the pattern into the future to suck vulnerable
people into a contract that initially looks quite attractive. The
dangers of doubling and the path it takes us down are important
to know before we find ourselves lost and helpless with no way
back to safety.

We all learned the frightening rate of growth of the
exponential to our cost too late with the pandemic of 2020. The
number of people infected doubled every three days on average.
And this resulted in healthcare systems being overwhelmed.

On the other hand, the power of the exponential can also
help to explain why there are (probably) no vampires on earth.
Vampires need to feed on the blood of a human being at least
once a month to survive. The trouble is that once you have
feasted on the human, the victim too becomes a vampire. So next
month there are twice as many vampires in the search for
human blood to feast on. The world’s population is estimated to
be 6.7 billion. Each month the population of vampires doubles.
Such is the devastating effect of doubling that within thirty-
three months a single vampire would end up transforming the
world’s population into vampires.

Just in case you ever meet a vampire, here is a useful trick
from the mathematician’s arsenal to ward off the blood-sucking
monster. In addition to the classics—garlic, mirrors, and crosses



—one rather unusual way to ward off a vampire is to scatter
poppy seeds around his coffin. Vampires, it turns out, suffer from
a condition called arithmomania: a compulsive desire to count
things. Theoretically, before Dracula finishes trying to count how
many poppy seeds are scattered around his resting place, the
sun will have driven him back to his coffin.

Arithmomania is a serious medical condition. The inventor
Nikola Tesla, whose studies into electricity gave us alternating
current, suffered from the syndrome. He was obsessed with
numbers divisible by 3: he insisted on 18 clean towels a day and
counted his steps to make sure they were divisible by 3. Perhaps
the most famous fictional depiction of arithmomania is the
Muppets’ Count von Count, a vampire who has helped
generations of viewers in their first steps along the
mathematical path.

Urban Patterns

Here’s a slightly more challenging sequence of numbers. Can you
sniff out the pattern here?

179, 430, 1033, 24738, 5949...

The trick is to divide each number by the number before it.
This reveals that the multiplying factor is 2.4. Still exponential
growth, but what is intriguing is what these numbers actually
represent: patents issued in cities of population size 250,000,
500,000, 1 million, 2 million, 4 million, and so on. It turns out
that when you double the population you don’t simply get a
doubling of the number of patents, as you might expect. Larger
cities seem to produce more creativity. The doubling of
population seems to add an extra 40 percent to creativity! And
it’s not just patents that seem to have this pattern of growth,

Despite the huge cultural differences between Rio de
Janeiro, London, and Guangzhou, there is a mathematical
pattern that connects all cities across the world from China to
Brazil. We are used to describing cities by their geography and
history, traits that highlight the individuality of a place such as



New York or Tokyo. But those facts are mere details, interesting
anecdotes that don’t explain very much. Look at the city through
the eyes of a mathematician, though, and a universal character
begins to emerge that transcends political and geographic
boundaries. This mathematical perspective unveils the appeal of
the city... and it proves that bigger is better.

The mathematics reveals that the growth of each resource in
a city can be understood by a single magic number particular to
that resource. Each time the population of a city doubles, the
socioeconomic factors scale not simply by doubling but by
doubling and a bit more. Rather remarkably, for many resources
that bit more is around 15 percent. For example, if you compare
a city with a population of 1 million people to a city of 2 million,
then instead of the larger city having twice as many restaurants,
concert halls, libraries, and schools, you find an extra 15 percent
on top of what you'd expect from simply doubling the numbers.

Even salaries are affected by this scaling. Take two
employees doing exactly the same job but in different-sized
cities. The employee living in the city with a population of 2
million will on average have a salary 15 percent higher than the
salary of the employee in the city with 1 million inhabitants.
Double the city size again to 4 million, and the salary gets
increased by another factor of 15 percent. The bigger the city,
the more you’ll get paid for doing exactly the same job.

It’s spotting a pattern like this that can be the key to a
business getting the most out of what it puts in. Cities come in
lots of shapes and sizes. Understanding that the shape is
irrelevant but the size matters means that a company can get
much more for its buck by simply relocating to a city double the
size.

This strange universal scaling was discovered not by an
economist or a social scientist but by a theoretical physicist
applying the same mathematical analysis that is usually applied
in the search for the fundamental laws that underpin the
universe. Geoffrey West was born in the United Kingdom, and
after studying physics at Cambridge, he went to do research at
Stanford exploring properties of fundamental particles. But it
was his becoming president of the Santa Fe Institute that would
be the catalyst for his discoveries about urban growth. The Santa



down the line. They've already shaken citizen 1’s hand, so they
end up shaking N - 2 hands. As we go down the line, each citizen
does one less handshake. The total number of handshakes is the
sum from 1 to N - 1. Hello again! This is the calculation that
Gauss was asked to perform. His shortcut produces a formula for
this number:

1/2x(N-1)xN

What happens to this connectivity when I double N? The
number of handshakes doesn’t double but goes up by a factor of 2
squared—that is, 4. The number of handshakes is proportional to
the square of the number of inhabitants.

This is a great example of why mathematics can spare us
from having to continually reinvent the wheel. Although 1 was
asking a completely different question about connections across
a network, I found that from the analysis of the triangular
numbers I already had the tools to know how this number grows.
Time and again the characters might change, but the script
remains the same. Understand the script and you've got a
shortcut to knowing the behavior of any character inserted into
the drama. In this case, the number of connections between
citizens grows quadratically with the number of inhabitants.

Of course, there is no way that every inhabitant will know
every other citizen in the town. A more conservative measure
would be that they know the citizens in their local
neighborhood. This would scale linearly; the overall size doesn’t
really matter.

It looks like real cities are somewhere in between the
extreme case and the most limited case. A citizen has all their
local connections plus a certain degree of longer-range
connections across the city. It seems that the additional long-
range connections are the ones that are causing the growth in
connections, resulting in the extra 15 percent as the population
doubles. As I will explain later in the book, this sort of network
arises in many different scenarios and turns out to be a very
efficient setup for creating shortcuts across the network.



Misleading Patterns

Although patterns are incredibly powerful, we should still be
careful with how we use them. You can set off on a path and
think you know where you are heading. But sometimes that path
can veer off in a weird and unexpected direction. Take the
sequence that I challenged you with earlier in this chapter:

1,2,4,8,16..

What if I told you that 31, not 32, was the next number in
this sequence?

If I take a circle, add points on the edge of the circle, and
join up all the points with lines, what is the largest number of
regions the circle gets divided into? If I have just one point on
the circle, then there are no lines and I've got just 1 region. If [
add a point, then I can join the two points to get 2 regions,
divided by the line I've drawn. Now add a third point. Draw in
all the lines connecting points, and I have a triangle figure with
three sectors of the circle surrounding the triangle: 4 regions.

Figure 1.1. The first five circle division numbers

If I keep doing this, then it seems like a pattern begins to
emerge. Here is the data showing the number of regions as I add
another point on the circle:

1, 2, 4,8, 16...

A good guess at this point would be that adding a point
doubles the number of regions. The trouble is the pattern breaks
down as soon as I add a sixth point on the edge of the circle. No
matter how hard you try, the maximum number of regions cut
out by the lines is 31. Not 32!



Figure 1.2. The sixth circle division
number

There is a formula that will give you the number of regions,
but it is a little more complicated than simple doubling. If there
are N points on the circle, then the maximum number of regions
you’ll get when you join the points is

1/24 (N* - 6N3 + 23N? - 18N + 24)

The message here is that it is still important to know what
your data is describing and not to rely simply on the numbers
themselves. Data science is dangerous if it is not combined with a
deep understanding of where the data comes from.

Here is another warning about this shortcut. What is the
next number in this sequence?

2,8,16, 24, 32...

Lots of powers of 2 in there. But a slightly unusual 247 Well,
if you could identify 47 as the next number in this sequence,
then I recommend you buy a lottery ticket next Saturday. These
were the winning lottery tickets for the UK National Lottery on
September 26, 2007. We are so addicted to looking for patterns
that we often see them in places where we can’t expect a
pattern. Lottery tickets are random. No patterns. No secret



formulas. No shortcuts to becoming a millionaire. But that said, I
shall explain in Chapter 8 that even random things have
patterns in them that we can exploit as potential shortcuts.
When it comes to randomness, the shortcut is to stand back and
take the long view.

The concept of pattern can be used as a shortcut to
understanding when something is truly random or not, and it
relates to how memorable a sequence of numbers is.

A Shortcut to a Good Memory

Given that there is so much data being spewed out every second
on the internet, companies are on the lookout for clever ways to
store it. Finding patterns in the data actually offers a way to
compress the information such that you don’t need as much
space to store it. This is the key behind compression technologies
such as JPEG and MP3.

Take a picture that is just black and white pixels. The idea is
that in any picture there might be a large swath of white pixels
in one corner. Instead of recording each pixel as white and using
as much memory to store the picture as there is data in the
image, you could take a potential shortcut. Record instead the
location of the boundary of the region and just add the
instruction to fill in the region with white pixels. The bit of code
that I can write to do this will in general be much smaller than
recording that each pixel in this region is white.

Any patterns that you can discern in the pixels can be
exploited to write code that will record the picture using far less
memory than saving the data pixel by pixel. For example, take a
chessboard. The image has a very obvious pattern, which allows
us to write code that simply says repeat white-black 32 times
across the board. Even if you had an enormous chessboard, the
code would not grow any bigger.

I believe patterns are also key to how humans store data. I
must admit that I have a very bad memory. I think it was one of
the reasons [ was drawn to mathematics. Mathematics has always
been my weapon against my terrible memory for names and
dates and random information that I can make no logical sense



of. I haven’t a clue on what date Queen Elizabeth I died, and if
you tell me it was in 1603, I'll have forgotten it ten minutes
later; in French I always had difficulty recalling all the different
forms of the irregular verb aller; in chemistry, was it potassium
or sodium that burns purple? But in mathematics 1 could
reconstruct everything from the patterns and logic I'd identified
in the subject. Spotting patterns replaced the need for a good
memory.

I suspect this is one of the ways our brains store memories.
Memory depends on identifying pattern and structure to help
our brains store a condensed program from which to regenerate
the stored memory. Here's a little challenge. Stare at the
squiggles contained in the following 6 x 6 grid. Then close the
book. Can you reproduce the grid from memory? The key is not
to try to remember each of the 36 squares in the image
individually but to find a pattern that helps you to generate the
image.



have chosen the first two-step in position 1 and the second in
position 2, or I could have done it in the other order. The result
would be the same. So the total number now is 8 x 7 / 2 = 28,
There is actually a mathematical name for this number. It is “8
choose 2,” and it is denoted by

H

q
\ <)

More generally, the way of choosing 2 numbers from N
numbers is given by the formula 1/2 (N - 1) N, which is the same
formula Gauss came up with for the triangular numbers. There’s
that wheel we invented showing up again! There is a way to
translate the question of choosing 2 numbers from N numbers
into the challenge of calculating the triangular numbers. I will
explain in Chapter 3 how changing one problem into another can
often be a great shortcut to solving a problem.

These tools for calculating choices, called binomial
coefficients, were actually some of the formulas that Gauss and
his classroom assistant pored over in their algebra books at
school together.

But to solve this puzzle, next I will have to calculate how to
choose 3 locations out of a choice of 7 to place our 3 two-steps up
the staircase. Although this seems like a good systematic way to
build the possibilities up, it is going to require us to generalize
these choice functions. It’s beginning to look like a hard slog
heading along this path. It doesn’t really feel like a shortcut.

So here’s a better shortcut exploiting what I have shown you
in this chapter. With puzzles like this, I find a very powerful
strategy is to consider a smaller number of steps and see if there
is a pattern in the way the numbers are falling out.

Here are the possibilities for staircases with 1, 2, 3, 4, and 5
steps, which can be worked out quickly by hand:

1step:1

2 steps: 11 or 2

3 steps: 111 or 12 or 21

4 steps: 1111 or 112 or 121 or 211 or 22



5steps: 11111 or 1112 or 1121 or 1211 or 2111 or 122 or 212
or 221

So the number of possibilities is going 1, 2, 3, 5, 8... Now, you
might already have spotted a pattern. You get the next number
by adding the two previous numbers together. You might even
know a name for these numbers—the Fibonacci numbers, named
after the twelfth-century mathematician who discovered that
they are the key to the way things grow in the natural world.
Petals on flowers, pine cones, shells, populations of rabbits—the
numbers all seemed to follow the same pattern.

Fibonacci discovered that Nature was using a simple
algorithm in order to grow things. The rule of adding the two
previous numbers together was Nature’s shortcut for building
complex structures like a shell or pine cone or flower. Each
organism just uses the two last things it built as ingredients for
the next move.

21
34

as

Q13

Figure 1.4. How to use the Fibonacci numbers to grow a

spiral

Using a pattern to evolve structures is a key shortcut for
Nature. Take, for example, the way Nature builds a virus. Viruses
come in very symmetrical structures. This is because symmetry
requires a simple algorithm to implement to make the structure.
If a virus is in the shape of symmetrical dice, the DNA that
replicates the molecule just has to make several copies of the



same protein that will make up the faces and then the same rule
is used across the virus to build its structure. A pattern makes
building the virus fast and efficient—and that’s part of what can
make it so deadly.

But are we really sure just from this small amount of data
that the Fibonacci rule is the secret to climbing the stairs?

Actually, the rule explains exactly how to work out the next
possibilities with 6 steps on the staircase. Take all the possible
steps up to the fourth step and then add a two-step on the end.
Or all the possible routes to the fifth step and add a one-step
onto these. This gives all the ways up to the sixth step. It is a
combination of the two previous numbers in the sequence.

The answer to the puzzle is to calculate the 10th number in
the sequence:

1, 2, 3,5, 8,13, 21, 34, 55, 89

There are 89 different routes. The pattern is the shortcut to
knowing how many ways to get to the top of the staircase. And
the pattern will help crack this conundrum even if there are 100
or 1000 steps instead of just 10.

Although these numbers are named after Fibonacci, he
wasn’t the first to discover them. In fact, they were first
discovered by Indian musicians. Tabla players are interested in
showing off the different rhythms they can make on their drum.
As they explored the different sorts of rhythms they could make
from long and short beats, it led them to the Fibonacci numbers.
If the long beat is twice the length of the short beat, then the
number of rhythms the tabla player can cook up is the same
answer as climbing the staircase. Each one-step corresponds to a
short beat, each two-step to a long beat. The number of rhythms
the drummer can make of a given duration is the same answer as
the number of ways to climb the staircase. So the number of
rhythms is given by the Fibonacci rule. And the rule even gives
the tabla player an algorithm to construct them out of the
previous shorter rhythms.

There is something exciting here about seeing the same
pattern explaining so many different things. For Fibonacci, it



was the way Nature grows things. For the Indian tabla player,
the pattern generates rhythms. The pattern explains the
number of ways to climb the staircase in ones and twos. There
are some in the financial sector who even believe that these
numbers can be used to predict when a stock that is falling will
eventually bottom out and start rising again. It is this power of
revealing the underlying structure behind different facades that
can be so powerful as a shortcut. One pattern solves a multitude
of very different-looking challenges. When you are faced with a
new problem, it is often worth checking whether it might be an
old problem in a new disguise that you already have found a way
to solve.

Connecting Shortcuts

I can’t resist adding a little coda to this story, because it makes
use of the earlier hard work. My first strategy for calculating the
number of routes to the top of the staircase started leading me
into the question of how to choose 3 things from a group of 7
objects. Mathematicians actually found a clever way to shortcut
calculating all those choices I was trying to make. It’s something
called Pascal’s triangle (although, like with the Fibonacci
numbers, it turns out that Pascal was beaten to the discovery by
the ancient Chinese).

Y

Figure 1.5.

ascal's triangle

The triangle has a rule similar to the Fibonacci rule, but you
build the numbers in the layers below by adding the two
numbers that sit above that number. The table is easy to build
using this rule. But the great fact is that it contains all the



choice numbers I was after. Suppose I run a pizza restaurant and
I want to boast about the number of different pizzas I offer. If I
want to know the number of ways of choosing 3 toppings from a
choice of 7 different toppings, then I go to the (3 + 1)th number
in the (7 + 1)th row: 35. That is my shortcut to knowing that
there are 35 different pizzas I can make. In general, to choose m
things from n things you go to the (m + 1)th number in the (n +
1)th row. But because these choice numbers were one way to
solve our staircase problem, this means that the Fibonacci
numbers are actually hiding inside Pascal’s triangle. Add up
numbers in diagonal lines through the triangle and the
Fibonacci numbers appear.

Fibonouy anabers

Figure 1.6. The Fibonacci numbers,
triangular numbers, and powers of
2 inside Pascal’s triangle

This kind of connection is one of the things that I love about
mathematics. Who would have thought that the Fibonacci
numbers were hiding inside Pascal’s triangle? Yet by looking at
the puzzle in two different ways I've found a secret tunnel, a
shortcut, that links these two seemingly different corners of the
mathematical world! And look how the triangular numbers and
also the powers of 2 are all hidden inside this triangle. The
triangle numbers are sitting along one of the diagonals through
the triangle, while you get the powers of 2 by adding up all the
numbers in each of the rows. Mathematics is full of these strange
tunnels providing shortcuts that we can exploit to change one
thing into another.



PIT STOP 1

MUSIC

A FEW YEARS AGO, | DECIDED to learn to play the cello. But it is

taking me longer than | had hoped, so | am eager to sniff out
any cunning shortcuts that might help. If mathematics is the
science of patterns then music is the art of patterns. Could
exploiting these patterns be the key?

The cello isn't the first instrument | learned to play. That
same year that Mr. Bailson shared the story of the young
Gauss with my math class, the music teacher at my school
asked the class whether anyone wanted to learn a musical
instrument. Three of us put up our hands. At the end of the
lesson the teacher led us into the instrument storeroom. It was
pretty bare except for three trumpets stacked on top of each
other. So the three of us ended up playing the trumpet.

| don’t regret the choice. The trumpet is a wonderfully
flexible instrument. | cut my teeth playing for the local town
band, participated in the local county orchestra, even tried my
hand at a bit of jazz. But as | sat counting bars of rest in the
orchestra | would stare across at the cellists in front of me, who
seemed to be playing all the time. | must admit | was a little
envious.

As an adult, | decided that | would buy a cello with a bit of
money that my godmother left me in her will. | would use what
was left over to take some lessons. But | was slightly
concerned whether I'd be up to learning a new instrument. As a
child, the time it took to learn an instrument didn’t bother me. |
was at school and we had years of learning ahead of us. But as
adults we have fewer years ahead of us and so become much
more impatient. | wanted to be able to play the cello now, not in
seven years' time. Was there any shortcut to learning an
instrument?



Malcolm Gladwell's book Outliers popularized the theory
that to become an expert in anything requires putting in a
minimum of 10,000 hours of practice. It controversially
proposed that this might be enough to become internationally
recognized in your field, although the team that produced the
original research said that this was a misinterpretation of their
work. But was there really no way | could shortcut the 10,000
hours of practice before | could play a Bach cello suite on the
stage? An hour a day would mean more than twenty-seven
years of practice!

| decided to seek the advice of Naomi Clein, one of my
favorite cellists of all time. Clein first came to international
attention as one of the youngest winners of the prestigious BBC
Young Musician of the Year competition in 1994, when she
performed the Elgar cello concerto. What had been her
trajectory to international fame?

Clein started playing the cello at the age of six but didn’t get
serious about it until a few years later. “By fourteen or fifteen,”
she told me, “I was trying to do four to five hours a day. There
are some who do much more. There are kids out there doing
about eight hours a day practice when they are sixteen. There
are colleagues from places like Russia or the Far East where
they’re put into this disciplined mode of hard work much earlier
than we are in the West.”

This level of discipline, Clein explained, was necessary to
achieve the motor memory and control that mastering an
instrument requires: “There’s certainly a minimum number of
hours you need to put in when you’re learning an instrument,
three or four hours a day in your teenage years, which you
have to cover, because you physically just don’t get the motor
mechanics otherwise.”

Take Jascha Heifetz, for example. Heifetz was one of the
greatest violinists of all time. Famously, he practiced scales
every morning for most of his life, thousands of hours in total,
just on scales.

In this way, cellists are similar to athletes. You can’t run a
marathon or win a 100-meter sprint without putting in the hours
to physically train your body. The physical aspect of tuning the
body and mind so that it can play passages at speed requires



