Thmkmg about

l//_

aner ¢

‘ \“\ / “—gﬂl‘ﬁ J Chaaff ‘~

Y th a Foreword .by
.] ‘.

Paul Davies

\% World Scientific

Thinking about

U/

Essays on Complexity, 1970 - 2007

Gregory J Chaitin

1BM T J Watson Research Center, USA

With a Foreword by Paul Davis

w World Scientific

NEW JERSEY « LONDON -« SINGAPORE + BENING + SHANGHAI + HONG KONG + TAIPEI « CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Author’s photograph courtesy of Jacqueline Meyer.
For additional copyright information, see the Acknowledgements at the end of the book.

THINKING ABOUT GODEL AND TURING
Essays on Complexity, 1970-2007
Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-270-895-3
ISBN-10 981-270-895-2

ISBN-13 978-981-270-896-0 (pbk)
ISBN-10 981-270-896-0 (pbk)

Printed in Singapore.

Contents

Introductory note 1

On the difficulty of computations
IEEE Transactions on Information Theory, 1970 3

Information-theoretic computational complexity
IEEE Transactions on Information Theory, 1974 17

Randomness and mathematical proof
Scientific American, 1975 31

Godel’s theorem and information
International Journal of Theoretical Physics, 1982 47

Randommness in arithmetic
Scientific American, 1988 65

Randomness in arithmetic and the decline & fall of reductionism
in pure mathematics
Bulletin of the European Association for Theoretical Computer Science, 1993 75

A century of controversy over the foundations of mathematics
Calude & Paun, Finite versus Infinite, 2000 99

A century of controversy over the foundations of mathematics
Complexity, 2000 129

Metamathematics and the foundations of mathematics
Bulletin of the European Association for Theoretical Computer Science, 2002 153

xvil

xviil Thinking about Godel & Turing

Paradoxes of randomness
Complexity, 2002

Two philosophical applications of algorithmic information
theory

Lecture Notes in Computer Science, 2003

On the intelligibility of the universe and the notions of
simplicity, complexity and irreducibility

Hogrebe & Bromand, Grenzen und Grengziiberschreitungen, 2004

Leibniz, information, math & physics
Loffler & Weingartner, Wissen und Glauben, 2004

Leibniz, randomness & the halting probability
Mathematics Today, 2004

Complexity & Leibniz

Académie Internationale de Philosophie des Sciences, Tenerife, 2005

The limits of reason
Scientific American, 2006

How real are real numbers?

International Journal of Bifurcation and Chaos, 2006

Epistemology as information theory: From Leibniz to
Collapse: Journal of Philosophical Research and Development, 2006

Is incompleteness a serious problem?
Lolli & Pagallo, La complessita di Gédel, 2007

Speculations on biology, information & complexity

Bulletin of the European Association for Theoretical Computer Science, 2007

How much information can there be in a real number?

International Journal of Bifurcation and Chaos, 2007

The halting probability (2: Irreducible complexity in pure
mathematics
Milan Journal of Mathematics, 2007

169

189

201

227

241

247

251

267

281

299

303

313

319

Contents X1X

The halting probability (2: Concentrated creativity

Obrist, Formulas for the T'wenty-First Century, 2007 333
List of publications 335
Acknowledgements 343

About the author 347

This page intentionally left blank

Introductory note

How should this book be read? Well, the articles in it are independent, self-
contained pieces, and I prefer to let readers wander through, having their own
thoughts, exploring on their own, rather than offer a guided tour. In other
words, I will let the individual essays stand on their own, unintroduced. And
there is no need to read this book from cover to cover. Just read whatever
strikes your fancy, enjoy whatever catches your eye.

However, if you do read this book from cover to cover in chronological
order, you will see that the papers in it all deal with the same problem,
they attempt to answer the same question: “What is the meaning of Gaodel’s
incompleteness theorem?” Of course, my point of view changes and develops
over time. Themes enter and disappear, but there is a central spine that never
varies, a single thread that ties it all together. It’s one train of thought, on
different aspects of the same topic.

For those of you who would like a historical perspective, I have in fact put
together a timeline explaining the evolution of my ideas. It’s called “Algorith-
mic information theory: Some recollections.” This, however, is a technical
paper, not a popular account intended for the general reader. This timeline
can be found in the festschrift volume assembled by Cristian Calude, Ran-
dommness and Complezity, from Leibniz to Chaitin (World Scientific, 2007).

The original sources of the papers in this collection are given in the table
of contents, but more detailed information, including copyrights, appears in
the Acknowledgements at the end of the book. And for those of you who
would like to know where to go for more information on particular topics, I
have included a List of publications with most of my technical and non-
technical papers and books and some interviews.

This page intentionally left blank

On the difficulty of
computations

Two practical considerations concerning the use of computing machinery are
the amount of information that must be given to the machine for it to per-
form a given task and the time it takes the machine to perform it. The size
of programs and their running time are studied for mathematical models of
computing machines. The study of the amount of information (i.e., number
of bits) in a computer program needed for it to put out a given finite binary
sequence leads to a definition of a random sequence; the random sequences of
a given length are those that require the longest programs. The study of the
running time of programs for computing infinite sets of natural numbers leads
to an arithmetic of computers, which is a distributive lattice. [This paper was
presented at the Pan-American Symposium of Applied Mathematics, Buenos
Aires, Argentina, August 1968.]

Section 1

The modern computing machine sprang into existence at the end of World
War II. But already in 1936 Turing and Post had proposed a mathematical
model of computing machines (figure 1).!
computing machine that Turing and Post proposed, commonly referred to as
the Turing machine, is a black box with a finite number of internal states.
The box can read and write on an infinite paper tape, which is divided into
squares. A digit or letter may be written on each square of the tape, or the
square may be blank. Each second the machine performs one of the following

The mathematical model of the

!Their papers appear in Davis [1]. As general references on computability theory we
may also cite Davis [2]-[4], Minsky [5], Rogers [6], and Arbib [7].

4 Thinking about Godel & Turing

0 1A

TAPE

BrLack Box

Figure 1. A Turing-Post machine

actions. It may stop, it may shift the tape one square to the right or one
square to the left, it may erase the square on which the read-write head
is positioned, or it may write a digit or letter on the square on which the
read-write head is positioned. The action it performs is determined solely
by the internal state of the black box at the moment, and the current state
of the black box is determined solely by its previous internal state and the
character read on the square of the tape on which its read-write head was
positioned.

Incredible as it may seem at first, a machine of such primitive design can
multiply numbers written on its tape, and can write on its tape the successive
digits of 7. Indeed, it is now generally accepted that any calculation that a
modern electronic digital computer or a human computer can do, can also
be done by such a machine.

Section 11

How much information must be provided to a computer in order for it to
perform a given task? The point of view we will present here is somewhat
different from the usual one. In a typical scientific application, the computer
may be used to analyze statistically huge amounts of data and produce a
brief report in which a great many observations are reduced to a handful of
statistical parameters. We would view this in the following manner. The
same final result could have been achieved if we had provided the computer
with a table of the results, together with instructions for printing them in
a neat report. This observation is, of course, ridiculous for all practical
purposes. For, had we known the results, it would not have been necessary
to use a computer. This example, then, does not exemplify those aspects of

On the difficulty of computations 5

computation that we will emphasize.

Rather, we are thinking of such scientific applications as solving the
Schrédinger wave equation for the helium atom. Here we have no data, only
a program; and the program will produce after much calculation a great deal
of printout. Or consider calculating the apparent positions of the planets as
observed from the earth over a period of years. A small program incorporat-
ing the very simple Newtonian theory for this situation will predict a great
many astronomical observations. In this problem there are no data—only a
program that contains, of course, a table of the masses of the planets and
their initial positions and velocities.

Section III

Let us now consider the problem of the amount of information that it is
necessary to provide to a computer in order for it to calculate a given finite
binary sequence. A computing machine is defined for these purposes to be a
device that accepts as input a program, performs the calculations indicated to
it in the program, and finally puts out the binary sequence it has calculated.
In line with the mathematical theory of information, it is natural for the
program to be viewed as a sequence of bits or 0’s and 1’s. Furthermore, in
computer engineering all programs and data are represented in the machine’s
circuits in binary form. Thus, we may consider a computer to be a device
that accepts one binary sequence (the program) and emits another (the result
of the calculation).

011001001 —-CoOMPUTER—1111110010001100110100

As an example of a computer we would then have an electronic digital com-
puter that accepts programs consisting of magnetized spots on magnetic tape
and puts out its results in the same form. Another example is a Turing ma-
chine. The program is a series of 0’s and 1’s written on the machine’s tape at
the start of the calculation, and the result is a sequence of 0’s and 1's written
on its tape when it stops. As was mentioned, the second of these examples
can do anything that the first can.

6 Thinking about Godel & Turing

Section IV

We are interested in the amount of information that must be supplied to a
computer M in order for it to calculate a given finite binary sequence S. We
may now define this as the size or length of the smallest binary sequence that
causes the machine M to calculate S. We denote the length of the shortest
program for M to calculate S by L(M, S). It has been shown that there is a
computing machine M that has the following three properties.?

1) L(M,S) <k + 1 for all binary sequences S of length k.

In other words, any binary sequence of length £ can be calculated by
this computer M if it is given an appropriate program at most k& + 1 bits
in length. The proof is as follows. If no better way to calculate a binary
sequence occurs to us, we can always include the binary sequence as a table
in the program. This computer is so designed that we need add only a single
bit to the sequence to obtain a program for computing it. The computer M
emits the sequence S when it is given the program SO0.

2) Those binary sequences S for which L(M,S) < j are fewer than 27 in
number.

Thus, most binary sequences of length k require programs of about the
same length &, and the number of sequences that can be computed by smaller
programs decreases exponentially as the size of the program decreases. The
proof is as follows. There are only 27 — 2 binary sequences less than j in
length. Thus, there are fewer than 27 programs less than j in length, for each
program is a binary sequence. At best, a program will cause the computer
to calculate a single binary sequence. At worst, an error in the program
will trap the computer in an endless loop, and no binary sequence will be
calculated. As each program causes the computer to calculate at most one
binary sequence, the number of sequences calculated must be smaller than the
number of programs. Thus, fewer than 27 binary sequences can be calculated
by means of programs less than j in length.

3) For any other computer M’ there exists a constant ¢(M’) such that for
all binary sequences S, L(M,S) < L(M', S) + ¢(M").

2Solomonoff [8] was the first to employ computers of this kind.

On the difficulty of computations 7

In other words, this computer requires shorter programs than any other
computer, or more exactly it does not require programs much longer than
those required by any other computer. The proof is as follows. The computer
M is designed to interpret the circuit diagrams of any other computer M'.
Given a program for M’ and the circuit diagrams of M’, the computer M
proceeds to calculate how M’ would behave, i.e., it proceeds to simulate M'.
Thus, we need only add a fixed number of bits to any program for M’ in
order to obtain a program that enables M to calculate the same result. This
program for M is of the form PC1.

The 1 at the right end of the program indicates to the computer M that
this is a simulation, C' is a fixed binary sequence of length c¢(M') — 1 giving
the circuit diagrams of the computer M’ which is to be imitated, and P is
the program for M'3

Section V

Kolmogorov [9] and the author [11], [12] have independently suggested that
computers such as those previously described be applied to the problem of
defining what is meant by a random or patternless finite binary sequence
of 0’s and 1’s. In the traditional foundations of the mathematical theory of
probability, as expounded by Kolmogorov in his classic [10], there is no place
for the concept of an individual random sequence of 0’s and 1’s. Yet it is not
altogether meaningless to say that the sequence

110010111110011001011110000010
is more random or patternless than the sequences

0 A R
010101010101010101010101010101,

for we may describe these last two sequences as thirty 1’s or fifteen 01’s, but
there is no shorter way to specify the first sequence than by just writing it
all out.

We believe that the random or patternless sequences of a given length
are those that require the longest programs. We have seen that most of the

3How can the computer M separate PC into P and C'?7 C has each of its bits dou-
bled, except the pair of bits at its left end. These are unequal and serve as punctuation
separating C' from P.

8 Thinking about Godel & Turing

binary sequences of length k require programs of about length k. These,
then, are the random or patternless sequences. Those sequences that can be
obtained by putting into a computer a program much shorter than £ are the
nonrandom sequences, those that possess a pattern or follow a law. The more
possible it is to compress a binary sequence into a short program calculation,
the less random is the sequence.

As an example of this, let us consider those sequences of 0’s and 1’s in
which 0’s and 1’s do not occur with equal frequency. Let p be the relative
frequency of 1’s, and let ¢ = 1 — p be the relative frequency of 0’s. A long
binary sequence that has the property that 1’s are more frequent than 0’s can
be obtained from a computer program whose length is only that of the desired
sequence reduced by a factor H(p,q) = —plog,p — qlog, q. For example, if
1's occur approximately % of the time and 0’s occur % of the time in a long
binary sequence of length k, there is a program for computing that sequence
with length only about H(%, i)k = 0.80k. That is, the program need be
only approximately 80 percent the length of the sequence it computes. In
summary, if 0’s and 1's occur with unequal frequencies, we can compress
such sequences into programs only a certain percentage (depending on the
frequencies) of the size of the sequence. Thus, random or incompressible
sequences will have about as many 0’s as 1’s, which agrees with our intuitive
expectations.

In a similar manner it can be shown that all groups of 0’s and 1’s will
occur with approximately the expected frequency in a long binary sequence
that we call random; 01100 will appear 2~°k times in long sequences of length
k, ete.

Section VI

The definition of random or patternless finite binary sequences just presented
is related to certain considerations in information theory and in the method-
ology of science.

The two problems considered in Shannon’s classical exposition [15] are
to transmit information as efficiently and as reliably as possible. Here we
are interested in examining the viewpoint of information theory concerning
the efficient transmission of information. An information source may be re-
dundant, and information theory teaches us to code or compress messages

*Martin-Lof [14] also discusses the statistical properties of random sequences.

On the difficulty of computations 9

so that what is redundant is eliminated and communications equipment is
optimally employed. For example, let us consider an information source that
emits one symbol (either an A or a B) each second. Successive symbols are
independent, and A’s are three times more frequent than B’s. Suppose it
is desired to transmit the messages over a channel that is capable of trans-
mitting either an A or a B each second. Then the channel has a capacity
of 1 bit per second, while the information source has entropy 0.80 bits per
symbol; and thus it is possible to code the messages in such a way that on the
average 1/0.80 = 1.25 symbols of message are transmitted over the channel
each second. The receiver must decode the messages; that is, expand them
into their original form.

In summary, information theory teaches us that messages from an in-
formation source that is not completely random (that is, which does not
have maximum entropy) can be compressed. The definition of randomness
is merely the converse of this fundamental theorem of information theory;
if lack of randomness in a message allows it to be coded into a shorter se-
quence, then the random messages must be those that cannot be coded into
shorter messages. A computing machine is clearly the most general possible
decoder for compressed messages. We thus consider that this definition of
randomness is in perfect agreement and indeed strongly suggested by the
coding theorem for a noiseless channel of information theory.

Section VII

This definition is also closely related to classical problems of the methodology
of science.’

Consider a scientist who has been observing a closed system that once
every second either emits a ray of light or does not. He summarizes his
observations in a sequence of 0’s and 1’s in which a 0 represents “ray not
emitted” and a 1 represents “ray emitted.” The sequence may start

0110101110...

and continue for a few million more bits. The scientist then examines the
sequence in the hope of observing some kind of pattern or law. What does he
mean by this? It seems plausible that a sequence of 0’s and 1’s is patternless

Solomonoff [8] also discusses the relation between program lengths and the problem
of induction.

10 Thinking about Godel & Turing

if there is no better way to calculate it than just by writing it all out at once
from a table giving the whole sequence. The scientist might state:

My Scientific Theory: 0110101110. ..

This would not be considered an acceptable theory. On the other hand, if the
scientist should hit upon a method by which the whole sequence could be cal-
culated by a computer whose program is short compared with the sequence,
he would certainly not consider the sequence to be entirely patternless or
random. The shorter the program, the greater the pattern he may ascribe
the sequence.

There are many parallels between the foregoing and the way scientists
actually think. For example, a simple theory that accounts for a set of facts
is generally considered better or more likely to be true than one that needs
a large number of assumptions. By “simplicity” is not meant “ease of use
in making predictions.” For although general relativity is considered to be
the simple theory par excellence, very extended calculations are necessary
to make predictions from it. Instead, one refers to the number of arbitrary
choices that have been made in specifying the theoretical structure. One is
naturally suspicious of a theory whose number of arbitrary elements is of an
order of magnitude comparable to the amount of information about reality
that it accounts for.

Section VIII

Let us now turn to the problem of the amount of time necessary for comp-
utations.® We will develop the following thesis. Call an infinite set of natural
numbers perfect if there is no essentially quicker way to compute infinitely
many of its members than computing the whole set. Perfect sets exist. This
thesis was suggested by the following vague and imprecise considerations.”
One of the most profound problems of the theory of numbers is that of
calculating large primes. While the sieve of Eratosthenes appears to be as
quick an algorithm for calculating all the primes as is possible, in recent
times hope has centered on calculating large primes by calculating a subset

®As general references we may cite Blum [16] and Arbib and Blum [17]. Our exposition
is a swmmary of that of [13].

"See Hardy and Wright [18], Sections 1.4 and 2.5 for the number-theoretic background
of the following remarks.

On the difficulty of computations 11

of the primes, those that are Mersenne numbers. Lucas’s test can decide the
primality of a Mersenne number with rapidity far greater than is furnished
by the sieve method. If there are an infinity of Mersenne primes, then it
appears that Lucas has achieved a decisive advance in this classical problem
of the theory of numbers.

An opposing point of view is that there is no essentially better way to
calculate large primes than by calculating them all. If this is the case, it
apparently follows that there must be only finitely many Mersenne primes.

These considerations, then, suggested that there are infinite sets of nat-
ural numbers that are arbitrarily difficult to compute, and that do not have
any infinite subsets essentially easier to compute than the whole set. Here
difficulty of computation refers to speed. Our development will be as follows.
First, we define computers for calculating infinite sets of natural numbers.
Then we introduce a way of comparing the rapidity of computers, a tran-
sitive binary relation, i.e., almost a partial ordering. Next we focus our
attention on those computers that are greater than or equal to all others un-
der this ordering, i.e., the fastest computers. Our results are conditioned on
the computers having this property. The meaning of “arbitrarily difficult to
compute” is then clarified. Last, we exhibit sets that are arbitrarily difficult
to compute and do not have any subset essentially easier to compute than
the whole set.

Section IX

We are interested in the speed of programs for generating the elements of
an infinite set of natural numbers. For these purposes we may consider a
computer to be a device that once a second emits a (possibly empty) finite
set of natural numbers and that once started never stops. That is to say, a
computer is now viewed as a function whose arguments are the program and
the time and whose value is a finite set of natural numbers. If a program
causes the computer to emit infinitely many natural numbers in size order
and without any repetitions, we say that the computing machine calculates
the infinite set of natural numbers that it emits.

A Turing machine can be used to compute infinite sets of natural num-
bers; it is only necessary to establish a convention as to when natural num-
bers are emitted. For example, we may divide the machine’s tape into two
halves, and stipulate that what is written on the right half cannot be erased.

12 Thinking about Godel & Turing

The computational scratchwork is done on the left half of the tape, and the
successive members of the infinite set of natural numbers are written on the
nonerasable squares in decimal notation, separated by commas, with no blank
spaces permitted between characters. The moment a comma has been writ-
ten, it is considered that the digits between it and the previous comma form
the numeral representing the next natural number emitted by the machine.
We suppose that the Turing machine performs a single cycle of activity (read
tape; shift, write, or erase tape; change internal state) each second. Last, we
stipulate that the machine be started scanning the first nonerasable square
of the tape, that initially the nonerasable squares be all blank, and that the
program for the computer be written on the first erasable squares, with a
blank serving as punctuation to indicate the end of the program and the
beginning of an infinite blank region of tape.

Section X

We now order the computers according to their speeds. €' > (" is defined as
meaning that ' is not much slower than C".

What do we mean by saying that computer C' is not much slower than
computer C’ for the purpose of computing infinite sets of natural numbers?
There is a computable change of C'’s time scale that makes C' as fast as C or
faster. More exactly, there is a computable function f(n) (for example n! or
n™ with n exponents) with the following property. Let P’ be any program
that makes C” calculate an infinite set of natural numbers. Then there exists
a program P that makes (' calculate the same set of natural numbers and has
the additional property that every natural number emitted by €’ during the
first ¢ seconds of calculation is emitted by C' during the first f(¢) second of
calculation, for all but a finite number of values of t. We may symbolize this
relation between the computers C' and € as C' > C”, for it has the property
that C' > C'" and C" > C" only if C' > C".

In this way, we have introduced an ordering of the computers for comput-
ing infinite sets of natural numbers, and it can be shown that a distributive
lattice results. The most important property of this ordering for our present
purposes is that there is a set of computers > all other computers. In what
follows we assume that the computer that is used is a member of this set of
fastest computers.

On the difficulty of computations 13

Section XI

We now clarify what we mean by “arbitrarily difficult to compute.”

Let f(n) be any computable function that carries natural numbers into
natural numbers. Such functions can get big very quickly indeed. For exam-
ple consider the function n”" in which there are n™ exponents. There are
infinite sets of natural numbers such that, no matter how the computer is
programmed, at least f(n) seconds will pass before the computer emits all
those elements of the set that are less than or equal to n. Of course, a finite
number of exceptions are possible, for any finite part of an infinite set can be
computed very quickly by including in the computer’s program a table of the
first few elements of the set. Note that the difficulty in computing such sets
of natural numbers does not lie in the fact that their elements get very big
very quickly, for even small elements of such sets require more than astro-
nomical amounts of time to be computed. What is more, there are infinite
sets of natural numbers that are arbitrarily difficult to compute and include
90 percent of the natural numbers.

We finally exhibit infinite sets of natural numbers that are arbitrarily
difficult to compute, and do not have any infinite subsets essentially easier to
compute than the whole set. Consider the following tree of natural numbers
(figure 2).% The infinite sets of natural numbers that we promised to exhibit
are obtained by starting at the root of the tree (that is, at 0) and walking
forward, including in the set every natural number that is stepped on.

It is easy to see that no infinite subset of such a set can be computed
much more quickly than the whole set. For suppose we are told that n is
in such a set. Then we know at once that the greatest integer less than
n/2 is the previous element of the set. Thus, knowing that 1 000 000 is
in the set, we immediately produce all smaller elements in it, by walking
backwards through the tree. They are 499 999, 249 999, 124 999, etc. It
follows that there is no appreciable difference between generating an infinite
subset of such a set, and generating the whole set, for gaps in an incomplete
generation can be filled in very quickly.

It is also easy to see that there are sets that can be obtained by walking
through this tree and are arbitrarily difficult to compute. These, then, are
the sets that we wished to exhibit.

8This tree is used in Rogers [6], p. 158, in connection with retraceable sets. Retraceable
sets are in some ways analogous to those sets that concern us here.

14 Thinking about Godel & Turing

%1 I o IOV
i s 1

o120
T o2 N
s . —

Figure 2. A tree of natural numbers

Acknowledgment

The author wishes to express his gratitude to Prof. G. Pollitzer of the Univer-
sity of Buenos Aires, whose constructive criticism much improved the clarity
of this presentation.

References

[1] M. Davis, Ed., The Undecidable. Hewlett, N.Y.: Raven Press, 1965.
[2] —, Computability and Unsolvability. New York: McGraw-Hill, 1958.

[3] —, “Unsolvable problems: A review,” Proc. Symp. on Mathematical Theory of
Automata. Brooklyn, N.Y.: Polytech. Inst. Brooklyn Press, 1963, pp. 15-22.

[4] —, “Applications of recursive function theory to number theory,” Proc. Symp. in
Pure Mathematics, vol. 5. Providence, R.I.: AMS, 1962, pp. 135-138.

[5] M. Minsky, Computation: Finite and Infinite Machines. Englewood Cliffs, N.J.:
Prentice-Hall, 1967.

[6] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. New
York: McGraw-Hill, 1967.

On the difficulty of computations 15

[7]
[8]
[9]

[10]
(11]

(12] —

[13]
[14]
[15]
[16]
[17]

(18]

M. A. Arbib, Theories of Abstract Automata. Englewood Cliffs, N.J.: Prentice-Hall
(to be published).

R. J. Solomonoff, “A formal theory of inductive inference,” Inform. and Control,
vol. 7, pp. 1-22, March 1964; pp. 224-254, June 1964.

A. N. Kolmogorov, “Three approaches to the definition of the concept ‘quantity of
information’,” Probl. Peredachi Inform., vol. 1, pp. 3-11, 1965.

—, Foundations of the Theory of Probability. New York: Chelsea, 1950.

G. J. Chaitin, “On the length of programs for computing finite binary sequences,”
J. ACM, vol. 13, pp. 547-569, October 1966.

-, “On the length of programs for computing finite binary sequences: statistical
considerations,” J. ACM, vol. 16, pp. 145-159, January 1969.

—, “On the simplicity and speed of programs for computing infinite sets of natural
numbers,” J. ACM, vol. 16, pp. 407-422, July 1969.

P. Martin-Lof, “The definition of random sequences,” Inform. and Control, vol. 9,
pp. 602-619, December 1966.

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. Ur-
bana, Ill.: University of Illinois Press, 1949.

M. Blum, “A machine-independent theory of the complexity of recursive functions,”

J. ACM, vol. 14, pp. 322-336, April 1967.

M. A. Arbib and M. Blum, “Machine dependence of degrees of difficulty,” Proc.
AMS, vol. 16, pp. 442-447, June 1965.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford:
Oxford University Press, 1962.

The following references have come to the author’s attention since this
lecture was given.

[19]
[20]
21]
22]
23]

24]

D. G. Willis, “Computational complexity and probability constructions,” Stanford
University, Stanford, Calif., March 1969.

A. N. Kolmogorov, “Logical basis for information theorvy and probability theory,”
IEEE Trans. Information Theory, vol. IT-14, pp. 662-664, September 1968.

D. W. Loveland, “A variant of the Kolmogorov concept of complexity,” Dept. of
Math., Carnegie-Mellon University, Pittsburgh, Pa., Rept. 69-4.

P. R. Young, “Toward a theory of enumerations,” J. ACM, vol. 16, pp. 328-348,
April 1969.

D. E. Knuth, The Art of Computer Programming; vol. 2, Seminumertcal Algorithms.
Reading, Mass.: Addison-Wesley, 1969,

1969 Conf. Rec. of the ACM Symp. on Theory of Computing (Marina del Rey,
Calif).

This page intentionally left blank

Information-theoretic
computational complexity

This paper attempts to describe, in nontechnical language, some of the con-
cepts and methods of one school of thought reqarding computational complex-
ity. It applies the viewpoint of information theory to computers. This will
first lead us to a definition of the degree of randomness of individual binary
strings, and then to an information-theoretic version of Godel’s theorem on
the limitations of the ariomatic method. Finally, we will examine in the light
of these ideas the scientific method and von Neumann's views on the basic
conceptual problems of biology. [This paper was presented at the IEEE In-
ternational Congress of Information Theory, Ashkelon, Israel, June 1973.]

This field’s fundamental concept is the complexity of a binary string, that
is, a string of bits, of zeros and ones. The complexity of a binary string
is the minimum quantity of information needed to define the string. For
example, the string of length n consisting entirely of ones is of complexity
approximately log, n, because only log, n bits of information are required to
specify n in binary notation.

However, this is rather vague. Exactly what is meant by the definition
of a string? To make this idea precise a computer is used. One says that a
string defines another when the first string gives instructions for constructing
the second string. In other words, one string defines another when it is a
program for a computer to calculate the second string. The fact that a string
of n ones is of complexity approximately log, n can now be translated more
correctly into the following. There is a program log, n + ¢ bits long that
calculates the string of n ones. The program performs a loop for printing

17

18 Thinking about Godel & Turing

ones n times. A fixed number ¢ of bits are needed to program the loop, and
log, n bits more for specifying n in binary notation.

Exactly how are the computer and the concept of information combined
to define the complexity of a binary string? A computer is considered to take
one binary string and perhaps eventually produce another. The first string
is the program that has been given to the machine. The second string is the
output of this program; it is what this program calculates. Now consider a
given string that is to be calculated. How much information must be given
to the machine to do this? That is to say, what is the length in bits of the
shortest program for calculating the string? This is its complexity.

It can be objected that this is not a precise definition of the complexity of
a string, inasmuch as it depends on the computer that one is using. Moreover,
a definition should not be based on a machine, but rather on a model that
does not have the physical limitations of real computers.

Here we will not define the computer used in the definition of complexity.
However, this can indeed be done with all the precision of which mathematics
is capable. Since 1936 it has been known how to define an idealized computer
with unlimited memory. This was done in a very intuitive way by Turing
and also by Post, and there are elegant definitions based on other principles
[2]. The theory of recursive functions (or computability theory) has grown
up around the questions of what is computable and what is not.

Thus it is not difficult to define a computer mathematically. What re-
mains to be analyzed is which definition should be adopted, inasmuch as
some computers are easier to program than others. A decade ago Solomonoff
solved this problem [7|. He constructed a definition of a computer whose pro-
grams are not much longer than those of any other computer. More exactly,
Solomonoff’s machine simulates running a program on another computer,
when it is given a description of that computer together with its program.

Thus it is clear that the complexity of a string is a mathematical concept,
even though here we have not given a precise definition. Furthermore, it is
a very natural concept, easy to understand for those who have worked with
computers. Recapitulating, the complexity of a binary string is the informa-
tion needed to define it, that is to say, the number of bits of information that
must be given to a computer in order to calculate it, or in other words, the
size in bits of the shortest program for calculating it. It is understood that a
certain mathematical definition of an idealized computer is being used, but
it is not given here, because as a first approximation it is sufficient to think
of the length in bits of a program for a typical computer in use today.

Information-theoretic computational complexity 19

Now we would like to consider the most important properties of the com-
plexity of a string. First of all, the complexity of a string of length n is less
than n + ¢, because any string of length n can be calculated by putting it
directly into a program as a table. This requires n bits, to which must be
added ¢ bits of instructions for printing the table. In other words, if nothing
betters occurs to us, the string itself can be used as its definition, and this
requires only a few more bits than its length.

Thus the complexity of each string of length n is less than n+c¢. Moreover,
the complexity of the great majority of strings of length n is approximately
n, and very few strings of length n are of complexity much less than n. The
reason is simply that there are much fewer programs of length appreciably
less than n than strings of length n. More exactly, there are 2" strings
of length n, and less than 2"* programs of length less than n — k. Thus
the number of strings of length n and complexity less than n — k decreases
exponentially as k increases.

These considerations have revealed the basic fact that the great majority
of strings of length n are of complexity very close to n. Therefore, if one
generates a binary string of length n by tossing a fair coin n times and noting
whether each toss gives head or tail, it is highly probable that the complexity
of this string will be very close to n. In 1965 Kolmogorov proposed calling
random those strings of length n whose complexity is approximately n [8].
We made the same proposal independently [9]. It can be shown that a string
that is random in this sense has the statistical properties that one would
expect. For example, zeros and ones appear in such strings with relative
frequencies that tend to one-half as the length of the strings increases.

Consequently, the great majority of strings of length n are random, that
is, need programs of approximately length n, that is to say, are of complexity
approximately n. What happens if one wishes to show that a particular
string is random? What if one wishes to prove that the complexity of a
certain string is almost equal to its length? What if one wishes to exhibit a
specific example of a string of length n and complexity close to n, and assure
oneself by means of a proof that there is no shorter program for calculating
this string?

It should be pointed out that this question can occur quite naturally to a
programmer with a competitive spirit and a mathematical way of thinking.
At the beginning of the sixties we attended a course at Columbia University
in New York. Each time the professor gave an exercise to be programmed,
the students tried to see who could write the shortest program. Even though

20 Thinking about Godel & Turing

several times it seemed very difficult to improve upon the best program that
had been discovered, we did not fool ourselves. We realized that in order to
be sure, for example, that the shortest program for the IBM 650 that prints
the prime numbers has, say, 28 instructions, it would be necessary to prove
it, not merely to continue for a long time unsuccessfully trying to discover a
program with less than 28 instructions. We could never even sketch a first
approach to a proof.

It turns out that it was not our fault that we did not find a proof, because
we faced a fundamental limitation. One confronts a very basic difficulty when
one tries to prove that a string is random, when one attempts to establish
a lower bound on its complexity. We will try to suggest why this problem
arises by means of a famous paradox, that of Berry [1, p. 153].

Consider the smallest positive integer that cannot be defined by an En-
glish phrase with less than 1 000 000 000 characters. Supposedly the shortest
definition of this number has 1 000 000 000 or more characters. However, we
defined this number by a phrase much less than 1 000 000 000 characters in
length when we described it as “the smallest positive integer that cannot be
defined by an English phrase with less than 1 000 000 000 characters!”

What relationship is there between this and proving that a string is com-
plex, that its shortest program needs more than n bits? Consider the first
string that can be proven to be of complexity greater than 1 000 000 000.
Here once more we face a paradox similar to that of Berry, because this
description leads to a program with much less than 1 000 000 000 bits that
calculates a string supposedly of complexity greater than 1 000 000 000. Why
is there a short program for calculating “the first string that can be proven
to be of complexity greater than 1 000 000 0007”

The answer depends on the concept of a formal axiom system, whose im-
portance was emphasized by Hilbert [1]. Hilbert proposed that mathematics
be made as exact and precise as possible. In order to avoid arguments be-
tween mathematicians about the validity of proofs, he set down explicitly the
methods of reasoning used in mathematics. In fact, he invented an artificial
language with rules of grammar and spelling that have no exceptions. He
proposed that this language be used to eliminate the ambiguities and uncer-
tainties inherent in any natural language. The specifications are so precise
and exact that checking if a proof written in this artificial language is correct
is completely mechanical. We would say today that it is so clear whether a
proof is valid or not that this can be checked by a computer.

Hilbert hoped that this way mathematics would attain the greatest pos-

Information-theoretic computational complexity 21

sible objectivity and exactness. Hilbert said that there can no longer be any
doubt about proofs. The deductive method should be completely clear.

Suppose that proofs are written in the language that Hilbert constructed,
and in accordance with his rules concerning the accepted methods of reason-
ing. We claim that a computer can be programmed to print all the theorems
that can be proven. It is an endless program that every now and then writes
on the printer a theorem. Furthermore, no theorem is omitted. Each will
eventually be printed, if one is very patient and waits long enough.

How is this possible? The program works in the following manner. The
language invented by Hilbert has an alphabet with finitely many signs or
characters. First the program generates the strings of characters in this
alphabet that are one character in length. It checks if one of these strings
satisfies the completely mechanical rules for a correct proof and prints all
the theorems whose proofs it has found. Then the program generates all the
possible proofs that are two characters in length, and examines each of them
to determine if it is valid. The program then examines all possible proofs
of length three, of length four, and so on. If a theorem can be proven, the
program will eventually find a proof for it in this way, and then print it.

Consider again “the first string that can be proven to be of complexity
greater than 1 000 000 000.” To find this string one generates all theorems
until one finds the first theorem that states that a particular string is of
complexity greater than 1 000 000 000. Moreover, the program for finding
this string is short, because it need only have the number 1 000 000 000
written in binary notation, log, 1 000 000 000 bits, and a routine of fixed
length ¢ that examines all possible proofs until it finds one that a specific
string is of complexity greater than 1 000 000 000.

In fact, we see that there is a program log, n + ¢ bits long that calculates
the first string that can be proven to be of complexity greater than n. Here
we have Berry’s paradox again, because this program of length log,n + ¢
calculates something that supposedly cannot be calculated by a program of
length less than or equal to n. Also, logsn + ¢ is much less than n for all
sufficiently great values of n, because the logarithm increases very slowly.

What can the meaning of this paradox be? In the case of Berry’s original
paradox, one cannot arrive at a meaningful conclusion, inasmuch as one is
dealing with vague concepts such as an English phrase’s defining a positive
integer. However our version of the paradox deals with exact concepts that
have been defined mathematically. Therefore, it cannot really be a contra-
diction. It would be absurd for a string not to have a program of length

22 Thinking about Godel & Turing

less than or equal to n for calculating it, and at the same time to have such
a program. Thus we arrive at the interesting conclusion that such a string
cannot exist. For all sufficiently great values of n, one cannot talk about “the
first string that can be proven to be of complexity greater than n,” because
this string cannot exist. In other words, for all sufficiently great values of n,
it cannot be proven that a particular string is of complexity greater than n.
If one uses the methods of reasoning accepted by Hilbert, there is an upper
bound to the complexity that it is possible to prove that a particular string
has.

This is the surprising result that we wished to obtain. Most strings of
length n are of complexity approximately n, and a string generated by toss-
ing a coin will almost certainly have this property. Nevertheless, one cannot
exhibit individual examples of arbitrarily complex strings using methods of
reasoning accepted by Hilbert. The lower bounds on the complexity of spe-
cific strings that can be established are limited, and we will never be mathe-
matically certain that a particular string is very complex, even though most
strings are random.’

In 1931 Godel questioned Hilbert’s ideas in a similar way [1], [2]. Hilbert
had proposed specifying once and for all exactly what is accepted as a proof,
but Godel explained that no matter what Hilbert specified so precisely, there
would always be true statements about the integers that the methods of
reasoning accepted by Hilbert would be incapable of proving. This mathe-
matical result has been considered to be of great philosophical importance.
Von Neumann commented that the intellectual shock provoked by the crisis
in the foundations of mathematics was equaled only by two other scientific
events in this century: the theory of relativity and quantum theory [4].

We have combined ideas from information theory and computability the-
ory in order to define the complexity of a binary string, and have then used
this concept to give a definition of a random string and to show that a formal
axiom system enables one to prove that a random string is indeed random
in only finitely many cases.

Now we would like to examine some other possible applications of this

IThis is a particularly perverse example of Kac’s comment [13, p. 16] that “as is often
the case, it is much easier to prove that an overwhelming majority of objects possess a
certain property than to exhibit even one such object.” The most familiar example of this
is Shannon’s proof of the coding theorem for a noisy channel; while it is shown that most
coding schemes achieve close to the channel capacity, in practice it is difficult to implement
a good coding scheme.

Information-theoretic computational complexity 23

viewpoint. In particular, we would like to suggest that the concept of the
complexity of a string and the fundamental methodological problems of sci-
ence are intimately related. We will also suggest that this concept may be of
theoretical value in biology.

Solomonoff [7] and the author [9] proposed that the concept of complexity
might make it possible to precisely formulate the situation that a scientist
faces when he has made observations and wishes to understand them and
make predictions. In order to do this the scientist searches for a theory that
is In agreement with all his observations. We consider his observations to be
represented by a binary string, and a theory to be a program that calculates
this string. Scientists consider the simplest theory to be the best one, and
that if a theory is too “ad hoc,” it is useless. How can we formulate these
intuitions about the scientific method in a precise fashion? The simplicity
of a theory is inversely proportional to the length of the program that con-
stitutes it. That is to say, the best program for understanding or predicting
observations is the shortest one that reproduces what the scientist has ob-
served up to that moment. Also, if the program has the same number of bits
as the observations, then it is useless, because it is too “ad hoc.” If a string
of observations only has theories that are programs with the same length as
the string of observations, then the observations are random, and can neither
be comprehended nor predicted. They are what they are, and that is all; the
scientist cannot have a theory in the proper sense of the concept; he can only
show someone else what he observed and say “it was this.”

In summary, the value of a scientific theory is that it enables one to
compress many observations into a few theoretical hypotheses. There is a
theory only when the string of observations is not random, that is to say,
when its complexity is appreciably less than its length in bits. In this case
the scientist can communicate his observations to a colleague much more
economically than by just transmitting the string of observations. He does
this by sending his colleague the program that is his theory, and this program
must have much fewer bits than the original string of observations.

It is also possible to make a similar analysis of the deductive method,
that is to say, of formal axiom systems. This is accomplished by analyzing
more carefully the new version of Berry’s paradox that was presented. Here
we only sketch the three basic results that are obtained in this manner.?

1. In a formal system with n bits of axioms it is impossible to prove that

2See the Appendix.

24 Thinking about Godel & Turing

a particular binary string is of complexity greater than n + c.

2. Contrariwise, there are formal systems with n + ¢ bits of axioms in
which it is possible to determine each string of complexity less than
n and the complexity of each of these strings, and it is also possible
to exhibit each string of complexity greater than or equal to n, but
without being able to know by how much the complexity of each of
these strings exceeds n.

3. Unfortunately, any formal system in which it is possible to determine
each string of complexity less than n has either one grave problem or
another. Either it has few bits of axioms and needs incredibly long
proofs, or it has short proofs but an incredibly great number of bits
of axioms. We say “incredibly” because these quantities increase more
quickly than any computable function of n.

It is necessary to clarify the relationship between this and the preceding
analysis of the scientific method. There are less than 2" strings of complexity
less than n, but some of them are incredibly long. If one wishes to commu-
nicate all of them to someone else, there are two alternatives. The first is
to directly show all of them to him. In this case one will have to send him
an incredibly long message because some of these strings are incredibly long.
The other alternative is to send him a very short message consisting of n
bits of axioms from which he can deduce which strings are of complexity
less than n. Although the message is very short in this case, he will have
to spend an incredibly long time to deduce from these axioms the strings
of complexity less than n. This is analogous to the dilemma of a scientist
who must choose between directly publishing his observations, or publishing
a theory that explains them, but requires very extended calculations in order
to do this.

Finally, we would like to suggest that the concept of complexity may
possibly be of theoretical value in biology.

At the end of his life von Neumann tried to lay the foundation for a
mathematics of biological phenomena. His first effort in this direction was
his work Theory of Games and Economic Behavior, in which he analyzes
what is a rational way to behave in situations in which there are conflicting
interests [3]. The Computer and the Brain, his notes for a lecture series, was
published shortly after his death [5]. This book discusses the differences and
similarities between the computer and the brain, as a first step to a theory of

Information-theoretic computational complexity 25

how the brain functions. A decade later his work Theory of Self-Reproducing
Automata appeared, in which von Neumann constructs an artificial universe
and within it a computer that is capable of reproducing itself [6]. But von
Neumann points out that the problem of formulating a mathematical theory
of the evolution of life in this abstract setting remains to be solved; and to
express mathematically the evolution of the complexity of organisms, one
must first define complexity precisely.® We submit that “organism” must
also be defined, and have tried elsewhere to suggest how this might perhaps
be done [10].

We believe that the concept of complexity that has been presented here
may be the tool that von Neumann felt is needed. It is by no means accidental
that biological phenomena are considered to be extremely complex. Consider
how a human being analyzes what he sees, or uses natural languages to
communicate. We cannot carry out these tasks by computer because they
are as yet too complex for us—the programs would be too long.?

Appendix

In this Appendix we try to give a more detailed idea of how the results
concerning formal axiom systems that were stated are established.®

Two basic mathematical concepts that are employed are the concepts of
a recursive function and a partial recursive function. A function is recursive
if there is an algorithm for calculating its value when one is given the value
of its arguments, in other words, if there is a Turing machine for doing this.
If it is possible that this algorithm never terminates and the function is thus
undefined for some values of its arguments, then the function is called partial
recursive.®

In what follows we are concerned with computations involving binary
strings. The binary strings are considered to be ordered in the following
manner: A, 0, 1, 00, 01, 10, 11, 000, 001, 010, ... The natural number n is
represented by the nth binary string (n = 0,1,2,...). The length of a binary

3In an important paper [14], Eigen studies these questions from the point of view of
thermodynamics and biochemistry.

1Chandrasekaran and Reeker [15] discuss the relevance of complexity to artificial intel-
ligence.

5See [11], [12] for different approaches.

6Full treatments of these concepts can be found in standard texts, e.g., Rogers [16].

26 Thinking about Godel & Turing

string s is denoted 1g(s). Thus if s is considered to be a natural number,
then lg(s) = [logs(s + 1)]. Here [z] is the greatest integer < x.

Definition 1. A computer is a partial recursive function C'(p). Its argu-
ment p is a binary string. The value of C(p) is the binary string output by
the computer C' when it is given the program p. If C(p) is undefined, this
means that running the program p on C' produces an unending computation.

Definition 2. The complexity I (s) of a binary string s is defined to be
the length of the shortest program p that makes the computer C' output s,
ie.,

Ic(s) = G;(r;i)gslg(p)-

If no program makes C' output s, then I(s) is defined to be infinite.

Definition 3. A computer U is universal if for any computer (' and any
binary string s, Iy(s) < Ic(s) + ¢, where the constant ¢ depends only on C.

It is easy to see that there are universal computers. For example, consider
the computer U such that U(0'1p) = C;(p), where (; is the ith computer,
i.e., a program for U consists of two parts: the left-hand part indicates which
computer is to be simulated, and the right-hand part gives the program to
be simulated. We now suppose that some particular universal computer U
has been chosen as the standard one for measuring complexities, and shall
henceforth write I(s) instead of Iy/(s).

Definition 4. The rules of inference of a class of formal axiom systems
is a recursive function F(a,h) (a a binary string, h a natural number) with
the property that F(a,h) C F(a,h + 1). The value of F(a,h) is the finite
(possibly empty) set of theorems that can be proven from the axioms a by
means of proofs < h characters in length. F(a) = U, F(a,h) is the set of
theorems that are consequences of the axioms a. The ordered pair (F,a),
which implies both the choice of rules of inference and axioms, is a particular
formal axiom system.

This is a fairly abstract definition, but it retains all those features of
formal axiom systems that we need. Note that although one may not be
interested in some axioms (e.g., if they are false or incomprehensible), it is
stipulated that F'(a, h) is always defined.

Theorem 1. a) There is a constant ¢ such that I(s) < lg(s) + ¢ for all
binary strings s. b) There are less than 2" binary strings of complexity less
than n.

Proof of a). There is a computer C' such that C(p) = p for all programs
p. Thus for all binary strings s, I(s) < I=(s) + ¢ =1g(s) + c.

Information-theoretic computational complexity 27

Proof of b). As there are less than 2" programs of length less than n,
there must be less than this number of binary strings of complexity less than
n. LE.I.

Thesis. A random binary string s is one having the property that /(s) =
lg(s).

Theorem 2. Consider the rules of inference F'. Suppose that a proposi-
tion of the form “I(s) > n” is in F(a) only if it is true, i.e., only if I(s) > n.
Then a proposition of the form “I(s) > n” is in F'(a) only if n < lg(a) + ¢,
where ¢ is a constant that depends only on F'.

Proof. Consider that binary string s; having the shortest proof from
the axioms a that it is of complexity > lg(a) + 2k. We claim that I(sy) <
lg(a) + k + ¢/, where ¢ depends only on F'. Taking k = ¢/, we conclude
that the binary string s» with the shortest proof from the axioms a that it
is of complexity > lg(a) + 2¢ is, in fact, of complexity < lg(a) + 2¢’, which
is impossible. It follows that s; doesn’t exist for k = ¢/, that is, no binary
string can be proven from the axioms a to be of complexity > lg(a) + 2¢'.
Thus the theorem is proved with ¢ = 2¢'.

It remains to verify the claim that I(s;) < lg(a) + k + ¢/. Consider the
computer C' that does the following when it is given the program 0*la. It
calculates F'(a, h) for h = 0,1,2,... until it finds the first theorem in F(a, h)
of the form “I(s) > n” with n > Ig(a) + 2k. Finally C outputs the binary
string s in the theorem it has found. Thus C' (Ok la) is equal to sy, if s; exists.
It follows that

I(sy) = I(C(0*1a))
< Ic(C(0%1a)) + "
< lg(0Fla)+ " =lg(a) + k+ (c"+ 1) =1g(a) + k+ .
Q.E.D.

Definition 5. A, is defined to be the kth binary string of length n,
where k is the number of programs p of length < n for which U(p) is defined,
1.e., A, has n and this number k coded into it.

Theorem 3. There are rules of inference F'' such that for all n, F'(A,)
is the union of the set of all true propositions of the form “I(s) = k” with
k < n and the set of all true propositions of the form “I(s) > n.”

Proof. From A, one knows n and for how many programs p of length
< n U(p) is defined. One then simulates in parallel, running each program p
of length < n on U until one has determined the value of U(p) for each p of

28 Thinking about Godel & Turing

length < n for which U(p) is defined. Knowing the value of U(p) for each p
of length < n for which U(p) is defined, one easily determines each string of
complexity < n and its complexity. What's more, all other strings must be
of complexity > n. This completes our sketch of how all true propositions of
the form “I(s) = k” with k < n and of the form “/(s) > n” can be derived
from the axiom A,. Q.E.D.

Recall that we consider the nth binary string to be the natural number

Definition 6. The partial function B(n) is defined to be the biggest
natural number of complexity < n, i.e.,

B p— k = le U -
() = fgz b= g, U)

Theorem 4. Let f be a partial recursive function that carries natural
numbers into natural numbers. Then B(n) > f(n) for all sufficiently great
values of n.

Proof. Consider the computer C' such that C(p) = f(p) for all p.

I(f(n) <Ic(f(n)+e<lgn)+c=[logy(n+1)]+c<n

for all sufficiently great values of n. Thus B(n) > f(n) for all sufficiently
great values of n. Q.E.D.
Theorem 5. Consider the rules of inference F. Let

F, = JF(a, B(n)),

where the union is taken over all binary strings a of length < B(n), i.e., F,
is the (finite) set of all theorems that can be deduced by means of proofs
with not more than B(n) characters from axioms with not more than B(n)
bits. Let s, be the first binary string s not in any proposition of the form
“I(s) = k" in F,,. Then I(s,) < n+ ¢, where the constant ¢ depends only on
F,

Proof. We claim that there is a computer C' such that if U(p) = B(n),
then C(p) = s,. As, by the definition of B, there is a py of length < n such
that U(po) = B(n), it follows that

I(s,) < Ic(sp) + ¢ =Ic(C(po)) + ¢ <lg(po) +c<n+e

which was to be proved.

Information-theoretic computational complexity 29

It remains to verify the claim that there is a C such that if U(p) = B(n),
then C'(p) = s,. C' works as follows. Given the program p, C' first simulates
running the program p on UU. Once C has determined U(p), it calculates
F(a,U(p)) for all binary strings a such that lg(a) < U(p), and forms the
union of these 2V®t1 _ 1 different sets of propositions, which is F, if U(p) =
B(n). Finally C' outputs the first binary string s not in any proposition of the
form “I(s) = k” in this set of propositions; s is s, if U(p) = B(n). Q.E.D.

Theorem 6. Consider the rules of inference F'. If F'(a, h) includes all true
propositions of the form “I(s) = k" with k < n + ¢, then either lg(a) > B(n)
or h > B(n). Here ¢ is a constant that depends only on F.

Proof. This is an immediate consequence of Theorem 5. Q.E.D.

The following theorem gives an upper bound on the size of the proofs in
the formal systems (F'!, A,) that were studied in Theorem 3, and also shows
that the lower bound on the size of these proofs that is given by Theorem 6
cannot be essentially improved.

Theorem 7. There is a constant ¢ such that for all n F1(A,, B(n + ¢))
includes all true propositions of the form “I(s) = k" with k& < n.

Proof. We claim that there is a computer C such that for all n, C'(A,) =
the least natural number & such that F'*(A,,, h) includes all true propositions
of the form “I(s) = k” with & < n. Thus the complexity of this value of h
is <lg(A,) + c=n+c, and B(n + ¢) is > this value of h, which was to be
proved.

It remains to verify the claim. C' works as follows when it is given the
program A,. First, it determines each binary string of complexity < n and
its complexity, in the manner described in the proof of Theorem 3. Then it
calculates F''(A,,h) for h = 0,1,2,... until all true propositions of the form
“I(s) = k” with k < n are included in F''(A,,, h). The final value of i is then
output by C'. Q.E.D.

References
[1] J. van Heijenoort, Ed., From Frege to Godel: A Source Book in Mathematical Logic,
1879-1931. Cambridge, Mass.: Harvard Univ. Press, 1967.

[2] M. Davis, Ed., The Undecidable—Basic Papers on Undecidable Propositions, Un-
solvable Problems and Computable Functions. Hewlett, N.Y.: Raven Press, 1965.

[3] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior.
Princeton, N.J.: Princeton Univ. Press, 1944.

30

4]

5]
[6]

7]
(8]
9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

Thinking about Godel & Turing

—, “Method in the physical sciences,” in John von Neumann—Collected Works.
New York: Macmillan, 1963, vol. 6, no. 35.

—, The Computer and the Brain. New Haven, Conn.: Yale Univ. Press, 1958.

—, Theory of Self-Reproducing Automata. Urbana, Ill.: Univ. Illinois Press, 1966.
(Edited and completed by A. W. Burks.)

R. J. Solomonoff, “A formal theory of inductive inference,” Inform. Contr., vol. 7,
pp- 1-22, Mar. 1964; also, pp. 224-254, June 1964.

A. N. Kolmogorov, “Logical basis for information theory and probability theory,”
IEEE Trans. Inform. Theory, vol. IT-14, pp. 662-664, Sept. 1968,

G. J. Chaitin, “On the difficulty of computations,” IEEE Trans. Inform. Theory,
vol. IT-16, pp. 5-9, Jan. 1970.

—, “To a mathematical definition of ‘life’,” ACM SICACT News, no. 4, pp. 12-18,
Jan. 1970.

—, “Computational complexity and Godel’s incompleteness theorem,” (Abstract)
AMS Notices, vol. 17, p. 672, June 1970; (Paper) ACM SIGACT News, no. 9, pp.
11-12, Apr. 1971.

—, “Information-theoretic limitations of formal systems,” presented at the Courant
Institute Computational Complexity Symp., N.Y., Oct. 1971. A revised version will
appear in J. Ass. Comput. Mach.

M. Kae, Statistical Independence in Probability, Analysis, and Number Theory,
Carus Math. Mono., Mathematical Association of America, no. 12, 1959.

M. Eigen, “Selforganization of matter and the evolution of biological macro-
molecules,” Die Naturwissenschaften, vol. 58, pp. 465-523, Oct. 1971.

B. Chandrasekaran and L. H. Reeker, “Artificial intelligence—a case for agnosti-
cism,” Ohio State University, Columbus, Ohio, Rep. OSU-CISRC-TR-72-9, Aug.
1972; also, IEEE Trans. Syst., Man, Cybern., vol. SMC-4, pp. 88-94, Jan. 1974.

H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. New
York: McGraw-Hill, 1967.

Randomness and mathematical
proof

Although randommness can be precisely defined and can even be measured, a
given number cannot be proved to be random. This enigma establishes a limit
to what is possible in mathematics.

Almost everyone has an intuitive notion of what a random number is. For
example, consider these two series of binary digits:

01010101010101010101
01101100110111100010

The first is obviously constructed according to a simple rule; it consists of
the number 01 repeated ten times. If one were asked to speculate on how
the series might continue, one could predict with considerable confidence
that the next two digits would be 0 and 1. Inspection of the second series
of digits yields no such comprehensive pattern. There is no obvious rule
governing the formation of the number, and there is no rational way to guess
the succeeding digits. The arrangement seems haphazard; in other words,
the sequence appears to be a random assortment of 0’s and 1’s.

The second series of binary digits was generated by flipping a coin 20 times
and writing a 1 if the outcome was heads and a 0 if it was tails. Tossing a
coin is a classical procedure for producing a random number, and one might
think at first that the provenance of the series alone would certify that it
is random. This is not so. Tossing a coin 20 times can produce any one
of 22° (or a little more than a million) binary series, and each of them has

31

32 Thinking about Godel & Turing

exactly the same probability. Thus it should be no more surprising to obtain
the series with an obvious pattern than to obtain the one that seems to be
random; each represents an event with a probability of 2729 If origin in a
probabilistic event were made the sole criterion of randomness, then both
series would have to be considered random, and indeed so would all others,
since the same mechanism can generate all the possible series. The conclusion
is singularly unhelpful in distinguishing the random from the orderly.

Clearly a more sensible definition of randomness is required, one that
does not contradict the intuitive concept of a “patternless” number. Such a
definition has been devised only in the past 10 years. It does not consider
the origin of a number but depends entirely on the characteristics of the se-
quence of digits. The new definition enables us to describe the properties of a
random number more precisely than was formerly possible, and it establishes
a hierarchy of degrees of randomness. Of perhaps even greater interest than
the capabilities of the definition, however, are its limitations. In particular
the definition cannot help to determine, except in very special cases, whether
or not a given series of digits, such as the second one above, is in fact random
or only seems to be random. This limitation is not a flaw in the definition; it
is a consequence of a subtle but fundamental anomaly in the foundation of
mathematics. It is closely related to a famous theorem devised and proved
in 1931 by Kurt Godel, which has come to be known as Godel’s incomplete-
ness theorem. Both the theorem and the recent discoveries concerning the
nature of randomness help to define the boundaries that constrain certain
mathematical methods.

Algorithmic Definition

The new definition of randomness has its heritage in information theory, the
science, developed mainly since World War II, that studies the transmission
of messages. Suppose you have a friend who is visiting a planet in another
galaxy, and that sending him telegrams is very expensive. He forgot to take
along his tables of trigonometric functions, and he has asked you to supply
them. You could simply translate the numbers into an appropriate code
(such as the binary numbers) and transmit them directly, but even the most
modest tables of the six functions have a few thousand digits, so that the cost
would be high. A much cheaper way to convey the same information would
be to transmit instructions for calculating the tables from the underlying

Randomness and mathematical proof 33

trigonometric formulas, such as Euler’s equation €** = cosz + isinz. Such
a message could be relatively brief, yet inherent in it is all the information
contained in even the largest tables.

Suppose, on the other hand, your friend is interested not in trigonometry
but in baseball. He would like to know the scores of all the major-league
games played since he left the earth some thousands of years before. In this
case it is most unlikely that a formula could be found for compressing the
information into a short message; in such a series of numbers each digit is
essentially an independent item of information, and it cannot be predicted
from its neighbors or from some underlying rule. There is no alternative to
transmitting the entire list of scores.

In this pair of whimsical messages is the germ of a new definition of ran-
domness. It is based on the observation that the information embodied in
a random series of numbers cannot be “compressed,” or reduced to a more
compact form. In formulating the actual definition it is preferable to consider
communication not with a distant friend but with a digital computer. The
friend might have the wit to make inferences about numbers or to construct
a series from partial information or from vague instructions. The computer
does not have that capacity, and for our purposes that deficiency is an ad-
vantage. Instructions given the computer must be complete and explicit,
and they must enable it to proceed step by step without requiring that it
comprehend the result of any part of the operations it performs. Such a
program of instructions is an algorithm. It can demand any finite number of
mechanical manipulations of numbers, but it cannot ask for judgments about
their meaning.

The definition also requires that we be able to measure the information
content of a message in some more precise way than by the cost of sending it
as a telegram. The fundamental unit of information is the “bit,” defined as
the smallest item of information capable of indicating a choice between two
equally likely things. In binary notation one bit is equivalent to one digit,
either a 0 or a 1.

We are now able to describe more precisely the differences between the
two series of digits presented at the beginning of this article:

01010101010101010101
01101100110111100010

The first could be specified to a computer by a very simple algorithm, such
as “Print 01 ten times.” If the series were extended according to the same

34 Thinking about Godel & Turing

rule, the algorithm would have to be only slightly larger; it might be made
to read, for example, “Print 01 a million times.” The number of bits in such
an algorithm is a small fraction of the number of bits in the series it specifies,
and as the series grows larger the size of the program increases at a much
slower rate.

For the second series of digits there is no corresponding shortcut. The
most economical way to express the series is to write it out in full, and the
shortest algorithm for introducing the series into a computer would be “Print
01101100110111100010.” If the series were much larger (but still apparently
patternless), the algorithm would have to be expanded to the corresponding
size. This “incompressibility” is a property of all random numbers; indeed,
we can proceed directly to define randomness in terms of incompressibility:
A series of numbers is random if the smallest algorithm capable of specifying
it to a computer has about the same number of bits of information as the
series itself.

This definition was independently proposed about 1965 by A. N. Kol-
mogorov of the Academy of Science of the U.S.S.R. and by me, when I was
an undergraduate at the City College of the City University of New York.
Both Kolmogorov and I were then unaware of related proposals made in
1960 by Ray J. Solomonoff of the Zator Company in an endeavor to measure
the simplicity of scientific theories. During the past decade we and others
have continued to explore the meaning of randomness. The original formula-
tions have been improved and the feasibility of the approach has been amply
confirmed.

Model of Inductive Method

The algorithmic definition of randomness provides a new foundation for the
theory of probability. By no means does it supersede classical probability the-
ory, which is based on an ensemble of possibilities, each of which is assigned
a probability. Rather, the algorithmic approach complements the ensem-
ble method by giving precise meaning to concepts that had been intuitively
appealing but that could not be formally adopted.

The ensemble theory of probability, which originated in the 17th century,
remains today of great practical importance. It is the foundation of statis-
tics, and it is applied to a wide range of problems in science and engineering.
The algorithmic theory also has important implications, but they are primar-

Randomness and mathematical proof 35

ily theoretical. The area of broadest interest is its amplification of Godel’s
incompleteness theorem. Another application (which actually preceded the
formulation of the theory itself) is in Solomonoff’s model of scientific induc-
tion.

Solomonoff represented a scientist’s observations as a series of binary
digits. The scientist seeks to explain these observations through a theory,
which can be regarded as an algorithm capable of generating the series and
extending it, that is, predicting future observations. For any given series of
observations there are always several competing theories, and the scientist
must choose among them. The model demands that the smallest algorithm,
the one consisting of the fewest bits, be selected. Stated another way, this
rule is the familiar formulation of Occam’s razor: Given differing theories of
apparently equal merit, the simplest is to be preferred.

Thus in the Solomonoff model a theory that enables one to understand a
series of observations is seen as a small computer program that reproduces
the observations and makes predictions about possible future observations.
The smaller the program, the more comprehensive the theory and the greater
the degree of understanding. Observations that are random cannot be re-
produced by a small program and therefore cannot be explained by a theory.
In addition the future behavior of a random system cannot be predicted.
For random data the most compact way for the scientist to communicate his
observations is for him to publish them in their entirety.

Defining randomness or the simplicity of theories through the capabilities
of the digital computer would seem to introduce a spurious element into these
essentially abstract notions: the peculiarities of the particular computing
machine employed. Different machines communicate through different com-
puter languages, and a set of instructions expressed in one of those languages
might require more or fewer bits when the instructions are translated into
another language. Actually, however, the choice of computer matters very
little. The problem can be avoided entirely simply by insisting that the ran-
domness of all numbers be tested on the same machine. Even when different
machines are employed, the idiosyncrasies of various languages can readily
be compensated for. Suppose, for example, someone has a program written
in English and wishes to utilize it with a computer that reads only French.
Instead of translating the algorithm itself he could preface the program with
a complete English course written in French. Another mathematician with
a French program and an English machine would follow the opposite proce-
dure. In this way only a fixed number of bits need be added to the program,

36 Thinking about Godel & Turing

and that number grows less significant as the size of the series specified by
the program increases. In practice a device called a compiler often makes it
possible to ignore the differences between languages when one is addressing
a computer.

Since the choice of a particular machine is largely irrelevant, we can choose
for our calculations an ideal computer. It is assumed to have unlimited
storage capacity and unlimited time to complete its calculations. Input to
and output from the machine are both in the form of binary digits. The
machine begins to operate as soon as the program is given it, and it continues
until it has finished printing the binary series that is the result. The machine
then halts. Unless an error is made in the program, the computer will produce
exactly one output for any given program.

Minimal Programs and Complexity

Any specified series of numbers can be generated by an infinite number of
algorithms. Consider, for example, the three-digit decimal series 123. It
could be produced by an algorithm such as “Subtract 1 from 124 and print
the result,” or “Subtract 2 from 125 and print the result,” or an infinity of
other programs formed on the same model. The programs of greatest interest,
however, are the smallest ones that will vield a given numerical series. The
smallest programs are called minimal programs; for a given series there may
be only one minimal program or there may be many.

Any minimal program is necessarily random, whether or not the series it
generates is random. This conclusion is a direct result of the way we have
defined randomness. Consider the program P, which is a minimal program
for the series of digits S. If we assume that P is not random, then by
definition there must be another program, P’, substantially smaller than P
that will generate it. We can then produce S by the following algorithm:
“From P’ calculate P, then from P calculate S.” This program is only a few
bits longer than P’, and thus it must be substantially shorter than P. P is
therefore not a minimal program.

The minimal program is closely related to another fundamental concept
in the algorithmic theory of randomness: the concept of complexity. The
complexity of a series of digits is the number of bits that must be put into
a computing machine in order to obtain the original series as output. The
complexity is therefore equal to the size in bits of the minimal programs of

Randomness and mathematical proof 37

the series. Having introduced this concept, we can now restate our definition
of randomness in more rigorous terms: A random series of digits is one whose
complexity is approximately equal to its size in bits.

The notion of complexity serves not only to define randomness but also
to measure it. Given several series of numbers each having n digits, it is
theoretically possible to identify all those of complexity n—1, n— 10, n — 100
and so forth and thereby to rank the series in decreasing order of randomness.
The exact value of complexity below which a series is no longer considered
random remains somewhat arbitrary. The value ought to be set low enough
for numbers with obviously random properties not to be excluded and high
enough for numbers with a conspicuous pattern to be disqualified, but to set a
particular numerical value is to judge what degree of randomness constitutes
actual randomness. It is this uncertainty that is reflected in the qualified
statement that the complexity of a random series is approzimately equal to
the size of the series.

Properties of Random Numbers

The methods of the algorithmic theory of probability can illuminate many
of the properties of both random and nonrandom numbers. The frequency
distribution of digits in a series, for example, can be shown to have an impor-
tant influence on the randomness of the series. Simple inspection suggests
that a series consisting entirely of either 0’s or 1's is far from random, and
the algorithmic approach confirms that conclusion. If such a series is n digits
long, its complexity is approximately equal to the logarithm to the base 2 of
n. (The exact value depends on the machine language employed.) The series
can be produced by a simple algorithm such as “Print 0 n times,” in which
virtually all the information needed is contained in the binary numeral for
n. The size of this number is about log, n bits. Since for even a moderately
long series the logarithm of n is much smaller than n itself, such numbers
are of low complexity; their intuitively perceived pattern is mathematically
confirmed.

Another binary series that can be profitably analyzed in this way is one
where 0’s and 1’s are present with relative frequencies of three-fourths and
one-fourth. If the series is of size n, it can be demonstrated that its complex-
ity is no greater than four-fifths n, that is, a program that will produce the
series can be written in 4n/5 bits. This maximum applies regardless of the

38 Thinking about Godel & Turing

sequence of the digits, so that no series with such a frequency distribution
can be considered very random. In fact, it can be proved that in any long
binary series that is random the relative frequencies of 0's and 1’s must be
very close to one-half. (In a random decimal series the relative frequency of
each digit is, of course, one-tenth.)

Numbers having a nonrandom frequency distribution are exceptional. Of
all the possible n-digit binary numbers there is only one, for example, that
consists entirely of 0’s and only one that is all 1's. All the rest are less
orderly, and the great majority must, by any reasonable standard, be called
random. To choose an arbitrary limit, we can calculate the fraction of all
n-digit binary numbers that have a complexity of less than n — 10. There
are 2! programs one digit long that might generate an n-digit series; there
are 22 programs two digits long that could yield such a series, 2* programs
three digits long and so forth, up to the longest programs permitted within
the allowed complexity; of these there are 2", The sum of this series
(21 + 22 4 -+ - 27711 is equal to 2"~1° — 2. Hence there are fewer than 2710
programs of size less than n—10, and since each of these programs can specify
no more than one series of digits, fewer than 2"~1° of the 2" numbers have a
complexity less than n — 10. Since 2"710/2" = 1/1,024, it follows that of all
the n-digit binary numbers only about one in 1,000 have a complexity less
than n—10. In other words, only about one series in 1,000 can be compressed
into a computer program more than 10 digits smaller than itself.

A necessary corollary of this calculation is that more than 999 of every
1,000 n-digit binary numbers have a complexity equal to or greater than
n — 10. If that degree of complexity can be taken as an appropriate test of
randomness, then almost all n-digit numbers are in fact random. If a fair
coin is tossed n times, the probability is greater than .999 that the result will
be random to this extent. It would therefore seem easy to exhibit a specimen
of a long series of random digits; actually it is impossible to do so.

Formal Systems

It can readily be shown that a specific series of digits is not random; it is suf-
ficient to find a program that will generate the series and that is substantially
smaller than the series itself. The program need not be a minimal program
for the series; it need only be a small one. To demonstrate that a particular
series of digits is random, on the other hand, one must prove that no small

Randomness and mathematical proof 39

program for calculating it exists.

It is in the realm of mathematical proof that Godel’'s incompleteness
theorem is such a conspicuous landmark; my version of the theorem predicts
that the required proof of randomness cannot be found. The consequences of
this fact are just as interesting for what they reveal about Godel’s theorem
as they are for what they indicate about the nature of random numbers.

Godel’s theorem represents the resolution of a controversy that preoccu-
pied mathematicians during the early years of the 20th century. The ques-
tion at issue was: “What constitutes a valid proof in mathematics and how
is such a proof to be recognized?” David Hilbert had attempted to resolve
the controversy by devising an artificial language in which valid proofs could
be found mechanically, without any need for human insight or judgement.
Godel showed that there is no such perfect language.

Hilbert established a finite alphabet of symbols, an unambiguous gram-
mar specifying how a meaningful statement could be formed, a finite list of
axioms, or initial assumptions, and a finite list of rules of inference for de-
ducing theorems from the axioms or from other theorems. Such a language,
with its rules, is called a formal system.

A formal system is defined so precisely that a proof can be evaluated by a
recursive procedure involving only simple logical and arithmetical manipula-
tions. In other words, in the formal system there is an algorithm for testing
the validity of proofs. Today, although not in Hilbert’s time, the algorithm
could be executed on a digital computer and the machine could be asked to
“judge” the merits of the proof.

Because of Hilbert’s requirement that a formal system have a proof-
checking algorithm, it is possible in theory to list one by one all the theorems
that can be proved in a particular system. One first lists in alphabetical or-
der all sequences of symbols one character long and applies the proof-testing
algorithm to each of them, thereby finding all theorems (if any) whose proofs
consist of a single character. One then tests all the two-character sequences
of symbols, and so on. In this way all potential proofs can be checked, and
eventually all theorems can be discovered in order of the size of their proofs.
(The method is, of course, only a theoretical one; the procedure is too lengthy
to be practical.)

T2 Thinking about Godel & Turing

to unusual mathematical propositions that were not likely to be of interest in
practice, algorithmic information theory has shown that incompleteness and
randomness are natural and pervasive. This suggests to me that the pos-
sibility of searching for new axioms applying to the whole numbers should
perhaps be taken more seriously.

Indeed, the fact that many mathematical problems have remained un-
solved for hundreds and even thousands of years tends to support my con-
tention. Mathematicians steadfastly assume that the failure to solve these
problems lies strictly within themselves, but could the fault not lie in the
incompleteness of their axioms? For example, the question of whether there
are any perfect odd numbers has defied an answer since the time of the an-
cient Greeks. (A perfect number is a number that is exactly the sum of its
divisors, excluding itself. Hence 6 is a perfect number, since 6 equals 1 plus 2
plus 3.) Could it be that the statement “There are no odd perfect numbers”
is unprovable? If it is, perhaps mathematicians had better accept it as an
axiom.

This may seem like a ridiculous suggestion to most mathematicians, but
to a physicist or a biologist it may not seem so absurd. To those who work in
the empirical sciences the usefulness of a hypothesis, and not necessarily its
“self-evident truth,” is the key criterion by which to judge whether it should
be regarded as the basis for a theory. If there are many conjectures that can
be settled by invoking a hypothesis, empirical scientists take the hypothesis
seriously. (The nonexistence of odd perfect numbers does not appear to have
significant implications and would therefore not be a useful axiom by this
criterion.)

Actually in a few cases mathematicians have already taken unproved but
useful conjectures as a basis for their work. The so-called Riemann hypothe-
sis, for instance, is often accepted as being true, even though it has never been
proved, because many other important theorems are based on it. Moreover,
the hypothesis has been tested empirically by means of the most powerful
computers, and none has come up with a single counterexample. Indeed,
computer programs (which, as I have indicated, are equivalent to mathemat-
ical statements) are also tested in this way—by verifying a number of test
cases rather than by rigorous mathematical proof.

