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PENGUIN BOOKS

TO EXPLAIN THE WORLD

‘I read To Explain the World completely enthralled. It transmutes
the base metal of a mere history of science into pure gold — into a
magisterial celebration of a long and heroic struggle, still
incomplete, to understand nature. Only a committed scientist of
Steven Weinberg'’s brilliance, experience and breadth of insight
could have accomplished this. | ended the book exhilarated’ lan
McEwan

‘It would be putting it mildly to say that Weinberg triumphantly lives
up to what it says on the Nobel tin: a true intellectual as well as a
brilliant theoretical physicist’ Richard Dawkins

‘Steven Weinberg is one of the most highly accomplished and
respected scientists in the world. But even among this elite group
he holds a unique position as a scientist-scholar and a writer of
unparalleled clarity. Weinberg has become a role model for the
rest of us who attempt to communicate to the broader public. No
one writing on matters of science or of science and society has
more wisdom to impart, nor can they impart it better than
Weinberg’ Lawrence Krauss

‘Regarded as the pre-eminent theoretical physicist alive today ...
Weinberg is also a fine writer and communicator about ideas
beyond his own field’ Clive Cookson, Financial Times

‘Weinberg has reached the pinnacle of scientific success — the
Nobel Prize — he writes clearly and with confidence, imbuing the
reader with an irresistible sense that one is in the hands of a
master physicist at play’ Sunday Times

‘There have been many accounts of the historical progression of
our understanding of the world around us, but few have had the
unique selling point of Steven Weinberg’'s To Explain the World.
Weinberg is a Nobel Prize-winning theoretical physicist ... In this



sense, then, Weinberg’s chronicle of the long development of
physics leading up to the role he has personally played in it is akin
to Winston Churchill’s A History of the English-Speaking Peoples’
Lewis Dartnell, Daily Telegraph

‘Of all top-class theoretical physicists no one, apart from Freeman
Dyson, writes with the same combination of authority and grace’
Graham Farmelo, Times Higher Education

‘A bravura performance. Writing with grace and verve, Weinberg
explains complex conceptual nuances with admirable clarity’
Physics Today

‘A refreshing contrast to other tomes on the topic ... Weinberg
reminds us to be humble not only about what we know, but how
we know it’ Nicola Davis, Guardian

‘An enlightening read that does not demand specialist knowledge
to enjoy’ Robert Kingston, Sunday Times

‘A historical tour of the development of the scientific method as we
know it today ... Fascinating’ Paul Montgomery, Physics World

‘The long march toward the modern scientific method is well-
trodden territory for historians of science, but in tackling this
familiar topic, Steven Weinberg offers a thoughtful, supplementary
viewpoint’ Marcia Bartusiak, Washington Post

‘Weinberg has combined his credentials with his knowledge of the

history of science to examine a fascinating issue: how attempts to

explain the world have changed over time ... He writes simply and
clearly, and includes many telling insights’ BBC Focus

‘An ingenious account ... The author has a keen understanding of
the precise details of his subject ... Readers will come away with a
stimulating view of how humans learn from nature’ Kirkus



‘Weinberg advances keen insights ... into the intellectual structure
of science ... A compelling reminder of how science works — and
why it matters’ Booklist

‘With his usual scholarly aplomb, Weinberg leads readers on a
tour of early scientific theory, from the ancient Greeks to the
Scientific Revolution of the seventeenth century ... Accessible and
smoothly written, Weinberg’s book offers new insights on what
has become familiar territory for pop-science readers’ Publishers
Weekly

‘Entertaining ... The book should make any history of science
buff’s reading list ... Weinberg gets it right’ Forbes
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These three hours that we have spent,
Walking here, two shadows went

Along with us, which we ourselves produced;
But, now the sun is just above our head,

We do those shadows fread;

And to brave clearmness all things are reduced.

John Donne, “A Lecture upon the Shadow”



Preface

| am a physicist, not a historian, but over the years | have become
increasingly fascinated by the history of science. Itis an
extraordinary story, one of the most interesting in human history. It
is also a story in which scientists like myself have a personal
stake. Today’s research can be aided and illuminated by a
knowledge of its past, and for some scientists knowledge of the
history of science helps to motivate present work. \We hope that
our research may turn out to be a part, however small, of the
grand historical tradition of natural science.

Where my own past writing has touched on history, it has been
mostly the modern history of physics and astronomy, roughly from
the late nineteenth century to the present. Although in this era we
have learned many new things, the goals and standards of
physical science have not materially changed. If physicists of 1900
were somehow taught today’s Standard Model of cosmology or of
elementary particle physics, they would have found much to
amaze them, but the idea of seeking mathematically formulated
and experimentally validated impersonal principles that explain a
wide variety of phenomena would have seemed quite familiar.

A while ago | decided that | needed to dig deeper, to learn more
about an earlier era in the history of science, when the goals and
standards of science had not yet taken their present shape. As is
natural for an academic, when | want to learn about something, |
volunteer to teach a course on the subject. Over the past decade
at the University of Texas, | have from time to time taught
undergraduate courses on the history of physics and astronomy to
students who had no special background in science, mathematics,
or history. This book grew out of the lecture notes for those
courses.



But as the book has developed, perhaps | have been able to
offer something that goes a little beyond a simple narrative: it is
the perspective of a modern working scientist on the science of
the past. | have taken this opportunity to explain my views about
the nature of physical science, and about its continued tangled
relations with religion, technology, philosophy, mathematics, and
aesthetics.

Before history there was science, of a sort. At any moment
nature presents us with a variety of puzzling phenomena: fire,
thunderstorms, plagues, planetary motion, light, tides, and so on.
Observation of the world led to useful generalizations: fires are
hot; thunder presages rain; tides are highest when the Moon is full
or new, and so on. These became part of the common sense of
mankind. But here and there, some people wanted more than just
a collection of facts. They wanted to explain the world.

It was not easy. It is not only that our predecessors did not know
what we know about the world—more important, they did not have
anything like our ideas of what there was to know about the world,
and how to learn it. Again and again in preparing the lectures for
my course | have been impressed with how different the work of
science in past centuries was from the science of my own times.
As the much quoted lines of a novel of L. P. Hartley put it, “The
past is a foreign country; they do things differently there.” | hope
that in this book | have been able to give the reader not only an
idea of what happened in the history of the exact sciences, but
also a sense of how hard it has all been.

So this book is not solely about how we came to learn various
things about the world. That is naturally a concern of any history of
science. My focus in this book is a little different—it is how we
came to learn how to learn about the world.

| am not unaware that the word “explain” in the title of this book
raises problems for philosophers of science. They have pointed
out the difficulty in drawing a precise distinction between
explanation and description. (I will have a little to say about this in
Chapter 8.) But this is a work on the history rather than the
philosophy of science. By explanation | mean something
admittedly imprecise, the same as is meant in ordinary life when



we try to explain why a horse has won a race or why an airplane
has crashed.

The word “discovery” in the subtitle is also problematic. | had
thought of using The Invention of Modem Science as a subtitle.
After all, science could hardly exist without human beings to
practice it. | chose “Discovery” instead of “Invention” to suggest
that science is the way it is not so much because of various
adventitious historic acts of invention, but because of the way
nature is. With all its imperfections, modern science is a technique
that is sufficiently well tuned to nature so that it works—it is a
practice that allows us to learn reliable things about the world. In
this sense, it is a technique that was waiting for people to discover
it.

Thus one can talk about the discovery of science in the way that
a historian can talk about the discovery of agriculture. With all its
variety and imperfections, agriculture is the way it is because its
practices are sufficiently well tuned to the realities of biology so
that it works—it allows us to grow food.

| also wanted with this subtitle to distance myself from the few
remaining social constructivists: those sociologists, philosophers,
and historians who try to explain not only the process but even the
results of science as products of a particular cultural milieu.

Among the branches of science, this book will emphasize
physics and astronomy. It was in physics, especially as applied to
astronomy, that science first took a modern form. Of course there
are limits to the extent to which sciences like biology, whose
principles depend so much on historical accidents, can or should
be modeled on physics. Nevertheless, there is a sense in which
the development of scientific biology as well as chemistry in the
nineteenth and twentieth centuries followed the model of the
revolution in physics of the seventeenth century.

Science is now international, perhaps the most international
aspect of our civilization, but the discovery of modern science
happened in what may loosely be called the West. Modern
science learned its methods from research done in Europe during
the scientific revolution, which in turn evolved from work done in
Europe and in Arab countries during the Middle Ages, and



ultimately from the precocious science of the Greeks. The West
borrowed much scientific knowledge from elsewhere—geometry
from Egypt, astronomical data from Babylon, the techniques of
arithmetic from Babylon and India, the magnetic compass from
China, and so on—but as far as | know, it did not import the
methods of modern science. So this book will emphasize the West
(including medieval Islam) in just the way that was deplored by
Oswald Spengler and Arnold Toynbee: | will have little to say
about science outside the West, and nothing at all to say about
the interesting but entirely isolated progress made in pre-
Columbian America.

In telling this story, | will be coming close to the dangerous
ground that is most carefully avoided by contemporary historians,
of judging the past by the standards of the present. This is an
irreverent history; | am not unwilling to criticize the methods and
theories of the past from a modern viewpoint. | have even taken
some pleasure in uncovering a few errors made by scientific
heroes that | have not seen mentioned by historians.

A historian who devotes years to study the works of some great
man of the past may come to exaggerate what his hero has
accomplished. | have seen this in particular in works on Plato,
Aristotle, Avicenna, Grosseteste, and Descartes. But it is not my
purpose here to accuse some past natural philosophers of
stupidity. Rather, by showing how far these very intelligent
individuals were from our present conception of science, | want to
show how difficult was the discovery of modern science, how far
from obvious are its practices and standards. This also serves as
a warning, that science may not yet be in its final form. At several
points in this book | suggest that, as great as is the progress that
has been made in the methods of science, we may today be
repeating some of the errors of the past.

Some historians of science make a shibboleth of not referring to
present scientific knowledge in studying the science of the past. |
will instead make a point of using present knowledge to clarify
past science. For instance, though it might be an interesting
intellectual exercise to try to understand how the Hellenistic
astronomers Apollonius and Hipparchus developed the theory that



the planets go around the Earth on looping epicyclic orbits by
using only the data that had been available to them, this is
impossible, for much of the data they used is lost. But we do know
that in ancient times the Earth and planets went around the Sun
on nearly circular orbits, just as they do today, and by using this
knowledge we will be able to understand how the data available to
ancient astronomers could have suggested to them their theory of
epicycles. In any case, how can anyone today, reading about
ancient astronomy, forget our present knowledge of what actually
goes around what in the solar system?

For readers who want to understand in greater detail how the
work of past scientists fits in with what actually exists in nature,
there are “technical notes” at the back of the book. It is not
necessary to read these notes to follow the book’s main text, but
some readers may learn a few odd bits of physics and astronomy
from them, as | did in preparing them.

Science is not now what it was at its start. Its results are
impersonal. Inspiration and aesthetic judgment are important in
the development of scientific theories, but the verification of these
theories relies finally on impartial experimental tests of their
predictions. Though mathematics is used in the formulation of
physical theories and in working out their consequences, science
is not a branch of mathematics, and scientific theories cannot be
deduced by purely mathematical reasoning. Science and
technology benefit each other, but at its most fundamental level
science is not undertaken for any practical reason. Though
science has nothing to say one way or the other about the
existence of God or an afterlife, its goal is to find explanations of
natural phenomena that are purely naturalistic. Science is
cumulative; each new theory incorporates successful earlier
theories as approximations, and even explains why these
approximations work, when they do work.

None of this was obvious to the scientists of the ancient world or
the Middle Ages, and all of it was learned only with great difficulty
in the scientific revolution of the sixteenth and seventeenth
centuries. Nothing like modern science was a goal from the
beginning. How then did we get to the scientific revolution, and



beyond it to where we are now? That is what we must try to learn
as we explore the discovery of modern science.



Part |

GREEK PHYSICS

During or before the flowering of Greek science, significant
contributions to technology, mathematics, and astronomy
were being made by the Babylonians, Chinese, Egyptians,
Indians, and other peoples. Nevertheless, it was from Greece
that Europe drew its model and its inspiration, and it was in
Europe that modern science began, so the Greeks played a
special role in the discovery of science.

One can argue endlessly about why it was the Greeks who
accomplished so much. It may be significant that Greek
science began when Greeks lived in small independent city-
states, many of them democracies. But as we shall see, the
Greeks made their most impressive scientific achievements
after these small states had been absorbed into great
powers: the Hellenistic kingdoms, and then the Roman
Empire. The Greeks in Hellenistic and Roman times made
contributions to science and mathematics that were not
significantly surpassed until the scientific revolution of the
sixteenth and seventeenth centuries in Europe.

This part of my account of Greek science deals with
physics, leaving Greek astronomy to be discussed in Part Il. |



have divided Part | into five chapters, dealing in more or less
chronological order with five modes of thought with which
science has had to come to terms: poetry, mathematics,
philosophy, technology, and religion. The theme of the
relationship of science to these five intellectual neighbors
will recur throughout this book.



Matter and Poetry

First, to set the scene. By the sixth century BC the western coast
of what is now Turkey had for some time been settled by Greeks,
chiefly speaking the lonian dialect. The richest and most powerful
of the lonian cities was Miletus, founded at a natural harbor near
where the river Meander flows into the Aegean Sea. In Miletus,
over a century before the time of Socrates, Greeks began to
speculate about the fundamental substance of which the world is
made.

| first learned about the Milesians as an undergraduate at
Cornell, taking courses on the history and philosophy of science.
In lectures | heard the Milesians called “physicists.” At the same
time, | was also attending classes on physics, including the
modern atomic theory of matter. There seemed to me to be very
little in common between Milesian and modern physics. It was not
so much that the Milesians were wrong about the nature of matter,
but rather that | could not understand how they could have
reached their conclusions. The historical record concerning Greek
thought before the time of Plato is fragmentary, but | was pretty
sure that during the Archaic and Classical eras (roughly from 600
to 450 BC and from 450 to 300 BC, respectively) neither the
Milesians nor any of the other Greek students of nature were
reasoning in anything like the way scientists reason today.

The first Milesian of whom anything is known was Thales, who
lived about two centuries before the time of Plato. He was
supposed to have predicted a solar eclipse, one that we know did
occur in 585 BC and was visible from Miletus. Even with the
benefit of Babylonian eclipse records it’s unlikely that Thales could



have made this prediction, because any solar eclipse is visible
from only a limited geographic region, but the fact that Thales was
credited with this prediction shows that he probably flourished in
the early 500s BC. We don’t know if Thales put any of his ideas
into writing. In any case, nothing written by Thales has survived,
even as a quotation by later authors. He is a legendary figure, one
of those (like his contemporary Solon, who was supposed to have
founded the Athenian constitution) who were conventionally listed
in Plato’s time as the “seven sages” of Greece. For instance,
Thales was reputed to have proved or brought from Egypt a
famous theorem of geometry (see Technical Note 1). What
matters to us here is that Thales was said to hold the view that all
matter is composed of a single fundamental substance. According
to Aristotle’s Metaphysics, “Of the first philosophers, most thought
the principles which were of the nature of matter were the only
principles of all things.... Thales, the founder of this school of
philosophy, says the principle is water.”' Much later, Diogenes
Laertius (fl. AD 230), a biographer of the Greek philosophers,
wrote, “His doctrine was that water is the universal primary
substance, and that the world is animate and full of divinities.”

By “universal primary substance” did Thales mean that all
matter is composed of water? If so, we have no way of telling how
he came to this conclusion, but if someone is convinced that all
matter is composed of a single common substance, then water is
not a bad candidate. Water not only occurs as a liquid but can be
easily converted into a solid by freezing or into a vapor by boiling.
Water evidently also is essential to life. But we don’t know if
Thales thought that rocks, for example, are really formed from
ordinary water, or only that there is something profound that rock
and all other solids have in common with frozen water.

Thales had a pupil or associate, Anaximander, who came to a
different conclusion. He too thought that there is a single
fundamental substance, but he did not associate it with any
common material. Rather, he identified it as a mysterious
substance he called the unlimited, or infinite. On this, we have a
description of his views by Simplicius, a Neoplatonist who lived



about a thousand years later. Simplicius includes what seems to
be a direct quotation from Anaximander, indicated here in italics:

Of those who say that [the principle] is one and in motion and
unlimited, Anaximander, son of Praxiades, a Milesian who became
successor and pupil to Thales, said that the unlimited is both
principle and element of the things that exist. He says that it is
neither water nor any other of the so-called elements, but some
other unlimited nature, from which the heavens and the worlds in
them come about; and the things from which is the coming into
being for the things that exist are also those into which their
destruction comes about, in accordance with what must be. For they
give justice and reparation to one another for their offence in
accordance with the ordinance of time—speaking of them thus in
rather poetical terms. And it is clear that, having observed the
change of the four elements intc one another, he did not think fit to
make any one of these an underlying stuff, but something else apart
from these.®

A little later another Milesian, Anaximenes, returned to the idea
that everything is made of some one common substance, but for
Anaximenes it was not water but air. He wrote one book, of which
just one whole sentence has survived: “The soul, being our air,
controls us, and breath and air encompass the whole world.”

With Anaximenes the contributions of the Milesians came to an
end. Miletus and the other lonian cities of Asia Minor became
subject to the growing Persian Empire in about 550 BC. Miletus
started a revolt in 499 BC and was devastated by the Persians. It
revived later as an important Greek city, but it never again
became a center of Greek science.

Concern with the nature of matter continued outside Miletus
among the lonian Greeks. There is a hint that earth was
nominated as the fundamental substance by Xenophanes, who
was born around 570 BC at Colophon in lonia and migrated to
southern Italy. In one of his poems, there is the line “For all things
come from earth, and in earth all things end.” But perhaps this
was just his version of the familiar funerary sentiment, “Ashes to
ashes, dust to dust.” We will meet Xenophanes again in another
connection, when we come to religion in Chapter 5.



At Ephesus, not far from Miletus, around 500 BC Heraclitus
taught that the fundamental substance is fire. He wrote a book, of
which only fragments survive. One of these fragments tells us,
“This ordered kosmos,* which is the same for all, was not created
by any one of the gods or of mankind, but it was ever and is and
shall be ever-living Fire, kindled in measure and quenched in
measure.” Heraclitus elsewhere emphasized the endless
changes in nature, so for him it was more natural to take flickering
fire, an agent of change, as the fundamental element than the
more stable earth, air, or water.

The classic view that all matter is composed not of one but of
four elements—water, air, earth, and fire—is probably due to
Empedocles. He lived in Acragas, in Sicily (the modern
Agrigento), in the mid-400s BC, and he is the first and nearly the
only Greek in this early part of the story to have been of Dorian
rather than of lonian stock. He wrote two hexameter poems, of
which many fragments have survived. In On Nature, we find “how
from the mixture of Water, Earth, Aether, and Sun [fire] there
came into being the forms and colours of mortal things”” and also
“fire and water and earth and the endless height of air, and cursed
Strife apart from them, balanced in every way, and Love among
them, equal in height and breadth.”®

It is possible that Empedocles and Anaximander used terms like
“love” and “strife” or “justice” and “injustice” only as metaphors for
order and disorder, in something like the way Einstein
occasionally used “God” as a metaphor for the unknown
fundamental laws of nature. But we should not force a modern
interpretation onto the pre-Socratics’ words. As | see it, the
intrusion of human emotions like Empedocles’ love and strife, or of
values like Anaximander's justice and reparation, into speculations
about the nature of matter is more likely to be a sign of the great
distance of the thought of the pre-Socratics from the spirit of
modern physics.

These pre-Socratics, from Thales to Empedocles, seem to have
thought of the elements as smooth undifferentiated substances. A
different view that is closer to modern understanding was
introduced a little later at Abdera, a town on the seacoast of



Thrace founded by refugees from the revolt of the lonian cities
against Persia started in 499 BC. The first known Abderite
philosopher is Leucippus, from whom just one sentence survives,
suggesting a deterministic worldview: “No thing happens in vain,
but everything for a reason and by necessity.”® Much more is
known of Leucippus’ successor Democritus. He was born at
Miletus, and had traveled in Babylon, Egypt, and Athens before
settling in Abdera in the late 400s BC. Democritus wrote books on
ethics, natural science, mathematics, and music, of which many
fragments survive. One of these fragments expresses the view
that all matter consists of tiny indivisible particles called atoms
(from the Greek for “uncuttable”), moving in empty space: “Sweet
exists by convention, bitter by convention; atoms and Void [alone]
exist in reality.”"°

Like modern scientists, these early Greeks were willing to look
beneath the surface appearance of the world, pursuing knowledge
about a deeper level of reality. The matter of the world does not
appear at first glance as if it is all made of water, or air, or earth, or
fire, or all four together, or even of atoms.

Acceptance of the esoteric was taken to an extreme by
Parmenides of Elea (the modern Velia) in southern Italy, who was
greatly admired by Plato. In the early 400s BC Parmenides taught,
contra Heraclitus, that the apparent change and variety in nature
are an illusion. His ideas were defended by his pupil Zeno of Elea
(not to be confused with other Zenos, such as Zeno the Stoic). In
his book Aftacks, Zeno offered a number of paradoxes to show
the impossibility of motion. For instance, to traverse the whole
course of a racetrack, it is necessary first to cover half the
distance, and then half the remaining distance, and so on
indefinitely, so that it is impossible ever to traverse the whole
track. By the same reasoning, as far as we can tell from surviving
fragments, it appeared to Zeno to be impossible ever to travel any
given distance, so that all motion is impossible.

Of course, Zeno’s reasoning was wrong. As pointed out later by
Aristotle,"" there is no reason why we cannot accomplish an
infinite number of steps in a finite time, as long as the time needed
for each successive step decreases sufficiently rapidly. It is true



that an infinite series like 2 + ¥4 + ¥4 + ... has an infinite sum, but
the infinite series 2 + ¥4 + ¥ + ... has a finite sum, in this case
equal to 1.

What is most striking is not so much that Parmenides and Zeno
were wrong as that they did not bother to explain why, if motion is
impossible, things appear to move. Indeed, none of the early
Greeks from Thales to Plato, in either Miletus or Abdera or Elea or
Athens, ever took it on themselves to explain in detail how their
theories about ultimate reality accounted for the appearances of
things.

This was not just intellectual laziness. There was a strain of
intellectual snobbery among the early Greeks that led them to
regard an understanding of appearances as not worth having.
This is just one example of an attitude that has blighted much of
the history of science. At various times it has been thought that
circular orbits are more perfect than elliptical orbits, that gold is
more noble than lead, and that man is a higher being than his
fellow simians.

Are we now making similar mistakes, passing up opportunities
for scientific progress because we ignore phenomena that seem
unworthy of our attention? One can’t be sure, but | doubt it. Of
course, we cannot explore everything, but we choose problems
that we think, rightly or wrongly, offer the best prospect for
scientific understanding. Biologists who are interested in
chromosomes or nerve cells study animals like fruit flies and
squid, not noble eagles and lions. Elementary particle physicists
are sometimes accused of a snobbish and expensive
preoccupation with phenomena at the highest attainable energies,
but it is only at high energies that we can create and study
hypothetical particles of high mass, like the dark matter particles
that astronomers tell us make up five-sixths of the matter of the
universe. In any case, we give plenty of attention to phenomena at
low energies, like the intriguing mass of neutrinos, about a
millionth the mass of the electron.

In commenting on the prejudices of the pre-Socratics, | don’t
mean to say that a priori reasoning has no place in science.
Today, for instance, we expect to find that our deepest physical



laws satisfy principles of symmetry, which state that physical laws
do not change when we change our point of view in certain
definite ways. Just like Parmenides’ principle of changelessness,
some of these symmetry principles are not immediately apparent
in physical phenomena—they are said to be spontaneously
broken. That is, the equations of our theories have certain
simplicities, for instance treating certain species of particles in the
same way, but these simplicities are not shared by the solutions of
the equations, which govern actual phenomena. Nevertheless,
unlike the commitment of Parmenides to changelessness, the a
priori presumption in favor of principles of symmetry arose from
many years of experience in searching for physical principles that
describe the real world, and broken as well as unbroken
symmetries are validated by experiments that confirm their
consequences. They do not involve value judgments of the sort
we apply to human affairs.

With Socrates, in the late fifth century BC, and Plato, some forty
years later, the center of the stage for Greek intellectual life
moved to Athens, one of the few cities of lonian Greeks on the
Greek mainland. Almost all of what we know about Socrates
comes from his appearance in the dialogues of Plato, and as a
comic character in Aristophanes’ play The Clouds. Socrates does
not seem to have put any of his ideas into writing, but as far as we
can tell he was not very interested in natural science. In Plato’s
dialogue Phaedo Socrates recalls how he was disappointed in
reading a book by Anaxagoras (about whom more in Chapter 7)
because Anaxagoras described the Earth, Sun, Moon, and stars
in purely physical terms, without regard to what is best.'?

Plato, unlike his hero Socrates, was an Athenian aristocrat. He
was the first Greek philosopher from whom many writings have
survived pretty much intact. Plato, like Socrates, was more
concerned with human affairs than with the nature of matter. He
hoped for a political career that would allow him to put his utopian
and antidemocratic ideas into practice. In 367 BC Plato accepted
an invitation from Dionysius Il to come to Syracuse and help
reform its government, but, fortunately for Syracuse, nothing came
of the reform project.



In one of his dialogues, the Timaeus, Plato brought together the
idea of four elements with the Abderite notion of atoms. Plato
supposed that the four elements of Empedocles consisted of
particles shaped like four of the five solid bodies known in
mathematics as regular polyhedrons: bodies with faces that are all
identical polygons, with all edges identical, coming together at
identical vertices. (See Technical Note 2.) For instance, one of the
regular polyhedrons is the cube, whose faces are all identical
squares, three squares meeting at each vertex. Plato took atoms
of earth to have the shape of cubes. The other regular
polyhedrons are the tetrahedron (a pyramid with four triangular
faces), the eight-sided octahedron, the twenty-sided icosahedron,
and the twelve-sided dodecahedron. Plato supposed that the
atoms of fire, air, and water have the shapes respectively of the
tetrahedron, octahedron, and icosahedron. This left the
dodecahedron unaccounted for. Plato regarded it as representing
the kosmos. Later Aristotle introduced a fifth element, the ether or
quintessence, which he supposed filled the space above the orbit
of the Moon.

It has been common in writing about these early speculations
regarding the nature of matter to emphasize how they prefigure
features of modern science. Democritus is particularly admired,
one of the leading universities in modern Greece is named
Democritus University. Indeed, the effort to identify the
fundamental constituents of matter continued for millennia, though
with changes from time to time in the menu of elements. By early
modern times alchemists had identified three supposed elements:
mercury, salt, and sulfur. The modern idea of chemical elements
dates from the chemical revolution instigated by Priestley,
Lavoisier, Dalton, and others at the end of the eighteenth century,
and now incorporates 92 naturally occurring elements, from
hydrogen to uranium (including mercury and sulfur but not salt)
plus a growing list of artificially created elements heavier than
uranium. Under normal conditions, a pure chemical element
consists of atoms all of the same type, and the elements are
distinguished from one another by the type of atom of which they
are composed. Today we look beyond the chemical elements to



the elementary particles of which atoms are composed, but one
way or another we continue the search, begun at Miletus, for the
fundamental constituents of nature.

Nevertheless, | think one should not overemphasize the modern
aspects of Archaic or Classical Greek science. There is an
important feature of modern science that is almost completely
missing in all the thinkers | have mentioned, from Thales to Plato:
none of them attempted to verify or even (aside perhaps from
Zeno) seriously to justify their speculations. In reading their
writings, one continually wants to ask, “How do you know?” This is
just as true of Democritus as of the others. Nowhere in the
fragments of his books that survive do we see any effort to show
that matter really is composed of atoms.

Plato’s ideas about the five elements give a good example of
his insouciant attitude toward justification. In Timaeus, he starts
not with regular polyhedrons but with triangles, which he proposes
to join together to form the faces of the polyhedrons. What sort of
tnangles? Plato proposes that these should be the isosceles right
triangle, with angles 45°, 45°, and 90°; and the right triangle with
angles 30°, 60°, and 90°. The square faces of the cubic atoms of
earth can be formed from two isosceles right triangles, and the
triangular faces of the tetrahedral, octahedral, and icosahedral
atoms of fire, air, and water (respectively) can each be formed
from two of the other right triangles. (The dodecahedron, which
mysteriously represents the cosmos, cannot be constructed in this
way.) To explain this choice, Plato in Timaeus says, “If anyone
can tell us of a better choice of triangle for the construction of the
four bodies, his criticism will be welcome; but for our part we
propose to pass over all the rest.... It would be too long a story to
give the reason, but if anyone can produce a proof that it is not so
we will welcome his achievement.”'® | can imagine the reaction
today if | supported a new conjecture about matter in a physics
article by saying that it would take too long to explain my
reasoning, and challenging my colleagues to prove the conjecture
is not true.

Aristotle called the earlier Greek philosophers physiologi, and
this is sometimes translated as “physicists,”™ but that is



misleading. The word physiologi simply means students of nature
(physis), and the early Greeks had very little in common with
today’s physicists. Their theories had no bite. Empedocles could
speculate about the elements, and Democritus about atoms, but
their speculations led to no new information about nature—and
certainly to nothing that would allow their theories to be tested.

It seems to me that to understand these early Greeks, it is
better to think of them not as physicists or scientists or even
philosophers, but as poets.

| should be clear about what | mean by this. There is a narrow
sense of poetry, as language that uses verbal devices like meter,
rhyme, or alliteration. Even in this narrow sense, Xenophanes,
Parmenides, and Empedocles all wrote in poetry. After the Dorian
invasions and the breakup of the Bronze Age Mycenaean
civilization in the twelfth century BC, the Greeks had become
largely illiterate. Without writing, poetry is almost the only way that
people can communicate to |later generations, because poetry can
be remembered in a way that prose cannot. Literacy revived
among the Greeks sometime around 700 BC, but the new
alphabet borrowed from the Phoenicians was first used by Homer
and Hesiod to write poetry, some of it the long-remembered poetry
of the Greek dark ages. Prose came later.

Even the early Greek philosophers who wrote in prose, like
Anaximander, Heraclitus, and Democritus, adopted a poetic style.
Cicero said of Democritus that he was more poetic than many
poets. Plato when young had wanted to be a poet, and though he
wrote prose and was hostile to poetry in the Republic, his literary
style has always been widely admired.

| have in mind here poetry in a broader sense: language chosen
for aesthetic effect, rather than in an attempt to say clearly what
one actually believes to be true. When Dylan Thomas writes, “The
force that through the green fuse drives the flower drives my
green age,” we do not regard this as a serious statement about
the unification of the forces of botany and zoology, and we do not
seek verification; we (or at least |) take it rather as an expression
of sadness about age and death.



At times it seems clear that Plato did not intend to be taken
literally. One example mentioned above is his extraordinarily weak
argument for the choice he made of two triangles as the basis of
all matter. As an even clearer example, in the Timaeus Plato
introduced the story of Atlantis, which supposedly flourished
thousands of years before his own time. Plato could not possibly
have seriously thought that he really knew anything about what
had happened thousands of years earlier.

| don’t at all mean to say that the early Greeks decided to write
poetically in order to avoid the need to validate their theories.
They felt no such need. Today we test our speculations about
nature by using proposed theories to draw more or less precise
conclusions that can be tested by observation. This did not occur
to the early Greeks, or to many of their successors, for a very
simple reason: they had never seen it done.

There are signs here and there that even when they did want to
be taken seriously, the early Greeks had doubts about their own
theories, that they felt reliable knowledge was unattainable. | used
one example in my 1972 treatise on general relativity. At the head
of a chapter about cosmological speculation, | quoted some lines
of Xenophanes: “And as for certain truth, no man has seen it, nor
will there ever be a man who knows about the gods and about the
things | mention. For if he succeeds to the full in saying what is
completely true, he himself is nevertheless unaware of it, and
opinion is fixed by fate upon all things.”'® In the same vein, in On
the Forms, Democritus remarked, “We in reality know nothing
firmly” and “That in reality we do not know how each thing is oris
not has been shown in many ways.”'°

There remains a poetic element in modern physics. We do not
write in poetry; much of the writing of physicists barely reaches the
level of prose. But we seek beauty in our theories, and use
aesthetic judgments as a guide in our research. Some of us think
that this works because we have been trained by centuries of
success and failure in physics research to anticipate certain
aspects of the laws of nature, and through this experience we
have come to feel that these features of nature’s laws are



beautiful.'” But we do not take the beauty of a theory as
convincing evidence of its truth.

For example, string theory, which describes the different
species of elementary particles as various modes of vibration of
tiny strings, is very beautiful. It appears to be just barely consistent
mathematically, so that its structure is not arbitrary, but largely
fixed by the requirement of mathematical consistency. Thus it has
the beauty of a rigid art form—a sonnet or a sonata. Unfortunately,
string theory has not yet led to any predictions that can be tested
experimentally, and as a result theorists (at least most of us) are
keeping an open mind as to whether the theory actually applies to
the real world. It is this insistence on verification that we most miss
in all the poetic students of nature, from Thales to Plato.



It was in pure mathematics rather than in physics that the
Pythagoreans made the greatest progress. Everyone has heard of
the Pythagorean theorem, that the area of a square whose edge is
the hypotenuse of a right triangle equals the sum of the areas of
the two squares whose edges are the other two sides of the
triangle. No one knows which if any of the Pythagoreans proved
this theorem, or how. It is possible to give a simple proof based on
a theory of proportions, a theory due to the Pythagorean Archytas
of Tarentum, a contemporary of Plato. (See Technical Note 4. The
proof given as Proposition 46 of Book | of Euclid’s Elements is
more complicated.) Archytas also solved the famous problem of
constructing a cube of twice the volume of a given cube, though
not by solely geometric means.

The Pythagorean theorem led directly to another great
discovery: geometric constructions can involve lengths that cannot
be expressed as ratios of whole numbers. If the two sides of a
right triangle adjacent to the right angle each have a length (in
some units of measurement) equal to 1, then the total area of the
two squares with these edges is 12 + 12 = 2, so according to the
Pythagorean theorem the length of the hypotenuse must be a
number whose square is 2. But it is easy to show that a number
whose square is 2 cannot be expressed as a ratio of whole
numbers. (See Technical Note 5.) The proof is given in Book X of
Euclid’s Elements, and mentioned earlier by Aristotle in his Prior
Analytics® as an example of a reductio ad impossibile, but without
giving the original source. There is a legend that this discovery is
due to the Pythagorean Hippasus, possibly of Metapontum in
southern lItaly, and that he was exiled or murdered by the
Pythagoreans for revealing it.

We might today describe this as the discovery that numbers like
the square root of 2 are irrational—they cannot be expressed as
ratios of whole numbers. According to Plato,® it was shown by
Theodorus of Cyrene that the square roots of 3, 5, 6, . . ., 15, 17,
etc. (thatis, though Plato does not say so, the square roots of all
the whole nhumbers other than the numbers 1, 4, 9, 16, etc., that
are the squares of whole numbers) are irrational in the same
sense. But the early Greeks would not have expressed it this way.



Rather, as the translation of Plato has it, the sides of squares
whose areas are 2, 3, 95, etc., square feet are “incommensurate”
with a single foot. The early Greeks had no conception of any but
rational numbers, so for them quantities like the square root of 2
could be given only a geometric significance, and this constraint
further impeded the development of arithmetic.

The tradition of concern with pure mathematics was continued
in Plato’s Academy. Supposedly there was a sign over its
entrance, saying that no one should enter who was ignorant of
geometry. Plato himself was no mathematician, but he was
enthusiastic about mathematics, perhaps in part because, during
the journey to Sicily to tutor Dionysius the Younger of Syracuse,
he had met the Pythagorean Archytas.

One of the mathematicians at the Academy who had a great
influence on Plato was Theaetetus of Athens, who was the title
character of one of Plato’s dialogues and the subject of another.
Theaetetus is credited with the discovery of the five regular solids
that, as we have seen, provided a basis for Plato’s theory of the
elements. The proof* offered in Euclid’s Elements that these are
the only possible convex regular solids may be due to Theaetetus,
and Theaetetus also contributed to the theory of what are today
called irrational numbers.

The greatest Hellenic mathematician of the fourth century BC
was probably Eudoxus of Cnidus, a pupil of Archytas and a
contemporary of Plato. Though resident much of his life in the city
of Cnidus on the coast of Asia Minor, Eudoxus was a student at
Plato’s Academy, and returned later to teach there. No writings of
Eudoxus survive, but he is credited with solving a great number of
difficult mathematical problems, such as showing that the volume
of a cone is one-third the volume of the cylinder with the same
base and height. (I have no idea how Eudoxus could have done
this without calculus.) But his greatest contribution to mathematics
was the introduction of a rigorous style, in which theorems are
deduced from clearly stated axioms. It is this style that we find
later in the writings of Euclid. Indeed, many of the details in
Euclid’s Elements have been attributed to Eudoxus.



Though a great intellectual achievement in itself, the
development of mathematics by Eudoxus and the Pythagoreans
was a mixed blessing for natural science. For one thing, the
deductive style of mathematical writing, enshrined in Euclid’s
Elements, was endlessly imitated by workers in natural science,
where it is not so appropriate. As we will see, Aristotle’s writing on
natural science involves little mathematics, but at times it sounds
like a parody of mathematical reasoning, as in his discussion of
motion in Physics: “A, then, will move through B in a time C, and
through D, which is thinner, in time E (if the length of B is equal to
D), in proportion to the density of the hindering body. For let B be
water and D be air.”® Perhaps the greatest work of Greek physics
is On Floating Bodies by Archimedes, to be discussed in Chapter
4. This book is written like a mathematics text, with unquestioned
postulates followed by deduced propositions. Archimedes was
smart enough to choose the right postulates, but scientific
research is more honestly reported as a tangle of deduction,
induction, and guesswork.

More important than the question of style, though related to it, is
a false goal inspired by mathematics: to reach certain truth by the
unaided intellect. In his discussion of the education of philosopher
kings in the Republic, Plato has Socrates argue that astronomy
should be done in the same way as geometry. According to
Socrates, looking at the sky may be helpful as a spur to the
intellect, in the same way that looking at a geometric diagram may
be helpful in mathematics, but in both cases real knowledge
comes solely through thought. Socrates explains in the Republic
that “we should use the heavenly bodies merely as illustrations to
help us study the other realm, as we would if we were faced with
exceptional geometric figures.”’

Mathematics is the means by which we deduce the
consequences of physical principles. More than that, it is the
indispensable language in which the principles of physical science
are expressed. It often inspires new ideas about the natural
sciences, and in turn the needs of science often drive
developments in mathematics. The work of a theoretical physicist,
Edward Witten, has provided so much insight into mathematics



that in 1990 he was awarded one of the highest awards in
mathematics, the Fields Medal. But mathematics is not a natural
science. Mathematics in itself, without observation, cannot tell us
anything about the world. And mathematical theorems can be
neither verified nor refuted by observation of the world.

This was not clear in the ancient world, nor indeed even in early
modern times. We have seen that Plato and the Pythagoreans
considered mathematical objects such as numbers or triangles to
be the fundamental constituents of nature, and we shall see that
some philosophers regarded mathematical astronomy as a branch
of mathematics, not of natural science.

The distinction between mathematics and science is pretty well
settled. It remains mysterious to us why mathematics that is
invented for reasons having nothing to do with nature often turns
out to be useful in physical theories. In a famous article,® the
physicist Eugene Wigner has written of “the unreasonable
effectiveness of mathematics.” But we generally have no trouble in
distinguishing the ideas of mathematics from principles of science,
principles that are ultimately justified by observation of the world.

Where conflicts now sometimes arise between mathematicians
and scientists, it is generally over the issue of mathematical rigor.
Since the early nineteenth century, researchers in pure
mathematics have regarded rigor as essential; definitions and
assumptions must be precise, and deductions must follow with
absolute certainty. Physicists are more opportunistic, demanding
only enough precision and certainty to give them a good chance of
avoiding serious mistakes. In the preface of my own treatise on
the quantum theory of fields, | admit that “there are parts of this
book that will bring tears to the eyes of the mathematically inclined
reader.”

This leads to problems in communication. Mathematicians have
told me that they often find the literature of physics infuriatingly
vague. Physicists like myself who need advanced mathematical
tools often find that the mathematicians’ search for rigor makes
their writings complicated in ways that are of little physical interest.

There has been a noble effort by mathematically inclined
physicists to put the formalism of modern elementary particle



physics—the quantum theory of fields—on a mathematically
rigorous basis, and some interesting progress has been made.
But nothing in the development over the past half century of the
Standard Model of elementary particles has depended on
reaching a higher level of mathematical rigor.

Greek mathematics continued to thrive after Euclid. In Chapter
4 we will come to the great achievements of the later Hellenistic
mathematicians Archimedes and Apollonius.



purpose underlying their evolution. They are what they are
because they have been naturally selected over millions of years
of undirected inheritable variations. And of course, long before
Darwin, physicists had learned to study matter and force without
asking about the purpose they serve.

Aristotle’s early concern with zoology may also have inspired
his strong emphasis on taxonomy, on sorting things out in
categories. We still use some of this, for instance the Aristotelian
classification of governments into monarchies, aristocracies, and
not democracies but constitutional governments. But much of it
seems pointless. | can imagine how Aristotle might have classified
fruits: All fruits come in three varieties—there are apples, and
oranges, and fruits that are neither apples nor oranges.

One of Aristotle’s classifications was pervasive in his work, and
became an obstacle for the future of science. He insisted on the
distinction between the natural and the artificial. He begins Book Il
of Physics* with “Of things that exist, some exist by nature, some
from other causes.” It was only the natural that was worthy of his
attention. Perhaps it was this distinction between the natural and
the artificial that kept Aristotle and his followers from being
interested in experimentation. What is the good of creating an
artificial situation when what are really interesting are natural
phenomena?

It is not that Aristotle neglected the observation of natural
phenomena. From the delay between seeing lightning and hearing
thunder, or seeing oars on a distant trireme striking the water and
hearing the sound they make, he concluded that sound travels at
a finite speed.®> We will see that he also made good use of
observation in reaching conclusions about the shape of the Earth
and about the cause of rainbows. But this was all casual
observation of natural phenomena, not the creation of artificial
circumstances for the purpose of experimentation.

The distinction between the natural and artificial played a large
role in Aristotle’s thought about a problem of great importance in
the history of science—the motion of falling bodies. Aristotle
taught that solid bodies fall down because the natural place of the
element earth is downward, toward the center of the cosmos, and



sparks fly upward because the natural place of fire is in the
heavens. The Earth is nearly a sphere, with its center at the center
of the cosmos, because this allows the greatest proportion of
earth to approach that center. Also, allowed to fall naturally, a
falling body has a speed proportional to its weight. As we read in
On the Heavens,® according to Aristotle, “A given weight moves a
given distance in a given time; a weight which is as great and
more moves the same distance in a less time, the times being in
inverse proportion to the weights. For instance, if one weight is
twice another, it will take half as long over a given movement.”

Aristotle can’t be accused of entirely ignoring the observation of
falling bodies. Though he did not know the reason, the resistance
of air or any other medium surrounding a falling body has the
effect that the speed eventually approaches a constant value, the
terminal velocity, which does increase with the falling body’s
weight. (See Technical Note 6.) Probably more important to
Aristotle, the observation that the speed of a falling body
increases with its weight fitted in well with his notion that the body
falls because the natural place of its material is toward the center
of the world.

For Aristotle, the presence of air or some other medium was
essential in understanding motion. He thought that without any
resistance, bodies would move at infinite speed, an absurdity that
led him to deny the possibility of empty space. In Physics, he
argues, “Let us explain that there is no void existing separately, as
some maintain.”” But in fact it is only the terminal velocity of a
falling body that is inversely proportional to the resistance. The
terminal velocity would indeed be infinite in the absence of all
resistance, but in that case a falling body would never reach
terminal velocity.

In the same chapter Aristotle gives a more sophisticated
argument, that in a void there would be nothing to which motion
could be relative: “in the void things must be at rest; for there is no
place to which things can move more or less than to another;
since the void in so far as it is void admits no difference.” But this
is an argument against only an infinite void; otherwise motion in a
void can be relative to whatever is outside the void.



Because Aristotle was acquainted with motion only in the
presence of resistance, he believed that all motion has a cause.”
(Aristotle distinguished four kinds of cause: material, formal,
efficient, and final, of which the final cause is teleological—it is the
purpose of the change.) That cause must itself be caused by
something else, and so on, but the sequence of causes cannot go
on forever. We read in Physics,® “Since everything that is in
motion must be moved by something, let us take the case in which
a thing is in locomotion and is moved by something that is itself in
motion, and that again is moved by something else that is in
motion, and that by something else, and so on continually; then
the series cannot go on to infinity, but there must be some first
mover.” The doctrine of a first mover later provided Christianity
and Islam with an argument for the existence of God. But as we
will see, in the Middle Ages the conclusion that God could not
make a void raised troubles for followers of Aristotle in both Islam
and Christianity.

Aristotle was not bothered by the fact that bodies do not always
move toward their natural place. A stone held in the hand does not
fall, but for Aristotle this just showed the effect of artificial
interference with the natural order. But he was seriously worried
over the fact that a stone thrown upward continues for a while to
rise, away from the Earth, even after it has left the hand. His
explanation, really no explanation, was that the stone continues
upward for a while because of the motion given to it by the air. In
Book Il of On the Heavens, he explains that “the force transmits
the movement to the body by first, as it were, tying it up in the air.
That is why a body moved by constraint continues to move even
when that which gave it the impulse ceases to accompany it.”'° As
we will see, this notion was frequently discussed and rejected in
ancient and medieval times.

Aristotle’s writing on falling bodies is typical at least of his
physics—elaborate though non-mathematical reasoning based on
assumed first principles, which are themselves based on only the
most casual observation of nature, with no effort to test them.

| don’t mean to say that Aristotle’s philosophy was seen by his
followers and successors as an alternative to science. There was



no conception in the ancient or medieval world of science as
something distinct from philosophy. Thinking about the natural
world was philosophy. As late as the nineteenth century, when
German universities instituted a doctoral degree for scholars of
the arts and sciences to give them equal status with doctors of
theology, law, and medicine, they invented the title “doctor of
philosophy.” When philosophy had earlier been compared with
some other way of thinking about nature, it was contrasted not
with science, but with mathematics.

No one in the history of philosophy has been as influential as
Aristotle. As we will see in Chapter 9, he was greatly admired by
some Arab philosophers, even slavishly so by Averroes. Chapter
10 tells how Aristotle became influential in Christian Europe in the
1200s, when his thought was reconciled with Christianity by
Thomas Aquinas. In the high Middle Ages Aristotle was known
simply as “The Philosopher,” and Averroes as “The
Commentator.” After Aquinas the study of Aristotle became the
center of university education. In the Prologue to Chaucer’s
Canterbury Tales, we are introduced to an Oxford scholar:

A Clerk there was of Oxenford also ...

For he would rather have at his bed’s head
Twenty books, clad in black or red,

Of Aristotle, and his philosophy,

Than robes rich, or fiddle, or gay psaltery.

Of course, things are different now. It was essential in the
discovery of science to separate science from what is now called
philosophy. There is active and interesting work on the philosophy
of science, but it has very little effect on scientific research.

The precocious scientific revolution that began in the fourteenth
century and is described in Chapter 10 was largely a revolt
against Aristotelianism. In recent years students of Aristotle have
mounted something of a counterrevolution. The very influential
historian Thomas Kuhn described how he was converted from
disparagement to admiration of Aristotle:"’

About motion, in particular, his writings seemed to me full of

egregious errors, both of logic and of observation. These
conclusions were, | felt, unlikely. Aristotle, after all, had been the



much-admired codifier of ancient logic. For almost two millennia
after his death, his work played the same role in logic that Euclid’s
played in geometry.... How could his characteristic talent have
deserted him so systematically when he turned to the study of
motion and mechanics? Equally, why had his writings in physics
been taken so seriously for so many centuries after his death? ...
Suddenly the fragments in my head sorted themselves out in a new
way, and fell in place together. My jaw dropped with surprise, for all
at once Aristotle seemed a very good physicist indeed, but of a sort
I'd never dreamed possible.... | had suddenly found the way to read
Aristotelian texts.

| heard Kuhn make these remarks when we both received
honorary degrees from the University of Padua, and later asked
him to explain. He replied, “What was altered by my own first
reading of [Aristotle’s writings on physics] was my understanding,
not my evaluation, of what they achieved.” | didn’t understand this:
“a very good physicist indeed” seemed to me like an evaluation.

Regarding Aristotle’s lack of interest in experiment: the historian
David Lindberg'? remarked, “Aristotle’s scientific practice is not to
be explained, therefore, as a result of stupidity or deficiency on his
part—failure to perceive an obvious procedural improvement—but
as a method compatible with the world as he perceived it and well
suited to the questions that interest him.” On the larger issue of
how to judge Aristotle’s success, Lindberg added, “It would be
unfair and pointless to judge Aristotle’s success by the degree to
which he anticipated modern science (as though his goal was to
answer our questions, rather than his own).” And in a second
edition of the same work:"® “The proper measure of a
philosophical system or a scientific theory is not the degree to
which it anticipated modern thought, but its degree of success in
treating the philosophical and scientific problems of its own day.”

| don’t buy it. What is important in science (Il leave philosophy to
others) is not the solution of some popular scientific problems of
one’s own day, but understanding the world. In the course of this
work, one finds out what sort of explanations are possible, and
what sort of problems can lead to those explanations. The
progress of science has been largely a matter of discovering what
questions should be asked.



and later, in the Roman Empire, it was second only to Rome in
size and wealth.

Around 300 BC Ptolemy | founded the Museum of Alexandria,
as part of his royal palace. It was originally intended as a center of
literary and philological studies, dedicated to the nine Muses. But
after the accession of Ptolemy Il in 285 BC the Museum also
became a center of scientific research. Literary studies continued
at the Museum and Library of Alexandria, but now at the Museum
the eight artistic Muses were outshone by their one scientific sister
—Urania, the Muse of astronomy. The Museum and Greek
science outlasted the kingdom of the Ptolemies, and, as we shall
see, some of the greatest achievements of ancient science
occurred in the Greek half of the Roman Empire, and largely in
Alexandria.

The intellectual relations between Egypt and the Greek
homeland in Hellenistic times were something like the connections
between America and Europe in the twentieth century.? The riches
of Egypt and the generous support of at least the first three
Ptolemies brought to Alexandria scholars who had made their
names in Athens, just as European scholars flocked to America
from the 1930s on. Starting around 300 BC, a former member of
the Lyceum, Demetrius of Phaleron, became the first director of
the Museum, bringing his library with him from Athens. At around
the same time Strato of Lampsacus, another member of the
Lyceum, was called to Alexandria by Ptolemy | to serve as tutor to
his son, and may have been responsible for the turn of the
Museum toward science when that son succeeded to the throne of
Egypt.

The sailing time between Athens and Alexandria during the
Hellenistic and Roman periods was similar to the time it took for a
steamship to go between Liverpool and New York in the twentieth
century, and there was a great deal of coming and going between
Egypt and Greece. For instance, Strato did not stay in Egypt; he
returned to Athens to become the third director of the Lyceum.

Strato was a perceptive observer. He was able to conclude that
falling bodies accelerate downward, by observing how drops of
water falling from a roof become farther apart as they fall, a



continuous stream of water breaking up into separating drops.
This is because the drops that have fallen farthest have also been
falling longest, and since they are accelerating this means that
they are traveling faster than drops following them, which have
been falling for a shorter time. (See Technical Note 7.) Strato
noted also that when a body falls a very short distance the impact
on the ground is negligible, but if it falls from a great height it
makes a powerful impact, showing that its speed increases as it
falls.’

It is probably no coincidence that centers of Greek natural
philosophy like Alexandria as well as Miletus and Athens were
also centers of commerce. A lively market brings together people
from different cultures, and relieves the monotony of agriculture.
The commerce of Alexandria was far-ranging: seaborne cargoes
being taken from India to the Mediterranean world would cross the
Arabian Sea, go up the Red Sea, then go overland to the Nile and
down the Nile to Alexandria.

But there were great differences in the intellectual climates of
Alexandria and Athens. For one thing, the scholars of the Museum
generally did not pursue the kind of all-embracing theories that
had preoccupied the Greeks from Thales to Aristotle. As Floris
Cohen has remarked,* “Athenian thought was comprehensive,
Alexandrian piecemeal.” The Alexandrians concentrated on
understanding specific phenomena, where real progress could be
made. These topics included optics and hydrostatics, and above
all astronomy, the subject of Part I

It was no failing of the Hellenistic Greeks that they retreated
from the effort to formulate a general theory of everything. Again
and again, it has been an essential feature of scientific progress to
understand which problems are ripe for study and which are not.
For instance, leading physicists at the turn of the twentieth
century, including Hendrik Lorentz and Max Abraham, devoted
themselves to understanding the structure of the recently
discovered electron. It was hopeless; no one could have made
progress in understanding the nature of the electron before the
advent of quantum mechanics some two decades later. The
development of the special theory of relativity by Albert Einstein



was made possible by Einstein’s refusal to worry about what
electrons are. Instead he worried about how observations of
anything (including electrons) depend on the motion of the
observer. Then Einstein himself in his later years addressed the
problem of the unification of the forces of nature, and made no
progress because no one at the time knew enough about these
forces.

Another important difference between Hellenistic scientists and
their Classical predecessors is that the Hellenistic era was less
afflicted by a snobbish distinction between knowledge for its own
sake and knowledge for use—in Greek, episteme versus techne
(orin Latin, scientia versus ars). Throughout history, many
philosophers have viewed inventors in much the same way that
the court chamberlain Philostrate in A Midsummer Night's Dream
described Peter Quince and his actors: “Hard-handed men, who
work now in Athens, and never yet labor'd with their minds.” As a
physicist whose research is on subjects like elementary particles
and cosmology that have no immediate practical application, | am
certainly not going to say anything against knowledge for its own
sake, but doing scientific research to fill human needs has a
wonderful way of forcing the scientist to stop versifying and to
confront reality.®

Of course, people have been interested in technological
improvement since early humans learned how to use fire to cook
food and how to make simple tools by banging one stone on
another. But the persistent intellectual snobbery of the Classical
intelligentsia kept philosophers like Plato and Aristotle from
directing their theories toward technological applications.

Though this prejudice did not disappear in Hellenistic times, it
became less influential. Indeed, people, even those of ordinary
birth, could become famous as inventors. A good example is
Ctesibius of Alexandria, a barber’s son, who around 250 BC
invented suction and force pumps and a water clock that kept time
more accurately than earlier water clocks by keeping a constant
level of water in the vessel from which the water flowed. Ctesibius
was famous enough to be remembered two centuries later by the
Roman Vitruvius in his treatise On Architecture.



It is important that some technology in the Hellenistic age was
developed by scholars who were also concerned with systematic
scientific inquiries, inquiries that were sometimes themselves used
in aid of technology. For instance, Philo of Byzantium, who spent
time in Alexandria around 250 BC, was a military engineer who in
Mechanice syntaxism wrote about harbors, fortifications, sieges,
and catapults (work based in part on that of Ctesibius). But in
Pneumatics, Philo also gave experimental arguments supporting
the view of Anaximenes, Aristotle, and Strato that air is real. For
instance, if an empty bottle is submerged in water with its mouth
open but facing downward, no water will flow into it, because there
is nowhere for the air in the bottle to go; but if a hole is opened so
that air is allowed to leave the bottle, then water will flow in and fill
the bottle.®

There was one scientific subject of practical importance to
which Greek scientists returned again and again, even into the
Roman period: the behavior of light. This concern dates to the
beginning of the Hellenistic era, with the work of Euclid.

Little is known of the life of Euclid. He is believed to have lived
in the time of Ptolemy |, and may have founded the study of
mathematics at the Museum in Alexandria. His best-known work is
the Elements,” which begins with a number of geometric
definitions, axioms, and postulates, and moves on to more or less
rigorous proofs of increasingly sophisticated theorems. But Euclid
also wrote the Optics, which deals with perspective, and his name
is associated with the Catoptrics, which studies reflection by
mirrors, though modern historians do not believe that he was its
author.

When one thinks of it, there is something peculiar about
reflection. When you look at the reflection of a small object in a flat
mirror, you see the image at a definite spot, not spread out over
the mirror. Yet there are many paths one can draw from the object
to various spots on the mirror and then to the eye.* Apparently
there is just one path that is actually taken, so that the image
appears at the one point where this path strikes the mirror. But
what determines the location of that point on the mirror? In the
Catoptrics there appears a fundamental principle that answers this



guestion: the angles that a light ray makes with a flat mirror when
it strikes the mirror and when it is reflected are equal. Only one
light path can satisfy this condition.

We don’t know who in the Hellenistic era actually discovered
this principle. We do know, though, that sometime around AD 60
Hero of Alexandria in his own Catoptrics gave a mathematical
proof of the equal-angles rule, based on the assumption that the
path taken by a light ray in going from the object to the mirror and
then to the eye of the observer is the path of shortest length. (See
Technical Note 8.) By way of justification for this principle, Hero
was content to say only, “It is agreed that Nature does nothing in
vain, nor exerts herself needlessly.” Perhaps he was motivated
by the teleology of Aristotle—everything happens for a purpose.
But Hero was right; as we will see in Chapter 14, in the
seventeenth century Huygens was able to deduce the principle of
shortest distance (actually shortest time) from the wave nature of
light. The same Hero who explored the fundamentals of optics
used that knowledge to invent an instrument of practical
surveying, the theodolite, and also explained the action of siphons
and designed military catapults and a primitive steam engine.

The study of optics was carried further about AD 150 in
Alexandria by the great astronomer Claudius Ptolemy (no kin of
the kings). His book Optics survives in a Latin translation of a lost
Arabic version of the lost Greek original (or perhaps of a lost
Syriac intermediary). In this book Ptolemy described
measurements that verified the equal-angles rule of Euclid and
Hero. He also applied this rule to reflection by curved mirrors, of
the sort one finds today in amusement parks. He correctly
understood that reflections in a curved mirror are just the same as
if the mirror were a plane, tangent to the actual mirror at the point
of reflection.

In the final book of Optics Ptolemy also studied refraction, the
bending of light rays when they pass from one transparent
medium such as air to another transparent medium such as water.
He suspended a disk, marked with measures of angle around its
edge, halfway in a vessel of water. By sighting a submerged
object along a tube mounted on the disk, he could measure the



Cicero said that he had seen on the tombstone of Archimedes a
cylinder circumscribed about a sphere, the surface of the sphere
touching the sides and both bases of the cylinder, like a single
tennis ball just fitting into a tin can. Apparently Archimedes was
most proud of having proved that in this case the volume of the
sphere is two-thirds the volume of the cylinder.

There is an anecdote about the death of Archimedes, related by
the Roman historian Livy. Archimedes died in 212 BC during the
sack of Syracuse by Roman soldiers under Marcus Claudius
Marcellus. (Syracuse had been taken over by a pro-Carthaginian
faction during the Second Punic War.) As Roman soldiers
swarmed over Syracuse, Archimedes was supposedly found by
the soldier who killed him, while he was working out a problem in
geometry.

Aside from the incomparable Archimedes, the greatest
Hellenistic mathematician was his younger contemporary
Apollonius. Apollonius was born around 262 BC in Perga, a city on
the southeast coast of Asia Minor, then under the control of the
rising kingdom of Pergamon, but he visited Alexandria in the times
of both Ptolemy Ill and Ptolemy IV, who between them ruled from
247 to 203 BC. His great work was on conic sections: the ellipse,
parabola, and hyperbola. These are curves that can be formed by
a plane slicing through a cone at various angles. Much later, the
theory of conic sections was crucially important to Kepler and
Newton, but it found no physical applications in the ancient world.

Brilliant work, but with its emphasis on geometry, there were
techniques missing from Greek mathematics that are essential in
modern physical science. The Greeks never learned to write and
manipulate algebraic formulas. Formulas like E = mc? and F = ma
are at the heart of modern physics. (Formulas were used in purely
mathematical work by Diophantus, who flourished in Alexandria
around AD 250, but the symbols in his equations were restricted
to standing for whole or rational numbers, quite unlike the symbols
in the formulas of physics.) Even where geometry is important, the
modern physicist tends to derive what is needed by expressing
geometric facts algebraically, using the techniques of analytic
geometry invented in the seventeenth century by René Descartes



and others, and described in Chapter 13. Perhaps because of the
deserved prestige of Greek mathematics, the geometric style
persisted until well into the scientific revolution of the seventeenth
century. When Galileo in his 1623 book The Assayer wanted to
sing the praises of mathematics, he spoke of geometry:*
“Philosophy is written in this all-encompassing book that is
constantly open to our eyes, that is the universe; but it cannot be
understood unless one first learns to understand the language and
knows the characters in which it is written. It is written in
mathematical language, and its characters are triangles, circles,
and other geometrical figures; without these it is humanly
impossible to understand a word of it, and one wanders in a dark
labyrinth.” Galileo was somewhat behind the times in emphasizing
geometry over algebra. His own writing uses some algebra, but is
more geometric than that of some of his contemporaries, and far
more geometric than what one finds today in physics journals.

In modern times a place has been made for pure science,
science pursued for its own sake without regard to practical
applications. In the ancient world, before scientists learned the
necessity of verifying their theories, the technological applications
of science had a special importance, for when one is going to use
a scientific theory rather than just talk about it, there is a large
premium on getting it right. If Archimedes by his measurements of
specific gravity had identified a gilded lead crown as being made
of solid gold, he would have become unpopular in Syracuse.

| don’t want to exaggerate the extent to which science-based
technology was important in Hellenistic or Roman times. Many of
the devices of Ctesibius and Hero seem to have been no more
than toys, or theatrical props. Historians have speculated that in
an economy based on slavery there was no demand for labor-
saving devices, such as might have been developed from Hero’s
toy steam engine. Military and civil engineering were important in
the ancient world, and the kings in Alexandria supported the study
of catapults and other artillery, perhaps at the Museum, but this
work does not seem to have gained much from the science of the
time.



The one area of Greek science that did have great practical
value was also the one that was most highly developed. It was
astronomy, to which we will turn in Part II.

There is a large exception to the remark above that the existence
of practical applications of science provided a strong incentive to
get the science right. It is the practice of medicine. Until modemn
times the most highly regarded physicians persisted in practices,
like bleeding, whose value had never been established
experimentally, and that in fact did more harm than good. When in
the nineteenth century the really useful technique of antisepsis
was introduced, a technique for which there was a scientific basis,
it was at first actively resisted by most physicians. Not until well
into the twentieth century were clinical trials required before
medicines could be approved for use. Physicians did learn early
on to recognize various diseases, and for some they had effective
remedies, such as Peruvian bark—which contains quinine—for
malaria. They knew how to prepare analgesics, opiates, emetics,
laxatives, soporifics, and poisons. But it is often remarked that
until sometime around the beginning of the twentieth century the
average sick person would do better avoiding the care of
physicians.

It is not that there was no theory behind the practice of
medicine. There was humorism, the theory of the four humors—
blood, phlegm, black bile, and yellow bile, which (respectively)
make us sanguine, phlegmatic, melancholy, or choleric. Humorism
was introduced in classical Greek times by Hippocrates, or by
colleagues of his whose writings were ascribed to him. As briefly
stated much later by John Donne in “The Good Morrow,” the
theory held that “whatever dies was not mixed equally.” The
theory of humorism was adopted in Roman times by Galen of
Pergamon, whose writings became enormously influential among
the Arabs and then in Europe after about AD 1000. | am not aware
of any effort while humorism was generally accepted ever to test
its effectiveness experimentally. (Humorism survives today in
Ayurveda, traditional Indian medicine, but with just three humors:
phlegm, bile, and wind.)



In addition to humorism, physicians in Europe until modern
times were expected to understand another theory with supposed
medical applications: astrology. Ironically, the opportunity for
physicians to study these theories at universities gave medical
doctors much higher prestige than surgeons, who knew how to do
really useful things like setting broken bones but until modern
times were not usually trained in universities.

So why did the doctrines and practices of medicine continue so
long without correction by empirical science? Of course, progress
is harder in biology than in astronomy. As we will discuss in
Chapter 8, the apparent motions of the Sun, Moon, and planets
are so regular that it was not difficult to see that an early theory
was not working very well; and this perception led, after a few
centuries, to a better theory. But if a patient dies despite the best
efforts of a learned physician, who can say what is the cause?
Perhaps the patient waited too long to see the doctor. Perhaps he
did not follow the doctor’s orders with sufficient care.

At least humorism and astrology had an air of being scientific.
What was the alternative? Going back to sacrificing animals to
Aesculapius?

Another factor may have been the extreme importance to
patients of recovery from illness. This gave physicians authority
over them, an authority that physicians had to maintain in order to
impose their supposed remedies. It is not only in medicine that
persons in authority will resist any investigation that might reduce
their authority.



