< UNIX

- N0 ==

434!

to the RESCUE!

A field guide for the life sciences
(and other data-rich pursuits)

)
Keith Bradnam
\ and lan Korf

CAMBRIDGE

Unix and Perl to the Rescue!

A field guide for the life sciences (and other data-rich pursuits)

KEITH BRADNAM

University of California, Davis

AN KORF

University of California, Davis

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sio Paulo, Delhi, Mexico City

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
[nformation on this title: www.cambridge.org/9781 107000681

© Keith Bradnam and lan Kort 2012

This publication 1s in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

[First published 2012
Printed in the United Kingdom by the MPG Books Group
A catalogue record for this publication is avatlable from the British Library

Library of Congress Cataloguing in Publication data
Bradnam, Keith.
UNIX and Perl to the rescue! @ a ficld guide for the life sciences (and other data-rich pursuits) / Keith
Bradnam., Tan Korf.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-107-00068-1 (hardback) — ISBN 978-0-521-16982-0 (paperback)
|. Science — Data processing. 2. UNIX (Computer file) 3. Perl (Computer program language)
. Korf, lan. 1II. Title.
QI183.9.573 2012
005.4"32—dc23 2011047927

ISBN 978-1-107-00068-1 ITardback
[ISBN 978-0-521-16982-0 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication. and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

Contents

Part 1
1.1
1.2

Introduction and background
Introduction

How to use this book

Installing Unix and Perl

What do | need in order to learn Unix and Perl?

[nstalling Linux on a PC

[nstalling a code editor

- tial Uni

Introduction to Unix

EEEEEEEEEKEEEEEE BEEE

CEEERE

S BEEE

L N
b (g
D ~J

T
L

. .
The Unix terminal

The Unix command prompt

Your first Unix command

The hierarchy of a Unix filesystem

Finding out where you are in the filesystem

How to navigate a Unix filesystem

Absolute and relative paths

Working with your home directory
I] -] | o - 'ﬂlj lIIII

Environment variables

Introduction to command-line options

Man pages

Working with directories

T'he importance of saving keystrokes

Moving and renaming files

Moving and renaming directories

How to remove files

How to copy files and directories
Working with text files
Lditing text files

Automating Unix commands
i hide files and find hidden files

Creating a configuration file

Programming with Unix

Unix file permissions

How to specify which directories contain programs

Creating useful shell scripts

Unix summary

page 1

(o)}

PEERBERBRERBREREBER LEE®

CREERERRERBE

O
'

S Bl

V]

Contents

P

CLLLEEEEEEE e arenrn

- |

431

ti |
Hello world
Use warnings
Perl vs. perl

=

Stopping programs

Working with strings

Dealing with special characters

Matching operators

The transliteration operator
List conte
[ntroduction to Arrays

Array manipulation
The @ ARGV array
Sorting

Introduction to loops

More loops

[Loop control

Data input and output

Reading and writing files
Working with hashes

Introduction to regular expressions

Regular expression metacharacters
Workine with recular expressions

[nteracting with other programs

Using functions and subroutines

Returning data from a subroutine

Part 4 summary

sppppneE B

o
oo

Advanced Unix
Introduction to process control

T'he grep command

Viewing and controlling program output

Redirecting input and output
Standard e

Connecting commands with pipelines

Advanced text manipulation

EEEEREREEEER

I
O

2R R

sREERER

"D |—
WO
~J

20

|

[~ a3
R I
LA

2 bJ
D
L~

[
=

ok E

;B

-2
-)
"

EERE

-3
o0
N

[~
oo
WO

Advan Perl
Regular expressions revisited
B on libraci

References and two-dimensional arrays

Records and other hash references
Using references with subroutines
Complex data structures

Adding command-line options
! !! ![] bij:migmr
CPAN

@@E@i‘i‘ﬁiﬁﬁ‘g

T

Programming topics
Debugging strategies

Common error messages
~ode beautificat
Abstraction

.
N

Data management

Revision control

LR B

7.8 Working with other people’s data
7.9 Getting help

Appendix
Index

SERR

1
I

B EBEBBZE

bl
N
~

TLEEr)

Contents

V|

Copyrighted material

Introduction and background

Copyrighted material

Introduction

and teach the occasional class or two. However, he would give 1t all up for the chance
to be able to consistently beat Ian at foosball, but that seems unlikely to happen anytime
soon. Keith still likes Macs and neatly written code, but now has a much harder job find-
ing English puddings.

As a youth, lan Korf’s favorite classes were sciences and his favorite pastime was
computer gaming. At the time, you wouldn’t have thought that hacking and writ-
ing computer games would be very useful skills for a budding molecular biologist.
Certainly nobody ever counseled lan to do so, especially when he was doing it at
2a.m.! But apparently the misspent hours of youth can sometimes turn out to be
worthwhile investments. lan’s first experience with bioinformatics came as a post-doc
at Washington University (St. Louis), where he was a member of the Human Genome
Project. He then went ‘across the pond’ to the Sanger Institute for another post-doc.
There he met Keith Bradnam, and found someone who truly understood the role of
communication and presentation in science. Ian was somehow able to persuade Keith
to join his new lab in Davis, California. This book is but one of their hopefully useful
contributions.

Acknowledgments

This book evolved from a course that we both teach to graduate and undergraduate
students at UC Davis. We are grateful to the students for their patience with us, as this
course has evolved quite a bit since we started teaching 1t. Their feedback, and their
enthusiasm for learning Unix and Perl, have made this book what 1t is. We also would
like to thank Nancy Parmalee for helpful suggestions about the index.

Keith would also like to thank his wife Mel for her tireless support and understand-
ing throughout the long book-writing process. He would also like to express profound
eratitude to the wonders of caffeine, the relaxation afforded by his iTunes music library,
and to the entire nation of Belgium.

lan would like to thank all his students, past, present, and future. May your adven-
tures take you to lands unimagined, and your skills see you safely home.

This book was written using Apple’s excellent ‘Pages’ word-processing software,
with extensive use of Dropbox software by Dropbox Inc. to make the process of collab-
orative writing a joy. Code examples were written using TextMate by MacroMates Ltd
and TextWrangler by Bare Bones Software.

5

How to use this book

Or rather, how notto use this book

Organization

This book is divided into seven parts (you are currently reading Part 1). You may be
impatient to start programming with Perl, but if you don’t know any Unix we suggest
that you start with Part 3, which will teach you the basics of Unix. When you finish that,
you can optionally jump ahead to Part 5, which covers some advanced Unix topics. Or
you might just want to proceed to Part 4, which covers all of the fundamentals of Perl.
The choice is yours. Of course, if you don’t yet have Unix and Perl installed on your
computer, then you might want to start with Part 2, which covers how you can get Unix
and Perl for your PC.

If you’ve never programmed, we hope that after learning the ‘essential’ Perl of Part 4,
you will be able to write many fantastic and powerful scripts. More importantly, we hope
that you will be able to write scripts that are actually useful. For this part of the book,
we’ve tried, where possible, to only ever introduce one new concept at a time. Hopefully
this will prevent you from being overloaded with too many new concepts at once. This
also keeps chapters short and, mostly, self-contained. For a few topics that have increased
complexity, we use two or more chapters to cover all aspects of that topic.

We have strived to make sure there are lots of examples. These are all scripts that we
encourage you to copy and try yourself. However, you may still gain much understand-
ing just from reading them. In addition to the examples, Part 4 of this book also features
a number of problems at the end of most chapters.* You are strongly encouraged to
tackle the problems. Ultimately, this it the best way to learn Perl (or any programming
language). For each problem we provide a solution,” but be aware that one of the famous
mottos associated with Perl 1s:

TMTOWTDI® — There’s more than one way to do it

We have hopefully provided solutions that are easily understandable, but if you want to
solve each problem in a different way then that is great.

The topics covered in Part 4 might be all you ever need to know in order to solve
many different problems. However, we go further into the more advanced aspects ot Perl
in Part 6. The distinction between ‘essential’ and ‘advanced’ 1s somewhat arbitrary. If
you finish Part 4 then you should at least have a look at Part 6.

Part 7 covers many different subjects that are not unique to Perl. In general, this 1s
the section that focuses on ‘good programming practices.” Most subjects in this part are
relevant to many programming languages, though we also include two sections on how
to fix broken Perl scripts.

Finally, we should note that we do not cover every aspect of Unix and Perl. The
world of Unix 1s especially vast, and several books would be needed in order to cover

* We include some problems in the Unix section too, but not as many.
" Included in an appendix.
* Some people pronounce this “Tim Toady.”

1.2

How to use this book 7

the myriad number of Unix commands you could learn about. Likewise, we do not cover
every feature or function available in Perl. However, we strongly feel that this book cov-
ers all of the basics (and much more besides). Readers are therefore encouraged to use
this book as a launch pad for a journey into a much wider world of programming. If you
develop a hunger for learning about new Unix commands, Perl functions, and even new
programming languages, then dare to venture beyond the confines of this book. You will
be rewarded!

Style conventions

Each chapter has a main heading and a subheading. The subheadings are one area where
we have tried to inflict our pun-tastic sense of humor on you.” We will often include both
Unix and Perl examples, which you should attempt to follow. The Unix examples will
include simple instructions of Unix commands that you should type, whereas the Perl

examples will contain complete scripts, accompanied by line numbering. E.g.:

Example 1.2.1

1. #!/usr/bin/perl
2. print "The shortest script in the world?\n";

The line numbers are just there so we can refer to them 1n the text. You are not meant to
type the line numbers! Following just about every example will be a section that tries to
explain what the point of the example was. IFor the Unix examples, this will be a section
titled Explanation, but for the Perl scripts it will be a line-by-line breakdown of how the
script 1s working. E.g.:

Understanding the script

Line 2 contains a simple print statement.

In addition to having worked-through examples, we will also set problems that you
should try to solve. Where appropriate, answers will be provided, but we encourage you
to try solving the problems without looking at the solution.

Hopefully you will have noticed that we use a fixed-width font for writing any Perl
or Unix code. This will be done for complete scripts and even when we mention a single
Unix command or Perl function within a sentence. E.g2., we might mention that the Unix
command sed shares similarities with Perl’s substitution operator (s//).

Sometimes we will show fragments of Perl scripts, just to illustrate a point or to dem-
onstrate the syntax of a command. We do not include line numbers for these examples,
and they are not intended to be run as complete scripts. E.g.:

my @array_A = @array_B; # copylng an array

" Footnotes, like this one, are another place where you might find occasional diversionary comments on matters which may
not be entirely related to Unix and Perl. LL.g., did vou know that there are no words In the English language that rhyme
with the word “orange’™

8 Introduction and background

Occasionally, we will want to shout something at you because 1t 1s so important, and the

world will cease to exist if you fail to understand the critical point we are making. E.g.:

The world will cease to exist if you fail to understand the critical point
we are making!

Any time you see something written in this style, you should probably re-read it several
times and remember that we will be not-inconsiderably displeased 1t you fail to remem-
ber our advice!

Installing Unix and Perl

12 Installing Unix and Perl

run Linux. Because the underlying code used by all Linux systems 1s freely available,
many companies have packaged together slightly different versions of the OS- that you
can download for free. This very attractive price point, coupled with the fact that 1t 1s
possible to run Linux without having to install anything on your computer’s hard drive
(see the next chapter) means that Linux is a great solution for PC owners wanting to
work through this book.

Unix vs. Linux: part 1

When we say that we want to teach you Unix, we are not talking about learning the
entire OS.” Instead, we want to teach you about a few of the Unix commands that
you will have to type into a program known as a terminal (which we will explore in
Chapter 3.2). There are probably a few thousand Unix commands, but we are only
aiming to teach you 20 or so of the most essential ones. All of the Unix commands
that we will teach you are also available on Linux. This means that all we need from
a Unix or Linux OS is the ability to open a terminal program and run some Unix
commands. All other differences between Unix and Linux are not important for this

book.

Unix vs. Linux: part 2

You do know that there is an exception to every rule, right? While we are confident in
saying that there are no important differences between Unix and Linux, you should be
aware that there are still differences, both between Unix and Linux and between differ-
ent versions of Unix/Linux. These differences can mean that some of the commands that
you type may produce slightly different output to what we show 1n this book. Sometimes
this 1s because one OS might have a newer version of a Unix command when compared
to another OS.

This means 1t would be impossible to write this book in a way that makes it fully
compatible with all possible Unix and Linux variants, so we have written this book
using Apple’s version of Unix.” We are 99.9% sure that every Unix command we men-
tion will be available on whatever form of Unix or Linux you use, but bear in mind that
the output of our Unix examples might sometimes look different to yours.

Learning Perl without learning Unix?

If you are using a Windows PC, then you might not want to install Linux and you might
just want to learn Perl. That’s fine, but bear in mind that our Perl examples are written
from a Unix point-of-view, so we will show examples of how to run Perl scripts from
the perspective of a Unix system.

" Such packages are known as distributions and usually contain a slightly different mix of software tools and sometimes a
different GUL

* Otherwise vou could argue that learning to use a Mac is a way of learning how to use Unix.

IS

* We have chosen Apple because we both use Apple computers for our work (including running Unix commands and

writing Perl scripts).

Installing Linux on a PC

There are virtually a dozen solutions

There are four main ways you can install a Linux OS on your Windows PC:

(1) Install Cygwin. This provides a Linux-like environment on your PC; 1t is free to
download.

(2) Run Linux from a CD-ROM or install on a bootable flash drive. This is a good
solution for people who don’t want (or do not have permission) to modify the
contents of their hard drive.

(3) Install a full Linux distribution on your computer, either as a replacement for
Windows or as a dual-boot option.

(4) Run Linux by using virtualization software. There are many software packages
that will allow you to effectively install an OS inside another one.

We will discuss each of these options in a little more detail in this chapter, though
it is beyond the scope of this book to provide detailed installation instructions, not least
because any instructions we could provide would quickly become out of date (the world
of Linux moves very quickly). Bear in mind that the internet contains a lot of informa-
tion about installing Linux on PCs.

Linux distributions

If you didn’t already know, you should be aware that there are many different versions
of Linux in existence. They differ in many respects, but the core functionality 18 very
similar no matter which one you choose. The web site www.livecdlist.com lists most of
the popular variants that are out there and provides a good starting point for choosing a
distribution. IFashions come and go in computing, and 1t 1s likely that this list will look
very different in a few years’ time. One of the most popular full-featured Linux OSs
out there at the time of writing is Ubuntu (available at ubuntu.com). For the purposes of
working through this book, any of the popular distributions will be fine, but if you want
to install Linux on a CD-ROM or flash drive you might want to choose a distribution that
requires less space (see the relevant section below).

Installing Cygwin

It 1s important to note that Cygwin isn’t a true form of Unix or Linux. It 1s software
that will result in you having a terminal window through which you can use many Unix
programs (including Perl). There are some differences between Cygwin and other types
of Unix, which may mean that not every Unix example in this book will work exactly as
described, but overall it should be sufficient for you to learn the basics of Unix. At the
time of writing, Cygwin is free and 1s under active development. You can download it

from www.cygwin.com.

Running from a CD-ROM or flash drive
Storage capacities of USB flash drives continue to increase (and prices decrease), which

means it 1s possible to store entire OSs on them. It is also possible to boot your computer

2.2

14 Installing Unix and Perl

from a USB drive and run the OS that you have installed. Because not everyone has a
large-capacity flash drive, and because some people would like to run Linux from a
CD-ROM, there has been a demand for lightweight Linux distributions which omit some
of the less essential parts in order to fit on a flash drive or CD-ROM. Linux distributions
such as Damn Small Linux (www.damnsmalllinux.org) go so far as to fit an entire OS
into less than 50 MB of space. Other popular versions of Linux which are also compact
are Slax (available at www.slax.org) and Puppy Linux (www.puppylinux.com).

The obvious advantages to these methods are that you don’t need to add anything to
your computer and you can easily take your Linux OS anywhere you go. Some of these
solutions will still require you to boot your computer from the flash drive or CD-ROM
(meaning that you can’t use Windows until you reboot). However, some of these solu-
tions can also be run without restarting your computer, meaning that you can access
Linux within a single window.

Install Linux

If you try out the method above and discover that you like Linux, you may want to make
it your main OS, or at least have it available to run alongside your Windows OS. It is
very common to find ‘dual-boot” machines, which means you can choose which OS you
want to run from a menu after turning the machine on. Setting up Linux in this manner
will require sufficient free space on your hard drive and you will also need administrator
privileges on your computer. Follow the instructions provided by your Linux distribu-
tion. Alternatively, rather than have a dual-boot system, you ¢can make Linux your main
OS and run Windows using virtualization software.

Virtualization software

By installing suitable software, virtualization effectively allows you to run one (or more)
different OSs within your main OS. It is very commonly used to run Linux as a guest
OS within a Windows OS, and vice versa.® Most modern computers will have sufficient
hardware to do this. Some virtualization software is free to download. This is another
fast-moving field within the software industry and it is therefore hard to make spe-
cific suggestions as to which software to use. Some popular virtualization solutions that
are currently available include Microsoft Virtual PC, VirtualBox (free from Oracle),
VMware Player, and Parallels Workstation. However, please note that there are also
many other products available and we do not endorse any one of these products.

* IUs also very common to see virtualization software used in such a way that one computer runs older versions of 1ls own
05 (e.g., running Windows XP from within Windows 7).

Installing a code editor

2.3

S0 | installed Perl and Linux, can | start writing code yet?

The majority of this book will teach you how to write Perl scripts, and you will therefore
need something to write them with. Like other scripting languages, Perl scripts are
just text files and can therefore be written with any software capable of producing
a plain-text-format file. Note that plain text specifically means text that is devoid of
formatting. All OSs come with basic text editors that are capable of producing plain-
text files.” You should not use these editors. Nor should you use a fully fledged word-
processor program such as Microsoft Word. This point bears repeating:

Do not use a word processor to write code, it will cause stress and grief!

You should instead use a program that is specifically designed to write code. Such pro-
orams are known as fext editors or source code editors, and include a number of features
that will greatly help you as you learn to program in Perl. The most important reason for
using a code editor is that they already know about the syntax of Perl (as well as many
other programming languages) and will change the color of what you write in a process
called syntax highlighting. A simple analogy would be to imagine that you could write
a sentence 1n English and have all the verbs and nouns automatically change to red or
blue. If you mistyped the name of a verb, then 1t wouldn’t turn red, and this would give
you instant visual feedback that there was a problem. As you will quickly learn, fixing
bugs in code can be a troublesome task, so anything that helps you find bugs as you write
them 1s to be welcomed.

Apart from syntax highlighting, code editors have many other useful features and it
1s essential to use them when writing any code. There are many free ones available and
you should 1deally try out several to find one that works for you. They all have slightly
different combinations of features and some are cross-platform, whereas others will
only be available for Macs, PCs, or Linux OSs. As a starting point, we would suggest
Notepad++ for Windows, TextWrangler for Macs, and Gedit or jEdit for Linux. Once
again, we are not trying to endorse any particular piece of software. As you start to type
a lot of code, the relationship between you and your code editor becomes very import-
ant, and it is highly recommended that you ‘test drive’ other editors.®

* Typically, this would be TextEdit on a Mac and Notepad on a Windows PC.
" Wikipedia has a very detailed page that compares the leatures of various text editors: hitp:/fen.wikipedia.org/wiki/
Comparison_of text_editors,

Copyrighted material

Introduction to Unix

No mouse required!

By this point you should have a computer that runs a version of Unix or Linux. Everything
we do in this part of the book will involve fyping commands using a program known as
the terminal (more on that in the next section). Unix contains many hundreds of com-
mands, but we only need to learn a small number in order to achieve most of what we
want to accomplish.

You are probably used to working with programs like the Apple Finder or the
Windows File Explorer to navigate around the hard drive of your computer. Some
people are habituated to using the mouse to move files, drag files to the trash, etc.,
and it can seem strange switching from this to typing commands instead. Be patient,
and try — as much as possible — to stay within the world of the Unix terminal. We will
teach you many basics of Unix, such as: renaming files, moving files, creating text
files, etc. and you may sometimes be tempted to resort to doing this without using
Unix. Initially it will feel wrong to do something as simple as moving a file from one
folder to another by typing a command. Stick with it and it will start to become second
nature. Learning to do things by typing commands also gives you a back-up plan 1t
your mouse breaks!

Throughout this part of the book we will provide lots of Unix examples that you
should also type yourself. Please make sure you complete and understand each task
before moving on to the next one. We will sometimes show the output of running vari-
ous commands. In some cases your output will look different to our output because it
is very unlikely that any two filesystems will be identical (even on computers with the
same OS). Hopetully, though, you will be able to follow all of these examples without
getting too lost.

One final note: Throughout the remainder of this part of the book we will refer to
Unix over and over again. Every time we mention the U-word, you can equally think of
the L-word (Linux). From the perspective of what we are trying to teach you, the two
are synonymous.'

" If this bothers yvou, then lfeel ree 1o buy our special "Linux-edition’ of this book. It is identical, exceptl we change all

mentions of Unix to Linux.

3.1

The Unix terminal

3.2

A window into a wider world

A ‘terminal’ is the common name? for a type of program that does two main things.
It allows you to send typed instructions fo the computer (i.e., run programs, move/
view files, etc.) and it allows you to see the output that results from those instructions.
Historically, computers did not have any form of GUI, so the only way of interacting
with them was by typing commands to do everything.? The keyboard was the only form
of input and a single monitor screen was the only form of output. In modern-day OSs,
the terminal will be run as just one of many different applications; some people refer to
terminal applications as terminal emulators.

You can count on all Unix/Linux OSs to have a terminal program, and it is common
for any such program to include ‘term,” ‘terminal,” or “tty’ as part of its name — e.g., on
Apple computers the default terminal application is simply named Terminal. Bear in
mind that all OSs will also allow you to download alternative terminal programs. These
will offer you different degrees of customization as well as slightly different features.
However, for the purposes of this book, the differences between any two terminal appli-
cations are trivial.

After launching the terminal program, you should see something that looks a bit
like this:

WX TN L K

keith@raiden ~ % [j a

This is the standard Apple terminal program. Yours might look very different,* but
there should at least be some text inside the terminal window, and perhaps a blinking

* Also known as a ‘term’ or a ‘tty.’

* Of course, there is the whole ‘pre-keyboard’ era of punch cards and punch tape as forms of data input. But enough with
the history lesson.

* It is fairly common to see terminal programs use a two-color scheme of either: black on white, white on black, or the
Matrix-esque green on black.

The Unix terminal

cursor. The text might just be a single character such as a $, %, or # symbol, or it might

include other information such as the name of your computer or your login name.

Customizing your terminal

Before we go any further, you should note that your terminal program will very likely
let you alter the appearance of the terminal window. If you explore its options/settings/
preferences menu you will probably be able to do things like change the default colors,
style of font, and size of font. Initially it might be better to stick with the default settings
until you are comfortable using the program, but at some point you should set up your
terminal so it is to your liking.’

Note that you can resize terminal windows, or have multiple windows open side by
side. Some terminal applications will also let you open multiple tabs within a single
window. T'here will be many situations where 1t will be usetul to have multiple terminals
open and it will be a matter of preference as to whether you want to have multiple win-
dows, or one window with multiple tabs (there will usually be keyboard shortcuts for
switching between windows or tabs).

Before we go any further you might also want to check what keyboard commands
are used to close windows or tabs, just so you don’t accidentally do that. For much of
this part of the book you will only need to use the terminal, so feel free to resize it to its
maximum window size. This might also help you avoid the temptation to start moving/
renaming files by using your OS’s file browser. Before we proceed with learning our

very first Unix command, let’s reiterate that last point.

Do not use your mouse. In the land of the terminal, the keyboard is king!

* Terminal applications will use a fixed-width font for the default font. There are good reasons for this and you should
probably not change 1t to any non-fixed-width font (e.g.. Times, Arial, etc.).

" Closing a terminal window will often, but not always, stop the program or command that you were running. If your
program had been running for a day and was just about to give vou the answer to life, the universe, and everything
else — then you will have 1o wait another day for the answer.

21

The Unix command prompt

3.3

We command you to read this section

Hopefully your terminal window already contains some text. As mentioned in the last
chapter, this text might include your login name’ or the name of the machine you are
using. The text traditionally ends with a punctuation character of some kind (most com-
monly a $ or % sign). Collectively, this text is known as the command prompt.

-

Example 3.3.1 1t’s time for your first interaction with the world of Unix. After you
make sure that your current terminal window is selected, take a deep breath and press
the enter key on your keyboard.

Explanation

Congratulations! You have just interacted with your Unix terminal. Hopefully the world
didn’t end and your computer is still intact. Most importantly, you should have noticed
that the text that was on the screen before you pressed enter has now been duplicated
on a new line. Bvery time you type any Unix command and press enter, the computer
will attempt to follow your instructions and then, when finished, return you to the
command prompt. Sometimes you might have to wait a while for a program to finish
before the command prompt returns, but once you see the prompt, then you know you
are free to type your next command. Some forms of Unix provide a blinking cursor,
which makes it a bit easier to focus your eye on where you can type. Usually, a new
terminal window will have the current command prompt at the fop of the window. But
If you try pressing enter 20-30 times, the current command prompt will get moved to
the bottom of the window.

Examples of command prompts

Depending on what version of Unix you are using, your command prompt might also
be set up to include the name of the current directory.® This might change as you
navigate to different directories on the computer (which we will be doing in a few
chapters’ time). Therefore, don’t be surprised if the text that makes up the command
prompt changes from time to time. Command prompts can also be customized to
include a lot of other information. Here are a few examples of what some command

prompts can look like:

" Also called the "user name.” IU's entirely possible to have one account name that you use to login to your compulter
(e.g., ‘keith”) and then have a different Unix login name (e.g., "‘themaster’).
* Directories are the same thing as what vou might think of as “folders” when using a graphical lile manager.

The Unix command prompt

Prompt Description
$ A single-character prompt
% Another common single-character prompt
The default prompt on Mac OS X. This prompt includes the name
bash-3.2% and version number of something called the shell. More of that in a
later chapter.
A prompt that includes both details of the user name (nigel) and the
nigel@stonehenge$ computer name (stonchenge). It's very common to see this type of

information included in the prompt.

higel:/home %

A prompt that contains the user name as well as the name of the cur-
rent directory (/home). We'll explore the syntax of directory names
later.

Because of this huge diversity in command prompts, we will stick with using a

single dollar sign for all examples which include the command prompt. If we show you

the following:

$ 1s

This should be interpreted as type the Unix command ‘Ls’ at the command prompt.

And if you’re wondering what the Is command does, then you only need to look at the

next chapter!

23

The hierarchy of a Unix filesystem

3.9

This will be a root-and-branch review

Looking at a list of directories from within a Unix terminal can often seem confusing.
But bear in mind that these directories are exactly the same type of folders that you can
see if you use your computer’s graphical file management program. A tree analogy is
often used when describing computer filesystems because of the branching nature of
the directory structure. Like a tree, a Unix filesystem has roots, or more specifically, it
has a root, which is represented by a single forward-slash character (/).'"* The analogy
with the tree starts to break down a little as it 1s common to refer to the root level as the
‘top” of the directory structure — think of it as an inverted tree if it helps. From the root
level (/) there are usually many (10-20) top-level directories. A small number of these
directories will be present on all Unix systems, but there will also be many directories

that are specific to different types of Unix. Here is a fictional example of what part of a
Unix tree might look like:

L
= dev etc home tITIPusrvar
david derek nigel
Desktop Docs Work

In this example we show seven top-level directories below the root level.'” These
directories may seem to have strange names, but you don’t really need to know what
they are for. The one thing to note from this schematic is that there i1s a *home’ direc-
tory which in turn contains the home directories of three users (‘david,” "derek,” and
‘nigel’). We then show that David’s home directory contains more directories, one of
which (*Work’) contains some files. This schematic is highly simplified — a full Unix

'* On a standard Windows OS5 the equivalent to the root level would be C:\.
'* These are the directories that occur on nearly all Unix systems.

The hierarchy of a Unix filesystem

filesystem may contain several hundred directories, and many thousands of files. Note

that we shall return to this fictional filesystem in the next few chapters.

Directories that exist inside other directories, are often referred
to as subdirectories.

Example 3.5.1 If you want to see what your own root level looks like you can simply
run the ls command and tell it that you want to list the contents of the root directory

(represented by a single forward-slash character):

$ 1s /

Applications System cores mach_kernel tmp
Developer Users dev net usr
Library Volumes etc private var
Network b1n home sb1in

Explanation

This i1s the listing of the root directory on a computer running Mac OS X. Note
that it has a directory called *home” (like many Unix systems) but the actual home
directories of users are stored as subdirectories within the ‘Users’ directory. There is
often a lot of variation as to where different Unix systems keep home directories,'®

and 1n the next chapter we will learn how to find out where your own home directory

i1s located.

Navigating the filesystem tree

If we briefly return to our fictional Unix filesystem, we should note that the directory
called “david’ contains three subdirectories and is itsell a subdirectory of the “home’
directory. If we wanted to copy or move some files that are in David’s "Work™ directory
to Nigel’s home directory, we can trace a path that would navigate up three levels in the
directory tree (— Work — david — home), and then navigate down one level (— nigel).
If this concept of going up and down various branches seems intuitive to you, then great!
If 1t doesn’t, then 1t might help you to start thinking about your filesystem in this way.
This means that if you wanted to copy a file from David’s “Work’ directory to his ‘Docs’
directory, you actually have to go up one level and then down one level (rather than go
directly across)."’

' Though it is very common to name the actual home directory after your login/user name.

‘" Of course the concepts of “up.” “*down.” or ‘across’ are somewhat misleading. All directories, programs, and other files
exist as series of binary 1s and Us on a magnetic disk or other storage medium. However, these concepts can sometimes
make it a lot easier to understand how to use many different Unix commands,

217

Finding out where you are in the filesystem

3.6

You should learn to use pwd PDQ

As we have already mentioned, there may be many hundreds of directories on any Unix
machine. So how do you know which one you are in? In Unix, the current directory you
are in 1s known as the working directory. To find out where you are, you can run the Unix
command pwd, which will print the working directory, and this is pretty much all this
command does. If you have opened a new terminal window you will normally be placed
in your home directory:'®

$ pwd
/Users/nigel

In this example we are in the home directory of a user called ‘nigel,” who has his
home directory located as a subdirectory of the “Users” directory. Conversely, “Users’ is
‘above’ the level of nigel’” and Unix would refer to this directory as the parent directory

e 1
of nigel".

Slashes separate parts of the directory path

As we have just seen, Unix uses forward-slashes to separate out the various parts of
a directory location. In the above example we can see that ‘nigel” must be a subdir-
ectory of “Users’ because the two are separated by a single forward-slash character.
Collectively, the set of file and directory names that are combined with forward-
slashes is known as a path. A single path will always specify some unique location in
the filesystem.

If a path starts with a forward-slash character, then this is the same thing as the
single forward-slash that represents the root level. In the above example, because it
starts with a forward-slash, we can infer that *Users’ must be a directory one level
beneath the root directory. We shall return to the i1ssue of navigating paths in the next
chapter.

Remember to use pwd!

As you become more familiar with Unix, you will find yourself trying to switch
between different directories in the filesystem (which we will learn how to do in the
next chapter). The more you move around, particularly as you start using multiple
terminal windows, the more likely it is that you will get ‘lost” in the filesystem. When
you start running more complex commands (or Perl scripts) a common reason for
them not appearing to work is that you are not in the correct directory. As you start to
learn Unix, it is good to get into the habit of frequently running pwd to check that you
always know where you are.

" You can configure Unix to start your terminal sessions somewhere other than vour home directory and this 1s sometimes
useful, but 99% of the time a new terminal will place you in your home directory.

How to navigate a Unix filesystem

3.7

t's time for a change

We have previously seen how the ls command allows us to ‘look’ at the contents of
any directory in a Unix filesystem. It 1s entirely possible, and sometimes desirable, to
perform actions with files or folders that are in different directories with respect to your
current working directory. However, we frequently want to change directories so we
are in the same directory as some file or program. We can do this using the cd com-
mand (change directory). Let’s return to our fictional Unix filesystem and see how the
user Nigel would change directory from his home directory to the temporary directory

‘tmp’." Feel free to repeat these steps from your own home directory:

$ pwd
/home/n1igel
$ cd /tmp

$ pwd

/tmp

We start by confirming that we are in Nigel’s home directory by running the pwd
command. We then use the cd command to change to /tmp. Note that the ¢d command
does not give you any output or feedback after you run it. If we knew what files we
were expecting to see in /tmp then we could run the s command to check that this is
the intended location. However, it 1s always possible that two different directories could
contain identical contents. That is why we run the pwd command again, to confirm that

we are really in /tmp.

Changing directories in multiple steps

Let’s imagine that we want to change directory to the *home’ directory and then change
to David’s “Work” directory. We will omit the pwd confirmation step from now on:

¢ cd /home
$ cd david/Work

There are two things to note here. First, notice how that second cd command does
not start with a forward-slash. You only need to include a forward-slash at the start of
a Unix path when you want to start navigating from the root level of the filesystem.
Hopefully, you also noticed that performing this in two steps 1s a little pointless. It
you just want to navigate from directory ‘A’ to directory ‘B, you can always do that

in one step:

$ cd /home/david/Work

" The “tmp” directory is used for storing various temporary output from programs. Be aware that it is automatically emptied
at periodic intervals, so you should not use it to store important files.

30 Essential Unix

Can’t change directory?
Remember that many Unix systems are case-sensitive. This means that if we had typed
‘David’ instead of ‘david’ we might have seen an error message like the following:

$ cd /home/David/Work
cd /home/David/Work: No such file or directory

We would also see this type of error message 1f we had misspelled any part of the path,

or missed out any of the forward-slashes. If we mistakenly typed something like:
$ cd home/nigel
instead of:

$ cd /home/nigel

without the leading forward-slash character, Unix will assume that we want to change
directory to a subdirectory of our current directory called ‘home’. It is important to be
able to appreciate the difference between the two commands shown above. The second
command will only ever specity a single location on the filesystem, as there can only
be one directory called ‘home’ at the root level of the computer. In contrast, the first
command could potentially work in multiple places as there could be another "home’

directory somewhere else in the filesystem.="

Changing to the parent directory

One of the most common uses of the c¢d command is to navigate to the directory above
the one you’re currently in — e.g., you want to change from the ‘david’ directory to
‘home” or from ‘home’ to °/°. This is straightforward if you know what the directory
above you 1s called. However, you may have forgotten where you are and you may not
want to keep on running the pwd command to find out. Luckily, you can simply tell the

cd command to go ‘up’ one level by using the following syntax:
$ cd

Two dots (without a space) are used by Unix to refer to the parent directory. You can also
use this with the Ls command to list the contents of the parent directory:

$ 1s ..

If you wanted to navigate up two levels then you simply need to include a forward-slash
between two sets of double dots:

$ cd ../..

The use of the forward-slash is consistent with what we have already seen about Unix
paths, and the forward-slash acts as a delimiter that separates out different levels in the
overall directory hierarchy.

“ This 1s analogous to the fact that every US city can potentially have an address called "1600 Pennsylvania Avenue,” but
within a single city it 1s likely that there 1s only going 1o be one address with thal name.

Absolute and relative paths 33

layout of your own filesystem. Changing to a new computer can sometimes be a little
like moving to a new town. You have to learn where everything is all over again and it
takes time to learn the fastest way of getting from ‘A’ to "B.

One final warning for this section. It’s entirely possible to do pointless things with
the cd command, such as:

$ pwd
/home/david/Desktop
$ cd ../../../home/david/Docs

or similarly:

$ pwd
/home/david/Desktop
$ cd /home/david/Docs

In these examples we needlessly navigated all the way to the top of the filesystem and
then back down again in order to just change directory to a directory that is at the same
level as where we started. If you want to do all of that unnecessary typing then just be
aware that Unix isn’t going to stop you.”

“ By extension, you can even navigate up and down the filesystem and end up right back where you started. We bet you're
going Lo try that right now, aren’t you?

Working with your home directory

(The) home (directory) 1s where the heart IS

What is a home directory?
Of all the directories on a Unix filesystem that you will work with, the home dir-
ectory 1s probably the most important. This directory serves the same purpose as
the "My Documents’ folder on a Windows computer, and it is where you will store
various files that are owned by you.* Reflecting its special status, it has a few import-
ant properties that set it apart from other directories. It is common for your home
directory to be named after your real name or your login name (of course, the two
might also be the same). This means that if you have two or more users on your com-
puter who have the same name, they will need to use different names for their home
directories.

By default, new terminal windows should always place you inside your home direc-
tory. Of course, you can always confirm the location of your home directory (in a newly
opened terminal window) with the pwd command:

$ pwd
/home/nigel

Finding your way home

One of the most common acts of “directory navigation’ that you will perform is to return
to your home directory (from wherever you were). If you know where your home direc-
tory is, you can simply use the c¢d command to go there:

$ cd /home/nigel

Because you will want to perform this action over and over again and because you
might not always remember where your home directory is,** Unix provides several use-
ful shortcuts:

$ cd ~nigel

This command should be read as ‘change directory to the home directory of the user
called ‘nigel.” The ~ character (known as a tilde) 1s used by Unix to refer to a home
directory. Note that you can use this syntax to navigate to directories beneath the level
of your home directory —e.g., the path ~david/Docs would refer to the ‘Docs’ subdir-
ectory of David’s home directory. Additionally, you can use this syntax to navigate to,
or list the contents of, another user’s home directory:

$ cd ~derek
$ cd ~david
$ 1s ~derek
$ 1s ~david/Work

** These files will hopefully end up including the many Perl scripts you will be writing!
“ On large, Unix-based networks, it’s entirely possible that your home directory may change location occasionally as it
might be moved from one disk to another by your system administrator.

3.9

Working with your home directory 35

If 1t 1s your home directory that you want to go to then you can save even more time by

omitting the user name altogether:
$ cd ~

A tilde on its own will always be understood by Unix to refer to your home directory.
If we want to save ourselves even more typing, we can take home directory navigation

to 1ts extreme:
$ cd

If you don’t provide any other information to the c¢d command, then it will take you
to your home directory. This 1s the format of the command that you will end up using
the most. You shouldn’t proceed any further without first trying to get lost somewhere
in the labyrinth of your own Unix filesystem, before safely returning home with the cd
command.

Problem 3.9.1 Try to get yourself ‘lost’ in your filesystem. Change directory to the root
level and then start navigating to a different directory at the root level. Check that you
can find your way home by simply typing cd and then confirming your location with
pWd.

The Unix shell

[t's time to come out of your shell

What is the shell?

The shell 18 a command-line interpreter that lets you interact with Unix. You might be
thinking that this sounds an awful lot like the terminal, but the two are very distinct.
A terminal is like a web browser. There are a lot of web browsers, and they all let you
interact with the internet. Similarly, there are a lot of terminal programs, and they all
give you a command-line prompt to 1ssue commands and observe the output of those
commands.

The shell takes what you type and decides what to do with it. Did you want to run
a program? Assign a variable? Autocomplete the name of a file?* Pipe the output from
one program to another? The shell is actually a scripting language somewhat like Perl.
It is not as powerful as Perl, but for some simple tasks a shell script is sometimes more
convenient and appropriate. In this book we only touch upon shell scripting, because we
prefer to do our programming in a more fully featured language.

Your default shell
Unix 1s a very flexible OS, and 1t 1s therefore not surprising that there 1s more than one
kind of shell.”® Here is a list of the most common shells:

* Bourne shell — commonly known as sh. Named after its creator, Stephen Bourne,
this shell has remained a popular default shell ever since its original development
in 1977.

* (C shell — known as csh. Developed shortly after the Bourne shell, it quickly
oave rise to a related shell called the TENEX shell or tcsh. The latter shell
contains everything in csh plus some other useful features such as command-line
completion. This is something that we will introduce you to in a few chapters.

* Korn shell — known as ksh. Developed by David Korn in the early 1980s. It
includes many features of csh and is backwards compatible with sh.

* Bourne-again shell>’ — known as bash. It is widely used and is currently the
default shell on computers running Mac OS X. It was developed a decade
after sh.

o Zshell —known as zsh. This is the newest of all the shells mentioned so far, and
1s gaining in popularity. Like most newer shells, 1t incorporates various elements
of all of the other shells that have gone before it, but it also includes new features
such as spelling correction (rare among Unix shells).

For the purposes of this book, we only use a small subset of a shell’s capabilities,
so the differences among shells are minor. For simplicity, use whichever shell 1s the

“ We have not discussed auto-completing or tab-completing yet, but it is one of the more useful features of a shell,
* Programmers become evangelical about languages, OSs, editors, and to no surprise, shells also.
" Unix developers love nothing more than a good pun.

3.10

The Unix shell 37

default on your system (we will show you how to find out what your default shell
is in the next chapter). There are a few important differences among shells, and we
shall cover these differences as and when they arise in the remaining chapters of this
part of the book. Bear in mind, however, that it 1s always possible to change shells

(either temporarily or permanently), so you shouldn’t feel chained to whatever your
detault shell 1s.

Introduction to command-line options

3.12

We command you to check out these options

So far we have only introduced you to a small handful of Unix commands and we have
shown you how to run these commands to achieve their default behavior. Usually, the
default behavior of a command 1s all we want, but sometimes we would like to modify
the behavior and/or output of the command. For many Unix commands we can produce
alternative output by specitying what are known as command-line options when we run
the command.

Revisiting the 1s command

Let’s assume that our user Nigel has just bought a new computer. The first thing he
wants to do is see what the root level of his hard drive looks like.”” He opens up his ter-
minal application and runs the following command:

$ ls /

Applications System cores mach_kernel tmp
Developer Users dev net usr
Library Volumes etc private var
Network bin home sbin

The 1s command does a fine job of showing us the names of everything in Nigel’s root
directory,’ but that’s about all it does. The default output doesn’t show us any infor-
mation about the sizes or modification dates of the files or directories, or who created
them. It also doesn’t make it clear as to which of the listed items are files and which are
directories. Another limitation is that the default output is sorted alphabetically, which
might not be what we want.

This 1s where command-line options can help us produce all of this extra information
that we might need. Command-line options in Unix are specified by using a hyphen charac-
ter (-) after the command name, followed by various letters, numbers, or words. If you add
the letter ‘I’ to the 1s command it will give you a longer output compared to the default:

$ 1s -1 /

total 36494

drwxrwxr-x+ 85 root admin 2890 Jun 28 11:35
Applications

drwxrwxr-x@ 15 root admin 510 Oct 19 2009 Developer
drwxrwxr-t+ 59 root admin 2006 Jun 23 13:04 Library
drwxr-xr-x@ 2 root wheel 68 Jun 22 2009 Network
drwxr-xr-x 4 root wheel 136 Jun 20 13:09 System
drwxr-xr-x © root admin 204 Feb 22 09:45 Users

" We think this seems like a perfectly reasonable thing to do. If you disagree, then you probably haven’t spent enough time
working with Unix yet.

1 This listing displays the standard contents of a Mac computer’s root directory.

Introduction to command-line options 41

drwxrwxrwt@ 5 root admin 170 Jun 29 11:43 Volumes
drwxr-xr-x@ 39 root wheel 1326 Jun 20 13:04 b1in

drwxrwxr-t@ 2 root admin 68 Apr 15 00:26 cores

dr-Xr-xr-x 3 root wheel 4901 Jun 29 11:10 dev

Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 etc -> private/etc
dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 home

-rw-r--r--@ 1 root wheel 18061932 Jun 10 16:19 mach_kernel
dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 net

drwxr-xr-x@ 6 root wheel 204 Oct 19 2009 private
drwxr-xr-x@ 64 root wheel 2176 Jun 20 13:04 sbin

Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 tmp -> private/tmp
drwxr-xr-x@ 14 root wheel 476 Apr 21 14:38 usr

Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 var -> private/var

As you can see, the simple addition of -1 makes a lot of difference to the output. For
each file or directory we now see much more information and all of the output 18 now
arranged 1nto columns with the file or directory name in the last column. We don’t need
to understand all of this information at the moment, but you can hopefully see that the
penultimate column includes the last modification date and time of the file or directory.
One other thing about this long-form output that we’ll mention now is that the very
first character describes something called the entry fype. If it starts with a dash (-), the
item 1s a regular file — as we can see above, there is only one file at the root level of
Nigel’s computer. If it starts with a “d’, then the item is a directory; if it starts with an °I’,
then it is something called a symbolic link.”* There are some other possibilities as well,

but these are the most common ones.

More command-line options for the 1s command

The 1s command has many different command-line options. Here are a few examples;
we encourage you to run each of these commands in one or more directories on your
computer. The text following each command (after the #) is just an explanatory com-
ment, don’t type 1t:

ls -t # sort output based on file modification date

ls -S # sort output by size

ls -r # reverse-sort the output

ls -R # recursively list output of all directories below current level
ls -1 # force output to be one entry per line

These examples 1llustrate that command-line options can use lower- or upper-case letters
and also use numbers (such as in the last option).

2 Symbolic links are similar to “shortcuts’ in the Windows OS and ‘aliases” in the Mac OS. Basically, a symbolic link is
a file that points to another file or directory (or even another symbolic link). Any action you perform against a symbolic
link will produce the same result as if you performed the same action against the original item. The exception to this is
that if you delete a symbolic link, you don’t delete the original item. The long listing of the 1s command will also show
you what item the symbolic link 15 pointing Lo,

42 Essential Unix

You can combine multiple options together (where appropriate) — e.g., maybe you
want to list items in a directory in a long format, and then reverse-sort items based on
their modification date. This would mean that the most recently modified items appear

at the bottom of the list. We could do this as shown here:

$ 1s -1 -t -r /

total 36494

drwxr-xr-x@ Vi root wheel 68 Jun 22 2009 Network
Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 wvar -> private/var
Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 +tmp -> private/tmp
Lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 etc -> private/etc
drwxr-xr-x@ 6 root wheel 204 Oct 19 2009 private
drwxrwxr-x@ 15 root admin 510 Oct 19 2009 Developer
drwxr-xr-x 6 root admin 204 Feb 22 09:45 Users

drwxrwxr-t@ 2 root admin 68 Apr 15 00:26 cores

drwxr-xr-x@ 14 root wheel 476 Apr 21 14:38 usr

-rw-r--r--@ 1 root wheel 18661937 Jun 10 16:19 mach_kernel
drwxr-xr-x@ 39 root wheel 1326 Jun 20 13:04 b1in

drwxr-xr-x@ 64 root wheel 2176 Jun 20 13:04 sbin

drwxr-xr-x 4 root wheel 136 Jun 20 13:09 System
drwxrwxr-t+ 59 root admin 20060 Jun 23 13:04 Library
dr-Xr-xr-x 3 root wheel 49901 Jun 29 11:10 dev

dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 net

dr-xr-xr-x Vi root wheel 1 Jun 29 11:11 home

drwxrwxr-x+ 85 root admin 2890 Jun 30 10:49 Applications
drwxrwxrwt@ 5 root admin 170 Jul 2 15:58 Volumes

In this example we specify three different command-line options for the 1s command.
Note that we could put these options in any order. In these situations, you can combine
all options by using the following syntax:

$ 1s -1tr /

This achieves exactly the same as the previous command, but saves you a little bit of
typing. Some Unix commands have options that are mutually exclusive; you will be
warned if you attempt to use the options in an incompatible manner.

One other useful command-line option for the Ls command is the -p option. This
option simply adjusts the default output to additionally include a forward-slash charac-
ter for any 1items which are directories. Compare the following output to what we saw
before when we first used the 1s command in this chapter:”*

$ 1s -p /
Applications/ System/ cores/ mach_kernel tmp
Developer/ Users/ dev/ net/ usr/

% Note that the “ete,” “tmp,” and “var’ entries do not have a trailing forward-slash because they are symbolic links. Although these can

sometimes act like directories, they are considered by Unix to be a special type of file.

Introduction to command-line options 43

Library/ Volumes/ etc private/ var
Network/ bin/ home/ sbin/

Now it becomes a lot easier to distinguish the single item which isn’t a directory (“mach_
kernel’). The -p option also works if you use the long listing (-1 option).

Command-line options may require additional information
Let’s take a very quick look at another basic Unix command. Do you want to know what
the date and time is? Try the date command:

$ date
Fr1i Jul 2 17:17:45 PDT 2010

The date command has a few basic options available — e.g., we could display the
current date in UTC format®* with the -u option:

$ date -u
Sat Jul 3 90:19:39 UTC 2010

One of the other options for the date command is -r. Unlike the options we have
seen so far, this option requires us to also specify some additional information. If we
don’t specify anything else, we will see something like this:

$ date -r

date: option requires an argument -- r

usage: date [-jnu] [-d dst] [-r seconds] [-t west]
[-v[+1-]val [ymwdHMS]]
|-f fmt date | [[[[[cc]yy]|mm]|dd]HH]|MM[.ss|] [+format]

Buried in that cryptic-looking usage statement is a clue that the -r option requires some
value which corresponds to ‘seconds.” The -r option will give you a date that corresponds

to the number of specified seconds that have elapsed since January 1, 1970.% E.g.:

$ date -r 123456789
Thu Nov 29 13:33:09 PST 1973

The point of this example 1s purely to illustrate that some command-line options work
on their own, and others require data. You might be wondering how you can find out
about what command-line options are available for any given command. Luckily, we are
201ng to address that 1n the next chapter.

Problem 3.12.1 Try listing the contents of your home directory and the root directory
using various command-line options for the Ls command. Make sure you try combining
different options together and try to see how the output changes.

#UTC refers to Coordinated Universal Time which is approximately equivalent, but not identical to Greenwich Mean Time
(GMT).

No, we're not quite sure why anyone would want to be able to do this, but we guess that some people must need to do it,
otherwise the command-line option wouldn™t exist. If you didn’t already know, January 1, 1970 is the date that all Unix
systems use (and many other compulers too) as the starting point for what 1s called "Unix time.

Man pages 3.13

Time to man the battle stations

If Unix commands have so many options, you might be wondering how you find out
what they are and what they do. Thankfully, every Unix command should have an asso-
ciated ‘manual” which is just a formatted page of text that describes everything about the

command. These manuals are more commonly known as ‘man pages.’*

Example 3.13.1 We can view man pages by using the Unix man command —e.g., if we
want to see what the whoam1 command does, we just type:

¢ man whoami

Explanation

What happens next is that Unix sends the contents of the manual to a Unix text-viewing
program, which gives you basic controls for scrolling through the document and
searching for specific text. T'he text-viewing program will almost certainly be a program

called less.” This is what you should see if you type the above command:

WHOAMI(1) BSD General Commands Manual WHOAMI(1)
NAME

whoami -- display effective user 1id

SYNOPSIS

whoamt

DESCRIPTION

The whoam1 utility has been obsoleted by the 1d(1) utility, and i1s eguivalent to "1d -un".

The command "1d -p" 1s suggested for normal 1interactive use.

The whoami utility displays your effective user ID as a name.

EXIT STATUS

The whoami utility exits @ on success, and >@ 1f an error occurs.
SEE ALSO

1d(1)

BSD June b, 1993 BSD

(END)

Unix man pages are formatted in a standard layout which includes sections for ‘name,’
‘synopsis,” and ‘description.” The man page for the whoam1 command is very short
because this command does one thing, and one thing only ... it tells you who you are.”
If this command had any command-line options then they would all be described 1n the

‘description’ section.

* For readers who were hoping that man pages would help them understand men, there is no such help from Unix.
Additionally, there are no woman pages of any Kind.

" Though bear in mind that it is possible to change the program that is used as the man page viewer.

" This 1s not as stupid as it may seem. Certain Unix users (e.g., system administrators) may be in charge of multiple
accounts on multiple machines. It is entirely possible to Torget which user account you have logged in as.

Working with directories 3.14

Make directories, not war

Where should you create files for this book?

Over the last few chapters we’ve had to make some digressions in order to teach you
about some important Unix concepts. Now it 1s time to actually start doing “stuff,” which
you will hopetully find a little more enjoyable. But before we can do anything we should
first ask you to choose a place to store all of the files and directories that you will create
as vou work through the rest of this book. This place should ideally be a single direc-
tory*!' that will subsequently have more subdirectories added. For now, we suggest creat-
ing that directory in your home directory (details of how to do this will follow shortly),
but you may want to save 1t somewhere else (external hard drive, flash drive, etc.) 1f you

frequently work on different computers.

Naming directories

When working with a graphical file manager, we are accustomed to including spaces as
part of file or folder names (e.g., “My important text file.txt’). You can do this on a Unix
system too, but it does present an additional complication. Up till now we have used the
space character to separate out different parts of a Unix command — e.g., if you had to
type a Unix command that requires two arguments, we would separate those arguments
with one or more space characters.

So how can we have a file or directory name that also includes a space? How does
Unix know that the space belongs to the directory name and isn’t just separating argu-
ments? Well, rather than tell you the solution we will instead suggest that any time you
create a file or directory 1n Unix, you use underscore characters rather than spaces. This
1s a very common practice in Unix, and if we take our prior example of a text file, this

would now become ‘My_important_text_file.txt’.*

Making directories
To make a new directory we can use the appropriately named mkdir command.

Example 3.14.17 Let’s create a “Unix_and_Perl’ directory, which we will use throughout
the rest of this book. We’ll create this for our fictional user ‘Nigel,” and so the output
you're going to see is for Nigel’s computer. Your output will differ (especially if you
choose a different directory name):

1 Of course, if you prefer a little chaos in your life, you might want to instead create 36 differently named directories in 36 different
locations on your hard drive.

I you really need to know how 1o do this, you need to include a backslash character before every space character you use. This will make
much more sense when you get into the Perl parts of the book later,

48 Essential Unix

$ cd

$ pwd

/Users/nigel

$ mkdir Unix_and_Perl

$ 1s -1p

drwx------ + 5 nigel staff 170 Feb 5 12:48 Desktop/
drwx------ + 4 nigel staff 136 Oct 19 2009 Documents/
drwx------ + 4 nigel staff 136 Oct 19 2009 Downloads/
drwx------ + 27 nigel staff 918 Jan 14 13:43 Library/
drwx------ + 3 nigel staff 102 Oct 19 2009 Movies/
drwx------ + 3 nigel staff 102 Oct 19 2009 Music/
drwx------ + 4 nigel staff 136 Oct 19 2009 Pictures/
drwxr-xr-x+ 6 nigel staff 204 Jan 14 13:44 Public/
drwxr-xr-x+ 5 nigel staff 170 Oct 19 2009 Sites/
drwxr-xr-x 2 nigel staff 68 Jul 8 14:10 Unix_and_Perl/

Explanation

Notice that we first run the cd command to navigate to Nigel’s home directory* and
then run the pwd command to confirm its location. Then we run the mkdir command
and simply specify the name of the directory that we want to create. Finally, we use the
- 1p options of the 1s command to get a long listing of the directory, which also adds
forward-slashes to the ends of any directory names.

Example 3.14.2 Now that we have a container directory for all of the Unix and Perl
material that we might create, we can also make some more specific subdirectories:

$ mkdir Unix_and_Perl/Code
$ mkdir -p Unix_and_Perl/Temp/Inside_temp
$ cd Unix_and_Perl

Explanation

There are two things to note from this. First, the mkdir command can be used to create
directories inside existing directories. Of course we could have also just changed directory
into the “Unix_and_Perl” directory before creating the "Code’ subdirectory. Second, you
can create nested directories in one go if you use the -p command-line option.** This
allows us to create a directory ‘Inside_temp’ plus its parent directory (“Temp’) in one
operation. If we had not specified the -p option, we would have seen an error like so:

mkdir: Temp: No such file or directory

4 This is output from an actual Mac computer. Don’t confuse this with our “fictional” filesystem hierarchy that we showed
in earlier chapters in which Nigel's home directory was located in /home.

¥ Of course, you can always find out more about this (and any other options for the mkdir command) by looking at its man
page.

Working with directories 49

We will use the ‘Code’ directory for storing any Unix or Perl scripts that we write in
subsequent chapters. The “Temp’ directory will be a place for trying out various Unix
commands.

Removing directories

We only wanted to create the ‘Inside_temp’ directory to illustrate the usefulness of
the mkdir command’s -p option. Now we should remove it by using the rmdir
command.

Example 3.14.3 Let’s navigate into the “Temp’ directory and then remove the ‘Inside_
temp’ directory:

$ cd Temp

$ 1s

Inside_temp

$ rmdir Inside_temp

Explanation

In this case we removed the ‘Inside_temp’ directory while being located just one level
above it. However, we could have also removed the directory without having to use the
cd command by doing either of the following:

$ rmdir Temp/Inside_temp
$ rmdir /Users/nigel/Unix_and_Perl/Temp/Inside_temp

Hopetully you will realize that the first of these examples uses the relative path to the
‘Inside_temp’ directory, whereas the second example uses the absolute path (revisit

Chapter 3.8 if you need a refresher on absolute and relative paths).

Note that the rmdir command will only remove empty directories (we’ll cover how to
remove directories that contain files later on). Also, you can remove a directory from
anywhere except if you are inside the directory you want to remove.*

** Unix won’t let you remove the ground from beneath your feet.

The importance of saving keystrokes

3.15

Or the art of accomplishing more by typing less

When we interact with the world of Unix, most of that interaction occurs via the
keyboard. If you can reduce the amount of typing you have to do in order to accomplish
a task then this 1s good for you in two ways. First, it makes you more productive because
you are spending more time running commands and getting results, and less time typ-
Ing their names. Second, and more important, 1t will help you minimize the amount of
typing you do, which in turn will help lessen the risks of developing a repetitive strain
injury (RSI).* In addition to having very short command names, Unix offers a few other
ways to ease the load on your digits.

Command-line completion

Perhaps the most important time-saver to learn is something called command-Iline com-
pletion. This allows you to automatically complete the names of files, directories, and
programs as you type them. It you type enough letters that uniquely 1dentity the name
of something and then press tab*’ ... Unix will do the rest.

Example 3.15.1 Type the letters ‘tou’ and then press the tab key on your keyboard. In
the following examples, we’ll use <tab> as a shortcut way of saying ‘press tab.’

¢ tou<tab>
$ touch

Explanation

If this works, you should see the letters ‘ch’ become magically added to the three letters
you have already typed. This forms the name of the Unix touch command (which we
will learn more about in a later chapter). In this case, command-line completion will
occur because there are no other standard Unix commands that start with the letters
‘tou’. If this didn’t work it might be because you have a non-standard Unix command on
your system that also starts with “tou’, or that there is a file or directory in your current
location that starts with “tou’. When there are no possible completions for the letters you
have already typed, you may hear a beep.*®

Command-line completion can be used to save time when typing program names,
but it is equally useful when working with files and directories. If you have yet to
type the name of a Unix command, then tab-completion will attempt to complete

" Please do not underestimate the health risks that can result [rom overusing (or incorrectly using) a keyboard and mouse.
Unix and most programming languages make heavy use of various punctuation svmbols on your keyboard, and this
usually means your fingers end up being stretched a hittle more than if you were just typing “regular’ text. If yvou routinely
experience pain or discomfort while using a keyboard, you should stop typing and see your doctor.

Tt is possible that in some Unix shells, other keys will be used to trigger the completion, but the tab key is the most

common trigger Key, which 1s why command-line completion 1s also known as tab-completion.

* Some, but not all, Unix systems will use a beep sound to indicate errors or to serve as a warning/reminder.

The importance of saving keystrokes o1

from a list of all known commands and programs on the system. However, if you have
already typed the name of a valid command, then you can use command-line comple-
tion to finish the name of whatever file or directory 1s required by the command:

Example 3.15.2 We will navigate into our ‘Unix_and Perl’ directory using the cd
command, but we want to save as many keystrokes as possible when typing the directory

naine.

¢ cd U<tab>
$ cd Unix_and_Perl/

Explanation

In this example we only have to type five characters (¢ + d + space + U + tab) rather than
the full 16 characters that we would otherwise have had to type. If this doesn’t work for
you, it 1s most likely because you have another file or directory in your current directory
that starts with the letter “U’. Try typing one more letter at a time, and pressing tab after
each successive key press.

Another way you can use command-line completion is to press tab fwice to show
a list of all possible completions. The contents of such a list will depend on how many
characters of a file, directory, or program name have already been typed. It will also
depend on whether you have yet typed a full Unix command. You can even press tab
twice before typing anything at all. If you do this you will probably see a warning mes-
sage like this:

Display all 1712 possibilities? (y or n)

This suggests that, on our computer, there are 1712 different Unix commands and pro-
erams that can be run.

Example 3.15.3 Now we will use tab-completion to browse through some directories

that are at the root level of the computer:

$ 1s<tab><tab>
1ls 1sbom lsdistcc Lsm Lsof lsvfs

$ 1s /u<tab>
$ 1s /usr/b<tab>
$ 1s /usr/bin/auto<tab><tab>

autocont autom4te automake-1.10 autoreconf
autoupdate

autoheader automake automator autoscan
Explanation

The first part of this example shows that even when you have typed the name of an
existing command (in this case Ls), there may be other Unix commands that match the

54 Essential Unix

Ctrl + a move to start of line

Ctrl + e move to end of line

Ctrl +w delete previous word on command line
Ctrl + 1 clear screen”

Problem 3.135.1 Practice navigating through some directories using the cd command, but

make sure you use tab-completion to type every directory name.

Problem 3.15.2 Practice accessing your command history (using either the history
command, or up-arrow navigation). Make sure you can repeat an older command.

* Note that there is also a simple Unix command, clear, which does the same thing.

Moving and renaming files

3.16

Or how you can learn to move heaven and Earth

The next tew chapters, including this one, will deal with Unix commands that help to work
with files, 1.e., commands that will allow us to move, copy, rename, delete, and view files. In
order to learn how to use these commands, we will need to have some files to play with. The
Unix command touch lets us easily create some empty files that we can work with.”’

Example 3.76.7 Let’s create two new files in your newly created ‘Unix_and_Perl’
directory. Remember to always use tab-completion when typing file and directory
names:

$ cd ~/Unix_and_Perl
$ 1s

Code Temp

$ touch heaven.txt

$ touch earth.txt

$ 1s -1

total ©

drwxr-xr-x 2 nigel staff 68 Jul &8 14:55 Code
drwxr-xr-x 2 nigel staff 68 Jul &8 16:19 Temp
-rw-r--r-- 1 nigel staff © Jul 19 15:10 earth.txt
-rw-r--r-- 1 nigel staff © Jul 19 15:10 heaven.txt
Explanation

We first ensure that we are in the “Unix_and_Perl’ directory, which in this case is one
level below the home directory. Knowing this allows us to navigate there by using the
~/Unix_and_Perl syntax (see Chapter 3.9 for more information on using the tilde
character |~] to refer to your home directory).

We then use the touch command to create two files which we give a .txt extension.>?
The Ls -1 command shows a long listing which confirms that the two new files exist
and that they are zero bytes in size.” If we had wanted to, we could have also created
both files in one step:

$ touch heaven.txt earth.txt

The mv command

If you want to move a file in Unix, you need to use the mv command. Whenever we use
commands like mv, we must always bear in mind the two concepts of source and target.
The source 1s the location of the file (or directory) that we want to move; the target is the

"' This command does some other things as well as creating blank files. Look at its man page if you want to know more.

*2 This is not strictly necessary at this stage, because the files do not contain any text. Indeed, they do not contain anything
at all.

** The size of files (in bytes) is listed in the fifth column of the long output. Every character in a file increases its size by one
byte.

56 Essential Unix

location of the place where we want to move the file. Commands such as mv will always

expect you to specify a source and target location (in that order).

Example 3.76.2 Let’s move these two new files into the “Temp’ directory that we
created previously (Chapter 3.14):

$ s

Code Temp earth.txt heaven. txt
$ mv earth.txt Temp/

$ mv heaven.txt Temp/

$ 1s
Code Temp

$ 1s Temp/
earth.txt heaven. txt

Explanation

We use the mv command twice, once for each file that we want to move. The target location
for the move is the “Temp’ directory. After moving the files, we confirm that the current
directory no longer has the files and that they are instead in the “Temp’ directory. If you use
tab-completion to type the name “Temp’ Unix will automatically add the trailing forward-
slash character. This helps to remind you that “Temp’ is a directory and not a file.”

Renaming files

In the last example, the destination for the mv command was a directory name (“Temp’).
However, the target could have also been a (different) file name, rather than a directory.
This 1s how you can use mv to rename files.

Example 3.16.3 Let’s make a new file and move it while renaming it at the same
time:

$ touch rags

$ 1s

Code Temp rags

$ mv rags Temp/riches

$ 1s

Code Temp

$ 1s Temp/

earth. txt heaven. txt riches

* When working with directories, vou do not need to add a trailing forward-slash character to the name of the last directory
in any path, but it doesn’t hurt. This is another reason why using tab-completion is such a good habit to get into, because
it will always add the slash character for you. See the next chapter for more details.

