From Simple Mcachines to Impossible Programs

nderstanding

(:)"RElLLYGh Tom Stuart

Understanding
Computation

Tom Stuart

O’REILLY"

Beijing « Cambridge » Farnham « Kdln + Sebastopol « Tokyo

Preface

Who Should Read This Book?

This book is for programmers who are curious about programming languages
and the theory of computation, especially those who don’t have a formal
background in mathematics or computer science.

If you're interested in the mind-expanding parts of computer science that deal
with programs, languages, and machines, but are discouraged by the
mathematical language that’s often used to explain them, this book is for you.
Instead of complex notation we’ll use working code to illustrate theoretical ideas
and turn them into interactive experiments that you can explore at your own
pace.

This book assumes that you know at least one modern programming language
like Ruby, Python, JavaScript, Java, or C#. All of the code examples are in Ruby,
but if you know another language you should still be able to follow along.
However, this book isn’t a guide to best practices in Ruby or object-oriented
design. The code is intended to be clear and concise, but not necessarily to be
easy to maintain; the goal is always to use Ruby to illustrate the computer
science, not vice versa. It’s also not a textbook or an encyclopedia, so instead of
presenting formal arguments or watertight proofs, this book tries to break the
ice on some interesting ideas and inspire you to learn about them in more depth.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

This icon signifies a tip, suggestion, or general note.

CAUTION

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes
code examples, you may use the code in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes

the title, author, publisher, and ISBN. For example: “Understanding Computation
by Tom Stuart (O’Reilly). Copyright 2013 Tom Stuart, 978-1-4493-2927-3.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access to
thousands of books, training videos, and prepublication manuscripts in one fully
searchable database from publishers like O'Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://oreil.ly/understanding-computation.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I'm grateful for the hospitality of Go Free Range, who provided me with office
space, friendly conversation, and tea throughout the writing of this book.
Without their generous support, I'd definitely have gone a bit Jack Torrance.

Thank you to James Adam, Paul Battley, James Coglan, Peter Fletcher, Chris
Lowis, and Murray Steele for their feedback on early drafts, and to Gabriel
Kerneis and Alex Stangl for their technical reviews. This book has been
immeasurably improved by their thoughtful contributions. I'd also like to thank
Alan Mycroft from the University of Cambridge for all the knowledge and
encouragement he supplied.

Many people from O’Reilly helped shepherd this project to completion, but I'm
especially grateful to Mike Loukides and Simon St.Laurent for their early
enthusiasm and faith in the idea, to Nathan Jepson for his advice on how to turn
the idea into an actual book, and to Sanders Kleinfeld for humoring my

relentless quest for perfect syntax highlighting,

Thank you to my parents for giving an annoying child the means, motive, and
opportunity to spend all his time mucking about with computers; and to Leila,
for patiently reminding me, every time I forgot how the job should be done, to
keep putting one damn word after another. I got there in the end.

Chapter 1. Just Enough Ruby

The code in this book is written in Ruby, a programming language that was
designed to be simple, friendly, and fun. I've chosen it because of its clarity and
flexibility, but nothing in the book relies on special features of Ruby, so you
should be able to translate the code examples into whatever language you prefer
—especially another dynamic language like Python or JavaScript—if that helps to
make the ideas clearer.

All of the example code is compatible with both Ruby 2.0 and Ruby 1.9. You can
find out more about Ruby, and download an official implementation, at the
official Ruby website.

Let’s take a quick tour of Ruby’s features. We'll concentrate on the parts of the
language that are used in this book; if you want to learn more, O’Reilly’s The
Ruby Programming Language is a good place to start.

If you already know Ruby, you can safely skip to Chapter 2 without missing
anything.

Interactive Ruby Shell

One of Ruby’s friendliest features is its interactive console, IRB, which lets us
enter pieces of Ruby code and immediately see the results. In this book, we’ll use
IRB extensively to interact with the code we're writing and explore how it
works.

You can run IRB on your development machine by typing irb at the command

line. IRB shows a >> prompt when it expects you to provide a Ruby expression.
After you type an expression and hit Enter, the code gets evaluated, and the

result is shown at a => prompt:

$ irb --simple-prompt
>> 1 + 2

=> 3

>> 'hello world'.length
= 11

Whenever we see these >> and => prompts in the book, we’re interacting with
IRB. To make longer code listings easier to read, they’ll be shown without the
prompts, but we’ll still assume that the code in these listings has been typed or
pasted into IRB. So once the book has shown some Ruby code like this...

Z=X+Yy
...then we’ll be able to play with its results in IRB:

>>x*y*z
=> 30

Values

Ruby is an expression-oriented language: every valid piece of code produces a
value when it’s executed. Here’s a quick overview of the different kinds of Ruby
value.

Basic Data

As we'd expect, Ruby supports Booleans, numbers, and strings, all of which come
with the usual operations:

>> (true && false) || true
=> true

A Ruby symbol is a lightweight, immutable value representing a name. Symbols
are widely used in Ruby as simpler and less memory-intensive alternatives to
strings, most often as keys in hashes (see Data Structures). Symbol literals are

(3 +3) = (1a [2)

42

"hello' + ' world'
"hello world"

"hello world'.slice(6)

n n

W

written with a colon at the beginning:

>>

The special value nil is used to indicate the absence of any useful value:

>>

=>

:my_symbol

:my_symbol

:my_symbol == :my_symbol

true

:my_symbol == :another_symbol
false

"hello world'.slice(11)
nil

Data Structures

Ruby array literals are written as a comma-separated list of values surrounded

by square brackets:

>>

=>

numbers = ['zero', 'one', 'two']

"zero", "one", "two"]
numbers[1]
"one"
numbers.push('three', 'four')
["zero", "one", "two", "three", "four"]
numbers

[Ilzeroll’ Iloneﬂ, IItwOIlJ !Ithreell‘ I!.FOUI_II]

>> numbers.drop(2)
=> ["two", "three", "four"]

A range represents a collection of values between a minimum and a maximum.
Ranges are written by putting a pair of dots between two values:

>> ages = 18..30

=> 18..30

>> ages.entries

=> [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
>> ages.include?(25)

=> true

>> ages.include?(33)

=> false

A hash is a collection in which every value is associated with a key; some

programming languages call this data structure a “map,” “dictionary,” or
“associative array.” A hash literal is written as a comma-separated list of key =>

value pairs inside curly brackets:

>> fruit = { 'a' => 'apple', 'b' => 'banana', 'c' => 'coconut' }
=> {"a"=>"apple", "b"=>"banana", "c"=>"coconut"}

>> fruit['b']

=> "banana"

>> fruit['d'] = 'date’

=> "date"

>> fruit

" "

== {Ila":>rlapp1ell’ Ilbll=>llbananail’ C :>llcoconutl!-’ "d“:>"date"]‘

Hashes often have symbols as keys, so Ruby provides an alternative key: value
syntax for writing key-value pairs where the key is a symbol. This is more
compact than the key => value syntax and looks a lot like the popular JSON
format for JavaScript objects:

>> dimensions = { width: 1000, height: 2250, depth: 250 }
=> {:width=>1000, :height=>2250, :depth=>250}

>> dimensions[:depth]
=> 250

Procs

A proc is an unevaluated chunk of Ruby code that can be passed around and
evaluated on demand; other languages call this an “anonymous function” or
“lambda.” There are several ways of writing a proc literal, the most compact of

which is the -> arguments { body } syntax:

>> multiply = -> x, y { x *y }
=> #<Proc (lambda)>

>> multiply.call(s, 9)

=> 54

>> multiply.call(z, 3)

=> 6

As well as the .call syntax, procs can be called by using square brackets:

>> multiply[3, 4]
=> 12

Control Flow

Ruby has if, case, and while expressions, which work in the usual way:

>> if 2 < 3
'less’
else
"more’
end
=> "less"
>> quantify =
-> number {
case number
when 1

1 "

one

when 2

'a couple'
else
'many’
end
}
=> #<Proc (lambda)>
>> quantify.call(2)
=> "a couple"
>> quantify.call(10)
=> "many"
>> X =1
= 1
>> while x < 1000
X =x%*2
end

=> nil
>> X
=> 1024

Objects and Methods

Ruby looks like other dynamic programming languages but it’s unusual in an
important way: every value is an object, and objects communicate by sending

messages to each other.! Each object has its own collection of methods that
determine how it responds to particular messages.

A message has a name and, optionally, some arguments. When an object receives
a message, its corresponding method is executed with the arguments from the

message. This is how all work gets done in Ruby; even 1 + 2 means “send the

object 1 a message called + with the argument 2,” and the object 1 has a #+
method for handling that message.

We can define our own methods with the def keyword:

>> 0 = Object.new
=> #<0bject>

>> def o.add(x, y)
X +y
end
=> nil
o.add(2, 3)
=> 5

>

v

Here we're making a new object by sending the new message to a special built-in
object called Object; once the new object’s been created, we define an #add
method on it. The #add method adds its two arguments together and returns the
result—an explicit return isn’t necessary, because the value of the last
expression to be executed in a method is automatically returned. When we send
that object the add message with 2 and 3 as arguments, its #add method is
executed and we get back the answer we wanted.

We'll usually send a message to an object by writing the receiving object and the
message name separated by a dot (e.g., 0.add), but Ruby always keeps track of
the current object (called self) and will allow us to send a message to that object
by writing a message name on its own, leaving the receiver implicit. For
example, inside a method definition the current object is always the object that
received the message that caused the method to execute, so within a particular
object’s method, we can send other messages to the same object without
referring to it explicitly:

>> def o.add_twice(x, y)
add(x, y) + add(x, y)
end
=> nil
>> 0.add_twice(2, 3)
=> 10

Notice that we can send the add message to o from within the #add_twice
method by writing add(x, y) instead of o.add(x, y), because o is the object
that the add_twice message was sent to.

Outside of any method definition, the current object is a special top-level object
called main, and any messages that don’t specify a receiver are sent to it;

similarly, any method definitions that don’t specify an object will be made
available through main:

>> def multiply(a, b)
a*b
end
=> nil
>> multiply(2, 2)
=> 6

Classes and Modules

It's convenient to be able to share method definitions between many objects. In
Ruby, we can put method definitions inside a class, then create new objects by

sending the new message to that class. The objects we get back are instances of
the class and incorporate its methods. For example:

>> class Calculator
def divide(x, y)
x/y
end
end
=> nil
>> ¢ = Calculator.new
=> #<Calculator>
>> c.class
=> Calculator
>> c.divide(10, 2)
=> 5

Note that defining a method inside a class definition adds the method to
instances of that class, not to main:

>> divide(10, 2)
NoMethodError: undefined method “divide' for main:0Object

One class can bring in another class’s method definitions through inheritance:

>> class MultiplyingCalculator < Calculator
def multiply(x, y)
X *y
end
end
= nil
>> mc = MultiplyingCalculator.new
=> #<MultiplyingCalculator>
>> mc.class
=> MultiplyingCalculator
>> mc.class.superclass
=> Calculator
>> mc.multiply(10, 2)
=> 20
>> mc.divide(10, 2)
=> 5

A method in a subclass can call a superclass method of the same name by using
the super keyword:

>> class BinaryMultiplyingCalculator < MultiplyingCalculator
def multiply(x, y)
result = super(x, y)
result.to_s(2)
end
end
=> nil
>> bmc = BinaryMultiplyingCalculator.new
=> #<BinaryMultiplyingCalculator>
>> bmc.multiply(10, 2)
=> "10100"

Another way of sharing method definitions is to declare them in a module, which
can then be included by any class:

>> module Addition
def add(x, y)
X+y
end
end
=> nil
>> class AddingCalculator
include Addition
end
=> AddingCalculator
>> ac = AddingCalculator.new
=> #<AddingCalculator>
>> ac.add(10, 2)
= 12

Miscellaneous Features

Here’s a grab bag of useful Ruby features that we’ll need for the example code in

this book.

Local Variables and Assignment

As we've already seen, Ruby lets us declare local variables just by assigning a
value to them:

>> greeting = 'hello’
=> "hello"

>> greeting

=> "hello"

We can also use parallel assignment to assign values to several variables at once by
breaking apart an array:

>> width, height, depth = [1000, 2250, 250]
=> [1000, 2250, 250]

>> height

=> 2250

String Interpolation

Strings can be single- or double-quoted. Ruby automatically performs

interpolation on double-quoted strings, replacing any #{expression} with its
result:

>> "hello #{'dlrow'.reverse}"
=> "hello world"

If an interpolated expression returns an object that isn’t a string, that object is

automatically sent a to_s message and is expected to return a string that can be
used in its place. We can use this to control how interpolated objects appear:

>> 0 = Object.new
=> #<0bject>
>> def o.to_s
'a new object’

end
= nil
>> "here is #{o}"
=> "here i1s a new object"

Inspecting Objects

Something similar happens whenever IRB needs to display an object: the object
is sent the inspect message and should return a string representation of itself.

All objects in Ruby have sensible default implementations of #inspect, but by
providing our own definition, we can control how an object appears on the
console:

>> 0 = Object.new
=> #<0bject>
>> def o.inspect
"[my object]'
end

=> nil
>> 0

=> [my object]

Printing Strings

The #puts method is available to every Ruby object (including main), and can be
used to print strings to standard output:

>> X = 128

=> 128

>> while x < 1000
puts "x is #{x}"
X=X %2

end

x is 128

x is 256

x is 512

=> nil

Variadic Methods

Method definitions can use the * operator to support a variable number of
arguments:

>> def join_with_commas(*words)
words.join(', ')
end
=> nil
>> join_with_commas('one', 'two', 'three')
=> "one, two, three"

A method definition can’t have more than one variable-length parameter, but
normal parameters may appear on either side of it:

>> def join_with_commas(before, *words, after)
before + words.join(', ') + after

=>

>>

=>

end
nil

join_with_commas('Testing: ', 'one', 'two', 'three', '.')

"Testing: one, two, three."

The * operator can also be used to treat each element of an array as a separate
argument when sending a message:

arguments = ['Testing: ', 'one', "two', 'three',
[“Testing: u, "One“, "tWO", "three", u.n]
join_with_commas(*arguments)

"Testing: one, two, three."

And finally, * works in parallel assignment too:

U " "

before, *words, after = ['Testing: ', 'one',
["Testing: ", "one", "two", "three", "."]
before
"Testing:
words
["one", "two", "three"]

after

n n
-

'two

Blocks

A block is a piece of Ruby code surrounded by do/end or curly brackets. Methods
can take an implicit block argument and call the code in that block with the

yield keyword:

>>

=>

def do_three_times
yield
yield
yield

end

nil

“!]

', 'three', '.']

>> do_three_times { puts 'hello' }
hello
hello
hello
=> nil

Blocks can take arguments:

>> def do_three_times
yileld('first')
yield('second')
yield('third")

end

=> nil

>> do_three_times { |n| puts "#{n}: hello" }

first: hello

second: hello

third: hello

=> nil

yield returns the result of executing the block:

>> def number_names
[vield('one'), yield('two'), yield('three')].join(', ')
end
=> nil
>> number_names { |name| name.upcase.reverse }
=> "ENO, OWT, EERHT"

Enumerable

Ruby has a built-in module called Enumerable that’s included by Array, Hash,
Range, and other classes that represent collections of values. Enumerable
provides helpful methods for traversing, searching, and sorting collections,
many of which expect to be called with a block. Usually the code in the block will
be run against some or all values in the collection as part of whatever job the
method does. For example:

>> (1
=> 5

>> (1
= [2
>> (1
=> tr
>> (1
= fa
>> (1

en
is
is
is

B W N R

is
5 1is
=> 1.
>> (1
=> [3

It’s common for the block to take one argument and send it one message with no
arguments, so Ruby provides a &:message shorthand as a more concise way of

..10).count { |number| number.even? }

..10).select { |number| number.even? }
, 4, 6, 8, 10]
..10).any? { |number| number < 2 }
ue
..10).all? { |number| number < & }
lse
..5).each do |number|
if number.even?
puts "#{number} is even
else
puts "#{number} is odd"
end
d
odd
even
odd
even
odd
.5
..10).map { |number| number * 3 }
, 6, 9, 12, 15, 18, 21, 24, 27, 30]

writing the block { |object| object.message }:

>> (1..10).select(&:even?)
=> [2, 4, 6, 8, 10]

>> [

= ["

One of Enumerable’s methods, #flat_map, can be used to evaluate an array-
producing block for every value in a collection and concatenate the results:

>> [

one', 'two', 'three'].map(&:upcase)
ONE", "TWO", "THREE"]

one', '"two', 'three'].map(&:chars)

:> [I|0|I’ Ilnll’ Ilelt]’ ["t"’ Ilwll, "O“]’ [“t"’ IIhIlJ llrli-' "e”’ |Iell]]
>> ['one', 'two', '"three'].flat_map(&:chars)
:> [IIOI!, [InI‘, !IeH, "t", Ilw", "0", Ilt"’ Ilhll-' “r"_' !Ie“" ‘Iell]

Another useful method is #inject, which evaluates a block for every value in a
collection and accumulates a final result:

>> (1..10).inject(0) { |result, number| result + number }

=> 55

>> (1..10).inject(1) { |result, number| result * number }

=> 3628800

>> ['one', 'two', 'three'].inject('Words:') { |result, word| "#{result} #
{word}" }

=> "Words: one two three"

Struct

Struct is a special Ruby class whose job is to generate other classes. A class
generated by Struct contains getter and setter methods for each of the attribute
names passed into Struct.new. The conventional way to use a Struct-generated
class is to subclass it; the subclass can be given a name, and it provides a
convenient place to define any additional methods. For example, to make a class
called Point with attributes called x and y, we can write:

class Point < Struct.new(:x, :y)
def +(other_point)
Point.new(x + other_point.x, y + other_point.y)
end

def inspect
"#<Point (#{x}, #{y})>"
end
end

Now we can create instances of Point, inspect them in IRB, and send them
messages:

>> a = Point.new(2, 3)
=> #<Point (2, 3)>

>> b = Point.new(10, 20)
=> #<Point (10, 20)>
>>a+b

=> ft<Point (12, 23)>

As well as whatever methods we define, a Point instance responds to the
messages x and x= to get and set the value of its x attribute, and similarly for y
and y=:

1

A
v N oW
x

X = 35

=> 35

>>a+b

=> #<Point (45, 23)>

Classes generated by Struct.new have other useful functionality, like an
implementation of the equality method #==, which compares the attributes of
two Structs to see if they’re equal:

>> Point.new(4, 5) == Point.new(4, 5)
=> true

>> Point.new(4, 5) == Point.new(6, 7)
=> false

Monkey Patching

New methods can be added to an existing class or module at any time. This is a
powerful feature, usually called monkey patching, which lets us extend the
behavior of existing classes:

>> class Point
def -(other_point)
Point.new(x - other_point.x, y - other_point.y)

end
end
=> nil
>> Point.new(10, 15) - Point.new(1, 1)
=> #<Point (9, 14)>

We can even monkey patch Ruby’s built-in classes:

>> class String

def shout

upcase + "!!!'
end
end

=> nil
>> 'hello world'.shout
=> "HELLO WORLD!!!"

Defining Constants

Ruby supports a special kind of variable, called a constant, which should not be
reassigned once it’s been created. (Ruby won’t prevent a constant from being
reassigned, but it will generate a warning so we know we’re doing something
bad.) Any variable whose name begins with a capital letter is a constant. New
constants can be defined at the top level or within a class or module:

>> NUMBERS = [4, 8, 15, 16, 23, 42]
=> [4, 8, 15, 16, 23, 42]
>> class Greetings

ENGLISH = 'hello'
FRENCH = 'bonjour'
GERMAN = 'guten Tag'
end
=> "guten Tag"
>> NUMBERS.last
=> 42

>> Greetings: :FRENCH
=> "bonjour"

Class and module names always begin with a capital letter, so class and module
names are constants too.

Removing Constants

When we're exploring an idea with IRB it can be useful to ask Ruby to forget
about a constant altogether, especially if that constant is the name of a class or
module that we want to redefine from scratch instead of monkey patching its
existing definition. A top-level constant can be removed by sending the
remove_const message to Object, passing the constant’s name as a symbol:

>> NUMBERS.last

=> 42

>> Object.send(:remove_const, :NUMBERS)
=> [4, 8, 15, 16, 23, 42]

>> NUMBERS.last

NameError: uninitialized constant NUMBERS
>> Greetings: :GERMAN

=> "guten Tag"

>> Object.send(:remove_const, :Greetings)
=> Greetings

>> Greetings: :GERMAN

NameError: uninitialized constant Greetings

We have to use Object.send(:remove_const, :NAME) instead of just
Object.remove_const(:NAME), because remove_const is a private method that
ordinarily can only be called by sending a message from inside the Object class
itself; using Object.send allows us to bypass this restriction temporarily.

(11 This style comes from the Smalltalk programming language, which had a direct influence
on the design of Ruby.

Part |. Programs and Machines

What is computation? The word itself means different things to different people,
but everyone can agree that when a computer reads a program, runs that
program, reads some input, and eventually produces some output, then some
kind of computation has definitely happened. That gives us a decent starting
point: computation is a name for what a computer does.

To create an environment where this familiar sort of computation can occur, we
need three basic ingredients:

= A machine capable of performing the computation
= A language for writing instructions that the machine can understand

= A program written in that language, describing the exact computation that
the machine should perform

So this part of the book is about machines, languages, and programs—what they
are, how they behave, how we can model and study them, and how we can
exploit them to get useful work done. By investigating these three ingredients,
we can develop a better intuition for what computation is and how it happens.

In Chapter 2, we’ll design and implement a toy programming language by
exploring several different ways to specify its meaning. Understanding the
meaning of a language is what allows us to take a lifeless piece of source code
and animate it as a dynamic, executing process; each specification technique
gives us a particular strategy for running a program, and we’ll end up with
several different ways of implementing the same language.

we’ll see that programming is the art of assembling a precisely defined structure
that can be dismantled, analyzed, and ultimately interpreted by a machine to
create a computation. And more important, we’ll discover that implementing
programming languages is easy and fun: although parsing, interpretation, and
compilation can seem intimidating, they’re actually quite simple and enjoyable
to play around with.

Programs aren’t much use without machines to run them on, so in Chapter 3,
we'll design very simple machines capable of performing basic, hardcoded tasks.
From that humble foundation, we’ll work our way up to more sophisticated
machines in Chapter 4, and in Chapter 5, we’ll see how to design a general-
purpose computing device that can be controlled with software.

By the time we reach Part II, we’ll have seen the full spectrum of computational
power: some machines with very limited capabilities, others that are more useful
but still frustratingly constrained, and finally, the most powerful machines that
we know how to build.

Chapter 2. The Meaning of
Programs

Don’t think, feel! It is like a finger pointing away to the moon. Don’t concentrate on the finger or
you will miss all that heavenly glory.

—Bruce Lee

Programming languages, and the programs we write in them, are fundamental
to our work as software engineers. We use them to clarify complex ideas to
ourselves, communicate those ideas to each other, and, most important,
implement those ideas inside our computers. Just as human society couldn’t
operate without natural languages, so the global community of programmers
relies on programming languages to transmit and implement our ideas, with
each successful program forming part of a foundation upon which the next layer
of ideas can be built.

Programmers tend to be practical, pragmatic creatures. We often learn a new
programming language by reading documentation, following tutorials, studying
existing programs, and tinkering with simple programs of our own, without
giving much thought to what those programs mean. Sometimes the learning
process feels a lot like trial and error: we try to understand a piece of a language
by looking at examples and documentation, then we try to write something in it,
then everything blows up and we have to go back and try again until we manage
to assemble something that mostly works. As computers and the systems they
support become increasingly complex, it's tempting to think of programs as
opaque incantations that represent only themselves and work only by chance.

But computer programming isn’t really about programs, it’s about ideas. A
program is a frozen representation of an idea, a snapshot of a structure that
once existed in a programmer’s imagination. Programs are only worth writing
because they have meaning. So what connects code to its meaning, and how can
we be more concrete about the meaning of a program than saying “it just does
whatever it does”? In this chapter, we're going to look at a few techniques for

nailing down the meanings of computer programs and see how to bring those
dead snapshots to life.

The Meaning of “Meaning”

In linguistics, semantics is the study of the connection between words and their
meanings: the word “dog” is an arrangement of shapes on a page, or a sequence
of vibrations in the air caused by someone’s vocal cords, which are very different
things from an actual dog or the idea of dogs in general. Semantics is concerned
with how these concrete signifiers relate to their abstract meanings, as well as
the fundamental nature of the abstract meanings themselves.

In computer science, the field of formal semantics is concerned with finding ways
of nailing down the elusive meanings of programs and using them to discover or
prove interesting things about programming languages. Formal semantics has a
wide spectrum of uses, from concrete applications like specifying new languages
and devising compiler optimizations, to more abstract ones like constructing
mathematical proofs of the correctness of programs.

To completely specify a programming language, we need to provide two things:

a syntax, which describes what programs look like, and a semantics,”” which
describes what programs mean.

Plenty of languages don’t have an official written specification, just a working
interpreter or compiler. Ruby itself falls into this “specification by
implementation” category: although there are plenty of books and tutorials
about how Ruby is supposed to work, the ultimate source of all this information
is Matz’s Ruby Interpreter (MRI), the language’s reference implementation. If
any piece of Ruby documentation disagrees with the actual behavior of MR, it’s
the documentation that’s wrong; third-party Ruby implementations like JRuby,
Rubinius, and MacRuby have to work hard to imitate the exact behavior of MRI
so that they can usefully claim to be compatible with the Ruby language. Other
languages like PHP and Perl 5 share this implementation-led approach to
language definition.

Another way of describing a programming language is to write an official prose
specification, usually in English. C++, Java, and ECMAScript (the standardized
version of JavaScript) are examples of this approach: the languages are

standardized in implementation-agnostic documents written by expert
committees, and many compatible implementations of those standards exist.
Specifying a language with an official document is more rigorous than relying on
a reference implementation—design decisions are more likely to be the result of
deliberate, rational choices, rather than accidental consequences of a particular
implementation—but the specifications are often quite difficult to read, and it
can be very hard to tell whether they contain any contradictions, omissions, or
ambiguities. In particular there’s no formal way to reason about an English-
language specification; we just have to read it thoroughly, think about it a lot,
and hope we’ve understood all the consequences.

A prose specification of Ruby 1.8.7 does exist, and has even been accepted as an

ISO standard (ISO/IEC 30170).3] MRI is still regarded as the canonical
specification-by-implementation of the Ruby language, although the mruby
project is an attempt to build a lightweight, embeddable Ruby implementation
that explicitly aims for compliance with the 1SO standard rather than MRI
compatibility.

A third alternative is to use the mathematical techniques of formal semantics to
precisely describe the meaning of a programming language. The goal here is to
be completely unambiguous, as well as to write the specification in a form that’s
suited to methodical analysis, or even automated analysis, so that it can be
comprehensively checked for consistency, contradiction, or oversight. We’ll look
at these formal approaches to semantic specification after we’ve seen how
syntax is handled.

Syntax

A conventional computer program is a long string of characters. Every
programming language comes with a collection of rules that describe what kind
of character strings may be considered valid programs in that language; these
rules specify the language’s syntax.

A language’s syntax rules allow us to distinguish potentially valid programs like
y = x + 1 from nonsensical ones like >/;x:1@4. They also provide useful
information about how to read ambiguous programs: rules about operator
precedence, for example, can automatically determine that 1 + 2 * 3 should be
treated as though it had been writtenas 1 + (2 * 3),notas (1 + 2) * 3.

The intended use of a computer program is, of course, to be read by a computer,
and reading programs requires a parser: a program that can read a character
string representing a program, check it against the syntax rules to make sure it’s
valid, and turn it into a structured representation of that program suitable for
further processing.

There are a variety of tools that can automatically turn a language’s syntax rules
into a parser. The details of how these rules are specified, and the techniques for
turning them into usable parsers, are not the focus of this chapter—see
Implementing Parsers for a quick overview—but overall, a parser should read a
string like y = x + 1 and turn it into an abstract syntax tree (AST), a
representation of the source code that discards incidental detail like whitespace
and focuses on the hierarchical structure of the program.

In the end, syntax is only concerned with the surface appearance of programs,
not with their meanings. It’s possible for a program to be syntactically valid but
not mean anything useful; for example, it might be that the programy = x + 1
doesn‘t make sense on its own because it doesn’t say what x is beforehand, and
the program z = true + 1 might turn out to be broken when we run it because
it’s trying to add a number to a Boolean value. (This depends, of course, on other
properties of whichever programming language we're talking about.)

As we might expect, there is no “one true way” of explaining how the syntax of a
programming language corresponds to an underlying meaning. In fact there are
several different ways of talking concretely about what programs mean, all with
different trade-offs between formality, abstraction, expressiveness, and practical
efficiency. In the next few sections, we'll look at the main formal approaches and
see how they relate to each other.

Operational Semantics

The most practical way to think about the meaning of a program is what it does—

when we run the program, what do we expect to happen? How do different
constructs in the programming language behave at run time, and what effect do
they have when they’re plugged together to make larger programs?

This is the basis of operational semantics, a way of capturing the meaning of a
programming language by defining rules for how its programs execute on some
kind of device. This device is often an abstract machine: an imaginary, idealized
computer that is designed for the specific purpose of explaining how the
language’s programs will execute. Different kinds of programming language will
usually require different designs of abstract machine in order to neatly capture
their runtime behavior.

By giving an operational semantics, we can be quite rigorous and precise about
the purpose of particular constructs in the language. Unlike a language
specification written in English, which might contain hidden ambiguities and
leave important edge cases uncovered, a formal operational specification will
need to be explicit and unambiguous in order to convincingly communicate the
language’s behavior.

Small-Step Semantics

So, how can we design an abstract machine and use it to specify the operational
semantics of a programming language? One way is to imagine a machine that
evaluates a program by operating on its syntax directly, repeatedly reducing it in
small steps, with each step bringing the program closer to its final result,
whatever that turns out to mean.

These small-step reductions are similar to the way we are taught in school to
evaluate algebraic expressions. For example, to evaluate (1 x 2) + (3 x 4), we know
we should:

1. Perform the left-hand multiplication (1 x 2 becomes 2) and reduce the
expression to 2 + (3 x 4)

2. Perform the right-hand multiplication (3 x 4 becomes 12) and reduce the
expression to 2 + 12

3. Perform the addition (2 + 12 becomes 14) and end up with 14

We can think of 14 as the result because it can’t be reduced any further by this

process—we recognize 14 as a special kind of algebraic expression, a value, which
has its own meaning and doesn’t require any more work on our part.

This informal process can be turned into an operational semantics by writing
down formal rules about how to proceed with each small reduction step. These
rules themselves need to be written in some language (the metalanguage), which
is usually mathematical notation.

In this chapter, we're going to explore the semantics of a toy programming

language—let’s call it Sveie.” The mathematical description of Smeie’s small-
step semantics looks like this:

€1,0) ~, ¢ €2,0) ~, €h
(1) 1 2 e E2

{e1 + e2,0) ~e €] + €3 (v) + €2,0) ~, v) +¢)

ifn=ny+ns
(ny + ng, o) ~.n

{€1,0) ~. € (e2,0) ~~e €

((‘1 * Fz.ﬂ) ~~Fe f-"l * €9 (l’| * f’-g.ﬂ'} ~ie U] * f‘;

ifn=mn; xns
{ny * ng,0) ~.n

€1.0) ~, € €9, 0} ~, €
1 2
{ey < e2,0) ~, €] <ep (vy < e2,0) ~, v) <€
if ny < n- if ny > n-
(ny < ny,o) ~, true ! 2 (ny < ny,0) ~, false 1 = T8

(x.0) ~, o() if € dom(e)

{e,a) ~+, €

(x=e,0)~s(x=¢0) {x =v,0) ~, (do-nothing, oz — v])

(e,a) ~,. €
(if (e) { 3, } else { 53 },a) ~=, (if (') { 3, } else{ 5; },0)

(if (true) { s, } else { 82 },0) ~~, (s1,0) {if (false) { s; } else { 52 },0) ~, (s2,0)

81 s2,0") {do-nothing; s2,0) ~~, (82,0)

(while (¢) { s },0) ~4 (if (¢) { s; while (¢) { s } } else { do-nothing }.a)

Mathematically speaking, this is a set of inference rules that defines a reduction
relation on Sivpie’s abstract syntax trees. Practically speaking, it’s a bunch of
weird symbols that don’t say anything intelligible about the meaning of
computer programs.

Instead of trying to understand this formal notation directly, we're going to
investigate how to write the same inference rules in Ruby. Using Ruby as the
metalanguage is easier for a programmer to understand, and it gives us the
added advantage of being able to execute the rules to see how they work.

WARNING

We are not trying to describe the semantics of SiveLe by giving a “specification
by implementation.” Our main reason for describing the small-step semantics
in Ruby instead of mathematical notation is to make the description easier for
a human reader to digest. Ending up with an executable implementation of the
language is just a nice bonus.

The big disadvantage of using Ruby is that it explains a simple language by
using a more complicated one, which perhaps defeats the philosophical
purpose. We should remember that the mathematical rules are the
authoritative description of the semantics, and that we’re just using Ruby to
develop an understanding of what those rules mean.

Expressions

we’ll start by looking at the semantics of Siveie expressions. The rules will
operate on the abstract syntax of these expressions, so we need to be able to
represent SiveLe expressions as Ruby objects. One way of doing this is to define a
Ruby class for each distinct kind of element from Siveie’s syntax—numbers,
addition, multiplication, and so on—and then represent each expression as a tree
of instances of these classes.

For example, here are the definitions of Number, Add, and Multiply classes:

class Number < Struct.new(:value)
end

class Add < Struct.new(:left, :right)
end

class Multiply < Struct.new(:left, :right)
end

We can instantiate these classes to build abstract syntax trees by hand:

>> Add.new(
Multiply.new(Number.new(1), Number.new(2)),

Multiply.new(Number.new(3), Number.new(4))
)
=> #<struct Add

left=#<struct Multiply
left=#<struct Number value=1>,
right=#<struct Number value=2>

>.I

right=#<struct Multiply
left=#<struct Number value=3>,
right=#<struct Number value=4>

Eventually, of course, we want these trees to be built automatically by a parser.
We'll see how to do that in Implementing Parsers.

The Number, Add, and Multiply classes inherit Struct’s generic definition of

#inspect, so the string representations of their instances in the IRB console
contain a lot of unimportant detail. To make the content of an abstract syntax

tree easier to see in IRB, we’ll override #inspect on each class® so that it
returns a custom string representation:

class Number
def to_s
value.to_s
end

def inspect
"«#{self}»"
end
end

class Add

def to_s
"#{left} + #{right}"
end

def inspect
"wt{self}»"
end
end

class Multiply
def to_s
"#{left} * #{right}"
end

def inspect
"«#{self}»"
end
end

Now each abstract syntax tree will be shown in IRB as a short string of SimpLe
source code, surrounded by «guillemets» to distinguish it from a normal Ruby
value:

>> Add.new(
Multiply.new(Number.new(1), Number.new(2)),
Multiply.new(Number.new(3), Number.new(4))
)
= «l1 * 2 + 3 * 4»
>> Number.new(5)

=> «5»

WARNING

Our rudimentary #to_s implementations don’t take operator precedence into
account, so sometimes their output is incorrect with respect to conventional
precedence rules (e.g., * usually binds more tightly than +). Take this abstract
syntax tree, for example:

>> Multiply.new(
Number.new(1),
Multiply.new(
Add.new(Number.new(2), Number.new(3)),
Number.new(4)
)

)
=> «l * 2 + 3 * 4»

This tree represents «1 * (2 + 3) * 4», which is a different expression (with

a different meaning) than «1 * 2 + 3 * 4y, but its string representation
doesn’t reflect that.

This problem is serious but tangential to our discussion of semantics. To keep
things simple, we’ll temporarily ignore it and just avoid creating expressions
that have an incorrect string representation. We'll implement a proper
solution for another language in Syntax.

Now we can begin to implement a small-step operational semantics by defining
methods that perform reductions on our abstract syntax trees—that is, code that
can take an abstract syntax tree as input and produce a slightly reduced tree as
output.

Before we can implement reduction itself, we need to be able to distinguish

expressions that can be reduced from those that can’t. Add and Multiply
expressions are always reducible—each of them represents an operation, and
can be turned into a result by performing the calculation corresponding to that

operation—but a Number expression always represents a value, which can’t be
reduced to anything else.

In principle, we could tell these two kinds of expression apart with a single
#reducible? predicate that returns true or false depending on the class of its

argument:

def reducible?(expression)
case expression
when Number
false
when Add, Multiply
true
end
end

In Ruby case statements, the control expression is matched against the cases
by calling each case value’s #=== method with the control expression’s value as
an argument. The implementation of #=== for class objects checks to see
whether its argument is an instance of that class or one of its subclasses, so we
can use the case object when classname syntax to match an object against a
class.

However, it’s generally considered bad form to write code like this in an object-

oriented language;!® when the behavior of some operation depends upon the
class of its argument, the typical approach is to implement each per-class
behavior as an instance method for that class, and let the language implicitly
handle the job of deciding which of those methods to call instead of using an
explicit case statement.

So instead, let’s implement separate #reducible? methods for Number, Add, and
Multiply:

class Number
def reducible?
false
end
end

class Add
def reducible?
true
end
end

class Multiply
def reducible?
true
end
end

This gives us the behavior we want:

>> Number.new(1).reducible?

=> false

>> Add.new(Number.new(1), Number.new(2)).reducible?
=> true

We can now implement reduction for these expressions; as above, we’ll do this
by defining a #reduce method for Add and Multiply. There’s no need to define
Number#reduce, since numbers can’t be reduced, so we’ll just need to be careful
not to call #reduce on an expression unless we know it’s reducible.

So what are the rules for reducing an addition expression? If the left and right
arguments are already numbers, then we can just add them together, but what if
one or both of the arguments needs reducing? Since we’re thinking about small
steps, we need to decide which argument gets reduced first if they are both

eligible for reduction.”’ A common strategy is to reduce the arguments in left-to-
right order, in which case the rules will be:

= If the addition’s left argument can be reduced, reduce the left argument.

« If the addition’s left argument can’t be reduced but its right argument can,
reduce the right argument.

= If neither argument can be reduced, they should both be numbers, so add

them together.

The structure of these rules is characteristic of small-step operational semantics.
Each rule provides a pattern for the kind of expression to which it applies—an
addition with a reducible left argument, with a reducible right argument, and
with two irreducible arguments respectively—and a description of how to build a
new, reduced expression when that pattern matches. By choosing these
particular rules, we’re specifying that a Siveie addition expression uses left-to-
right evaluation to reduce its arguments, as well as deciding how those
arguments should be combined once they’ve been individually reduced.

We can translate these rules directly into an implementation of Add#reduce, and

almost the same code will work for Multiply#reduce (remembering to multiply
the arguments instead of adding them):

class Add
def reduce
if left.reducible?
Add.new(left.reduce, right)
elsif right.reducible?
Add.new(left, right.reduce)
else
Number.new(left.value + right.value)
end
end
end

class Multiply
def reduce
if left.reducible?
Multiply.new(left.reduce, right)
elsif right.reducible?
Multiply.new(left, right.reduce)
else
Number.new(left.value * right.value)
end
end
end

#reduce always builds a new expression rather than modifying an existing one.

Having implemented #reduce for these kinds of expressions, we can call it
repeatedly to fully evaluate an expression via a series of small steps:

>> expression =
Add.new(
Multiply.new(Number.new(1), Number.new(2)),
Multiply.new(Number.new(3), Number.new(4))

)

== «l1 * 2 + 3 * 4»
>> expression.reducible?

=> true

>> expression = expression.reduce
== «2 + 3 * 4»

>> expression.reducible?

=> true

>> expression = expression.reduce
== «2 + 12»

>> expression.reducible?

=> true

>> expression = expression.reduce
=> «14»

>> expression.reducible?
=> false

Notice that #reduce always turns one expression into another expression,
which is exactly how the rules of small-step operational semantics should

work. In particular, Add.new(Number.new(2), Number.new(12)).reduce
returns Number.new(14), which represents a Siveie expression, rather than
just 14, which is a Ruby number.

This separation between the Smveie language, whose semantics we are
specifying, and the Ruby metalanguage, in which we are writing the specification,
is easier to maintain when the two languages are obviously different—as is the
case when the metalanguage is mathematical notation rather than a
programming language—but here we need to be more careful because the two
languages look very similar.

By maintaining a piece of state—the current expression—and repeatedly calling

#reducible? and #reduce on it until we end up with a value, we’re manually
simulating the operation of an abstract machine for evaluating expressions. To
save ourselves some effort, and to make the idea of the abstract machine more
concrete, we can easily write some Ruby code that does the work for us. Let’s
wrap up that code and state together in a class and call it a virtual machine:

class Machine < Struct.new(:expression)
def step
self.expression = expression.reduce
end

def run
while expression.reducible?
puts expression
step
end

puts expression
end
end

This allows us to instantiate a virtual machine with an expression, tell it to #run,
and watch the steps of reduction unfold:

>> Machine.new(
Add . new(
Multiply.new(Number.new(1), Number.new(2)),
Multiply.new(Number.new(3), Number.new(4))
)
).run
1*2+ 3 %4
2+3*4
2+ 12
14
=> nil

It isn’t difficult to extend this implementation to support other simple values
and operations: subtraction and division; Boolean true and false; Boolean and,
or, and not; comparison operations for numbers that return Booleans; and so
on, For example, here are implementations of Booleans and the less-than
operator:

class Boolean < Struct.new(:value)
def to_s
value.to_s
end

def inspect
"«#f{self}»"
end

def reducible?
false
end
end

class LessThan < Struct.new(:left, :right)
def to_s

"#{left} < #{right}"
end

def inspect
"«#{self}»"
end

def reducible?
true
end

def reduce
if left.reducible?
LessThan.new(left.reduce, right)
elsif right.reducible?
LessThan.new(left, right.reduce)
else
Boolean.new(left.value < right.value)
end
end
end

Again, this allows us to reduce a boolean expression in small steps:

>> Machine.new(
LessThan.new(Number.new(5), Add.new(Number.new(2), Number.new(2)))
).run
5<2+ 2
5<4
false
=> nil

So far, so straightforward: we have begun to specify the operational semantics of
a language by implementing a virtual machine that can evaluate it. At the
moment the state of this virtual machine is just the current expression, and the
behavior of the machine is described by a collection of rules that govern how
that state changes when the machine runs. We've implemented the machine as a

program that keeps track of the current expression and keeps reducing it,
updating the expression as it goes, until no more reductions can be performed.

But this language of simple algebraic expressions isn’t very interesting, and
doesn’t have many of the features that we expect from even the simplest
programming language, so let’s build it out to be more sophisticated and look
more like a language in which we could write useful programs.

First off, there’s something obviously missing from Smvpie: variables. In any
useful language, we’d expect to be able to talk about values using meaningful
names rather than the literal values themselves. These names provide a layer of
indirection so that the same code can be used to process many different values,
including values that come from outside the program and therefore aren’t even
known when the code is written.

We can introduce a new class of expression, Variable, to represent variables in
SIMPLE:

class Variable < Struct.new(:name)
def to_s
name.to_s
end

def inspect
"«#t{self}»"
end

def reducible?
true
end
end

To be able to reduce a variable, we need the abstract machine to store a mapping
from variable names onto their values, an environment, as well as the current
expression. In Ruby, we can implement this mapping as a hash, using symbols as

keys and expression objects as values; for example, the hash { x:
Number.new(2), y: Boolean.new(false) } is an environment that associates
the variables x and y with a SimeLe number and Boolean, respectively.

For this language, the intention is for the environment to only map variable
names onto irreducible values like Number.new(2), not onto reducible

expressions like Add.new(Number.new(1), Number.new(2)).We'll take care to
respect this constraint later when we write rules that change the contents of
the environment.

Given an environment, we can easily implement Variable#reduce: it just looks
up the variable’s name in the environment and returns its value.

class Variable
def reduce(environment)
environment[name]
end
end

Notice that we’re now passing an environment argument into #reduce, so we’ll

need to revise the other expression classes’ implementations of #reduce to both
accept and provide this argument:

class Add
def reduce(environment)
if left.reducible?
Add.new(left.reduce(environment), right)
elsif right.reducible?
Add.new(left, right.reduce(environment))
else
Number.new(left.value + right.value)
end
end
end

class Multiply
def reduce(environment)
if left.reducible?

Multiply.new(left.reduce(environment), right)
elsif right.reducible?
Multiply.new(left, right.reduce(environment))
else
Number.new(left.value * right.value)
end
end
end

class LessThan
def reduce(environment)
if left.reducible?
LessThan.new(left.reduce(environment), right)
elsif right.reducible?
LessThan.new(left, right.reduce(environment))
else
Boolean.new(left.value < right.value)
end
end
end

Once all the implementations of #reduce have been updated to support
environments, we also need to redefine our virtual machine to maintain an

environment and provide it to #reduce:

Object.send(:remove_const, :Machine)

class Machine < Struct.new(:expression, :environment)
def step
self.expression = expression.reduce(environment)
end

def run
while expression.reducible?
puts expression
step
end

puts expression
end
end

The machine’s definition of #run remains unchanged, but it has a new
environment attribute that is used by its new implementation of #step.

We can now perform reductions on expressions that contain variables, as long as
we also supply an environment that contains the variables’ values:

>> Machine.new(
Add.new(Variable.new(:x), Variable.new(:v)),
{ x: Number.new(3), y: Number.new(4) }
).run
X +y
3+y
3+ 4
7
=> nil

The introduction of an environment completes our operational semantics of
expressions. We've designed an abstract machine that begins with an initial
expression and environment, and then uses the current expression and
environment to produce a new expression in each small reduction step, leaving
the environment unchanged.

Statements

We can now look at implementing a different kind of program construct:
statements. The purpose of an expression is to be evaluated to produce another
expression; a statement, on the other hand, is evaluated to make some change to
the state of the abstract machine. Our machine’s only piece of state (aside from
the current program) is the environment, so we'll allow Siveie statements to
produce a new environment that can replace the current one.

The simplest possible statement is one that does nothing: it can’t be reduced, so
it can’t have any effect on the environment. That’s easy to implement:

class DoNothing @
def to_s
'do-nothing'
end

def inspect
"«#t{self}»"
end

def ==(other_statement) @
other_statement.instance_of?(DoNothing)
end

def reducible?
false
end
end

(7] All of our other syntax classes inherit from a Struct class, but
DoNothing doesn’t inherit from anything. This is because DoNothing

doesn’t have any attributes, and unfortunately, Struct.new doesn’t let
us pass an empty list of attribute names.

e We want to be able to compare any two statements to see if they're
equal. The other syntax classes inherit an implementation of #== from
Struct, but DoNothing has to define its own.

A statement that does nothing might seem pointless, but it’s convenient to have
a special statement that represents a program whose execution has completed

successfully. We'll arrange for other statements to eventually reduce to «do-
nothing» once they’ve finished doing their work.

The simplest example of a statement that actually does something useful is an

assignment like «x = x + 1», but before we can implement assignment, we need
to decide what its reduction rules should be.

An assignment statement consists of a variable name (x), an equals symbol, and

an expression («x + 1»). If the expression within the assignment is reducible,
we can just reduce it according to the expression reduction rules and end up
with a new assignment statement containing the reduced expression. For
example, reducing «x = x + 1» in an environment where the variable x has the
value «2» should leave us with the statement «x = 2 + 1», and reducing it again
should produce «x = 3».

But then what? If the expression is already a value like «3», then we should just
perform the assignment, which means updating the environment to associate
that value with the appropriate variable name. So reducing a statement needs to
produce not just a new, reduced statement but also a new environment, which
will sometimes be different from the environment in which the reduction was
performed.

Our implementation will update the environment by using Hash#merge to
create a new hash without modifying the old one:

>> old_environment = { y: Number.new(5) }

=> {:y=>«5»}

>> new_environment = old_environment.merge({ x: Number.new(3) })
=> {:1y=>«5», 1x=>«3»}

>> old_environment

=> {:y=>«5»}

We could choose to destructively modify the current environment instead of
making a new one, but avoiding destructive updates forces us to make the

consequences of #reduce completely explicit. If #reduce wants to change the
current environment, it has to communicate that by returning an updated
environment to its caller; conversely, if it doesn’t return an environment, we
can be sure it hasn’t made any changes.

This constraint helps to highlight the difference between expressions and
statements. For expressions, we pass an environment into #reduce and get a
reduced expression back; no new environment is returned, so reducing an
expression obviously doesn’t change the environment. For statements, we’ll
call #reduce with the current environment and get a new environment back,
which tells us that reducing a statement can have an effect on the
environment. (In other words, the structure of Siveie’s small-step semantics
shows that its expressions are pure and its statements are impure.)

So reducing «x = 3» in an empty environment should produce the new
environment { x: Number.new(3) }, but we also expect the statement to be
reduced somehow; otherwise, our abstract machine will keep assigning «3» to x
forever. That’s what «do-nothing» is for: a completed assignment reduces to

«do-nothing», indicating that reduction of the statement has finished and that
whatever’s in the new environment may be considered its result.

To summarize, the reduction rules for assignment are:

= If the assignment’s expression can be reduced, then reduce it, resulting in a
reduced assignment statement and an unchanged environment.

« If the assignment’s expression can’t be reduced, then update the
environment to associate that expression with the assignment’s variable,
resulting in a «do-nothing» statement and a new environment.

This gives us enough information to implement an Assign class. The only
difficulty is that Assign#reduce needs to return both a statement and an
environment—Ruby methods can only return a single object—but we can
pretend to return two objects by putting them into a two-element array and
returning that.

class Assign < Struct.new(:name, :expression)
def to_s
"#{name} = #{expression}"
end

def inspect
"«#t{self}»"
end

def reducible?
true
end

def reduce(environment)
if expression.reducible?
[Assign.new(name, expression.reduce(environment)), environment]
else
[DoNothing.new, environment.merge({ name => expression })]
end
end
end

As promised, the reduction rules for Assign ensure that an expression only
gets added to the environment if it’s irreducible (i.e., a value).

As with expressions, we can manually evaluate an assignment statement by
repeatedly reducing it until it can’t be reduced any more:

statement = Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
«X = X + 1»

environment = { x: Number.new(2) }

{ix=>«2n}

statement.reducible?

true

statement, environment = statement.reduce(environment)
[«x = 2 + 1», {:x=>«2»}]

statement, environment = statement.reduce(environment)
[«x = 3», {:x=>«2n}]

statement, environment = statement.reduce(environment)
[«do-nothing», {:x=>«3»}]

statement.reducible?

false

This process is even more laborious than manually reducing expressions, so let’s
reimplement our virtual machine to handle statements, showing the current
statement and environment at each reduction step:

0b

cl

en

ject.send(:remove_const, :Machine)

ass Machine < Struct.new(:statement, :environment)
def step

self.statement, self.environment = statement.reduce(environment)
end

def run
while statement.reducible?
puts "#{statement}, #{environment}"
step
end

puts "#{statement}, #{environment}"
end
d

Now the machine can do the work for us again:

>> Machine.new(
Assign.new(:x, Add.new(Variable.new(:x), Number.new(1))),
{ x: Number.new(2) }
).run
x =x+ 1, {ix=>2»}
Xx =2+ 1, {ix=>«2»}
x = 3, {ix=>«2»}
do-nothing, {:x=>«3»}
=> nil

We can see that the machine is still performing expression reduction steps («x +
1» to «2 + 1» to «3»), but they now happen inside a statement instead of at the
top level of the syntax tree.

Now that we know how statement reduction works, we can extend it to support
other kinds of statements. Let’s begin with conditional statements like «if (x)
{y=11}else { y =2 }» which contain an expression called the condition
(«x»), and two statements that we’ll call the consequence («y = 1») and the
alternative («y = 2»).” The reduction rules for conditionals are straightforward:

= If the condition can be reduced, then reduce it, resulting in a reduced

conditional statement and an unchanged environment.

« If the condition is the expression «true», reduce to the consequence
statement and an unchanged environment.

=« If the condition is the expression «false», reduce to the alternative
statement and an unchanged environment.

In this case, none of the rules changes the environment—the reduction of the
condition expression in the first rule will only produce a new expression, not a
new environment.

Here are the rules translated into an If class:

class If < Struct.new(:condition, :consequence, :alternative)
def to_s
"if (#{condition}) { #{consequence} } else { #{alternative} }"
end

def inspect
"«#t{self}»"
end

def reducible?
true
end

def reduce(environment)
if condition.reducible?
[If.new(condition.reduce(environment), consequence, alternative),
environment]
else
case condition
when Boolean.new(true)
[consequence, environment]
when Boolean.new(false)
[alternative, environment]
end
end
end
end

And here’s how the reduction steps look:

>> Machine.new(

If.new(
Variable.new(:x),
Assign.new(:y, Number.new(1)),
Assign.new(:y, Number.new(2))

),

{ x: Boolean.new(true) }

).run

if (x) {y=1%}else{y=273, {:x=>«true»}
if (true) { y =1 }else { y =2}, {:x=>«true»}
y = 1, {:x=>«truen»}

do-nothing, {:x=>«true», :y=>«1»}

= nil

That all works as expected, but it would be nice if we could support conditional
statements with no «else» clause, like «if (x) { y = 1 }». Fortunately, we
can already do that by writing statements like «if (x) { y = 1 } else { do-
nothing }», which behave as though the «else» clause wasn’t there:

>> Machine.new(

If.new(Variable.new(:x), Assign.new(:y, Number.new(1)),
DoNothing.new),

{ x: Boolean.new(false) }

).run

if (x) { vy =1} else { do-nothing }, {:x=>«falsen»}
if (false) { y =1 } else { do-nothing }, {:x=>«false»}
do-nothing, {:x=>«false»}
=> nil

Now that we’ve implemented assignment and conditional statements as well as
expressions, we have the building blocks for programs that can do real work by
performing calculations and making decisions. The main restriction is that we
can’t yet connect these blocks together: we have no way to assign values to more
than one variable, or to perform more than one conditional operation, which
drastically limits the usefulness of our language.

We can fix this by defining another kind of statement, the sequence, which
connects two statements like «x = 1 + 1»and «y = x + 3» to make one larger
statement like «xx = 1 + 1; y = x + 3». Once we have sequence statements,
we can use them repeatedly to build even larger statements; for example, the
sequence «xx = 1 + 1; y = x + 3» and the assignment «z = y + 5» can be

combined to make the sequence«x = 1 + 1; y = X + 3; z =y + 5.1

The reduction rules for sequences are slightly subtle:

= If the first statement is a «do-nothing» statement, reduce to the second

statement and the original environment.

= If the first statement is not «do-nothing», then reduce it, resulting in a new
sequence (the reduced first statement followed by the second statement) and
a reduced environment.

Seeing the code may make these rules clearer:

class Sequence < Struct.new(:first, :second)
def to_s
"#{first}; #{second}"
end

def inspect
"«#t{self}»"
end

def reducible?
true
end

def reduce(environment)
case first
when DoNothing.new
[second, environment]
else
reduced_first, reduced_environment = first.reduce(environment)
[Sequence.new(reduced_first, second), reduced_environment]
end
end
end

The overall effect of these rules is that, when we repeatedly reduce a sequence,
it keeps reducing its first statement until it turns into «do-nothing», then
reduces to its second statement. We can see this happening when we run a
sequence in the virtual machine:

>> Machine.new(
Sequence.new(
Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
),
{1
).run
x=1+1;y=x+3, {}
x=2;y=x+3,{}
do-nothing; v = x + 3, {:x=>«2»}
y =X+ 3, {:x=>«2»]-
y =2+ 3, {:ix=>«2»}
y =5, {ix=>«2»}
do-nothing, {:x=>«2», :y=>«5»n}
=> nil

The only really major thing still missing from Siveie is some kind of unrestricted
looping construct, so to finish off, let’s introduce a «while» statement so that

programs can perform repeated calculations an arbitrary number of times.'”! A
statement like «while (x < 5) { x = x * 3 }» contains an expression called
the condition («x < 5») and a statement called the body («x = x * 3»).

Writing the correct reduction rules for a «<while» statement is slightly tricky. We
could try treating it like an «if» statement: reduce the condition if possible;
otherwise, reduce to either the body or «do-nothing», depending on whether
the condition is «true» or «false», respectively. But once the abstract machine
has completely reduced the body, what next? The condition has been reduced to
a value and thrown away, and the body has been reduced to «do-nothing», so
how do we perform another iteration of the loop? Each reduction step can only
communicate with future steps by producing a new statement and environment,
and this approach doesn’t give us anywhere to “remember” the original
condition and body for use on the next iteration.

The small-step solution!"" is to use the sequence statement to unroll one level of
the «while», reducing it to an «if» that performs a single iteration of the loop

and then repeats the original «while». This means we only need one reduction
rule:

= Reduce «while (condition) { body }» to «if (condition) { body;

while (condition) { body } } else { do-nothing }» and an unchanged
environment,

And this rule is easy to implement in Ruby:

class While < Struct.new(:condition, :body)
def to_s
"while (#{condition}) { #{body} }"
end

def inspect
"«#t{self}»"
end

def reducible?
true
end

def reduce(environment)
[If.new(condition, Sequence.new(body, self), DoNothing.new),
environment]
end
end

This gives the virtual machine the opportunity to evaluate the condition and
body as many times as necessary:

>> Machine.new(
While.new(
LessThan.new(Variable.new(:x), Number.new(5)),
Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)!
{ x: Number.new(1) }
).run
while (x < 5) { x = x * 3 }, {:ix=>«l»}
if (x <5) { x=x%*3; while (x <5) { x=x* 3 1} } else { do-nothing },

{:x=>«1»}
if (1 <5) {x=x*3; while (x <5) { x=x* 33} } else { do-nothing },
{:x=>«1n}

if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing },
{:x=>«l1n}

X =x * 3; while (x < 5) { x
x=1%3; while (x < 5) { x = x * 3}, {ix=>«ln}
x =3; while (x < 5) { x = x * 3 }, {:x=>«1l»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«3»}
while (x < 5) { x = x * 3}, {:x=>«3»}

if (x <5) { x=x* 3; while (x < 5) { x

x * 3 3}, {:x=>«ln}

x * 3 } } else { do-nothing },

{:x=>«3»}
if (3 <5){x=x%*3; while (x <5) {x=x%*311} else { do-nothing },
{:x=>«3n}
if (true) { x = x * 3; while (x < 5) { x =x * 3 } } else { do-nothing },
{:x=>«3n}

X =x * 3; while (x < 5) { x = x * 3 }, {:x=>«3»}
x=3%3; while (x < 5) { x = x * 3}, {:ix=>«3»}
x =9; while (x < 5) { x = x * 3 }, {:x=>«3»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«9»}
while (x < 5) { x = x * 3 }, {:x=>«9»}

if (x «5) { x=x* 3; while (x < 5) { x
{:x=>«9n}

if (9 <5) {x
{:x=>«9n}

if (false) { x
{:x=>«9n}
do-nothing, {:x=>«9»}
=> nil

*

x * 3} } else { do-nothing },

x * 3; while (x < 5) { x=x * 3 } } else { do-nothing },

x * 3; while (x < 5) { x =x * 3 } } else { do-nothing },

Perhaps this reduction rule seems like a bit of a dodge—it’s almost as though
we're perpetually postponing reduction of the «while» until later, without ever
actually getting there—but on the other hand, it does a good job of explaining
what we really mean by a «while» statement: check the condition, evaluate the
body, then start again. It’s curious that reducing «while» turns it into a
syntactically larger program involving conditional and sequence statements
instead of directly reducing its condition or body, and one reason why it’s useful
to have a technical framework for specifying the formal semantics of a language

is to help us see how different parts of the language relate to each other like this.

Correctness

We've completely ignored what will happen when a syntactically valid but
otherwise incorrect program is executed according to the semantics we’ve
given, The statement «x = true; x = x + 1» is a valid piece of SvpLE syntax—
we can certainly construct an abstract syntax tree to represent it—but it’ll blow
up when we try to repeatedly reduce it, because the abstract machine will end
up trying to add «1» to «true»:

>> Machine.new(
Sequence. new(
Assign.new(:x, Boolean.new(true)),
Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
)s
{3

).run
x = true; x = x + 1, {}
do-nothing; x = x + 1, {:x=>«true»}
x = x + 1, {ix=>«truen»}
x = true + 1, {:x=>«true»}
NoMethodError: undefined method “+

for true:TrueClass

One way to handle this is to be more restrictive about when expressions can be
reduced, which introduces the possibility that evaluation will get stuck rather
than always trying to reduce to a value (and potentially blowing up in the
process). We could have implemented Add#reducible? to only return true
when both arguments to «+» are either reducible or an instance of Number, in
which case the expression «true + 1» would get stuck and never turn into a
value.

Ultimately, we need a more powerful tool than syntax, something that can “see
the future” and prevent us from trying to execute any program that has the
potential to blow up or get stuck. This chapter is about dynamic semantics—what
a program does when it’s executed—but that’s not the only kind of meaning that
a program can have; in Chapter 9, we’ll investigate static semantics to see how we
can decide whether a syntactically valid program has a useful meaning

according to the language’s dynamic semantics.

Applications

The programming language we've specified is very basic, but in writing down all
the reduction rules, we've still had to make some design decisions and express
them unambiguously. For example, unlike Ruby, Simpie is a language that makes
a distinction between expressions, which return a value, and statements, which
don’t; like Ruby, Siveie evaluates expressions in a left-to-right order; and like
Ruby, Sivpie’s environments associate variables only with fully reduced values,
not with larger expressions that still have some unfinished computation to

perform.l”? We could change any of these decisions by giving a different small-
step semantics which would describe a new language with the same syntax but
different runtime behavior. If we added more elaborate features to the language
—data structures, procedure calls, exceptions, an object system—we’d need to
make many more design decisions and express them unambiguously in the
semantic definition.

The detailed, execution-oriented style of small-step semantics lends itself well to
the task of unambiguously specifying real-world programming languages. For
example, the latest R6RS standard for the Scheme programming language uses
small-step semantics to describe its execution, and provides a reference
implementation of those semantics written in PLT Redex, “a domain-specific
language designed for specifying and debugging operational semantics.” The
OCaml programming language, which is built as a series of layers on top of a
simpler language called Core ML, also has a small-step semantic definition of the
base language’s runtime behavior.

See Semantics for another example of using small-step operational semantics to
specify the meaning of expressions in an even simpler programming language
called the lambda calculus.

Big-Step Semantics

We’ve now seen what small-step operational semantics looks like: we design an
abstract machine that maintains some execution state, then define reduction
rules that specify how each kind of program construct can make incremental
progress toward being fully evaluated. In particular, small-step semantics has a

mostly iterative flavor, requiring the abstract machine to repeatedly perform

reduction steps (the Ruby while loop in Machine#run) that are themselves
constructed to produce as output the same kind of information that they require

as input, making them suitable for this kind of repeated application.**!

The small-step approach has the advantage of slicing up the complex business of
executing an entire program into smaller pieces that are easier to explain and
analyze, but it does feel a bit indirect: instead of explaining how a whole
program construct works, we just show how it can be reduced slightly. Why
can’t we explain a statement more directly, by telling a complete story about
how its execution works? Well, we can, and that’s the basis of big-step semantics.

The idea of big-step semantics is to specify how to get from an expression or
statement straight to its result. This necessarily involves thinking about
program execution as a recursive rather than an iterative process: big-step
semantics says that, to evaluate a large expression, we evaluate all of its smaller
subexpressions and then combine their results to get our final answer.

In many ways, this feels more natural than the small-step approach, but it does
lack some of its fine-grained attention to detail. For example, our small-step
semantics is explicit about the order in which operations are supposed to
happen, because at every point, it identifies what the next step of reduction
should be, but big-step semantics is often written in a looser style that just says
which subcomputations to perform without necessarily specifying what order to

perform them in.**) Small-step semantics also gives us an easy way to observe
the intermediate stages of a computation, whereas big-step semantics just
returns a result and doesn’t produce any direct evidence of how it was
computed.

To understand this trade-off, let’s revisit some common language constructs and
see how to implement their big-step semantics in Ruby. Our small-step
semantics required a Machine class to keep track of state and perform repeated
reductions, but we won’t need that here; big-step rules describe how to compute
the result of an entire program by walking over its abstract syntax tree in a
single attempt, so there’s no state or repetition to deal with. We'll just define an
#evaluate method on our expression and statement classes and call it directly.

Expressions

With small-step semantics we had to distinguish reducible expressions like «1 +
2» from irreducible expressions like «3» so that the reduction rules could tell
when a subexpression was ready to be used as part of some larger computation,
but in big-step semantics every expression can be evaluated. The only
distinction, if we wanted to make one, is that some expressions immediately
evaluate to themselves, while others perform some computation and evaluate to
a different expression.

The goal of big-step semantics is to model the same runtime behavior as the
small-step semantics, which means we expect the big-step rules for each kind of
program construct to agree with what repeated application of the small-step
rules would eventually produce. (This is exactly the sort of thing that can be
formally proved when an operational semantics is written mathematically.) The
small-step rules for values like Number and Boolean say that we can’t reduce
them at all, so their big-step rules are very simple: values immediately evaluate
to themselves.

class Number
def evaluate(environment)
self
end
end

class Boolean
def evaluate(environment)
self
end
end

Variable expressions are unique in that their small-step semantics allow them
to be reduced exactly once before they turn into a value, so their big-step rule is
the same as their small-step one: look up the variable name in the environment
and return its value.

class Variable
def evaluate(environment)
environment[name]

end
end

The binary expressions Add, Multiply, and LessThan are slightly more
interesting, requiring recursive evaluation of their left and right subexpressions
before combining both values with the appropriate Ruby operator:

class Add
def evaluate(environment)
Number.new(left.evaluate(environment).value +
right.evaluate(environment).value)
end
end

class Multiply
def evaluate(environment)
Number.new(left.evaluate(environment).value *
right.evaluate(environment).value)
end
end

class LessThan
def evaluate(environment)
Boolean.new(left.evaluate(environment).value <
right.evaluate(environment).value)
end
end

To check that these big-step expression semantics are correct, here they are in
action on the Ruby console:

>> Number.new(23).evaluate({})
=> «23»
>> Variable.new(:x).evaluate({ x: Number.new(23) })
=> «23»
>> LessThan.new(
Add.new(Variable.new(:x), Number.new(2)),

Variable.new(:y)
).evaluate({ x: Number.new(2), vy: Number.new(5) })
=> «true»

Statements

This style of semantics shines when we come to specify the behavior of
statements. Expressions reduce to other expressions under small-step semantics,
but statements reduce to «do-nothing» and leave a modified environment
behind. We can think of big-step statement evaluation as a process that always
turns a statement and an initial environment into a final environment, avoiding
the small-step complication of also having to deal with the intermediate
statement generated by #reduce. Big-step evaluation of an assignment
statement, for example, should fully evaluate its expression and return an
updated environment containing the resulting value:

class Assign
def evaluate(environment)
environment.merge({ name => expression.evaluate(environment) })
end
end

Similarly, DoNothing#evaluate will clearly return the unmodified environment,

and If#evaluate has a pretty straightforward job on its hands: evaluate the
condition, then return the environment that results from evaluating either the
consequence or the alternative.

class DoNothing
def evaluate(environment)
environment
end
end

class If
def evaluate(environment)
case condition.evaluate(environment)
when Boolean.new(true)

consequence.evaluate(environment)
when Boolean.new(false)
alternative.evaluate(environment)
end
end
end

The two interesting cases are sequence statements and «while» loops. For
sequences, we just need to evaluate both statements, but the initial environment
needs to be “threaded through” these two evaluations, so that the result of
evaluating the first statement becomes the environment in which the second
statement is evaluated. This can be written in Ruby by using the first
evaluation’s result as the argument to the second:

class Sequence
def evaluate(environment)
second.evaluate(first.evaluate(environment))
end
end

This threading of the environment is vital to allow earlier statements to prepare
variables for later ones:

>> statement =
Sequence.new(
Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
)
= «Xx =1+ 1; y =X+ 3»
>> statement.evaluate({})
=> {:x=>«2», :y=>«5»}

For «while» statements, we need to think through the stages of completely
evaluating a loop:

= Evaluate the condition to get either «true» or «false».

= If the condition evaluates to «true», evaluate the body to get a new
environment, then repeat the loop within that new environment (i.e.,

evaluate the whole «while» statement again) and return the resulting
environment.

« If the condition evaluates to «false», return the environment unchanged.

This is a recursive explanation of how a «while» statement should behave. As
with sequence statements, it’s important that the updated environment
generated by the loop body is used for the next iteration; otherwise, the

condition will never stop being «true», and the loop will never get a chance to

terminate,!*”!

Once we know how big-step «while» semantics should behave, we can
implement While#evaluate:

class While
def evaluate(environment)
case condition.evaluate(environment)
when Boolean.new(true)
evaluate(body.evaluate(environment)) Q
when Boolean.new(false)
environment
end
end
end

(1] This is where the looping happens: body.evaluate(environment)
evaluates the loop body to get a new environment, then we pass that
environment back into the current method to kick off the next iteration.
This means we might stack up many nested invocations of
While#evaluate until the condition eventually becomes «false» and
the final environment is returned.

WARNING

As with any recursive code, there’s a risk that the Ruby call stack will overflow
if the nested invocations become too deep. Some Ruby implementations have
experimental support for tail call optimization, a technique that reduces the risk
of overflow by reusing the same stack frame when possible. In the official Ruby
implementation (MRI) we can enable tail call optimization with:

RubyVM: : InstructionSequence.compile_option = {
tailcall_optimization: true,
trace_1instruction: false

}

To confirm that this works properly, we can try evaluating the same «while»
statement we used to check the small-step semantics:

>> statement =
While.new(
LessThan.new(Variable.new(:x), Number.new(5)),
Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))

)
=> «while (x < 5) { x = x * 3 }»
>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«9»}

This is the same result that the small-step semantics gave, so it looks like
While#evaluate does the right thing.

Applications

Our earlier implementation of small-step semantics makes only moderate use of
the Ruby call stack: when we call #reduce on a large program, that might cause a
handful of nested #reduce calls as the message travels down the abstract syntax
tree until it reaches the piece of code that is ready to reduce.'’ But the virtual
machine does the work of tracking the overall progress of the computation by
maintaining the current program and environment as it repeatedly performs

small reductions; in particular, the depth of the call stack is limited by the depth
of the program’s syntax tree, since the nested calls are only being used to
traverse the tree looking for what to reduce next, not to perform the reduction
itself.

By contrast, this big-step implementation makes much greater use of the stack,
relying entirely on it to remember where we are in the overall computation, to
perform smaller computations as part of performing larger ones, and to keep
track of how much evaluation is left to do. What looks like a single call to
#evaluate actually turns into a series of recursive calls, each one evaluating a
subprogram deeper within the syntax tree.

This difference highlights the purpose of each approach. Small-step semantics
assumes a simple abstract machine that can perform small operations, and
therefore includes explicit detail about how to produce useful intermediate
results; big-step semantics places the burden of assembling the whole
computation on the machine or person executing it, requiring her to keep track
of many intermediate subgoals as she turns the entire program into a final result
in a single operation. Depending on what we wish to do with a language’s
operational semantics—perhaps build an efficient implementation, prove some
properties of programs, or devise some optimizing transformations—one
approach or the other might be more appropriate.

The most influential use of big-step semantics for specifying real programming
languages is Chapter 6 of the original definition of the Standard ML
programming language, which explains all of the runtime behavior of ML in big-
step style. Following this example, OCaml’s core language has a big-step
semantics to complement its more detailed small-step definition.

Big-step operational semantics is also used by the W3C: the XQuery 1.0 and
XPath 2.0 specification uses mathematical inference rules to describe how its
languages should be evaluated, and the XQuery and XPath Full Text 3.0 spec
includes a big-step semantics written in XQuery.

It probably hasn’t escaped your attention that, by writing down Simpie’s small-
and big-step semantics in Ruby instead of mathematics, we have implemented
two different Ruby interpreters for it. And this is what operational semantics
really is: explaining the meaning of a language by describing an interpreter.
Normally, that description would be written in simple mathematical notation,
which makes everything very clear and unambiguous as long as we can

understand it, but comes at the price of being quite abstract and distanced from
the reality of computers. Using Ruby has the disadvantage of introducing the
extra complexity of a real-world programming language (classes, objects,
method calls...) into what’s supposed to be a simplifying explanation, but if we
already understand Ruby, then it’s probably easier to see what’s going on, and
being able to execute the description as an interpreter is a nice bonus.

Denotational Semantics

So far, we've looked at the meaning of programming languages from an
operational perspective, explaining what a program means by showing what will
happen when it’s executed. Another approach, denotational semantics, is
concerned instead with translating programs from their native language into
some other representation.

This style of semantics doesn’t directly address the question of executing a
program at all. Instead, it concerns itself with leveraging the established
meaning of another language—one that is lower-level, more formal, or at least
better understood than the language being described—in order to explain a new
one.

Denotational semantics is necessarily a more abstract approach than
operational, because it just replaces one language with another instead of
turning a language into real behavior. For example, if we needed to explain the
meaning of the English verb “walk” to a person with whom we had no spoken
language in common, we could communicate it operationally by actually walking
back and forth. On the other hand, if we needed to explain “walk” to a French
speaker, we could do so denotationally just by telling them the French verb
“marcher”—an undeniably higher level form of communication, no messy
exercise required.

Unsurprisingly, denotational semantics is conventionally used to turn programs
into mathematical objects so they can be studied and manipulated with
mathematical tools, but we can get some of the flavor of this approach by
looking at how to denote SimpLe programs in some other way.

Let’s try giving a denotational semantics for Siveie by translating it into Ruby.['”]
In practice, this means turning an abstract syntax tree into a string of Ruby code

that somehow captures the intended meaning of that syntax.

But what is the “intended meaning”? What should Ruby denotations of our
expressions and statements look like? We’ve already seen operationally that an
expression takes an environment and turns it into a value; one way to express
this in Ruby is with a proc that takes some argument representing an
environment argument and returns some Ruby object representing a value. For
simple constant expressions like «5» and «false», we won't be using the
environment at all, so we only need to worry about how their eventual result
can be represented as a Ruby object. Fortunately, Ruby already has objects
specifically designed to represent these values: we can use the Ruby value 5 as
the result of the SivpLe expression «5», and likewise, the Ruby value false as the
result of «false».

Expressions

We can use this idea to write implementations of a #to_ruby method for the
Number and Boolean classes:

class Number
def to_ruby
"-> e { #{value.inspect} }"
end
end

class Boolean
def to_ruby
"-> e { #{value.inspect} }"
end
end

Here is how they behave on the console:

>> Number.new(5).to_ruby
=>">e {5}

>> Boolean.new(false).to_ruby
=> "-> e { false }"

Each of these methods produces a string that happens to contain Ruby code, and
because Ruby is a language whose meaning we already understand, we can see
that both of these strings are programs that build procs. Each proc takes an

environment argument called e, completely ignores it, and returns a Ruby value.

Because these denotations are strings of Ruby source code, we can check their
behavior in IRB by using Kernel#eval to turn them into real, callable Proc

objects:®!

>> proc = eval(Number.new(5).to_ruby)

=> #<Proc (lambda)>

>> proc.call({})

=> 5

>> proc = eval(Boolean.new(false).to_ruby)
=> #<Proc (lambda)>

>> proc.call({})

=> false

WARNING

At this stage, it's tempting to avoid procs entirely and use simpler
implementations of #to_ruby that just turn Number.new(5) into the string '5'
instead of '-> e { 5 }' and so on, but part of the point of building a
denotational semantics is to capture the essence of constructs from the source
language, and in this case, we're capturing the idea that expressions in general
require an environment, even though these specific expressions don’t make
use of it.

To denote expressions that do use the environment, we need to decide how
environments are going to be represented in Ruby. We've already seen
environments in our operational semantics, and since they were implemented in
Ruby, we can just reuse our earlier idea of representing an environment as a
hash. The details will need to change, though, so beware the subtle difference: in
our operational semantics, the environment lived inside the virtual machine and
associated variable names with Svpeie abstract syntax trees like Number . new(5),
but in our denotational semantics, the environment exists in the language we're

translating our programs into, so it needs to make sense in that world instead of
the “outside world” of a virtual machine.

In particular, this means that our denotational environments should associate
variable names with native Ruby values like 5 rather than with objects
representing Siveie syntax. We can think of an operational environment like {
x: Number.new(5) } as having a denotation of '{ x: 5 }' in the language
we're translating into, and we just need to keep our heads straight because both
the implementation metalanguage and the denotation language happen to be
Ruby.

Now we know that the environment will be a hash, we can implement
Variable#to_ruby:

class Variable
def to_ruby
"-> e { e[#{name.inspect}] }"
end
end

This translates a variable expression into the source code of a Ruby proc that
looks up the appropriate value in the environment hash:

>> expression = Variable.new(:x)
=> «X»

>> expression.to_ruby

= "->e { e[:x] }"

>> proc = eval(expression.to_ruby)
=> ##<Proc (lambda)>

>> proc.call({ x: 7 })

=> 7

An important aspect of denotational semantics is that it’s compositional: the
denotation of a program is constructed from the denotations of its parts. We can
see this compositionality in practice when we move onto denoting larger
expressions like Add, Multiply, and LessThan:

class Add

def to_ruby
"-> e { (#{left.to_ruby}).call(e) + (#{right.to_ruby}).call(e) }"
end
end

class Multiply
def to_ruby
"-> e { (#{left.to_ruby}).call(e) * (#{right.to_ruby}).call(e) }"
end
end

class LessThan
def to_ruby
"-> e { (#{left.to_ruby}).call(e) < (#{right.to_ruby}).call(e) }"
end
end

Here we're using string concatenation to compose the denotation of an
expression out of the denotations of its subexpressions. We know that each
subexpression will be denoted by a proc’s Ruby source, so we can use them as
part of a larger piece of Ruby source that calls those procs with the supplied
environment and does some computation with their return values. Here’s what
the resulting denotations look like:

>> Add.new(Variable.new(:x), Number.new(1)).to_ruby

= "->e { (->e { e[:x] }).call(e) + (->e { 1 }).call(e) }"

>> LessThan.new(Add.new(Variable.new(:x), Number.new(1)),
Number.new(3)).to_ruby

= "->e { (e { (->e { e[:x] }).call(e) + (-> e { 1 }).call(e)
}).call(e) < (-> e { 3 }).call(e) }"

These denotations are now complicated enough that it’s difficult to see whether
they do the right thing. Let’s try them out to make sure:

>> environment = { x: 3 }
=> {ix=>3}

>> proc = eval(Add.new(Variable.new(:x), Number.new(1)).to_ruby)
=> #<Proc (lambda)>
>> proc.call(environment)
= 4
>> proc = eval(

LessThan.new(Add.new(Variable.new(:x), Number.new(1)),
Number.new(3)).to_ruby

)
=> #<Proc (lambda)>
>> proc.call(environment)
=> false

Statements

We can specify the denotational semantics of statements in a similar way,
although remember from the operational semantics that evaluating a statement
produces a new environment rather than a value. This means that
Assign#to_ruby needs to produce code for a proc whose result is an updated
environment hash:

class Assign

def to_ruby
"-> e { e.merge({ #{name.inspect} => (#{expression.to_ruby}).call(e)
b}
end
end

Again, we can check this on the console:

>> statement = Assign.new(:y, Add.new(Variable.new(:x), Number.new(1)))
=> «y = X + 1»

>> statement.to_ruby

=> "->e { e.merge({ :y => (->e { (->e { e[:x] }).call(e) + (->e { 1
}).call(e) }).call(e) }) }"

>> proc = eval(statement.to_ruby)

=> #<Proc (lambda)>

>> proc.call({ x: 3 })

=> {:x=>3, :y=>4}
As always, the semantics of DoNothing is very simple:

class DoNothing

def to_ruby
'sefe}
end
end

For conditional statements, we can translate Siveie’s «if (..) { .. } else { ..
}» into a Ruby if .. then .. else .. end, making sure that the environment
gets to all the places where it’s needed:

class If
def to_ruby
"-> e { if (#{condition.to_ruby}).call(e)" +
" then (#{consequence.to_ruby}).call(e)" +
" else (#{alternative.to_ruby}).call(e)" +
" end }"
end
end

As in big-step operational semantics, we need to be careful about specifying the
sequence statement: the result of evaluating the first statement is used as the
environment for evaluating the second.

class Sequence
def to_ruby
"-> e { (#{second.to_ruby}).call((#{first.to_ruby}).call(e)) }"

end
end

And lastly, as with conditionals, we can translate «while» statements into procs
that use Ruby while to repeatedly execute the body before returning the final

environment;

class While
def to_ruby
"> e {" 4+
" while (#{condition.to_ruby}).call(e); e = (#
{body.to_ruby}).call(e); end;" +

" n

Even a simple «while» can have quite a verbose denotation, so it’s worth getting
the Ruby interpreter to check that its meaning is correct:

>> statement =
While.new(
LessThan.new(Variable.new(:x), Number.new(5)),
Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(2)))
)
=> «while (x < 5) { x = x * 3 }»
>> statement.to_ruby
=> "->e { while (->e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e)
P.call(e); e = (-> e { e.merge({ :x => (->e { (-> e { e[:x] }).call(e) *
(->e { 31}).call(e) }).call(e) }) }).call(e); end; e }"
>> proc = eval(statement.to_ruby)
=> #<Proc (lambda)>
>> proc.call({ x: 1 })
=> {:x=>9}

COMPARING SEMANTIC STYLES

«while» is a good example of the difference between small-step, big-step, and
denotational semantics.

The small-step operational semantics of «while» is written as a reduction rule for an
abstract machine. The overall looping behavior isn’t part of the rule’s action—
reduction just turns a «while» statement into an «if» statement—but it emerges as a
consequence of the future reductions performed by the machine. To understand what
«while» does, we need to look at all of the small-step rules and work out how they
interact over the course of a SivpLe program’s execution.

«while»’s big-step operational semantics is written as an evaluation rule that shows
how to compute the final environment directly. The rule contains a recursive call to
itself, so there’s an explicit indication that «while» will cause a loop during evaluation,
but it’s not quite the kind of loop that a SimpLe programmer would recognize. Big-step
rules are written in a recursive style, describing the complete evaluation of an
expression or statement in terms of the evaluation of other pieces of syntax, so this
rule tells us that the result of evaluating a «while» statement may depend upon the
result of evaluating the same statement in a different environment, but it requires a
leap of intuition to connect this idea with the iterative behavior that «while» is
supposed to exhibit. Fortunately the leap isn't too large: a bit of mathematical
reasoning can show that the two kinds of loop are equivalent in principle, and when
the metalanguage supports tail call optimization, they’re also equivalent in practice.

The denotational semantics of «while» shows how to rewrite it in Ruby, namely by
using Ruby’s while keyword. This is a much more direct translation: Ruby has native

support for iterative loops, and the denotation rule shows that «while» can be
implemented with that feature. There’s no leap required to understand how the two

kinds of loop relate to each other, so if we understand how Ruby while loops work, we

understand Smveie «while» loops too. Of course, this means we’ve just converted the
problem of understanding Simpie into the problem of understanding the denotation
language, which is a serious disadvantage when that language is as large and ill-
specified as Ruby, but it becomes an advantage when we have a small mathematical
language for writing denotations.

Applications

Having done all this work, what does this denotational semantics achieve? Its
main purpose is to show how to translate Sivpie into Ruby, using the latter as a
tool to explain what various language constructs mean. This happens to give us a

way to execute Sivpie programs—because we've written the rules of the
denotational semantics in executable Ruby, and because the rules’ output is
itself executable Ruby—but that’s incidental, since we could have given the rules
in plain English and used some mathematical language for the denotations. The
important part is that we've taken an arbitrary language of our own devising
and converted it into a language that someone or something else can
understand.

To give this translation some explanatory power, it’s helpful to bring parts of the
language’s meaning to the surface instead of allowing them to remain implicit.
For example, this semantics makes the environment explicit by representing it
as a tangible Ruby object—a hash that’s passed in and out of procs—instead of
denoting variables as real Ruby variables and relying on Ruby’s own subtle
scoping rules to specify how variable access works. In this respect the semantics
is doing more than just offloading all the explanatory effort onto Ruby; it uses
Ruby as a simple foundation, but does some extra work on top to show exactly
how environments are used and changed by different program constructs.

We saw earlier that operational semantics is about explaining a language’s
meaning by designing an interpreter for it. By contrast, the language-to-
language translation of denotational semantics is like a compiler: in this case, our
implementations of #to_ruby effectively compile Sivpie into Ruby. None of these
styles of semantics necessarily says anything about how to efficiently implement
an interpreter or compiler for a language, but they do provide an official
baseline against which the correctness of any efficient implementation can be

judged.

These denotational definitions also show up in the wild. Older versions of the
Scheme standard use denotational semantics to specify the core language, unlike
the current standard’s small-step operational semantics, and the development of
the XSLT document-transformation language was guided by Philip Wadler’s
denotational definitions of XSLT patterns and XPath expressions.

See Semantics for a practical example of using denotational semantics to specify
the meaning of regular expressions.

Formal Semantics in Practice

This chapter has shown several different ways of approaching the problem of
giving computer programs a meaning. In each case, we've avoided the
mathematical details and tried to get a flavor of their intent by using Ruby, but
formal semantics is usually done with mathematical tools.

Formality

Our tour of formal semantics hasn’t been especially formal. We haven’t paid any
serious attention to mathematical notation, and using Ruby as a metalanguage
has meant we’ve focused more on different ways of executing programs than on
ways of understanding them. Proper denotational semantics is concerned with
getting to the heart of programs’ meanings by turning them into well-defined
mathematical objects, with none of the evasiveness of representing a SiveLe
«while» loop with a Ruby while loop.

The branch of mathematics called domain theory was developed specifically to
provide definitions and objects that are useful for denotational semantics,
allowing a model of computation based on fixed points of monotonic functions
on partially ordered sets. Programs can be understood by “compiling” them
into mathematical functions, and the techniques of domain theory can be used
to prove interesting properties of these functions.

On the other hand, while we only vaguely sketched denotational semantics in
Ruby, our approach to operational semantics is closer in spirit to its formal
presentation: our definitions of #reduce and #evaluate methods are really just
Ruby translations of mathematical inference rules.

Finding Meaning

An important application of formal semantics is to give an unambiguous
specification of the meaning of a programming language, rather than relying on
more informal approaches like natural-language specification documents and
“specification by implementation.” A formal specification has other uses too,

such as proving properties of the language in general and of specific programs in
particular, proving equivalences between programs in the language, and
investigating ways of safely transforming programs to make them more efficient
without changing their behavior.

For example, since an operational semantics corresponds quite closely to the
implementation of an interpreter, computer scientists can treat a suitable
interpreter as an operational semantics for a language, and then prove its
correctness with respect to a denotational semantics for that language—this
means proving that there is a sensible connection between the meanings given
by the interpreter and those given by the denotational semantics.

Denotational semantics has the advantage of being more abstract than
operational semantics, by ignoring the detail of how a program executes and
concentrating instead on how to convert it into a different representation. For
example, this makes it possible to compare two programs written in different
languages, if a denotational semantics exists to translate both languages into
some shared representation.

This degree of abstraction can make denotational semantics seem circuitous. If
the problem is how to explain the meaning of a programming language, how
does translating one language into another get us any closer to a solution? A
denotation is only as good as its meaning; in particular, a denotational semantics
only gets us closer to being able to actually execute a program if the denotation
language has some operational meaning, a semantics of its own that shows how it
may be executed instead of how to translate it into yet another language.

Formal denotational semantics uses abstract mathematical objects, usually
functions, to denote programming language constructs like expressions and
statements, and because mathematical convention dictates how to do things like
evaluate functions, this gives a direct way of thinking about the denotation in an
operational sense. We've taken the less formal approach of thinking of a
denotational semantics as a compiler from one language into another, and in
reality, this is how most programming languages ultimately get executed: a Java
program will get compiled into bytecode by javac, the bytecode will get just-in-
time compiled into x86 instructions by the Java virtual machine, then a CPU will
decode each x86 instruction into RISC-like microinstructions for execution on a
core...where does it end? Is it compilers, or virtual machines, all the way down?

Of course programs do eventually execute, because the tower of semantics

finally bottoms out at an actual machine: electrons in semiconductors, obeying

the laws of physics."”) A computer is a device for maintaining this precarious
structure, many complex layers of interpretation balanced on top of one
another, allowing human-scale ideas like multitouch gestures and while loops to
be gradually translated down into the physical universe of silicon and electricity.

Alternatives

The semantic styles seen in this chapter go by many different names. Small-step
semantics is also known as structural operational semantics and transition semantics;
big-step semantics is more often called natural semantics or relational semantics;
and denotational semantics is also called fixed-point semantics or mathematical
semantics.

Other styles of formal semantics are available. One alternative is axiomatic
semantics, which describes the meaning of a statement by making assertions
about the state of the abstract machine before and after that statement executes:
if one assertion (the precondition) is initially true before the statement is
executed, then the other assertion (the postcondition) will be true afterward.
Axiomatic semantics is useful for verifying the correctness of programs: as
statements are plugged together to make larger programs, their corresponding
assertions can be plugged together to make larger assertions, with the goal of
showing that an overall assertion about a program matches up with its intended
specification.

Although the details are different, axiomatic semantics is the style that best
characterizes the RubySpec project, an “executable specification for the Ruby
programming language” that uses RSpec-style assertions to describe the
behavior of Ruby’s built-in language constructs, as well as its core and standard
libraries. For example, here’s a fragment of RubySpec’s description of the Array#
<< method:

describe "Array#<<" do

it "correctly resizes the Array" do
a=1[]
a.size.should == 0
a << :foo
a

.size.should == 1

a << :bar << :baz

a.size.should == 3
a=1[1, 2, 3]
a.shift
a.shift
a.shift
a << :foo
a.should == [:foo]
end
end

Implementing Parsers

In this chapter, we’ve been building the abstract syntax trees of SivpLe programs
manually—writing longhand Ruby expressions like Assign.new(:x,
Add.new(Variable.new(:x), Number.new(1)))—rather than beginning with

raw Sivpie source code like 'x = x + 1' and using a parser to automatically turn
it into a syntax tree.

Implementing a SiveLe parser entirely from scratch would involve a lot of detail
and take us on a long diversion from our discussion of formal semantics.
Hacking on toy programming languages is fun, though, and thanks to the
existence of parsing tools and libraries it’s not especially difficult to construct a
parser by relying on other people’s work, so here’s a brief outline of how to do it.

One of the best parsing tools available for Ruby is Treetop, a domain-specific
language for describing syntax in a way that allows a parser to be automatically
generated. A Treetop description of a language’s syntax is written as a parsing
expression grammar (PEG), a collection of simple, regular-expression-like rules
that are easy to write and to understand. Best of all, these rules can be annotated
with method definitions so that the Ruby objects generated by the parsing
process can be given their own behavior. This ability to define both a syntactic
structure and a collection of Ruby code that operates on that structure makes
Treetop ideal for sketching out the syntax of a language and giving it an
executable semantics.

To give us a taste of how this works, here’s a cut-down version of the Treetop

grammar for SivpLe, containing only the rules needed to parse the string 'while
(x <5) {x=x*31}"

grammar Simple
rule statement
while / assign

end
rule while
'while (' condition:expression ') { ' body:statement ' }' {
def to_ast
While.new(condition.to_ast, body.to ast)
end
}
end

rule assign

name:[a-z]+ " = ' expression {
def to_ast
Assign.new(name.text_value.to_sym, expression.to_ast)
end
}
end

rule expression
less_than
end

rule less_than
left:multiply ' < ' right:less_than {
def to_ast
LessThan.new(left.to_ast, right.to_ast)
end
}
/
multiply
end

rule multiply
left:term ' * ' right:multiply {
def to_ast
Multiply.new(left.to_ast, right.to_ast)
end

}
/

term
end

rule term
number / variable
end

rule number
[0-9]+ {
def to_ast
Number.new(text_value.to_1)
end

}

end

rule variable
[a-z]+ {
def to_ast
Variable.new(text_value.to_sym)
end

}

end
end

This language looks a little like Ruby, but the similarity is only superficial;
grammars are written in the special Treetop language. The rule keyword
introduces a new rule for parsing a particular kind of syntax, and the
expressions inside each rule describe the structure of the strings it will
recognize. Rules can recursively call other rules—the while rule calls the
expression and statement rules, for instance—and parsing begins at the first
rule, which is statement in this grammar.

The order in which the expression-syntax rules call each other reflects the
precedence of Siveie’s operators. The expression rule calls less_than, which
then immediately calls multiply to give it a chance to match the * operator
somewhere in the string before less_than gets a chance to match the lower-
precedence < operator. This makes sure that '1 * 2 < 3' is parsed as «(1 * 2)
< 3pandnot«l * (2 < 3)».

WARNING

To keep things simple, this grammar makes no attempt to constrain what
kinds of expression can appear inside other expressions, which means the
parser will accept some programs that are obviously wrong.

For example, we have two rules for binary expressions—less_than and
multiply—but the only reason for having separate rules is to enforce operator
precedence, so each rule only requires that a higher precedence rule matches
its left operand and a same-or-higher-precedence one matches its right. This
creates the situation where a string like '1 < 2 < 3' will be parsed
successfully, even though the semantics of Simeie won’t be able to give the
resulting expression a meaning.

Some of these problems can be resolved by tweaking the grammar, but there
will always be other incorrect cases that the parser can’t spot. We'll separate
the two concerns by keeping the parser as liberal as possible and using a
different technique to detect invalid programs in Chapter 9.

Most of the rules in the grammar are annotated with Ruby code inside curly
brackets. In each case, this code defines a method called #to_ast, which will be
available on the corresponding syntax objects built by Treetop when it parses a
SiMPLE program.

If we save this grammar into a file called simple.treetop, we can load it with
Treetop to generate a SimpleParser class. This parser allows us to turn a string
of Sveie source code into a representation built out of Treetop’s SyntaxNode
objects:

>> require 'treetop'

=> true
>> Treetop.load('simple')
=> SimpleParser
>> parse_tree = SimpleParser.new.parse('while (x < 5) { x = x * 3 }")
=> SyntaxNode+Whilel+While® offset=0, ".5) { x = x * 3 }"
(to_ast,condition,body):
SyntaxNode offset=0, "while ("
SyntaxNode+LessThanl+LessThan® offset=7, "x < 5" (to_ast,left,right):
SyntaxNode+Variable® offset=7, "x" (to_ast):
SyntaxNode offset=7, "x"
SyntaxNode offset=8, " < "
SyntaxNode+Number® offset=11, "5" (to_ast):
SyntaxNode offset=11, "5"
SyntaxNode offset=12, ") { "
SyntaxNode+Assignl+Assign@ offset=16, "x = x * 3"
(to_ast,name,expression):
SyntaxNode offset=16, "x":
SyntaxNode offset=16, "x"
SyntaxNode offset=17, " = "
SyntaxNode+Multiplyl+Multiply® offset=20, "x * 3"
(to_ast,left,right):
SyntaxNode+Variable0® offset=20, "x" (to_ast):
SyntaxNode offset=20, "x"
SyntaxNode offset=21, " * "
SyntaxNode+Number® offset=24, "3" (to_ast):
SyntaxNode offset=24, "3"
SyntaxNode offset=25, " }"

This SyntaxNode structure is a concrete syntax tree: it’s designed specifically for
manipulation by the Treetop parser and contains a lot of extraneous information
about how its nodes are related to the raw source code that produced them.
Here’s what the Treetop documentation has to say about it:

Please don't try to walk down the syntax tree yourself, and please don’t use the tree as your
own convenient data structure. It contains many more nodes than your application needs,
often even more than one for every character of input.

Instead, add methods to the root rule that return the information you require in a sensible
form. Each rule can call its sub-rules, and this method of walking the syntax tree is much
preferable to attempting to walk it from the outside.

And that’s what we've done. Rather than manipulate this messy tree directly,
we’ve used annotations in the grammar to define a #to_ast method on each of
its nodes. If we call that method on the root node, it’ll build an abstract syntax
tree made from SivpLe syntax objects:

>> statement = parse_tree.to_ast
=> «while (x < 5) { x =x * 3 }»

So we've automatically converted source code to an abstract syntax tree, and
now we can use that tree to explore the meaning of the program in the usual
ways:

>> statement.evaluate({ x: Number.new(1) })

=> {:x=>«9»}

>> statement.to_ruby

= "->e { while (-> e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e)
}.call(e); e = (-> e { e.merge({ :x => (->e { (-> e { e[:x] }).call(e) *
(->e {3 }).call(e) }).call(e) }) }).call(e); end; e }"

WARNING

Another drawback of this parser, and of Treetop in general, is that it generates
a right-associative concrete syntax tree. This means that the string '1 * 2 * 3
* 4' is parsed as if it had been written '1 * (2 * (3 * 4))":

>> expression = SimpleParser.new.parse('1l * 2 *# 3 * 4', root:
:expression).to_ast

=> «l * 2 * 3 * 4»n

>> expression.left

=> ul»

>> expression.right

=> «2 * 3 * 4»n

But multiplication is conventionally left-associative: when we write '1 * 2 * 3
* 4' we actually mean '((1 * 2) * 3) * 4',6 with the numbers grouped
together starting at the lefthand end of the expression, not the right. That
doesn’t matter much for multiplication—both ways produce the same result
when evaluated—but for operations like subtraction and division, it creates a
problem, because «((1 - 2) - 3) - 4» does not evaluate to the same value as
«l - (2 - (3 - 4))».

To fix this, we’d have to make the rules and #to_ast implementations more
complicated. See Parsing for a Treetop grammar that builds a left-associative
AST.

It's convenient to be able to parse Simeie programs like this, but Treetop is doing
all the hard work for us, so we haven’t learned much about how a parser actually
works. In Parsing with Pushdown Automata, we’ll see how to implement a parser
directly.

[2J1n the context of programming language theory, the word semantics is usually treated as
singular: we describe the meaning of a language by giving it a semantics.

(3] Although access to ISO/IEC 30170 costs money, an earlier draft of the same specification
can be downloaded for free from http://www.ipa.go.jp/osc/english/ruby/.

(] This can be an abbreviation for simple imperative language if you want it to be.

51 For the sake of simplicity, we’ll resist the urge to extract common code into superclasses
or modules.

[6] Although this is pretty much exactly how we’d write #reducible? in a functional
language like Haskell or ML.

[7] At the moment, it doesn’t make any difference which order we choose, but we can’t avoid
making the decision.

81 This conditional is not the same as Ruby’s if. In Ruby, if is an expression that returns a
value, but in SivpLE, it’s a statement for choosing which of two other statements to evaluate,
and its only result is the effect it has on the current environment.

TFor our purposes, it doesn’t matter whether this statement has been constructed as «(x =
1+1;y=x+3); z=y +5vor«x=1+1; (y=x+ 3; z=y + 5)» This choice
would affect the exact order of the reduction steps when we ran it, but the final result would
be the same either way.

[10] we can already hardcode a fixed number of repetitions by using sequence statements,
but that doesn’t allow us to control the repetition behavior at runtime.

(11 There’s a temptation to build the iterative behavior of «while» directly into its reduction
rule instead of finding a way to get the abstract machine to handle it, but that’s not how
small-step semantics works. See Big-Step Semantics for a style of semantics that lets the
rules do the work.

[12] Ruby’s procs permit complex expressions to be assigned to variables in some sense, but a
proc is still a value: it can’t perform any more evaluation by itself, but can be reduced as
part of a larger expression involving other values.

[13] Reducing an expression and an environment gives us a new expression, and we may
reuse the old environment next time; reducing a statement and an environment gives us a
new statement and a new environment.

[14] our Ruby implementation of big-step semantics won’t be ambiguous in this way, because
Ruby itself already makes these ordering decisions, but when a big-step semantics is
specified mathematically, it can avoid spelling out the exact evaluation strategy.

(5] Of course, there’s nothing to prevent Sivpic programmers from writing a «while»

statement whose condition never becomes «false» anyway, but if that’s what they ask for
then that’s what they're going to get.

[16] There is an alternative style of operational semantics, called reduction semantics, which
explicitly separates these “what do we reduce next?” and “how do we reduce it?” phases by
introducing so-called reduction contexts. These contexts are just patterns that concisely
describe the places in a program where reduction can happen, meaning we only need to

write reduction rules that perform real computation, thereby eliminating some of the
boilerplate from the semantic definitions of larger languages.

(7] This means we’ll be writing Ruby code that generates Ruby code, but the choice of the
same language as both the denotation language and the implementation metalanguage is
only to keep things simple. We could just as easily write Ruby that generates strings
containing JavaScript, for example.

(181 We can only do this because Ruby is doing double duty as both the implementation and
denotation languages. If our denotations were JavaScript source code, we’d have to try them
out in a JavaScript console.

[1910r, in the case of a mechanical computer like the Analytical Engine designed by Charles
Babbage in 1837, cogs and paper obeying the laws of physics.

Chapter 3. The Simplest Computers

In the space of a few short years, we’ve become surrounded by computers. They
used to be safely hidden away in military research centers and university
laboratories, but now they’re everywhere: on our desks, in our pockets, under
the hoods of our cars, implanted inside our bodies. As programmers, we work
with sophisticated computing devices every day, but how well do we understand
the way they work?

The power of modern computers comes with a lot of complexity. It’s difficult to
understand every detail of a computer’s many subsystems, and more difficult
still to understand how those subsystems interact to create the system as a
whole. This complexity makes it impractical to reason directly about the
capabilities and behavior of real computers, so it’s useful to have simplified
models of computers that share interesting features with real machines but that
can still be understood in their entirety.

In this chapter, we’ll strip back the idea of a computing machine to its barest
essentials, see what it can be used for, and explore the limits of what such a
simple computer can do.

Deterministic Finite Automata

Real computers typically have large amounts of volatile memory (RAM) and
nonvolatile storage (hard drive or SSD), many input/output devices, and several
processor cores capable of executing multiple instructions simultaneously. A
finite state machine, also known as a finite automaton, is a drastically simplified
model of a computer that throws out all of these features in exchange for being
easy to understand, easy to reason about, and easy to implement in hardware or
software.

States, Rules, and Input

A finite automaton has no permanent storage and virtually no RAM. It’s a little
machine with a handful of possible states and the ability to keep track of which
one of those states it’s currently in—think of it as a computer with enough RAM
to store a single value. Similarly, finite automata don’t have a keyboard, mouse,
or network interface for receiving input, just a single external stream of input
characters that they can read one at a time.

Instead of a general-purpose CPU for executing arbitrary programs, each finite
automaton has a hardcoded collection of rules that determine how it should
move from one state to another in response to input. The automaton starts in
one particular state and reads individual characters from its input stream,
following a rule each time it reads a character.

Here’s a way of visualizing the structure of one particular finite automaton:

The two circles represent the automaton’s two states, 1 and 2, and the arrow
coming from nowhere shows that the automaton always starts in state 1, its start
state. The arrows between states represent the rules of the machine, which are:

s« When in state 1 and the character a is read, move into state 2.

=« When in state 2 and the character a is read, move into state 1.
This is enough information for us to investigate how the machine processes a
stream of inputs:

s« The machine starts in state 1.

= The machine only has rules for reading the character a from its input

stream, so that’s the only thing that can happen. When it reads an 3, it
moves from state 1 into state 2.

