Shai Shalev-Shwartz and Shai Ben-David

UNDERSTANDING

MACHINE
LEARNING

UNDERSTANDING
MACHINE LEARNING

From Theory to
Algorithms

Shai Shalev-Shwartz

The Hebrew University, Jerusalem

Shai Ben-David

University of Waterloo, Canada

B CAMBRIDGE

%'E5 UNIVERSITY PRESS

CAMBRIDGE
UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107057135

© Shai Shalev-Shwartz and Shai Ben-Dawvid 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Printed in the United States of America
A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data
Shalev-Shwartz, Shai.
Understanding machine learning : from theory to algorithms /
Shai Shalev-Shwartz, The Hebrew University, Jerusalem,
Shai Ben-David, University of Waterloo, Canada.

pages cm
Includes bibliographical references and index.
ISBN 978-1-107-05713-5 (hardback)
1. Machine learning. 2. Algorithms. 1. Ben-David, Shai. IL. Title.
0325.5.8475 2014
006.3'1-dc23 2014001779

ISBN 978-1-107-05713-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

Contents

Preface page xv
1 Introduction 1
1.1 What Is Learning? 1
1.2 When Do We Need Machine Learning? 3
1.3 Types of Learning 4
1.4 Relations to Other Fields 6
1.5 How to Read This Book &
1.6 Notation 8

Part 1 Foundations

2 A Gentle Start 13
2.1 A Formal Model — The Statistical Learning Framework 13
2.2 Empirical Risk Minimization 15
2.3 Empirical Risk Minimization with Inductive Bias 16
2.4 Exercises 20
3 A Formal Learning Model 22
3.1 PAC Learning 22
32 A More General Learning Model 23
3.3 Summary 28
3.4 Bibliographic Remarks 28
3.5 Exercises 28
4 Learning via Uniform Convergence 31
4.1 Uniform Convergence Is Sufficient for Learnability 31
4.2 Finite Classes Are Agnostic PAC Learnable 32
4.3 Summary 34
4.4 Bibliographic Remarks 33
4.5 Exercises 35

vii

viii Contents

5 The Bias-Complexity Trade-off

DRERE

The No-Free-Lunch Theorem
Error Decomposition
Summary

Bibliographic Remarks
Exercises

6 The VC-Di :

CRERE

6.6
6.7

A

Infinite-Size CI ~an Be [bl
The VC-Di .

Examples

The Fundamental Theorem of PAC Learning
Proof of Theorem 6.7

Summary

Bibliographic Remarks

Exercises

7 Nonuniform Learnability

7.4
1.2
1.3
1.4

15
1.6
11
7.8

Nonuniform Learnability

Structural Risk Minimization

Minimum Description Length and Occam’s Razor

Other Notions of Learnability — Consistency
Discussing the Different Notions of Learnability
Summary

Bibliographic Remarks

Exercises

8 The Runtime of Learning

RERRERE

Computational Complexity of Learning
Implementing the ERM Rule
Efficiently Learnable, but Not by a Proper ERM

Hardness of Learning*
Summary
Bibliographic Remarks
Exercises

Part 2 From Theory to Algorithms

O L Predict

ELREERE

Halfspaces
Linear Regression

Logistic Regression
Summary
Bibliographic Remarks
Exercises

RRoEdErds & EEEER R

CRBEBER B FEEREGER B

CBESEE B

10.4

10.6
10.7

Weak Learnability

AdaBoost

Linear Combinations of Base Hypotheses
AdaBoost for Face Recognition
Summary

Bibliographic Remarks

Exercises

11 Model Selection and Validation

11.1
11.2
11.3
11.4
11.5

Model Selection Using SRM
Validati
What to Do If Learning Fails

Summary
Exercises

12 Convex Learning Problems

121
12:2
123
124

12.5
12.6

Convexity, Lipschitzness, and Smoothness
Convex Learning Problems

Surrogate Loss Functions

Summary

Bibliographic Remarks

Exercises

13 Regularization and Stability

=

13.2

Regularized Loss Minimization

Stable Rules Do Not Overfit

Tikhonov Regularization as a Stabilizer
Controlling the Fitting-Stability Trade-off
Summary

Bibliographic Remarks

Exercises

Gradient Descent

Subgradients

Stochastic Gradient Descent (SGD)
Variants

Learning with SGD

Summary

Bibliographic Remarks

Exercises

15 Support Vector Machines

15.1
15.2

15.3 Optimality Conditions and “Support Vectors”*

Margin and Hard-SVM
Soft-SVM and Norm Regularization

Contents

116
120
123
123

166

167

167
171
175

X

Contents

15.5
15.6
157
158

Implementing Soft-SVM Using SGD
Summary

Bibliographic Remarks

Exercises

16 Kernel Methods

161
16.2
16.3
16.4
16.5
16.6

17 Multiclass, Ranking, and Complex Prediction Problems

Embeddings into Feature Spaces

The Kernel Trick

Implementing Soft-SVM with Kernels
Summary

Bibliographic Remarks

Exercises

171
17.2

2

17.4

RERE

One-versus-All and All-Pairs
Linear Multiclass Predictors
Structured Output Prediction
Ranking

Bipartite Ranking and Multivariate Performance Measures

Summary
Bibliographic Remarks

Exercises

18 Decision T

18.1
18.2
183
18.4
18.5

18.6

Sample Complexity
Decision Tree Algorithms
Random Forests
Summary

Bibliographic Remarks
Exercises

19 Nearest Neighbor

19.1
19.2
19.3
194
19.5
19.6

k Nearest Neighbors
Analysis

Efficient Implementation*
Summary

Bibliographic Remarks
Exercises

20 Neural Networks

20.1
20.2
20.3
20.4
20.5
20.6

Feedforward Neural Networks

Learning Neural Networks

The Expressive Power of Ncural Networks
The Sample Complexity of Neural Networks
The Runtime of Learning Neural Networks
SGD and Backpropagation

Contents

20.7 Summary 240
20.8 Bibliographic Remarks 240
20.9 Exercises 240
Part 3 Additional Learning Models
21 Online Learning 245
21.1 Online Classification in the Realizable Case 246
21.2 Oanline Classification in the Unrealizable Case 251
21.3 Online Convex Optimization 257
21.4 The Online Perceptron Algorithm 258
21.5 Summary 201
21.6 Bibliographic Remarks 261
21.7 Exercises 262
22 Clustering 264
22.1 Linkage-Based Clustering Algorithms 266
22.2 k-Means and Other Cost Minimization Clusterings 268
22.3 Spectral Clustering 27
22.4 Information Bottleneck* 273
22,5 A High-Level View of Clustering 274
22.6 Summary 276
22.7 Bibliographic Remarks 276
22.8 Exercises 276
23 Dimensionality Reduction 278
23.1 Principal Component Analysis (PCA) 279
23.2 Random Projections 283
23.3 Compressed Sensing 285
23,4 PCA or Compressed Sensing? 292
23.5 Summary 292
23.6 Bibliographic Remarks 292
23.7 Exercises 293
24 Generative Models 295
24.1 Maximum Likelihood Estimator 295
24.2 Naive Bayes 299
24.3 Linear Discriminant Analysis 300
24.4 Latent Variables and the EM Algorithm 301
24.5 Bayesian Reasoning 305
24.6 Summary 307
24.7 Bibliographic Remarks 307
24.8 Exercises 308
25 Feature Selection and Generation 309
25.1 Feature Selection 310
25.2 Feature Manipulation and Normalization 316

25.3 Feature Learning 319

Xii

Contents

25.4 Summary

25.5 Bibliographic Remarks
Part 4 Advanced Theory
26 Rademacher Complexities

26.1 The Rademacher Complexity

26.2 Rademacher Complexity of Linear Classes

26.3 Generalization Bounds for SYM

26.4 Generalization Bounds for Predictors with Low ¢; Norm
26.5 Bibliographic Remarks

27 Covering Numbers
27.1 Covering

27.2 From Covering to Rademacher Complexity via Chaining
27.3 Bibliographic Remarks

28 Proof of the Fundamental Theorem of Learning Theory

28.1 The Upper Bound for the Agnostic Case
28.2 The Lower Bound for the Agnostic Case
28.3 The Upper Bound for the Realizable Case

29 Multiclass Learnability

29.1 The Natarajan Dimension

29.2 The Multiclass Fundamental Theorem
29.3 Calculating the Natarajan Dimension
29.4 On Good and Bad ERMs

29.5 Bibliographic Remarks

29.6 Exercises

30 Compression Bounds

30.1 Compression Bounds
30.2 Examples
30.3 Bibliographic Remarks

31 PAC-Bayes

31.1 PAC-Bayes Bounds
31.2 Bibliographic Remarks
3 ercises

Appendix A Technical Lemmas

Appendix B Measure Concentration

B.1 Markov’s Inequality
B.2 Chebyshev’s Inequality
B.3 Chernoff’s Bounds

B.4 Hoeffding’s Inequality

321
321
322

325
325
332
333
338
336

363

2R R

(43
=)

369
372
372

o8]
~J

Preface

The term machine learning refers to the automated detection of meaningful patterns
in data. In the past couple of decades it has become a common tool in almost any
task that requires information extraction from large data sets. We are surrounded
by a machine learning—based technology: Search engines learn how to bring us the
best results (while placing profitable ads), antispam software learns to filter our e-
mail messages, and credit card transactions are secured by a software that learns
how to detect frauds. Digital cameras learn to detect faces and intelligent personal
assistance applications on smart-phones learn to recognize voice commands. Cars
are equipped with accident-prevention systems that are built using machine learning
algorithms. Machine learning is also widely used in scientific applications such as
bioinformatics, medicine, and astronomy.

One common feature of all of these applications is that, in contrast to more tra-
ditional uses of computers, in these cases, due to the complexity of the patterns that
need to be detected, a human programmer cannot provide an explicit, fine-detailed
specification of how such tasks should be executed. Taking examples from intelli-
gent beings, many of our skills are acquired or refined through learning from our
experience (rather than following explicit instructions given to us). Machine learn-
ing tools are concerned with endowing programs with the ability to “learn” and
adapt.

The first goal of this book is to provide arigorous, yet easy-to-follow, introduction
to the main concepts underlying machine learning: What is learning? How can a
machine learn? How do we quantify the resources needed to learn a given concept?
Is learning always possible? Can we know whether the learning process succeeded or
failed?

The second goal of this book is to present several key machine learning algo-
rithms. We chose to present algorithms that on one hand are successfully used
in practice and on the other hand give a wide spectrum of different learning
techniques. Additionally, we pay specific attention to algorithms appropriate for
large-scale learning (a.k.a. “Big Data”), since in recent years, our world has become
increasingly “digitized” and the amount of data available for learning is dramati-
cally increasing. As a result, in many applications data is plentiful and computation

XV

Preface

time is the main bottleneck. We therefore explicitly quantify both the amount of
data and the amount of computation time needed to learn a given concept.

The book is divided into four parts. The first part aims at giving an initial rigor-
ous answer to the fundamental questions of learning. We describe a generalization
of Valiant’s Probably Approximately Correct (PAC) learning model, which is a first
solid answer to the question “What is learning?” We describe the Empirical Risk
Minimization (ERM), Structural Risk Minimization (SRM), and Minimum Descrip-
tion Length (MDL) learning rules, which show “how a machine can learn.” We
quantify the amount of data needed for learning using the ERM, SRM, and MDL
rules and show how learning might fail by deriving a “no-free-lunch” theorem. We
also discuss how much computation time is required for learning. In the second part
of the book we describe various learning algorithms. For some of the algorithms,
we first present a more general learning principle and then show how the algorithm
follows the principle. While the first two parts of the book focus on the PAC model,
the third part extends the scope by presenting a wider variety of learning models.
Finally, the last part of the book is devoted to advanced theory.

We made an attempt to keep the book as self-contained as possible. However,
the reader is assumed to be comfortable with basic notions of probability, linear
algebra, analysis, and algorithms. The first three parts of the book are intended
for first-year graduate students in computer science, engineering, mathematics, or
statistics. It can also be accessible to undergraduate students with the adequate
background. The more advanced chapters can be used by researchers intending to
gather a deeper theoretical understanding.

ACKNOWLEDGMENTS

The book is based on Introduction to Machine Learning courses taught by Shai
Shalev-Shwartz at Hebrew University and by Shai Ben-David at the University of
Waterloo. The first draft of the book grew out of the lecture notes for the course
that was taught at Hebrew University by Shai Shalev-Shwartz during 2010-2013.
We greatly appreciate the help of Ohad Shamir, who served as a teaching assistant
for the course in 2010, and of Alon Gonen, who served as TA for the course in
2011-2013. Ohad and Alon prepared a few lecture notes and many of the exercises.
Alon, to whom we are indebted for his help throughout the entire making of the
book, has also prepared a solution manual.

We are deeply grateful for the most valuable work of Dana Rubinstein. Dana
has scientifically proofread and edited the manuscript, transforming it from lecture-
based chapters into fluent and coherent text.

Special thanks to Amit Daniely, who helped us with a careful read of the
advanced part of the book and wrote the advanced chapter on multiclass learnabil-
ity. We are also grateful for the members of a book reading club in Jerusalem who
have carefully read and constructively criticized every line of the manuscript. The
members of the reading club are Maya Alroy, Yossi Arjevani, Aharon Birnbaum,
Alon Cohen, Alon Gonen, Roi Livni, Ofer Meshi, Dan Rosenbaum, Dana Rubin-
stein, Shahar Somin, Alon Vinnikov, and Yoav Wald. We would also like to thank
Gal Elidan, Amir Globerson, Nika Haghtalab, Shie Mannor, Amnon Shashua, Nati
Srebro, and Ruth Urner for helpful discussions.

1

Introduction

The subject of this book is automated learning, or, as we will more often call it,
Machine Learning (ML). That is, we wish to program computers so that they can
“learn” from input available to them. Roughly speaking, learning is the process of
converting experience into expertise or knowledge. The input to a learning algo-
rithm is training data, representing experience, and the output is some expertise,
which usually takes the form of another computer program that can perform some
task. Seeking a formal-mathematical understanding of this concept, we’ll have to
be more explicit about what we mean by each of the involved terms: What is the
training data our programs will access? How can the process of learning be auto-
mated? How can we evaluate the success of such a process (namely, the quality of
the output of a learning program)?

1.1 WHAT IS LEARNING?

Let us begin by considering a couple of examples from naturally occurring animal
learning. Some of the most fundamental issues in ML arise already in that context,
which we are all familiar with.

Bait Shyness — Rats Learning to Avoid Poisonous Baits: When rats encounter
food items with novel look or smell, they will first eat very small amounts, and sub-
sequent feeding will depend on the flavor of the food and its physiological effect.
If the food produces an ill effect, the novel food will often be associated with the
illness, and subsequently, the rats will not eat it. Clearly, there is a learning mech-
anism in play here — the animal used past experience with some food to acquire
expertise in detecting the safety of this food. If past experience with the food was
negatively labeled, the animal predicts that it will also have a negative effect when
encountered in the future.

Inspired by the preceding example of successful learning, let us demonstrate
a typical machine learning task. Suppose we would like to program a machine that
learns how to filter spam e-mails. A naive solution would be seemingly similar to the
way rats learn how to avoid poisonous baits. The machine will simply memorize all
previous e-mails that had been labeled as spam e-mails by the human user. When a

Introduction

new e-mail arrives, the machine will search for it in the set of previous spam e-mails.
If it matches one of them, it will be trashed. Otherwise, it will be moved to the user’s
inbox folder.

While the preceding “learning by memorization” approach is sometimes useful,
it lacks an important aspect of learning systems — the ability to label unseen e-mail
messages. A successful learner should be able to progress from individual examples
to broader generalization. This is also referred to as inductive reasoning or inductive
inference. In the bait shyness example presented previously, after the rats encounter
an example of a certain type of food, they apply their attitude toward it on new,
unseen examples of food of similar smell and taste. To achieve generalization in the
spam filtering task, the learner can scan the previously seen e-mails, and extract a set
of words whose appearance in an e-mail message is indicative of spam. Then, when
a new e-mail arrives, the machine can check whether one of the suspicious words
appears in it, and predict its label accordingly. Such a system would potentially be
able correctly to predict the label of unscen e-mails.

However, inductive reasoning might lead us to false conclusions. To illustrate
this, let us consider again an example from animal learning.

Pigeon Superstition: In an experiment performed by the psychologist
B. F. Skinner, he placed a bunch of hungry pigeons in a cage. An automatic mech-
anism had been attached to the cage, delivering food to the pigeons at regular
intervals with no reference whatsoever to the birds” behavior. The hungry pigeons
went around the cage, and when food was first delivered, it found each pigeon
engaged in some activity (pecking, turning the head, etc.). The arrival of food rein-
forced each bird’s specific action, and consequently, each bird tended to spend some
more time doing that very same action. That, in turn, increased the chance that the
next random food delivery would find each bird engaged in that activity again. What
results is a chain of events that reinforces the pigeons’ association of the delivery of
the food with whatever chance actions they had been performing when it was first
delivered. They subsequently continue to perform these same actions diligently.!

What distinguishes learning mechanisms that result in superstition from useful
learning? This question is crucial to the development of automated learners. While
human learners can rely on common sense to filter out random meaningless learning
conclusions, once we export the task of learning to a machine, we must provide
well defined crisp principles that will protect the program from reaching senseless
or useless conclusions. The development of such principles is a central goal of the
theory of machine learning.

What, then, made the rats’ learning more successful than that of the pigeons?
As a first step toward answering this question, let us have a closer look at the bait
shyness phenomenon in rats.

Bait Shyness revisited — rats fail to acquire conditioning between food and electric
shock or between sound and nausea: The bait shyness mechanism in rats turns out to
be more complex than what one may expect. In experiments carried out by Garcia
(Garcia & Koelling 1996), it was demonstrated that if the unpleasant stimulus that
follows food consumption is replaced by, say, electrical shock (rather than nausea),
then no conditioning occurs. Even after repeated trials in which the consumption

! See: http:/psychclassics.yorku.ca/Skinner/Pigeon

1.2 When Do We Need Machine Learning?

of some food is followed by the administration of unpleasant electrical shock, the
rats do not tend to avoid that food. Similar failure of conditioning occurs when the
characteristic of the food that implies nausea (such as taste or smell) is replaced
by a vocal signal. The rats seem to have some “built in” prior knowledge telling
them that, while temporal correlation between food and nausea can be causal, it is
unlikely that there would be a causal relationship between food consumption and
electrical shocks or between sounds and nausea.

We conclude that one distinguishing feature between the bait shyness learn-
ing and the pigeon superstition is the incorporation of prior knowledge that biases
the learning mechanism. This is also referred to as inductive bias. The pigeons in
the experiment are willing to adopt any explanation for the occurrence of food.
However, the rats “know” that food cannot cause an electric shock and that the
co-occurrence of noise with some food is not likely to affect the nutritional value
of that food. The rats’ learning process is biased toward detecting some kind of
patterns while ignoring other temporal correlations between cvents.

It turns out that the incorporation of prior knowledge, biasing the learning pro-
cess, is inevitable for the success of learning algorithms (this is formally stated and
proved as the “No-Free-Lunch theorem” in Chapter 5). The development of tools
for expressing domain expertise, translating it into a learning bias, and quantifying
the effect of such a bias on the success of learning is a central theme of the theory
of machine learning. Roughly speaking, the stronger the prior knowledge (or prior
assumptions) that one starts the learning process with, the easier it is to learn from
further examples. However, the stronger these prior assumptions are, the less flex-
ible the learning is — it is bound, a priori, by the commitment to these assumptions.
We shall discuss these issues explicitly in Chapter 5.

1.2 WHEN DO WE NEED MACHINE LEARNING?

When do we need machine learning rather than directly program our computers to
carry out the task at hand? Two aspects of a given problem may call for the use of
programs that learn and improve on the basis of their “experience”: the problem’s
complexity and the need for adaptivity.

Tasks That Are Too Complex to Program.

W Tasks Performed by Animals/Humans: There are numerous tasks that we
human beings perform routinely, yet our introspection concerning how
we do them is not sufficiently elaborate to extract a well defined pro-
gram. Examples of such tasks include driving, speech recognition, and
image understanding. In all of these tasks, state of the art machine learn-
ing programs, programs that “learn from their experience,” achieve quite
satisfactory results, once exposed to sufficiently many training examples.

W Tasks beyond Human Capabilities: Another wide family of tasks that ben-
efit from machine learning techniques are related to the analysis of very
large and complex data sets: astronomical data, turning medical archives
into medical knowledge, weather prediction, analysis of genomic data, Web
search engines, and electronic commerce. With more and more available

Introduction

In this book we shall discuss only a subset of the possible learning paradigms.
Our main focus is on supervised statistical batch learning with a passive learner
(for example, trying to learn how to generate patients’ prognoses, based on large
archives of records of patients that were independently collected and are already
labeled by the fate of the recorded patients). We shall also briefly discuss online
learning and batch unsupervised learning (in particular, clustering).

1.4 RELATIONS TO OTHER FIELDS

As an interdisciplinary field, machine learning shares common threads with the
mathematical fields of statistics, information theory, game theory, and optimization.
It is naturally a subfield of computer science, as our goal is to program machines so
that they will learn. In a sense, machine learning can be viewed as a branch of Al
(Artificial Intelligence), since, after all, the ability to turn expericnce into exper-
tise or to detect meaningful patterns in complex sensory data is a cornerstone of
human (and animal) intelligence. However, one should note that, in contrast with
traditional AI, machine learning is not trying to build automated imitation of intel-
ligent behavior, but rather to use the strengths and special abilities of computers
to complement human intelligence, often performing tasks that fall way beyond
human capabilities. For example, the ability to scan and process huge databases
allows machine learning programs to detect patterns that are outside the scope of
human perception.

The component of experience, or training, in machine learning often refers to
data that is randomly generated. The task of the learner is to process such randomly
generated examples toward drawing conclusions that hold for the environment from
which these examples are picked. This description of machine learning highlights its
close relationship with statistics. Indeed there is a lot in common between the two
disciplines, in terms of both the goals and techniques used. There are, however, a
few significant differences of emphasis; if a doctor comes up with the hypothesis
that there is a correlation between smoking and heart disease, it is the statistician’s
role to view samples of patients and check the validity of that hypothesis (this is the
common statistical task of hypothesis testing). In contrast, machine learning aims
to use the data gathered from samples of patients to come up with a description of
the causes of heart disease. The hope is that automated techniques may be able to
figure out meaningful patterns (or hypotheses) that may have been missed by the
human observer.

In contrast with traditional statistics, in machine learning in general, and in this
book in particular, algorithmic considerations play a major role. Machine learning
is about the execution of learning by computers; hence algorithmic issues are piv-
otal. We develop algorithms to perform the learning tasks and are concerned with
their computational efficiency. Another difference is that while statistics is often
interested in asymptotic behavior (like the convergence of sample-based statisti-
cal estimates as the sample sizes grow to infinity), the theory of machine learning
focuses on finite sample bounds. Namely, given the size of available samples,
machine learning theory aims to figure out the degree of accuracy that a learner
can expect on the basis of such samples.

1.5 How to Read This Book

There are further differences between these two disciplines, of which we shall
mention only one more here. While in statistics it is common to work under the
assumption of certain presubscribed data models (such as assuming the normal-
ity of data-generating distributions, or the linearity of functional dependencies), in
machine learning the emphasis is on working under a “distribution-free” setting,
where the learner assumes as little as possible about the nature of the data distribu-
tion and allows the learning algorithm to figure out which models best approximate
the data-generating process. A precise discussion of this issue requires some techni-
cal preliminaries, and we will come back to it later in the book, and in particular in
Chapter 5.

1.5 HOW TO READ THIS BOOK

The first part of the book provides the basic theoretical principles that underlie
machine learning (ML). In a sense, this is the foundation upon which the rest of
the book is built. This part could serve as a basis for a minicourse on the theoretical
foundations of ML.

The second part of the book introduces the most commonly used algorithmic
approaches to supervised machine learning. A subset of these chapters may also be
used for introducing machine learning in a general Al course to computer science,
Math, or engineering students.

The third part of the book extends the scope of discussion from statistical clas-
sification to other learning models. It covers online learning, unsupervised learning,
dimensionality reduction, generative models, and feature learning.

The fourth part of the book, Advanced Theory, is geared toward readers who
have interest in research and provides the more technical mathematical techniques
that serve to analyze and drive forward the field of theoretical machine learning.

The Appendixes provide some technical tools used in the book. In particular, we
list basic results from measure concentration and linear algebra.

A few sections are marked by an asterisk, which means they are addressed
to more advanced students. Each chapter is concluded with a list of exercises. A
solution manual is provided in the course Web site.

1.5.1 Possible Course Plans Based on This Book

A 14 Week Introduction Course for Graduate Students:

. Chapters 2-4.

. Chapter 9 (without the VC calculation).

. Chapters 5-6 (without proofs).

. Chapter 10.

. Chapters 7, 11 (without proofs).

. Chapters 12, 13 (with some of the easier proofs).
. Chapter 14 (with some of the easier proofs).

. Chapter 15.

. Chapter 16.

. Chapter 18.

O e~ R W=

i
o

8

Introduction

11. Chapter 22.
12. Chapter 23 (without proofs for compressed sensing).
13. Chapter 24.
14. Chapter 25.

A 14 Week Advanced Course for Graduate Students:

Chapters 26, 27.
(continued)
Chapters 6, 28.
Chapter 7.
Chapter 31.
Chapter 30.
Chapters 12, 13.
Chapter 14.
Chapter 8.
Chapter 17.

. Chapter 29.
Chapter 19.

. Chapter 20.
Chapter 21.

LNk WmD =

— e b
Bwn=o

1.6 NOTATION

Most of the notation we use throughout the book is either standard or defined on
the spot. In this section we describe our main conventions and provide a table sum-
marizing our notation (Table 1.1). The reader is encouraged to skip this section and
return to it if during the reading of the book some notation is unclear.

We denote scalars and abstract objects with lowercase letters (e.g. x and A).
Often, we would like to emphasize that some object is a vector and then we use
boldface letters (e.g. x and A). The ith element of a vector x is denoted by x;. We use
uppercase letters to denote matrices, sets, and sequences. The meaning should be
clear from the context. As we will see momentarily, the input of a learning algorithm
is a sequence of training examples. We denote by z an abstract example and by
S =2z1,....2n a sequence of m examples. Historically, § is often referred to as a
training sef; however, we will always assume that S is a sequence rather than a set.
A sequence of m vectors is denoted by x;,...,X,,. The ith element of x; is denoted
by Xp,i-

Throughout the book, we make use of basic notions from probability. We denote
by D a distribution over some set.? for example, Z. We use the notation z ~ D to
denote that z is sampled according to D. Given a random variable f : Z — R, its
expected value is denoted by E,~p [f(z)]. We sometimes use the shorthand E| f]
when the dependence on z is clear from the context. For f : Z — {true, false} we
also use P,~p [f(2)] to denote D({z : f(z) = true}). In the next chapter we will also

2 To be mathematically precise, D should be defined over some o-algebra of subsets of Z. The user who
is not familiar with measure theory can skip the few footnotes and remarks regarding more formal
measurability definitions and assumptions.

1.6 Notation

Table 1.1. Summary of notation

symbol meaning

R the set of real numbers

R the set of d-dimensional vectors over R

Ry the set of non-negative real numbers

N the set of natural numbers

0.0,0,0,Q,0 asymptotic notation (see text)

UBoolean expression] INdicator function (equals 1 if expression is true and 0o.w.)
[a], = max{0, a}

[n] the set {1,...,n} (for n e N)

X. VW (column) vectors

X, Vi, Wi the ith element of a vector

(x,v) =3¢ | x;v; (inner product)

|[x|> or ||x| = /(x,x) (the £> norm of x)

X1 =39 | x| (the &; norm of x)

1% o = max; |x;| (the £ norm of x)

[I%]lo the number of nonzero elements of x

AcR¥K ad x k matrix over R

AT the transpose of A

Aj, the (i, j) element of A

XX the d x d matrix A s.t. A; j = x,x; (Where x e RY)
Xiyeeer Xm a sequence of m vectors

X the jth element of the ith vector in the sequence
wil) w(T) the values of a vector w during an iterative algorithm
w” the ith element of the vector w()

X instances domain (a set)

y labels domain (a set)

z examples domain (a set)

H hypothesis class (a set)

CHxZ— Ry loss function

D a distribution over some set (usually over Z or over X')
D(A) the probability of a set A € Z according to D

2+D sampling z according to D

S=2z1,..., Zm a sequence of m examples

S~ D" sampling S =z1....,z, i.i.d. according to D

P.E probability and expectation of a random variable
P.~p|f(z)] =D({z: f(z) =true}) for f: Z — {true, false}
E.-p[f(2)] expectation of the random variable f: Z — R
N(p,C) Gaussian distribution with expectation u and covariance C
f(x) the derivative of a function f:R — R at x

I (x) the second derivative of a function f:R— R at x
% the partial derivative of a function f:RY - R at w w.r.t. w
Vf(w) the gradient of a function f:RY - R at w

af(w) the differential set of a function f:RY — R at w
mingce f(x) =min{f(x):x € C} (minimal value of f over C)

maxyec f(x)
argmin, o f(x)
argmax, o f(x)
log

= max{f(x):x € C} (maximal value of f over C)
the set {x € C: f(x) = mingec f(2)}

the set {x € C: f(x) = max ¢ f(2))

the natural logarithm

9

10

Introduction

introduce the notation D" to denote the probability over Z™ induced by sampling
(z1,...,2m) where each point z; is sampled from D independently of the other points.

In general, we have made an effort to avoid asymptotic notation. However, we
occasionally use it to clarify the main results. In particular, given f : R — R and
g:R— Ry we write f = O(g) if there exist xo, @ € Ry such that for all x > xj we
have f(x) < ag(x). We write f = o(g) if for every o > 0 there exists xg such that for
all x > xp we have f(x) < ag(x). We write [= Q(g) if there exist xg, « € Ry such that
for all x > xo we have f(x) > ag(x). The notation /' = w(g) is defined analogously.
The notation f = @(g) means that f = O(g) and g = O(f). Finally, the notation
f = O(g) means that there exists k € N such that f(x) = 0(g(x) log* (g(x))).

The inner product between vectors x and w is denoted by (x, w). Whenever we
do not specify the vector space we assume that it is the d-dimensional Euclidean
space and then (x,w) = 3 x;w;. The Euclidean (or £;) norm of a vector w is
[w]l2 = +/{w, w). We omit the subscript from the £, norm when it is clear from the
context. We also use other £, norms, ||w|, = (Z[|w; |f’] ”P, and in particular |w|; =
>oilwi| and W] = max; |w;.

We use the notation minycc f(x) to denote the minimum value of the set
{f(x):x € C}. To be mathematically more precise, we should use inf,c¢c f(x) when-
ever the minimum i1s not achievable. However, in the context of this book the
distinction between infimum and minimum is often of little interest. Hence, to sim-
plify the presentation, we sometimes use the min notation even when inf is more
adequate. An analogous remark applies to max versus sup.

2

A Gentle Start

Let us begin our mathematical analysis by showing how successful learning can be
achieved in a relatively simplified setting. Imagine you have just arrived in some
small Pacific island. Y ou soon find out that papayas are a significant ingredient in the
local diet. However, you have never before tasted papayas. You have to learn how
to predict whether a papaya you see in the market is tasty or not. First, you need
to decide which features of a papaya your prediction should be based on. On the
basis of your previous experience with other fruits, you decide to use two features:
the papaya’s color, ranging from dark green, through orange and red to dark brown,
and the papaya’s softness, ranging from rock hard to mushy. Y our input for figuring
out your prediction rule is a sample of papayas that you have examined for color
and softness and then tasted and found out whether they were tasty or not. Let
us analyze this task as a demonstration of the considerations involved in learning
problems.

Our first step is to describe a formal model aimed to capture such learning tasks.

2.1 A FORMAL MODEL - THE STATISTICAL LEARNING FRAMEWORK

The learner’s input: In the basic statistical learning setting, the learner has access
to the following:

Domain set: An arbitrary set, X'. This is the set of objects that we may wish
to label. For example, in the papaya learning problem mentioned before,
the domain set will be the set of all papayas. Usually, these domain
points will be represented by a vector of features (like the papaya’s color
and softness). We also refer to domain points as instances and to X as
instance space.

Label set: For our current discussion, we will restrict the label set to be a
two-element set, usually {0, 1} or {—1,+1}. Let) denote our set of pos-
sible labels. For our papayas example, let) be {0, 1}, where 1 represents
being tasty and 0 stands for being not-tasty.

Training data: S = ((xq1, y1)...(xm, ym)) 1s a finite scquence of pairsin X' x V:
that is, a sequence of labeled domain points. This is the input that the

13

14 A Gentle Start

learner has access to (like a set of papayas that have been tasted and their
color, softness, and tastiness). Such labeled examples are often called
training examples. We sometimes also refer to S as a training set.!

The learner’s output: The learner is requested to output a prediction rule,
h: X —). This function is also called a predictor, a hypothesis, or a classifier.
The predictor can be used to predict the label of new domain points. In our
papayas example, it is a rule that our learner will employ to predict whether
future papayas he examines in the farmers’ market are going to be tasty or not.
We use the notation A(S) to denote the hypothesis that a learning algorithm,
A, returns upon receiving the training sequence S.

A simple data-generation model We now explain how the training data is gen-
erated. First, we assume that the instances (the papayas we encounter) are
generated by some probability distribution (in this case, representing the
environment). Let us denote that probability distribution over X by D. It is
important to note that we do not assume that the learner knows anything about
this distribution. For the type of learning tasks we discuss, this could be any
arbitrary probability distribution. As to the labels, in the current discussion
we assume that there is some “correct” labeling function, f : & —)/, and that
yi = f(x;) for all i. This assumption will be relaxed in the next chapter. The
labeling function is unknown to the learner. In fact, this is just what the learner
is trying to figure out. In summary, each pair in the training data S is generated
by first sampling a point x; according to D and then labeling it by f.

Measures of success: We define the error of a classifier to be the probability that
it does not predict the correct label on a random data point generated by the
aforementioned underlying distribution. That is, the error of /i is the proba-
bility to draw a random instance x, according to the distribution D, such that
h(x) does not equal f(x).

Formally, given a domain subset2 A C X, the probability distribution, D,
assigns a number, D(A), which determines how likely it is to observe a point
x € A. In many cases, we refer to A as an event and express it using a function
7: X — {0,1}, namely, A = {x € X : w(x) = 1}. In that case, we also use the
notation Pyp [7 (x)] to express D(A).

We define the error of a prediction rule, h : ¥ — Y, to be

def def

Lp.s(h) = P [h(x)# f(x)] = D({x:h(x) # fx)}). (2.1)

That is, the error of such is the probability of randomly choosing an example
x for which h(x) # f(x). The subscript (D, f) indicates that the error is mea-
sured with respect to the probability distribution P and the correct labeling
function f. We omit this subscript when it is clear from the context. L(p f)(h)
has several synonymous names such as the generalization error, the risk, or
the rrue error of h, and we will use these names interchangeably throughout

! Despite the “set” notation, § is a sequence. In particular, the same example may appear twice in S and
some algorithms can take into account the order of examples in §.

2 Strictly speaking, we should be more careful and require that A is a member of some o-algebra of
subsets of X', over which D is defined. We will formally define our measurability assumptions in the
next chapter.

2.2 Empirical Risk Minimization

the book. We use the letter L for the error, since we view this error as the loss
of the learner. We will later also discuss other possible formulations of such
loss.

A note about the information available to the learner The learner is blind to the
underlying distribution D over the world and to the labeling function f. In our
papayas example, we have just arrived in a new island and we have no clue
as to how papayas are distributed and how to predict their tastiness. The only
way the learner can interact with the environment is through observing the
training set.

In the next section we describe a simple learning paradigm for the preceding
setup and analyze its performance.

2.2 EMPIRICAL RISK MINIMIZATION

As mentioned earlier, a learning algorithm receives as input a training set §, sam-
pled from an unknown distribution D and labeled by some target function f, and
should output a predictor kg : X — Y (the subscript S emphasizes the fact that
the output predictor depends on §). The goal of the algorithm is to find /5 that
minimizes the error with respect to the unknown D and f.

Since the learner does not know what D and f are, the true error is not directly
available to the learner. A useful notion of error that can be calculated by the
learner is the fraining error — the error the classifier incurs over the training sample:

Ls(h) &f |{ie[m]:h(,ri)¢}:i}\1 2.2)

m

where [m]={1,....m}.

The terms empirical error and empirical risk are often used interchangeably for
this error.

Since the training sample is the snapshot of the world that is available to the
learner, it makes sense to search for a solution that works well on that data. This
learning paradigm — coming up with a predictor & that minimizes Lg(h) — is called
Empirical Risk Minimization or ERM for short.

2.2.1 Something May Go Wrong - Overfitting

Although the ERM rule seems very natural, without being careful, this approach
may fail miserably.

To demonstrate such a failure, let us go back to the problem of learning to pre-
dict the taste of a papaya on the basis of its softness and color. Consider a sample as
depicted in the following:

15

16

A Gentle Start

Assume that the probability distribution D is such that instances are distributed
uniformly within the larger square and the labeling function, f, determines the label
to be 1 if the instance is within the inner square, and 0 otherwise. The area of the
larger square in the picture is 2 and the area of the inner square is 1. Consider the
following predictor:

vi ifdie[m]s.txj=x
hs(x) = 2.3
s(¥) {0 otherwise. (23)

While this predictor might seem rather artificial, in Exercise 2.1 we show a natu-
ral representation of it using polynomials. Clearly, no matter what the sample is,
Ls(hs) =0, and therefore this predictor may be chosen by an ERM algorithm (it is
one of the empirical-minimum-cost hypotheses; no classifier can have smaller error).
On the other hand, the true error of any classifier that predicts the label 1 only on a
finite number of instances is, in this case, 1/2. Thus, Lp(hs) = 1/2. We have found
a predictor whose performance on the training sct is excellent, yet its performance
on the true “world” is very poor. This phenomenon is called overfitting. Intuitively,
overfitting occurs when our hypothesis fits the training data “too well” (perhaps like
the everyday experience that a person who provides a perfect detailed explanation
for each of his single actions may raise suspicion).

2.3 EMPIRICAL RISK MINIMIZATION WITH INDUCTIVE BIAS

We have just demonstrated that the ERM rule might lead to overfitting. Rather
than giving up on the ERM paradigm, we will look for ways to rectify it. We will
search for conditions under which there is a guarantee that ERM does not overfit,
namely, conditions under which when the ERM predictor has good performance
with respect to the training data, it is also highly likely to perform well over the
underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search
space. Formally, the learner should choose in advance (before seeing the data) a set
of predictors. This set is called a hypothesis class and is denoted by H. Each h € H
is a function mapping from X’ to Y. For a given class H{, and a training sample, S,
the ERMy learner uses the ERM rule to choose a predictor i € H, with the lowest
possible error over §. Formally,

ERM«(S) € argmin Lg(h),
heH

where argmin stands for the set of hypotheses in ‘H that achieve the minimum value
of Ls(h) over H. By restricting the learner to choosing a predictor from H, we bias it
toward a particular set of predictors. Such restrictions are often called an inductive
bias. Since the choice of such a restriction is determined before the learner sees the
training data, it should ideally be based on some prior knowledge about the problem
to be learned. For example, for the papaya taste prediction problem we may choose
the class H to be the set of predictors that are determined by axis aligned rectangles
(in the space determined by the color and softness coordinates). We will later show
that ERM+4; over this class is guaranteed not to overfit. On the other hand, the
example of overfitting that we have seen previously, demonstrates that choosing H

2.3 Empirical Risk Minimization with Inductive Bias

to be a class of predictors that includes all functions that assign the value 1 to a finite
set of domain points does not suffice to guarantee that ERMy, will not overfit.

A fundamental question in learning theory is, over which hypothesis classes
ERMy learning will not result in overfitting. We will study this question later in
the book.

Intuitively, choosing a more restricted hypothesis class better protects us against
overfitting but at the same time might cause us a stronger inductive bias. We will get
back to this fundamental tradeoff later.

2.3.1 Finite Hypothesis Classes

The simplest type of restriction on a class is imposing an upper bound on its size
(that is, the number of predictors 4 in H). In this section, we show that if H is a
finite class then ERMy will not overfit, provided it is based on a sufficiently large
training sample (this size requirement will depend on the size of H).

Limiting the learner to prediction rules within some finite hypothesis class may
be considered as a reasonably mild restriction. For example, H can be the set of all
predictors that can be implemented by a C++ program written in at most 10° bits
of code. In our papayas example, we mentioned previously the class of axis aligned
rectangles. While this is an infinite class, if we discretize the representation of real
numbers, say, by using a 64 bits floating-point representation, the hypothesis class
becomes a finite class.

Let us now analyze the performance of the ERMy, learning rule assuming that
‘H is a finite class. For a training sample, §, labeled according to some f: X — Y, let
hs denote a result of applying ERMp to S, namely,

hs € argmin Lg(h). (2.4)
heH
In this chapter, we make the following simplifying assumption (which will be
relaxed in the next chapter).

Definition 2.1 (The Realizability Assumption). There exists h* € H s.t.
L(p,r)(h*) = 0. Note that this assumption implies that with probability 1 over ran-
dom samples, S, where the instances of § are sampled according to D and are labeled
by f,we have Ls(h*)=0.

The realizability assumption implies that for every ERM hypothesis we have
that® Lg (hs) = 0. However, we are interested in the rrue risk of hg, L('D_f)(h_g).
rather than its empirical risk.

Clearly, any guarantee on the error with respect to the underlying distribution,
D, for an algorithm that has access only to a sample S should depend on the rela-
tionship between D and S. The common assumption in statistical machine learning
is that the training sample § is generated by sampling points from the distribution D
independently of each other. Formally,

3 Mathematically speaking, this holds with probability 1. To simplify the presentation, we sometimes
omit the “with probability 1" specifier.

17

Image
not
avallable

20

A Gentle Start

Figure 2.1. Each point in the large circle represents a possible m-tuple of instances. Each
colored oval represents the set of “misleading” m-tuple of instances for some “bad” pre-
dictor h € Hp. The ERM can potentially overfit whenever it gets a misleading training set
S. That is, for some h € Hp we have Lg(h) = 0. Equation (2.9) guarantees that for each
individual bad hypothesis, h € Hp, at most (1— ¢)"-fraction of the training sets would be
misleading. In particular, the larger m is, the smaller each of these colored ovals becomes.
The union bound formalizes the fact that the area representing the training sets that are
misleading with respect to some h € Hp (that is, the training sets in M) is at most the
sum of the areas of the colored ovals. Therefore, it is bounded by |H g| times the maximum
size of a colored oval. Any sample S outside the colored ovals cannot cause the ERM rule
to overfit.

Then, for any labeling function, f, and for any distribution, D, for which the realiz-
ability assumption holds (that is, for some h € H, L(p fy(h) = 0), with probability of
at least 1 — 8 over the choice of an i.i.d. sample S of size m, we have that for every
ERM hypothesis, hs, it holds that

Lip,jyhs) <e.

The preceeding corollary tells us that for a sufficiently large m, the ERMy rule
over a finite hypothesis class will be probably (with confidence 1 — 3) approximately
(up to an error of ¢) correct. In the next chapter we formally define the model of
Probably Approximately Correct (PAC) learning.

2.4 EXERCISES

2.1 Overfitting of polynomial matching: We have shown that the predictor defined in
Equation (2.3) leads to overfitting. While this predictor seems to be very unnatural,
the goal of this exercise is to show that it can be described as a thresholded poly-
nomial. That is, show that given a training set S = {(x;, f(x;))}"", € (R? x {0,1})™,
there exists a polynomial ps such that #g(x) = 1 if and only if ps(x) = 0, where hg
is as defined in Equation (2.3). It follows that learning the class of all thresholded
polynomials using the ERM rule may lead to overfitting.

2.2 Let H be a class of binary classifiers over a domain X. Let D be an unknown distri-
bution over X, and let f be the target hypothesis in H. Fix some /# € H. Show that
the expected value of Lg(h) over the choice of S|, equals L(p, (1), namely,

S|_‘.@D"' [Ls(h)] = Lp,) (h).

2.3 Axis aligned rectangles: An axis aligned rectangle classifier in the plane is a classi-

fier that assigns the value 1 to a point if and only if it is inside a certain rectangle.

2.4 Exercises

R(S) |

+

R

Figure 2.2. Axis aligned rectangles.

Formally, given real numbers a1 < b1, az < by, define the classifier h, 5, .a,,5,) DY

1 fag<xi<biandaz <x;<b; (210)

0 otherwise

H(ay by an,by) (X1, X2) = {

The class of all axis aligned rectangles in the plane is defined as

Hiee = {(ay by.a5.50) 241 < by, and az < ba).

Note that this is an infinite size hypothesis class. Throughout this exercise we rely
on the realizability assumption.

1.

2.

Let A be the algorithm that returns the smallest rectangle enclosing all positive
examples in the training set. Show that A is an ERM.

Show that if A receives a training set of size > Alog (4/3) then, with probability of

€

at least 1 — § it returns a hypothesis with error of at most e.

Hint: Fix some distribution D over X, let R* = R(aj, b}, a5, b3) be the rectan-

gle that generates the labels, and let f be the corresponding hypothesis. Let

ay > aj be a number such that the probability mass (with respect to D) of the

rectangle Ry = R(a}, a1, a;,b3) is exactly € /4. Similarly, let by, a2, b> be numbers

such that the probability masses of the rectangles Ry = R(bl,b’i‘,ag,bﬁ), R; =

R(aj,by.a5,a2), Ry = R(aj,by, bz, b5) are all exactly e/4. Let R(S) be the

rectangle returned by A. See illustration in Figure 2.2.

B Show that R(S) C R™.

B Show that if S contains (positive) examples in all of the rectangles
Ry, R2, R3, R4, then the hypothesis returned by A has error of at most e.

B For each i € {1,...,4}, upper bound the probability that § does not contain
an example from R;.

B Use the union bound to conclude the argument.

Repeat the previous question for the class of axis aligned rectangles in R?.

. Show that the runtime of applying the algorithm A mentioned earlier is polyno-

mial in d, 1/¢, and in log (1/8).

21

22

3

A Formal Learning Model

In this chapter we define our main formal learning model - the PAC learning model
and its extensions. We will consider other notions of learnability in Chapter 7.

3.1 PAC LEARNING

In the previous chapter we have shown that for a finite hypothesis class, if the ERM
rule with respect to that class is applied on a sufficiently large training sample (whose
size is independent of the underlying distribution or labeling function) then the out-
put hypothesis will be probably approximately correct. More generally, we now
define Probably Approximately Correct (PAC) learning.

Definition 3.1 (PAC Learnability). A hypothesis class H is PAC learnable if there
exist a function my : (0.1)* — N and a learning algorithm with the following prop-
erty: For every ¢,8 € (0,1), for every distribution D over &, and for every labeling
function f : & — {0, 1}, if the realizable assumption holds with respect to H, D, f,
then when running the learning algorithm on m > my(e,8) i.i.d. examples gener-
ated by D and labeled by f, the algorithm returns a hypothesis 4 such that, with
probability of at least 1 — & (over the choice of the examples), L(p_;)(h) < €.

The definition of Probably Approximately Correct learnability contains two
approximation parameters. The accuracy parameter ¢ determines how far the out-
put classifier can be from the optimal one (this corresponds to the “approximately
correct”), and a confidence parameter § indicating how likely the classifier is to meet
that accuracy requirement (corresponds to the “probably” part of “PAC™). Under
the data access model that we are investigating, these approximations are inevitable.
Since the training set is randomly generated, there may always be a small chance that
it will happen to be noninformative (for example, there is always some chance that
the training set will contain only one domain point, sampled over and over again).
Furthermore, even when we are lucky enough to get a training sample that does
faithfully represent D, because it is just a finite sample, there may always be some
fine details of D that it fails to reflect. Our accuracy parameter, ¢, allows “forgiving”
the learner’s classifier for making minor errors.

3.2 A More General Learning Model

Sample Complexity
The function m : (0,1)> — N determines the sample complexity of learning H: that
is, how many examples are required to guarantee a probably approximately correct
solution. The sample complexity is a function of the accuracy (¢) and confidence (3)
parameters. It also depends on properties of the hypothesis class H — for example,
for a finite class we showed that the sample complexity depends on log the size of H.

Note that if H{ is PAC learnable, there are many functions m4; that satisfy the
requirements given in the definition of PAC learnability. Therefore, to be precise,
we will define the sample complexity of learning H to be the “minimal function,”
in the sense that for any ¢,8, my(e,8) is the minimal integer that satisfies the
requirements of PAC learning with accuracy ¢ and confidence §.

Let us now recall the conclusion of the analysis of finite hypothesis classes from
the previous chapter. It can be rephrased as stating:

Corollary 3.2. Every finite hypothesis class is PAC learnable with sample complexity
log (IHWW

€

my(€.8) < [

There are infinite classes that are learnable as well (see, for example, Exercise
3.3). Later on we will show that what determines the PAC learnability of a class is
not its finiteness but rather a combinatorial measure called the VC dimension.

3.2 A MORE GENERAL LEARNING MODEL

The model we have just described can be readily generalized, so that it can be
made relevant to a wider scope of learning tasks. We consider generalizations in
two aspects:

Removing the Realizability Assumption

We have required that the learning algorithm succeeds on a pair of data distribu-
tion D and labeling function f provided that the realizability assumption is met. For
practical learning tasks, this assumption may be too strong (can we really guaran-
tee that there is a rectangle in the color-hardness space that fully determines which
papayas arc tasty?). In the next subsection, we will describe the agnostic PAC model
in which this realizability assumption is waived.

Learning Problems beyond Binary Classification

The learning task that we have been discussing so far has to do with predicting a
binary label to a given example (like being tasty or not). However, many learning
tasks take a different form. For example, one may wish to predict a real valued
number (say, the temperature at 9:00 p.m. tomorrow) or a label picked from a finite
set of labels (like the topic of the main story in tomorrow’s paper). It turns out
that our analysis of learning can be readily extended to such and many other sce-
narios by allowing a variety of loss functions. We shall discuss that in Section 3.2.2
later.

23

24

A Formal Learning Model

3.2.1 Releasing the Realizability Assumption — Agnostic
PAC Learning

A More Realistic Model for the Data-Generating Distribution

Recall that the realizability assumption requires that there exists #* € H such that
Py~p [#*(x) = f(x)] = 1. In many practical problems this assumption does not hold.
Furthermore, it is maybe more realistic not to assume that the labels are fully deter-
mined by the features we measure on input elements (in the case of the papayas,
it is plausible that two papayas of the same color and softness will have differ-
ent taste). In the following, we relax the realizability assumption by replacing the
“target labeling function” with a more flexible notion, a data-labels generating
distribution.

Formally, from now on, let D be a probability distribution over &' x), where,
as before, X is our domain set and) is a set of labels (usually we will consider
Y =1{0,1}). That is, D is a joint distribution over domain points and labels. One can
view such a distribution as being composed of two parts: a distribution D, over unla-
beled domain points (sometimes called the marginal distribution) and a conditional
probability over labels for each domain point, D((x, y)|x). In the papaya example,
D, determines the probability of encountering a papaya whose color and hardness
fall in some color-hardness values domain, and the conditional probability is the
probability that a papaya with color and hardness represented by x is tasty. Indeed,
such modeling allows for two papayas that share the same color and hardness to
belong to different taste categories.

The empirical and the True Error Revised

For a probability distribution, D, over X x), one can measure how likely £ is to
make an error when labeled points are randomly drawn according to D. We redefine
the true error (or risk) of a prediction rule A to be

Lp() & P [h(0)#y] = D(A(x,y):h(x) # 7)). 31

We would like to find a predictor, h, for which that error will be minimized.
However, the learner does not know the data generating D. What the learner does
have access to is the training data, S. The definition of the empirical risk remains
the same as before, namely,

Ls(h) def I{i e [1"'1]:'1(Jf.')7é yi]“

Given S, a learner can compute Lg(h) for any function f : X — {0,1}. Note that
LS(h) = LD(uniform over S')(h)-

The Goal
We wish to find some hypothesis, h : X' —), that (probably approximately)
minimizes the true risk, Lp(h).

3.2 A More General Learning Model

That is, we consider the expectation of the loss of & over objects z picked ran-
domly according to D. Similarly, we define the empirical risk to be the expected loss

over a given sample § = (z1,...,zn) € Z", namely,
def l m
Ls(h) = = > e(h, z). (3.4)
i=1

The loss functions used in the preceding examples of classification and regression
tasks are as follows:

B 0-1loss: Here, our random variable z ranges over the set of pairs X’ x) and the
loss function is

det)0 if h(x)=y
€o-1(h, (x,y)) = {1 if h(x)#y

This loss function is used in binary or multiclass classification problems.
One should note that, for a random variable, «, taking the values {0, 1},
Eg~p [@¢] = Pa~p [¢ = 1]. Consequently, for this loss function, the definitions
of Lp(h) given in Equation (3.3) and Equation (3.1) coincide.

B Square Loss: Here, our random variable z ranges over the set of pairs A’ x) and

the loss function is
def

bsq(h, (x,¥)) = (h(x)—).
This loss function is used in regression problems.

We will later see more examples of useful instantiations of loss functions.
To summarize, we formally define agnostic PAC learnability for general loss
functions.

Definition 3.4 (Agnostic PAC Learnability for General Loss Functions). A hypoth-
esis class H is agnostic PAC learnable with respect to a set Z and a loss function
€ :H x Z — Ry, if there exist a function m4 : (0,1)> — N and a learning algorithm
with the following property: For every €, 8 € (0, 1) and for every distribution D over
Z, when running the learning algorithm on m > my(¢,) i.i.d. examples generated
by D, the algorithm returns & € ‘H such that, with probability of at least 1 — § (over
the choice of the m training examples),

Lp(h) < min Lp(h') +¢,
h'eH

where Lp(h) =E ~p [€(h,2)].

Remark 3.1 (A Note About Measurability*). In the aforementioned definition, for
every h € H, we view the function £(h,-) : Z — R, as a random variable and define
Lp(h) to be the expected value of this random variable. For that, we need to require
that the function £(h, -) is measurable. Formally, we assume that there is a o -algebra
of subsets of Z, over which the probability D is defined, and that the preimage
of every initial segment in Ry is in this o-algebra. In the specific case of binary
classification with the 0—1 loss, the o-algebra is over A’ x {0, 1} and our assumption
on £ is equivalent to the assumption that for every A, the set {(x,h(x)):x € X} isin
the o-algebra.

27

28

A Formal Learning Model

Remark 3.2 (Proper versus Representation-Independent Learning*). In the pre-
ceding definition, we required that the algorithm will return a hypothesis from H.
In some situations, H is a subset of a set H’, and the loss function can be natu-
rally extended to be a function from H’ x Z to the reals. In this case, we may allow
the algorithm to return a hypothesis 2’ € ', as long as it satisfies the requirement
Lp(h') < mingey Lp(h) + €. Allowing the algorithm to output a hypothesis from
H' is called representation independent learning, while proper learning occurs when
the algorithm must output a hypothesis from 7. Representation independent learn-
ing is sometimes called “improper learning,” although there is nothing improper in
representation independent learning.

3.3 SUMMARY

In this chapter we defined our main formal learning model — PAC learning. The
basic model relies on the realizability assumption, while the agnostic variant does
not impose any restrictions on the underlying distribution over the examples. We
also generalized the PAC model to arbitrary loss functions. We will sometimes refer
to the most general model simply as PAC learning, omitting the “agnostic” prefix
and letting the reader infer what the underlying loss function is from the context.
When we would like to emphasize that we are dealing with the original PAC setting
we mention that the realizability assumption holds. In Chapter 7 we will discuss
other notions of learnability.

3.4 BIBLIOGRAPHIC REMARKS

Our most general definition of agnostic PAC learning with general loss functions
follows the works of Vladimir Vapnik and Alexey Chervonenkis (Vapnik and
Chervonenkis 1971). In particular, we follow Vapnik’s general setting of learning
(Vapnik 1982, Vapnik 1992, Vapnik 1995, Vapnik 1998).

PAC learning was introduced by Valiant (1984). Valiant was named the winner
of the 2010 Turing Award for the introduction of the PAC model. Valiant’s defi-
nition requires that the sample complexity will be polynomial in 1/¢ and in 1/8, as
well as in the representation size of hypotheses in the class (see also Kearns and
Vazirani (1994)). As we will see in Chapter 6, if a problem is at all PAC learnable
then the sample complexity depends polynomially on 1/¢ and log(1/8). Valiant’s
definition also requires that the runtime of the learning algorithm will be polyno-
mial in these quantities. In contrast, we chose to distinguish between the statistical
aspect of learning and the computational aspect of learning. We will elaborate on
the computational aspect later on in Chapter 8, where we introduce the full PAC
learning model of Valiant. For expository reasons, we use the term PAC learning
even when we ignore the runtime aspect of learning. Finally, the formalization of
agnostic PAC learning is due to Haussler (1992).

3.5 EXERCISES

3.1 Monotonicity of Sample Complexity: Let 7 be a hypothesis class for a binary clas-
sification task. Suppose that H is PAC learnable and its sample complexity is given

32

3.3

35

3.5 Exercises

by mu(-,-). Show that m4 is monotonically nonincreasing in each of its parame-

ters. That is, show that given & € (0,1), and given 0 < €] < ¢ < 1, we have that

may(€1,8) = my(e2,8). Similarly, show that given € € (0, 1), and given 0 <81 <8 <1,

we have that my(e, 81) > my(e, 82).

Let X be a discrete domain, and let Hsingleton = {h; : 2 € X} U {7}, where for each

z € X, h; is the function defined by h (x)=1if x =z and b (x) =0 if x #z. h™

is simply the all-negative hypothesis, namely, Vx € X, &~ (x) = 0. The realizability

assumption here implies that the true hypothesis f labels negatively all examples in

the domain, perhaps except one.

1. Describe an algorithm that implements the ERM rule for learning Hsingleton in
the realizable setup.

2. Show that Hsingleton is PAC learnable. Provide an upper bound on the sample
complexity.

Let X =R2, Y ={0,1}, and let H be the class of concentric circles in the plane, that

is, H = {h, :r e R.}, where h,(x) = 1 <,]. Prove that H is PAC learnable (assume

realizability), and its sample complexity is bounded by

€

may(e.8) < {M] .

In this question, we study the hypothesis class of Boolean conjunctions defined as
follows. The instance space is X = {0, 1} and the label setis J = {0, 1}. A literal over
the variables xq,...,. x4 is a simple Boolean function that takes the form f(x) = x;, for
some i € [d], or f(x)=1—x, for some i € [d]. We use the notation ¥; as a shorthand
for 1 — x;. A conjunction is any product of literals. In Boolean logic, the product is
denoted using the A sign. For example, the function A(x) = xy - (1 — x2) is written as
X1 /\.fg.

We consider the hypothesis class of all conjunctions of literals over the d vari-
ables. The empty conjunction is interpreted as the all-positive hypothesis (namely,
the function that returns 4 (x) = 1 for all x). The conjunction x; A ¥; (and similarly
any conjunction involving a literal and its negation) is allowed and interpreted as
the all-negative hypothesis (namely, the conjunction that returns h(x) = 0 for all x).
We assume realizability: Namely, we assume that there exists a Boolean conjunction
that generates the labels. Thus, each example (x,y) € X x V consists of an assign-
ment to the d Boolean variables x1,...,x,, and its truth value (0 for false and 1 for
true).

For instance, let d = 3 and suppose that the true conjunction is x; A X2. Then, the
training sct S might contain the following instances:

((1,1,1),0), ((1,0,1), 1), ((0,1,0),0)((1,0,0), 1).

Prove that the hypothesis class of all conjunctions over d variables is PAC learn-
able and bound its sample complexity. Propose an algorithm that implements the
ERM rule, whose runtime is polynomial in d - m.

Let X be a domain and let Dy, D3, ..., D, be a sequence of distributions over X. Let
‘H be a finite class of binary classifiers over X and let f € H. Suppose we are getting
a sample § of m examples, such that the instances are independent but are not iden-
tically distributed; the ith instance is sampled from D; and then y; is set to be f(x;).

Let D,, denote the average, that is, D, = (D1 + -+ Dy) /m.

29

30

A Formal Learning Model

3.6

37

3.8

Fix an accuracy parameter € € (0, 1). Show that
P|3heH st L, p(h)>eand Lis (k)= 0] < [H|e—m.

Hint: Use the geometric-arithmetic mean inequality.

Let H be a hypothesis class of binary classifiers. Show that if H is agnostic PAC
learnable, then H is PAC learnable as well. Furthermore, if A is a successful agnostic
PAC learner for H, then A is also a successful PAC learner for H.

(*) The Bayes optimal predictor: Show that for every probability distribution D, the
Bayes optimal predictor fp is optimal, in the sense that for every classifier g from
X to {0,1}, Lp(fp) < Lp(g).

(*) We say that a learning algorithm A is better than B with respect to some
probability distribution, D, if

Lp(A(S)) = Lp(B(S))

for all samples § € (X x {0, 1})". We say that a learning algorithm A is better than B,
if it is better than B with respect to all probability distributions D over X" x {0, 1}.

1. A probabilistic label predictor is a function that assigns to every domain point
x a probability value, #(x) € [0, 1], that determines the probability of predicting
the label 1. That is, given such an # and an input, x, the label for x is predicted by
tossing a coin with bias /i(x) toward Heads and predicting 1 iff the coin comes up
Heads. Formally, we define a probabilistic label predictor as a function, £ : ¥ —
[0,1]. The loss of such /& on an example (x, y) is defined to be |A(x) — y|, which is
exactly the probability that the prediction of 2 will not be equal to y. Note that
if 4 is deterministic, that is, returns values in {0, 1}, then |h(x) — y| = Ij(x)2y]-
Prove that for every data-generating distribution D over X x {0, 1}, the Bayes
optimal predictor has the smallest risk (w.r.t. the loss function £(h,(x,y)) =
|h(x)— y|, among all possible label predictors, including probabilistic ones).

2. Let X be a domain and {0, 1} be a set of labels. Prove that for every distribution
D over X x {0, 1}, there exist a learning algorithm Ap that is better than any
other learning algorithm with respect to D.

3. Prove that for every learning algorithm A there exist a probability distribution,
D, and a learning algorithm B such that A is not better than B w.r.t. D.

Consider a variant of the PAC model in which there are two example oracles: one
that generates positive examples and one that generates negative examples, both
according to the underlying distribution D on X. Formally, given a target function

f:X = {0,1}, let DT be the distribution over X+ = {x € X : f(x) = 1} defined by

DY (A)=D(A)/D(XT), for every A C At Similarly, D is the distribution over X'~
induced by D.

The definition of PAC learnability in the two-oracle model is the same as the
standard definition of PAC learnability except that here the learner has access to
m;,_(e, 8)1.i.d. examples from D1 and m™ (e, §) i.i.d. examples from D~ . The learner’s
goal is to output & s.t. with probability at least 1 — § (over the choice of the two
training sets, and possibly over the nondeterministic decisions made by the learning
algorithm), both Lp+ py(h) <€ and Lip_ 5)(h) <e.

1. (*) Show that if H is PAC learnable (in the standard one-oracle model), then H
is PAC learnable in the two-oracle model.

2. (**) Define h' to be the always-plus hypothesis and &~ to be the always-minus
hypothesis. Assume that h™,h~ € H. Show that if H is PAC learnable in the
two-oracle model, then H is PAC learnable in the standard one-oracle model.

4

Learning via Uniform Convergence

The first formal learning model that we have discussed was the PAC model. In
Chapter 2 we have shown that under the realizability assumption, any finite hypoth-
esis class is PAC learnable. In this chapter we will develop a general tool, uniform
convergence, and apply it to show that any finite class is learnable in the agnos-
tic PAC model with general loss functions, as long as the range loss function is
bounded.

4.1 UNIFORM CONVERGENCE IS SUFFICIENT FOR LEARNABILITY

The idea behind the learning condition discussed in this chapter is very simple.
Recall that, given a hypothesis class, H, the ERM learning paradigm works as fol-
lows: Upon receiving a training sample, S, the learner evaluates the risk (or error)
of each /i in H on the given sample and outputs a member of H that minimizes this
empirical risk. The hope is that an /i that minimizes the empirical risk with respect to
S is a risk minimizer (or has risk close to the minimum) with respect to the true data
probability distribution as well. For that, it suffices to ensure that the empirical risks
of all members of H are good approximations of their true risk. Put another way, we
need that uniformly over all hypotheses in the hypothesis class, the empirical risk
will be close to the true risk, as formalized in the following.

Definition 4.1 (e-representative sample). A training set S is called e-representative
(w.r.t. domain Z, hypothesis class #, loss function ¢, and distribution D) if

YheH, |Ls(h)—Lp(h) <e.

The next simple lemma states that whenever the sample is (¢/2)-representative,
the ERM learning rule is guaranteed to return a good hypothesis.

Lemma 4.2. Assume that a training set S is 5-representative (w.r.t. domain Z,
hypothesis class H, loss function £, and distribution D). Then, any output of
ERMy(S), namely, any hs € argmin,_,, Ls(h), satisfies

L‘D(hj) < min Lp(h) +e€.
heH

31

34

Learning via Uniform Convergence

Finally, if we choose
—_— log (2|H|/5)
2¢?
then
D"({(S:3heH,|Ls(h)— Lp(h)| > €)) < 8.

Corollary 4.6. Let H be a finite hypothesis class, let Z be a domain, and let € : H x
Z — [0,1] be a loss function. Then, H enjoys the uniform convergence property with
sample complexity

log (ZIHI/é)W
2¢2)

mi{ (e, 8) < [

Furthermore, the class is agnostically PAC learnable using the ERM algorithm with
sample complexity

mae.8) < mif (/2,8) < [w}
€

Remark 4.1 (The “Discretization Trick™). While the preceding corollary only
applies to finite hypothesis classes, there is a simple trick that allows us to get a
very good estimate of the practical sample complexity of infinite hypothesis classes.
Consider a hypothesis class that is parameterized by 4 parameters. For example,
let X =R, Y = {1}, and the hypothesis class, H, be all functions of the form
hg(x) = sign(x — 0). That is, each hypothesis is parameterized by one parameter,
0 € R, and the hypothesis outputs 1 for all instances larger than ¢ and outputs —1
for instances smaller than #. This is a hypothesis class of an infinite size. However,
if we are going to learn this hypothesis class in practice, using a computer, we will
probably maintain real numbers using floating point representation, say, of 64 bits.
It follows that in practice, our hypothesis class is parameterized by the set of scalars
that can be represented using a 64 bits floating point number. There are at most 2%4
such numbers; hence the actual size of our hypothesis class is at most 2°4. More gen-
erally, if our hypothesis class is parameterized by ¢ numbers, in practice we learn
a hypothesis class of size at most 2%/, Applying Corollary 4.6 we obtain that the
sample complexity of such classes is bounded by w. This upper bound
on the sample complexity has the deficiency of being dependent on the specific rep-
resentation of real numbers used by our machine. In Chapter 6 we will introduce
a rigorous way to analyze the sample complexity of infinite size hypothesis classes.
Nevertheless, the discretization trick can be used to get a rough estimate of the
sample complexity in many practical situations.

4.3 SUMMARY

If the uniform convergence property holds for a hypothesis class H then in most
cases the empirical risks of hypotheses in ‘H will faithfully represent their true
risks. Uniform convergence suffices for agnostic PAC learnability using the ERM
rule. We have shown that finite hypothesis classes enjoy the uniform convergence
property and are hence agnostic PAC learnable.

4.5 Exercises

4.4 BIBLIOGRAPHIC REMARKS

Classes of functions for which the uniform convergence property holds are also
called Glivenko-Cantelli classes, named after Valery Ivanovich Glivenko and
Francesco Paolo Cantelli, who proved the first uniform convergence result in the
1930s. See (Dudley, Gine & Zinn 1991). The relation between uniform convergence
and learnability was thoroughly studied by Vapnik - see (Vapnik 1992, Vapnik 1995,
Vapnik 1998). In fact, as we will see later in Chapter 6, the fundamental theorem of
learning theory states that in binary classification problems, uniform convergence is
not only a sufficient condition for learnability but is also a necessary condition. This
is not the case for more general learning problems (see (Shalev-Shwartz, Shamir,
Srebro & Sridharan 2010)).

4.5 EXERCISES

4.1 In this exercisc, we show that the (e, §) requirement on the convergence of errors in
our definitions of PAC learning, is, in fact, quite close to a simpler looking require-
ment about averages (or expectations). Prove that the following two statements are
equivalent (for any learning algorithm A, any probability distribution D, and any
loss function whose range is [0, 1]):

1. Forevery ¢, 8 > 0, there exists m(¢, §) such that ¥Ym > m(e, §)

SWI%M[LD(A(S)) >e]<é

lim E [Lp(A(5)]=0
(where Eg~p» denotes the expectation over samples S of size m).
4.2 Bounded loss functions: In Corollary 4.6 we assumed that the range of the loss func-
tion is [0, 1]. Prove that if the range of the loss function is [a, b] then the sample
complexity satisfies

2log (2|H|/8)(b — a)?

myy(e,8) < m%.f(e/Z.&) < 5

€

35

36

5

The Bias-Complexity Trade-off

In Chapter 2 we saw that unless one is careful, the training data can mislead the
learner, and result in overfitting. To overcome this problem, we restricted the search
space to some hypothesis class H. Such a hypothesis class can be viewed as reflecting
some prior knowledge that the learner has about the task — a belief that one of
the members of the class H is a low-error model for the task. For example, in our
papayas taste problem, on the basis of our previous experience with other fruits,
we may assume that some rectangle in the color-hardness plane predicts (at least
approximately) the papaya’s tastiness.

Is such prior knowledge really necessary for the success of learning? Maybe
there exists some kind of universal learner, that is, a learner who has no prior knowl-
edge about a certain task and is ready to be challenged by any task? Let us elaborate
on this point. A specific learning task is defined by an unknown distribution D over
X x Y, where the goal of the learner is to find a predictor 4 : X —), whose risk,
Lp(h), is small enough. The question is therefore whether there exist a learning
algorithm A and a training set size m, such that for every distribution D, if A receives
m ii.d. examples from D, there is a high chance it outputs a predictor # that has a
low risk.

The first part of this chapter addresses this question formally. The No-Free-
Lunch theorem states that no such universal learner exists. To be more precise, the
theorem states that for binary classification prediction tasks, for every learner there
exists a distribution on which it fails. We say that the learner fails if, upon receiving
i.i.d. examples from that distribution, its output hypothesis is likely to have a large
risk, say, > 0.3, whereas for the same distribution, there exists another learner that
will output a hypothesis with a small risk. In other words, the theorem states that no
learner can succeed on all learnable tasks — every learner has tasks on which it fails
while other learners succeed.

Therefore, when approaching a particular learning problem, defined by some
distribution D, we should have some prior knowledge on D. One type of such prior
knowledge is that D comes from some specific parametric family of distributions.
We will study learning under such assumptions later on in Chapter 24. Another type
of prior knowledge on D, which we assumed when defining the PAC learning model,

5.1 The No-Free-Lunch Theorem

is that there exists h in some predefined hypothesis class H, such that Lp(h) = 0. A
softer type of prior knowledge on D is assuming that minyey Lp(h) is small. In a
sense, this weaker assumption on D is a prerequisite for using the agnostic PAC
model, in which we require that the risk of the output hypothesis will not be much
larger than minpey Lp(h).

In the second part of this chapter we study the benefits and pitfalls of using a
hypothesis class as a means of formalizing prior knowledge. We decompose the
error of an ERM algorithm over a class H into two components. The first compo-
nent reflects the quality of our prior knowledge, measured by the minimal risk of a
hypothesis in our hypothesis class, minges Lp(f). This component is also called the
approximation error, or the bias of the algorithm toward choosing a hypothesis from
‘H. The second component is the error due to overfitting, which depends on the size
or the complexity of the class H and is called the estimation error. These two terms
imply a tradeoff between choosing a more complex H (which can decrease the bias
but increases the risk of overfitting) or a less complex H (which might increase the
bias but decreases the potential overfitting).

5.1 THE NO-FREE-LUNCH THEOREM

In this part we prove that there is no universal learner. We do this by showing that
no learner can succeed on all learning tasks, as formalized in the following theorem:

Theorem 5.1. (No-Free-Lunch) Let A be any learning algorithm for the task of
binary classification with respect to the 0—1 loss over a domain X. Let m be any num-
ber smaller than |X'| /2, representing a training set size. Then, there exists a distribution
D over X x {0, 1} such that:

1. There exists a function f: X — {0,1} with Lp(f)=0.
2. With probability of at least 1/7 over the choice of S ~ D™ we have that
Lp(A(S)) = 1/8.

This theorem states that for every learner, there exists a task on which it fails,
even though that task can be successfully learned by another learner. Indeed, a
trivial successful learner in this case would be an ERM learner with the hypoth-
esis class H = {f}, or more generally, ERM with respect to any finite hypothesis
class that contains f and whose size satisfies the equation m > 8log(7|#|/6) (see
Corollary 2.3).

Proof. Let C be a subset of A" of size 2m. The intuition of the proof is that any
learning algorithm that observes only half of the instances in C has no information
on what should be the labels of the rest of the instances in C. Therefore, there exists
a “reality,” that is, some target function f, that would contradict the labels that A(S)
predicts on the unobserved instances in C.

Note that there are T = 2?" possible functions from C to {0, 1}. Denote these
functions by fi,..., fr. For each such function, let D; be a distribution over C x {0, 1}
defined by

1/IC| ify= fi(x)
0 otherwise.

Di({(x,) = {

37

38

The Bias-Complexity Trade-off

That is, the probability to choose a pair (x, y) is 1/|C| if the label y is indeed the true
label according to f;, and the probability is 0 if y # fi(x). Clearly, Lp,(fi)=0

We will show that for every algorithm, A, that receives a training set of m
examples from C x {0, 1} and returns a function A(S) : C — {0, 1}, it holds that

max [Lp,(A(S))] = 1/4.
ie[T] s~ D'"

(5.1)

Clearly, this means that for every algorithm, A’, that receives a training set of m
examples from X' x {0, 1} there exist a function f : X — {0, 1} and a distribution D
over X x {0, 1}, such that Lp(f) =0 and

E [Lp(A'(S)]=1/4.

5.2
b ‘DI" ()

It is easy to verify that the preceding suffices for showing that P[Lp(A'(S)) > 1/8] >
1/7, which is what we need to prove (see Exercise 5.1).

We now turn to proving that Equation (5.1) holds. There arc k = (2m)" possible
sequences of m examples from C. Denote these sequences by Si...., 5. Also, if
Sj= (x1,....xn) we denote by SJ‘; the sequence containing the instances in §; labeled
by the function f;, namely, SJ'; = ((x1, fi(x1))s -, (xpn, fi(xm))). If the distribution is
D; then the possible training sets A can receive are S;. ..., 8}, and all these training
sets have the same probability of being sampled. Therefore,

. [D; (A(S))] ZL'D (A(S)))-

j 1

(5.3)

Using the facts that “maximum” is larger than “average” and that “average” is larger
than “minimum,” we have

T k
1 1
max - ZLD,(AG Nz =) =D Lo(A(S)
ie[T] k T = k it
o e :
= 2272 Lo(AGS))
j=1 " i=1
> min _Z Lp, (A(S})). (5.4)
jelkl T
Next, fix some j € [k]. Denote S; = (x1,...,x,) and let vy, ..., vp be the examples in

C that do not appear in S;. Clearly, p > m. Therefore, for every function 1 : C —

5.5 Exercises

think of the size of H as a measure of its complexity. In future chapters we will
define other complexity measures of hypothesis classes.

Since our goal is to minimize the total risk, we face a tradeoff, called the bias-
complexity tradeoff. On one hand, choosing H to be a very rich class decreases the
approximation error but at the same time might increase the estimation error, as a
rich ‘H might lead to overfitting. On the other hand, choosing #H to be a very small
set reduces the estimation error but might increase the approximation error or, in
other words, might lead to underfitting. Of course, a great choice for H is the class
that contains only one classifier — the Bayes optimal classifier. But the Bayes optimal
classifier depends on the underlying distribution D, which we do not know (indeed,
learning would have been unnecessary had we known D).

Learning theory studies how rich we can make while still maintaining reason-
able estimation error. In many cases, empirical research focuses on designing good
hypothesis classes for a certain domain. Here, “good” means classes for which the
approximation error would not be excessively high. The idea is that although we are
not experts and do not know how to construct the optimal classifier, we still have
some prior knowledge of the specific problem at hand, which enables us to design
hypothesis classes for which both the approximation error and the estimation error
are not too large. Getting back to our papayas example, we do not know how exactly
the color and hardness of a papaya predict its taste, but we do know that papaya is
a fruit and on the basis of previous experience with other fruit we conjecture that a
rectangle in the color-hardness space may be a good predictor.

5.3 SUMMARY

The No-Free-Lunch theorem states that there is no universal learner. Every learner
has to be specified to some task, and use some prior knowledge about that task, in
order to succeed. So far we have modeled our prior knowledge by restricting our
output hypothesis to be a member of a chosen hypothesis class. When choosing
this hypothesis class, we face a tradeoff, between a larger, or more complex, class
that is more likely to have a small approximation error, and a more restricted class
that would guarantee that the estimation error will be small. In the next chapter we
will study in more detail the behavior of the estimation error. In Chapter 7 we will
discuss alternative ways to express prior knowledge.

5.4 BIBLIOGRAPHIC REMARKS

(Wolpert & Macready 1997) proved several no-free-lunch theorems for optimiza-
tion, but these are rather different from the theorem we prove here. The theorem
we prove here is closely related to lower bounds in VC theory, as we will study in
the next chapter.

5.5 EXERCISES

5.1 Prove that Equation (5.2) suffices for showing that P[Lp(A(S))> 1/8] = 1/7.
Hint: Let 6 be a random variable that receives values in [0, 1] and whose expectation
satisfies E[0#] = 1/4. Use Lemma B.1 to show that P[¢ > 1/8] = 1/7.

41

42

The Bias-Complexity Trade-off

52

53

Assume you are asked to design a learning algorithm to predict whether patients
are going to suffer a heart attack. Relevant patient features the algorithm may have
access to include blood pressure (BP), body-mass index (BMI), age (A), level of
physical activity (P), and income (I).

You have to choose between two algorithms; the first picks an axis aligned rect-
angle in the two dimensional space spanned by the features BP and BMI and the
other picks an axis aligned rectangle in the five dimensional space spanned by all
the preceding features.

1. Explain the pros and cons of each choice.

2. Explain how the number of available labeled training samples will affect your

choice.

Prove that if |X'| > km for a positive integer k& > 2, then we can replace the lower
bound of 1/4 in the No-Free-Lunch theorem with % = % - % Namely, let A be a
learning algorithm for the task of binary classification. Let m be any number smaller
than |X'|/k, representing a training set size. Then, there exists a distribution D over
X x {0, 1} such that:

B There exists a function f : X — {0, 1} with Lp(f) =0.

B Es.pn[Lp(A(S)] 2 4 - £

6

The VC-Dimension

In the previous chapter, we decomposed the error of the ERMy; rule into approx-
imation error and estimation error. The approximation error depends on the fit
of our prior knowledge (as reflected by the choice of the hypothesis class H) to
the underlying unknown distribution. In contrast, the definition of PAC learn-
ability requires that the estimation error would be bounded uniformly over all
distributions.

Our current goal is to figure out which classes H are PAC learnable, and to
characterize exactly the sample complexity of learning a given hypothesis class. So
far we have seen that finite classes are learnable, but that the class of all functions
(over an infinite size domain) is not. What makes one class learnable and the other
unlearnable? Can infinite-size classes be learnable, and, if so, what determines their
sample complexity?

We begin the chapter by showing that infinite classes can indeed be learn-
able, and thus, finiteness of the hypothesis class is not a necessary condition for
learnability. We then present a remarkably crisp characterization of the family of
learnable classes in the setup of binary valued classification with the zero-one loss.
This characterization was first discovered by Vladimir Vapnik and Alexey Chervo-
nenkis in 1970 and relies on a combinatorial notion called the Vapnik-Chervonenkis
dimension (VC-dimension). We formally define the VC-dimension, provide several
examples, and then state the fundamental theorem of statistical learning theory,
which integrates the concepts of learnability, VC-dimension, the ERM rule, and
uniform convergence.

6.1 INFINITE-SIZE CLASSES CAN BE LEARNABLE

In Chapter 4 we saw that finite classes are learnable, and in fact the sample complex-
ity of a hypothesis class is upper bounded by the log of its size. To show that the size
of the hypothesis class is not the right characterization of its sample complexity, we
first present a simple example of an infinite-size hypothesis class that is learnable.

43

44

The VC-Dimension

Example 6.1. Let H be the set of threshold functions over the real line, namely,
H = {hy :a € R}, where h, : R — {0,1} is a function such that A,(x) = 1, 4. To
remind the reader, I, ., is 1 if x < a and 0 otherwise. Clearly, # is of infinite size.
Nevertheless, the following lemma shows that ‘H is learnable in the PAC model
using the ERM algorithm.

Lemma 6.1. Let H be the class of thresholds as defined earlier. Then, H is PAC
learnable, using the ERM rule, with sample complexity of my(e,8) < [log(2/8)/¢].

Proof. Let a* be a threshold such that the hypothesis h*(x) = 1|, .+ achieves
Lp(h*) = 0. Let D, be the marginal distribution over the domain A" and let a9 <
a* < aj be such that

_ri};‘. [x € (ap.a™)] = _&PD_‘ [x € (a*, ar)]=ce.

€ mass € Mmass
g a’ iy
(If Dy(—00,a*) < ¢ we set ag = —co and similarly for aq). Given a training set S,
let by = max{x : (x,1) € S} and by = min{x : (x,0) € S} (if no example in § is positive
we set bg = —oo and if no example in § is negative we set by = o0). Let bs be a

threshold corresponding to an ERM hypothesis, hs, which implies that bs € (by, by).
Therefore, a sufficient condition for Lp(hs) < € is that both by > ap and by < a;. In
other words,

Sm]l%m [Lp(hs) > €] S~]I‘DD"’ [bo < apV by > ay].

and using the union bound we can bound the preceding by

SwIFI))'" [Lp(hs) = €] = Sn«IFI))‘" [bo < ag]+ SNIF%)M b1 > aq]. (6.1)

The event by < ap happens if and only if all examples in § are not in the interval
(ag,a*), whose probability mass is defined to be ¢, namely,
. : *\] _ _\m —€m
S~J]’J;m [bo < ag] = S~IPI>)NF [V(x,y) e S, x&(ap,a”)]=(1—¢€)" <e™".
Since we assume m > log(2/8)/e it follows that the equation is at most §/2. In the
same way it is easy to see that Pg.pm [b] > a;] < §/2. Combining with Equation (6.1)
we conclude our proof. O

6.2 THE VC-DIMENSION

We see, therefore, that while finiteness of H is a sufficient condition for learnability,
it is not a necessary condition. As we will show, a property called the VC-dimension
of a hypothesis class gives the correct characterization of its learnability. To moti-
vate the definition of the VC-dimension, let us recall the No-Free-Lunch theorem
(Theorem 5.1) and its proof. There, we have shown that without restricting the
hypothesis class, for any learning algorithm, an adversary can construct a distri-
bution for which the learning algorithm will perform poorly, while there is another

6.2 The VC-Dimension

learning algorithm that will succeed on the same distribution. To do so, the adver-
sary used a finite set C C A" and considered a family of distributions that are
concentrated on elements of C. Each distribution was derived from a “true” tar-
get function from C to {0,1}. To make any algorithm fail, the adversary used the
power of choosing a target function from the sct of all possible functions from C to
{0,1}.

When considering PAC learnability of a hypothesis class H, the adversary is
restricted to constructing distributions for which some hypothesis i € H achieves a
zero risk. Since we are considering distributions that are concentrated on elements
of C, we should study how H behaves on C, which leads to the following definition.

Definition 6.2 (Restriction of H to C). Let H be a class of functions from X to {0, 1}
and let C = {cy,...,cn} C X. The restriction of H to C is the set of functions from C
to {0, 1} that can be derived from H. That is,

He ={(h(cr). .- h(cm)):h € H},
where we represent each function from C to {0, 1} as a vector in {0, 1}l

If the restriction of H to C is the set of all functions from C to {0, 1}, then we say
that H shatters the set C. Formally:

Definition 6.3 (Shattering). A hypothesis class H shatters a finite set C C X if the
restriction of H to C is the set of all functions from C to {0, 1}. That is, |H¢ | = 2/€I.

Example 6.2. Let #H be the class of threshold functions over R. Take a set C = {c{}.
Now, if we take a = ¢; + 1, then we have h,(c1) = 1, and if we take a = ¢y — 1, then
we have h,(c1) = 0. Therefore, H¢ is the set of all functions from C to {0, 1}, and H
shatters C. Now take a set C = {cq, 2}, where ¢1 < ¢3. No h € H can account for the
labeling (0, 1), because any threshold that assigns the label 0 to ¢; must assign the
label 0 to ¢, as well. Therefore not all functions from C to {0, 1} are included in H;
hence C is not shattered by H.

Getting back to the construction of an adversarial distribution as in the proof
of the No-Free-Lunch theorem (Theorem 5.1), we see that whenever some set C is
shattered by H, the adversary is not restricted by #, as they can construct a distri-
bution over C based on any target function from C to {0, 1}, while still maintaining
the realizability assumption. This immediately yields:

Corollary 6.4. Let ‘H be a hypothesis class of functions from X to {0,1}. Let m be a
training set size. Assume that there exists a set C C X of size 2m that is shattered by
‘H. Then, for any learning algorithm, A, there exist a distribution D over X x {0,1}
and a predictor h € H such that Lp(h) = 0 but with probability of at least 1/7 over the
choice of § ~ D™ we have that Lp(A(S)) > 1/8.

Corollary 6.4 tells us that if H shatters some set C of size 2m then we cannot learn
‘H using m examples. Intuitively, if a set C is shattered by H, and we receive a sample
containing half the instances of C, the labels of these instances give us no informa-
tion about the labels of the rest of the instances in C - every possible labeling of the
rest of the instances can be explained by some hypothesis in H. Philosophically,

45

48

The VC-Dimension

6.4 THE FUNDAMENTAL THEOREM OF PAC LEARNING

We have already shown that a class of infinite VC-dimension is not learnable. The
converse statement is also true, leading to the fundamental theorem of statistical
learning theory:

Theorem 6.7 (The Fundamental Theorem of Statistical Learning). Ler H be a
hypothesis class of functions from a domain X to {0, 1} and let the loss function be the
0—1 loss. Then, the following are equivalent:

e~

. H has the uniform convergence property.

. Any ERM rule is a successful agnostic PAC learner for H.
. H is agnostic PAC learnable.

. H is PAC learnable.

. Any ERM rule is a successful PAC learner for H.

. H has a finite VC-dimension.

= R R ST ¥

The proof of the theorem is given in the next section.
Not only does the VC-dimension characterize PAC learnability; it even deter-
mines the sample complexity.

Theorem 6.8 (The Fundamental Theorem of Statistical Learning — Quantitative
Version). Let H be a hypothesis class of functions from a domain X to {0,1} and let
the loss function be the 0—1 loss. Assume that VCdim(H) = d < oc. Then, there are
absolute constants C1, C2 such that

1. H has the uniform convergence property with sample complexity

cy d+log(1/8) 2

d+log(1/8)
=2 2

fnf,’;.("(e,)

2. M is agnostic PAC learnable with sample complexity

d+1 1/6 d+1 1/6
C1—+ ng(/)5 my(e,8) < C2—+ (:gz(/%)

€

3. H is PAC learnable with sample complexity

¢ d+log(1/8) < ma(c.8) < Czdlog(l/e)Jrlog(l/:S)

€ €
The proof of this theorem is given in Chapter 28.

Remark 6.3. We stated the fundamental theorem for binary classification tasks. A
similar result holds for some other learning problems such as regression with the
absolute loss or the squared loss. However, the theorem does not hold for all learn-
ing tasks. In particular, learnability is sometimes possible even though the uniform
convergence property does not hold (we will see an example in Chapter 13, Exercise
6.2). Furthermore, in some situations, the ERM rule fails but learnability is possible
with other learning rules.

