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Notation

The following is a list of commonly used notation. The first entry is the symbol
itself, followed by its meaning or name (if any) and the page number where
the definition appears. Some standard symbols like IR are not defined in the
text. There appears a * in place of the page number for these symbols.

Symbol Explanation Page
[C35s] classification of problems viii
[Hut04b] paper, book or other reference *
(5.3) label/reference for a formula/theorem/definition/... *
00 infinity *
{a,...,z}  set containing elements a.b,....y,z. {} is the empty set *
[a,b) interval on the real line, closed at a and open at b *
N,U,\,€ set intersection, union, difference, membership *
AV, Boolean conjunction (and), disjunction (or), negation (not) *
G,C subset, proper subset *
= implies *
& equivalence, if and only if, iff *
a q.e.d. (Latin), which was to be demonstrated *
v,3 for all, there exists *
~,<,>  approximately equal, less equal, greater equal 33
> much smaller/greater than *
= equivalent, identical, equal by definition *
= isomorphic *
= define as *
= corresponds to, informal equality *

asymptotically proportional to 33
x proportional to *
=,# equal to, not equal to *
+,—,,/  standard arithmetic operations: sum, difference, product, ratio *
Ng square root, *
<,>,<,> standard inequalities *

|S],|al size/cardinality of set S, absolute value of a *



xviii Notation

n—oo

argmin
Lh.s.
r.h.s.
w.r.t.

e.g.

ie.

etc.

cf.

et al.
q.ed.
ii.d.

iff
w.p.1/i.p.
im./im.s.
log

log;,

In

e
R
R+
N
Ny
Z
@

mapping, approaches, Boolean implication
converge to each other

limiting value of argument for n tending to infinity
replace with

ceiling of z: smallest integer larger or equal than z
floor of z: largest integer smaller or equal than x
Kronecker symbol, d,;, =1 if a=5b and 0 otherwise
summation from k=1 to n

summation over z for which u(z)#0

product from k=1 to n

Lebesgue integral, integral from a to b over z
natural numbers

finite strings

min-/maximal element of set: mingex f(z)=min{ f(z):z€ X'}
argmin, f(z) is the z minimizing f(z) (ties broken arbitrarily)

left-hand side

right-hand side

with respect to

exempli gratia (Latin), for example

id est (Latin), that is

et cetera (Latin), and so forth

confer (Latin, imperative of conferre), compare with
et alii (Latin), and others

quod erat demonstrandum (Latin), which was to be shown
independent identically distributed (random variables)
if and only if

with probability 1 / in probability

in the mean / in mean sum

logarithm to some basis

logarithm to basis b

natural logarithm to basis e=2.71828...

base of natural logarithm e=2.71828...

set of real numbers

set of nonnegative real numbers

set of natural numbers {1,2,3,...}

set of natural numbers including zero {0,1,2,3,...}
set of integers {...,—2,-1,0,1,2.3,...}

set of rational numbers {4}

33
33



Notation xix

B={0,1} binary alphabet *
ey action (output of agent) in cycle ¢, followed by ... 128
EX perception (feedback/input to agent) in cycle ¢ 45, 128
0, €0 informative input/observation in cycle ¢ 128
re € R C IRreward in cycle ¢ 128
€ some small positive real number *
€ empty string 33
% wildcard for some string (prefix, finite, or infinite) 33
Tin =x...2n, = string of length n 45, 68, 128
Tt =2...x¢4—1 = string of length t—1 45, 68, 128
W k:n action-perception sequence yrTg...YnTy 128
U<k actually realized action-perception sequence ¢1&1...Jx—14x—1 130
w infinite sequence, elementary event 33
£ sample space 42, 68
Iy ={w:w1.n =2Z1.n} = cylinder set 46, 68
(x) length of string = 33
(0) coding of object o 33
z,Y) uniquely decodable pairing of z and ¥ 33
' prefix coding of z 33
0O(),0()  big and small oh-notation 33
alh less within an additive const., i.e. a<b+O(1). Similarly £ 33
a<h less within a multiplicative const., i.e. a=0(b). Similarly = 33
K(z) prefix Kolmogorov complexity of string x 37
Km(zy.,) monotone (Kolmogorov) complexity of string z7., 47, 190
K(o01]02) Kolmogorov complexity of object o;, given object oy 37
MZ¢;  Solomonoff-Levin’s universal semimeasure 46, 48
M={r} (usually countable) set of (semi)measures 48, 81
EC € {Al, SP, FM, EX, SG, ...} is an environmental class *
Al artificial or algorithmic intelligence, 2
most general computational environmental class 130, 154

SP sequence prediction 187
CF classification 108
SG strategic two-player informed zero-sum games 192
FM function minimization 197
EX supervised learning (by examples) 204
pd probability density function / distribution / measure *
p(x1.,)  probability of string/sequence starting with z., 46, 68

e M true generating environmental pd 68



XX Notation

E expectation value, usually w.r.t. the true distribution
P probability, usually w.r.t. the true distribution u

68
68

pu(x1z5232,) 1 probability that the 2nd and 4" symbols of a string are

xo and x4, given the 1% and 3" symbols are z; and x5
veM any pd in M

p any pd not necessarily in M usually specifying a policy
£ =3 emWyv = mixture (belief) pd

Wy, prior degree of belief in v —or— weight of v

pPc pd of environmental argument type EC

¢EC mixture distribution of type EC for class EC

L incurred loss when predicting ¥ and z; is next symbol
14 v-expected instantaneous loss in step t of predictor A
Lﬁu v-expected cumulative loss of steps 1...n of predictor A
o, predictor with minimal number of p-expected errors

A, predictor that minimizes the p-expected loss

s, v-probability that @-predictor errs in step ¢

ES, v-expected number of errors in steps 1...n of predictor ©

LA ELﬁM abbreviation for true p-expected loss
VP (i <k ) value of policy p in environment v given history i <

i prediction/decision/action of predictor A in step t
A action of policy p in cycle k

Yk discounting sequence

I value function normalization (3.~ Vi)

m,h agent’s lifespan, horizon

P agent’s policy

q deterministic environment

Y policy that maximizes value VP

" .
V=Vl " true or generating value
¢ .
V= VP £ universal value

D, =D} . Telative entropy between p and £ for the first n cycles

132
70

68

48, 70
48, 70
185
185
86

99, 87
100
82

87

83

83

86
153
87

*

159
159
129, 169
126
126
130

130
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I have no particular talent. I am merely inquisitive.
— Albert Einstein

Albert Einstein
(1879-1955)
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This Chapter represents a short tour through the book. It is not meant as a
gentle introduction for novices, but as a condensed presentation of the most
important concepts and results of the book. The price for this brevity is that
in this chapter we mostly forgo mathematical rigor, subtleties, proofs, discus-
sions, references and comparisons to other work. More seriously, some sec-
tions demand high background knowledge. Readers unfamiliar with algorith-
mic information theory should first read Chapter 2 or consult the textbooks
[LV97, Cal02]. Readers unfamiliar with sequential decision theory should first
read Chapter 4 or consult the textbooks [BT96, SB98]. Before becoming dis-
couraged by the complexity of some of the sections, it is better to skip them
completely.

1.1 Introduction

Artificial Intelligence. The science of artificial intelligence (AI) might be
defined as the construction of intelligent systems and their analysis. A natural
definition of a system is anything that has an input and an output stream. In-
telligence is more complicated. It can have many faces like creativity, solving
problems, pattern recognition, classification, learning, induction, deduction,
building analogies, optimization, surviving in an environment, language pro-
cessing, knowledge and many more. A formal definition incorporating every
aspect of intelligence, however, seems difficult. Further, intelligence is graded:
There is a smooth transition between systems, which everyone would agree
to be not intelligent, and truly intelligent systems. One simply has to look in
nature, starting with, for instance, inanimate crystals, then amino acids, then
some RNA fragments, then viruses, bacteria, plants, animals, apes, followed
by the truly intelligent homo sapiens, and possibly continued by Al systems or
ETs. So, the best we can expect to find is a partial or total order relation on
the set of systems, which orders them w.r.t. their degree of intelligence (like
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intelligence tests do for human systems, but for a limited class of problems).
Having this order we are, of course, interested in large elements, i.e. highly
intelligent systems. If a largest element exists, it would correspond to the most
intelligent system which could exist.

Most, if not all, known facets of intelligence can be formulated as goal
driven or, more precisely, as maximizing some utility function. It is therefore
sufficient to study goal-driven Al For example, the (biological) goal of animals
and humans is to survive and spread. The goal of Al systems should be to
be useful to humans. The problem is that, except for special cases, we know
neither the utility function nor the environment in which the agent will operate
in advance.

Main idea. This book presents a theory that formally’ solves the problem
of unknown goal and environment. It might be viewed as a unification of the
ideas of universal induction, probabilistic planning and reinforcement learning,
or as a unification of sequential decision theory with algorithmic information
theory. We apply this model to some of the facets of intelligence, including
induction, game playing, optimization, reinforcement and supervised learning,
and show how it solves these problem classes. This, together with general
convergence theorems, supports the belief that the constructed universal Al
system is the best one in a sense to be clarified in the following, i.e. that it is
the most intelligent environment-independent system possible. The intention
of this book is to introduce the universal AI model and give an extensive
analysis.

1.2 Simplicity & Uncertainty

This section introduces Occam’s razor principle, Kolmogorov complexity, and
objective/subjective probabilities. We finally arrive at the problem of universal
prediction, and its solution by Solomonoff.

1.2.1 Introduction

An important and nontrivial aspect of intelligence is inductive inference. Sim-
ply speaking, induction is the process of predicting the future from the past,
or, more precisely, it is the process of finding rules in (past) data and us-
ing these rules to guess future data. Weather or stock-market forecasting or
continuing number series in an IQ) test are nontrivial examples. Making good
predictions plays a central role in natural and artificial intelligence in general,
and in machine learning in particular. All induction problems can be phrased

! With a formal solution we mean a rigorous mathematically definition, uniquely
specifying the solution. In the following, a solution is always meant in this formal
sense.
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as sequence prediction tasks. This is, for instance, obvious for time-series pre-
diction, but also includes classification tasks. Having observed data z; at times
t <n, the task is to predict the n** symbol z,, from sequence z;...z,—1. This
prequential approach [Daw84] skips over the intermediate step of learning a
model based on observed data z;...z,—; and then using this model to predict
Tp. The prequential approach avoids problems of model consistency, how to
separate noise from useful data, and many other issues. The goal is to make
“good” predictions, where the prediction quality is usually measured by a loss
function, which shall be minimized. The key concept to well-defining and solv-
ing induction problems is Occamn’s razor (simplicity) principle, which says that
“Entities should not be multiplied beyond necessity.” This may be interpreted
as keeping the simplest theory consistent with the observations z;...z,,_; and
using this theory to predict x,,. Before we can present Solomonoff’s formal so-
lution, we have to quantify Occam’s razor in terms of Kolmogorov complexity,
and introduce the notions of subjective and objective probabilities.

1.2.2 Algorithmic Information Theory

Intuitively, a string is simple if it can be described in a few words, like “the
string of one million ones”, and is complex if there is no such short description,
like for a random string whose shortest description is specifying it bit by bit.
We can restrict the discussion to binary strings, since for other (non-stringy
mathematical) objects we may assume some default coding as binary strings.
Furthermore, we are only interested in effective descriptions, and hence restrict
decoders to be Turing machines. Let us choose some universal (so-called prefix)
Turing machine U with unidirectional binary input and output tapes and a
bidirectional work tape. We can then define the prefix Kolmogorov complexity
[Cha75, Gédc74, Kol65, Lev74] of a binary string = as the length £ of the
shortest program p for which U outputs the binary string «

K(z) = min{¢(p) : U(p) = z}.

Simple strings like 000...0 can be generated by short programs, and, hence
have low Kolmogorov complexity, but irregular (e.g. random) strings are their
own shortest description, and hence have high Kolmogorov complexity. An
important property of K is that it is nearly independent of the choice of U.
Furthermore, it shares many properties with Shannon’s entropy (information
measure) S, but K is superior to S in many respects. Figure 2.11 on page 38
contains a schematic graph of K. To be brief, K is an excellent universal com-
plexity measure, suitable for quantifying Occam’s razor. There is (only) one
severe disadvantage: K is not finitely computable. More precisely, a function f
is said to be finitely computable (or recursive) if there exists a Turing machine
which, given z, computes f(z) and then halts. Some functions are not finitely
computable but still approzimable in the sense that there is a nonhalting Tur-
ing machine with an infinite output sequence y1,y2,ys,... with lim;_,.oy: = f(x).
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1.2.5 Generalized Universal (Semi)Measures

One can derive a universal prior in a different way: Solomonoff [Sol64, Eq.(13)]
defines a somewhat problematic mixture over all computable probability dis-
tributions. Levin [ZL70] considers the larger class My = {v1,14,...} of all
so-called enumerable semimeasures. Let € My, and assign (consistent with
Occam’s razor) a prior plausibility of 27 (¥a) to 1,. Then the prior plausibility
of x;., is, by elementary probability theory,

gU(-'El:n) = Z Q_K(u)y(wl:n)~ (13)

vEMy

One can show that &; coincides with M within an (irrelevant) multiplicative
constant, i.e. M (z)Z£&y(z), where f(z)Z g(x) abbreviates f(z)=0(g(z)), and
Z denotes < and >. Both & and M can be shown to be lower semicomputable.
The dominance M(z) % £y (x) > 2~ K y(z) is the central ingredient in the
proof of (1.2). The advantage of & over M is that the definition immediately
generalizes to arbitrary weighted sums of (semi)measures in M for arbitrary
countable M. Most proofs in this book go through for generic M and weights.

So, what is so special about the class of all enumerable semimeasures
My ? The larger we choose M, the less restrictive is the assumption that
M should contain the true distribution p, which will be essential throughout
the book. Why not restrict to the still rather general class of estimable or
finitely computable (semi)measures? For every countable class M, the mix-
ture §(z) :={m(x) := 3 e pmwov(x) with w, >0, the important dominance
&(x) > wyv(x) is satisfied. The question is, what properties does £ possess.
The distinguishing property of My is that £y is itself an element of My . On
the other hand, in this book &4 € M is not by itself an important property.
What matters is whether £ is computable in one of the senses we defined
above. There is an enumerable semimeasure (M) that dominates all enumer-
able semimeasures in My. As we will see, there is no estimable semimea-
sure that dominates all computable measures, and there is no approximable
semimeasure that dominates all approximable measures. From this it follows
that for a universal (semi)measure which at least satisfies the weakest form of
computability, namely being approximable, the largest dominated class among
the classes considered in this book is the class of enumerable semimeasures,
but there are even larger classes [Sch02a]. This is the reason why My and
M play a special role in this (and other) works. In practice though, one has
to restrict to a finite subset of finitely computable environments v to get a
finitely computable &.

1.3 Universal Sequence Prediction

In the following we more closely investigate sequence prediction (SP) schemes
based on Solomonoff’s universal prior M = &; and on more general Bayes
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mixtures £, mainly from a decision-theoretic perspective. In particular, we
show that they are optimal w.r.t. various optimality criteria.

1.3.1 Setup & Convergence

Let M :={vy,12,...} be a countable set of candidate probability distributions
on strings over the finite alphabet X. We define a weighted average on M:

Errn) == Y wyv(Trm), D wy =1, w, >0 (1.4)

veEM veEM

It is easy to see that £ is a probability distribution as the weights w, are pos-
itive and normalized to 1 and the v &€ M are probabilities. We call £ universal
relative to M, as it multiplicatively dominates all distributions in M in the
sense that £(21.,) >w, v(x1.,) for all v€ M. In the following, we assume that
M is known and contains the true but unknown distribution pu, i.e. p€ M,
and 7., is sampled from p. We abbreviate expectations w.r.t. u by E[..]; for
instance, E[f(z1.,)] =lemexny(:):1;n)f(a:1m). We use the (total) relative en-
tropy D,, and squared Euclidian distance S,, to measure the distance between
pand €:

D, = E

w(T1m
In f(’EI ] ZE

The following sequence of inequalities can be shown, which generalize
Solomonoft’s result (1.2): S, <D,, <Inw ' <oc. The ﬁmteness of S implies
&z} <) — iz} <) — 0 for t— o0 w.p.p.1 for any x} (3,057 <co=>s,—0).
We also show that Y 7 B[(\/&(xs]zce)/p(ay]xce) —1)%] < Dy, < lnawy! < oc,
which implies &(z¢|x<y)/p(z|T<4) — 1 for £ — oo w.pu.p.1. This convergence
motivates the belief that predictions based on (the known) £ are asymptoti-
cally as good as predictions based on (the unknown) p, with rapid convergence.

}: ( $t|$<r) (I;|ﬂf<t))2}- (1.5)

T,EX

1.3.2 Loss Bounds

Most predictions are eventually used as a basis for some decision or action,
which itself leads to some reward or loss. Let £,,,, €[0,1] C IR be the received
loss when performing prediction/decision/action y; € V, and z, € X is the
t*" symbol of the sequence. Let 3! € ) be the prediction of a (causal) pre-
diction scheme A. The true probability of the next symbol being x:, given
Ty, i8 p(z¢]T<t). The expected loss when predicting y; is E[£;,,,]. The total
pu-expected loss suffered by the A scheme in the first n predictions is

= Y Ell,,]
t=1
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The goal is to minimize the expected loss. More generally, we de-
fine the A, sequence prediction scheme (later also called SPp) yi» :=
argming, ey . p(z¢|T<t)ls,y,, which minimizes the p-expected loss. If u is
known, A, is obviously the best prediction scheme in the sense of achieving
minimal expected loss (LA» < LA for any A). We prove the following loss
bound for the universal A, predictor

0 < LA — LM < D, +4LAD, + D2 < 2D, +2\/LiD,. (1.6)

Together with L, <n and D, < Inw;1 < 00, this shows that %Lﬁf - %Lﬁf* =
O(n~1/2), i.e. asymptotically A¢ achieves the optimal average loss of A, with
rapid convergence. Moreover, L¢ is finite if LA is finite, and LA /LA —1 if
LAs is not finite. Bound (1.6) also implies LA > LA« —2, /LA¢ D,,, which shows
that no (causal) predictor A whatsoever achieves significantly less (expected)
loss than A¢. Note that for w, =2"KW) D, < In2- K (u) is of “reasonable”
size. Instantaneous loss bounds can also be proven.

1.3.3 Optimality Properties

For any predictor A, a worst-case lower bound that asymptotically matches the
upper bound (1.6) can be derived. More precisely, let A be any deterministic
predictor not knowing from which distribution p€ M the observed sequence
T12y... is sampled. Predictor A knows (depends on) M, w,, and ¢, and has at
time t access to the previous outcomes z.;. Then for every n there is an M
and p €M and £ and weights w, such that

LY — L > L[S, + VAL S, + 82, and D,/S, —1 for n — oco.

For the universal predictor A= A¢, the lower bound holds even without the
factor 3. This shows that bound (1.6) is quite tight in the sense that no
other predictor can lead to significantly smaller bounds without making extra
assumptions on M, w,,, or £. For instance, for logarithmic and quadratic loss
functions the regret L — L4+ is finite and bounded by T

A different kind of optimality is Pareto optimality. Let F(u,p) be any
performance measure of p relative to u. The universal prior £ is called Pareto
optimal w.r.t. F if there is no p with F(v,p) < F(v,€) for all v € M and
strict inequality for at least one v». We show that the universal prior £ is
Pareto optimal w.r.t. the squared distance S,,, the relative entropy D,,, and
the losses L,. That is, for all performance measures that are relevant from a
decision-theoretic point of view (i.e. for all loss functions ) any improvement
achieved by some predictor A, over A¢ in some environments v is balanced
by a deterioration in other environments. There are non-decision-theoretic
performance measures w.r.t. which £ is not Pareto optimal. Pareto optimality
is a rather weak notion of optimality, but it emphasizes the distinctiveness of
Bayes mixture strategies.
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Pareto optimality of & still leaves open the question of how to choose the
class M and the weights w,. We have argued that My is the largest M
suitable from a computational point of view. My is also sufficiently large if
we make the mild assumption that strings are sampled from a computable
probability distribution. We show that within the class of enumerable weight
functions with short program, the universal weights w, =2~5) lead to the
smallest performance bounds within an additive (to Inw;!) constant in all
enumerable environments. This argument justifies the selection of Solomonoft-

Levin’s prior (1.3) among all possible Bayes mixtures?

1.3.4 Miscellaneous

Games of chance. The general loss bound (1.6) can, for instance, be used
to estimate the time needed to reach the winning threshold in a game of
chance (defined as a sequence of bets, observations and rewards). At time ¢
we bet, depending on the history z-¢, a certain amount of money s;, take some
action y;, observe outcome z;, and receive reward r;. Our net profit, which
we want to maximize, iS pr =i — St € [Pmaz —PAPmaz)- The loss, which we
want to minimize, can be identified with the negative (scaled) profit, £, ., =
(Pmaz —pt)/Pa € [0,1]. The A,-system acts as to maximize the p-expected
profit. Let 2 be the average expected profit of the first n rounds. Bound (1.6)
shows that the average profit of the A¢ system converges to the best possible
average profit 2« achieved by the A, scheme (p¢ —pix =O(n=1/?) -0 for
n—o0). If there is a profitable scheme at all, then asymptotically the universal
A¢ scheme will also become profitable with the same average profit. We further
show using &y that (2pa/p2+)? In2-K(p) is an upper bound on the number
of bets n needed to reach the winning zone. The bound is proportional to the
complexity of the environment .

Continuous probability classes M. We have considered thus far count-
able probability classes M, which makes sense from a computational point
of view. On the other hand, in statistical parameter estimation one often
has a continuous hypothesis class (e.g. a Bernoulli(§) process with unknown
0 e[0,1]). Let M:={ug:0€©C IR} be a family of probability distributions
parameterized by a d-dimensional continuous parameter 8. Let p=pg, € M be
the true generating distribution. For a continuous weight density w(6) >0 the
sums in (1.4) are naturally replaced by integrals: £(z1.n):= [gw(0)-po(x1.n)d0
with [4w(#)df = 1. The most important property of £ in the discrete case
was the dominance £(z1.,) > w, - v(21.,), which was obtained from (1.4) by
dropping the sum over v. The analogous construction here is to restrict the
integral over @ to a small vicinity Ns of 6. For sufficiently smooth py and
w(B) we expect £(21.,)2|Ns, |- w(0) - pno(z1.n), where |Nj_ | is the volume of

4 Readers who smell some free lunch here [WM97] should appease their hunger
with Section 3.6.5.
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Ns, . This in turn leads to D,Shnw, ' +1n|Ns, |~!, where w, :=w(f). N,
should be the largest possible region in which Inue is approximately flat on
average. More precisely, generalizing [CB90] to the non-i.i.d. case, we show
D, < lnw‘;1 + gln% +0O(1), where the O(1) term depends on the smoothness
of g, measured by the Fisher information. D,, is no longer bounded by a con-
stant, but still grows only logarithmically with n, the intuitive reason being
the necessity to describe 8 to an accuracy O(n~1/2). So, bound (1.6) is also
applicable to the case of continuously parameterized probability classes.

1.4 Rational Agents in Known Probabilistic
Environments

1.4.1 The Agent Model

A very general framework for intelligent systems is that of rational agents
[RNO95]. In cycle k, an agent performs action y, €) (output), which results in
a perception zx €X (input), followed by cycle k+1, and so on. We assume that
the action and perception spaces X' and Y are finite. We write p(z<x) =y1.%
to denote the output y;.x of the agent’s policy p on input z., and similarly
q(y1.x) =21 for the environment ¢ in the case of deterministic environments.
We call policy p and environment ¢ behaving in this way chronological. The
figure on the book cover and on page 128 depicts this interaction in the case
where p and g are modeled by Turing machines. Note that policy and envi-
ronment are allowed to depend on the complete history. We do not make any
MDP or POMDP assumption here, and we do not talk about states of the envi-
ronment, only about observations. In the more general case of a probabilistic
environment, given the history ww<xye = 1. Wk-1Yk = Y1T1 - Yk~1Tk—1 Y,
the probability that the environment leads to perception zx in cycle k is (by
definition) pu(yr<xyz,). The underlined argument z, in p is a random vari-
able, and the other non-underlined arguments yr.xyx represent conditions?
We call probability distributions like @ chronological. Since value-optimizing
policies (see below) can always be chosen deterministic, there is no real need
to generalize the setting to probabilistic policies.

1.4.2 Value Functions & Optimal Policies

The goal of the agent is to maximize future rewards, which are provided by
the environment through the inputs z. The inputs zx =rox are divided into
a regular part o, and some (possibly empty or delayed) reward r €[0, 7naz).8
We use the abbreviation

® The standard notation pu(zx|yr<xyx) for conditional probabilities destroys the
chronological order and would become confusing in later expressions.

6 In the reinforcement learning literature when dealing with (PO)MDPs the reward
is usually considered to be a function of the environmental state. The zero-
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its behavior is completely defined by (1.10) and (1.11). It (slightly) depends
on the choice of the universal Turing machine, because K () and () depend on
U and hence are defined only up to terms of order one. The AIXI model also
depends on the choice of X and ), but we do not expect any bias when the
spaces are chosen sufficiently large and simple, e.g. all strings of length 216,
Choosing IN as the I/O spaces would be ideal, but whether the maxima (or
suprema) exist in this case has to be shown beforehand. The only nontrivial
dependence is on the horizon m. Ideally, we would like to chose m = oo, but
there are several subtleties to be unraveled later, which prevent at least a naive
limit m — co. So apart from m and unimportant details, the AIXI system is
uniquely defined by (1.10) and (1.11) without adjustable parameters.

1.5.2 On the Optimality of AIXI

Universality and convergence of £. One can show that also £ defined in
(1.10) is universal and rapidly converges to p analogous to the induction (SP)
case. If we take a finite product of conditional £’s and use the chain rule, we
see that also §(yr <k yry.p 1) converges to pu(yr <k iy, p) for k—oo. This gives
confidence that the outputs yi of the AIXI model (1.11) could converge to the
outputs yj of the Alx model (1.8), at least for a bounded moving horizon h.
The problems with a fixed horizon m and especially m — oo will be discussed
at the end of this section.

Universally optimal AI systems. We call an Al model universal if it is
independent, of the true environment. p (unbiased, model-free) and is able to
solve any solvable problem and learn any learnable task. Further, we call a
universal model universally optimal if there is no program that can solve or
learn significantly faster (in terms of interaction cycles). As the AIXI model
is parameter-free, £ converges to u, the Aly model is itself optimal, and we
expect no other model to converge faster to Al by analogy to the SP case,

we expect AIXI to be universally optimal.

This is our main claim. Further support is given below.

Intelligence order relation. We want to call a policy p more or equally
intelligent than a policy p’ and write p>=p’ if p yields in every cycle k and for
every fixed history gy, higher (future) {-expected reward sum than p’. It is a
formal exercise to show that p&>p for all p. The AIXI model is hence the most
intelligent agent w.r.t. . Relation > is a universal order relation in the sense
that it is free of any parameters (except m) or specific assumptions about
the environment. A proof that > is a reasonable intelligence order (which we
believe to be true) would prove that AIXI is universally optimal.

Value bounds. The values V) associated with the Alp systems correspond

roughly to the negative total loss — L% (with n=m) of the SPp (=A,,) systems.
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In the SP case we were interested in small bounds for the regret LAs —LAu,
Unfortunately, simple value bounds for AIXT or any other Al system in terms
of V;} analogous to the loss bound (1.6) cannot hold. We even have difficulties
in specifying what we can expect to hold for AIXI or any Al system that claims
to be universally optimal. In SP, the only important property of u for proving
loss bounds was its complexity K (u). In the Al case, there are no useful
bounds in terms of K (i) only. We either have to study restricted problem or
environmental classes or consider bounds depending on other properties of g,
rather than on its complexity only.

1.5.3 Value-Related Optimality Results

The mixture distribution £. In the following, we consider general Bayes
mixtures £ over classes M of chronological probability distributions v

E(ym) = Z w,v(iey,,) with Z w,=1 and w, >0 YveM.
veM veM

We define V7, p%, and V¢ as in (1.7)-(1.9) with u replaced by £. Policy p¢ is
called the AI¢ model. For £ =y the AIXI=AI{y model is recovered. If p is
unknown, but known to belong to the known class M, it is natural to follow
policy p¢, which maximizes VE. The (true p-)expected reward when following

policy p¢ is V‘fs. The optimal (but infeasible) policy p* yields reward Vg’" =V
It is now of interest (@) whether there are policies with uniformly larger value
than V?* and (b) how close VF® is to V7.

Linearity and convexity of V, in p. The following properties of V, are
crucial. V¥ is a linear function in p, and V' is a convex function in p in the
sense that
VEP - Z w, VP and Ve < Z w, V).
vem veM

Linearity is obvious from the definition of V, and convexity follows easily
from the convexity of max, and nonnegativity of the weights w,. One loose
interpretation of the convexity is that a mixture can never increase perfor-
mance.

Pareto optimality of AI£. Similarly to the SP case, one can show that p®
is Pareto optimal in the sense that there is no other policy p with V? > Vj’e
for all v € M and strict inequality for at least one v. In particular, AIXT is
Pareto optimal.

Self-optimizing policy p® w.r.t. average value. Since we do not know the
true environment p in advance, we are interested under which circumstances’

7 Here and elsewhere we interpret @., — b,, as an abbreviation for a.,, —b, — 0.
limy,— oo by may not exist.
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%VVPE — LV* for horizon m — oo for all veE M. (1.12)

Note that V,, as well as p = p5, depend on m. The least we must demand from
M to have a chance that (1.12) is true is that there exists a policy (sequence)
p=pm at all with this property, i.e.

Ip: VP — LV for horizon m — oo for all ve M. (1.13)

We show that this necessary condition is also sufficient, i.e. (1.13) implies
(1.12). This is another (asymptotic) optimality property of policy pé. If uni-
versal convergence in the sense of (1.13) is possible at all in a class of environ-
ments M, then policy p¢ converges in the same sense (1.12). We call policies
p with a property like (1.13) self-optimizing [KV86).

Unfortunately, the result is not an asymptotic convergence statement of
a single policy p%, since p¢ depends on m. The result merely says that under
the stated conditions the average value of pé, is arbitrarily close to optimum
for sufficiently large (pre-chosen) horizon m. This weakness will be resolved
in the following.

Discounted future value function. We now shift our focus from the total
value to future values (value-to-go). First, we have to get rid of the horizon
parameter m. We eliminate the horizon by discounting the rewards ry~» yirg
with ;>0 and ) ;-7 <oco and taking m— oco. The analogue of m is now an

eff
effective horizon heff, which may be defined b J.cjh" i3 e yi. Fur-
k Y Y 2=k i=k+h

thermore, we renormalize the value V by 3°°° v; and denote it by Vi.. Finally,
we extend the definition to probabilistic policies 7 (which is not essential). We
define the y-discounted weighted-average future value of (probabilistic) policy
m in environment p given history yr g, or shorter, the p-value of w given yr 1,
as

7r 1 .
kap(gfm<k) = Fk rrllgloo Z (’)fka+ +’Ym?"m)p(yl:<k?££k:m)77(yr<kEEk;m),
Yk:m

with I} ::Zfik'yi. The policy p” is defined as to maximize the future value

— np *p _ PP _ P P
pf = arg max Vk-r , Viy = ka = max Vk_y 2 Viy V.

Setting v, =1 for k£ <m and =0 for £ >m gives back the old undiscounted
model with horizon m and fof = éVpp. Note that Vi, depends on the real-
ized history yr . More important, p? can be shown to be independent of k.
Similarly to the undiscounted case, one can prove that for every k and history
: V™’ is a li f ion 1 Ve function i d pf i
w<k, Vil is a linear function in p, V¥ is a convex function in p, and p* is

£
Pareto optimal in the sense that there is no other policy m with V7" > V,f,r Y for

all v € M and strict inequality for at least one v. Finally, p¢ is self-optimizing
(w.r.t. discounted value) if M admits self-optimizing policies:
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1.5.5 The Choice of the Horizon

The only significant arbitrariness in the AIXI model lies in the choice of the
lifespan m or in the discounted case in the discount sequence 7. We will not
discuss ad hoc choices for specific problems. We are interested in universal
choices. In many cases the time we are willing to run a system depends on
the quality of its actions. Hence, the lifetime, if finite at all, is not known in
advance. Geometric discounting r,~»rk-v* solves the mathematical problem of
m— 00 but is not a real solution, since an effective horizon h*f ~Iny~! <o has
been introduced. The scale-invariant discounting ry~+7r,-k~% with a>1 has a
dynamic horizon h~k. This choice has some appeal, as it seems that humans of
age k years also usually do not plan their lives for more than the next ~k years.
It also satisfies the condition n”“:‘ —1, necessary for AI¢ being self-optimizing
in ergodic MDPs. The largest lower semicomputable horizon with guaranteed
finite reward sum I < oo is obtained by the discount re~ -2 KE)  where
K (k) is the Kolmogorov complexity of k. This is maybe the most attractive
universal discount. It is similar to a near-harmonic discount ry~»ry-k=(1+),
since 27K < 1/k for most k and 275*) > ¢/(klog?k) for some constant c.
We are not sure whether the choice of the horizon is of marginal importance,
as long as it is chosen sufficiently large, or whether the choice will turn out
to be a central topic for the AIXI model or for the planning aspect of any
universal Al system in general. Most, if not all, problems in agent design of
balancing exploration and exploitation vanish by a sufficiently large choice of
the (effective) horizon and a sufficiently general prior.

1.6 Important Environmental Classes

In this and the next section we define ¢ =& £ M be Solomonoff’s prior, i.e.
Al¢=AIXI. Each subsection represents an abstract on what will be done in
the corresponding section of Chapter 6.

1.6.1 Introduction

In order to give further support for the universality and optimality of the AL{
theory, we apply AI£ to a number of problem classes. They include sequence
prediction, strategic games, function minimization and, especially, how AI¢
learns to learn supervised. For some classes we give concrete examples to illu-
minate the scope of the problem class. We first formulate each problem class
in its natural way (when p**"*" is known) and then construct a formulation
within the Alx model and prove its equivalence. We then consider the conse-
quences of replacing p by €. The main goal is to understand why and how the
problems are solved by AI£. We only highlight special aspects of each problem
class. The goal is to give a better picture of the flexibility of the AI{ model.
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time bounds for practical problems can often be computed quickly, i.e.
timey, (x)/time,(x) often converges very quickly to zero. Furthermore, from
a practical point of view, the provability restrictions are often rather weak.
Hence, we have constructed for all those problems a solution that is asymp-
totically only a factor 1+4¢ slower than the (provably) fastest algorithm. On
the flip side, for realistically sized problems, the lower-order terms usually
dominate, which limits the practical use of My..

Algorithmic complexity and the shortest algorithm. A natural defi-
nition for the (Kolmogorov) complexity of a function f is the length of the
shortest program computing f: K'(f) := miny{4(p) : U(p,x) = f(z) Vz}. Un-
fortunately, K’ suffers from not even being approximable, since functional
equality of programs is in general undecidable. Let p* be a formal specifica-
tion or a program for f. Using K(p*) is also not a suitable alternative, since
it essentially depends on the choice of p* because, e.g. “dead code” in p* con-
tributes to K (p*). A satisfactory solution is to take the length of the shortest
program provably equivalent to p*:

K"(p*) := min{f(p) : a proof of [Vy:U(p,y) = U(p*,y)] exists}.
P

K" (like K) is upper semicomputable. Let p’ be some short description of p*.
We are now concerned with the computation time of p’. Could we get slower
and slower algorithms by compressing p* more and more? Interestingly, this is
not the case. Inventing complex (long) programs is not necessary to construct
asymptotically fast algorithms, under the stated provability assumptions, in
contrast to Blum’s theorem [Blu67, Blu71]. We show that there exists a pro-
gram p, equivalent to p* with

(i) p) < K"(p*) +0(1),
(i) times(x) < (1+4¢&)-ty(x) + 2 -time, (x) + 2,

where p is any program provably equivalent to p* with computation time
provably less than t,(z). That is, p is simultaneously among the shortest and
fastest programs.

Generalizations. Algorithm Mp. can be modified to handle I/O streams,
definable by a Turing machine with unidirectional input and output tapes
(and bidirectional work tapes) receiving an input stream and producing an
output stream, as is the case in the agent setup.

1.7.2 Time-Bounded AIXI Model

The major drawback of the AIXI model is that it is uncomputable. To over-
come this problem, we construct a modified algorithm AIXI¢l, which is still
superior to any other time ¢ and length ! bounded agent. The computation



