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Notation and Definitions

The following brief synopsis serves to introduce some of the notation and
terminology that will be needed throughout the book. More specific notions
are discussed in the chapter introductions, or, in some cases, in the individual
sections.

Sets

We shall require some definitions and notation from set theory.

Most of our problems are posed in d-dimensional Euclidean space, R? in
particular R' = R is just the set of real numbers or the real line, R? is the
(Euclidean) plane, and R* is usual (Euclidean) space. Points in R? are printed
in bold type x, y, etc, and we will sometimes use the coordinate form
X = (Xq,...,%4). If x and y are points of R? the distance between them is
Ix —yl= (z."j=1 bx; — vl

Sets, which will generally be subsets of R, are denoted by capital letters
(e.g., E, F, K, etc). In the usual way, x € E means that the point x is a member
of the set E, and E = F means that E is a subset of F. We write {x: condition}
for the set of x for which “condition” is true. The empty set, which contains
no elements, is written &5. The set of integers is denoted by Z and the rational
numbers by ©@. We sometimes use a superscript * to denote the positive
clements of a set (e.g., R* is the set of positive real numbers).

The closed ball of center x and radius r is defined by B.(x) = {y: |y — x| < r}.
Similarly, the open ball is {y: |y — x| < r}. Thus the closed ball contains its
bounding sphere, but the open ball does not. Of course, in R? a ball is a disk,
and in R! a ball is just an interval. If a < b, we write [a, b] for the closed
interval {x: a < x < b} and (a, b) for the open interval {x: a < x < b}.
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We write E U F for the union of the sets E and F (ie., the set of points
belonging to either E or F). Similarly, we write E n F for their intersection (i.c.,
the points in both E and F). More generally { J; E; denotes the union of an
arbitrary collection of sets {E;} (i.e., those points in at least one E;) and NiE:
denotes their intersection, consisting of the points common to all of the sets
E,. A collection of sets is disjoint if the intersection of any pair is the empty
set. The difference E\F consists of those points in E that are not in F, and
R\ E is called the complement of E.

An infinite set E is countable if its elements can be listed in the form x,, x,, ...
with every element of E appearing at a specific place in the list; otherwise the
set is uncountable. The scts Z and Q are countable but R is uncountable.

If E is any set of real numbers, the supremum, sup E, is the least number
msuch that x < mfor every x in E. Similarly, the infimum, inf E, is the greatest
number m such that m < x for every x in E. Roughly speaking, we think of
inf E and sup E as the minimum and maximum of the numbers in E, though
it should be emphasized that inf E and sup E need not themselves be in E.

We use the “floor” and “ceiling” symbols “| |” and “[ 1" to mean “the
greatest integer not more than” and “the least integer not less than.”

The diameter, diam E, of a subset E of R? is the greatest distance apart of
pairs of points in E; thus diam E = sup{|x — y|: x, y € E}. A set A is bounded
ifit has finite diameter, or, equivalently, is contained in some (sufficiently large)
ball.

We have already used the terms “open” and “closed” in connection with
intervals and balls, but these notions extend to much more general sets.
Intuitively, a set is closed if it contains its boundary and open if it contains
none of its boundary points. More precisely, a subset E of R? is open if, for
every x in E, there is some ball B,(x) of positive radius r, centered at x and
contained in E. A set E is closed if its complement is open; equivalently if for
every sequence X, in E that is convergent to a point x of R?, we have x in E.
The empty set ¢f and R? are regarded as both open and closed. The union of
any collection of open sets is open, as is the intersection of a finite collection
of open sets. The intersection of any collection of closed sets is closed, as is
the union of a finite number of closed sets.

The smallest closed set containing a set E, more precisely, the intersection
of all closed sets that contain E, is called the closure of E. Similarly, the interior
of a set E is the largest open set contained in E, that is the union of all open
subsets of E. The boundary of E is defined as the set of points in the closure
of E but not in its interior.

For our purposes, a subset of R? is compact if it is'closed and bounded.

A set E is thought of as connected if it consists of just one “piece”; formally
E is connected if there do not exist open sets U and V such that U U V contains
Eand with E n U and E n V disjoint and nonempty. A subset E of R? is termed
simply connected if both E and R?\E are connected.

There is a further class of sets that will be mentioned occasionally, though
its precise definition is indirect, and need not unduly concern the reader. The
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Borel sets are, roughly speaking, the sets that can be built up from open or
clase_:d sets by repeatedly taking countable unions and intersections. More
precisely, the class 2 of Borel sets in R? is the smallest collection of sets that
includes the open and closed sets, such that i E, E,, E,, ... are in @ then so
are | )2, B, (V2 E, and RI\E,

Occasionally we need to indicate the degree of smoothness of a curve or
surface. We say that such a set is C*(k = {, 2...) if it may be defined {ocally,
with respect to suitable coordinate axes, by a function that is k times differenti-
able with continuous kth derivative, A curve or susface is C© if it is € Sor
every positive integer k.

The notation f(x) = ofg(x)} means that f (x)/g{x}»0 as x— 2, and
fix) = Olg(x)) means that there is a constaat ¢ such that fx)] < clglx)|
for all sufficiently large x. Similarly, f{x) ~ g{x) means that x)g(x) -1 as
X~ o,

Geometrical transformatiouns

Let E and £ be any sets. A mapping, function, or transformation fftam E to
£ is & rule or formula that assaciates a point £(x) of F with each point x of £.
We write /1 E—F to denote this situation. If A < E, we write f(A) =
{f(x): x & A} fot the image of 4.

A function f: £ — F is called an injection or ane-ta-one function if fix) #
S(y) whenever x # y (i.e., if different elements of E are mapped (o different
elements of F). A function is catled a surjection or an onte funiction if, for every
Yy € F, there exists x € E such that f(x) = y. A function that is both an injection
and 4 sugjection s called a bijection or a one-to-one correspondence between
Eand F.

Certain transformations have particufar geometric significance. A transfor-
mation §: R - R4 is called a congruence or isometry if it preserves distances
(e, if |S{x) — S{y}| = |x ~ y} for all x, y ¢ R’}. Such a transformation also
preserves angles and transforms sets into congruent ones. Special cases include
rapsiations, which shift points a constant distance in parallel directions,
rotatiaus, which have a center a such that |S(x} — al = {x — af for all x, and
reflections, which map all points to their mirror images in a fixed (d — 1)-
dimensional plane. A congruence that may be achieved by a transiation
followed by a rotation is sometimes called a rigid motien or direct congruence.
A transformation S is a similarity if there is o positive constans ¢ such that
{8(x} ~ S(y)| = ¢{x — y| for all x, y e R?, and transforms each set E into a
similar set S(E). A similarity that preserves orientation {i.e., for which the line
segments [ $(x), S{y}] and {x, y] are paraliel) is calied a homethety and E and
S(£} are termed bomothetic. An affinity or affine transformation transforms
straight lines (o straight lines and may be thougtit of as a shearing (ransforma-
tion; the contracting or expanding effect need not be the same in every
direction. The effect of these transformations is shown in Figure N1.
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47 T

Direct congruence (Non-direct)
or rigid motion congruence
similarity homothety affinity

Figure N1. The effect of various transformations on a set E.

Length, area, and volume

For most of this book, an intuitive idea of length, area, and volume will be
perfectly adequate. However, a few problems involve sets that may be rather
irregular, and precise formulation of length, area, and volume requires a few
ideas from measure theory.

If E is a subset of R, we define the length or (one-dimensional) Lebesgue
measure L(E) of E as the infimum (i.e., the smaliest possible value) of the sums

2, (b; — a;) over all countable collections of intervals | |72, [a;, b;] that
cover E. If E itself consists of a finite or countable collection of intervals,
then L(E) equals the sum of the interval lengths. It turns out that it is not
possible to define L(E) consistently on all subsets of R, but only on a rather
large class of subsets called the Lebesgue measurable sets. Intervals, open and
closed sets, and Borel sets are all Lebesgue measurable, and finite and count-
able unions and complements of measurable sets are always measurable.
Length is additive, indeed countably additive, on such sets, in the sense that
if E, E,, ... are disjoint measurable sets, then L(| )2, E;} = Y 2, L(E;). Any
sets that can be constructed “effectively” (i.e., by specifying exactly which
points are in the set and not resorting to an axiom such as the axiom of choice)
are measurable, so for intuitive purposes, we may think of Lebesgue measure
as length in the obvious way.

Similarly, we can make the ideas of area or volume precise by intro-
ducing 2- or 3-dimensional Lebesgue measure. Thus if E = R?, we define
the area or plane Lebesgue measure of E to be A(E), the infimum of the
sums Y 2, (b, — @;)(d; — ¢;) taken over all countabie unions of rectangles
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2y [ai, b;] x [¢;, d;] that cover E. As in the one-dimensional case, A(E)
is defined consistently on the familiar types of sets. Volume of sets in R3,
and more generally, d-dimensional volume of subsets of RY are defined
analogously.

For a full treatment of measure theory, see, for example, Kingman &
Taylor.

J. F. C. Kingman & S. J. Taylor, Introduction to Measure and Probability, Cambridge
University Press, Cambridge, 1966; MR 36 # 1601.
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(a)
(b)

©

Figure A3. (a) A centro-symmetric convex set with center p. (b) The Reuleux triangle,
with each arc centered at the opposite vertex, is a set of constant width. (c) A set E and
its convex hull conv E.

triangle, consisting of three circular arcs centered at the opposite vertices
[Figure A3(b)] is of constant width.

The convex hull, conv E, of any set E is the smallest convex set that contains
E [i.c. the intersection of all convex sets containing E, which is necessarily
convex, see Figure A.3(c)].

The dimension, dim K, of a convex set K in R? is the least integer s such
that K is contained in an s-dimensional flat (i.e., translate of an s-dimensional
subspace). Thus a convex set in 3-dimensional space is O-dimensional if it is
a single point, 1-dimensional if it is a line segment, 2-dimensional if it is con-
tained in a plane but not in a line, and 3-dimensional if it contains a ball of
positive radius. It is sometimes convenient to define the dimension of an arbi-
trary set E as the dimension of its convex hull, and write dim E = dim conv E.
Very often questions in convexity are only of interest for proper convex sets in
R?, i.e, those with dim E = d, or, equivalently, those with nonempty interior.

We list below the standard references on convexity.

R. V. Benson, Euclidean Geometry and Convexity, McGraw-Hill, New York, 1966;
MR 35 #3844,

W. Blaschke, [Bla].

T. Bonnesen & W. Fenchel, [BF].

H. Busemann, Convex Surfaces, Interscience, New York, 1958, MR 21 # 3900.

H. G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958; MR 23
#A2123.

H. G. Eggleston, Problems in Euclidean Space-— Application of Convexity, Pergamon,
New York, 1957; MR 23 # A3228.
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L. Fejes Toth, [Fej).

L. Fejes Toth, [Fej'].

H. Guggenheimer, Applicable Geometry—Global and Local Convexity, Krieger, New
York, 1977; MR 56 # 1198.

H. Hadwiger, [Had].

H. Hadwiger, H. Debrunner & V. Klee, [HDK].

H. Hadwiger, Vorlesungen iiber Inhalt, Oberfliiche und Isoperimetrie, Springer, Berlin,
1957; MR 21 #1561.

P. J. Kelly & M. L. Weiss, Geometry and Convexity, Wiley, New York, 1979; MR
80h:52001.

S. R. Lay, Convex Sets and their Applications, Wiley, New York, 1982; MR 83e:52001.

K. Leichtweiss, Konvexe Mengen, Springer, Berlin, 1980; MR 81j:52001.

L. A. Lyusternik, Convex Figures and Polyhedra, Dover, New York, 1963, Heath,
Boston, 1966; MR 19, 57; 28 #4427; 36 #4435,

F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964; MR 30 # 503.

I. M. Yaglom & V. G. Boltyanskii, Convex Figures, Moscow, 1951; English transl.
Holt, Rinehart, and Winston, New York, 1961; MR 23 #A1283.

The following general articles also provide an introduction to aspects of
convexity:

V. Klee, What is a convex set? Amer. Math. Monthly 78 (1971} 616—631; MR 44 # 3202.

J. Dubois, Sur la convexité et ses applications, Ann. Sci. Math. Québec 1 (1977) 7-31;
MR 58 #24002.

P. M. Gruber, Seven small pearls from convexity, Math. Intelligencer 5 (1983) No. 1,
16-19; MR 85h:52001.

P. M. Gruber, Aspects of convexity and its applications, Exposition. Math. 2 (1984)
47-83; MR 86f:52001.

The following volumes of conference proceedings, which are detailed in full
under “Standard References” on pages xi—xii, will be invaluable to any serious
student of convexity: [BF], [DGS], [Fen], [GLMP], [GW], [Kay], [Kle],
[KB1, [RZ], [TW].

Al. The equichordal point problem. Perhaps the most notorious of all
problems in plane convexity was posed by Fujiwara and by Blaschke, Rothe
& Weitzenbdck in 1917, Is there a plane convex set having two distinct
equichordal points? An equichordal point has the property that every chord
through it has the same length, which we may take to equal 1 (see Figure
A4). A number of incorrect “proofs” of the conjecture have been published,
but a complete solution still seems far way. To quote Rogers: “If you are
interested in studying the problem, my first advice is ‘Don’t’. My second is ‘If
you must, do study the work of Wirsing and Butler,” and the third is “You
may well have to develop a sophisticated technique for obtaining uniform and
extremely accurate asymptotic expansions for the solutions of a certain re-
currence relation giving sequences of points on the boundary of such sets.””
Quite a bit is known about sets with two equichordal points if they exist.
Wirsing showed that they must be symmetric about the line L through the
two points and also about their perpendicular bisector. He also showed that
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Figure A4. pand p’ areequichordal points of K, with all chords shown of length one.

the boundary must be a real-analytic curve, and gave a recurrence relationship
for the coefficients of its power-series expansion near its intersections with L.
It follows that there are at most countably many such sets to within con-
gruence. Calling a the distance between the equichordal points, Ehrhart has
shown that a < 0.5 and Michelacci has shown that a must be one of a discrete
set of numbers with a < 0.33. Extensive computation is required in this work.

Wirsing has suggested the following generalized problem: Let C be a closed
convex curve, symmetrical about the origin 0. Let C,, C_ be C shifted a
distance to the right and left, respectively. Let f, (6) and f_ () be the defining
functions for C, and C_ in polar coordinates with respect to 0. Characterize
the curves that we can obtain as r(f) = ;{f,(0) + f_(0)}. If we can get a
circle, then C has two equichordal points.

The corresponding problem on the surface of a sphere turns out to be easier.
Spaltenstein specified a family of convex sets on the sphere each with two
equichordal points. (Here “convexity” and “chord” are defined in terms of
segments of great circle arcs). Similarly, Petty & Crotty showed that there
are (real) normed spaces in which there are convex sets with two equichordal
points.

Klee asked the related question whether there exist nonelliptical convex
curves C with two equireciprocal points. (A point p is equireciprocal if every
chord [x, y] of C through p satisfies [x — p|™ + |y — p|~! = ¢ for some con-
stant c¢.) Falconer, see also Hallstrom, showed that, except for certain unlikely
possibilities, any curve with two equireciprocal points must have the same
value of ¢ at each point. Further, any twice differentiable convex curve with
two equireciprocal points must be an ellipse, but on the other hand there
are nonelliptical convex curves with two equireciprocal points. One can gen-
eralize the problem to seek curves with pairs of points satisfying {x — p|* +
|y — p|* = c for any a. Do such curves exist for o other than —1 and 0?

W. Blaschke, W. Rothe & R. Weitzenbock, Aufgabe 552, Arch. Math. Phys. 27 (1917)
82,

G. J. Butler, On The “equichordal curve” problem and a problem of packing and
covering, PhD thesis, London, 1969.

G. A. Dirac, Ovals with equichordal points, J. London Math. Soc. 27 (1952) 429-437,
28(1953) 256; MR 14, 309.
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L. Dulmage, Tangents to ovals with two equichordal points, Trans. Roy. Soc. Canada
Sect. 111 (3) 48 (1954) 7-10; MR 16, 740.

E. Ehrhart, Un ovale a4 deux points isocordes? Enseign. Math. 13 (1967) 119-124;
MR 37 #823.

K. J. Falconer, On the equireciprocal point problem, Geom. Dedicata 14 (1983) 113
126; MR 84i:52004.

M. Fujiwara, Uber die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug
auf einen Punkt, Téhoku Math. J. 10 (1916) 99-103.

R. J. Gardner, Chord functions of convex bodies, J. London Math. Soc. (2) 36 (1987)
314-326; MR 88h:52006.

H. Hadwiger, Ungeldste Problem 3, Elem. Math, 10 (1955) 10-19.

A. P. Hallstrom, Equichordal and equireciprocal points, Bogasici Univ. J. Sci. 2 (1974)
83-88.

V. Klee, Can a plane convex body have two equireciprocal points? Amer. Math.
Monthly 76 (1969) 54-55, correction 78 (1971) 1114.

D. G. Larman & N. K. Tamvakis, A characterization of centrally symmetric convex
bodies in E", Geom. Dedicata 10 (1981) 161-176; MR 82j:52008.

G. Michelacci, A negative answer to the equichordal problem for not too small
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A2. Hammer’s x-ray problems. Suppose a homogeneous solid contains a
convex hole K and x-ray photographs are taken so that the “darkness” at each
point on a photograph determines the length of the chord of K along an x-ray
line [see Figure A5(a)]. How many pictures must be taken to permit exact
reconstruction of K if

(a) the x-rays issue from a point source, or
(b) the x-rays are assumed parallel?

In the plane case the problems may be expressed mathematically as follows:

(a’) We are given points X,,..., X, and functions f},..., fi: [0, 1) = R, and
seek a compact convex set K such that K intersects the line through x; making
an angle  with some fixed axis in a chord of length £,(9) [Figure A5(b)]. (We
say that K has chord function f; at x;.) For the sake of generality we allow the
X, to be either interior or exterior to K.

(b’) We are given angles 0,,..., 0 and functions Fy,..., ‘Fk: R —»_R, gnd
seek a compact convex set K such that K intersects the line in the direction
6, and at perpendicular distance ¢ from the origin in a chord of length Fi(t)
[Figure AS(c)].
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Figure A5. Hammer’s x-ray problem. (a) The intensity of the shadow on the screen
determines the lengths of chords of K. (b) The point source problem. (c) The parallel
chord problem.

There are a number of interesting questions which we state for case (a’); the
analogs for (b") should be clear.

(i) Uniqueness. When does a set of points X, X,, ..., X; have the property
that at most one convex set K corresponds to any set of chord functions
fioean &7

(i) Reconstruction. Given that a set of points and chord functions corre-
spond to a unique convex K, reconstruct K from this information.

(iii) Relative uniqueness. Given a convex set K, find a “small” set of points
such that the chord functions at these points distinguish K from all other
convex sets.

(iv) Existence. Given a set of points x,,..., x, find necessary or sufficient
conditions on functions f,..., f for there to exist a convex set with chord
function f;at x; (1 <i < k).

(v) Descriptive. Deduce qualitative properties of a convex set K from
properties of its chord functions at a set of points. For instance, if f;,..., f, are
all r times differentiable, then is the boundary of K an r times differentiable
curve?

A good deal of progress has been made on these problems in the last few
years, but there are still many open questions. For the point source problem,
Falconer has shown, using methods from dynamical systems, that, given points
x, and x, and functions f, and f;, there is at most one convex set with x, and
X, as interior points and chord functions f; and f, at these points. Moreover,
in principle at least, the method is constructive. Similarly, there are at most
two such convex sets K with x, and x, as exterior points and the line through
x, and x, intersecting the interior of K. One possibility has x, and x, on the
same side of K, the other on opposite sides. Surely it should always be possible
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logy. If K is centro-symmetric, there are d double normals (that is chords that
are normal at both ends) through the center, so the conjecture holds in this
case (see Lyusternik & Schnirelmann). If K has a twice differentiable bound-
ary, and either the insphere or the circumsphere of K touches at exactly d + 1
points, it is obvious that d + 1 normals pass through the center of the sphere.
However in this situation we do even better, since in fact there must be 2d + 2
normals through the center.

Zamfirescu has shown, rather surprisingly, that, in the sense of Baire
category based on the Hausdorff distance between convex sets, “most” interior
points of most convex bodies lie on infinitely many normals. (By most we
mean for all but a countable union of nowhere dense sets.) However, we should
remember that in the category sense most convex bodies are “exceptional” in
that they have highly irregular boundaries that are not even twice differentiable.

For bodies of constant width all normals are double normals. In this case
we would expect to find an interior point that lies on normals from 4d — 2
distinct boundary points; again this has been proved for d = 2 and 3.

In the plane, Guggenheimer asks the intriguing question of whether every
point in a certain (curvilinear) triangular region must lie on normals from four
boundary points.
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A4. Billiard ball trajectories in convex regions. Let K be a plane convex
region with boundary curve C. An idealized point “billiard ball” travels across
K in a straight line at constant speed and rebounds with equal angles of
incidence and reflection on hitting C. Study of billiard ball trajectories involves
complex ideas from ergodic theory and dynamical systems; we mention here
a few of the more intuitive problems.

It should be noted that some care is required in setting up these problems.
Halpern points out that even when C is a three times differentiable curve it is
actually possible for the billiard to pass from inside to outside K if the angle
of reflexion law is strictly adhered to! This paradox can occur when there are
infinitely many bounces in a finite time, but is avoided if the third derivative
of C is continuous. The two cases of particular interest are when C is smooth,
say infinitely differentiable, and when C is a polygon. In the latter case some



