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1
Geometry and Complex Arithmetic

I Introduction

1 Historical Sketch
Four and a half centuries have elapsed since complex numbers were first discov-
ered. Here, as the reader is probably already aware, the term complex number
refers to an entity of the form a + ib, where a and b are ordinary real numbers and,
unlike any ordinary number, i has the property that i2 = —1. This discovery would
ultimately have a profound impact on the whole of mathematics, unifying much
that had previously seemed disparate, and explaining much that had previously
seemed inexplicable. Despite this happy ending—in reality the story continues to
unfold to this day—progress following the initial discovery of complex numbers
was painfully slow. Indeed, relative to the advances made in the nineteenth century,
little was achieved during the first 250 years of the life of the complex numbers.

How is it possible that complex numbers lay dormant through ages that saw
the coming and the passing of such great minds as Descartes, Fermat, Leibniz, and
even the visionary genius of Newton? The answer appears to lie in the fact that,
far from being embraced, complex numbers were initially greeted with suspicion,
confusion, and even hostility.

Girolamo Cardano’s Ars Magna, which appeared in 1545, is conventionally
taken to be the birth certificate of the complex numbers. Yet in that work Car-
dano introduced such numbers only to immediately dismiss them as “subtle as
they are useless”. As we shall discuss, the first substantial calculations with com-
plex numbers were carried out by Rafael Bombelli, appearing in his L’Algebra
of 1572. Yet here too we find the innovator seemingly disowning his discoveries
(at least initially), saying that “the whole matter seems to rest on sophistry rather
than truth”. As late as 1702, Leibniz described i, the square root of —1, as “that
amphibian between existence and nonexistence”. Such sentiments were echoed
in the terminology of the period. To the extent that they were discussed at all,
complex numbers were called “impossible” or “imaginary”, the latter term having
(unfortunately) lingered to the present day’. Even in 1770 the situation was still
sufficiently confused that it was possible for so great a mathematician as Euler to
mistakenly argue that v—2 /=3

However, an “imaginary number” now refers to a real multiple of i, rather than to a general
complex numi ntally, the term “real number” was introduced precisely to distinguish
such a number from an *imaginary number”.
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The root cause of all this trouble seems to have been a psychological or philo-
sophical block. How could one investigate these matters with enthusiasm or confi-
dence when nobody felt they knew the answer to the question, “What is a complex
number?”

A satisfactory answer to this question was only found at the end of the eigh-
teenth century?. and in rapid ion, Wessel, Argand, and
Gauss all recognized that complex numbers could be given a simple, concrete,
geometric interpretation as points (or vectors) in the plane: The mystical quantity
a + ib should be viewed simply as the point in the xy-plane having Cartesian

i (a, b), or equi as the vector ing the origin to that point.
See [1]. When thought of in this way, the plane is denoted C and is called the
complex plane’.

3i * 44 3i

4
The Complex Plane
| .
C | 2-2i
. |
—2-3i
Figure [1]

The operations of adding or multiplying two complex numbers could now be

given equally definite meanings as g i ions on the two i

points (or vectors) in the plane. The rule for addition is illustrated in [2a]:

The sum A+B ofi l bers is given by the
rule of ordinary vector addition.

1

Note that this is consistent with [1], in the sense that 4 + 3 (for example) is indeed
the sum of 4 and 3i.
Figure [2b] illustrates the much less obvious rule for multiplication:

The length of AB is the product of the lengihs of A and B, and the
angle of AB is the sum of the angles of A and B.

This rule is not forced on us in any obvious way by [1], but note that it s at least
consistent with it, in the sense that 3i (for example) is indeed the product of 3 and

2Wallis almost hit on the answer in 1673; see Stillwell [1989, p. 191] for an account of this
interesting near miss.
3Also known as the “Gauss plane” or the “Argand planc”.
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[a] [b]

Figure [2]
i. Check this for yourself. As a more exciting example, consider the product of i
with itself. Since i has unit length and angle (/2), i2 has unit length and angle
7. Thusi? = —1.

The of the geometric i ion by Wessel and by Argand went
all but unnoticed, but the reputation of Gauss (as great then as it is now) ensured
wide dissemination and acceptance of complex numbers as points in the plane.
Perhaps less important than the details of this new interpretation (at least initially)
was the mere fact that there now existed some way of making sense of these
numbers—that they were now legitimate objects of investigation. In any event, the
floodgates of invention were about to open.

It had taken more than two and a half centuries to come to terms with complex
numbers, but the development of a beautiful new theory of how to do calculus
with such numbers (what we now call complex analysis) was astonishingly rapid.
Most of the fundamental results were obtained (by Cauchy, Riemann, and others)
between 1814 and 1851—a span of less than forty years!

Other views of the history of the subject are certainly possible. For example,
Stewart and Tall [1983, p. 7] suggest that the geometric interpretation® was some-
what incidental to the explosive development of complex analysis. However, it
should be noted that Riemann’s ideas, in particular, would simply not have been
possible without prior knowledge of the geometry of the complex plane.

2 Bombelli’s “Wild Thought”
The power and beauty of complex analysis ultimately springs from the multipli-
cation rule (2) in conjunction with the addition rule (1). These rules were first
discovered by Bombelli in symbolic form; more than two centuries passed before
the complex plane revealed figure [2]. Since we merely plucked the rules out of
thin air, let us return to the sixteenth century in order to understand their algebraic
origins.

Many texts seek to introduce complex numbers with a convenient historical
fiction based on solving quadratic equations,

N i idence: Wallis did.
in 1673; see footnote 2.
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=mx+ec 3)

Two thousand years Bc, it was already known that such equations could be solved
using a method that is equivalent to the modern formula,

x:%[m:t m2+4c].

But what if m? + 4c is negative? This was the very problem that led Cardano to
consider square roots of negative numbers. Thus far the textbook is being histor-
ically accurate, but next we read that the need for (3) to always have a solution
forces us to take complex numbers seriously. This argument carries almost as little
weight now as it did in the sixteenth century. Indeed, we have already pointed out
that Cardano did not hesitate to discard such “solutions™ as useless.

It was not that Cardano lacked the imagination to pursue the matter further,
rather he had a fairly compelling reason not fo. For the ancient Greeks mathematics
‘was synonymous with geometry, and this conception still held sway in the sixteenth
century. Thus an algebraic relation such as (3) was not so much thought of as a
problem in its own right, but rather as a mere vehicle for solving a genuine problem
of geometry. For example, (3) may be considered to represent the problem of
finding the intersection points of the parabola y = x? and the line y = mx + c.
See [3a].

[b]

Figure [3]

In the case of L; the problem has a solution; algebraically, (m? + 4¢) > 0
and the two intersection points are given by the formula above. In the case of Ly
the problem clearly does not have a solution; algebraically, (m? + 4c) < 0 and
the absence of solutions is correctly mani by the of “i ible”
numbers in the formula.

It was not the quadratic that forced complex numbers to be taken seriously, it
was the cubic,

3

=3px+2q.

[Ex. 1 shows that a general cubic can always be reduced to this form.] This equation
represents the problem of finding the intersection points of the cubic curve y = x*
and the line y = 3px + 2q. See [3b). Building on the work of del Ferro and
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Tartaglia, Cardano’s Ars Magna showed that this equation could be solved by
means of a remarkable formula [see Ex. 2]:

,’/q+\/m+{/q—\/;—~ @

Try it yourself on x> = 6x + 6.

Some thirty years after this formula appeared, Bombelli recognized that there
was something strange and paradoxical about it. First note that if the line y =
3px + 2q is such that p> > g then the formula involves complex numbers. For
example, Bombelli considered x* = 15x + 4, which yields

x= 2+ 1+ Y2110

In the previous case of [3a] this merely signalled that the geometric problem had
10 solution, but in [3b] it is clear that the line will always hit the curve! In fact
inspection of Bombelli’s example yields the solution x = 4.

As he struggled to resolve this paradox, Bombelli had what he called a “wild
thought™: perhaps the solution x = 4 could be recovered from the above expression
if Y2+ 117 = 2+ni and Y2Z—11i = 2 — ni. Of course for this to work he
would have to assume that the addition of two complex numbers A = a + i@ and
B = b +ib obeyed the plausible rule,

A+B=(a+id)+(b+ib)=(@+b)+i@+b). ®)

Next, to see if there was indeed a value of n for which ¥/2+ 11i = 2+ in, he
needed to calculate (2 + in)>. To do so he assumed that he could multiply out
brackets as in ordinary algebra, so that

(a+id) (b+ib)=ab+iab+ab)+i’ab.

Using i2 = —1, he concluded that the product of two complex numbers would be
given by

AB=(a+id) (b+ib)=(ab—ab)+i(ab+ab). ®)

This rule vindicated his “wild thought™, for he was now able to show that (2i)* =
2+ 11i. Check this for yourself.

‘While complex numbers themselves remained mysterious, Bombelli’s work
on cubic equations thus established that perfectly real problems required complex
arithmetic for their solution.

Just as with its birth, the subsequent development of the theory of complex
numbers was inextricably bound up with progress in other areas of mathematics
(and also physics). Sadly, we can only touch on these matters in this book; for a full
and fascinating account of these interconnections, the reader is instead referred to
Stillwell [1989]. Repeating what was said in the Preface, we cannot overstate the
value of reading Stillwell's book alongside this one.
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3 Some Terminology and Notation

Leaving history behind us, we now introduce the modern terminology and notation
used to describe complex numbers. The information is summarized in the table
below, and is illustrated in [4].

Name Meaning Notation
‘modulus of 2 Tength r of z F]
argument of z angle 6 of z arg ()
real part of z x coordinate of z Re(z)
imaginary part of z y coordinate of z Im(z)
imaginary number real multiple of i
real axis set of real numbers
imaginary axis set of imaginary numbers
complex conjugate of z | reflection of z in the real axis z

Kz . C
s © z=x+iy=rlf
o~

g
/
F y = Im(z) = imaginary part of z

9 = arg(z) = argument of 7 )

P

o| imaginary axis

real axis
x = Re(z) = real part of z

Z = complex conjugate of z = x — iy
.

Figure 4]

It is valuable to grasp from the outset that (according to the geometric view)
a complex number is a single, indivisible entity—a point in the plane. Only when
we choose to describe such a point with numerical coordinates does a complex
number appear to be compound or “complex”. More precisely, C is said to be two
dimensional, meaning that two real numbers (coordinates) are needed to label a
point within it, but exactly how the labelling is done is entirely up to us.

One way to label the points is with Cartesian coordinates (the real part x and
the imaginary part y), the complex number being written as z = x +iy. This is the
natural labelling when we are dealing with the addition of two complex numbers,
because (5) says that the real and imaginary parts of A + B are obtained by adding
the real and imaginary parts of A and B.

In the case of multiplication, the Cartesian labelling no longer appears natural,
for it leads to the messy and unenlightening rule (6). The much simpler geometric
rule (2) makes it clear that we should instead label a typical point z with its polar
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coordinates, r = [z| and 6 = arg z. In place of z = x + iy we may now write
z = r/6, where the symbol Z serves to remind us that § is the angle of z. [Although
this notation is still used by some, we shall only employ it briefly;
chapter we will discover a much better notation (the standard one) which will then
be used throughout the remainder of the book.] The geometric multiplication rule
(2) now takes the simple form,

(RL$) (rL8) = (Rr)L(¢ +6). @

In common with the Cartesian label x + iy, a given polar label 6 specifies a
unique point, but (unlike the Cartesian case) a given point does not have a unique
polar label. Since any two angles that differ by a multiple of 27 correspond to the
same direction, a given point has infinitely many different labels:

co=rl@—4m) =rl@ —-2n) =rl =rl@+21) =rlB +4m) =...

This simple fact about angles will become increasingly important as our subject
unfolds.

The Cartesian and polar coordinates are the most common ways of labelling
complex numbers, but they are not the only ways. In Chapter 3 we will meet
another particularly useful method, called “stereographic” coordinates.

4 Practice

Before continuing, we strongly suggest that you make yourself comfortable with
the concepts, terminology, and notation introduced thus far. To do o, try to con-
vince yourself geometrically (and/or algebraically) of each of the following facts:

Re(z) = §lz+3] Im(@) =4[z —7] lzl = V*? + y?
tan[arg 2] = {%;; =z rL60 = r(cosf +i sinf)
ing 1 2= Li sthat L = 1 — 1/
Defining 7 by (1/z) z = 1, it follows that 7 = 75 = FL(=0).
Rlp _R 1 > y
7o = rl@—0) x+0 X + "XT_M",
(I+i)=-4 (A+0)P=-250+1i) (1 +iv3) =26
1+iV3) _ 0 04D’ _ 5, T8 rl(—
i i i = Vi@ TZ=ri-6)
utun=u+an 2/ =7/

Lastly, establish the so-called generalized triangle inequality:
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la+z+-t+ml <lal+l2l+ -+l ®)

‘When does equality hold?

5 of ic and

We have been using the symbolic rules (5) and (6) interchangeably with the geo-
metric rules (1) and (2), and we now justify this by showing that they are indeed
equivalent. The equivalence of the addition rules (1) and (5) will be familiar to
those who have studied vectors; in any event, the verification is sufficiently straight-
forward that we may safely leave it to the reader. We therefore only address the
equivalence of the multiplication rules (2) and (6).

First we will show how the symbolic rule may be derived from the geometric
rule. To do so we shall rephrase the geometric rule (7) in a particularly useful and
important way. Let z denote a general point in C, and consider what happens to it—
where it moves to—when it is multiplied by a fixed complex number A = RZ¢.
According to (7), the length of z is magnified by R, while the angle of z is increased
by ¢. Now imagine that this is done simultaneously to every point of the plane:

Geometrically, multiplication by a complex number A = R.¢ is a
rotation of the plane through angle ¢, and an expansion of the plane ~ (9)
by factor R.

A few comments are in order:
« Both the rotation and the expansion are centred at the origin.

o It makes no difference whether we do the rotation followed by the expansion,
or the expansion followed by the rotation.

o If R < 1 then the “expansion” is in reality a contraction.

Figure [5] illustrates the effect of such a transformation, the lightly shaded
shapes being transformed into the darkly shaded shapes. Check for yourself that
in this example A = 1 +iv3=2/53.

It is now a simple matter to deduce the symbolic rule from the geometric
rule. Recall the essential steps taken by Bombelli in deriving (6): (i) i2 = —1;
(ii) brackets can be multiplied out, i.e., if A, B, C, are complex numbers then
A(B + C) = AB + AC. We have already seen that the geometric rule gives
us (i), and figure [5] now reveals that (i) is also true, for the simple reason that
rotations and expansions preserve parallelograms. By the geometric definition of
addition, B + C is the fourth vertex of the parallelogram with vertices 0, B, C. To
establish (ii), we merely observe that multiplication by A rotates and expands this

into another with vertices 0, AB, AC and A(B +C).
This completes the derivation of (6).
Conversely, we now show how the geometric rule may be derived from the
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AB+0)

Figure [5]

[e]

Figure [6]

symbolic rule’. We begin by considering the ion z > iz. di

to the symbolic rule, this means that (x + iy) +— (—y + ix), and [6a] reveals
that iz is z rotated through a right angle. We now use this fact to interpret the
transformation z - A z, where A is a general complex number. How this is done
may be grasped sufficiently well using the example A = 4 + 3i = 5/¢, where

51n every text we have examined this is done nsmg trigonometric identities. We believe that

ofthe wienple e fox comgle wmihicaion.
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¢ = tan~"(3/4). See [6b]. The symbolic rule says that brackets can be multiplied
out, so our transformation may be rewritten as follows:

> Az = (4+43i)z
= 4z+3(iz2)
= 4z+3(zrotated by 5).

This is visualized in [6c]. We can now see that the shaded triangles in [6¢] and
[6b] are similar, so multiplication by 5/¢ does indeed rotate the plane by ¢, and
expand it by 5. Done.

Il Euler’s Formula
1 Introduction

It is time to replace the r /6 notation with a much better one that depends on the
following miraculous fact:

! a0

This result was discovered by Leonhard Euler around 1740, and it is called Euler’s
formula in his honour.

Before attempting to explain this result, let us say something of its meaning
and utility. As illustrated in (7a], the formula says that /7 is the point on the unit
circle at angle 6. Instead of writing a general complex number as z = r /6, we can
now write z = re'?. Concretely, this says that to reach z we must take the unit
vector '’ that points at z, then stretch it by the length of z. Part of the beauty of
this representation is that the geometric rule (7) for multiplying complex numbers
now looks almost obvious:

(R‘,m) (”,m) — Rr £i®+9),

Put differently, algebraically manipulating e/? in the same way as the real function
&* yields true facts about complex numbers.

In order to explain Euler’s formula we must first address the more basic ques-
tion, “What does '® mean?” Surprisingly, many authors answer this by defining
€/ out of the blue, 10 be (cos # +i sin 6)! This gambit is logically unimpeachable,
but it is also a low blow to Euler, reducing one of his greatest achievements to a
mere tautology. We will therefore give two heuristic arguments in support of (10);
deeper arguments will emerge in later chapters.

2 Moving Particle Argument
Recall the basic fact that e* is its own derivative: d”—‘e" = €*. This is actually

a defining property, that is, if gjf(x) = f(x), and f(0) = 1, then f(x) =
&*. Similarly, if k is a real constant, then ¢** may be defined by the property



&2 = rei®

Figure [7]

£ f(x) = k f(x). To extend the action of the ordinary exponential function e*
from real values of x to imaginary ones, let us cling to this property by insisting
that it remain true if k = i, so that

%e" =iel". an

‘We have used the letter 1 instead of x because we will now think of the variable
as being time. We are used to thinking of the derivative of a real function as the
slope of the tangent to the graph of the function, but how are we to understand the
derivative in the above equation?

To make sense of this, imagine a particle moving along a curve in C. See
[7b]. The motion of the particle can be described parametrically by saying that at
time 1 its position s the complex number Z(f). Next, recall from physics that the
velocity V(1) is the vector—now thought of as a complex number—whose length
and direction are given by the i speed. and the i directi
of motion (tangent to the trajectory), of the moving particle. The figure shows the
movement M of the particle between time 7 and 7 + &, and this should make it
clear that z

1+ &) 20 _im M _ v,
u-o 50 8
Thus, given a complex function Z(r) of areal variable 7, we can always visualize
Z as the position of a moving particle, and 4Z as its velocity.

We can now use this idea to find the trajectory in the case Z(r) = ¢/'. See [8].
According to (11),

"—zm

velocity = V = i Z = position, rotated through a right angle.

Since the initial position of the particle is Z(0) = €° = 1, its initial velocity is i,
and so it is moving vertically upwards. A split second later the particle will have
moved very slightly in this direction, and its new velocity will be at right angles to
its new position vector. Continuing to construct the motion in this way, it is clear
that the particle will travel round the unit circle.
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V=izZ

[ initial velocity = i

O/ initial position = 1

Figure [8]

Since we now know that | Z(r)| remains equal to 1 throughout the motion, it
follows that the particle’s speed [V (r)| also remains equal to 1. Thus after time
# =6 the particle will have travelled a distance 6 round the unit circle, and so the
angle of Z(6) = ' will be 6. This is the geometric statement of Euler’s formula.

3 Power Series Argument

Forour argument, we begin by i ing property & f (x) =
£(x) in terms of power series. Assuming that f(x) can be expressed in the form
ag + ayx + axx® + - - -, a simple calculation shows that

e

ET

x2
r‘:f(x):l+x+?+ -
and further investigation shows that this series converges for all (real) values of x.

Putting x equal to a real value 6, this infinite sum of horizontal real numbers
is visualized in [9]. To make sense of e”, we now cling to the power series and
put x = if:

i L, G072 (i)
i0 LACA L
e’ =14i6+ 2 + N
Asillustrated in [9], this series is just as meaningful as the series for ¢?, but instead
of the terms all having the same direction, here each term makes a right angle with
the previous one, producing a kind of spiral.

This picture makes it clear that the known convergence of the series for e’
‘guarantees that the spiral series for e/ converges to a definite point in C. However,
it is certainly not clear that it will converge to the point on the unit circle at angle
6. To see this, we split the spiral into its real and imaginary parts:

& =) +iS®),

where
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(i9)*/2!

1 0 62/2! 63/3
Figure [9]
92 FERL
C(@)_l—F and  S@) = 0——+5,

At this point we could obtain Euler's formula by appealing to Taylor’s Theorem,
which shows that C(6) and S(8) are the power series for cos # and sin 8. However,
we can also get the result by means of the following elementary argument that
does not require Taylor’s Theorem.

We wish to show two things about ¢/® = C(8) + i S(6): (i) it has unit length,
and (ii) it has angle 6. To do this, first note that differentiation of the power series
C and S yields

C'=-S and S§'=C,
where a prime denotes differentiation with respect to 6.
To establish (i), observe that

:—9|e“’\2 =(C?+ 8% =2(CC' + 55) =0,

which means that the length of e*? is independent of 8. Since ¢/” = 1, we deduce
that [ = 1 for all 6.

To establish (ii) we must show that ©(8) = 6, where © (6) denotes the angle
of e, so that
NG
ce
Since we already know that C? + §2 = 1, we find that the derivative of the LHS
of the above equation is

an©(6) =

o

[lan©®)) = (1 +tan’©) &' = (1 + —) =g

and that the derivative of the RHS is
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Thus
e
do
which implies that ©(8) = 6 + const. Taking the angle of ¢/” = 1 to be 0 [would
it make any geometric difference if we took it to be 27?], we find that © = 6.
Although it is incidental to our purpose, note that we can now conclude (without
Taylor’s Theorem) that C(6#) and S(8) are the power series of cos 6 and sin 6.

4 Sine and Cosine in Terms of Euler’s Formula

A simple but important consequence of Euler’s formula is that sine and cosine can
be constructed from the exponential function. More precisely, inspection of [10]
yields

Figure [10]
e +e® =2cos8 and € — e =2ising,
or equivalently,
i —if i _ ,—if
cosf= 2T and sin6=-—_2 (12)
2 2

Il Some Applications
1 Introduction
Often problems that do not appear to involve complex numbers are nevertheless
solved most elegantly by viewing them through complex spectacles. In this section
we will illustrate this point with a variety of examples taken from diverse areas
of mathematics. Further examples may be found in the exercises at the end of the
chapter.

The first example [trigonometry] merely illustrates the power of the concepts
already developed, but the remaining examples develop important new ideas.

2 Trigonometry
All trigonometric identities may be viewed as arising from the rule for complex

multiplication. In the following examples we will reduce clutter by using the fol-
lowing shorthand: C = cosé, S = sin8, and similarly, ¢ = cos ¢, s = sin .



Figure [11]
To find an identity for cos(6 + ¢), view it as a component of ¢/ ®+#)_ See [11a].
Since

cos(@ +¢) +isin(0 +¢) = €@

ziatio

(C +iS)(c+is)

[Cc — Ss]+i[Sc + Cs],

I

we obtain not only an identity for cos(6 + ¢), but also one for sin(6 + ¢):

cos(@ +¢)=Cc—Ss and sin(6 +¢) = Sc+Cs.
This illustrates another powerful feature of using complex numbers: every complex
equation says two things at once. i

To simultaneously find identities for cos 3¢ and sin 36, consider e/*’:
cos30-+isin30 = ¢ = () = (C+is) = [ C* ~ 3¢5+ [3c2s - 7).
Using C? + 82 = 1, these identities may be rewritten in the more familiar forms,

c0s39 =4C* ~3C and  sin36 = —45° +35.

We have just seen how to express trig functions of multiples of # in terms of
powers of trig functions of 6, but we can also go in the opposite direction. For
example, suppose we want an identity for cos* 6 in terms of multiples of 6. Since
2cos6 = e’ + e,

i o4
2coste = (e’s + e"’)
= (e‘“ +e“"’) +4 (e"‘ + e“'”) +6

= 2cos46 +8cos26 +6



16 Geometry and Complex Arithmetic

= cos*9 = 1[cos4 +4cos26 +3].

Although Euler’s formula is extremely convenient for doing such calculations,
it is not essential: all we are really using is the equivalence of the geometric and
symbolic forms of complex multiplication. To stress this point, let us do an example
without Euler’s formula.

To find an identity for tan 36 in terms of T = tan 6, consider z = 1 +iT. See
[11b]. Since z is at angle 6, z* will be at angle 36, so tan36 = Im(z®)/Re(2%).
Thus,

3r-1°

P =1+iTP =0-3T)H+iBT-T?) = tan30= "

3 Geometry
We shall base our discussion of geometric applications on a single example. In
[12a] we have constructed squares on the sides of an arbitrary quadrilateral. Let

[a] [b)

Figure [12]

us prove what this picture strongly suggests: the line-segments joining the centres
of opposite squares are perpendicular and of equal length. It would require a
great deal of ingenuity to find a purely geometric proof of this surprising result,
so instead of relying on our own intelli let us invoke the intelli; of the
complex numbers!

Introducing a factor of 2 for convenience, let 2a, 2b, 2c, and 2d represent
complex numbers running along the edges of the quadrilateral. The only condition
is that the quadrilateral close up, i.c.,

a+b+c+d=0.

As illustrated, choose the origin of C to be at the vertex where 2a begins. To reach
the centre p of the square constructed on that side, we go along a, then an equal
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distance at right angles to a. Thus, since ia is a rotated through a right angle,
p=a+ia=(1+i)a. Likewise,

g=2a+(1+ib, r=2a+2b++i)c, s=2a+2b+2+(1+i)d.

The complex numbers A = s — g (from ¢ to 5) and B = r — p (from p to r) are
therefore given by

A=(b+2c+d)+id—b) and B=(a+2b+c)+i(c—a).

We wish to show that A and B are perpendicular and of equal length. These
two statements can be combined into the single complex statement B = i A, which
says that B is A rotated by (r/2). To finish the proof, note that this is the same
thing as A +i B = 0, the verification of which is a routine calculation:

A+iB=(a+b+c+d)+ila+b+c+d) =

As a first step towards a purely geometric explanation of the result in [12a],
consider [12b]. Here squares have been constructed on two sides of an arbitrary
triangle, and, as the picture suggests, the line-segments from their centres to the
midpoint m of the remaining side are perpendicular and of equal length. As is
shown in Ex. 21, [12a] can be quickly deduced® from [12b]. The latter result can,
of course, be proved in the same manner as above, but let us instead try to find a
purely geometric argument.

To do so we will take an ing detour, i igati ions and
rotations of the plane in terms of complex functions. In reality, this “detour” is much
more important than the geometric puzzle to which our results will be applied.

Let 7, denote a translation of the plane by v, so that a general point z is mapped
to 7,(z) = z + v. See [13a], which also illustrates the effect of the translation on
a triangle. The inverse of T;,, written 7!, is the transformation that undoes it;
more formally, 7,”" is defined by 7,7' o 7, = & = T, o 7!, where £ is the
“do nothing” transfon-nalion (called the identity) that maps each point to itself:
£(z) =z.Clearly, 7,7 =

If we perform 7;, fol]ow:d by another translation 7,,, then the composite
mapping 7,, o 7, of the plane is another translation:

TwoTo(@) = Tw(@+v) =2+ (W + v) = Ty

This gives us an interesting way of motivating addition itself. If we had introduced
a complex number v as being the translation 7;, then we could have defined the
“sum” of two complex numbers 7, and 7y, to be the net effect of performing
these translations in succession (in either order). Of course this would have been
equivalent to the definition of addition that we actually gave.

SThis approach is based on a paper of Finney [1970].
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0
o [b]
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Ygt’s “
o~
Ri()
Ta—I
z
Figure [13]
Let R denote a rotation of the plane through angle 8 about the point a. For
example, REoRY = R4+, and (RE) ™' = R;?. Asafirst step towards expressing

rotations as complex functions, note that (9) says that a rotation about the origin
can be written as Rf (z) = e'®z.

As illustrated in [13b], the general rotation ‘RZ can be performed by translating
a 10 0, rotating 6 about 0, then translating 0 back to a:

Ri@ = (ToRGe T, ") @ = —a) +a=ez+k,

where k = a(l — ¢®). Thus we find that a rotation about any point can instead
be expressed as an equal rotation about the origin, followed by a translation:
RY = (Tr o R}). Conversely, a rotation of a about the origin followed by a
translation of v can always be reduced to a single rotation:

T,0R§ =RY, where c=v/(1—e).

In the same way, you can easily check that if we perform the translation before the
rotation, the net ion can again be i with a single rotation:
Rf o T, = RE. Whatis p?

The results just obtained are certainly not obvious geometrically [try them],
and they serve to illustrate the power of thinking of translations and rotations as
complex functions. As a further illustration, consider the net effect of perform-
ing two rotations about different points. Representing the rotations as complex
functions, an easy calculation [exercise] yields

(REoRE) @ =@z 40, where v=ae®(1— ) +b(1 — ).
Unless (6 + ¢) is a multiple of 27, the previous paragraph therefore tells us that

v _ ae'®(1—e) +b(1 - €'?)

¢ RO _ RO+ -
Ry oRg=R™?,  where c= —d6o 1 — @

[What should ¢ equal if b = a or ¢ = 0? Check the formula.] This result is



Some Applications 19

[b]

Figure [14]

illustrated in [14a]. Later we shall find a purely geometric explanation of this
result, and, in the process, a very simple geometric construction of the point ¢
given by the complicated formula above.

If, on the other hand, (6 + ¢) is a multiple of 277, then ¢/®+® = 1, and

RERE=T,, where v=(l—-e?)b—a).
b °Ra

For example, putting § = ¢ = , this predicts that R} o RY = Tap—q) is a
translation by twice the complex number connecting the first centre of rotation to
the second. That this is indeed true can be deduced directly from [14b].

The above result on the composition of two rotations implies [exercise] the
following:

Let M =Rl o---0R% o R\ be the composition of n rotations,
and let © = 6y + 6, + - - - + 6, be the total amount of rotation. In
general, M = R (for some c), but if © is a multiple of 27 then
M =T, for some v.
Returning to our original problem, we can now give an elegant geometric
explanation of the result in [12b]. Referring to [15a], let M = R o Ry o
RED . According to the result just obtained, M is a translation. To find out what

translation, we need only discover the effect of M on a single point. Clearly,
M(k) = k, so M is the zero translation, i.e., the identity transformation €. Thus

R oRID = (RE) ™ o M =RE,.
If we define s’ = R, (s) then m is the midpoint of ss”. But, on the other hand,
s = (REP <R (5) = R (5).

Thus the triangle sps’ is isosceles and has a right angle at p, so sm and pm are
perpendicular and of equal length. Done.
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[a]

Z(t) = e

Figure [15]
4 Calculus
For our calculus example, consider the problem of finding the 1001 derivative of
€* sin x. More generally, we will show how complex numbers may be used to find
the nh derivative of e%* sin bx.

In discussing Euler’s formula we saw that e* may be thought of as the location
at time ¢ of a particle travelling around the unit circle at unit speed. In the same
way, e/” may be thought of as a unit complex number rotating about the origin
with (angular) speed b. If we stretch this unit complex number by €% as it turns,
then its tip describes the motion of a particle that is spiralling away from the origin.
See [15b].

‘The relevance of this to the opening problem is that the location of the particle
attime is

Z(1) = e = ¥ cosbr +i e sinbr.

Thus the derivative of e%' sin bt is simply the vertical (imaginary) component of
the velocity V of Z.

We could find V simply by differentiating the components of Z in the above
expression, but we shall instead use this example to introduce the geometric ap-
proach that will be used throughout this book. In [16], consider the movement
M = Z(t + §) — Z(t) of the particle between time ¢ and (¢ + 5).

Recall that V is defined to be the limit of (M /) as § tends to zero. Thus V'
and (M/8) are very nearly equal if & is very small. This suggests two intuitive
ways of speaking, both of which will be used in this book: (i) we shall say that
“V = (M/8) when § is infinitesimal” or (ii) that “V and (M/5) are ultimately
equal” (as § tends to zero).

We stress that here the words “ultimately equal” and “infinitesimal” are being
used in definite, technical senses; in particular, “infinitesimal” does not refer to
some mystical, infinitely small quantity”. More precisely, if two quantities X and

7For more on this distinction, see the discussion in Ch [1995].
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Y depend on a third quantity §, then

X
lim — =1 = “X =Y for infinitesimal §”.
el “X and Y are ultimately equal as § tends to zero”,

It follows from the basic theorems on limits that “ultimate equality” inherits many
of the properties of ordinary equality. For example, since V and (M/8) are ulti-
mately equal, so are V§ and M.

‘We now return to the problem of finding the velocity of the spiralling particle.
As illustrated in [16], draw rays from 0 through Z(r) and Z(t + §), together with
circular arcs (centred at 0) through those points. Now let A and B be the complex
numbers connecting Z(t) to the illustrated intersection points of these rays and
arcs. If § is infinitesimal, then B is at right anglesto A and Z,and M = A + B.

|Z|as

5

e (a+ib)

Figure [16]

Let us find the ultimate lengths of A and B. During the time interval §, the
angle of Z increases by b3, so the two rays cut off an arc of length b5 on the unit
circle, and an arc of length | Z|b8 on the circle through Z. Thus | B| is ultimately
equal to |Z|bs. Next, note that |A| is the increase in |Z(7)| occurring in the time
interval §. Thus, since

d d

—1Z(0)| = —-¢" =a|Z|,

a 1zl b7 alZ|
|Al is ultimately equal to | Z|a3.

The shaded triangle at Z is therefore ultimately similar to the shaded right
triangle with hypotenuse a + ib. Rotating the latter triangle by the angle of Z, you
should now be able to see that if § is infinitesimal then
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M = (a+ib) rotated by the angle of Z, and expanded by | Z|5
(a+ib)Zs
=V = Z—IZ:(a+ib)Z. (13)

Thus all rays from the origin cut the spiral at the same angle [the angle of (a +ib)],
and the speed of the particle is proportional to its distance from the origin.

Note that although we have not yet given meaning to % (where  is a general
complex number), it is certainly tempting to write Z (1) = e%¢/?" = ¢@+iP)t This
makes the result (13) look very natural. Conversely, this suggests that we should
define ¢ = ¢+ to be e*¢'”; another justification for this step will emerge in
the next chapter.

Using (13), it is now easy to take further derivatives. For example, the accel-
eration of the particle is

2

%z:%v:mﬁbﬂz:mumw

Continuing in this way, each new derivative is obtained by multiplying the previous

one by (a +ib). [Try sketching these successive derivatives in [16].] Writing (a +

ib) = Re'®, where R = +/a? + b2 and ¢ is the appropriate value of tan~ (b/a),
we therefore find that

ﬂz — (@+ib)" Z = R" ¢i" ¢t — Rnettgilhiind)

dm
Thus

a .

T et sinbr] = @ + 3% e sin b +nan G)]. (14)
5 Algebra

In the final year of his life (1716) Roger Cotes made a remarkable discovery that
enabled him (in principle) to evaluate the family of integrals,

/ dx
xn =1
where n = 1,2,3,.... To see the connection with algebra, consider the case

n = 2. The key observations are that the denominator (x> — 1) can be factorized
into (x — 1)(x + 1), and that the integrand can then be split into partial fractions:

dx 1 1 x—1
- = — dx =1h .
-1 5/[;(— x+l] * 2"[x+1]
As we shall see, for higher values of n one cannot completely factorize (x" — 1)
into linear factors without employing complex numbers—a scarce and dubious
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commodity in 1716' However Comwasawamthmnfh:couldhukduwn (x" l)
intoreal /i
Here, a“real ic”

For example, (x* — 1) can be broken down into (x — 1)(x + 1) (x?+ 1), yielding
a partial fraction expression of the form

1 A B Cx D
- e
and hence an integral that i fIn and tan~"!. M n
even if the factorization involves more compli s than (x2 + 1), itis

easy to show that only In and tan~! are needed to evaluate the resulting integrals.

In order to set Cotes’ work on (x” — 1) in a wider context, we shall investigate
the general connection between the roots of a polynomial and its factorization.
‘This connection can be explained by considering the geometric series,

Guor =" 4 " 4 32 e

in which ¢ and z are complex. Just as in real algebra, this series may be summed
by noting that G, -1 and ¢G ) contain almost the same terms—try an example,
say m = 4, if you have trouble seeing this. Subtracting these two expressions
yields

@=0)Gpy =" =", (15)
and thus e
Gy = ——.
z—=c

1f we think of c as fixed and z as variable, then (" — ) is an m'™-degree
polynomial in z, and z = c is a root. The result (15) says that this m"'—deg:ee
polynomial can be factored into the product of the linear term (z — ¢) and the
(m — 1)"-degree polynomial G ;.

In 1637 Descartes published an important generalization of this result. Let
P, (2) denote a general polynomial of degree n:

Pa@) ="+ A 4+ D2+ E,
where the coefficients A, ..., E may be complex. Since (15) implies
Po(2) = Pa(c) = (2= ) [Gn1 + AGy2 + -+ D]

we obtain Descartes’ Factor Theorem linking the existence of roots to factoriz-
ability:

If ¢ is a solution of Py(z) = 0 then Py(z) = (z — ¢) Py—1, where
P,y is of degree (n — 1).
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If we could in turn find a root ¢’ of P,_1, then the same reasoning would yield
P, = (z — ¢)(z — ¢) Py—2. Continuing in this way, Descartes’ theorem therefore
holds out the promise of factoring P, into precisely n linear factors:

Pa@) =(z—c)z—c2) - (2 =) (16)

If we do not acknowledge the existence of complex roots (as in the early 18%
century) then this factorization will be possible in some cases (e.g., z2 — 1), and
impossible in others (e.g., z2 + 1). But, in splendid contrast to this, if one admits
complex numbers then it can be shown that P, always has n roots in C, and the
Jfactorization (16) is always possible. This is called the Fundamental Theorem of
Algebra, and we shall explain its truth in Chapter 7.

Each factor (z—cx) in (16) acomplex number ing the root c
to the variable point z. Figure [17a] illustrates this for a general cubic polynomial.
Writing each of these complex numbers in the form Ry €%, (16) takes the more
vivid form

Po(2) = RiRy -+ Ry & @1021+90)

Although the Fundamental Theorem of Algebra was not available to Cotes, let
us see how it guarantees that he would succeed in his quest to decompose x" — 1
into real linear and quadratic factors. Cotes’ polynomial has real coefficients, and,
quite generally, we can show that

If a polynomial has real coefficients then its complex roots occur in
complex conjugate pairs, and it can be factorized into real linear
and quadratic factors.

For if the coefficients A, ..., E of P,(z) are all real then P,(c) = 0 implies
[exercise] P,(Z) = 0, and the factorization (16) contains

(z—)z— =22 —(c+Dz+cc=2"—2Re(c) 2+ |cl’.
which is a real quadratic.

Let us now discuss how Cotes was able to factorize x" — 1 into real linear and
quadratic factors by appealing to the geometry of the regular n-gon. [An “n-gon” is
an n-sided polygon.] To appreciate the following, place yourself in his 18 century
shoes and forget all you have just learnt concerning the Fundamental Theorem of
Algebra; even forget about complex numbers and the complex plane!

For the first few values of n, the desired factorizations of U,(x) =
not too hard to find:

Ua(x) = x—D&+1),

Us(x) = G—DEE+x+1),

Usx) = (= DE+DEE+1),

Usw) = -0 (@+[5E]x 1) (24




Some Applications 25

Figure [17]

but the general pattern seems elusive.

To find such a pattern, let us try to visualize the simplest case, (17). See [17b].
Let O be a fixed point, and P a variable point, on a line in the plane (which we are
not thinking of as C), and let x denote the distance O P. If we now draw a circle
of unit radius centred at O, and let C; and C; be its intersection points with the
line, then clearly® Uz(x) = PC) - PCa.

To understand quadratic factors in this spirit, let us skip over (18) to the simpler
quadratic in (19). This factorization of Us(x) is the best we could do without
complex numbers, but ideally we would have liked to have decomposed Us(x)
into four linear factors. This suggests that we rewrite (19) as

Usx) = (x = Dx + DV2+1Vx2+1,

the last two “factors” being. ine linear factors. If we are
this expression (by analogy with the previous case) as the product of the dnstanc:s
of P from four fixed points, then Lhe points corresponding to the last two “factors™
must be off the line. More precisely, Pythagoras’ Theorem tells us that a point
whose distance from P is v/x? + 12 must lie at unit distance from O in a direction
at right angles to the line O P. Referring to [18a], we can now see that Us(x) =
PC) - PCy - PCs3 - PCy, where C1C2C3Cy is the illustrated square inscribed in
the circle.

Since we have factorized Uy (x) with the regular 4-gon (the square), perhaps
we can factorize U3 (x) with the regular 3-gon (the equilateral triangle). See [18b].
Applying Pythagoras’ Theorem to this figure,

C-PCy-PC; = PC,-(PCP=(x—1) ([; + é]z + [:é]z)

= (=DEE+x+1D),

SHere, and in what follows, we shall suppose for convenience that x > 1, 50 that Up (x) is
positive.
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[b]

Figure [18]

which is indeed the desired factorization (18) of U3(x)!
A plausible generalization for Uy now presents itself:

If C1C2C3 -+ Cy is a regular n-gon inscribed in a circle of unit
radius centred at O, and P is the point on OC) at distance x from
0, then Un(x) = PCy - PCy--- PCh.

This is Cotes’ result. Unfortunately, he stated it without proof, and he left no clue
as to how he discovered it. Thus we can only speculate that he may have been
guided by an argument like the one we have just supplied”.

Since the vertices of the regular n-gon will always come in symmetric pairs
that are equidistant from P, the examples in [18] make it clear that Cotes” result
is indeed equivalent to factorizing Uy (x) into real linear and quadratic factors.

Recovering from our feigned bout of amnesia concerning complex numbers
and their geometric interpretation, Cotes’ result becomes simple to understand
and to prove. Taking O to be the origin of the complex plane, and C; to be 1, the
vertices of Cotes’ n-gon are given by 41 = e/*@7/"_See [19], which illustrates
the case n = 12. Since (Cr+1)" = €/*2™ = 1, all is suddenly clear: The vertices of
the regular n-gon are the n complex roots of U, (z) = z" — 1. Because the solutions
of 2 — 1 = 0 may be written formally as z = /1, the vertices of the n-gon are
called the n™ roots of unity.

By Descartes’ Factor Theorem, the complete factorization of (2" — 1) is there-
fore

Un(2) = (2= C)(z = C2) -+ (2 = Cp).

with each conjugate pair of roots yielding a real quadratic factor,

(e = 1Y (2 = 4B = 2 2z cos 3] 4 1.

Each factor (z—Cy) = Ry, €/% may be viewed (cf. [17a]) as a complex number
connecting a vertex of the n-gon to z. Thus, if P is an arbitrary point in the plane

9Siillwell [1989, p. 195] has instead speculated that Cotes used complex numbers (as we are
about to), but then deliberately stated his findings in a form that did not require them.
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Figure [19]
(not merely a point on the real axis), then we obtain the following generalized form

of Cotes’ result:
Up(P) = [PCy - PCy--- PCyl €',

where ® = (@1 +¢2+- - -+¢n). If P happens to be a real number (again supposed
greater than 1) then & [make sure you see this], and we recover Cotes’ result.

‘We did not immediately state and prove Cotes’ result in terms of complex
numbers because we felt there was something rather fascinating about our first,
direct approach. Viewed in hindsight, it shows that even if we attempt to avoid
complex numbers, we cannot avoid the geometry of the complex plane!

6 Vectorial Operations
Not only is complex addition the same as vector addition, but we will now show
that the familiar vectorial operations of dot and cross products (also called scalar
and vector products) are both subsumed by complex multiplication. Since these
vectorial opemuons are extremely important in physics—they were discovered
by physici: ion with complex multiplication will prove valuable
both in applying complex analysis to the physical world, and in using physics to
understand complex analysis.

When a complex number z = x + iy is being thought of merely as a vector,
we shall write it in bold type, with its components in a column:

=x+iy & z:(;)

Although the dot and cross product are meaningful for arbitrary vectors in space,
we shall assume in the following that our vectors all lie in a single plane—the
complex plane.

Given two vectors a and b, figure [20a] recalls the definition of the dot product
as the length of one vector, times the projection onto that vector of the other vector:

= |a| |b| cos# = b-a
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where 6 is the angle between a and b.

Figure [20b] recalls the definition of the cross product: a x b is the vector
perpendicular to the plane of a and b whose length is equal to the area A of the
parallelogram spanned by a and b. But wait, there are two (opposite) directions
perpendicular to C; which should we choose?

‘Writing A = |a| |b| sin 6, the area A has a sign attached to it. An easy way to
see this sign is to think of the angle 6 from a to b as lying in range —7 to 7; the
sign of A is then the same as 6. If A > 0, as in [20b], then we define a x b to point
upwards from the plane, and if A < 0 we define it to point downwards. It follows
thataxb = —(bxa).

This conventional definition of a x b is intrinsically three-dimensional, and it
therefore presents a problem: if a and b are thought of as complex numbers, a x b
cannot be, for it does not lie in the (complex) plane of a and b. No such problem
exists with the dot product because a-b is simply a real number, and this suggests
a way out.

Since all our vectors will be lying in the same plane, their cross products will
all have equal (or opposite) directions, so the only distinction between one cross
product and another will be the value of A. For the purposes of this book we will
therefore redefine the cross product to be the (signed) area A of the parallelogram
spanned by a and b:

axb = |a||b|sinf = —(bxa).

Figure [21] shows two complex numbers a = |a| ' and b = |b| ¢?, the angle
from a to b being & = (B — ). To see how their dot and cross products are related
to complex multiplication, consider the effect of multiplying each point in C by
@. This is a rotation of —« and an expansion of |a|, and if we look at the image
under this transformation of the shaded right triangle with hypotenuse b, then we
immediately see that

ab=a-b+i(axb). (20)
Of course we could also have got this by simple calculation:

@b = (lale7)(|b| &) = |a| |b] P~ = |a| |b| € = |a] |b|(cos6 + i sin6).
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Figure [21]

When we refer to the dot and cross products as “vectorial operations” we
mean that they are defined geometrically, independently of any particular choice
of coordinate axes. However, once such a choice has been made, (20) makes it easy
to express these operations in terms of Cartesian coordinates. Writing @ = x + iy
andb = x' +iy,

ab=(x—in0 +iy) = @' +yy) +i (xy' = yx'),

G)-()=reo =0 ()= (5)=mr-r

We end with an example that illustrates the importance of the sign of the area
(a x b). Consider the problem of finding the area A of the quadrilateral in [22a]
‘whose vertices are, in counterclockwise order, a, b, c, and d. Clearly this is just
the sum of the ordinary, unsigned areas of the four triangles formed by joining the
vertices of the quadrilateral to the origin. Thus, since the area of each triangle is

fal

Figure [22]
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simply half the area of the corresponding parallelogram,

A = Jl@xb)+®x0) +(exd) +@dxa)]
$Im(@ab+bc+cd+da). @n

Obviously this formula could easily be generalized to polygons with more than
four sides.

But what if 0 is outside the quadrilateral? In [22b], A is clearly the sum of
the ordinary areas of three of the triangles, minus the ordinary area of the striped
triangle. Since the angle from b to ¢ is negative, -";(h x ¢) is automatically the
negative of the striped area, and A is therefore given by exactly the same formula
as before!

Can you find a location for 0 that makes two of the signed arcas negative?
Check that the formula still works. Exercise 35 shows that (21) always works.

vV T i and idk G v*
1 Geometry Through the Eyes of Felix Klein

Even with the benefit of enormous hindsight, it is hard to introduce complex
numbers in a compelling manner. Historically, we have seen how cubic equations
forced them upon us algebraically, and in discussing Cotes’ work we saw something
of the inevitability of their geometric interpretation. In this section we will attempt
to show how complex numbers arise very naturally, almost inevitably, from a
careful re-examination of plane Euclidean geometry'®.

As the * following the title of this section indicates, the material it contains
may be omitted. However, in addition to “explaining” complex numbers, these
ideas are very interesting in their own right, and they will also be needed for an
understanding of other optional sections of the book.

Although the ancient Greeks made many beautiful and remarkable discover-
ies in geometry, it was two thousand years later that Felix Klein first asked and
answered the question, “What is geometry?”

Let us restrict ourselves from the outset to plane geometry. One might begin
by saying that this is the study of geomemc pmpcmes of geometric figures in the
plane, but what are (i) “g ", and (ii) “g ic figures™? We
will concentrate on (i), swiftly passing over (u) by interpreting “‘geometric figure”
as anything we might choose to draw on an infinitely large piece of flat paper with
an infinitely fine pen.

As for (i), we begin by noting that if two figures (e.g., two triangles) have
the same geometric properties, then (from the point of view of geometry) they
must be the “same”, “equal”, or, as one usually says, congruent. Thus if we had
a clear definition of congruence (“geometric equality”) then we could reverse this

10The excellent book by Nikulin and Shafarevich [1987] is the only other work we know of in
which a similar attempt is made.
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observation and define geometric properties as those properties that are common
to all congruent figures. How, then, can we tell if two figures are geometrically
equal?

Consider the triangles in [23], and imagine that they are pieces of paper that
you could pick up in your hand. To see if T is congruent to 7’, you could pick up
T and check whether it could be placed on top of 7". Note that it is essential that
we be allowed to move T in space: in order to place T on top of 7 we must first
flip it over; we can’t just slide T around within the plane. Tentatively generalizing,
this suggests that a figure F is congruent to another figure F' if there exists a
motion of F through space that makes it coincide with F'. Note that the discussion
suggests that there are two fundamentally different types of motion: those that
involve flipping the figure over, and those that do not. Later, we shall return to this
important point.

~

Figure [23]

It is clearly somewhat unsatisfactory that in attempting to define geometry in
the plane we have appealed to the idea of motion through space. We now rectify
this. Returning to [23], imagine that T and 7" are drawn on separate, transparent
sheets of plastic. Instead of picking up just the triangle T', we now pick up the
entire sheet on which it is drawn, then try to place it on the second sheet so as to
make T coincide with 7’. At the end of this motion, each point A on T’s sheet
lies over a point A’ of T"’s sheet, and we can now define the motion M to be this
mapping A = A’ = M(A) of the plane to itself.

However, not any old mapping qualifies as a motion, for we must also capture
the (previously implicit) idea of the sheet remaining rigid while it moves, so that
distances between points remain constant during the motion. Here, then, is our
definition:

A motion M is a mapping of the plane to itself such that the distance
between any two points A and B is equal to the distance between — (22)
their images A' = M(A) and B' = M(B).

Note that what we have called a motion is often termed a “rigid motion”, or an
“isometry”.

Armed with this precise concept of motion, our final definition of geometric
equality becomes
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F is congruent to F', written F = F', if there exists a motion M

such that F' = M(F). 23

Next, as a consequence of our earlier discussion, a geometric property of a figure
is one that is unaltered by all possible motions of the figure. Finally, in answer to
the opening question of “What is geometry?”, Klein would answer that it is the
study of these so-called invariants of the set of motions.

One of the most remarkable discoveries of the last century was that Euclidean
geometry is not the only possible geometry. Two of these so-called non-Euclidean
geometries will be studied in Chapter 6, but for the moment we wish only to
explain how Klein was able to generalize the above ideas so as to embrace such
new geometries.

The aim in (23) was to use a family of transformations to introduce a concept
of geometric equality. But will this =-type of equality behave in the way we would
like and expect? To answer this we must first make these expectations explicit. So
as not to confuse this general discussion with the particular concept of congruence
in (23), let us denote geometric equality by ~.

(i) A figure should equal itself: F ~ F, forall F.
(ii) If F equals F’, then F’ should equal F: F ~ F' = F' ~ F.
(iii) If F and F’ are equal, and F’ and F” are equal, then F and F” should also
beequal: F~ F' & F' ~ F" = F ~ F".
Any relation satisfying these expectations is called an equivalence relation.

Now suppose that we retain the definition (23) of geometric equality, but that
we generalize the definition of “motion” given in (22) by replacing the family of
distance-preserving transformations with some other family G of transformations.
It should be clear that not any old G will be compatible with our aim of defining
geometric equality. Indeed, (i), (ii), and (iii) imply that G must have the following
very special structure, which is illustrated! in [24].

(i) The family G must contain a transformation £ (called the identity) that maps
each point to itself.

(i) If G contains a transformation M, then it must also contain a transformation
M (called the inverse) that undoes M. [Check for yourself that for M~"
to exist (let alone be a member of G) M must have the special properties of
being (a) onto and (b) one-to-one, i.c., (a) every point must be the image of
some point, and (b) distinct points must have distinct images.]

(iii) If M and A are members of G then so is the composite transformation
N o M = (M followed by \). This property of G is called closure.

We have thus arrived, very naturally, at a concept of fundamental importance in the

Here G is the group of projections. If we do a perspective drawing of figures in the plane,
then the mapping from that plane to the “canvas™ plane is called a perspectivity. A projection is
then defined to be any sequence of perspectivities. Can you see why the set of projections should
form a group?
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whole of ics: a family G of ions that satisfies these three'?

requirements is called a group.

Let us check that the motions defined in (22) do indeed form a group: (i) Since
the identity transformation preserves distances, it is a motion. (ii) Provided it exists,
the inverse of a motion will preserve distances and hence will be a motion itself.
As for existence, (a) it is certainly plausible that when we apply a motion to the
entire plane then the image is the entire plane—we will prove this later—and (b)
the non-zero distance between distinct points is preserved by a motion, so their
images are again distinct. (iii) If two transformations do not alter distances, then
applying them in succession will not alter distances either, so the composition of
two motions is another motion.

Klein’s idea was that we could first select a group G at will, then define a
corresponding “geometry” as the study of the invariants of that G. [Klein first
announced this idea in 1872—when he was 23 years old!—at the University of
Erlangen, and it has thus come to be known as his Erlangen Program.] For example,
if we choose G to be the group of motions, we recover the familiar Euclidean
geometry of the plane. But this is far from being the only geometry of the plane,
as the so-called projective geometry of [24] illustrates.

Klein’s vision of geometry was broader still. We have been concerned with
what geometries are possible when figures are drawn anywhere in the plane, but
suppose for example that we are only allowed to draw within some disc D. It
should be clear that we can construct “geometries of D™ in exactly the same way
that we constructed geometries of the plane: given a group H of transformations
of D to itself, the corresponding geometry is the study of the invariants of H. If
you doubt that any such groups exist, consider the set of all rotations around the
centre of D.

121n more abstract settings it is necessary to add a fourth requirement of associativity, namely,
A (BC) = (Ao B) = C. Of course for transformations this is automatically true.
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The reader may well feel that the above discussion is a chronic case of mathe-
‘matical generalization running amuck—that the resulting conception of geometry
is (to coin a phrase) “as subtle as it is useless”. Nothing could be further from
the truth! Tn Chapter 3 we shall be led, very naturally, to consider a particularly
interesting group of transformations of a disc to itself. The resulting non-Euclidean
geometry is called hyperbolic or Lobachevskian geometry, and it is the subject of
Chapter 6. Far from being useless, this geometry has proved to be an immensely
powerful tool in diverse areas of mathematics, and the insights it continues to
provide lie on the cutting edge of contemporary research.

2 Classifying Motions

To understand the foundations of Euclidean geometry, it seems we must study its
group of motions. At the moment, this group is defined rather abstractly as the set
of distance-preserving mappings of the plane to itself. However, it is easy enough
to think of concrete examples of motions: a rotation of the plane about an arbitrary
point, a translation of the plane, or a reflection of the plane in some line. Our aim
is to understand the most general possible motions in equally vivid terms.

‘We begin by stating a key fact:

A motion is uniquely determined by its effect on any triangle (i.e.,

on any three non-collinear points). @9

By this we mean that knowing what happens to the three points tells us what must
happen to every point in the plane. To see this, first look at [25]. This shows that

Figure [25]
each point P is uniquely determined by its distances from the vertices A, B, C of
such a triangle'>. The distances from A and B yield two circles which (in general)
intersect in two points, P and Q. The third distance (from C) then picks out P.
To obtain the result (24), now look at [26]. This illustrates a motion M mapping
A,B,Cto A, B, C'. By the very definition of a motion, M must map an arbitrary

13 Tms is how carthquakes are located. Two |)p:< nr wave are emitted by the quake as it

begins: “P-waves” o “S-waves” of destructive
%bcax Tlms the P-waves will arrive at a seismic smuon before the S-waves, and the time-lag
tation. Repeating

this calculation at two more seismic stations, the quake may be located.
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Figure [26]

point P to a point P’ whose distances from A’, B’, C’ are equal to the original
distances of P from A, B, C. Thus, as shown, P’ is uniquely determined. Done.

A big step towards classification is the realization that there are two funda-
‘mentally different kinds of motions. In terms of our earlier conception of motion
through space, the distinction is whether or not a figure must be flipped over before
it can be placed on top of a congruent figure. To see how this dichotomy arises in
terms of the new definition (22), suppose that a motion sends two points A and
B to A" and B'. See [27]. According to (24), the motion is not yet determined:
we need to know the image of any (non-collinear) third point C, such as the one
shown in [27]. Since motions preserve the distances of C from A and B, there are
just two possibilities for the image of C, namely, C’ and its reflection C in the line
L through A’ and B'. Thus there are precisely two motions (M and M, say) that
map A, Bto A', B': M sends C to C’, and M sends C to C.

A distinction can be made between M and M by looking at how they affect
angles. All motions preserve the magnitude of angles, but we see that M also
preserves the sense of the angle 6, while M reverses it. The fundamental nature of
this distinction can be seen from the fact that M must in fact preserve all angles,
while M must reverse all angles.

A

Figure [27]
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To see this, consider the fate of the angle ¢ in the triangle 7. If C goes to C’
(i.e., if the motion is M) then, carrying out the construction indicated in [26], the
image of T is 7", and the angle is preserved. If, on the other hand, C goes to c
(i.e., if the motion is M) then the image of T is the reflection T of T’in L, and
the angle is reversed. Motions that preserve angles are called direct, and those that
reverse angles are called opposite. Thus rotations and translations are direct, while
reflections are opposite. Summarizing what we have found,

There is exactly one direct motion M (and exactly one
opposite motion M) that maps a given line-segment AB
to_another line-segment A'B' of equal length. Furthermore,
M = (M followed by reflection in the line A'B').

(25)

To understand motions we may thus consider two randomly drawn segments
AB and A’ B’ of equal length, then find the direct motion (and the opposite motion)
that maps one to the other. It is now easy to show that

Every direct motion is a rotation, or else (exceptionally) a transla- 26)
tion.

Note that this result gives us greater insight into our earlier calculations on the
composition of rotations and translations: since the composition of any two direct
motions is another direct motion [why?], it can only be a rotation or a translation.
Conversely, those calculations allow us to restate (26) in a very neat way:

Every direct motion can be expressed as a complex function of the
form M(2) = ¢z +v. @n

We now establish (26). If the line-segment A’B’ is parallel to AB then the
vectors AB and A’ are either equal or opposite. If they are equal, as in [28a],
the motion is a translation; if they are opposite, as in [28b], the motion is a rotation
of  about the intersection point of the lines AA’ and BB'.

If the segments are not parallel, produce them (if necessary) till they meet at
M, and let 8 be the angle between the directions of AB and A'B'. See [28c]. First
recall an elementary property of circles: the chord AA’ subtends the same angle 6
atevery point of the circular arc AM A’. Next, let O denote the intersection point of
this arc with the perpendicular bisector of AA’. We now see that the direct motion
carrying AB to A'B' is a rotation of § about O, for clearly A is rotated to A”, and
the direction of AB is rotated into the direction of A’B". Done.

The sense in which translations are “exceptional” is that if the two segments
are drawn at random then it s very unlikely that they will be parallel. Indeed, given
AB, atranslation is only needed for one possible direction of A’B’ out of infinitely
many, so the mathematical probability that a random direct motion is a translation
is actually zero!

Direct transformations will be more important to us than opposite ones, so we
relegate the investigation of opposite motions to Exs. 39, 40, 41. The reason for
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the greater emphasis on direct motions stems from the fact that they form a group
(a subgroup of the full group of motions), while the opposite motions do not. Can
you see why?

3 Three Reflections Theorem

In chemistry one is concerned with the interactions of atoms, but to gain deeper
insights one must study the electrons, protons, and neutrons from which atoms are
built. Likewise, though our concern is with direct motions, we will gain deeper
insights by studying the opposite motions from which direct motions are built.
More precisely,

Every direct motion is the composition of two reflections. (28)

Note that the second sentence of (25) then implies that every opposite motion
is the composition of three reflections. See Ex. 39. In brief, every motion is the
composition of either two or three reflections, a result that is called the Three
Reflections Theorem™.

Earlier we tried to show that the set of motions forms a group, but it was not
clear that every motion had an inverse. The Three Reflections Theorem settles this
neatly and explicitly, for the inverse of a sequence of reflections is obtained by
reversing the order in which the reflections are performed.

In what follows, let R, denote reflection in a line L. Thus reflection in L;
followed by reflection in Ly is written %z, o Rz,. According to (26), proving
(28) amounts to showing that every rotation (and every translation) is of the form
Rz, o Ny, This is an immediate consequence of the following:

If Ly and L, intersect at O, and the angle from Ly to Ly is ¢, then
M1, o Ry, is a rotation of 2¢ about O,

and

14Results such as (26) may instead be viewed as consequences of this theorem; see Still-
‘well (1992] for an elegant and elementary exposition of this approach.
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If Ly and L, are parallel, and V is the perpendicular connecting
vector from L to Ly, then Ry, o Ry, is a translation of 2V.

Both these results are easy enough to prove directly [try it!], but the following is
perhaps more elegant.

First, since Rz, o My, is a direct motion (because it reverses angles twice),
it is either a rotation or a translation. Second, note that rotations and translations
may be distinguished by their invariant curves, that is, curves that are mapped into
themselves. For a rotation about a point O, the invariant curves are circles centred
at O, while for a translation they are lines parallel to the translation.

Figure [29]

Now look at [29a]. Clearly iz, 0, leaves invariant any circle centred at O,
s0 it is a rotation about O. To see that the angle of the rotation is 2¢, consider the
image P’ of any point P on L;. Done.

Now look at [29b]. Clearly Rz, o 7, leaves invariant any line perpendicular
to Ly and Ly, so it is a translation parallel to such lines. To see that the translation
is 2V, consider the image P’ of any point P on L;. Done.

Note that a rotation of 6 can be represented as Rz, o %z, where Ly, Lz is
any pair of lines that pass through the centre of the rotation and that contain an
angle (6/2). Likewise, a translation of T corresponds to any pair of parallel lines
separated by T/2. This circumstance yields a very elegant method for composing
rotations and translations.

For example, see [30a]. Here a rotation about a through 8 is being represented
as Rz, o M,, and a rotation about b through ¢ is being represented as R, o Ny .
To find the net effect of rotating about a and then about b, choose Ly = L to be
the line through @ and b. If 8 + ¢ # 27, then L) and L'l will intersect at some
point c, as in [30b]. Thus the composition of the two rotations is given by

By 0My;) 0 ey 0Mey) = Ryy oMz,

which is a rotation about ¢ through (6 + ¢)! That this construction agrees with our
calculation on p. 18 is demonstrated in Ex. 36.
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Figure [30]
Further examples of this method may be found in Ex. 42 and Ex. 43.

4 and

Let us take a closer look at the role of distance in Euclidean geometry. Suppose we
‘have two right triangles 7 and T drawn in the same plane, and suppose that Jack
measures T while Jill measures 7. If Jack and Jill both report that their triangles
have sides 3,4, and 5, then it is tempting to say that the two triangles are the same,
in the sense that there exists a motion M such that T = M(T). But wait! Suppose
that Jack’s ruler is marked in centimetres, while Jill's is marked in inches. The
two triangles are similar, but they are not congruent. Which is the “true™ 3, 4, 5
triangle? Of course they both are.

The point is that whenever we talk about distances numerically, we are pre-
supposing a unit of measurement. This may be pictured as a certain line-segment
U, and when we say that some other segment has a length of 5, for example, we
‘mean that precisely 5 copies of U can be fitted into it. But on our flat' plane any
choice of U is as good as any other—there is no absolute unit of measurement,
and our geometric theorems should reflect that fact.

Meditating on this, we recognize that Euclidean theorems do not in fact depend
on this (arbitrary) choice of U, for they only deal with ratios of lengths, which
are independent of U. For example, Jack can verify that his triangle T satisfies
Pythagoras’ Theorem in the form

(3em)? + (dem)? = (Sem)?,

but, dividing both sides by (Scm)?, this can be rewritten in terms of the ratios of
the sides, which are pure numbers:

3/57 +@/5 = 1.

Try thinking of another theorem, and check that it too deals only with ratios of
lengths.

15In the non-Euclidean geometries of Chapter 6 we will be drawing on curved surfaces, and
the amount of curvature in the surface will dictate an absolute unit of length.
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Since the theorems of Euclidean geometry do not concern themselves with
the actual sizes of figures, our earlier definition of geometric equality in terms of
motions is clearly too restrictive: two figures should be considered the same if they
are similar. More precisely, we now consider two figures to be the same if there
exists a similarity mapping one to the other, where

A similarity S is a mapping of the plane to itself that preserves ratios
of distances.

It is easy to see [exercise] that a given similarity S expands every distance
by the same (non-zero) factor r, which we will call the expansion of S. We can
therefore refine our notation by including the expansion as a superscript, so that a
general similarity of expansion r is written S”. Clearly, the identity transformation
is a similarity, S* 0 8" = 8", and (8")™! = SU/", so it is fairly clear that the
set of all similarities forms a group. We thus arrive at the definition of Euclidean
geometry that Klein gave in his Erlangen address:

Euclidean geometry is the study of those properties of geometric (29)
figures that are invariant under the group of similarities.

Since the motions are just the similarities S! of unit expansion, the group of
‘motions is a subgroup of the group of similarities; our previous attempt at defining
Euclidean geometry therefore yields a “subgeometry” of (29).

A simple example of an S” is a central dilation Dj,. As illustrated in [31a], this
leaves o fixed and radially stretches each segment 0A by r. Note that the inverse of
acentral dilation is another central dilation with the same centre: (D7) ~! = D{/").
If this central dilation is followed by (or preceded by) a rotation R with the same
centre, then we obtain the dilative rotation

D’ =RjoD;=DjoRy,

shown in [31b]. Note that a central dilation may be viewed as a special case of a
dilative rotation: D}, = D}°.
‘ v DI (A)

Figure [31]

Dy (A)
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‘This figure should be ringing loud bells. Taking o to be the origin of C, (9)
says that D};¥ corresponds to multiplication by r ¢/

D@ = (re)z.

Conversely, and this is the key point, the rule for complex multiplication may be
viewed as a consequence of the behaviour of dilative rotations.

Concentrate on the set of dilative rotations with a common, fixed centre o,
which will be thought of as the origin of the complex plane. Each D} is uniquely
determined by its expansion r and rotation 8, and so it can be represented by a
vector of length r at angle 6. Likewise, DX*® can be represented by a vector of
length R at angle ¢. What vector will represent the composition of these dilative
rotations? Geometrically it is clear that

DRG o DI = D70 o DRY = DRAO+),

5o the new vector is obtained from the original vectors by multiplying their lengths
and adding their angles—complex multiplication!

On page 17 we saw that if complex numbers are viewed as translations then
composition yields complex addition. We now see that if they are instead viewed
as dilative rotations then composition yields complex multiplication. To complete

ur “explanation” of complex numbers in terms of geometry, we will show that
these translations and dilative rotations are fundamental to Euclidean geometry as
defined in (29).

To understand the general similarity S” involved in (29), note that if p is an
arbitrary point, M = §"oD}/"” is amotion. Thus any similarity is the composition
of a dilation and a motion:

S§'=Mo D;. (30)

Our classification of motions therefore implies that similarities come in two kinds:
if M preserves angles then so will 8" [a direct similarity]; if M reverses angles
then so will S” [an opposite similarity).

Just as we concentrated on the group of direct motions, so we will now concen-
trate on the group of direct similarities. The role of ions and
dilative rotations in Euclidean geometry finally emerges in the following surprising
theorem:

Every direct similarity is a dilative rotation or (exceptionally) a
translation.

@31

For us this fact constitutes one satisfying “explanation” of complex numbers; as
mentioned in the Preface, other equally compelling explanations may be found in
the laws of physics.

To begin to understand (31), observe that (25) and (30) imply that a direct
similarity is determined by the image A’ B’ of any line-segment A B. First consider
the exceptional case in which A’ B’ are of equal length A B. We then have the three



Figure [32]
cases in [28], all of which are consistent with (31). If A’B’ and A B are parallel but
not of equal length, then we have the two cases shown in [32a] and [32b], in both
of which we have drawn the lines AA’ and BB’ intersecting in p. By appealing
to the similar triangles in these figures, we see that in [32a] the similarity is D}’
while in [32b] it is D", where in both cases r = (pA’/pA) = (pB'/pB).

Now consider the much more interesting general case where A’B’ and AB are
neither the same length, nor parallel. Take a peek at [32d], which illustrates this.
Here n is the intersection point of the two segments (produced if necessary), and
6 is the angle between them. To establish (31), we must show that we can carry
AB to A’B’ with a single dilative rotation. For the time being, simply note that if
AB is to end up having the same direction as A’B’ then it must be rotated by 6,
so the claim is really this: There exists a point g, and an expansion factor r, such
that D}? carries Ato A’ and B 10 B

Consider the part of [32d] that is reproduced in [32c]. Clearly, by choosing
r = (nA’/nA), Dy® will map A to A’. More generally, you see that we can map A
to A" with D if and only if AA” subtends angle 6 at ¢. Thus, with the appropriate
value of r, D;‘s maps A to A’ if and only if q lies on the circular arc AnA'. The
figure illustrates one such position, ¢ = m. Before returning to [32d], we need to
notice one more thing: mA subtends the same angle (marked ®) at n and A’.

Let us return to [32d). We want D;” to map A to A’ and B to B'. According
to the argument above, ¢ must lie on the circular arc AnA” and on the circular arc
BnB'. Thus there are just two possibilitie: norg = m (the other intersection
point of the two arcs). If you think about it, this is a moment of high drama. We have
narrowed down the possibilities for ¢ to just two points by consideration of angles
alone; for either of these two points we can choose the value of the expansion r so
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as to make A go to A’, but, once this choice has been made, either B will map to
B’ or it won't! Furthermore, it is clear from the figure that if ¢ = n then B does
not map to B, s0 ¢ = m is the only possibility left.

In order for D} to simultaneously map A to A’ and B to B’, we need to have
r = (mA’/mA) = (mB'/mB); in other words, the two shaded triangles need to
be similar. That they are indeed similar is surely something of a miracle. Looking
at the angles formed at n, we see that # + © + e = m, and the result follows
immediately by thinking of the RHS as the angle-sum of each of the two shaded
triangles. This completes our proof'® of (31).

The reader may feel that it is unsatisfactory that (31) calls for dilative rotations
about arbitrary points, while complex numbers represent dilative rotations about
a fixed point o (the origin]. This may be answered by noting that the images of
AB under D and D will be parallel and of equal length, so there will exist a
translation [see Ex. 44 for details] 7; mapping one onto the other. In other words, a
general dilative rotation differs from an origin-centred dilative rotation by a mere
translation: D’ = T, o D;”. To sum up,

Every direct similarity 5" can be expressed as a complex function
of the form 8" () = re'®z +v.

5 Spatial Complex Numbers?

Let us briefly attempt to generalize the above ideas to rhree-dimensional space.
Firstly, a central dilation of space (centred at O) is defined exactly as before, and
a dilative rotation with the same centre is then the composition of such a dilation
with a rotation of space about an axis passing through 0. Once again taking (29)
as the definition of Euclidean geometry, we get off to a flying start, because the
key result (31) generalizes: Every direct similarity of space is a dilative rotation,
a translation, or the composition of a dilative rotation and a translation along its
rotation axis. See Coxeter [1969, p. 103] for details.

It is therefore natural to ask if there might exist “spatial complex numbers” for
which addition would be composition of translations, and for which multiplication
would be composition of dilative rotations. With addition all goes well: the position
vector of each point in space may be viewed as a translation, and composition of
these translations yields ordinary vector addition in space. Note that this vector
addition makes equally good sense in four-dimensional space, or n-dimensional
space for that matter.

Now consider the set Q of dilative rotations with a common, fixed centre O.
Initially, the definition of multiplication goes smoothly, for the “product” Q1 o Q2
of two such dilative rotations is easily seen to be another dilative rotation (Q3, say)
of the same kind. This follows from the above classification of direct similarities
by noting that Q; o Q; leaves O fixed. If the expansions of Q; and Q> are ry and

16The present argument has the advantage of proceeding in steps, rather than having to be
discovered all at once. For other proofs, see Coxeter and Greitzer [1967. p. 97]. Coxeter [1969,
p. 73], and Eves [1992, p. 71]. Also, see Ex. 45 for a simple proof using complex functions.
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12 then the expansion of Qs is clearly r3 = ry r>, and in Chapter 6 we shall give a
simple geometric construction for the rotation of Q3 from the rotations of Q1 and
Q2. However, unlike rotations in the plane, it makes a difference in what order we
perform two rotations in space, so our multiplication rule is not commutative:

Q1002 # Q2001 32)

We are certainly d to iplication being ive, but there is
nothing inconsistent about (32), so this cannot be considered a decisive obstacle
to an algebra of “spatial complex numbers”.

However, a fundamental problem does arise when we try to represent these
dilative rotations as points (or vectors) in space. By analogy with complex mul-
tiplication, we wish to interpret the equation Qj o Q2 = Q3 as saying that the
dilative rotation Q1 maps the point Q5 to the point Q3. But this interpretation is
impossible! The specification of a point in space requires three numbers, but the
specification of a dilative rotation requires four: one for the expansion, one for the
angle of rotation, and two!” for the direction of the axis of the rotation.

Although we have failed to find a three-dimensional analogue of complex
numbers, we have discovered the four-dimensional space Q of dilative rotations
(centred at O) of three-dimensional space. Members of Q are called quaternions,
and they may be pictured as points or vectors in four dimensions, but the details
of how to do this will have to wait till Chapter 6. Quaternions can be added by
ordinary vector addition, and they can be multiplied using the non-commutative
rule above (composmon of the correspondmg dilative rotations).

f the rules for p complex numbers and for multiply-
ing quaternions have some interesting parallels. As is well known, the quaternion
rule was discovered in algebraic form by Sir William Rowan Hamilton in 1843. It
is less well known that three years earlier Olinde Rodrigues had published an ele-
gant g ition of rotations in space that contained
essentially the same result; only much later' was it recognized that Rodrigues’
geometry was equivalent to Hamilton’s algebra.

Hamilton and Rodrigues are just tv ples of hapless icians who
would have been dismayed ine the i f the great Karl
Friedrich Gauss. There, like just another log entry in the chronicle of his private
mathematical voyages, Gauss recorded his discovery of the quaternion rule in
1819.

In Chapter 6 we shall i i i iplication in detail ﬁndthal
ithas el t ications. However, the i iate benefit of this di is that
we can now see what a property itis of i i space thatitis
possible to interpret points within it as the Euclidean i
acting on it.

17To see this, imagine a sphere centred at 0. The direction of the axis can be specified by its
intersection with the sphere, and this point can be specified with two coordinates, e.g., longitude
and latitude.

18See Altmann [1989] for the intriguing details of how this was unravelled.
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V Exercises

1 The roots of a general cubic equation in X may be viewed (in the X¥-plane) as
the intersections of the X-axis with the graph of a cubic of the form,

Y =X'+AX>+BX +C.

(i) Show that the point of inflection of the graph occurs at X = —%.

(ii) Deduce (geometrically) that the substitution X = (x — 4) will reduce the
above equation to the form ¥ = x3 + bx + c.

(iif) Verify this by calculation.
2 In order to solve the cubic equation x* = 3 px + 2¢, do the following:

(i) Make the inspired substitution x = s + 1, and deduce that x solves the cubic
ifst =pands’ +13=2q.

(i) Eliminate ¢ between these two equations, thereby obtaining a quadratic
equation in 5.

(iii) Solve this quadratic to obtain the two possible values of s>, By symmetry,
what are the possible values of 13?7
(iv) Given that we know that s® + 1> = 2q, deduce the formula (4).
3 In 1591, more than forty years after the appearance of (4), Frangois Viéte pub-

lished another method of solving cubics. The method is based on the identity
(see p. 15) cos 39 = 4C? — 3C, where C = cosf.

(i) Substitute x = 2,/5 C into the (reduced) general cubic x> = 3px +2¢ to
obtain 4C% —3C = -1
PP

(i) Provided that ¢ < p*, deduce that the solutions of the original equation
are

x=2/poos [ 16+ 2mm)]

where m is an integer and ¢ = cos™'(¢/p/P)-

(i) Check that this formula gives the correct solutions of x* = 3x, namely,
x=0,+v3.

4 Here is a basic fact about integers that has many uses in number theory: If rwo
integers can be expressed as the sum of two squares, then so can their product.
With the understanding that each symbol denotes an integer, this says that if
M =a®+b* and N = ¢? + d?, then MN = p? + ¢°. Prove this result by
considering |(a + ib)(c + id)[>.
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5 The figure below shows how two similar triangles may be used to construct the
product of two complex numbers. Explain this.
ab

0 1

6 (i) If c is a fixed complex number, and R is a fixed real number, explain with a
picture why |z — ¢| = R is the equation of a circle.

(i) Given that z satisfies the equation |z + 3 — 4i| = 2, find the minimum and
maximum values of |z|, and the corresponding positions of z.

7 Use a picture to show that if @ and b are fixed complex numbers then [z —a| =
|z — | is the equation of a line.

8 Let L be a straight line in C making an angle ¢ with the real axis, and let d be
its distance from the origin. Show geometrically that if z is any point on L then

d = (Im[e™ 7] .

[Hint: Interpret e~ using (9).]

9 Let A, B, C, D be four points on the unit circle. If A + B + C + D = 0, show
that the points must form a rectangle.

10 Show geometrically that if |z] = 1 then

I’"[(HW]ZO'

Apart from the unit circle, what other points satisfy this equation?

11 Explain geometrically why the locus of z such that

arg (=2 = const.
z—b

is an arc of a certain circle passing through the fixed points a and b.

12 By using pictures, find the locus of z for each of the following equations:

—1- —1—i
Re(:—"t) =0, and Im(L'_):O.
z+1+i z+1+i
[Hints: What does Re(W) = 0 imply about the angle of W? Now use the
previous exercise.]
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13 Find the geometric configuration of the points a, b, and ¢ if

(=)= (=)

[Hint: Separately equate the lengths and angles of the two sides.]

14 By considering the product (2 + i) (3 + i), show that

T Lt
4 2 3

15 Draw e/™/4, ¢i%/2, and their sum. By expressing each of these numbers in the
form (x + iy), deduce that

3
mn%:l«i—ﬁ.

16 Starting from the origin, go one unit east, then the same length north, then (1/2)
of the previous length west, then (1/3) of the previous length south, then (1/4)
of the previous length east, and so on. What point does this “spiral” converge
to?

17 1f z = € # —1,then (z — 1) = (i tan §) (z + 1). Prove this (i) by calculation,
(i) with a picture.

18 Prove that

i6+¢)
e = 2cos[%3¢] 2

i6+¢)
and e — ¢ =2isin [”—’TE] e
(i) by calculation, and (ii) with a picture.

19 The “centroid” G of a triangle T is the intersection of its medians. If the vertices
are the complex numbers a, b, and ¢, then you may assume that
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Onthe sides of T weh three similar triangles [dotted] of arbitrary
shape, so producing a new triangle [dashed] with vertices p, g, r. Using complex
algebra, show that the centroid of the new triangle is in exactly the same place
as the centroid of the old triangle!

Gaussian integers are complex numbers of the form m + in, where m and n are
integers—they are the grid points in [1]. Show that it is impossible to draw an
equilateral triangle such that all three vertices are Gaussian integers. [Hints: You
may assume that one of the vertices is at the origin; try a proof by contradiction;
if a triangle is equilateral, you can rotate one side into another; remember that
/3 is irrational.]

Make a copy of [12a], draw in the diagonal of the quadrilateral shown in [12b],
and mark its midpoint m. As in [12b], draw the line-segments connecting m to
Pp.q.r,ands. According to the result in [12b], what happens to p and to r under
a rotation of (7/2) about m? So what happens to the line-segment pr? Deduce
the result shown in [12a].

‘Will the result in [12a] survive if the squares are instead constructed on the
inside of the quadrilateral?

Draw an arbitrary triangle, and on each side draw an equilateral triangle lying
outside the n triangle. What do you suspect is special about the new triangle
formed by joining the centroids (cf. Ex. 19) of the equilateral triangles? Use
complex algebra to prove that you are right. What happens if the equilateral
triangles are instead drawn on the inside of the given triangle?

From (15), we know that

(i) In what region of C must z lie in order that the infinie series 1 +2z+22+- -
converges?

(i) If z lies in this region, to which point in the plane does the infinite series
converge?

(iii) In the spirit of figure [9], draw a large, accurate picture of the infinite series
in the case z = (1 +4), and check that it does indeed converge to the point
predicted by part (ii).

Let § = cos# + c0s 36 + c0s 56 + - - - + cos(2n — 1)f. Show that

. innf cos nf
orequivalently §=——

[Hint: Use Ex. 24, then Ex. 18 to simplify the result.]



Exercises 49

26 (i) By considering (a + ib)(cos + i sin§), show that

beost +asinb = vaZ + b2 sin [ﬂ +!an"(b/a)] .

(ii) Use this result to prove (14) by the method of induction.
27 Show that the polar equation of the spiral Z(r) = e%¢/*" in [15b] is r = e(@/??.
28 Reconsider the spiral Z(r) = ¢“e/*' in [15b]. where a and b are fixed real
numbers. Let 7 be a variable real number. According to (9), z > Fy(2) =

(e‘"e‘b') z is an expansion of the plane by factor e**, combined with a rotation
of the plane through angle br.

(i) Show that F[Z(1)] = Z(1 + t), and deduce that the spiral is an invariant
curve (cf. p. 38) of the transformations ;.

(i) Use this to give a calculus-free demonstration that all rays from the origin
cut the spiral at the same angle.

(iii) Show that if the spiral is rotated about the origin through an arbitrary angle,
the new spiral is again an invariant curve of each F;.

(iv) Argue that the spirals in the previous part are the only invariant curves of

e

29 (i) If V(z) is the complex velocity of a particle whose orbit is Z(t), and dt is
an infinitesimal moment of time, then V (¢) dr is a complex number along
the orbit. Thinking of the integral as the (vector) sum of these movements,
what is the geometric interpretation of [,? V(1) dt?

(ii) Referring to [15b], sketch the curve Z(1) = L eei®.

(iii) Given the result (13), what is the velocity of the particle in the previous
part.

\
(iv) Combine the previous parts to deduce that [ e e*ar = [ Lz e ]
and draw in this complex number in your sketch for part (ii).

(v) Use this to deduce that

| _ 5
/ oot cosprdy = A COSb =D +be sinb
a® +b?
and
b (1 —e cosb) +ae” sinb

1
at -
/(;z sinbrdt = P
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30 Given two starting numbers S}, S, let us build up an infinite sequence S, Sa,
3, 54, ... with this rule: each new number is twice the difference of the previous
two.Forexample,if S| = 1and S, = 4, weobtain 1,4, 6,4, —4, —16, 24, ...
Our aim s to find a formula for the #™" number S,

(i) Our generating rule can be written succinctly as S, 12 = 2(S,+1 — Sy). Show
that S, = 2" will solve this recurrence relation if z2 — 2z +2 = 0.

(ii) Use the quadratic formula to obtain z = 1 %+ i, and show that if A and B
are arbitrary complex numbers, S, = A(1 +i)" + B(1 — i)" is a solution
of the recurrence relation.

(iii) If we want only real solutions of the recurrence relation, show that B = A,
and deduce that S, = 2Re[A(1 + i)").

(iv) Show that for the above example A = —(1/2) — i, and by writing this in
polar form deduce that S, = 2%/2/3 cos [“’*}” +tan~! 2] .

(v) Check that this formula predicts S3; = 262144, and use a computer to verify
this.
[Note that this method can be applied to any recurrence relation of the form
Sp+2 = pSn+1+qSn.]
31 With the same recurrence relation as in the previous exercise, use a computer
to generate the first 30 members of the sequence given by S; =2 and $» = 4.
Note the repeating pattern of zeros.

(i) With the same notation as before, show that this sequence corresponds to
A = —i,sothat S, = 2Re[—i(1 +i)"].

(ii) Draw a sketch showing the locations of —i(1 +i)" forn = 1ton = 8, and
hence explain the pattern of zeros.

(iii) Writing A = a + ib, our example corresponds to a = 0. More generally,
explain geometrically why such a repeating pattern of zeros will occur if
and only if (a/b) = 0,+1 or b =0.

(iv) Show that 41 = [1—£). and deduce that a repeating pattern of zeros
will occur if and only if $2 = 251 (as in our example), S; = S5, §1 = 0, or
5 =0.

(v) Use a computer to verify these predictions.

32 The Binomial Theorem says that if n is a positive integer,

.
@+b'=)" (") @, where (") =
r=o \I" r

are the binomial coefficients [not vectors!]. The algebraic reasoning leading to




Exercises 51

this result is equally valid if @ and b are complex numbers. Use this fact to show
that if n = 2m is even then

(0)-(3)+)- v (2) o i

33 Consider the equation (z — 1)!0 =z

(i) Without attempting to solve the equation, show geometrically that all 9
solutions [why not 10?] must lie on the vertical line, Re (z) = }. [Hint:
Ex.7.]

(ii) Dividing both sides by z'°, the equation takes the form w'® = 1, where
w = (z = 1)/z. Hence solve the original equation.

(iii) Express these solutions in the form z = x +iy, and thereby verify the result
in (i). [Hint: To do this neatly, use Ex. 18.]

34 Let S denote the set of 12% roots of unity shown in [19], one of which is
£ = ¢l("/9), Note that £ is a primitive 12'" root of unity, meaning that its powers
yield all the 12 roots of unity: § = (€, £2, &3, ..., £12).

(i) Find all the primitive 12% roots of unity, and mark them on a copy of [19].

(ii) Write down, in the form of (16), the factorization of the polynomial ®;2(z)
whose roots are the primitive 12* roots of unity. [In general, ®,(z) is the
polynomial (with the coefficient of the highest power of z equal to 1) whose
roots are the primitive n™™ roots of unity: it is called the n'™ cyclotomic
polynomial.)

(iii) By first multiplying out pa:rs of factors corresponding to conjugate roots,
show that ®2(z) = 2* — 22 + 1

(iv) By repeating the above steps, show that ®g(z) = z* + 1.

(v) For a general value of n, explain the fact that if ¢ is a primitive ™ root of
unity, then so is 7. Deduce that if n > 2 then ®,(2) always has even degree
and real coefficients.

(vi) Show that if p is a prime number then ®,(z) = 1 4z + 2% + -+ + 271,
[Hint: Ex. 24.]

[In these examples it is striking that ®,(z) has integer coefficients. In fact it

can be shown that this is true for every ®,(z)! For more on these fascinating

polynomials, see Stillwell [1994].]

35 Show algebraically that the formula (21) is invariant under a translation by k,
i.e., its value does not change if a becomes a + k, b becomes b + k, etc. Deduce
from [22a] that the formula always gives the area of the quadrilateral. [Hint:
Remember, (z + Z) is always real.]
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36 According to the calculation on p. 18, Rf o RE = RY*?), where

_ae'®(1—e) +b(1 —e'?)
€= 1— @9 .

Letus check that this ¢ is the same as the one given by the geometric construction
in [30b].

(i) Explain why the qui to saying that c satisfies
the two conditions
c=b]_, c—a L
R

(ii) Verify that the calculated value of ¢ (given above) satisfies the first of these
conditions by showing that

c—b [ sin § ]m/z
= | =25 |2 33
—_ ;o (6+9)
a—b sm._‘;_

[Hint: Use (1 — ') = —2i sin(a/2) e®/2]
(iii) In the same way, verify that the second condition is also satisfied.

Deduce (33) directly from [30b]. [Hins: Draw in the altitude through b of the
triangle abc, and express its length first in terms of sin %, then in terms of

4

sin €4) ]

8

On page 18 we calculated that for any non-zero «, 7, o R is a rotation:
T,oR§ =RE, where c=v/(1—e“).

However, if @ = 0 then 7, o = T, is a translation. Try to reconcile these
facts by considering the behaviour of R in the limit that « tends to zero.

39 A glide reflection is the composition 7, o R, = R, o T, of reflection in a line
L and a translation v in the direction of L. For example, if you walk at a steady
pace in the snow, your tracks can be obtained by repeatedly applying the same
glide reflection to a single footprint. Clearly, a glide reflection is an opposite
motion.

(i) Draw aline L, a line-segment A B, the image AB of the segment under %y,
and the image A’B’ of AB under the glide reflection 7, o R,

(ii) Suppose you erased L from your picture; by considering the line-segments
AA’ and BB, show that you can reconstruct L.

(iii) Given any two segments AB and A’B’ of equal length, use the previous
part to construct the glide reflection that maps the former to the latter.
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