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Prologue

The Faustian Offer

Algebra is the offer made by the devil to the mathematician. The devil
says: “I will give you this powerful machine, and it will answer any
question you like. All you need to do is give me your soul: give up
geometry and you will have this marvellous machine.” ... the danger
to our soul is there, because when you pass over into algebraic calcu-
lation, essentially you stop thinking: you stop thinking geometrically,
you stop thinking about the meaning.
Sir Michael Atiyah!

“Differential Geometry” contains the word “Geometry.”

A tautology? Well, the undergraduate who first opens up the assigned textbook on the sub-
ject may care to disagree! In place of geometry, our hapless student is instead confronted with a
profusion of formulas, and their proofs consist of lengthy and opaque computations. Adding insult
to injury, these computations are frequently ugly, involving a “debauch of indices”?—a phrase
coined by Elie Cartan (one of the principal heroes of our drama) in 1928. If the student is honest
and brave, the professor may be forced to confront an embarrassingly blunt question: “Where has
the geometry gone?!”

Now, truth be told, most modern texts do in fact contain many pictures, usually of computer-
generated curves and surfaces. But, with few exceptions, these pictures are of specific, concrete
examples, which merely illustrate theorems whose proofs rest entirely upon symbolic manipula-
tion. In and of themselves, these pictures explain nothing!

The present book has fwo distinct and equally ambitious objectives, the first of which is the
subject of the first four Acts—to put the “Geometry” back into introductory “Differential Geo-
metry.” The 235 hand-drawn diagrams contained in the pages that follow are qualitatively and
fundamentally of a different character than mere computer-generated examples. They are the con-
ceptual fruits of many years of intermittent but intense effort—they are the visual embodiment of
intuitive geometric explanations of stunning geometric facts.

The words I wrote in the Preface to VCA? apply equally well now: “A significant proportion
of the geometric observations and arguments contained in this book are, to the best of my knowl-
edge, new. [ have not drawn attention to this in the text itself as this would have served no useful
purpose: students don’t need to know, and experts will know without being told. However, in
cases where an idea is clearly unusual but I am aware of it having been published by someone
else, I have tried to give credit where credit is due.” In addition, I have attributed exercises that
appear to be original, but that are not of my making.

On a personal note (but with a serious mathematical point to follow), the roots of the
present endeavour can be traced back decades, to my youth. The story amounts to a tale of two
books.

! Mathematics in the 20th Century (Shenitzer & Stillwell, 2002, p. 6)

2The full quotation begins to reveal Cartan’s heroic stature: “The utility of the absolute differential caleulus of Ricci and Levi-
Civita must be tempered by an avoidance of excessively formal calculations, where the debauch of indices disguises an often
very simple geometric reality. It is this reality that | have sought to reveal.” (From the preface to Cartan 1928.)

3Given the frequency with which I'shall have occasion to refer back to my first book, Visual Complex Analysis (Needham 1997),
I shall adopt the compact conceit of referring to it simply as VCA.
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xviii

Prologue

The first book ignited my profound fascination with Differential Geometry and with Einstein’s
General Theory of Relativity. Perhaps the experience was so intense because it was my first love;
I was 19 years old. One day, at the end of my first year of studying physics at Merton College,
Oxford, I stumbled upon a colossal black book in the bowels of Blackwell’s bookshop. Though 1
did not know it then, the 1,217-page tome was euphemistically referred to by relativity theorists
as “The Bible.” Perhaps it is appropriate, then, that this remarkable work altered the entire course
of my life. Had I not read Gravitation (Misner, Thorne, and Wheeler 1973), I would never have had
the opportunity* to study under (and become lifelong friends with) Roger Penrose, who in turn
fundamentally transformed my understanding of mathematics and of physics.

In the summer of 1982, having been intrigued by the mathematical glimpses contained in
Westfall’s (1980) excellent biography of Newton, I made an intense study of Newton's (1687) mas-
terpiece, Philosophae Naturalis Principia Mathematica, usually referred to simply as the Principia.
This was the second book that fundamentally altered my life. While V. I. Arnol’d® and S. Chan-
drasekhar (1995) sought to lay bare the remarkable nature of Newton's results in the Principia, the
present book instead arose out of a fascination with Newton's miethods.

As we have discussed elsewhere,® Newtonian scholars have painstakingly dismantled the
pernicious myth? that the results in the 1687 Principia were first derived by Newton using his
original 1665 version of the calculus, and only later recast into the geometrical form that we find
in the finished work.

Instead, it is now understood that by the mid-1670s, having studied Apollonius, Pappus, and
Huygens, in particular, the mature Newton became disenchanted with the form in which he had
originally discovered the calculus in his youth—which is different again from the Leibnizian form
we all learn in college today—and had instead embraced purely geometrical methods.

Thus it came to pass that by the 1680s Newton’s algebraic infatuation with power series gave
way to a new form of calculus—what he called the “synthetic method of fluxions”®—in which
the geometry of the Ancients was transmogrified and reanimated by its application to shrinking
geometrical figures in their moment of vanishing. This is the potent but nonalgorithmic form of
calculus that we find in full flower in his great Principia of 1687.

Just as I did in VCA, I now wish to take full advantage of Newton’s approach throughout
this book. Let me therefore immediately spell it out, and in significantly greater detail than I did
in VCA, in the vain hope that this second book may inspire more mathematicians and physicists
to adopt Newton’s intuitive (yet rigorous’) methods than did my first.

If two quantities A and B depend on a small quantity €, and their ratio approaches unity as
€ approaches zero, then we shall avoid the more cumbersome language of limits by following
Newton's precedent in the Principia, saying simply that, “A is ultimately equal to B.” Also, as we
did in earlier works (Needham 1993, 2014), we shall employ the symbol = to denote this concept
of ultimate equality.'” In short,

A
“Ais ultimately equalto B” <+= A =B <= lim0 —=1
€—

HYears later I was privileged to meet with Wheeler several times, and to correspond with him, so I was finally able to thank
him directly for the impact that his Gravitation had had upon my life.

3See Armol’d and Vasil'ev (1991); Arnol’d (1990).

5See Needham (1993), the Preface to VCA, and Needham (2014).

7Sadly, this myth originated with Newton himself, in the heat of his bitter priority battle with Leibniz over the discovery of
the calculus. See Arnol'd (1990), Bloye and Huggett (2011), de Gandt (1995), Guicciardini (1999), Newton (1687, p. 123), and
Westfall (1980).

8See Guicciardini (2009, Ch. 9).
?Fine print to follow!

10This notation was subsequently adopted by the Nobel physicist, Subrahmanyan Chandrasekhar (see Chandrasekhar 1995,
p. 44).



Prologue

It follows [exercise] from the theorems on limits that ultimate equality is an equivalence relation,
and that it also inherits additional properties of ordinary equality, e.g., X = Y& P = Q=X P =
Y-Qand A =B-C+ (A/B) = C.

Before we begin to apply this idea in earnest, we also note that the jurisdiction of ultimate
equality can be extended naturally to things other than numbers, enabling one to say, for example,
that two triangles are “ultimately similar,” meaning that their angles are ultimately equal.

Having grasped Newton’s method, I immediately tried my own hand at using it to sim-
plify my teaching of introductory calculus, only later realizing how I might apply it to Complex
Analysis (in VCA), and now to Differential Geometry. Though I might choose any number of
simple, illustrative examples (see Needham 1993 for more), I will reuse the specific one I gave in
the preface to VCA, and for one simple reason: this time I will use the “ =< “-notation to present
the argument rigorously, whereas in VCA I did not. Indeed, this example may be viewed as a
recipe for transforming most of VCA’s “explanations” into “proofs,”!! merely by sprinkling on the
requisite = s.

Let us show that if T=tan0, then g—g =1+T2. See figure below. If we increase 8 by a small
(ultimately vanishing) amount 86, then T will increase by the length of the vertical hypotenuse
5T of the small triangle, in which the other two sides of this triangle have been constructed to lie
in the directions (04 60) and (0 + % ), as illustrated. To obtain the result, we first observe that in
the limit that 30 vanishes, the small triangle with hypotenuse 8T is ultimately similar to the large
triangle with hypotenuse L, because \ < 7. Next, as we see in the magnifying glass, the side &s
adjacent to 0 in the small triangle is ultimately equal to the illustrated arc of the circle with radius
L, so ds = L&0. Thus,

i

dar o1t _or L
Lde T Ls8 T 6s 1

dar 2
= i [c=1+T-

So far as I know, Newton never wrote down this specific example, but compare the illumi-
nating directness of his style!? of geometrical reasoning with the unilluminating computations we
teach our students today, more than three centuries later! As Newton himself put it,'* the geomet-
ric method is to be preferred by virtue of the “clarity and brevity of the reasoning involved and
because of the simplicity of the conclusions and the illustrations required.” Indeed, Newton went

even further, resolving that only the synthetic method was “worthy of public utterance.”

T was already using the = notation (both privately and in print) at the time of writing VCA, and, in hindsight, it was
a mistake that I did not employ it in that work; this led some to suppose that the arguments presented in VCA were less
rigorous than they actually were (and remain).

2The best ambassador for Newton's approach will be you yourself. We therefore suggest that you immediately try your own
hand at Newtonian reasoning, by doing Exercises 1, 2, 3, and 4, on page 24.

135ee Guicciardini (2009, p. 231)
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Newton himself did not employ any symbol to represent his concept of “ultimate equality.”
Instead, his devotion to the geometrical method of the Ancients spilled over into emulating their
mode of expression, causing him to write out the words “ultimately have the ratio of equality,”
every single time the concept was invoked in a proof. As Newton (1687, p. 124) explained, the Prin-
cipia is “written in words at length in the manner of the Ancients.” Even when Newton claimed
that two ratios were ultimately equal, he insisted on expressing each ratio in words. As a result, I
myself was quite unable to follow Newton’s reasoning without first transcribing and summariz-
ing each of his paragraphs into “modern” form (which was in fact already quite common in 1687).
Indeed, back in 1982, this was the catalyst for my private introduction and use of the symbol, =.

It is my view that Newton'’s choice not to introduce a symbol for “ultimate equality” was a
tragically consequential error for the development of mathematics. As Leibniz’s symbolic calcu-
lus swept the world, Newton’s more penetrating geometrical method fell by the wayside. In the
intervening centuries only a handful of people ever sought to repair this damage and revive New-
ton’s approach, the most notable and distinguished recent champion having been V. L. Arnol’d'
(1937-2010).

Had Newton shed the trappings of this ancient mode of exposition and instead employed
some symbol (any symbol!) in place of the words “ultimately equal,” his dense, paragraph-length
proofs in the Principia might have been reduced to a few succinct lines, and his mode of thought
might still be widely employed today. Both VCA and this book are attempts to demonstrate, very
concretely, the continuing relevance and vitality of Newton’s geometrical approach, in areas of
mathematics whose discovery lay a century in the future at the time of his death in 1727.

Allow me to insert some fine print concerning my use of the words “rigour” and “proof.”
Yes, my explicit use of Newtonian ultimate equalities in this work represents a quantum jump
in rigour, as compared to my exposition in VCA, but there will be some mathematicians who
will object (with justification!) that even this increase in rigour is insufficient, and that none of the
“proofs” in this work are worthy of that title, including the one just given: I did not actually prove
that the side of the triangle is ultimately equal to the arc of the circle.

I can offer no logical defence, but will merely repeat the words I wrote in the Preface of VCA,
more than two decades ago: “My book will no doubt be flawed in many ways of which I am not
yet aware, but there is one ‘sin’ that I have intentionally committed, and for which I shall not
repent: many of the arguments are not rigorous, at least as they stand. This is a serious crime if
one believes that our mathematical theories are merely elaborate mental constructs, precariously
hoisted aloft. Then rigour becomes the nerve-racking balancing act that prevents the entire struc-
ture from crashing down around us. But suppose one believes, as I do, that our mathematical
theories are attempting to capture aspects of a robust Platonic world that is not of our making.
I would then contend that an initial lack of rigour is a small price to pay if it allows the reader
to see into this world more directly and pleasurably than would otherwise be possible.” So, to
preemptively address my critics, let me therefore concede, from the outset, that when I claim that
an assertion is “proved,” it may be read as, “proved beyond a reasonable doubt” !>

Separate and apart from the issue of rigour is the sad fact that in rethinking so much classical
mathematics I have almost certainly made mistakes: The blame for all such errors is mine, and
mine alone. But please do not blame my geometrical tools for such poor craftsmanship—I am
equally capable of making mistakes when performing symbolic computations! Corrections will be
received with gratitude at VDGEF.correction@gmail.com.

The book can be fully understood without giving a second thought to the complete arc of
the unfolding drama, told as it is in five Acts. That said, I think that plot matters, and that the
book’s unorthodox structure and title are fitting, for the following reasons. First, I have sought

!4See, for example, Arnol’d (1990).
15Upon reading these words, a strongly supportive member of the Editorial Board of Princeton University Press suggested to
my editor that in place of “Q.E.D.,” I conclude each of my proofs with the letters, “P.B.R.D.”!
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to present the ideas as dramatically as I myself see them, not only in terms of their historical
development,'® but also (more importantly) in terms of the cascading, interconnected flow of the
ideas themselves, and their startling implications for the rest of mathematics and for physics.
Second, more by instinct than design, the role of each of the five Acts does indeed follow (more
or less) the classical structure of a Shakespearean drama; in particular, the anticipated “Climax” is
indeed Act III: “Curvature.” It was in fact years after I had begun work on the book that one day
it suddenly became clear to me that what I had been composing all along had been a mathematical
drama in five acts. That very day I “corrected” the title of the work, and correspondingly changed
its five former “Parts” into “Acts”:

*  Act: The Nature of Space
¢ ActIl: The Metric

e ActIl: Curvature

*  ActV: Parallel Transport
¢ ActV: Forms

The first four Acts fulfill the promise of a self-contained, geometrical introduction to Differen-
tial Geometry. Act IV is the true mathematical powerhouse that finally makes it possible to provide
geometric proofs of many of the assertions made in the first three Acts.

Several aspects of the subject matter are as unorthodox (in a first course) as the geometri-
cal methods by which they are treated. Here we shall describe only the three most important
examples.

First, the climax within the climax of Act I1l is the Global Gauss—Bonnet Theoreimm—a remarkable
link between local geometry and global topology. While the inclusion of this topic is standard,
our treatment of it is not. Indeed, we celebrate its centrality and fundamental importance with
an extravagant display of mathematical fireworks: we devote five chapters to it, offering up four
quite distinct proofs, each one shedding new light on the result, and on the nature of Differential
Geometry itself.

Second, the transition (usually in graduate school) from 2-dimensional surfaces to n-
dimensional spaces (called “manifolds”) is often confusing and intimidating for students. Chap-
ter 29—the second longest chapter of the book—seeks to bridge this gap by focusing (initially) on
the curvature of 3-dimensional manifolds, which can be visualized; yet we frame the discussion
so as to apply to any number of dimensions. We use this approach to provide an intuitive, geo-
metrical, yet technically complete, introduction to the famous Riemann tensor, which measures the
curvature of an n-dimensional manifold.

Third, having committed to a full treatment of the Riemann tensor, we felt it would have
been immoral to have hidden from the reader its single greatest triumph in the arena of the nat-
ural world. We therefore conclude Act IV with a prolonged, geometrical introduction to Einstein’s
glorious General Theory of Relativity, which explains gravity as the curvature impressed upon 4-
dimensional spacetime by matter and energy. This is the third longest chapter of the book. Not
only does it treat (in complete geometrical detail) the famous Gravitational Field Equation (which
Einstein discovered in 1915) but it also explains some of the most recent and exciting discoveries
regarding its implications for black holes, gravitational waves, and cosmology!

Now let us turn to Act V, which is quite different in character from the four Acts that precede
it, for it seeks to accomplish a second objective of the work, one that is quite distinct from the first,
but no less ambitious.

Even the most rabid geometrical zealot must concede that Atiyah’s diabolical machine
(described in the opening quotation) is a necessary evil; but if we must calculate, let us at least

1°As 1 did in VCA, I strongly recommend Stillwell’s (2010) masterpiece, Mathematics and Its History, as a companion to this
book, for it provides deeply insightful and detailed analysis of many historical developments that we can only touch on here.
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do so gracefully! Fortunately, starting in 1900, Elie Cartan developed a powerful and elegant new
method of computation, initially to investigate Lie Groups, but later to provide a new approach to
Differential Geometry.

Cartan’s discovery is called the “Exterior Calculus,” and the objects it studies and differen-
tiates and integrates are called “Differential Forms,” here abbreviated simply to Forms. We shall
ultimately follow Cartan'’s lead, illustrating his method’s power and elegance in the final chapter
of Act V—the longest chapter of the book—reproving symbolically results that were proven geometri-
cally in the first four Acts. But Forms will carry us beyond what was possible in the first four Acts:
in particular, they will provide a beautifully efficient method of calculating the Riemann tensor of
an n-manifold, via its curvature 2-forms.

First, however, we shall fully develop Cartan’s ideas in their own right, providing a self-
contained introduction to Forms that is completely independent of the first four Acts. Lest there be
any confusion, we repeat, the first six chapters—out of seven—of Act V make no reference whatsoever
to Differential Geometry! We have done this because Forms find fruitful applications across diverse
areas of mathematics, physics, and other disciplines. Our aim is to make Forms accessible to the widest
possible range of readers, even if their primary interest is not Differential Geometry.

To that end, we have sought to treat Forms much more intuitively and geometrically than is
customary. That said, the reader should be under no illusions: the principal purpose of Act V is
to construct, at the undergraduate level, the “Devil’s machine”—a remarkably powerful method of
computation.

The immense power of these Forms is reminiscent of the complex numbers: a tiny drop goes
in, and an ocean pours out—Cartan’s Forms explain vastly more than was asked of them by their
discoverer, a sure sign that he had hit upon Platonic Forms!

To give just one example, Forms unify and clarify all of Vector Calculus, in a way that would
be a revelation to undergraduates, if only they were permitted to see it. Indeed, Green’s Theorem,
Gauss’s Theorem, and Stokes’s Theorem are merely different manifestations of a single theorem
about Forms that is simpler than any of these special cases! Despite the indisputable importance of
Differential Forms across mathematics and physics, most undergraduates will leave college without
ever having seen them, and I have long considered this a scandal. Only a precious handful'” of
undergraduate textbooks (on either Vector Calculus or Differential Geometry) even mention their
existence, and they are instead relegated to graduate school.

This lamentable state of affairs is now well into its second century, and I see no signs of an
impending sea change. In response, Act V seeks not to curse the dark, but rather to light a candle,'®
striving to convince the reader that Cartan’s Forms (and their underlying “tensors”) are as simple
as they are beautiful, and that they (and the name Cartan!) deserve to become a standard part
of the undergraduate curriculum. This is the brazenly ambitious goal of Act V. After drowning the
reader in pure Geometry for the first four Acts, we hope that the computational aspect of this final
Act may serve as a suitably cathartic dénouement!

Before we close, let us simply list some housekeeping details:

* First, I have made no attempt write this book as a classroom textbook. While I hope that
some brave souls may nevertheless choose to use it for that purpose—as some previously did
with VCA—my primary goal has been to communicate a majestic and powerful subject to the
reader as honestly and as lucidly as I am able, regardless of whether that reader is a tender
neophyte, or a hardened expert.

“See Further Reading, at the end of this book.

'8Ours is certainly not the first such candle to be lit. Indeed, just as our work was nearing completion, Fortney (2018) published
an entire book devoted to this same goal. However, Fortney’s work does not include any discussion of Differential Geometry,
and, at 461 pages, Fortney’s book is considerably longer than the 100-page introduction to Forms contained in Act V of this
book.
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* My selection of topics may seem eclectic at times: for example, why is no attention paid to the
fascinating and important topic of minimal surfaces? Frequently, as in this case, it is for one
(or both) of the following two reasons: (1) our focus is on intrinsic geometry, not extrinsic!?
geometry; (2) an excellent literature already exists on the subject; in such cases, [ have tried to
provide useful pointers in the Further Reading section at the end of the book.

*  Equations are numbered with (ROUND) brackets, while figures are numbered with [SQUARE]
brackets.

e Bold italics are used to highlight the definition of a new term.

*  For ease of reference when flipping through the book, noteworthy results are framed, while
doubly remarkable facts are double — framed . In the entire work, only a handful of results
are so fundamental that they are triple-framed; we hope the reader will enjoy finding them,
like Easter eggs.

* I have tried to make you, the reader, into an active participant in developing the ideas. For
example, as an argument progresses, | have frequently and deliberately placed a pair of logical
stepping stones sufficiently far apart that you may need to pause and stretch slightly to pass
from one to the next. Such places are marked “[exercise]”; they often require nothing more
than a simple calculation or a moment of reflection.

¢ Last, we encourage the reader to take full advantage of the Index; its creation was a painful
labour of love!

We bring this Prologue to a close with a broader philosophical objective of the work, one that
transcends the specific mathematics we shall seek to explain.

One of the rights [sic] of passage from mathematical adolescence to adulthood is the ability
to distinguish true miracles from false miracles. Mathematics itself is replete with the former, but
examples of the latter also abound: “I can’t believe all those ugly terms cancelled and left me
such a beautifully simple answer!”; or, “I can't believe that this complicated expression has such a
simple meaning!”

Rather than congratulating oneself in such a circumstance, one should instead hang one’s
head in shame. For if all those ugly terms cancelled, they should never have been there in the first
place! And if that complicated expression has a wonderfully simple meaning, it should never have
been that complicated in the first place!

In my own case, ] am embarrassed to confess that mathematical puberty lasted well into my
20s, and [ only started to grow up once I became a graduate student, thanks to the marvellous twin
influences of Penrose and of my close friend George Burnett-Stuart, a fellow advisee of Penrose.

The Platonic Forms of mathematical reality are always perfectly beautiful and they are always
perfectly simple; transient impressions to the contrary are manifestations of our own imperfection.
My hope is that this book may help nudge the reader towards humility in the face of this perfec-
tion, just as my two friends first nudged me down this path, so many years ago amidst the surreal,
Escher-like spires of Oxford.

T. N.

Mill Valley, California
Newtonmas, 2019

1“The meanings of “intrinsic” and “extrinsic” are explained in Section 1.4.
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Chapter 1

Euclidean and Non-Euclidean Geometry

1.1 Euclidean and Hyperbolic Geometry

Differential Geometry is the application of calculus to the geometry of space that is curved. But to
understand space that is curved we shall first try to understand space that is flat.

We inhabit a natural world pervaded by curved objects, and if a child asks us the meaning of
the word “flat,” we are most likely to answer in terms of the absence of curvature: a smooth surface
without any bumps or hollows. Nevertheless, the very earliest mathematicians seem to have been
drawn to the singular simplicity and uniformity of the flat plane, and they were rewarded with
the discovery of startlingly beautiful facts about geometric figures constructed within it. With the
benefit of enormous hindsight, some of these facts can be seen to characterize the plane’s flatness.

One of the earliest and most profound

such facts to be discovered was Pythagoras’s < \
Theorem. Surely the ancients must have been /< / N\
awed, as any sensitive person must remain

today, that a seemingly unalloyed fact about \‘ '
numbers, /<\
/\/ o

in fact has geometrical meaning, as seen in
[1.1).

While Pythagoras himself lived in Greece _ 5
around 500 BCE, the theorem bearing his
name was discovered much earlier, in various
places around the world. The earliest known
example of such knowledge is recorded in the
Babylonian clay tablet (catalogued as “Plimp-
ton 322") shown in [1.2], which was un-
earthed in what is now Iraq, and which dates
from about 1800 BCE.

The tablet lists Pythagorean triples:® integers (a,b,h) such that h is the hypotenuse of a
right triangle with sides a and b, and therefore a? + b? =h?. Some of these ancient examples are
impressively large, and it seems clear that they did not stumble upon them, but rather possessed
a mathematical process for generating solutions. For example, the fourth row of the tablet records
the fact that 13500 + 127092 = 185412

The deeper knowledge that underlay these ancient results is not known,? but to find the first
evidence of the “modern,” logical, deductive approach to mathematics we must jump 1200 years
into the future of the clay tablet. Scholars believe that it was Thales of Miletus (around 600 BCE)

[1.1] Pythagoras’s Theorem: the geometry of
32 442=5%

'We repeat what was said in the Prologue: equations are labelled with parentheses (round brackets)—(...), while figures are
labelled with square brackets—|.. .].

2In fact the tablet only records two members ( a, h) of the triples (a, b, h).

3In the seventeenth century, Fermat and Newton reconstructed and generalized a geometrical method of generating the general
solution, due to Diophantus. See Exercise 5.
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who first pioneered the idea of deducing new
P results from previously established ones, the
logical chain beginning at a handful of clearly
articulated assumptions, or axioms.
L Leaping forward again, 300 years beyond
Thales, we find one of the most perfect exem-
P plars of this new approach in Euclid’s Ele-

ments, dating from 300 BCE. This work sought
to bring order, clarity, and rigour to geometry
by deducing everything from just five simple
axioms, the fifth and last of which dealt with
parallel lines.

Defining two lines to be parallel if they
do not meet, Euclid’s Fifth Axiom? is illus-
trated in [1.3]:

[1.3] Euclid’s Parallel Axiom: P is the unique parallel
to L through p, and the angle sum of a triangle is 7.

Parallel Axiom. Through any point p not on the line L there exists precisely one
line P that is parallel to L.

But the character of this axiom was more complex and less immediate than that of the first
four, and mathematicians began a long struggle to dispense with it as an assumption, instead
seeking to show that it must be a logical consequence of the first four axioms.

This tension went unresolved for the next 2000 years. As the centuries passed, many attempts
were made to prove the Parallel Axiom, and the number and intensity of these efforts reached a
crescendo in the 1700s, but all met with failure.

Yet along the way useful equivalents of the axiom emerged. For example: There exist similar
triangles of different sizes (Wallis in 1663; see Stillwell (2010)). But the very first equivalent was
already present in Euclid, and it is the one still taught to every school child: the angles in a triangle
add up to two right angles. See [1.3].

The explanation of these failures only emerged around 1830. Completing a journey that had
begun 4000 years earlier, Nikolai Lobachevsky and Jénos Bolyai independently announced the

*Euclid did not state his axiom in this form, but it is logically equivalent.
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discovery of an entirely new form of geometry (now called Hyperbolic Geometry) taking place in
a new kind of plane (now called the hyperbolic plane). In this Geometry the first four Euclidean
axioms hold, but the parallel axiom does not. Instead, the following is true:

Hyperbolic Axiom. There are at least two parallel lines through p that do not
meet L.

(L1)

These pioneers explored the logical consequences
of this axiom, and by purely abstract reasoning
were led to a host of fascinating results within
a rich new geometry that was bizarrely different
from that of Euclid.

Many others before them, perhaps most
notably Saccheri (in 1733; see Stillwell 2010) and
Lambert (in 1766; see Stillwell 2010), had discov-
ered some of these consequences of (1.1), but their
aim in exploring these consequences had been to
find a contradiction, which they believed would
finally prove that Euclidean Geometry to be the
One True Geometry.

Certainly Saccheri believed he had found a
clear contradiction when he published “Euclid
Freed of Every Flaw.” But Lambert is a much more
perplexing case, and he is perhaps an unsung hero
in this story. His results penetrated so deeply into
this new geometry that it seems impossible that
he did not at times believe in the reality of what (1.4] Johann Heinrich Lambert (1728-1777).
he was doing. Regardless of his motivation and
beliefs®, Lambert (shown in [1.4]) was certainly the first to discover a remarkable fact® about the
angle sum of a triangle under axiom (1.1), and his result will be central to much that follows in
Act IL

Nevertheless, Lobachevsky and Bolyai richly deserve their fame for having been the first to
recognize and fully embrace the idea that they had discovered an entirely new, consistent, non-
Euclidean Geometry. But what this new geometry really meant, and what it might be useful for,
even they could not say.”

Remarkably and surprisingly, it was the Differential Geometry of curved surfaces that ultimately
resolved these questions. As we shall explain, in 1868 the Italian mathematician Eugenio Beltrami
finally succeeded in giving Hyperbolic Geometry a concrete interpretation, setting it upon a
firm and intuitive foundation from which it has since grown and flourished. Sadly, neither
Lobachevsky nor Bolyai lived to see this: they died in 1856 and 1860, respectively.

This non-Euclidean Geometry had in fact already manifested itself in various branches of

mathematics throughout history, but always in disguise. Henri Poincaré (beginning around 1882)
was the first not only to strip it of its camouflage, but also to recognize and exploit its power

°I thank Roger Penrose for making me see that Lambert deserves greater credit than he is usually granted. Penrose did so by
means of the following analogy: “Should we not give credit to Einstein for the cosmological constant, even if he introduced it
for the wrong reasons? And should we blame him for later retracting it, calling it the “greatest blunder of my life”? Or what
about General Relativity itself, which Einstein seemed to become less and less convinced was the right theory (needing to be
replaced by some kind of non-singular unified field theory) as time went on?” [Private communication.|

b1f you cannot wait, it's (1.8).

“Lobachevsky did in fact put this geometry to use to evaluate previously unknown integrals, but (at least in hindsight) this
particular application must be viewed as relatively minor.
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in such diverse areas as Complex Analysis, Differential Equations, Number Theory, and Topo-
logy. Its continued vitality and centrality in the mathematics of the 20th and twenty-first cen-
turies is demonstrated by Thurston’s work on 3-manifolds, Wiles's proof of Fermat’s Last
Theorem, and Perelman’s proof of the Poincaré Conjecture (as a special case of Thurston’s
Geometrization Conjecture), to name but three examples.

In Act I we shall describe Beltrami’s breakthrough, as well as the nature of Hyperbolic Geo-
metry, but for now we wish to explore a different, simpler kind of non-Euclidean Geometry, one
that was already known to the Ancients.

1.2 Spherical Geometry

To construct a non-Euclidean Geometry we must deny the existence of a unique parallel. The
Hyperbolic Axiom assumes two or more parallels, but there is one other logical possibility—no
parallels:

Spherical Axiom. There are no lines through p that are parallel to L : every line

1.2
meets L. (12)

Thus there are actually fwo non-Euclidean® geometries: spherical and hyperbolic.

As the name suggests, Spherical Geometry can be realized on the surface of a sphere—
denoted S? in the case of the unit sphere—which we may picture as the surface of the Earth. On
this sphere, what should be the analogue of a “straight line” connecting two points on the surface?
Answer: the shortest route between them! But if you wish to sail or fly from London to New York,
for example, what is the shortest route?

The answer, already known to the ancient
mariners, is that the shortest route is an arc of
a great circle, such as the equator, obtained
by cutting the sphere with a plane passing
through its centre. In [1.5] we have chosen L to
be the equator, and it is clear that (1.2) is satis-
fied: every line through p meets L in a pair of
antipodal (i.e., diametrically opposite) points.

In the plane, the shortest route is also the
straightest route, and in fact the same is true on
the sphere: in a precise sense to be discussed
later, the great circle trajectory bends neither
to the right nor to the left as it traverses the
spherical surface.

There are other ways of constructing the
great circles on the Earth that do not require
thinking about planes passing through the

[1.5] The great circles of S intersect in pairs of
antipodal points. completely inaccessible centre of the Earth.

For example, on a globe you may map out
your great circle journey by holding down one end of a piece of string on London and pulling
the string tightly over the surface so that the other end is on New York. The taut string has

SNevertheless, the reader should be aware that in modern usage “non-Euclidean Geometry” is usually synonymous with
“Hyperbolic Geometry.”



1.2 Spherical Geometry

automatically found the shortest, straightest route—the shorter? of the two arcs into which the
great circle through the two cities is divided by those cities.

With the analogue of straight lines now found, we can “do geometry” within this sphe-
rical surface. For example, given three points on the surface of the Earth, we can connect them
together with arcs of great circles to obtain a “triangle.” Figure [1.6] illustrates this in the case
where one vertex is located at the north pole, and the other two are on the equator.

But if this non-Euclidean Spherical Geometry was
already used by ancient mariners to navigate the oceans,
and by astronomers to map the spherical night sky, what //

e

then was so shocking and new about the non-Euclidean
geometry of Lobachevsky and Bolyai?

The answer is that this Spherical Geometry was I
merely considered to be inherited from the Euclidean Geo- |
metry of the 3-dimensional space in which the sphere \
resides. No thought was given in those times to the )
sphere’s internal 2-dimensional geometry as representing /
an alternative to Euclid’s plane. Not only did it violate 4
Euclid’s fifth axiom, it also violated a much more basic T d/-'/
one (Euclid’s first axiom) that we can always draw a
unique straight line connecting two points, for this fails
when the points are antipodal.

On the other hand, the Hyperbolic Geometry of Lobachevsky and Bolyai was a much more
serious affront to Euclidean Geometry, containing familiar lines of infinite length, yet flaunting

[1.6] A particularly simple “triangle”
on the sphere.

multiple parallels, ludicrous angle sums, and many other seemingly nonsensical results. Yet the
21-year-old Bolyai was confident and exuberant in his discoveries, writing to his father, “From
nothing I have created another entirely new world.”

We end with a tale of tragedy. Bolyai’s father was a friend of Gauss, and sent him what
Janos had achieved. By this time Gauss had himself made some important discoveries in this
area, but had kept them secret. In any case, Jdnos had seen further than Gauss. A kind word in
public from Gauss, the most famous mathematician in the world, would have assured the young
mathematician a bright future. But Nature and nurture sometimes conspire to pour extraordinary
mathematical gifts into a vessel marred by very ordinary human flaws, and Gauss's reaction to
Bolyai’s marvellous discoveries was mean-spirited and self-serving in the extreme.

First, Gauss kept Bolyai in suspense for six months, then he replied as follows:

Now something about the work of your son. You will probably be shocked for a moment
when I begin by saying that I cannot praise it, but I cannot do anything else, since to praise
it would be to praise myself. The whole content of the paper, the path that your son has
taken, and the results to which he has been led, agree almost everywhere with my own
meditations, which have occupied me in part for 30-35 years.
Gauss did however “thank” Bolyai’s son for having “saved him the trouble”!’
down theorems he had known for decades.
Janos Bolyai never recovered from the surgical blow delivered by Gauss, and he abandoned

of having to write

mathematics for the rest of his life.!!

1f the two points are antipodal, such as the north and south poles, then the two arcs are the same length. Furthermore, the
great circle itself is no longer unique: every meridian is a great circle connecting the poles.

9Gauss had previously denigrated Abel's discovery of elliptic functions in precisely the same manner; see Stillwell (2010,
p. 236).

''If this depresses you, turn your thoughts to the uplifting counterweight of Leonhard Euler. An intellectual volcano erupting
with wildly original thoughts (some of which we shall meet later) he was also a kind and generous spirit. We cite one, parallel
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[1.9] The intrinsic geometry of the surface of a crookneck squash: geodesics are the equivalents of straight lines,
and triangles formed out of them may possess an angular excess of either sign, depending on how the surface
bends: £(A) =0and E(A;) <.

are connected by multiple geodesics, and this nonuniqueness occurs on more general surfaces, too.
What is true is that any two points that are sufficiently close together can be joined by a unique
geodesic segment that is the shortest route between them.

Just as a line segment in the plane can be extended indefinitely in either direction by laying
down overlapping segments, so too can a geodesic segment be extended on a curved surface, and
this extension is unique. For example, in [1.9] we have extended the dashed geodesic segment
connecting the black dots, by laying down the overlapping dotted segment between the white
points.

Because of the subtleties associated with the length-minimizing characterization of geodesics,
before long we will provide an alternative, purely local characterization of geodesics, based on
their straightness.

With these caveats in place, it is now clear how we should define distance within a surface
such as [1.9]: the distance between two sufficiently close points a and b is the length of the geodesic
segment connecting them.

Figure [1.9] shows how we may then define, for example, a “circle of radius r and centre c”
as the locus of points at distance r from c. To construct this geodesic circle we may take a piece of
string of length r, hold one end fixed at c, then (keeping the string taut) drag the other end round
on the surface. But just as the angles in a triangle no longer sum to 7, so now the circumference
of a circle no longer is equal to 27r. In fact you should be able to convince yourself that for the
illustrated circle the circumference is less than 2mr.

Given three points on the surface, we may join them with geodesics to form a geodesic
triangle; [1.9] shows two such triangles, A} and Aj:

* Looking at the angles in Ay, it seems clear that they sum to more than 71, so £(A;) >0, like a
triangle in Spherical Geometry.



1.5 Constructing Geodesics via Their Straightness

[1.10] Bending a piece of paper changes the extrinsic geometry, but not the intrinsic geometry.

®  On the other hand, it is equally clear that the angles of A; sum to less than m: £(A;) <0, and
(as we shall explain) this opposite behaviour is in fact exhibited by triangles in Hyperbolic
Geometry. Note also that if we construct a circle in this saddle-shaped part of the surface, the
circumference is now greater than 27r.

The concept of a geodesic belongs to the so-called intrinsic geometry of the surface—a fun-
damentally new view of geometry, introduced by Gauss (1827). [t means the geometry that is
knowable to tiny, ant-like, intelligent (but 2-dimensional!) creatures living within the surface. As
we have discussed, these creatures can, for example, define a geodesic “straight line” connecting
two nearby points as the shortest route within their world (the surface) connecting the two points.
From there they can go on to define triangles, and so on. Defined in this way, it is clear that the
intrinsic geometry is unaltered when the surface is bent (as a piece of paper can be) into quite
different shapes in space, as long as distances within the surface are not stretched or distorted in
any way. To the ant-like creatures within the surface, such changes are utterly undetectable.

Under such a bending, the so-called extrinsic geometry (how the surface sits in space) most
certainly does change. See [1.10]. On the left is a flat piece of paper on which we have drawn a
triangle A with angles (7/2), (n/6), and (m/3). Of course £(A)=0. Clearly we can bend such a
flat piece of paper into either of the two (extrinsically) curved surfaces on the right.'* However,
intrinsically these surfaces have undergone no change at all—they are both as flat as a pancake!
The illustrated triangles on these surfaces (into which A is carried by our stretch-free bending of
the paper) are identical to the ones that intelligent ants would construct using geodesics, and in
both cases € =0: geometry on these surfaces is Euclidean.

Even if we take a patch of a surface that is intrinsically curved, so that a triangle within it has
£ #0, it too can generally be bent somewhat without stretching or tearing it, thereby altering its
extrinsic geometry while leaving its intrinsic geometry unaltered. For example, cut a ping pong
ball in half and gently squeeze the rim of one of the hemispheres, distorting that circular rim into
an oval (but not an oval lying in a single plane).

1.5  Constructing Geodesics via Their Straightness

We have already alluded to the fact that geodesics on a surface have at least two characteristics in
common with lines in the plane: (1) they provide the shortest route between two points that are
not too far apart and (2) they provide the “straightest” route between these points. In this section
we seek to clarify what we mean by “straightness,” leading to a very simple and practical method
of constructing geodesics on a physical surface.

“But note that we must first trim the edges of the rectangle to bend it into the shape on the far right.

11
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[1.11] On the curved surface of a fruit or vegetable, peel a narrow strip surrounding a geodesic, then lay it flat on
the table. You will obtain a straight line in the plane!

Most texts on Differential Geometry pay scant attention to such practical matters, and it is
perhaps for this reason that the construction we shall describe is surprisingly little known in
the literature.'> In sharp contrast, in this book we urge you to explore the ideas by all means
possible: theoretical contemplation, drawing, computer experiments, and (especially!) physical
experiments with actual surfaces. Your local fruit and vegetable shop can supply your laboratory
with many interesting shapes, such as the yellow summer squash shown in [1.11].

We can now use this vegetable to reveal the hidden straightness of geodesics via an experi-
ment that we hope you will repeat for yourself:

1. On a fruit or vegetable, construct a geodesic by stretching a string over its curved surface.

2. Use a pen to trace the path of the string, then remove the string.

3. Make shallow incisions on either side of (and close to) the inked path, then use a vegetable
peeler or small knife to remove the narrow strip of peel between the two cuts.

4. Lay the strip of peel flat on the table, and witness the marvellous fact that the geodesic within
the peeled strip has become a straight line in the plane!

But why?!

To understand this, first let us be clear that although the strip is free to bend in the direction
perpendicular to the surface (i.e., perpendicular to itself), it is rigid if we try to bend it sideways,
tangent to the surface. Now let us employ proof by contradiction, and imagine what would hap-
pen if such a peeled geodesic did not yield a straight line when laid flat on the table. It is both a

50One of the rare exceptions is Henderson (1998), which we strongly recommend to you; for more details, see the Further
Reading section at the end of this book.



1.5 Constructing Geodesics via Their Straightness

[1.12] Suppose that the illustrated dotted path is a geodesic such that a narrow (white) strip surrounding it does
not become a straight line when laid flat in the plane. But in that case we can shrink the dotted path in the plane
(towards the shortest, straight-line route in the plane) thereby producing the solid path. But if we then reattach
the strip to the surface, this solid path is still shorter than the original dotted path, which was supposed to be the
shortest path within the surface—a contradiction!

drawback and an advantage of conducting such physical experiments that they will simply not
permit us to construct something that is impossible, as is required in our desired mathematical
proof by contradiction. Nevertheless, let us suppose that there exists a geodesic path, such as the
dotted one shown on top left of [1.12], that when peeled and laid flat on the table (on the right)
does not become a straight line.

The shortest route between the ends of this dotted (nonstraight) plane curve is the straight
line connecting them. (As illustrated, this is the path of the true geodesic we already found using
the string—but pretend you don’t know that for now!) Thus we may shorten the dotted curve by
deforming it slightly towards this straight, shortest route, yielding the solid path along the edge
of the peeled strip. Therefore, after reattaching the strip to the surface (bottom left) the solid curve
provides a shorter route over the surface than the dotted one, which we had supposed to be the
shortest: a contradiction! Thus we have proved our previous assertion:

If a narrow strip surrounding a segment G of a geodesic is cut out of a surface and

laid flat in the plane, then G becomes a segment of a straight line. (16)

We are now very close to the promised simple and practical construction of geodesics. Look
again at step 3 of [1.11], where we peeled off the strip of surface. But imagine now that we are
reattaching the strip to the surface, instead. Ignore the history of how we got to this point: what are
we actually doing right now in this reattachment process? We have picked up a narrow straight
strip (of three-dimensional peel—but mathematically idealized as a two-dimensional strip) and
we have unrolled it back onto the surface into the shallow channel from which we cut it. But here

13
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is the crucial observation: this shallow channel need not exist—the surface decides where the strip
must go as we unroll it!

Thus, as a kind of time-reversed converse of (1.6), we obtain a remarkably simple and prac-
tical method'® of constructing geodesics on a physical surface:

To construct a geodesic on a surface, emanating from a point p in direction v, stick
one end of a length of narrow sticky tape down at p and unroll it onto the surface, (1.7)
starting in the direction v.

(Note, however, that this does not provide a construction of the geodesic connecting p to a
specified target point q.)

If this construction seems too simple to be true, please try it on any curved surface you have
to hand. You can check that the sticky tape!” is indeed tracing out a geodesic by stretching a string
over the surface between two points on the tape: the string will follow the same path as the tape.
But note that, as a promised bonus, this new tape construction works on any part of a surface, even
where the surface is concave towards you, so that the stretched-string construction breaks down.

Of course all of this is a concrete manifestation of a mathematical idealization. A totally flat
narrow strip of tape of nonzero width cannot'® be made to fit perfectly on a genuinely curved
surface, but its centre line can be made to rest on the surface, while the rest of the tape is tangent
to the surface.

1.6 The Nature of Space

Let us return to the history of the discovery of non-Euclidean Geometry, and take our first look at
how these two new geometries differ from Euclid’s.

As we have said, Euclidean Geometry, is characterized by the vanishing of £(A). Note that,
unlike the original formulation of the parallel axiom, this statement can be checked against experiment:
construct a triangle, measure its angles, and see if they add up to 7. Gauss may have been the first
person to ever conceive of the possibility that physical space might not be Euclidean, and he even
attempted the above experiment, using three mountain tops as the vertices of his triangle, and
using light rays for its edges.

Within the accuracy permitted by his equipment, he found € = 0. Quite correctly, Gauss did
not conclude that physical space is definitely Euclidean in structure, but rather that if it is not
Euclidean then its deviation from Euclidean Geometry is extremely small. But he did go so far as
to say (see Rosenfeld 1988, p. 215) that he wished that this non-Euclidean Geometry might apply
to the real world. In Act IV we shall see that this was a prophetic statement.

'“This important fact is surprisingly hard to find in the literature. After we (re)discovered it, more than 30 years ago, we began
searching, and the earliest mention of the underlying idea we could find at that time was in Aleksandrov (1969, p. 99), albeit
in a less practical form: he imagined pressing a flexible metal ruler down onto the surface. Later, the basic idea also appeared
in Koenderink (1990), Casey (1996), and Henderson (1998). However, we have since learned that the essential idea (though not
in our current, practical form) goes all the way back to Levi-Civita, more than a century ago! See the footnote on page 236.
7We recommend using masking tape (aka painter’s tape) because it comes in bright colours, and once a strip has been created,
it can be detached and reattached repeatedly, with ease. A simple way to create narrow strips (from the usually wide roll of
tape) is to stick a length of tape down onto a kitchen cutting board, then use a sharp knife to cut down its length, creating
strips as narrow as you please.

'8This is a consequence of a fundamental theorem we shall meet later, called the Theorema Egregium.



Chapter 2

Gaussian Curvature

2.1 Introduction

The proportionality constant,

that enters into Spherical Geometry via
Harriot's result (1.3), is called the Gaussian
curvature' of the sphere. The smaller the
radius R, the more tightly curved is the sur-
face of the sphere, and the greater the value
of the Gaussian curvature X.

Likewise, in Hyperbolic Geometry the
negative constant

=N
occurring in (1.8) is again called the Gaus-
sian curvature, for reasons we shall explain
shortly.

This intrinsic? concept K was anno-
unced by Gauss (after a decade of private
investigation) in his revolutionary “Gen-
eral Investigations of Curved Surfaces,”? -
published in 1827. [2.1] Carl Friedrich Gauss (1777-1855).

As we now explain, Gauss introduced
this concept to measure the curvature at
each point of a general, irregular surface such as that depicted in [1.9]. This one idea of curvature
will dominate all that is to come. According to Harriot’s and Lambert’s results (1.8),

(= % =angular excess per unit area
17 4 e p :

In both Spherical and Hyperbolic Geometry this interpretation holds for a triangle A of any size
and any location. But on a more general surface such as in [1.9] this definition makes no sense, for
even the sign of € varies between triangles, such as Aj and Ay, that reside in different parts of the
surface.

! Also called the Gauss curvature, infrinsic curvature, total curvature, or just plain curvature.

2As we shall discuss later, Olinde Rodrigues had arrived at and published the same concept as early as 1815, but from an
extrinsic point of view. Gauss was not aware that he had been anticipated in this way.

*Gauss (1827).
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[2.2] The Gaussian curvature K (p) at a point is the angular excess per unit area as a geodesic triangle shrinks to
that point. In this example, 3C(p) =0 and K (q) < 0.

To define the Gaussian curvature at a point p on such a surface we now imagine a small
geodesic triangle A}, containing p, and then allow the triangle to shrink down towards p.

Using the construction of geodesics discovered in the previous section, [2.2] depicts such
a sequence of shrinking triangles, converging towards a point on the surface of an inflatable
swimming pool ring, the mathematical name for which is a torus. We now define the Gaussian
curvature K(p) at p to be the limit as this triangle shrinks down towards p:

_ o E(8p)
ﬂC{pl—AII}rgp Ay

=angular excess per unit area at p. (2.1)

At this stage it is nof meant to be obvious to you that this limit exists, independently of the
shape of the triangle and the precise manner in which it shrinks; this will be proved later. As
our drama unfolds we shall discover several other ways? of interpreting the Gaussian curvature
and of calculating its value in concrete cases.

*For a mathematical concept to be truly fundamental it must lie at the intersection of different branches of mathematics. Thus
it is to be expected that each of these branches will provide a seemingly distinct yet equally natural way of looking at one and
the same concept.



2.2 The Circumference and Area of a Circle

KXp)<0 Kp)=0

[2.3]1 The Gaussian curvature XK is the local angular excess per unit area: its sign is negative if the surface looks
like a saddle, positive if it’s like a hill, and it vanishes if it’s like a curled piece of paper.

The definition in (2.1) extends beyond triangles. If we replace A, with a small n-gon then
(see Ex. 10),

[ &(n-gon) = [angle sum] — (n — 2]71,) (2.2)

and the interpretation of curvature in (2.1) as angular excess per unit area applies without change.

Inspection of the inflatable pool ring in [2.2] should make it clear that K(p) >0 at every point
p on the outer half, where the immediate neighbourhood of p resembles a hill, whereas X(q) <0
at every point g on the inner half, where the immediate neighbourhood of q resembles a saddle.
Figure [2.3] summarizes this.

2.2 The Circumference and Area of a Circle

But why is X(p) so important? Yes, clearly it controls
small triangles to some extent, but there is so much
more to geometry than just triangles! The answer is
that while we may have chosen to define X(p) (for the
moment) in terms of small triangles, we will gradually
discover that the curvature has an iron grip over cvery
aspect of geometry within the surface. Let us give just
two examples for now.

In [1.9] we indicated how a “circle of radius v cen-
tred at ¢ could be defined by taking the end p of a
geodesic segment cp of fixed length r and swinging it
fully around c. Let us calculate the circumference C(r)
of such a circle constructed on the sphere of radius R.

Referring to [2.4], we see that
[2.4]1 A circle of radius r on a sphere of
_Rai _r _ : radius R has circumference C (1), given
p=Rsind and ¢ R = C(r)=2nRsin(r/R). by C(r) = 27tR sin(r/R).

(2.3)

Just as the curvature governs the departure of the angle sum of a triangle from the Euclidean
prediction of 7, so too does it govern the departure of C(r) from the Euclidean prediction of 27tr.
To see this, recall the power series for sine:

19
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sintb=¢—%¢)3+%¢5+~u

Thus, as ¢ vanishes,
1
¢ —sind = 6 ¢3.

(We remind the reader that here, = denotes Newton's concept of ultimate equality, as introduced
in the Prologue.) It follows from (2.3) that as r shrinks to zero,

2nr — C(r) =2nR[(r/R) —sin(r/R)] = YR

In other words, the inhabitants of S? can now determine the curvature of their world by examining
the circumference of a small circle, just as easily as they previously could by examining the angles
of a small triangle:

X = (24)

a3lw

[2?1‘!‘—(:{1‘]}

Remarkably, as we will be able to show much later, in Act IV, this formula continues to correctly
measure the Gaussian curvature on a general surface! (Note that the power of r in the denominator
could have been anticipated: we know that X has dimensions of 1/(length)?, and circumference
is a length, so we require [leng1h)3 in the denominator.)

Continuing with this example, let us instead examine the area A(r) of the polar cap bounded
by this circle. Again it is the curvature that governs how the area departs from the Euclidean
prediction of nr?. With the assistance of the formula for the polar cap (see Ex. 10, p. 85) it is not
hard to verify [exercise] that, in fact,

(2.5)

And again this formula turns out to be universal! (Again, the same reasoning as above explains
the fourth power in the denominator.)

While we are not yet in a position to prove the universality of (2.4) and (2.5), we can at least
see that they do indeed yield the correct sign at each point of a variably curved surface, such as that
shown in [1.9]. For if the immediate vicinity of a point on such a surface is positively curved, then
it is hill-shaped near that point (as it everywhere in the region of [1.9] containing A;). Thus both
the circumference and area of a small circle centred there will indeed be squeezed by the curvature
and be Jess than they would have been in a flat Euclidean plane. Thus, both the preceding formulas
yield X >0, as they should.

On the other hand, if the surface is saddle-shaped near the point, the opposite happens. Recall
that we pointed out in [1.9] that a circle drawn in the saddle-shaped part of the surface (where Ay
is located) will have C(r) >2nr. To grasp this, stand up and hold one arm out at right angles to
your body. If you spin around on your heels, the tip of your hand will trace out a horizontal circle.
Now repeat this pirouette, but this time wave your arm up and down as you turn; clearly the tip of
hand has travelled further than before. But this waving up and down is just what happens when
we trace out a circle on a saddle-shaped surface, and therefore both of the preceding formulas
yield X <0, as they should.



2.2 The Circumference and Area of a Circle

[2.5]1 Nonspherical surfaces of revolution exist that possess constant positive curvature, but these necessarily have
either spikes or edges.

We have said that curvature has an “iron grip” on geometry, but just how absolute is this
control? For example, if we know that a patch of surface has constant positive curvature X =
(1/R?), must it in fact be a portion of a sphere of radius R? Well, take a ping pong ball and cut it in
half—now flex one of the hemispheres slightly. Clearly we have obtained a new nonspherical patch
of surface, but since we have not stretched distances within the surface, geodesics and angles are
unchanged, and therefore according to the definition (2.3) the curvature X has not changed. Thus
we certainly can obtain at least patches of surface of constant curvature that are not extrinsically
spherical, although they all have identical intrinsic geometry.

Figure [2.5] illustrates that even if we restrict attention just to surfaces of revolution, the
sphere is not the only one of constant positive curvature. In fact there is an entire family of such
surfaces, with the sphere representing the boundary case between the two illustrated types (see
Ex. 22). Though they hardly look like spheres, an intelligent ant living on either of these sur-
faces would never know that she wasn’t living on a sphere. Well, that’s almost true: eventually
she might discover sharp creases or spikes at which the surface is not smooth, or else she might
run into an edge where the surface ends. In 1899 Heinrich Liebmann proved® that if a surface of
constant positive curvature does not suffer from these defects then it can only be a sphere.

Ignoring such superficial extrinsic differences, can two surfaces have constant positive cur-
vature K =(1/R?) and yet have genuinely different intrinsic geometries? More explicitly, if our
intelligent ant were suddenly transported from one surface to the other, could she devise an
experiment to discover that her world had changed? In 1839 Minding (one of Gauss’s few stu-
dents) discovered the answer: “no!” In other words, Minding found® that if two surfaces have
constant positive curvature X = (1/R?) then their intrinsic geometries are locally identical to that of
the sphere of radius R.

We have discussed the fact that the inner rim of the pool ring in [2.2] has negative curvature,
but it is not constant negative curvature. Indeed, if C is the circle of contact between the ring and
the ground, separating the inner and outer halves, then it’s clear that the negative curvature X(q)

5The proof will have to wait till Section 38.11.
The proof will have to wait till Act IV (Exercise 7, p. 336).
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Chapter 3 Exercises for Prologue and Act |

(i)

(ii)

(iii)

Treating (2.4) as an approximate equality (instead of an exact ultimate equality), esti-
mate K. From these infrinsic measurements, estimate the exfrinsic radius R of the fruit.
Compare your answer with a direct measurement of R.

Continuing from (i), suppose that your measurements of v and C(r) are perfect. Use
the third term of the (decreasing and alternating) Taylor expansion of sin(r/R) to show
that an upper bound on the percentage error in X that results from applying (2.4) in
the manner of part (i)—i.e., without taking the limit implied by the ultimate equality—is

given by
% <5 [%]2 %

Deduce that even for a circle as large as the one you constructed, the error cannot be
larger than approximately 3% !

Use the result of (ii) to deduce a formula for the upper bound of the percentage error
in R.

14. Negative Curvature. Using the technique described in the footnote on page 14, or otherwise,
manufacture narrow strips of sticky tape, ideally coloured masking tape. Then use (1.7) to
conduct the following experiments.

(i)

(ii)

(iii)

(iv)

v)

(vi)

By following the instructions that accompany [5.3], page 53, construct your own, per-
sonal pseudosphere out of discs of radius R—the more cones, the better; the bigger, the
better!

Starting at a point on the circular base of radius R, launch geodesics in various directions,
and try to predict their course before you lay the tape down onto the surface. When a strip
of tape runs out, continue the geodesic by simply overlapping a new strip with the old one,
as illustrated in [1.9]. With the sole exception of the meridian geodesic that heads straight
up the surface—tracing a tractrix generator of the surface of revolution—note that every
geodesic initially heads up the pseudosphere but then turns around and comes back
down the pseudosphere, ultimately returning to the base circle.

Construct a right-angled geodesic triangle, A, measure its angles, and hence estimate
its angular excess, £(A). Estimate (as best you can) its areas, A(A). Hence estimate the
(constant) curvature X of your pseudosphere, using

E(A)

VTG

The larger the triangle, the larger (i.e., more negative) the value of £(A), making its
measurement easier and more accurate. But the tradeoff is that it becomes harder to
accurately estimate the area A(A). To overcome this difficulty, do the following. Make
narrow strips of the same kind that you use to generate geodesics, but create them all
with the same (accurately measured) width, W, perhaps 1/4 inch. Now fill your A with
these strips, cutting them off when they hit an edge. Remove the strips and lay them
end-to-end on a flat surface, and measure the total length, L. Then A(A) =< LW.

Repeat (iii) with several more triangles, but no longer restrict them to be right-angled,
because (iv) now makes it easy to measure A(A) for any shape of triangle. Verify that
(within experimental error) all triangles yield the same value of K.

Assuming that

1
3{ =— E ’
estimate R, and compare this to the actual radius of the discs you used to construct your

pseudosphere.



Further Reading

NOTES: In the following, I merely list title and author; full details can be found in the bibliography.
Some of the following works are included simply because they are highly relevant, and I therefore
believe they deserve to be brought to your attention (even if they are not quite my cup of tea).
Most, however, are included because I consider them to be gems, and I strongly recommend them
to you. Many other excellent books sit on my bookshelves, and I seek their counsel often, and yet
they are not included here simply in order to cut down this (already long) list to a manageable
size—I apologize to the authors of all those excellent works for failing to highlight them here.
Finally, I also apologize to the authors of the wonderful works I have yet to discover!

Global Recommendations

First, let me set the stage with six works that [ hold to be invaluable, the content of each of which
spans multiple Acts of this book.

*  The Road to Reality, by Roger Penrose.
An extraordinary panorama of almost all of physics, and most of mathematics, by a master of
both. Many of the insights can only be found here, and they are brought to life by Penrose’s
remarkable (and beautiful!) hand drawings.

*  Gravitation, by Misner, Thorne, and Wheeler.

Almost 50 years after its original publication in 1973, this classic remains one of the very
best introductions to Einstein’s geometrical theory of gravity (General Relativity) and to the
Differential Geometry upon which it rests. It also contains one of the best, most geometrical
introductions to Forms, including the curvature 2-forms that allow one to calculate the Rie-
mann tensor efficiently. The new (2017) edition from Princeton University Press is beautifully
done, and contains a new introduction by Charles Misner and Kip Thorne, discussing the
exciting developments in the field since the book’s original publication.

*  Differential Geometry in the Large, by Heinz Hopf.
Hopf was not only one of the towering figures of twentieth-century mathematics, he was also
a master of exposition. Here, ideas of Differential Geometry and Topology (many of which
are due to Hopf himself) come together in a beautiful way, explained with remarkable clarity
and simplicity. Every time I return to this Meisterwerk, I feel that some beneficent magician
has inserted more wonderful ideas into its pages, for I swear that this beautiful idea wasn’t on
the page the last time I looked!

®  Elementary Differential Geometry (revised 2nd edition), by Barrett O'Neill.
First published in 1966, this trail-blazing text pioneered the use of Forms at the undergraduate
level. Today, more than a half-century later, O'Neill’s work remains, in my view, the single
most clear-eyed, elegant, and (ironically) modern treatment of the subject available—present
company excepted!—at the undergraduate level.
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Further Reading

Geometrical Methods of Mathematical Physics, by Bernard Schutz.

This work—now 40 years old!—is a timeless treasure trove, covering manifolds, tensors, Lie
derivatives and Lie groups, Forms, Riemannian Geometry, gauge theories, and a host of other
applications to physics. To achieve this, Professor Schutz channels Star Trek’s Mr. Spock. His
Viulcan half enables him to erect a logical structure of crystalline perfection, in which every-
thing is concisely and rigorously proven, and—unlike my (I hope delicious) cheeseburger
approach in this book—Kashrut is strictly observed: concepts that depend on the existence of
a metric are scrupulously and explicitly separated from those that do not. But, in tandem with
this, Schutz is able to harness his human half to provide a wealth of intuition that reveals the
underlying geometric reality.

Mathematics and Its History (3rd edition), by John Stillwell.

A remarkable panorama of all of mathematics through the lens of history. But make no mis-
take, this is not primarily a book about history, rather it is fundamentally a work about the
interconnectedness and meaning of mathematics itself, all explained in a rather concise style
(relative to mine!), with deep insight and lucidity.

Geometry in General

The following works are concerned with geometry in general, but especially with Hyperbolic
Geometry. (Differential Geometry has its own category.)

Geometry and the Imagination, by David Hilbert and S. Cohn-Vossen.

A magnificent, deeply insightful survey of geometry, focusing on intuitive understanding,
by one of the greatest mathematicians of the 20th century. The diagrams (drawn by K. H.
Naumann and H. Bédeker) are astonishingly beautiful, to the point of causing me envy!

Experiencing Geometry, by David W. Henderson and Daina Taimina.

A highly unusual approach, philosophically akin to mine (but using the Moore method),
focused on intuitive, experimental investigations of geometry. It contains significant discussion
of parallel transport and holonomy. The overlap of their approach with mine is made clear
by this quotation from the preface: “This book is based on a view of proof as a convincing
communication that answers—Why?” (Their italics.)

Introduction to Geometry (2nd edition), by H.S.M. Coxeter.
A wonderfully clear survey by a modern master.

Geometry, by Brannan, Esplen, and Gray.

An excellent modern survey of geometry, based on Klein’s vision of groups of transfor-
mations.

Euclidean and Non-Euclidean Geometries: Development and History,
by Marvin J. Greenberg,.

A valuable, detailed history of the development of Hyperbolic Geometry, including lengthy
quotations from critical, private letters of Gauss, Bolyai, and many others.

The Poincaré Half-Plane, by Saul Stahl.
The title says it all.



Further Reading

Geometry Revealed, by Marcel Berger.

A much more advanced survey of geometry, with a focus on conceptual proofs and unsolved
problems, by one of the great geometers of the 20th century.

Topology

Intuitive Topology, by V. V. Prasolov.

Less than 100 pages long, and filled with diagrams, this super-friendly introduction lives up
to its title!

Euler’s Gem, by David S. Richeson.

A masterful, mathematically accurate, yet riveting account of Euler’s polyhedral formula, its
history and the connected mathematical ideas.

Surface Topology, by P. A. Firby and C. F. Gardiner.
A very gentle, nicely illustrated introduction to the fundamental geometric ideas of topology.

First Concepts of Topology, by W. G. Chinn and N. E. Steenrod.
Another very gentle, nicely illustrated introduction to the fundamental geometric ideas of
topology.

Topology: A Very Short Introduction, by Richard Earl

This remarkable little book lives up to its title, covering a huge range of fundamental ideas
in just 140 pages, and it does so in a very clear, elementary, informal style. This is my new
favourite introduction to the subject.

The Shape of Space (3rd edition), by Jeffrey R. Weeks.

A wonderfully lucid, engaging, elementary treatment of the topology of two and three dimen-
sional spaces. The last of the four parts of the book deals with the possibility of detecting the
topology of the Universe! An appendix contains John Horton Conway’s famous ZIP Proof of
the Classification Theorem for surfaces, beautifully illustrated by George K. Francis.

Three-Dimensional Geometry and Topology, by William P. Thurston.

Thurston won the Fields Medal for discovering that 3-manifolds are fundamentally built out
of Hyperbolic Geometry. In this book you will hear Thurston’s discoveries in his own distinc-
tive voice, and although the difficulty of the topology accelerates rapidly, the first 100 pages
provide a relatively elementary, highly original introduction to Hyperbolic Geometry that
should not be missed.

Hopf’s Line Fields and the Poincaré~Hopf Theorem in Physics

In this book I have sought to draw attention to line fields and Hopf’s beautiful result that the
Poincaré-Hopf Theorem applies to them, too, ((19.9), p. 213). These ideas have all but disappeared
from modern mathematics textbooks, and I strongly believe that it is past time for a revival. That
said, physicists never lost sight of the value of these ideas, and they have sustained them with
wonderful new discoveries.
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definition of, 43
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portrait of, 51
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70
curvature of, 90
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metric of, 62, 90
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spacetime singularity, 330
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Tolman-Oppenheimer—Volkoff
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Differential Geometry via Forms,
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491



492

* [ndex

Cartan’s , 456
Cartan’s Razor, 462
Cartan’s Structural Equations, 438-445
First Equation, 439
Second Equation, 440
catenoid, 480
Catmull, Edwin, xxvi
Cauchy
polyhedra as hollow surfaces, 186
Cauchy’s Theorem, 398, 417
Cauchy-Riemann equations, 85, 397
Celestial Mechanics, 210
celestial sphere, 44, 77
Central Cylindrical Projection, 86
central force field, 123
Central Projection, 32
centre of curvature, 98
Chandrasekhar
and =-notation, xviii
and Newton's Principia, xviii
Chern, 221, 252, 435, 481
Characteristic Classes, 481
Cicero, 86
circle of curvature, 98
circulation, 404
circulation of vector field, 263
Clairaut’s Theorem
angular momentum explanation of,
128
dynamical proof of, 126-128
experimental investigation of, 27
on the sphere, 121
Clairaut’s theorem, 122
Clairaut, Alexis Claude, 123
CMC surfaces, 480
Codazzi-Mainardi Equations, see
Peterson-Mainardi-Codazzi
Equations
commutator, 287288, 407, 409
complex inversion, 67
is rotation of Riemann sphere, 69
complex mapping, 41
amplitwist of, 43
analytic, 42
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Cauchy’s Theorem, 398, 417
Cauchy-Riemann equations, 398
conformality, 41
Paélya vector field of, 201
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curvature of, 134, 142
geodesics on, 27
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conformal
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Cauchy-Riemann Equations, 397
coordinates, 40, 84
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convex, 186
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Curvatura Integra, 165
curvature
and exponential operator, 339
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as rate of turning, 101
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as stiffness of spring, 272
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conformal formula, 41, 89, 472
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vanishing of, 472
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geometric formula for, 99
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of hyperbolic point, 164
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134
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Darboux, Jean-Gaston, 219, 430
dark energy, 333

de Rham cohomology, 397, 419-429

Closed 1-Form Deformation
Theorem, 423

Closed 2-Form Deformation
Theorem, 427

cohomologous 1-forms, 423

cohomology class, 423

first de Rham cohomology group,
423

first de Rham cohomology group of
torus, 428-429

inverse-square point source,
424-426

period of 1-form, 423



period of 2-form, 427

second de Rham cohomology
group, 426

topological circulation, 421423

vortex 1-form, 419421

Dedekind, 298
degree (of mapping), 173, 177-180, 182
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attitude matrix, 435-438
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magnetic 1-form, 383
magnetic 2-form, 383
magnetic field, 383
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fixed points, 77
flux
as 2-form, 378, 408
associated vector, 377
definition of, 378
introduced by Faraday, 377
refined by Maxwell, 377
Focus, 196, 200
folding paper, 221
Forms
1-forms
“contravariant” explained,
465
“covariant” explained, 465
as duals of vectors, 347
basis, 352-354
Cartesian basis, 356-357
components of, 354
connection 1-forms, 432435
contraction of, 347
definition of, 346-347
Dirac bras as, 352
Dirac delta function, 465

direction (sense, orientation), 349
dual basis, 352
electromagnetic potential, 402
examples of, 347-352
field of, 347
geometrical addition of, 357-359
gradient, 350, 351
gradient (defined), 355
gravitational work as, 347-349
interpretation of df, 357
kernel of, 349
notation, 346
row vectors as, 352
stack, 349
topographic map, 350
visualized, 349
2-forms
anti-self-dual, 470
area 2-form, 371, 373
area 2-form (polar), 374-375
area formula for surface,
f =const., 467
as flux, 378, 398
associated vector (definition of),
377
basis, 375-376
basis (as area projection), 376
basis (geometric meaning), 377
definition of, 370
factorizes in R?, 466
Faraday, 383, 402
flux, 408
flux as vector, 376-378
Maxwell, 402
need not factorize in R*, 466
self-dual, 470
symplectic manifolds, 370
vector product as wedge product,
379-381
via wedge product, 372-374
3-forms
basis, 390
factorizes in R*, 467
need at least three dimensions,
386
volume (Cartesian), 387
volume (spherical polar), 389
4-forms
volume, 391
Bianchi [dentities, 459—460
Cauchy’s Theorem, 398, 417
Cauchy-Riemann Equations, 397
closed, 419-429, 467, 471
closed (definition), 396
de Rham cohomology, 397, 419-429
discovery by Cartan, 345
exact, 419-429, 467, 471
exact (definition), 396
exterior derivative
generalized to vectors, 457460
exterior derivative (d)
as integral, 406—411
closed Forms (definition), 396
exact Forms (definition), 396
explanation of d? =0,413
Fundamental result: d2 =0,
395-396

Leibniz Rule (Product Rule) for

O-forms, 356

Leibniz Rule (Product Rule) for

p-forms, 394-395
of 0-form, 355
of 1-form, 392-394
of 2-form, 394
of p-form, 394
Poincaré Lemma, 396, 418
exterior product, 372
gauge freedom, 396
gauge transformation, 396
Maxwell’s Equations, 401-403
p-forms
definition of, 370
need at least p dimensions,
386
Poincaré Lemma, 396, 418
potential, 396
Vector Calculus
curl, 398
divergence, 399
flux 2-form, 398
Gibbs and Heaviside, 274
identities via Forms, 400, 468
integral theorems, 413-415
irrotational, 399
via Forms, 398400
vector potential, 402
wedge product, 372-374
as vector product, 379-381
definition of, 372
geometry of, 374
of 2-form and 1-form, 387
of three 1-forms, 390
vector product formula, 380
volume formula, 381
Frenet Approximation, 220
Frenet frame, 106

Frenet-Serret Equations, 108, 220, 430,

434
variable speed, 219
Friedmann, Alexander, 474

Friedmann-Lemaitre-Robertson-Walker

Universe, 474
Fundamental Forms
are not Differential Forms, 164
first, 164
second, 164
third, 164
fundamental group, 207
Fundamental Theorem of Exterior
Calculus, 411-412
boundary of a boundary is zero:
&t =0,413
Cauchy’s Theorem, 417
circulation, 404
Divergence Theorem, 415
explanation of d2 =0, 413
exterior derivative as integral,
406411

Faraday’s Law of Electromagnetic

Induction, 415
flux 2-form, 408
Gauss's Theorem, 415
Green’s Theorem, 414
history of, 411-412



integral theorems of vector calculus,
413-415

line integral of 1-form, 404-406

line integral of 1-form
(path-independence), 405406

line integral of exact 1-form, 406

named by N.M.]. Woodhouse, 412

Penrose precedent for FTEC
terminology, 412

proof of, 415-417

role of Stokes, 411

statement of, 411

Stokes’s Theorem, 414

work, 404

Galileo, 308
Gamow, George, 332
gauge freedom, 396
gauge transformation, 396
Gauss
and possibility of absolute unit of
length, 15
and the spherical map, 131
Beautiful Theorem, 138
curvature, see curvature
discovery of intrinsic geometry, 11,
31
Dombrowski’s analysis of, 138
experimental test of the curvature of
physical space, 14
first curvature formula, 40
General Investigations of Curved
Surfaces, 3,17
introduction of metric, 31
isometries versus bendings, 141
metric notation, 36, 37
motto, 138
portrait of, 17
reaction to Riemann's ideas, 298
rotations of sphere as Mobius
transformations, 73
Theorema Egregium, 138, 140, 142
treatment of Abel, 7
treatment of Bolyai, 7
treatment of Riemann, 297
unaware of Global Gauss-Bonnet
Theorem, 174
Gauss map, 131
Gauss's Integral Theorem, see
Fundamental Theorem of Exterior
Calculus
Gauss's Lemma, 274
via computation, 337
visualized, 275
Gauss—Bonnet Theorem
General Local, 336
Global, see Global Gauss—Bonnet
Theorem
Local, 22, 174, 336
Gaussian curvature, see curvature
General Relativity, see Gravity
Generalized Stokes’s Theorem (GST),
se¢ Fundamental Theorem of
Exterior Calculus (FTEC)
genus, 166
increasing by adding handles, 191

of sphere, 166
of torus, 166
of two-holed doughnut, 166
Genzel, Reinhard, 464
geodesic
as equivalent of straight line, 9
as shortest route, 9
as straightest route, 11, 13, 118
as taut string, 9, 118
equation of, 244
of H*, 79
of Beltrami-Poincaré disc model,
62
of Beltrami-Poincaré half-plane, 60,
128-129
of cone, 27
of pseudosphere, 28, 89
parallel transport via, 240-241
possible nonuniqueness of, 10
relative acceleration, 270
sticky-tape construction of, 14, 239
vanishing geodesic curvature, 119
via parallel transport, 235-236, 238,
239
geodesic circle, 10
geodesic curvature, 115
extrinsic construction, 120
intrinsic formula for, 244
intrinsic measurement of, 119
on a cone, 334
on a sphere, 334
on touching surfaces, 334
used to construct geodesics, 120
vanishes for geodesics, 119
vector, 117, 243
via intrinsic differentiation, 335
geodesic equation, 244, 286
geodesic polar coordinates, 274-276
geodesic triangle, 10
geometric inversion, 68, 81, 82
geometrization conjecture, 6
geometrized units, 328
GGB, see Global Gauss-Bonnet Theorem
Ghez, Andrea, 464
Gibbs, Josiah Willard, 274
gimel (from the Hebrew alphabet), 75
Global Gauss—Bonnet Theorem, 167
discovered by Kronecker and Dyck,
174
for sphere, 168-169
for torus, 90, 169-170
Hopf's intrinsic proof, 258-260
intuitive interpretation of, 167
paradoxes?, 225
some predictions of, 224
via angular excess, 194
via Bagels and Bridges, 171-172
via folded membrane, 182
via thick pancake, 171
via topological degree, 173
via vector fields, 217
Goldbach’s Conjecture, 183
Goldbach, Christian, 183
gradient 1-form, 351
gradient vector, 354-355
graph (topological), 186
gravitation, see Gravity
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gravitational lensing, 325
Gravitational Spinor, see Weyl
Curvature
gravitational wave astronomy, 325
gravitational waves, 323-326
curvature of, 323
depiction of oscillating tidal forces,
324
details of first detection (14th of
September, 2015), 325
Einstein’s 1916 prediction of, 231
enormous energy of, 325
field lines of tidal forces, 323
first detection of, 231
harnessed for gravitational wave
astronomy, 325
naming convention for, 325
gravity
bending of light, 322
Big Bang, 474
Birkhoff’s Theorem, 329
birth of a black hole, 330
black hole, 329
Cosmological Einstein Field
Equation, 332, 474
cosmological constant, A, 332, 474
curvature of Friedmann-Lemaitre—
Robertson-Walker Universe,
474
dark energy, 333
eclipses and the tides, 339
Einstein (matter) Field Equation, 327
Einstein (matter) Field Equation
(geometrical form), 328
Einstein (vacuum) Field Equation,
319
Einstein tensor, 328, 340
Einstein's initial Gravitational Field
Equation, 327
eliminated in free fall, 307
energy-momentum tensor, 326
event horizon, 329
geometrical signature of
inverse-square attraction, 314
geometrical signature of
inverse-square law, 313
geometrized units, 328
gravitational waves, 323-326
gravitational work as 1-form,
347-349
neutron star, 329
neutron star collision, 331
Newton's apple, 307
Newton's explanation of the ocean
tides, 311
Newton's Inverse-Square Law, 98,
307-309
precession of orbit of Mercury, 322
redshifting of light, 322
repulsion of negative energy, 333
spacetime singularity, 464
spacetime tidal forces, 317
spherical Schwarzschild field, 320
standard model (cosmological), 474
static Universe, 332
stellar evolution, 329
stress—energy tensor, 326
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Mobius
band, 166
classification of closed surfaces, 166
strip, 166
Maébius transformations, 67-74
as isometries of H3, 81
as Lorentz transformations, 77
as rotations of the Riemann sphere,
73,90
as symmetry group of flat
spacetime, 74-79
characterized by circle-preserving
property, 81
classification of, 78
decomposition into simpler
transformations, 67
elliptic, 78
explanation of matrix
correspondence, 71
fixed points of, 77
form a group, 71
four achetypal Lorentz
transformations, 77
hyperbolic, 78
inversion in a circle, 67
isometries of Riemann sphere, 73
loxodromic, 78
matrix representation of, 70-71
nonsingular, 67
normalized, 71
normalized matrix defined uniquely
up tosign, 71
parabolic, 79
rotations of sphere via antipodal
points, 73
singular, 67
symmetry groups of surfaces of
constant curvature, 66, 72-74
moment of force, 128
monkey saddle, 136
complex equation, 137
curvature of, 224
generalized, 137
Morgan, Frank, xxvi
Riemannian Geometry, 481

naked singularity, 464

Needham, Faith, xxviii

Needham, Guy, xxvi

Needham, Hope, xxviii

Needham, Mary, xxvii

Nel, Stanley, xxvi

nematic field, 478

network (topological), 186

neutron star, 329, 331

Newcomb, Simon, 322

Newton
and Celestial Mechanics, 210
and the falling apple, 307
elliptical orbits in linear field,

123
embraced geometrical methods in
1680s, xviil

explained Kepler's Laws, 124
explained the ocean tides, 311
general curvature formula, 100

geometric curvature formula, 99
geometric definition of tractrix, 52
investigated tractrix, 22
Law of Gravitation, 308
parametric curvature formula, 103
Principia, xviii-xx
Principia, area is the clock, 124
Principia, Lemma II, 99
Principia, Proposition 1, 124
Principia, Proposition 2, 126
Principia, Proposition 10, 123
Principia Proposition 31, 309
priority battle with Leibniz, xviii
proof of Kepler’s Second Law,
124-126
Second Law of Motion, 97
shunned his 1665 calculus in the
Principia, xviii
synthetic method of fluxions, xviii
Westfall’s biography of, xviii
Ultimate Equality, see Ultimate
Equality
Newtonmas, 98
Nobel Prize (2011), 332
Nobel Prize (2017), 231
Nobel Prize (2020), 464
non-Euclidean Geometry, see
Hyperbolic Geometry
nonorientable, 166
normal curvature, 115
normal curvature vector, 243
normal map, 131
null cone
picture of, 316
Riemann sphere representation of,
76
null vector, 76
Nye, . E, 478

O'Neill, Barrett
championed Forms approach to
Differential Geometry, 431, 475
championed Shape Operator, 164
octahedron, 185, 227
optics, 58
orientable surface, 165
orthogonal coordinates, 37
orthogonal linear transformation, 222
osculating plane, 106

Pappus, xviii
centroid theorem, 90
parabolic point, 111, 134, 136
Parallel Axiom
definition of, 4
via angle sum of a triangle, 4
via similar triangles, 4, 15
parallel transport
discovery of, 232
geodesics and, 235-236
in n-manifold via constant-angle
cone, 282-283
in n-manifold via
parallel-transported plane,
283-284

in n-manifold via Schild’s Ladder,
284
preserved by spherical map, 255
used to define intrinsic derivative,
241-244
via geodesics, 240-241
via potato-peeler, 236-239
via projection into surface, 233-235
parallelepiped volume, 381
Pauli Exclusion Principle, 329
Penrose
and Theorema Egregium, 252
author’s debt to, xxv
Cosmic Censorship Hypothesis, 464
Escher diagram, 63
labelling of light rays with complex
numbers, 92
Nobel Prize for Physics, 464
on Lambert, 5
pioneering use of 2-spinors, 70
studied under Hodge, 377
Perelman, 6
Perlmutter, Saul, 332
Peterson-Mainardi-Codazzi Equations,
448
geometric meaning of, 450
use in Hilbert's Lemma, 453
phase portrait, 195
photons (spinning), 470
Pixar, xxvi
planar point, 136
surrounded by negative curvature,
137
surrounded by positive curvature,
137
Plato, 185
Platonic Forms, xxiii
Platonic solids, 185, 227
topologically determined, 186, 226
uniqueness of, 226
Poincaré, see Beltrami-Poincaré
half-plane
and celestial mechanics, 210
and Euler characteristic, 184
as father of topology, 165
as prophet of Hyperbolic Geometry,
L

discovery of Mébius isometries of
H?, 81
rediscovery of hyperbolic disc
model, 62
rediscovery of hyperbolic half-plane
maodel, 57
Special Theory of Relativity, 75
Poincaré Conjecture, 6
Poincaré disc, see Beltrami-Poincaré
disc
Poincaré Lemma, 396, 418
Poincaré-Hopf Theorem, 206
also applies to line fields, 213
Hairy Ball Theorem, 472
on sphere, 206, 213
on torus, 207
physical applications of, 477
proof of, 207-208
point at infinity, 44
polar decomposition, 222



Pélya, 201
mechanical proof of Snell’s Law,
87
Polya vector field, 201
divergence-free and curl-free, 324
physical examples of, 201
polygonal net, 186
polyhedral spike, 145
curvature of, 146, 147
spherical image of, 147
Polyhedral Theorema Egregium, 147
attributed to Hilbert, 148
discovered by Maxwell, 148
visualization of, 146
polyhedron
and Theorema Egregium, 147
curvature of, 145-147
dual, 227
positive definite, 222
positive semidefinite, 222
potential, 396
Pound, Robert, 322
Prime Meridian, 274
principal curvatures, 109
as eigenvalues of Shape Operator,
152
extrinsic curvature in terms of, 134
Unit Speed Formula, 113, 114
principal directions, 109
as eigenvectors of Shape Operator,
152
as symmetry directions, 111, 133
rate of rotation of normal along, 134
principal normal, 107
principal radii of curvature
of pseudosphere, 105
of surface of revolution, 112
of torus, 112
Principia, see Newton
projective coordinates, 70
projective geometry, 70
projective map, 32
projective model, 32
pseudosphere, 22
as flawed model of Hyperbolic
Plane, 52
building your own, 54, 88
conformal map of, 54-55
conformal metric of, 55
constant negative curvature of, 53
curvature of, 142
definition of, 53
element of area, 55
finite area of, 88
geodesics of, 28, 89
geodesics via Clairaut’s Theorem,
128-129
metric of, 53
principal radii of curvature, 105, 113
rim, 56
tractrix, as generator of, 22
via parameterized tractrix, 88
Ptolemy, 44, 58
punctured plane, 419
Pythagoras, 3
Pythagoras’s Theorem
characterizes flatness, 3

Pythagorean triples
Babylonian examples, 3
definition of, 3
general formula for, 25

radius of curvature, 98
Rebka, Glen, 322
redshift
gravitational, 322
of galaxies, 332
refraction, 58
rhumb line, 87
Riceai Calculus, 231
Ricci tensor, 302-306
definition of, 305
effect on bundle of geodesics, 305
geometrical meaning of, 304-306
notation, 304
sign conventions, 305
symmetry of, 305
Ricci, Gregorio, 231, 298
portrait of, 303
Riemann
as father of topology, 165
Darrigol's analysis of, 298
definition of genus, 166
discovered Differential Bianchi
Identity, 298
Foundations of Geometry lecture
(1854), 297
French Academy Prize Essay (1861),
298
Gauss's reaction to lecture by, 298
Klein's reaction to, 298
portrait of, 281
Spivak’s analysis of, 298
Riemann curvature operator, 287, 290
antisymmetry of, 290
Riemann sphere, 44
as representation of null cone in
spacetime, 76
fixed points under Mébius
transformation, 77
rotated by complex inversion, 69
rotations as Mobius
transformations, 73, 90
used to label light rays, 92
Riemann tensor, 281
and exponential operator, 339
and vector commutator, 287-288
antisymmetry of, 290
changing valence of, 367
components of, 292-293
defined, 290
defined via parallel transport,
286-287
different notational conventions, 290
history of, 297-298
is a tensor, 291-292
number of components, 281, 338
Riemann curvature operator, 287
standard definition of, 360
symmetries of, 294-295, 337
vector holonomy, 293
visualization of, 289
Weyl curvature, see Weyl curvature
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Riess, Adam G., 332
Robertson, 474
Rodrigues, Olinde, 17
discovered extrinsic curvature
formula, 134
introduced spherical map, 131
Rodrigues—Gauss map, 131
rotation matrix, 152
Royal Institution of London, 381
Royal Observatory at Greenwich, 274

Saccheri, 5
Saddle Point, 196
Sagittarius A%, 331, 464
Schild’s Ladder, 284
Schild, Alfred, 284
Schmidt, Brian P, 332
Schutz, Bernard, 325
Schwarzschild radius, 321, 329
Schwarzschild Solution, 320
interior, 321
Schwarzschild, Karl, 319, 321
portrait of, 321
Second Fundamental Form, 151
sectional curvature, 282, 296-297
Segerman, Henry, 191
self-adjoint matrix, 153
self-dual 2-form, 470
Shape Operator, 151
also called the Second Fundamental
Form, 164
Cartesian formula, 222
curvature formula, 222
curvature interpretation of, 159
curvature interpretation visualized,
160
determinant of, 153
determined by three normal
curvatures, 161
diagonalized matrix of, 153
effect on asymptotic directions, 163
eigenvectors and eigenvalues of,
152,223
general matrix of, 158, 161
geometric meaning of components,
160
is linear, 152
is symmetric, 153
matrix representation of, 152
of saddle, 223
visualization of, 150
Singer
Atiyah-Singer Index Theorem, 165
spherical map, 131
singular point, 195
singular value decomposition
discovered by Beltrami, 154
geometric derivation of, 154-156
in R3, 222
matrix form of, 155
singular values of, 154
statement of, 154
twist of, 154
visualization of, 155
Sink, 200
skew symmetric, 222
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