N .
¢
’
&7

I

U
Wi

»
)
=

o

W
W
\\“_\:}

N
N
N
N

N
N
=
NN
W

R
N\
W

P
—
P—
—
—_—
—
—
—
—
—
o—
—
yu—
—
—
-

=
=1

What Algorithms Want

Imagination in the Age of Computing

Ed Finn

The MIT Press
Cambridge, Massachusetts
London, England

© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Finn, Ed.

Title: What algorithms want : imagination in the age of computing / Ed Finn.

Description: Cambridge, MA : MIT Press, [2017] | Includes bibliographical references
and index.

Identifiers: LCCN 2016030924 | ISBN 9780262035927 (hardcover : alk. paper)

Subjects: LCSH: Information technology--Social aspects. | Computers--Social aspects.
| Algorithms--Social aspects.

Classification: LCC HM851 .F5565 2017 | DDC 303.48/34--dc23 LC record available
at https://lcen.loc.gov/2016030924

10 9 8 7 6 5 4 3 2 1

Contents

Acknowledgments vii

Introduction 1

1 What s an Algorithm? 15

2 Building the Star Trek Computer 57

3 House of Cards: The Aesthetics of Abstraction
4 Coding Cow Clicker: The Work of Algorithms
5 Counting Bitcoin 151

Coda: The Algorithmic Imagination 181

Notes 197
Works Cited 213
Figure Credits 233
Index 235

87
113

Copyrighted material

Acknowledgments

This book owes its existence to the generosity and support of many people
and institutions. I count myself very lucky to have the support of my aca-
demic home, Arizona State University, in a tremendous range of large and
small ways. Thanks go to President Michael Crow, for hiring me and mak-
ing my unique position possible, and to the many university leaders who
continue to support our strange experiment in imagination. I am especially
thankful to the School of Arts, Media & Engineering, Director Sha Xin Wei,
and Deans Steven Tepper and George Justice, for granting a vital research
leave during the early composition phase of the book.

I am deeply grateful to my colleagues at the Center for Science and the
Imagination who have supported my long and solitary sojourn as I carved
out time to work on this book among many other pressing projects. Thanks
to Ruth Wylie for taking on a huge burden of leadership during this period,
and to Joey Eschrich, Michael Bennett, Brian David Johnson, Nina Miller,
Bob Beard, Cody Staats, and Chelsea Courtney for making CSI such an
exciting and rewarding place to work. A special thank you to Joey for heroic
editorial efforts as I revised the manuscript, and to Joseph Bianchi for assist-
ing me with image permissions.

A number of people gave me vital feedback on the work as it emerged:
Lee Konstantinou, Corey Pressman, Jacqueline Wernimont, Sam Arbesman,
G. Pascal Zachary, and George Justice. Nathaniel Greene and Connor Syre-
wicz were invaluable as research assistants for the project. I'm also grateful
to the students of my Arts, Media & Engineering graduate seminar, Reading
the Algorithm, for helping me clarify a number of ideas relating to the
book. Perhaps the single greatest day for feedback came from a tremendous
event titled “The Tyranny of Algorithms,” organized by my wonderful

colleagues at Future Tense, a partnership of ASU, New America, and Slate

viii

magazine. Thanks to Torie Bosch and Will Oremus at Slate and Richard
Gallant at CNN for feedback, conversation, and the chance to publish some
of my thoughts along the way. And finally, [am very grateful to my collabo-
rators at MIT Press: my editor, Doug Sery, for believing in this book; Michael
Sims for his dedicated copyediting; and director Amy Brand for her support
and enthusiasm of our multiple editorial projects.

All of these interventions, redirections, shows of support, and good
advice vastly improved the book and [could not have finished it without
them. All remaining imperfections are entirely my own.

Finally, I thank the Finns of Phoenix, my own intrepid band of adven-
turers, dancers, ad-hoc parade leaders, and dessert aficionados. Anna, Nora,

Declan: I love you more than numbers can count or words can say.

Introduction

“Remember the first time you learned binary code?”

“Sure.”

“You were forming pathways in your brain. Deep structures. Your nerves grow new
connections as you use them—the axons split and push their way between the
dividing glial cells—your bioware self-modifies—the software becomes part of the
hardware. So now you're vulnerable—all hackers are vulnerable—to a nam-shub. We
have to look out for one another.”

Neal Stephenson, Snow Crash, p. 126
Codes and Magic

The myth is probably as old as language itself. There are spells in the world:
incantations that can transform reality through the power of procedural
utterances. The marriage vow, the courtroom sentence, the shaman’s curse:
these words are codes that change reality. It is an old and attractive idea.'
From the logos of Genesis to the many religious traditions identifying
the “true names” of God, humanity has persistently believed that certain
invocations do not merely describe the world but make it. And why not?
Language has always operated at the troubled boundary between reality
and the description of reality. The more structured, abstract, and esoteric an
idea, the less likely we are to divine its substance without first gleaning a
name to call it by.

Today our languages sprawl across many registers: procedural computer
languages, critical languages of film and new media, creoles, fictional lan-
guages, newspeak, emoji. In our perception, each of those registers ascribes
certain magical powers to symbols and meaning; each of them generates

cultural power based on the inherent tension between reality and

2 Introduction

representation. The link between spoken language and abstract symbolic
systems, particularly mathematics, has created new avenues for mystical
connections between numbers, universal truths, and the fundamental
structure of reality. Jewish kabbalah, Isaac Newton’s fascination with
alchemy, and biological examples of mathematical figures like the Golden
Ratio all reinforce a particular metaphysical notion that some logical order,
some grammar and symbolic vocabulary, underlies the universe.

In debating these questions, philosophers and mathematicians devel-
oped increasingly sophisticated understandings of symbolic languages, lay-
ing the groundwork for the contemporary era of computation. From its
bones in set theory and symbolic logic to the latest articulations of data-
driven machine learning, computation casts a cultural shadow that is
informed by this long tradition of magical thinking. As computation trans-
forms almost every aspect of cultural life, the stories we tell about it, the
balance of myth and reason, will play a major role in determining what we
can know and think. Language has power in the world, and may in some
sense define the world. When enacted, symbolic logic can effect procedural
alterations to reality.

The key term here is “enacted.” This book uncovers how the humble
vehicle of computation, the algorithm, has its roots not only in mathemati-
cal logic but in the philosophical traditions of cybernetics, consciousness,
and the magic of symbolic language. To understand the algorithm we need
to uncover those roots and then build a new model of “algorithmic read-
ing” that incorporates a deep understanding of abstraction and process.
The algorithm deploys concepts from the idealized space of computation in
messy reality, implementing them in what I call “culture machines”: com-
plex assemblages of abstractions, processes, and people. Algorithms enact
theoretical ideas in pragmatic instructions, always leaving a gap between
the two in the details of implementation. The implementation gap is the
most important thing we need to know, and the thing we most frequently
misunderstand, about algorithmic systems. Understanding how we can
know that requires the critical methods of the humanities. This is algorith-
mic reading: a way to contend with both the inherent complexity of com-
putation and the ambiguity that ensues when that complexity intersects
with human culture.

Introduction 5

was the Sumerian language by releasing a nam-shub virus that, “coiled like
a serpent around the human brainstem,” scrambled humanity’s ability to
understand other Sumerian signals.® Linking this moment to the mythic
Tower of Babel, Snow Crash makes the nam-shub a relic of a universal lan-
guage once lost but now regained (and being put to nefarious use). Thus
Stephenson taps into the much deeper mythos of language as incantation.
If code can be magical and hackers are its shamans, we still recognize it as a
symbolic system that operates at the intersection of cognition and reality.
By investing the figure of code with cultural power, we also endorse the
notion that it functions on a platform: the idea that humanity might run a
universal operating system.

So code can be magical, code can change the world, and code can change
the mind. But how does this actually work? What are the entities, the
structures of operation in that space of computation? In Snow Crash’s
neo-Sumerian operating system there are me, particular units of language
that embody vital civilizational concepts. This trope is familiar from other
traditions as well, where trickster figures like Prometheus or Coyote steal
conceptual technologies (e.g., fire) from the gods. In one sense me are
objects that can be transported and somehow deployed among popula-
tions. But they are also bodies of knowledge, sets of rules and procedures,
that can be implemented in practice. They are technical entities that have
their own existence independent of their human practitioners, but which
operate through the medium of culture. They are algorithms.

This is a book about the algorithm as the vehicle or tool of computation:
the object at the intersection of computational space, cultural systems,
and human cognition. We need a deeper understanding of the algorithm in
order to understand how computational systems are transforming our
world today. In that sense this is a literacy exercise, an experiment in devel-
oping an “algorithmic reading” of the world. The role of the humanities
and methodologies of critical reading—algorithmic reading—are vital to
effectively contend with the ambiguity and complexity at play in the awk-
ward intersection of computation and culture. But this is also a character
study of an idea from its contemporary cultural presence to its philosophi-
cal foundations. Snow Crash neatly illustrates the tensions at play when
algorithms stitch together computational, mythic, and cultural spaces. It's
not so much a story about the power of code but its awkward embrace of

the real, the ideal, and the imaginary in the guise of the algorithm.

6 Introduction

This figure of the algorithm as a quasi-mystical structure of implemented
knowledge is both pervasive and poorly understood. We have never been
closer to making the metaphor of fully implemented computational knowl-
edge real than we are today, when an explosion of platforms and systems is
reinventing cultural practice and identity, often by implementing a me
downloaded as an app or set up as an online service. We are surrounded by
nam-shubs that we obey almost unquestioningly, from the dialog boxes
and prompts we fill out on social media platforms to the arcane computa-
tion of credit scores. To begin excavating the algorithm, we need to under-
stand the full scope of computational thinking and its interactions with the
mythos of procedural language, starting with what we think algorithms

ought to be.
The Cathedral of Computation

When technologists, researchers, and entrepreneurs speak about computa-
tional culture today, this deep myth of the algorithm is typically obscured
by layers of rationalizing rhetoric and the procedural metaphors of soft-
ware design. Indeed the most prevalent set of metaphors seems to be that
of code as structure: platforms, architectures, objects, portals, gateways.
This serves to both depersonify software, diluting the notion of software
agency (buildings are passive; it's the architects, engineers, and users who
act), and reifying code as an objective construct, like a building, that exists
in the world.

Yet even within this architectural language, the mythological figure of
the algorithm reasserts itself. Consider the popularity of the cathedral as
a metaphor for code. George Dyson’s wonderful history of the rise of com-
putation is titled Turing’s Cathedral. Another classic instantiation is Eric
Raymond’s book on open source software development, The Cathedral and
the Bazaar (Raymond was arguing for the more transparent bazaar model,
rather than the top-down approach of the cathedral). But perhaps the best
analogy was offered at the IEEE Computer Society in 1988: “Software and
cathedrals are much the same—first we build them, then we pray.”” This
was meant as a joke, of course, but it hides a deeper truth about our rela-
tionship to the figure of the algorithm today. The architecture of code relies
on a structure of belief as well as a logical organization of bits.

Introduction 7

The cathedral is not a perfect metaphor for computation, but its flaws
signal precisely what we are missing. A cathedral is a physical and a spiritual
structure, a house of God. In that sense the physical appearance of the
building tells particular stories about faith and practice (e.g., a baptismal
font, a nave pointing east, illustrations of biblical stories). But it also sug-
gests a particular mode of access to the invisible space of religion, the
house of God that exists beyond physical reality: transubstantiation, relics,
and ceremonies are all part of the spectacle of the cathedral that reflect
the invisible machinery of faith. Yet most of that machinery inevitably
remains hidden: schisms, budgets, scandals, doctrinal inconsistencies, and
other elements of what a software engineer might call the “back-end” of
the cathedral are not part of the physical or spiritual facade presented to the
world. Indeed, when the spectacle stutters for a moment and some uncom-
fortable fact lurches into view, the normal instinct is to ignore it, to shore
up the facade of the cathedral in order to maintain one’s faith. A cathedral
is a space for collective belief, a structure that embodies a framework of
understandings about the world, some visible and some not.

This is a useful metaphor for understanding the relationship we have
with algorithms today. Writing in The Atlantic in early 2015, digital culture
critic and game designer Tan Bogost called out our increasingly mythologi-
cal relationship with software in an article titled “The Cathedral of Compu-
tation.” Bogost argues that we have fallen into a “computational theocracy”
that replaces God with the algorithm:

Our supposedly algorithmic culture is not a material phenomenon so much as a
devotional one, a supplication made to the computers people have allowed to
replace gods in their minds, even as they simultaneously claim that science has
made us impervious to religion.®

We have, he argues, adopted a faith-based relationship with the algorith-
mic culture machines that navigate us through city streets, recommend
movies to us, and provide us with answers to search queries. We imagine
these algorithms as elegant, simple, and efficient, but they are sprawling
assemblages involving many forms of human labor, material resources, and
ideological choices.

Bogost’s central argument is this: while we imagine algorithms as a pin-
nacle of Enlightenment, rationalist thought, our engagements with them
function in a very different mode. Through black boxes, cleanly designed

dashboards, and obfuscating Application Program Interfaces, we are asked

8 Introduction

to take this computation on faith. Just as the poorly paid factory workers
who produce our high-tech gadgets are obscured behind the sleek design
and marketing of brushed-metal objects that seem to manifest directly from
some kind of machine utopia, untouched by human hands, so do we, the
eager audience of that utopia, accept the results of software algorithms
unquestioningly as the magical products of computation. The commodifi-
cation of the Enlightenment comes at a price. It turns progress and compu-
tational efficiency into a performance, a spectacle that occludes the real
decisions and trade-offs behind the mythos of omniscient code.

And we believe it because we have lived with this myth of the algorithm
for a long time—much longer than computational pioneers Alan Turing or
even Charles Babbage and their speculations about thinking machines. The
cathedral is a pervasive metaphor here because it offers an ordering logic, a
superstructure or ontology for how we organize meaning in our lives.
Bogost is right to cite the Enlightenment in his piece, though I will argue
the relationship between algorithmic culture and that tradition of rational-
ism is more complicated than a simple rejection or deification. The prob-
lem we are struggling with today is not that we have turned computation
into a cathedral, but that computation has increasingly replaced a cathedral
that was already here. This is the cathedral of the Enlightenment’s ambi-
tions for a universal system of knowledge. When we juxtapose the two we
invest our faith into a series of implemented systems that promise to do the
work of rationalism on our behalf, from the automated factory to auto-
mated science.

I address this relationship more closely in chapter 2, but for now we
need only to appreciate the implications of the cathedral of computation as
shorthand for a unified system of understanding. The bas-relief work, stat-
ues, and inscriptions of great European cathedrals are microcosms of Chris-
tianity, recapitulating the Gospel and other key biblical narratives as well as
the histories of their own creation as enduring and complete statements of
faith. Contemporary computational systems perform the same role of pre-
senting a unified vision of the world through clean interfaces and carefully
curated data—everything you might want to know, now available as an
app. Computation offers a pathway for consilience, or the unification of all
fields of knowledge into a single tree: an ontology of information founded
on the idea that computation is a universal solvent that can untangle any

complex system, from human consciousness to the universe itself.

Introduction 9

One of the few long-form investigations of the algorithm as a concept,
mathematical historian David Berlinski's Advent of the Algorithm, even con-
cludes with an argument connecting the notion of universal computation
to intelligent design. He argues that the algorithm, a lens for the notion of
“effective calculation,” has done nothing less than to have “made possible
the modern world.”” Berlinski sees “the appearance of intelligence on alien
shores”—that is, in the spaces of computation—as further evidence that
some explanation for the nature of the universe must exist beyond the sys-
tem itself.'” His work turns on the distinction between information and
meaning, between the work a Turing Machine does in processing symbols
on a tape and the impact of those symbols on the human mind. We hear
echoes of Snow Crash in the suggestion that Turing and fellow mathemati-

cian Emil Post’s visions of universal calculating machines are

responsive to a world of thought, and not matter at all. ... The essence of their ma-
chines is elsewhere, in a universe in which symbols are driven by symbols according
to rules that are themselves expressed in symbols.

The place in which these machines reside is the human mind."'

This is precisely the apotheosis that Bogost calls out in his essay, suggest-
ing that we have veiled the material realities of algorithms behind a
mystical notion of computation as a universal truth. We see this faith in
computation invoked repeatedly at the intersection of algorithms and cul-
ture. Facebook’s mission statement is “to give people the power to share
and make the world more open and connected,” a position that embeds
assumptions like the argument that its social graph algorithms will grant us
power; that its closed, proprietary platform will lead to more transparency;
and that transparency leads to freedom, and perhaps to empathy. Uber is
“evolving the way the world moves. By seamlessly connecting riders to
drivers through our apps, we make cities more accessible, opening up more
possibilities for riders and more business for drivers.” The theocracy of com-
putation will not merely change the world but evolve it, and it will open
new possibilities for users, linking proprietary commerce and individual
freedom. These changes will be effected not only in the material realm but
in the cultural, mental, and even spiritual spaces of empowerment and
agency. The algorithm offers us salvation, but only after we accept its terms
of service.

The important lesson here is not merely that the venture capitalism

of Silicon Valley is the ideology bankrolling much of our contemporary

12 Introduction

cultural arbitrage by manipulating certain kinds of computational abstrac-
tion to achieve cultural and financial success.

As algorithms become more adept at reading cultural data and perform-
ing real-time arbitrage (used here in the sense of financial pricing arbitrage
but also cultural arbitrage as described in the previous chapter), they are
taking on new forms of intellectual labor. They are authoring and creating,
but they are also simplifying and abstracting, creating an interface layer
between consumers and the messy process of, say, getting a cab or hiring a
housekeeper. Chapter 4 begins with lan Bogost’s satirical Facebook game
Cow Clicker and its send-up of the “gamification” movement to add quan-
tification and algorithmic thinking to many facets of everyday life. Such
games trouble the boundaries between work and play, as do much
more serious forms of gamification like Uber and the high-tech warehouse
workers whose every second and step are measured for efficiency. Taken
together, these new models of work herald a novel form of alienated labor
for the algorithmic age. In our science fiction present, humans are proces-
sors handling simple tasks assigned by an algorithmic apparatus. Drawing
on the historical figure of the automaton, a remarkable collection of
Mechanical Turk-powered poetry titled Of the Subcontract, and Adam
Smith’s conception of empathy in his Theory of Moral Sentiments, 1 explore
the consequences of computational capitalism on politics, empathy, and
social value.

The root of the algorithmic sea change is the reimagination of value
in computational terms. Chapter 5 leads with the flash crash in 2010 and
the growing dominance of algorithmic trading in international markets
(described by journalist Michael Lewis’s Flash Boys, among others) to frame
a reading of Bitcoin and related cryptocurrencies. By defining the unit of
exchange through computational cycles, Bitcoin fundamentally shifts the
faith-based community of currency from a materialist to an algorithmic
value system. Algorithmic arbitrage is forcing similar transitions in the
attribution of value and meaning in many spaces of cultural exchange,
from Facebook to journalism. The fundamental shift from valuing the cul-
tural object itself to valuing the networks of relations that the object estab-
lishes or supports leads to new practices and aesthetics of production,
where form and genre give way to memes and nebulous collaborative
works. Using Bitcoin as an example of this new value model, I close by

considering the consequences of programmable value for the notion of a

Introduction 13

public sphere in the twenty-first century, an era when arbitrage trumps
content.

In the coda I briefly retrace this genealogy of the algorithm to consider
our future prospects for achieving the twinned desires embedded in the
heart of effective computability: the quest for universal knowledge and per-
fect self-knowledge. These ambitions are particularly vital for the humani-
ties, and we cannot stop at algorithmic reading. To truly grapple with the
age of the algorithm and our growing entanglement with computational
cultural processes, we need to take action as scholars, teachers, and most of
all performers of humanistic inquiry. We need an experimental humanities,
a set of strategies for direct engagement with algorithmic production and
scholarship, drawing on theories of improvisation and experimental inves-
tigation to argue that a culture of process, of algorithmic production,
requires a processual criticism that is both reflexive and playful. This is how
we can begin to understand the figure of the algorithm as a redrawing
of the space for cultural imagination and become true collaborators with

culture machines rather than their worshippers or, worse, their pets.

Copyrighted material

1 What Is an Algorithm?

If we want to live with the machine, we must understand the machine, we must not
worship the machine.

Norbert Wiener'
Rise of the Culture Machines

Sometime in the late 2000s, our relationship with computers changed. We
began carrying devices around in our pockets, peering at them at the dinner
table, muttering quietly to them in the corner. We stopped thinking about
hardware and started thinking about apps and services. We have come
not just to use but to frust computational systems that tell us where to go,
whom to date, and what to think about (to name just a few examples).
With every click, every terms of service agreement, we buy into the idea
that big data, ubiquitous sensors, and various forms of machine learning
can model and beneficially regulate all kinds of complex systems, from
picking songs to predicting crime. Along the way, an old word has become
new again: the algorithm. Either overlooked or overhyped, the algorithm is
rarely taken seriously as a key term in the cultural work that computers do
for us. This book takes that word apart and puts it back together again,
showing how algorithms function as culture machines that we need to
learn how to read and understand.

Algorithms are everywhere. They already dominate the stock market,
compose music, drive cars, write news articles, and author long mathemati-
cal proofs—and their powers of creative authorship are just beginning
to take shape. Corporations jealously guard the black boxes running
these assemblages of data and process. Even the engineers behind some

of the most successful and ubiquitous algorithmic systems in the

16 Chapter 1

world—executives at Google and Netflix, for example—admit that they
understand only some of the behaviors their systems exhibit. But their rhet-
oric is still transcendent and emancipatory, striking many of the same
techno-utopian notes as the mythos of code as magic when they equate
computation with transformational justice and freedom. The theology
of computation that Ian Bogost identified is a faith militant, bringing the
gospel of big data and disruption to huge swaths of society.

This is the context in which we use algorithms today: as pieces of quotid-
ian technical magic that we entrust with booking vacations, suggesting
potential mates, evaluating standardized test essays, and performing many
other kinds of cultural work. Wall Street traders give their financial “algos”
names like Ambush and Raider, yet they often have no idea how their
money-making black boxes work.> As a keyword in the spirit of cultural
critic Raymond Williams,” the word algorithm frequently encompasses a
range of computational processes including close surveillance of user
behaviors, “big data” aggregation of the resulting information, analytics
engines that combine multiple forms of statistical calculation to parse that
data, and finally a set of human-facing actions, recommendations, and
interfaces that generally reflect only a small part of the cultural processing
going on behind the scenes. Computation comes to have a kind of presence
in the world, becoming a “thing” that both obscures and highlights par-
ticular forms of what Wendy Hui Kyong Chun calls “programmability,” a
notion we will return to in the guise of computationalism below.*

It is precisely this protean nature of computation that both troubles and
attracts us. At some times computational systems appear to conform to that
standard of discrete “thingness,” like the me of Sumerian myth or a shiny
application button on a smartphone screen. At other moments they are
much harder to distinguish from broader cultural environments: to what
extent are spell-check programs changing diction and grammatical choices
through their billions of subtle corrections, and how do we disentangle the
assemblage of code, dictionaries, and grammars that underlie them? While
the cultural effects and affects of computation are complex, these systems
function in the world through instruments designed and implemented by
human beings. In order to establish a critical frame for reading cultural
computation, we have to begin with those instruments, jammed together
in the humble vessel of the algorithm.

What Is an Algorithm? 19

As an example, consider the classic computer science problem of the
traveling salesman: how can one calculate an efficient route through a
geography of destinations at various distances from one another? The
question has many real-world analogs, such as routing UPS drivers, and
indeed that company has invested hundreds of millions of dollars in a
1,000-page algorithm called ORION that bases its decisions in part on trav-
eling salesman heuristics."* And yet the traveling salesman problem imag-
ines each destination as an identical point on a graph, while UPS drop-offs
vary greatly in the amount of time they take to complete (hauling a heavy
package up with a handcart, say, or avoiding the owner’s terrier). ORION’s
algorithmic model of the universe must balance between particular compu-
tational abstractions (each stop is a featureless, fungible point), the lived
experience and feedback of human drivers, and the data the company has
gathered about the state of the world’s stop signs, turn lanes, and so on. The
computer science question of optimizing paths through a network must
share the computational stage with the autonomy of drivers, the imposi-
tion of quantified tracking on micro-logistical decisions like whether to
make a right or left turn, and the unexpected interventions of other com-
plex human systems, from traffic jams to pets.

ORION and its 1,000-page “solution” to this tangled problem is, of
course, a process or system in continued evolution rather than an elegant
equation for the balletic coordination of brown trucks. Its equations and
computational models of human behavior are just one example among
millions of algorithms attempting to regularize and optimize complex cul-
tural systems. The pragmatist’s definition achieves clarity by constructing
an edifice (a cathedral) of tacit knowledge, much of it layered in systems
of abstraction like the traveling salesman problem. At a certain level of
cultural success, these systems start to create their own realities as well:
various players in the system begin to alter their behavior in ways that
short-circuit the system’s assumptions. Internet discussion boards catalog
complaints about delivery drivers who do not bother to knock and instead
leave door tags claiming that the resident was not at home. These short-
cuts work precisely because they are invisible to systems like ORION, allow-
ing the driver to save valuable seconds and perhaps catch up on all those
other metrics that are being tracked on a hectic day when the schedule
starts to slip.

20 Chapter 1

Many of the most powerful corporations in existence today are
essentially cultural wrappers for sophisticated algorithms, as we will see in
the following chapters. Google exemplifies a company, indeed an entire
worldview, built on an algorithm, PageRank. Amazon’s transformational
algorithm involved not just computation but logistics, finding ways to out-
source, outmaneuver, and outsell traditional booksellers (and later, sellers
of almost every kind of consumer product). Facebook developed the world’s
most successful social algorithm for putting people in contact with one
another. These are just a few examples of powerful, pragmatic, lucrative
algorithms that are constantly updated and modified to cope with the
messy cultural spaces they attempt to compute.

We live, for the most part, in a world built by algorithmic pragmatists.
Indeed, the ambition and scale of corporate operations like Google means
that their definitions of algorithms—what the problems are, and how to
solve them—can profoundly change the world. Their variations of pragma-
tism then inspire elaborate responses and counter-solutions, or what com-
munication researcher Tarleton Gillespie calls the “tacit negotiation” we
perform to adapt ourselves to algorithmic systems: we enunciate differently
when speaking to machines, use hashtags to make updates more machine-
readable, and describe our work in search engine-friendly terms."

The tacit assumptions lurking beneath the pragmatist’s definition are
becoming harder and harder to ignore. The apparent transparency and sim-
plicity of computational systems are leading many to see them as vehicles
for unbiased decision-making. Companies like UpStart and ZestFinance
view computation as a way to judge financial reliability and make loans to
people who fail more traditional algorithmic tests of credit-worthiness, like
credit scores.' These systems essentially deploy algorithms to counter the
bias of other algorithms, or more cynically to identify business opportuni-
ties missed by others. The companies behind these systems are relatively
unusual, however, in acknowledging the ideological framing of their
business plans, and explicitly addressing how their systems attempt to
judge “character.”

But if these are reflexive counter-algorithms designed to capitalize on
systemic inequities, they are responding to broader cultural systems that
typically lack such awareness. The computational turn means that many
algorithms now reconstruct and efface legal, ethical, and perceived reality

according to mathematical rules and implicit assumptions that are shielded

What Is an Algorithm? 21

from public view. As legal ethicist Frank Pasquale writes about algorithms
for evaluating job candidates:

Automated systems claim to rate all individuals the same way, thus averting dis-
crimination. They may ensure some bosses no longer base hiring and firing deci-
sions on hunches, impressions, or prejudices. But software engineers construct
the datasets mined by scoring systems; they define the parameters of data-mining
analyses; they create the clusters, links, and decision trees applied; they generate
the predictive models applied. Human biases and values are embedded into each
and every step of development. Computerization may simply drive discrimination
upstream.*

As algorithms move deeper into cultural space, the pragmatic definition
gets scrutinized more closely according to critical frames that reject the
engineering rubric of problem and solution, as Pasquale, Golumbia, and a
growing number of algorithmic ethics scholars have argued. The cathedral
of abstractions and embedded systems that allow the pragmatic algorithms
of the world to flourish can be followed down to its foundations in sym-
bolic logic, computational theory, and cybernetics, where we find a curious
thing among that collection of rational ideas: desire.

From Computation to Desire

What are the truth claims underlying the engineer’s problems and solu-
tions, or the philosophy undergirding the technological magic of sourcery?
They depend on the protected space of computation, the logical, proce-
dural, immaterial space where memory and process work according to very
different rules from material culture. The pragmatist’s approach gestures
toward, and often depends on, a deeper philosophical claim about the
nature of the universe. We need to understand that claim as the grounding
for the notion of “effective computability,” a transformational concept in
computer science that fuels algorithmic evangelism today. In her book My
Mother Was a Computer, media theorist N. Katherine Hayles labels this phil-
osophical claim the Regime of Computation.' This is another term for
what I sometimes refer to as the age of the algorithm: the era dominated by
the figure of the algorithm as an ontological structure for understanding
the universe. We can also think of this as the “computationalist definition,”
which extends the pragmatist’s notion of the algorithm and informs the

core business models of companies like Google and Amazon.

22 Chapter 1

In its softer version, computationalism argues that algorithms have no
ontological claim to truly describing the world but are highly effective at
solving particular technical problems. The engineers are agnostic about the
universe as a system; all they care about is accurately modeling certain parts
of it, like the search results that best correspond to certain queries or the
books that users in Spokane, Washington, are likely to order today. As
Pasquale and a host of other digital culture critics from Jaron Lanier to Evg-
eny Morozov have argued, even the implicit claims to efficiency and “good-
enough” rationalism at the heart of the engineer’s definition of algorithms
have a tremendous impact on policy, culture, and the practice of everyday
life, because the compromises and analogies of algorithmic approximations
tend to efface everything that they do not comprehend."

The expansion of the rhetoric of computation easily bleeds into what

Hayles calls the “hard claim” for computationalism. In this argument algo-
rithms do not merely describe cultural processes with more or less accu-
racy: those processes are themselves computational machines that can
be mathematically duplicated (given enough funding). According to this
logic it is merely a matter of time and applied science before computers
can simulate election outcomes or the future price of stocks to any desired
degree of accuracy. Computer scientist and polymath Stephen Wolfram lays
out the argument in his ambitious twenty-year undertaking, A New Kind
of Science:
The crucial idea that has allowed me to build a unitfied framework for the new kind
of science that I describe in this book is that just as the rules for any system can be
viewed as corresponding to a program, so also its behavior can be viewed as corre-
sponding to a computation.'®

Wolfram’s principle of computational equivalence makes the strong
claim that all complex systems are fundamentally computational and, as he
hints in the connections he draws between his work and established fields
like theoretical physics and philosophy, he believes that computationalism
offers “a serious possibility that [a fundamental theory for the universe] can
actually be found.”" This notion that the computational metaphor could
unlock a new paradigm of scientific inquiry carries with it tremendous
implications about the nature of physical systems, social behavior, and con-
sciousness, among other things, and at its most extreme serves as an ideol-
ogy of transcendence for those who seek to use computational systems to

model and understand the universe.

What Is an Algorithm? 23

Citing Wolfram and fellow computer scientists Harold Morowitz and
Edward Fredkin, Hayles traces the emergence of an ideology of universal
computation based on the science of complexity: if the universe is a giant
computer, it is not only efficient but intellectually necessary to develop
computational models for cultural problems like evaluating loan applica-
tions or modeling consciousness. The models may not be perfect now but
they will improve as we use them, because they employ the same computa-
tional building blocks as the system they emulate. On a deeper level, com-
putationalism suggests that our knowledge of computation will answer
many fundamental questions: computation becomes a universal solvent for
problems in the physical sciences, theoretical mathematics, and culture
alike. The quest for knowledge becomes a quest for computation, a herme-
neutics of modeling.

But of course models always compress or shorthand reality. If the anchor
point for the pragmatist’s definition of the algorithm is its indefinable flex-
ibility based on tacit understanding about what counts as a problem and a
solution, the anchor point here is the notion of abstraction. The argument
for computationalism begins with the Universal Turing Machine, mathe-
matician Alan Turing’s breathtaking vision of a computer that can complete
any finite calculation simply by reading and writing to an infinite tape
marked with 1s and 0s, moving the tape forward or backward based on the
current state of the machine. Using just this simple mechanism one could
emulate any kind of computer, from a scientific calculator finding the area
under a curve to a Nintendo moving Mario across a television screen. In
other words, this establishes a computational “ceiling” where any Turing
computer can emulate any other: the instructions may proceed more slowly
or quickly, but are mathematically equivalent.

The Universal Turing Machine is a thought experiment that determines
the bounds of what is computable: Turing and his fellow mathematician
Alonzo Church were both struggling with the boundary problems of math-
ematics. In one framing, posed by mathematician David Hilbert, known as
the Emtscheidungsproblem, the question is whether it’s possible to predict
when or if a particular program will halt, ending its calculations with
or without an answer. Their responses to Hilbert, now called the Church-
Turing thesis, define algorithms for theorists in a way that is widely accepted
but ultimately unprovable: a calculation with natural numbers, or what

most of us know as whole numbers, is “effectively computable” (that is,

26 Chapter 1

heart of the Church-Turing thesis. It has expanded its sway with the growth
of computing power, linking back to the tap root of rationalism, gradually
becoming a deeper, more romantic mythos of a computational ontology
for the universe. The desire to make the world effectively calculable drives
many of the seminal moments of computer history, from the first ballistics
computers replacing humans in mid-century missile defense to Siri and
the Google search bar.*® It is the ideology that underwrites the age of the
algorithm, and its seductive claims about the status of human knowledge
and complex systems in general form the central tension in the relation-
ship between culture and culture machines.

To understand the consequences of effective computability, we need
to follow three interwoven threads as the implications of this idea work
themselves out across disciplines and cultural fields: cybernetics, symbolic

language, and technical cognition.
Thread 1: Embodying the Machine

“Effective computability” is an idea with consequences not just for our con-
ception of humanity’s place in the universe but how we understand bio-
logical, cultural, and social systems. Leibniz’s vision of a mathesis universalis
is seductive because it promises that a single set of intellectual tools can
make all mysteries accessible, from quantum mechanics to the circuits
inside the human brain. After World War I, a new field emerged to pursue
that promise, struggling to align mathematics and materiality, seeking to
map out direct correlations between computation and the physical and
social sciences. In its heyday cybernetics, as the field was known, was a
sustained intellectual argument about the place of algorithms in material
culture—a debate about the politics of implementing mathematical ideas,
or claiming to find them embodied, in physical and biological systems.
The polymathic mathematician Norbert Wiener published the found-
ing text of this new discipline in 1949, calling it Cybernetics; or Control and
Communication in the Animal and the Machine. Wiener names Leibniz the
patron saint of cybernetics: “The philosophy of Leibniz centers about two
closely related concepts—that of a universal symbolism and that of a cal-
culus of reasoning.”?” As the book’s title suggests, the aim of cybernetics in
the 1940s and 1950s was to define and implement those two ideas: an

intellectual system that could encompass all scientific fields, and a means

What Is an Algorithm? 27

of quantifying change within that system. Using them, the early cyberne-
ticians sought to forge a synthesis between the nascent fields of computer
science, information theory, physics, and many others (indeed, Wiener
nominated his patron saint in part as the last man to have “full command
of all the intellectual activity of his day”).”® The vehicle for this synthesis
was, intellectually, the field of information theory and the ordering fea-
tures of communication between different individual and collective enti-
ties, and pragmatically, the growing power of mechanical and computational
systems to measure, modulate, and direct such communications.

On a philosophical level, Wiener’s vision of cybernetics depended on
the transition from certainty to probability in the twentieth century.®
The advances of Einsteinian relativity and quantum mechanics suggested
that uncertainty, or indeterminacy, was fundamental to the cosmos and
that observation always affected the system being observed. This marked
the displacement of a particular rationalist ideal of the Enlightenment, the
notion that the universe operated by simple, all-powerful laws that could
be discovered and mastered. Instead, as the growing complexity of math-
ematical physics in the twentieth and twenty-first centuries has revealed,
the closer we look at a physical system, the more important probability
becomes. It is unsettling to abandon the comfortable solidity of a table,
that ancient prop for philosophers of materialism, and replace it with a
probabilistic cloud of atoms. And yet only with probability—more impor-
tant, a language of probability—can we begin to describe our relativistic
universe.

But far more unsettling, and the central thesis of the closely allied field
of information theory, is the notion that probability applies to information
as much as to material reality. By framing information as uncertainty, as
surprise, as unpredicted new data, mathematician Claude Shannon created
a quantifiable measurement of communication.*® Shannon’s framework
has informed decades of work in signal processing, cryptography, and sev-
eral other fields, but its starkly limited view of what counts has become a
major influence in contemporary understandings of computational knowl-
edge. This measurement of information is quite different from the common
cultural understanding of knowledge, though it found popular expression
in cybernetics, particularly in Wiener’s general audience book The Human
Use of Human Beings. This is where Wiener lays one of the cornerstones for
the cathedral of computation: “To live effectively is to live with adequate

28 Chapter 1

information. Thus, communication and control belong to the essence
of man’s inner life, even as they belong to his life in society.”*" In its
limited theoretical sense, information provided a common yardstick for
understanding any kind of organized system; in its broader public sense, it
became the leading edge of computationalism, a method for quantifying
patterns and therefore uniting biophysical and mathematical forms of
complexity.

As Wiener's quote suggests, the crucial value of information for cyber-
netics was in making decisions.”* Communication and control became the
computational language through which biological systems, social struc-
tures, and physics could be united. As Hayles argues in How We Became
Posthuman, theoretical models of biophysical reality like the early
McCulloch-Pitts Neuron (which the logician Walter Pitts proved to be
computationally equivalent to a Turing machine) allowed cybernetics to
establish correlations between computational and biological processes at
paradigmatic and operational levels and lay claim to being what informat-
ics scholar Geoffrey Bowker calls a “universal discipline.”** Via cybernetics,
information was the banner under which “effective computability”
expanded to vast new territories, first presenting the tantalizing prospect
that Wolfram and others would later reach for as universal computation.*
As early as The Human Use of Human Beings, Wiener popularized these links
between the Turing machine, neural networks, and learning in biological
organisms, work that is now coming to startling life in the stream of
machine learning breakthroughs announced by the Google subsidiary
DeepMind over the past few years.

This is Wiener ascending the ladder of abstraction, positioning cybernet-
ics as a new Liebnitzian mathesis universalis capable of uniting a variety of
fields. Central to this upper ascent is the notion of homeostasis, or the way
that a system responds to feedback to preserve its core patterns and iden-
tity. A bird maintaining altitude in changing winds, a thermostat control-
ling temperature in a room, and the repetition of ancient myths through
the generations are all examples of homeostasis at work. More provoca-
tively, Wiener suggests that homeostasis might be the same thing as iden-
tity or life itself, if “the organism is seen as message. Organism is opposed
to chaos, to disintegration, to death, as message is to noise.”* This line of
argument evolved into the theory of autopoiesis proposed by philosophers
Humberto Maturana and Francisco Varela in the 1970s, the second wave of

cybernetics which adapted the pattern-preservation of homeostasis more

What Is an Algorithm? 29

fully into the context of biological systems. Describing organisms as infor-
mation also suggests the opposite, that information has a will to survive,
that as Stewart Brand famously put it, “information wants to be free.”*
Like Neal Stephenson’s programmable minds, like the artificial intelli-
gence researchers who seek to model the human brain, this notion of the
organism as message reframes biology (and the human) to exist at least
aspirationally within the boundary of effective computability. Cybernetics
and autopoiesis lead to complexity science and efforts to model these pro-

cesses in simulation. Mathematician John Conway’s game of life, for

Figure 1.1
“This is a Turing Machine implemented in Conway’s Game of Life.” Designed by
Paul Rendell.

30 Chapter 1

example, seeks to model precisely this kind of spontaneous generation of
information, or seemingly living or self-perpetuating patterns, from simple
rule-sets. It, too, has been shown to be mathematically equivalent to a Tur-
ing machine, and indeed mathematician Paul Rendell designed a game of
life that he proved to be Turing-equivalent (figure 1.1).*”

In fact, if we accept the premise of organism as message, of informa-
tional patterns as a central organizing logic for biological life, we inevitably
come to depend on computation as a frame for exploring that premise.
Wiener’s opening gambit of the turn from certainty to probability displaced
but did not eliminate the old Enlightenment goals of universal, consilient
knowledge. That ambition has now turned to building the best model, the
finest simulation of reality’s complex probabilistic processes. Berlinski
observed the same trend in the distinction between analytic and computa-
tional calculus, noting how the discrete modeling of intractable differential
equations allows us to better understand how complex systems operate, but
always at the expense of gaining a temporally and numerically discrete,
approximated view of things.*® The embrace of cybernetic theory has
increasingly meant an embrace of computational simulations of social,
biological, and physical systems as central objects of study.

Hayles traces this plumb line in cybernetics closely in How We Becarne
Posthuman, arguing that the Macy Conferences, where Wiener and his col-
laborators hammered out the vision for a cybernetic theory, also marked a
concerted effort to erase the embodied nature of information through
abstraction. In the transcripts, letters, and other archival materials stem-
ming from these early conversations, she argues that the synthesizing
ambitions of cybernetics led participants to shy away from considerations
of reflexivity and the complications of embodiment, especially human
embodiment, as they advanced their theory. But, as Hayles puts it, “In the
face of such a powerful dream, it can be a shock to remember that for infor-
mation to exist, it must a/ways be instantiated in a medium.”*

While Hayles’s reading of cybernetics pursues the field’s rhetorical ascent
of the ladder of abstraction as she frames the story of “how information lost
its body,” there is a second side to the cybernetic moment in the 1940s and
1950s, one that fed directly into the emergence of Silicon Valley and the
popular understanding of computational systems as material artifacts. We
can follow Wiener back down the ladder of abstraction, too, through a sec-

ond crucial cybernetic term, the notion of “feedback.” The feedback loop,

What Is an Algorithm? 33

examination of how language itself can shape both ideas and reality. The
cybernetic vision of a unified biological and computational understanding
of the world has never left us, continuing to reappear in the technical and
critical metaphors we use to manipulate and understand computational
systems. Chun explores the deeper implications of this persistent interlac-
ing of computational and biological metaphors for code in Programmed
Visions, demonstrating the interconnections of research into DNA and
computer programming, and how those metaphors open up the interpre-
tive problem of computation. For Chun the key term is “software,” a word
she uses to encompass many of the same concerns 1 explore here in the
context of the algorithm.

Programmed Visions draws a direct link between the notion of
fungible computability reified by the Turing machine and the kinds of lin-
guistic magic that have come to define so many of our computational

experiences:

Software is unique in its status as metaphor for metaphor itself. As a universal imi-
tator/machine, it encapsulates a logic of general substitutability; a logic of ordering
and creative, animating disordering. Joseph Weizenbaum has argued that comput-
ers have become metaphors for “effective procedures,” that is, for anything that
can be solved in a prescribed number of steps, such as gene expression and clerical
work.*

With the “logic of general substitutability,” software has become a thing,
Chun argues, embodying the central function of magic—the manipulation
of symbols in ways that impact the world. This fundamental alchemy,
the mysterious fungibility of sourcery, reinforces a reading of the Turing
machine as an ur-algorithm that has been churning out effective comput-
ability abstractions in the minds of its “users” for eighty years. The “thing”
that software has become is the cultural figure of the algorithm: instanti-
ated metaphors for effective procedures. Software is like Bogost’s cathedral
of computation, Chun argues, “a powerful metaphor for everything we
believe is invisible yet generates visible effects, from genetics to the invisi-
ble hand of the market, from ideology to culture.”* Like the crucifix or a
bell-tower signaling Sunday mass, software is ubiquitous and mysterious
even when it is obvious, manifesting in familiar forms that are only sym-
bolic representations of the real work it does behind the scenes.

The elegant formulation of software as a metaphor for metaphor,

paired with Chun’s quotation of Weizenbaum—the MIT computer

34 Chapter 1

scientist who created an alarmingly successful algorithmic psychotherapist
called ELIZA in the 1960s—draws together cybernetics and magic through
the notion that computers themselves have become metaphors for the
space of effective computability. The algorithm is not a space where the
material and symbolic orders are contested, but rather a magical or
alchemical realm where they operate in productive indeterminacy. Algo-
rithms span the gap between code and implementation, between software
and experience.

In this light, computation is a universal solvent precisely because it is
both metaphor and machine. Like Wiener’s robotic moth, the implemented
algorithm is on the one hand an intellectual gesture (“Hello, world!”), a
publicity stunt, and on the other a functioning system that embeds mate-
rial assumptions about perception, decision-making, and communication
in its construction. For example, think of the humble progress bar. When a
new piece of software presents an indicator allegedly graphing the pace of
installation, that code might well be a bit of magic (the status of the bar
holding little relation to the actual work going on behind the scenes). But
that familiar inching bar is also a functional reality for the user because no
matter how fictitious the “progress” being mapped, nothing else is going to
happen until the bar hits 100 percent—the illusion dictates reality. The
algorithm of the progress bar depends not only on the code generating it
but the cultural calculus of waiting itself, on a user seeking feedback from
the system, and on the opportunity—increasingly capitalized on—to show
that user other messages, entertainments, or advertising during the waiting
phase.

As our generally unthinking acceptance of the progress bar demon-
strates, we are primed to accept these magical calculations on multiple lev-
els. We believe in the power of code as a set of magical symbols linking the
invisible and visible, echoing our long cultural tradition of logos, or lan-
guage as an underlying system of order and reason, and its power as a Kind
of sourcery. We believe in the elegant abstractions of cybernetics and, ulti-
mately, the computational universe—that algorithms embody and repro-
duce the mathematical substrate of reality in culturally readable ways. This
is what it means to say that an algorithm is a culture machine: it operates
both within and beyond the reflexive barrier of effective computability,
producing culture at a macro-social level at the same time as it produces

cultural objects, processes, and experiences.

