S --
i._.-_-_ “.‘

B = __ to Applzcatzon |
S A Development

WHAT Not HOW

p— e - B) =)
Y i e g &1 }‘;i, PeE K11 eS LS stataar-Tala
-, A B e e - — AnbedS. . 0 ST AL FERIFL S SLE R8N

C. J. DATE

F §
vy

ADDISON-WESLEY
Boston * San Francisco * New York * Toronto * Montreal
London * Munich * Paris * Madrid
Capetown * Sydney * Tokyo * Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and we were aware of a trademark claim, the designations have
been printed in initial caps or all caps.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for
special sales. For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/
Library of Congress Control Number:

00-131706
Copyright © 2000 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada,

Text printed on recycled and acid-free paper.
ISBN 0201708507

345678 MA 03020100

3rd Printing September 2000

Contents

Preface ix

PARTI OVERVIEW

SMEEBREow

CHAPTER 1 What's the Problem?
CHAPTER 2 Business Rules Are the Solution!
CHAPTER 3 Presentation Rules
CHAPTER 4 Database and Application Rules
CHAPTER 5 The Data Model
CHAPTER 6 Potential Advantages
CHAPTER 7 Potential Disadvantages
CHAPTER 8 Summary of Part I

PARTII A RELATIONAL PERSPECTIVE
CHAPTER 9 Some Technical Preliminaries
CHAPTER 10 Views, Base Tables, and Stored Tables
CHAPTER 11 Integrity Constraints
CHAPTER 12 A Closer Look at Relational Databases
CHAPTER 13 What Relations Mean
CHAPTER 14 Business Rules and the Relational Model
CHAPTER 15 Summary of Part II

References and Bibliography 125

Index 129

69
79
85
99
107
113
123

vili

Preface

An exciting new technology called business rules is
beginning to have a major positive impact on the IT
industry—more precisely, on the way we develop and
maintain computer applications. The aim of this book
is to explain what this new technology is all about,
and why you should care.

I must make it very clear right away that the book is
not impartial. I'm very enthusiastic about business rules!—
and I hope you will be too, when you’ve finished reading.
In other words, this is definitely a book with an attitude:

It explicitly champions the business rules idea, and it
describes and explains what in my opinion are the merits
and benefits of that idea. Why am I so enthusiastic? For two
reasons: because of what the technology can do, and because
it is so squarely in the spirit of "the original relational
vision." And the book’s structure reflects these two points.
To be more specific, Part I is an overview of what business
rule technology consists of and what it makes possible,

and Part II then takes another look at the ideas presented in
Part I and considers them from an explicitly relational point
of view.

I should also make it clear that the book grew out of the
script for a live presentation. As a consequence, the style is
a good deal chattier than my usual writing, and the tone is
possibly a little shrill on occasion . . . In the interests of full

ix

disclosure, I must also explain that the presentation and
the book were both produced under an agreement with
Versata Inc. (formerly known as Vision Software Tools
Inc.), a company that has a business rules product to sell.
However, the book is not about Versata specifically, nor is
it about any other specific company or product; rather, it’s
about business rule technology in general. What’s more,
“the views expressed are my own”; they're not necessarily
endorsed by Versata, nor by any other vendor. Equally,

I don’t mean to suggest that all of the features we’re going
to be examining can be found in all of the commercially
available products (or in some cases, perhaps, in any of
them!). The book describes how business rule systems work
in general and in principle; it doesn’t necessarily correspond
exactly to the way any given product works in practice.

wWho should read this boolk: Part I of the book is meant
to introduce business rule technology to the widest possible
audience. It’s deliberately not very technical; in fact, it’s
intended primarily as a “manager’s guide” to the subject,
though I do believe that technologists, especially people
concerned with developing databases and applications in the
traditional way, should benefit from it as well. All you need
in order to understand Part 1 is a basic knowledge of what
databases and applications are all about, together with a
broad idea of what’s involved in the traditional approach to
developing such databases and applications.

Part II of the book is a little more technical in nature,
but not very much so; the primary target audience is still
basically as for Part I, and in any case most of the technical
background required to understand the overall message is
explained in the text itself.

How to read the book: Partlis meant to be read in
sequence as written and in its entirety; skipping chapters or
reading them in a different order is not recommended, at
least not on a first reading. Part II can be skipped if you like,
but if you do read it then I would strongly suggest, again,

that you read it in sequence and in its entirety, at least on

a first reading. Of course, the book is quite short, and you
could probably read the whole thing in a single sitting if you
felt like it.

Acknowledgments: First of all, I'd like to thank the
people at Versata (especially Mike DeVries and Val Huber)
for supporting me in the writing of this book, and Gary
Morgenthaler for suggesting that I write it in the first place.
Second, I'd like to thank Manish Chandra, Paula Hawthorn,
Keri Anderson Healy, Vi Ma, Rahul Patel, and Ron Ross
for help with technical questions and the like during the
preparation of the manuscript. Ron Ross in particular
deserves a special mention for his persistence over the years
in trying to make me buckle down and get my thoughts on
this subject into some kind of order . . . Thanks, Ron! Third,
I'm very grateful to my reviewers Hugh Darwen, Val Huber,
Paul Irvine, Haim Kilov, Rahul Patel, Ron Ross, and David
Wendelken for their generally enthusiastic and helpful
comments on earlier drafts of the manuscript. Finally,
I'm grateful, as always, 1o everyone at Addison-Wesley
(especially Paul Becker and Ross Venables) for their

and support this project, and
to my editor Elydia Davis for her usual sterling job.

C.J. Date
Healdsburg, California
2000

PART

Overview

This first part of the book is intended for anyone who wants
to gain an understanding of what business rules are all
about at an overview kind of level. It's deliberately not very
deep, technically speaking. It consists of eight short chapters,
as follows:

1. What's the Problem?

. Business Rules Are the Solution!
. Presentation Rules

. Database and Application Rules
The Data Model

Potential Advantages

Potential Disadvantages

® N oo oW B W N

Summary of Part I

The material is written on the assumption that you
have at least a basic knowledge of what databases and
applications are, and that you also have some general idea
of what's involved in the traditional approach to developing
such databases and applications.

What’s the
Problem?

¥ \/ "
B v o

When they first began to appear, in the early 1950s or so,
computers were very hard to use—they required very
specialized skills, and you really had to be a computer
technician in order to use them at all; originally, in fact,

you probably had to be a hardware engineer. Over time,
however, computer systems have become much more
"user-friendly" and easy to use, thanks to a continual raising
of the level of abstraction: so much so, in fact, that now you
can use a computer effectively even if you have almost no
knowledge of how its internals work at all (much as you can
drive a car effectively even if you don’t know what goes on
under the hood). Here are a few familiar examples of that
"raising of the level of abstraction” that have taken place
over the years:

B |GLs = 2GLs = 3GLs = 4GLs

Programming languages have evolved through several
“generations,” from first generation languages (1GLs) to
at least a fourth generation (4GLs). Just to remind you:
1GLs were machine languages; 2GLs were assembler
languages; 3GLs were the so-called "high-level”
languages (COBOL, Fortran, and the rest); 4GLs were
various proprietary languages, such as FOCUS from

Information Builders, Inc. Some people regard SQL as a
4GL [16].*

m Sequential files = indexed (ISAM) files = hierarchic and
network databases = SQL tables

Over the years, more and more of the details of storing
and managing data have been taken over by the system;
in a word, they’'ve been automated. Nowadays, it's the
system, not the user, that's responsible for finding data
as and when required (and finding it fast); it's the
system, not the user, that's responsible for recovering
data in the event of failure; it’s the system, not the user,
that’s responsible for protecting data from concurrent
update; and so on.

® Specialized languages and interfaces: for example,
RPG, SQL, QBE, "visual programming" (QBF, ABF),
spreadsheets, . .

This one is more or less self-explanatory. However,

I'd like to elaborate briefly on QBF and ABF, because
they’re directly relevant to some of the ideas we’ll be
examining in the next few chapters. QBF—Query By
Forms—allows you to do database queries and updates*
by making simple entries in a form on the screen. ABF—
Applications By Forms—allows you to develop applications
in the same kind of way, and those applications in turn
also use on-screen forms as the interface with the user.

Note: QBF and ABF both grew out of work originally
done in the early 1980s at the University of California

*Throughout this book, numbers in square brackets refer to publications
listed in the References and Bibliography section at the end of the book.
tIn accordance with normal usage, this book uses the term "update”
generically to include all three of the familiar operators INSERT,
DELETE, and UPDATE.

at Berkeley [26]; they were first commercialized in the
Ingres product, originally from Relational Technology
Inc., now—under the name Ingres II—from Computer
Associates International Inc.

Let me add a word on spreadsheets, too. Spread-
sheets raised the level of abstraction, in their particular
field of application, by getting away from writing
programs entirely (nobody today would use Fortran
to write an application to perform spreadsheet-style
processing). There’s a very direct parallel here with
business rule systems, as we’ll see.

In a nutshell, then, it should be clear that the historical
trend has clearly always been away from procedural and toward
declarative—that is, from HOW to WHAT. HOW means saying
how, step by step, the work is to be done; WHAT just means
saying what the work to be done is.

So why is this trend A Good Thing? The answer is,
of course, that declarative (WHAT) means the system does
the work, while procedural (HOW) means the user does it.
In a nutshell:

Declarative is better than procedural!

;
L

So wouldn’t it be nice if we could do all of our
application development work declaratively? Such has
indeed been a goal for many, many years (people have
been talking about the possibility of fully compilable
and executable specifications ever since the 1970s, if not
earlier [28]). In other words, wouldn’t it be great if we could
simply specify our applications precisely, and get the system
to compile those specifications into executable code?

Well, we're getting there. As we’ll see.

The advantages are obvious: Productivity, of course—
the work gets done much more easily and much more

Applications have
three copOonenis

quickly; and numerous subsidiary benefits follow, including
in particular various kinds of independence. One familiar

kind is data independence, which lets us make changes

(for performance reasons, for example) to the way the data
is physically stored on the disk, without having to make any
corresponding changes in applications that use that data.
And there are many other kinds of independence too, some
of which we’ll be looking at later in this book. The basic
advantage in all cases is that they make applications immune
to certain kinds of change (in particular, immune to certain
kinds of business change). And that’s a good thing, because—
as we all know—the only thing that’s constant in life is
change.

But what exactly is an application? Obviously, it’s the
implementation of some business function—for example,
"insert an order line item," "delete an order line item,"
"update the quantity on hand of some part.” In general,
an application involves three parts or components:

1. Presentation aspects
2. Database aspects
3. Aspects specific to the business function per se

Presentation aspects are the ones having to do with
the end-user interface—displaying forms to the end user,
accepting filled-out forms from the end user, displaying
error messages, producing printed output, and so forth.
Database aspects are the ones having to do with retrieving
and updating database data in response to end-user requests
and end-user entries on forms (they’re the portions that
interact with the database server, also known as the DBMS).
Finally, "aspects specific to the business function per se”
might be thought of as the application proper—they’re the
ones that specify the actual processing to be carried out in
order to implement the business function, or in other words
the ones that effectively implement the business’s policies
and practices.

‘That is, specify business processing declaratively, via business
rules—and get the system to compile those rules into the
necessary procedural (and executable) code. And just how
we might actually be able to do this is the subject of the next
few chapters.

Having set the scene, as it were, let me close this intro-
ductory chapter with a quote to support some of the things
I've been saying. It's taken from an interview [15] with Val
Huber of Versata Inc. (formerly known as Vision Software).

Years of experience with information system
development have taught us two important
lessons—it takes far too long to turn a relatively
simple set of requirements into a system that
meets user needs, and the cost of converting
existing applications to new technologies is

prohibitive .. . The factor underlying both of]
these problems is the amount of code it takes

to build a system ... If code is the problem, the |
only possible answer is to eliminate the coding by ||

building systems directly from their specifications.
That’s what the rule-based approach does.

—Val Huber

As you can see, Huber is effectively suggesting, again,
that what we should be aiming for is compilable and executable
specifications. Observe in particular that he touches on two
separate problems with the old-fashioned way of doing things:

= The time it takes to build applications in the first place;

@ The difficulty of migrating existing applications to take
advantage of new technologies as they become available
(for example, moving a client/server application on to
the Web).

T'll come back to both of these problems in Chapter 6.

Just to be definite, let’s assume this database is an SQL
database specifically. Then the boxes in the figure correspond
to SQL tables, and the arrows correspond to foreign keys that
relate those tables to one another, logically speaking. For
example, there’s a foreign key from the ORDER table to the
CUSTOMER table, corresponding to the fact that every
individual order must be placed by some customer.

By the way, if you'd rather think of CUSTOMER and the
rest not as SQL tables as such but rather as entity types, well,
that’s fine; in some ways, in fact, it might be better to talk in
such terms, since they’re not so specific. Business rules aren’t
specific to SQL databases! But I'll stick to SQL, for the reason
already given.

Observe now that:

m Each customer has many orders (but each order is from
just one customer); each order has many line items
(but each line item belongs to just one order); each part
is involved in many line items (but each line item
involves just one part).

® The foreign key relationships can be thought of,
in part, as existence dependencies: An order can't exist
unless the corresponding customer exists, an order
line can’t exist unless the corresponding order and
part both exist.

E Those existence dependencies are business rules!
Indeed, foreign key constraints in particular are an
important special case of business rules in general,
and I'll have quite a lot more to say about them in
Part II of this book.

Here then, in outline, are SQL definitions—that is,
CREATE TABLE statements—for the four tables in the
customers and orders database:

SQL definition for

| CREATE TABLE CUSTOMER customers and ordens

(CUSTS. . .,
ADDR . . .,
CREDIT_LIMIT, . .,

LI]

PRIMARY KEY (CUST#)) ;

CREATE TABLE ORDER
{ ORDER#. . . ,
CUSTH. . . .,
PAID. . . .- yes or no
SHIPPED. . ., yes or no

PRIMARY KEY (ORDER#),
FOREIGN KEY (CUST#) REFERENCES CUSTOMER) ;

CREATE TABLE LINE ITEM
{ ORDER#® . . .,
LINE#. . .,
PARTH. . .,
QTY ORD. . .,
ORD_PRICE. . . , ===r=ssscmemceae fixed at time of order
PRIMARY KEY (ORDER#, LINE4),
(FOREIGN KEY (ORDER#) REFERENCES ORDER ,
FOREIGN KEY (PART#) REFERENCES PART) ;

CREATE TABLE PART
{PARTH. . .,
CURRENT_PRICE. . .,
QTY ON_HAND. . .,
REORDER _LEVEL. . .,

LA

PRIMARY KEY (PART#)) ;

LT SRPSPEIEY, TR TR EINE RN R L S RO UL T ¥

Some points to note regarding these definitions:

B The CUSTOMER table includes a CREDIT _LIMIT column,
with the obvious semantics.

® The ORDER table includes two yes/no columns, PAID
and SHIPPED, that indicate whether the customer has
paid for the order and whether the order has been
shipped, respectively.

& The LINE_ITEM table includes the part number
(PART#), the quantity ordered (QTY_ORD), and the
corresponding order price (ORD_PRICE). The order
price is locked in at the time the order is placed and
doesn’t change, even if the current price of the part
does subsequently change,

® The PART table includes the current price, the quantity
on hand, and the reorder level, all with the obvious
semantics.

& Finally, note that the PRIMARY KEY and FOREIGN
KEY clauses correspond to business rules (and of
course they're stated declaratively). For example,
it’s a business rule that every customer has a unique
customer number; as mentioned earlier, it’s also a
business rule that every order involves exactly one
customer; and similarly for all of the other primary
and foreign key declarations.

Now let’s consider a typical business function involving
this database—"insert line item," say. The way it works goes
something like this:

By dlicking on a menu item or something of that
nature, the end user asks for a form corresponding to
the LINE_ITEM table to be displayed on the screen.

E You can think of that form as a form in the style of
QBF (recall that we discussed QBF briefly in the previous
chapter): It will include among other things fields
corresponding to the customer number, the order
number, the part number, and the quantity ordered.

2 The end user fills in those fields appropriately—that is,
he or she provides the necessary information regarding
the new order line—and clicks on "enter” or "save” or
something of that kind.

The "insert line item" application is now invoked and
carries out the following tasks (among many others, of course):

A. It checks the customer’s credit limit.
B. It computes the order total.

C. It determines whether the part needs to be reordered.

A., B., and C. here are business requirements that must
be met in order to carry out the overall business function.
Incidentally, there’s an important point here that I'll come
back to in a little while (when I discuss reuse): Those very
same business requirements might also need to be met as part
of certain other business functions—for example, "change
line item" or "delete line item." But let’s concentrate on the
"insert line item" function for the time being.

For each of these three business requirements, then, the
application developer will have to specify a corresponding
set of business rules. In the case of the "check credit limit"
requirement, for example, the rules might look something
like this (of course, I'm simplifying the syntax considerably,
for obvious reasons):*

*1t’s worth mentioning that—as will quickly become clear—the
process of developing these rules precisely mirrors the “analysis
interview" process: The analyst gets the business user (a) to state
the business objectives and (b) to provide definitions of terms that
get introduced in step (a).

not just talking about applications in the classical sense.
I'll have a little more to say on this point in Chapter 8.

As you can see, then, these rules are fairly declarative
(nonprocedural). But they can be compiled into
procedural code. In other words, the rules are executable
(loosely speaking). So we’ve specified the application in a
purely declarative way—we haven’'t explicitly written any
of the usual procedural code at all—and yet we’ve still
wound up with running code: an application that can be
executed on the machine.

By the way, the procedural code produced by the
compiler isn’t just executable code—it is (or should be)
optimized code as well. That is, the rules compiler is (or
should be), specifically, an optimizing compiler. I'll have
more to say on this particular point in several subsequent
chapters.

That’s the end of the example for now (though we’ll be
coming back to it at several points in the next few chapters).
To repeat, we’'ve just built an application without writing
any procedural code! And there are many immediately
obvious advantages that accrue from this way of doing
things. Here are some of them:

® First of all, of course, the declarative rules replace many
pages of hand-written procedural code. Each of those
rules could easily correspond to a couple of hundred
lines of 3GL code! This is the source of the productivity
benefit, of course.

® Next, the rules are applied and enforced—"fired," to
use the jargon—on all relevant updates. 1 touched on
this point before, when I observed that the very same
business requirements might need to be met as part of
several different business functions. To be more specific,
although the rules we looked at in the example were
specified as part of the process of building the application
called “insert line item," they're relevant to other applications
too. For example, the application called "delete line item”

15

Database Technology

“What I think Date has done is nothing less than to lay out the foundational
concepls for the next generation of business logic servers based on predicate
logic. Such a breakthrough should revolutionize application development in
our industry—and take business rules to their fullest expression.”

—Ronald G. Ross, Principal, Business Rule .‘inluhf'iﬁm
Executive Editor, DataToKnowledge Newsletiég

The way we build computer applications is about to change dramatically, thanks to a new
development technology known as business rules. The key idea behind the technology is that
we can build applications declaratively instead of procedurally—that is, we can simply state
WHAT needs to be done instead of HOW to do what needs to be done. The advantages are
obvious: ease and rapidity of initial development and subsequent maintenance, hardware
and software platform independence, overall productivity, business adaptivity, and more.

What Not How: The Business Rules Approach to Application Development is a concise and
accessible introduction to this new technology. It is written for both managers and technical
professionals. The book consists of two parts: Part I presents a broad overview of what
business rules are all about; Part II then revisits the ideas in Part I and shows how they fit
squarely into the solid tradition of relational technology. Topics covered include:

* Presentation rules

* Database and application rules

* Building on the data model

* Potential advantages and disadvantages
* A new look at relational fundamentals

* Business rules and the relational model

Overall, the book provides a good grounding in an important new technology, one poised to
transform the way we do business in the I'T world.

C. I. Date is an independent author, lecturer, researcher, and consultant specializing in
relational database systems, a field he helped pioneer. Among other projects, he was involved
in technical planning for the IBM products SQL/DS and DB2. He is best known for his
books, in particular, An Introduction to Database Systems (7th edition, Addison-Wesley,
2000), the standard text in the field, which has sold well over half a million copies worldwide.
Mr. Date is widely acknowledged for his ability to explain complex technical material in a
clear and understandable fashion.

ISBN D-20L-70850-7

oi780201"708509

