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Preface

"What 1s Category Theory?", third volume of the series "Advanced Studies in
Mathematics and Logic", collects contributions written by some of the most
representative working scientists in this field of research: John L. Bell, Ronald
Brown, Scott Carter, Bob Coecke, David Corfield, Costas A. Drossos, David
Ellerman, Solomon Feferman, Ralf Kromer, Jean-Pierre Marquis. Tim Porter,
Vidhyanath K. Rao.

When I thought to develop the plan of this publication, by choosing the
invited authors and the related topics, I wanted to achieve the following goals:

e To stimulate the debates about the foundations of Category Theory (see
the contributions written by Bell, Feferman, Marquis, Rao).

¢ To examine the possibility to use Category Theory as a general
framework m which to umify different kinds of mathematical branches
(see the contributions written by Carter, Drossos, Ellerman, Kromer).

¢ To analyse the idea to apply Category Theory in fields of scientific
enquiry different from Mathematics (see the contributions written by
Brown, Coecke, Corfield, Porter).

At the end of the work, it seems that Category Theory is living a moment of
great expansion, with a growing number of possible applications in different kinds
of scientific sectors; for this reason, the question “What is Category Theory?” has a
particular importance in order to understand which is the specificity of this field of
study.

Giandomenico Sica
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Abstract and Variable Sets in
Category Theory!

John L. Bell

In 1895 Cantor gave a definitive formulation of the concept of set (menge). to wit,

A collection to a whole of definite, well-differentiated objects of our
intuition or thought.

Let us call this notion a concrete set. More than a decade earlier Cantor had
mtroduced the notion of cardinal number (kardinaizahl) by appeal to a process of
abstraction:

Let M be a given set, thought of as a thing itself, and consisting of
definite well-differentiated concrete things or abstract concepts which
are called the elements of the set. If we abstract not only from the nature
of the elements, but also from the order in which they are given, then
there arises in us a definite general concept...which [ call the power or
the cardinal number belonging to M.

As this quotation shows, one would be justified in calling abstract sets what
Cantor called termed cardinal numbers®. An abstract set may be considered as what

! This paper has its origins in a review [2] of Lawvere and Rosebrugh’s book [3].
? This usage of the term “abstract set” is due to F. W. Lawvere: see [4] and [5]. Lawvere’s usage
contrasts strikingly with that of Fraenkel, for example, who on p. 12 of [3] remarks:



10 John L. Bell

arises from a concrete set when each element has been purged of all intrinsic
qualities aside from the quality which distinguishes that element from the rest. An
abstract set is then an image of pure discreteness, an embodiment of raw plurality;
in short, it is an assemblage of featureless but nevertheless distinct “dots” or
“motes”™. The sole intrinsic attribute of an abstract set is the number of its
elements.

Concrete sets are tvpically obtained as extensions of attributes. Thus to be a
member of a concrete set C is precisely to possess a certain attribute 4, in short, to
be an A. (It 1s for this reason that Peano used e, the first letter of Greek got1, “is”,
to denote membership.) The identity of the set C 1s completely determined by the
attribute 4. As an embodiment of the relation between object and attribute,
membership naturally plays a central role in concrete set theory; indeed the usual
axiom systems for set theory such as Zermelo-Fraenkel and Godel-Bernays take
membership as their sole primitive relation. Concrete set theory may be seen as a
theory of extensions of attributes.

By contrast, an abstract set cannot be regarded as the extension of an
attribute, since the sole “attribute™ possessed by the featureless dots—to which we
shall stll refer as elements—making up an abstract set 1s that of bare
distinguishability from its fellows. Whatever abstract set theory is, it cannot be a
theory of extensions of attributes. Indeed the object/attribute relation, and so a
Jortiori the membership relation between objects and sets cannot act as a primitive
within the theory of abstract sets.

The key property of an abstract set being discreteness, we are led to derive
the principles governing abstract sets from that fact. Now it is characteristic of
discrete collections, and so also of abstract sets, that relations between them are
reducible to relations between their constituting elements*. Construed in this way,
relations between abstract sets provide a natural first basis on which to build a
theory thereof. And here categorical ideas can first be glimpsed, for relations can
be composed in the evident way, so that abstract sets and relations between them
form a category, the category Rel.

In fact Rel does not play a central role in the categorical approach to set
theory, because relations have too much specific “structure” (they can, for
example, be intersected and inverted). To obtain the definitive category associated
with abstract sets, we replace arbitrary relations with maps between sets. Here a
map from an abstract set X to an abstract set } is a relation f between X and ¥
which correlates each element of X with a unique element of Y. In this situation we

Whenever one does not care about what the nature of the members of the set may be one speaks of an
abstract set.

Fraenkel’s “abstraction™ is better described as “indifference”.

3 Perhaps also as “marks” or “strokes” in Hilbert’s sense.

4 This is to be contrasted with relations between continua. In the case of straight line segments, for
example, the relation of being double the length is clearly not reducible to any relation between points or
“elements”. In the case of continua, and geometric objects generally. the relevant relations take the form of
mappings.

* We conceive a relation R between two abstract sets ¥ and Y is as correlating (some of) the elements of X’
with (some of) the elements of Y.

G.Sica (ed.) What is Category Theory?
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Abstract and Variable Sets in Category Theory 11

write £ X — ¥, and call X and ¥ the domain, and codomain, respectively, of f.
Since the composite of two maps 1s clearly a map®, abstract sets and mappings
between them form a category Set known simply as the category of abstract sets.

While definitions in concrete set theory are presented in terms of membership
and extensions of predicates, in the category of abstract sets definitions are
necessarily formulated in terms of maps, and correlations of maps. This 1s the case
in particular for the concept of membership itself. Thus in Set an element of a set Y
is defined to be a mapping 1 — X, where 1 is any set “consisting of a single dot™,
that is, satistying the condition, for any set Y, that there is a unique mapping ¥ —
1. In categorical terms, 1 1s a ferminal element of Set. In Set 1 has the important
property of being a separator for maps in the sense that, for any maps f g with
common domain and codomain, if the composites of / and g with any element of
their common codomain agree, then fand g are identical.

The “empty” set & may be characterized as an initial object of Set, i.e., such
that, for any set I, there is a unique map & — V.

In Set the concept of set inclusion is replaced by that of monic (or one-to one)
map, where amap m: X' — Vismonicif, forany f, g A > X. mf=mg=f=g A
monic map to a set ¥ is also known as a subobject of T.

Any two-clement set 2 (characterized categorically as the sum of a pair of 1s;
to be specific, we may choose 2 to be the set {, 1}) plays the role of a subobject
classifier or truth-value object in Set. This means that, for any set X, maps X' — 2
correspond naturally to subobjects of X. Maps X' — 2 correspond to attributes on X,
with the members of 2 playing the role of truth values: & “false” and 1 “true”.

Along with €, in concrete set theory the concept of identity or equality of sets
—essentially defined in terms of e—plays a seminal role. In abstract set theory,
1.e. in Set, by contrast, it 1s the equality of maps which 1s crucial; 1t 1s, in lact,
taken as a primitive notion. Equality for sets is, to all intents and purposes,
replaced by the notion of isomorphism, that 1s, the existence of an invertible map
between assemblages of dots. An abstract set 1s then defined “up to
1somorphism™—the precise identity of the “dots” composing the set in question
being irrelevant, the sole identifying feature is the “form™ of the set.

In abstract or categorical set theory sets are identified not as extensions of
predicates but through the use of the omnipresent categorical concept of
adjunction. Consider, for instance, the definition of exponentials. In concrete set
theory the exponential B” of two sets 4, B is defined to be the set whose elements
are all functions from 4 to B. In categorical set theory B” is introduced in terms of
an adjunction, that is, the postulation of an appropriately defined natural bijective
correspondence, for each set X, between maps X — B* and mappings X x 4 — B .
(Here X' x A is the Cartesian product of X" and A, itself defined by means of a
suitable adjunction expressing the fact that maps from an arbitrary set ' to 4 x X
are in natural bijective correspondence with pairs of maps from } to X and 4. We
note in passing that relations between X and A can be identified with subobjects of

SIff.X— Yand g: ¥ — Z, we write g /: X — Z for the composite of g and /.

G.Sica (ed.) What is Category Theory?
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12 John L. Bell

X x A.) Thus defined. B* is then determined uniquely up to isomorphism, that is, as
an assemblage of dots. We note that the exponential 2% then corresponds to the
power set of X.

The axiom of choice 1s a key principle in the theory of abstract sets. Stated in
terms of maps, it takes the following form. Call amap p: X' — Yepicif f. g ¥ — A,
fp=gp=f=g pisthen epic if it is “onto” [ in the sense that each element of T
is the image under p of an element of X. A map s: ¥ — X is a section of p if the
composite ps is the identity map on Y. Now the axiom of choice for abstract sets 1s
the assertion that any epic map in Set has a section (and. indeed usually many).
This principle is taken to be correct for abstract sets because of the totally arbitrary
nature of the maps between them. Thus in the figure below the choice of a section s
of the epic map p can be made on purely combinatorial grounds since no constraint
whatsoever is placed on s (aside, of course, [Tom the fact that it must be a section
of p).

An abstract set X is said to be infinite 1f there exists an isomorphism between
X and the set X +1 obtained by adding one additional “dot” to X, It was the
discovery of Dedekind in the 19" century that the existence of an infinite set in this
sense 1s equivalent to that of the system of natural numbers. The axiom of infinity,
which is also assumed to hold in abstract set theory, is the assertion that an infinite
set exists.

The category Set is thus supposed to satisfy the following axioms:

1. There is a ‘terminal’ object | such that, for any object X, there is a unique
arrow X — 1

2. Any pair of objects A, B has a Cartesian product 4 x B.

3. For any pair of objects A, B one can form the ‘exponential’ object B* of
all maps 4 — B.

G.Sica (ed.) What is Category Theory?
©2006 Polimetrica International Scientific Publisher Monza/Italy



Abstract and Variable Sets in Category Theory 13

4. There is an object of truth values Q such that for each object X there 1s a
natural correspondence between subobjects (subsets) of X and arrows X' —
Q. (In Set, as we have observed, one may take Q to be the set 2 = {&, 1}.)

1 is not isomorphic to &,
The axiom of infinity.

The axiom of choice.

®° oW

“Well-pointedness™ axiom: | is a separator.

A category satisfying axioms 1. — 6. (suitably formulated in the first-order
language of categories) is called an elementary nondegenerate topos with an
infinite object, or simply a fopos”. The category of abstract sets is thus a topos
satisfying the special additional conditions 7. and 8.

The objects of the category of abstract sets have been conceived as pluralities
which, in addition to being discrete, are also sfatic or constant in the sense that
their elements undergo no change. There are a number of natural category-theoretic
approaches to bringing variation into the picture. For example, we can introduce a
simple form of discrete variation by considering as objects bivariant sefs, that is,
maps F : X, —— X, between abstract sets. Here we think of ., as the “state™ of

the bivariant set F at stage 0, or “then”, and X as its “state” at stage 1, or “now”.
The bivariant set may be thought of having undergone, via the “transition” F, a
change from what it was then (X;) to what it 1s now (X}). Any element x of X, that
is, of F “then” becomes the element Fx of X “now”. Pursuing this metaphor, two
elements “then” may become one “now™ (if F' is not monic), or a new element may
arise “now”, but because F is a map, no element “then” can split into two or more
“now” or vanish altogether®.

The appropriate maps between bivariant sets are pairs of maps between their
respective states which are compatible with transitions. Thus a map from
F:X,——X, to G:Y,——Yis a par of maps h,:X,——Y,.
h, : X, —— Y, for which G E h, = h, E F. Bivariant scts and maps between them
defined in this way form the category Biv of bivariant sets.

Now, like Set, Biv is a topos but the mntroduction of variation causes several
new features to emerge. To begin with, the subobject classifier Q in Biv is no
longer a two -clement constant set but the bivariant set i: Qy — Q, = 2. where Q,
is the three-element set {J, @, 1}, that is, 2 together with a new element @, and i
sends @ to & and both @ and 1 to 1.

7 See, e.g., [6] or [7].
8 Note that had we employed relations rather than maps the latter two possibilities would have to be
allowed for, complicating the situation considerably.

G.Sica (ed.) What is Category Theory?
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14 John L. Bell

And while axioms 5 and 6 continue to hold in Biv, axioms 7 and 8 fail®. In
short, the axiom of choice and well-pointedness are incompatible with even the
most rudimentary form of discrete variation.

Abstract sets can also be subjected to continuous variation. This can be done
in the first instance by considering, in place of abstract sets, bundles over
topological spaces. Here a bundle over a topological space X' is a continuous map p
from some topological space ¥ to X. If we think of the space I as the union of all
the “fibres” A4, = p '(x) for x € X, and A, as the “value” at x of the abstract set 4,
then the bundle p itself may be conceived as the abstract set A varying

continuously over X. A map [ p — p”between two bundles p: ¥ — X and
p* ¥’— X over X is a continuous map f. ¥ — ¥/respecting the variation over .,

that is, satisfying p”E f = p. Bundles over X and maps between them form a

category Bun(\Y), the category of bundles over X.

While categories of bundles do represent the idea of continuous variation in a
weak sense, they fail to satisfy the topos axioms 3. and 4. and so fall short of being
suitable generalizations of the category of abstract sets to allow for such variation.
To obtain these, we confine attention to special sorts of bundles known as sheaves.
A bundle p : ¥V — X over X 1s called a sheaf over X when p is a local
homeomorphism in the following sense: to each a € I there is an open
neighbourhood U of a such that pU 1is open in X and the restriction of p to Uis a
homeomorphism I/ — pU. The domain space of a sheaf over X' “locally resembles”
X in the same sense as a differentiable manifold locally resembles Euclidean space.
It can then be shown that the category Shv(Y) of sheaves over X and maps between
them (as bundles) is a topos the elements of whose truth-value object correspond
bijectively with the open subsets of X% Categories of sheaves are appropriate
generalizations of the category of abstract sets to allow for continuous variation,
and the term continuously varying set is taken to be synonymous with the term
sheaf. In general, both the axiom of choice and the axiom of well-pointedness fail
in sheaf categories!'!, showing that both principles are incompatible with continuous
variation.

If we take X to be a space consisting of a single point, a sheaf over X is a
discrete space, so that the category of sheaves over X 1s essentially the category of
abstract sets. In other words, an abstract set varying continuously over a one-point

¥ The axiom of choice fails in Biv since it is easy to construct an epic from the identity map on {0, 1} to
the map {0. 1} — {0} with no section. That 1 is not a separator follows from the fact that & — 1 has many
different maps from it but no maps from 1 — 1 to it.

10 See, e.g., [6].

' This is most easily seen by taking X to be the unit circle S' in the Euclidean plane, and considering the
“double-covering” D of S in 3-space. The obvious projection map D — S' is a sheaf over S' with no
elements in Shv(S"), so the latter cannot be well-pointed. The same fact shows that the natural epic map in
Shv(S") from D — S to the identity map S* — S (the terminal object of Shv(S") has no section, so that the
axiom of choice fails in Shv(S").

G.Sica (ed.) What is Category Theory?
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Abstract and Variable Sets in Category Theory 15

space 1s just a (constant) abstract set. In this way arresting continuous variation
leads back to constant discreteness!.

There is an alternative description of sheafl categories which brings forth their
character as categories of variable sets even more strikinglyv. For Shv(Y) can also
be described as the category of sets varying (in a suitable sense) over open sets in
X', This type of variation can be further generalized to produce categories of sets
varying over a given (small) category. Each such category 1s again a topos'.
Further refinements of this procedure yield so-called smooth toposes, categories of
variable sets in which the form of variation is honed from mere continuity into
smoothness!®. Regarded as universes of discourse, in a smooth topos all maps
between spaces are smooth, that is, arbitrarily many times differentiable. Even
more remarkably, the objects in a smooth topos can be seen as being generated by
the motions of an infinitesimal object—a “generic tangent vector’—as envisioned
bv the founders of differential geometry.

So, starting with the category of abstract sets, and subjecting its objects to
increasingly strong forms of variation leads from discreteness to continuity to
smoothness. The resulting unification of the continuous and the discrete 1s one of
the most startling and far-reaching achievements of the categorical approach to
mathematics.
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Categories for Knotted
Curves, Surfaces and

Quandles

J. Scott Carter

Abstract. This paper is an overview of categorical structures that are associated to
embedded surfaces in 3-space, generic surfaces in 3-space, and knotted surfaces in 4-
space. The paper is short on technical details, but replete with descriptions and pictures.
The motivation is to give a sense in which topological phenomena can be algebratized,
and how invariants can be constructed from such translations. Many steps have been
completed in such a program. However, there is much that remains to be done.

1 Introduction

The discovery of the Jones polynomial lead to a broad research area that is called
Quantum Topology since it combines ideas from quantum mechanics and elemen-
tary knot theory. Throughout this development, category theory has played an
essential role. The diagrammatical nature of the Jones polynomial lead to the no-
tion of a braided monoidal category [23]. Functors from the category of tangles to
representations of quantum groups lead to generalizations of the Jones polyvno-
mial such as the colored Jones polynomial, and non-associative tangle theory was
used [8] for finite type invariants via Kontsevich integrals. The representations at
roots of unity were used to define quantum 3-manifold invariants [43] that are a
mathematical definition of Witten’s [47] invariants. Topological Quantum Field
Theories (TQFT) as axiomatized by [2] are formed as functors from a cobordism
category to a category of Hilbert spaces for example, and a variety of TQFT
have been constructed (see for example, [25, 38, 46]). The literature on these de-
velopments is extensive; for example, [49] develops the theory from the point of
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view of the category of tangles, [38] investigates TQFTs on 3-manifolds, and [45]
gives a particularly detailed and clear exposition of the Reshetikhin-Turaev [43]
and Turaev-Viro [46] invariants (see also [14]). By using the Kauffman bracket
definition of the Jones polynomial, Khovanov has been able to produce an homol-
ogy theory in which the Jones polynomial can be interpreted as a graded Euler
characteristic. His approach was motivated by categorifying the representations
of Uy(sls).

Since the discovery of the Jones polynomial, it has been questioned whether
higher dimensional analogues exist. That is, “Can invariants of higher dimensional
knottings be defined via diagrammatic methods?” As it was successful to investi-
gate category theoretical structures of tangles and 3-manifolds and their functors
in constructing generalizations of the invariants for knots and 3-manifolds, one
of the approaches to higher dimensions was to investigate category theoretical
structures for knots and manifolds in higher dimensions, in particular for knotted
surfaces in 4-space [18, 5, 27, 37| and 4-manifolds [16, 19, 21, 20]. In these ap-
proaches, categorifications of algebraic systems and 2-categories have been inves-
tigated that effectively represent surfaces and 4-manifolds. Categorifications and
2-categories have been investigated for a long time from purely algebraic points
of view and motivations as higher dimensional algebras (for example, [10, 33] and
[6] through [3]).

These notions motivated my collaborators and me to define invariants via
quandle cohomology theory [15]. The notion was defined as a modification of rack
homology theory [30], and the quandle cocycle invariant was constructed [15] in
a state-sum form. Some aspects of quandles and their knot invariants have been
studied from algebraic [1, 26, 28] and category theoretical [3, 22] points of view.
The purpose of this paper is to revisit category theoretical aspects of surfaces,
quandles and their cohomology theories and invariants, from a point of view with
these recent developments in mind. In Section 2, I revisit categories related to
surfaces, and in Section 3, [ review the definition of the quandle cocycle invariants.

2 Categories for Surfaces

2.1 Surfaces embedded in 3-space and non-associativity

The idea of a 2-category can be exemplified by embedded surfaces in 3-space,
generic surfaces in 3-space, and knotted surfaces in 4-space. In this section, I
develop these three 2-categories from the ground up. It is my hope that such
examples will indicate clearly the ideas of objects, morphisms. 2-morphisms, re-
lations among these, and the so-called 4-square relation. From my provincial
point of view (certainly incorrect), the notion of a 2-category is invented to study
surfaces. But more generally, the result of Fisher [27], and more rigorously Baez-
Langford [5], indicates that the 2-category of knotted surfaces is a free 2-category
of a very specific type a free braided monoidal 2-category with duals on an

G. Sica (ed.) What is Category Theory?
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Categories for Knotted Curves, Surfaces and Quandles 19

unframed self-dual object. Thus it provides evidence for the tangle hypothesis,
and invariants of knotted surfaces can be found as representations into another
braided monoidal 2-category with the same structures.

Associators. We construct a 2-category EMB( based upon embedded arcs and
surfaces bounded by these. Consider the set of k-fold subsets, S C 2% of the
natural numbers N = {0,1,2,...}. A typical object in EMBy is a subset {i; <
ip < --- < ix} € N. If B = 0, such a subset is the empty set. A groupoid
is constructed as a collection of morphisms between such objects. Here groupoid
means a set upon which an associative binary operation is partially defined. That
is the composition ab may or may not be defined. Alternatively, a groupoid is a
category in which the collection of objects forms a set.

For j=1,...,k, if i;41 # i; + 1 there is a morphism

|j—1/‘k—j—1:{3':1<'-':2<"‘<7:j<“'<7:k}

— iy <idg <o < By <+ 1< <)

Under analogous circumstances there is a morphism back:
lim1 N le—j—1 i <o <o <oy < D<o <)

— {i] < < - <y < <)

If ijy1 = i; + 1, then there is a morphism,
‘j_1 n; ‘k-_j_2:{7:1 i < -oiy <+ 1< s <R}

—>{i1<i2<---ij_1<ij+2<"'<’ik}.

Similarly, when i;,1 — i; > 2, there is a morphism:
i1 Uiyt [hejoo t {in <o < oeiy <ljpy < --- <}

H{i1<’i2<--‘ij<ij1<ij1+1<ij+1<---<ik}

where the symbol 7" does not carry any meaning until the resulting set is rein-
dexed.

There is a tensor product of two subsets A and B that is obtained by
shifting B (if necessary) to a set B’ that is completely to the right of A, and
juxtaposing A and B. Similarly morphisms may be tensored. Thus the morphism
lj—1 /"j |k—j—1 is strictly speaking the tensor product of an identity morphism
on a (j — 1)-element subset, a northeastern morphism on one object, and another
identity morphism.

At the level of objects the structure is hardly associative. Indeed, the ini-
tial shift of the object B can aflect the grouping of the resulting object. The
next paragraphs contain more details of the lack of associativities in the tensor
product.
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There is a category whose objects are finite elements in 2" and whose mor-
phisms are generated by U, N, |, " and ™. The identity object is the empty
set, the identity morphism on {#; < is < ... < iz} is the tensor product of |;
specifically [;, i,...i.. The geometric depiction of the five generating morphisms

gorey

is given in Fig. 1.

[ ]
‘ ﬂ:f. i+l — | } | m | ﬂ:f.mﬁ 1)

Figure 1: The generating 1-morphisms in the 2-category EM By

The objects in this category determine partially associated products of in-
determinants as follows: A given set {i; < i3 < ... < ix} has its elements asso-
ciated by their proximity to each other. Thus elements that are closer together
are viewed as having been associated. For example, {1,2,4,7} is related to the
associated product ((ab)c)d since the first two elements are closest and since 4 is
closer to 2 than it is to 7. If a subset consist of elements in an arithmetic progres-
sion, then these element can be treated as a partially parenthesized product. For
example, the set {1,2,3,4,5,8 10,12} is determines the partially parenthesized
product (z1xoxgrars)(rgriorie), and so in this case, we assume that the prod-
ucts, i rorzrars and rgrigro are well-defined. Once an un-associated product
is presented, then we treat it as a single entity.

More rigorously, to a given set S={i; < ia < ... < i} there is a correspond-
ing monomial in non-associative variables x;, . ..., z;, . There is an association of
these variable that is determined by the proximity of their subscripts. To de-
termine the association compute the minimum among the differences i1 — i;.
If j achieves the minimum value, then parenthesize (zjz;1). If the sequence
ij,2j41;.-.%;4¢ 1s in arithmetic progression and this achieves the minimum differ-
ence, then group all of the corresponding variables together. By induction, an as-
sociation scheme can be constructed. Here is one further example: {1,3,4,5,7,10}
corresponds to (1 (x3z4ws)x7)z10. The products (zszyxs) and zq (zszyws)ar are
only partially associated since the corresponding subscripts are equally close.

The correspondence between a given subset and a partially parenthesized
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product is well-defined, but different subsets can determine the same product.
It is possible to choose standard representatives of each partially parenthesized
product by rescaling the subset.

We can think of a pair of subsets, {i] < ia < ... <ip}and {71 < ... < jir}
where i, < j; as being a distinet entity from {i; < ...ip < j1 < ... < ji}. Geo-
metrically, to make this distinction we can add an increment to each element of
the latter set so that there is a parenthetical insertion forced between the two sets.
To exemplily these ideas consider {1,2,4,7} and {1,4,6,7}. The tensor product
is the set {1,2,4,7,8,11,13,14}. This corresponds to the parenthesized string
((z1w0)xy)(zres) (211 (213214)). Whereas {1,2,4,7,11,14,16,17} corresponds to
(((zy@e)ws)xr) (211 (214 (216217))). Thus the structure of the l-category at this
level is not monoidal.

If we want to shift {j,7 +1,...,7 + k} right one unit to the set {j + 1,7 +
2,...,j+k+1}, the topography of the morphism ,” allows all of these points to be
moved simultaneously. Thus ¢y . 1} denotes the tensor product of ,71,..., 7.
And right shifts to {j,7 + 1,...,7 + k} can be achieved using the same scheme,

The process of moving elements from one subset to another by shifting
them individually achieves a method of re-associating the objects. In this manner,
the morphisms 7 and ™ are associators. Thus the l-category, EMBg, is pre-
monoidal provided the following two transformations (and their variants) of the

set {1,2,4,7} — {1,4,6,7} given as
[t 73 l67(l1 2 l6,7(l12 5 [7(li2 a4 [7({1.2,4,7}))))
=11 /ale7(lr /2 l67(l1,2 5 17({1,2,5,7})))
= 3 le7(l1 2 6,7({1,2,6,7}))

= |1 /3 |ﬁ,7({1a336: 7})
={1,4,6,7}

and

a5 7(l A4 7(l 2 147({1,2,4,7})))
= |14 75 |7(]1 /3.4 |7({1,3,4,7}))
= |14 .75 7({1,4,5,7})
={1,4,6,7}

are equal. Note that at this stage, only objects and morphisms have been defined.
If we want a l-category, then we need to assert identities among l-morphisms. So
if we want a premonoidal 1-category with objects the finite elements of 2% and
with morphisms U, N, 7, N\, and |, then we would assert (among other things)
that these two transformations are equal. The transformations are encoding the
pentagon relation.

However, in the 2-category, we might assert the existence of a 2-morphism
1251,2’437 such that
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D1247([1a A s l7) ol A aalr)o(li 2 ]a7)
= sle7)o(lt A 2l67)0(li2 5 17) e (12 a7)

The map ¢ 4.7 is called the pentagonator. An inspection of the superfi-
cial diagram of the pentagonator 2 reveals that it can be decomposed in terms
of a more simple operation. Each arrow 7 (or ™) is depicted as a neighbor-
hood of an inflection point in its diagrammatic representation. Distant inflection

points commute. And thus we can assert the existence of a more basic invert-
ible 2-morphism, R, that represents the commutation of distant inflection points
and that satisfies a Yang-Baxter type relation. In Baez and Langford [5], this
morphism is a tensorator between the pair of distant arrows.

Figure 2: A surface that envelops the pentagonator

Observation. The pentagonator can be written in terms of a tensorator.
Prootf.

RoaR3s5Ro4(l1a /5 |7) o (1 /34 l7)0 (1 72
= RaaR35R24(l1,4 5 7)o (l1s 3 17) o (li2 Aalr) o (|1 /2 [a7)
=RoaRas(l14 75l7) o (i /3ls7) 0 (la /2 17) o (i /4 7)
=Rau(lr /3 ls7)o(lis  alr)o(li A 2l57)0 (1,2 /al7)

= (1 /aler)eo(lt /2 ls7)0 (12 /5 l7)o (12 4l7)

See also Fig. 3. This completes the proof.

The pentagonator is not, strictly speaking, restricted to acting on 1-morphisms
of subset of size 4. A given partially associated product, ((AB)C)D with four con-
stituents, A = {iy < iy < ...i;} and (i1 — ix) constant for k£ =1,...7j (similar
descriptions for B, C, etc.) can be reassociated by similar inflection points (liter-
ally g and so forth), and the resulting pentagonator is a “pleated multi-surface"
in which the pleats commute past each other via corresponding Yang-Baxterators.

In addition to Yang-Baxterators between distant (and therefore commuting
inflection points), we assert the existence of Yang-Baxterators between commut-
ing critical points. (Baez and Langford treat all such 2-morphisms as tensorators).

47)
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123 45 6 17

Figure 3: Factoring the pentagonator via Yang-Baxterators

Thus the compositions (My 2) o (|1,2N3.4) and (Ng.4) o (N1 2[3,4) are related by a 2-
morphism (also called R) and other commutations of critical points or inflection
points are given by similar 2-morphisms.

Further contrasts in the l-category and the 2-category. At the level of
a l-category, one may wish to assert an identity among l-morphisms such as
Ut,20M1,2 = |1,2. The geometric reason is that a given set has a pair of successive
elements annihilated by means of a N, and then the pair is recreated via a U.
In a physical analogy, a pair of particles annihilate each other, emit a photon,
and then the photon splits into a pair of identical particles. If the emission of
the photon is so short lived that it can’t be detected, then we would not want to
include its life in a measurement.

Similarly, we may want to assert an identity between (M 2]3)o(|1Uz,3) and |;.
Such identities have obvious analogues that are dependent upon shifting indices,
and the second identity has an analogue obtained by turning the diagram for
(N1,2]3) © (]1U2,3) upside-down.

In a rigid monoidal category with duals, one asserts that (M 2|3)o(]1Ua3) =
|. (In the premonoidal case, the equality might be written as (N 2|3)e(|1U2,3) =,7).
In this context, there is a sell-dual object generator V. The maps U and N rep-
resent respectively represent a double map U : 1 — V ® V', and an evaluation
map N : V@V — 1. Here 1 represents the identity object (the empty set), and V'
represents a single point. In [42] associators are given to axiomatize a monoidal
category with duals, but therein there are no diagrammatic representations given
of associators are given.

In the current 2-category, we assert the existence of 2-morphisms: S : Uj g0
N2 = |12 — a saddle point, C' : (N} 2]3) o (J1U23) = [1— a cusp (called a
triangulator in [5]), B : # = Nou a birth of a simple closed curve, and
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D :nNoU =  — a death of a simple closed curve. These 2-morphisms are
depicted via their diagrams on the top row of Fig. 4. We note here that the rest
of the figure refers to the next subsection.

O@E

_DC

N EON
‘

e |9
il 1
Pk

;
Wk &

Figure 4: The 2-morphisms in the category of immersed surfaces

Furthermore, one asserts the existence of the two 2-morphisms that are
depicted in Fig. 5. The first represents a 2-morphism bend ™ o := |, and the
second represents a 2-morphisms curve : Ny 20 1 9= My 2. The former replaces
the assumption that ” and "\ are inverse morphisms, and the latter replaces the
assumption that the location of the cap is immaterial.

The generating objects and morphisms in the 2-category £MDB.
The objects in the category are finite subsets of the positive integers. The gen-
erating 1-morphisms are 7, ~, |, U, and N. The set of morphisms between two
subsets {i1,...,¢x} and {ji,...,jp}isempty if k=K +1 (Mod2), otherwise,
it consists of the set of diagrams of disjoint arcs that inner-connect the points in
the subsets. An arc that connects a point ¢ at the bottom to j; at the top, has
the opportunity to meander to the left or right, up or down before it makes the
connection. We can decompose this meandering in terms of the generating mor-
phisms by choosing suitable height functions. The generating 2-morphisms consist
of births, B, and deaths, D, of simple closed curves (l = NoU or No U = ),
saddles, S, (Uo N = || and vice-versa), cusps, C' (N @ |) o (|®U) = | and
vice-versa), tensorators, bends, curves and their inverses.

A topological/categorical question. In the current set up, suppose that two
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0

Figure 5: Extra 2-morphisms in the pre-monoidal setting

I-morphisms both with source A = {iy,...,ix} and target B = {j1,...,j¢}.
are given. An uncategorical question to ask would be, “Are these l-morphisms
equal?" It is uncategorical, since we have been reminded that in higher category
theory, that it is undesirable and unnatural to consider different things to be
equal. Instead we can ask, “Is there a 2-morphism connecting them?" To ask
this becomes a topological /geometric question. We have two pairs of fixed arcs
meandering and inter-connecting among the specific subsets A and B. The topo-
logical question is if there is a surface with boundary that interpolates between
the two arcs and if that surface can be decomposed in terms of the generating
2-morphisms that have been written down.

To address this question, suppose there is a surface, project it to a plane
(called the retinal plane below), and track critical arcs and arcs of inflection points
in the retinal plane. I expect that a Cerf theory type argument like that given
in [17] will show that these 2-morphisms suffice to connect the two l-morphisms.
In general, it is not hard to construct a surface that interpolates between the
pair of I-morphisms. The first question is whether or not such a surface can be
decomposed in terms of our generating 2-morphisms.

If so, then we ask if there is a 2-morphism that connects these two 1-
morphisms that does not factor with any saddle points maxima or minima.
Clearly, the number of arcs that start and end at either A, I3, or travel be-
tween them has to be the same for each 1-morphism. The reason for excluding
the critical points is that these are precisely the 2-morphisms that we do not
want to consider to be invertible. Thus the categorical question is, “Are the two
I-morphisms equivalent in the sense that they are related by a sequence of in-
vertible 2-morphisms?"

Composition of 2-morphisms. In EM B or any of our subsequent 2-categories,
I-morphisms are composed by juxtaposing vertically. In my conventions, the com-
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position fo g is represented with f above and g below. If f and g were functions,
then the domain of the function would be represented at the bottom of the di-
agram, g would be applied first, and then f would be applied. The advantage
is that when reading from left to right we can draw from top to bottom. In the
abstract tensor notation of Kauffman’s work [34], this means that the matrices
represented by the diagrams are applied to column vectors that appear on the
right of an equation.

-/ = horizontal composition

vertical composition

| Tensor product

Figure 6: Compositions of 2-morphisms

In any 2-category, there are vertical and horizontal composition of 2-
morphisms. The horizontal composition of two morphisms F : f; = fi, and
G : go = ¢1 is defined when the sources of the arrows gy and g; coincide with the
targets of the arrows fy and fi. In our movie description of the 2-morphisms, suc-
cessive stills in the movie differ by a composition of 2-morphism. To compose two
2-morphisms horizontally, we create two movies representing the 2-morphisms.
The target of the 1-morphisms fy and f| consists of, say, m points and these are
the sources of the 1-morphisms gy and g;. We can compose the two 2-morphisms
by super-imposing the two changes in scenes that are represented by F' and G. In
other words, both F' and G are represented by surfaces with boundary, and the
right boundary of F is glued to the left boundary of G. The vertical composition
of two 2-morphisms is represented by the succession of stills.

To be more specific, Suppose that the source 1-morphism 7 of fj is depicted
on the left bottom edge of a box that contains the surface representing the 2-
morphism F. The left to right axis on the 1-morphism diagram translates to the
back to front axis (z-axis) on the box. The left face (zz-plane, y = 0) of the box
contains the arcs n x I. The right face of the box contains the arcs, m x I, that
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consist of the targets of fy and f; multiplied by an interval factor. The bottom
face (zy-plane z = 0) contains the diagram for fj. The top face (z = 1) contains
the diagram for fi. The two sides of the box, z = 0 and = = 1, are empty.
The description of the box holding a 2-morphism, (, is similar. Now the vertical
composition of F' and G is obtained by stacking G on top of F' and rescaling the
vertical dimension of the box. The horizontal composition is obtained by gluing
the boxes together with F' on the left and G to the right. Meanwhile, the tensor
product of 2-morphisms is obtained by juxtaposing the boxes in the x direction.
Figure 6 indicates the various compositions. Observe that the 4-square relation
is a consequence of the fact that these four boxes can be stacked two on top of
two, or two to the right of a stack of two.

A further simplification. To finish specifying the 2-category, we need to specify
relations among the 2-morphisms. The situation is getting complicated, because
heretofore we have assumed a pre-monoidal structure. Henceforth, an object k
will be any set of numbers with k elements where & = 0, 1, .. .. We depict such a set
as k = {1,...,k}, and the case k = 0 corresponds to the empty set. However, the
location of the points on the line is assumed to be immaterial. Thus we abandon
the need to specily left-to-right () or right-to-left (™) motion in the diagrams
for the 1-morphisms. The tensor product Eok = }‘c—jr_?g“' is strictly associative,
and any arc that has no critical points is assumed to be the identity. Otherwise,
arcs are assumed to have generic critical points (23 is excluded for example).
The generating 1-morphisms are U, N, and |. The generating 2-morphisms are
B, D, S, C, and tensorators— those that involve the commutation of distant
critical points. In this 2-category EMB, we will deseribe the relations among
2-morphisms. The pre-monoidal structure has been adjusted to be monoidal.

The cusp (triangulator) 2-morphism is invertible. There are two types of
cusps: those that create a pair of critical points, and those that cancel a pair of
critical points. Thus there are two possible vertical compositions of cusps. The
terminology from singularity theory is lips or beak-to-beak. A saddle point can
cancel with a local maximum or minimum. There is a swallow-tail cancelation
of a pair of cusps in the presence of a Yang-Baxterator for the critical points.
Finally, a cusp can be turned upside-down in a the presence of a saddle point. All
of these relations can be easily depicted in terms of the fold lines and cusps that
appear on the projection of embedded surfaces in 3-space. These relations are
depicted in Figs. 7, 8, 11, and 9. Observe that the right had parabolic cylinder
is unnecessary to the relationship — it is drawn only to anchor the idea.

In a rigid monoidal 1-category with duals, the maps U and M satisfy the
relation (N @ |) o (| ® U) = |. In the corresponding 2-category we relax this
condition to the existence of a 2-isomorphism (N@|)o(|@U) = |. This 2-morphism
is depicted in the graphical notation as a cusp on the projection of a surface. The
fact that it is a 2-isomorphism is depicted in Fig. 11: the figure indicates that the
two movies representing the vertical composition of 2-morphisms represent the
same surface. Or in categorical language there is a commuting polytope of the
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corresponding 2-morphism. Another relation that is imposed upon the duality
2-morphism by the geometry is the swallowtail relation that is depicted in Fig. 8.
In general, a full list of relations among 2-morphisms consist of the following:
Relations among the 2-morphisms.

e commuting distant 2-morphisms;
e Yang-Baxter relations among nearby tensorators;

e the cancelation or introduction of a pair of similar such tensorators (ab =
ba = ab)

e the cancelation or introduction of a saddle point and a birth or death
(Fig. 7);

e lips cancelations or introduction of cusps (Fig. 11);
e beak-to-beak cancelation or introduction of cusps (Fig. 11);
e swallow-tail cancelation or introduction of cusps (Fig. 8);

e interchanging an upward cusp and a saddle point with a saddle point and
a downward cusp (Fig. 9).

N

2| >0
DO D] D] D

Figure 7: The cancelation of a maximum point and a saddle point

Now all of these relations can be written in purely categorical language.
See [5] for example. Moreover each is quantified as a codimension 1 singularity
between surface maps, and each such relation can be thought of kinematically.
I encourage you to determine if the free monoidal 3-category with duals on one
self dual object generator consists of the non-negative integers as objects with
addition of integers as the monoidal structure, 1-morphisms generated by U,
N and |. Generating 2-morphisms would be given as cusps, saddles, births, and
deaths. And generating 3-morphisms would be the singularities above, births and
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Figure 9: The horizontal cusp relation among 2-morphisms

deaths of spheres, and the attachments of 1-handles and 2-handles. Relations
among the 3-morphisms would be generated by ambient isotopy of embedded
3-manifolds in 4-space. I expect that a complete list of relations can be given via
the study of singularities between smooth 3-dimensional manifolds.
Conjecture. The free monoidal 3-category with duals on one self dual (unframed)
object generator is the 3-category of embedded 3-manifolds in 4-space.

The 2-category of embedded surfaces. Given an embedding of a closed sur-
face, F', in 3-space, it can be decomposed as a sequence ol 2-morphisms as follows.
A plane in 3-space that is disjoint from the surface F' is chosen so that the pro-
jection of F' to this plane has generic cusps and folds. This plane is called the
retinal plane. General position considerations and Whitney’s theorem guaranty
that such a plane can be found; the set of planes form an open dense subset of
the set of all planes. A height direction in the retinal plane is chosen so that the
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Figure 10: The lips and beak-to-beak relations among 2-morphisms

subsequent projection of the surface onto this line has non-degenerate critical
points; that is, in local coordinates, the Hessian is non-singular. The projection
of the surface onto the height axis can be given as the restriction of the projection
of 3-space onto this axis. Choose a third direction perpendicular to the plane of
projection: a line of sight, and a particular line parallel to this third direction.
That is a line in 3-space whose direction vector is a scalar multiple of the vector
defining the line of sight.

The intersection of the surface I’ with a general line parallel to the line of
sight will consist of a finite collection of points such that the tangent to the sur-
face at any such intersection maps injectively to the retinal plane. The distances
between successive points on this line can be measured, and the set of these
distances can be compared. In general, the intersections will not be integral mul-
tiples of a fixed length, but a subset of the positive integers can be established so
that there is an order preserving map from the set of intersections of the given
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height dircction

eritical level

Figure 11: The retinal plane, height function, and resulting movie

line to a subset of integers that satisfies the following additional property: Points
of intersection that are closer on the line of intersection correspond to similarly
closer points on the subset of the integers. Thus not only is the order of intersec-
tion preserved but a new scale is chosen such that the relative distances are also
preserved. The set of distances between points of F' on the line of intersection
can be partially ordered, and the subset of the integers is chosen so that if adja-
cent points of intersection x and y are closer together than the adjacent points
z and w on the line of intersection, then the corresponding distances are closer
(i —iy| < |iz — iw| where iy, iy, i., & i,, are the corresponding integral points).

Any two lines parallel to the line of sight determine a plane, and the inter-
section of the given surface with this plane is a sequence of arcs. Critical points of
the ares, will project to points on the fold set in the retinal plane. If we consider
one of the original lines as the bottom of an infinite rectangular strip, and the
other line to be the top of such a strip, then the arcs undulate in this rectangu-
lar strip. This undulation is modeled via a sequence of generating 1-morphisms
between the corresponding subsets of the positive integers.

As outlined in the previous two paragraphs, it is possible to start from
the image of a given generic surface, measure carefully, and develop a sequence
of 2-morphisms in the 2-category EMBy that approximates the topography of
the surface. To do so rigorously would require us to show that given surface
can be suitably approximated. For example, for two lines of intersection at the
same height level, results in two model subsets. The intersection of the surface
with the thin strip that is bounded by these lines, consists ol a sequence of
arcs. These arcs have to be replaced by a sequence of 1-morphisms in EMB,
and the replacements have to be consistent from height to height. Specifically,
folds and bulges have to be preserved. While I have not proven that there is a
2-isomorphism of 2-categories (a pair of 2-functors with a natural equivalences
between their compositions and the identity functor), I feel confident that such
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a 2-equivalences can be constructed. My level of confidence is bolstered from
my experience in drawing and shading surfaces. The drawings themselves are
projections to the plane, and the technique that I use for depicting subtle details
is exactly the idea of putting certain layers of the surface into a standard position,
and isolating the singularities in specific locations.

Now in general, we can choose a sequence ol parallel planes arranged as
cosets of the height function. Literally the height function is defined on all of
3-space, and each plane is 7, — h™1(#) for some ¢ € R. That is, for a given height,
we choose a plane at that height, perpendicular to the height axis. For all but a
finite number of heights, t, the intersection of m; = h™!(¢) with the surface, F,
is generic and consists of a collection of closed loops. As such, it is modeled by
the composition of 1-morphisms whose ultimate source and target are the empty
sequence. A pair of nearby planes, between which are no critical or cuspal levels,
will have intersection loops that differ only in position. On the other hand, two
planes on either side of a critical point or cusp, will contain arcs with differing
critical behavior, where now critical points are measured via a height function in
this plane at a given vertical height.

The non-critical changes correspond to portions of the surface being closer
or further from the retinal plane. It is these changes that we cease attempting
to measure. The critical points corresponds to saddles, births, and deaths with
respect to the height function, and the cusps correspond to changes in the fold
set of the projection onto the retina.

Two embeddings of the surface that are ambiently isotopic can be related
to one another via a sequence of relations among the 2-morphisms. In [18], we
gave a graphical description of the ambient isotopy that converts a coffee cup
into a doughnut. This isotopy involved the basic relations among folds that we
have given here. It is amusing and satislying to carefully watch the motions of
a person while considering the changes in folds and cusps as the person moves.
For example, the motion of the legs of a walking person as viewed from the side
involves the commutation of distant fold lines. A knee bending and unbending
can be approximated by a swallow-tail change. The junction of an arm and a
shoulder involves a pair of cusps, the folds that are the profile of the biceps and
triceps, and the fold of the arm pit. Line drawings, comics, and artist sketches
exploit Whitney’s theorem (or realize it) that states that the generic projection
of one surface onto another is locally one-to-one and non-singular on all but a
set of measure zero, and the measure zero set consists of fold lines that close or
end in cusps.

2.2 Generic surfaces in 3-space

A closed surface in general position in 3-space has arcs of double points that end
at branch points or triple points. In a neighborhood of a double point, the surface
looks like the intersection of 2 coordinate planes in 3-space. In a neighborhood of
a branch point the surface looks like the cone on a figure 8, and in a neighborhood
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of a triple point the surface resembles {(x,,z) : xyz = 0} — the set of three
coordinate planes in 3-space.

We define the 2-category, GEAN', by introducing a new generating 1-morphism,
X, that consist of the commutation of a pair of dots, and we introduce new 2-
morphisms and relations among these. More specifically, we take objects to cor-
respond to integers, n = 0,1,2,... as above. the object n is arranged as n dots
along a line. Define an associative tensor product n @ m = ma, and consider
generating 1-morphisms |, U, N, and X . The diagrammatic depiction of X is given
in Fig. 12.

Figure 12: The generating 1-morphism X

The generating 2-morphisms consist of births and deaths of simple closed
curves () = NoU or No U = ), saddles (Uo N = || and vice-versa), cusps
(N@])e(]®U) = | and vice-versa), branch points (X o U = U, vice-versa,
Mo X = || and vice-versa), cancelation of a pair of successive commutations
(X ¢ X = || and vice versa), the commutation of distant 2-morphisms, and a
Yang-Baxter 2-morphism:

Xee(@X)o(Xe)=(leX)o(X@])o(|®X).

Representatives of each type of these 2-morphisms are given in Fig. 4. There is
one additional 2-morphism to include. It is depicted separately in Fig. 13. (The
reasons for separating this figure from Fig. 4 was forgetfulness rather than any
mathematical reason. As I was finishing the manuscript, I realized T didn’t have
the source code for Fig. 4 at the place I was preparing the text). The 2-morphism
can be described as v : [o(N@)o(|@ X)=|o(|@N) o (X @]).

The 1-morphisms are akin to representatives of elements of the Brauer
group, and the 2-morphisms are formed from relations therein, saddles, cusps,
and births and deaths of simple closed curves.

A generic closed surface, F', in 3-space gives rise to a sequence of 2-morphisms
from the empty 2-morphism and back as in the embedded surface case. The dif-
ference is the existence of the 1-morphisms X and the resulting 2-morphisms.
These are branch points and triple points of the image of the surface.

From a categorical point of view, the 1-category that has objects {f,n €
{0,1,2,...}} and morphisms generated by |, U, N, and X is a symmetric monoidal
category. Upon imposing relations among the morphisms that correspond to some
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Figure 13: Moving a crossing over a fold

of the 2-morphisms (specifically the cusp relation gives rigidity and the branch
point gives the category being pivotal), this symmetric category can be described
algebraically. As an exercise, the reader should formulate a Freyd-Yetter type the-
orem that states that this category is the free symmetric, rigid, pivotal, monoidal
category with duals on one self-dual object generator. The typical knot diagram-
matic calculi can be used to perform computations in this category.

Homma-Nagase [31] and independently Roseman [44] demonstrated that
there is a set of T local moves such that any two isotopic generic maps of closed
surfaces in 3-dimensional manifolds can be transformed, one to the other, via
a finite sequence of applications of these moves. In 3-space, any two orientable
generic surfaces are isotopic if and only if the underlying surfaces are homeomor-
phic. Subsequently, Goryunov [24] gave a list of these moves as real pictures of
codimension 1 singularities in the space of multi-germs of complex maps. The
Roseman moves for generic surfaces have movie parameterizations. It is these
movie parameterizations and movie moves that parameterize the interactions
with the fold set (such as lips, beak-to-beak, swallowtails), and the interactions
of the double point set, branch point set, and triple point set with the fold lines.
See [18] for a full description. To understand these results in categorical language
see [5].

At a category theory conference in the distant past, a mathematician raised
strong objections to our use of diagrams to encode these categorical aspects.
The defense of the diagrammatic point of view here is that the free symmetric
monoidal 2-category on one sell dual object generator is almost certainly the 2-
category whose 1-morphisms are generated by |, X, U, and N, whose 2-morphisms
are generated by the surfaces depicted in Fig. 4, and whose relations among 2-
morphisms are given as projections of the movie moves. Here projections means
that the classical knot crossings are projected to the pair of intersecting arcs de-
picted in Fig. 12. Therefore, a calculation in any symmetric monoidal 2-category,
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can be encoded as a surface manipulation. It has become standard to depict com-
putations in braided monoidal categories in graphical notation. The advantage
to me, is that the calculation can be followed by comparison of diagrams, and
this comparison is easier for me, than the comparison of algebraic expressions.
In the 2-category setting, we wind up manipulating surfaces. Most of the truly
tedious algebraic work in my papers with Masahico and others is informed via
diagrams. My colleague who objected to their use, obviously, had not seen the
mathematics in ironing a shirt or shaping a metal plate via hammering.

The images of any two generic surfaces of the same genus are isotopic, and
an isotopy can be constructed as an application of a finite sequence of moves
taken from among the Roseman moves. If height function information is also
preserved, then the moves are selected from among the projections of the movie
moves given in [17] (see also the chart moves below). The categorical meaning of
these results (modulo the proof that the category of generic surfaces is the free
symmetric monoidal 2-category on one self-dual unframed object generator) is
that invariants of generic surfaces defined categorically can, at best, detect genus.

Figure 14: The Roseman moves
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2.3 The 2-category of knotted surfaces in 4-space

The current section is completed by replacing the 1-morphism X —— which is a
transposition of adjacent elements in the permutation group — with a pair of
I-morphisms X and X which are positive and negative braid generators in the
braid group, respectively. Having introduced over and under crossing information
in the I-morphisms, the crossing information is extended to the 2-morphisms. Let
me describe this further.

The notion of a classical knot diagram is a planar picture that depicts
crossing information. The diagram represents an observer’s view of the knot;
arcs at crossings that are further from the observer are depicted as haven been
broken in the diagram. If the 3 space in which the knot lives is very thin in the
observation direction, then most of the knot is on the plane of observation. The
under crossing arcs bend behind that plane. Metaphorically, imagine a collection
of wires mounted on a wall. In order to avoid shorting out a circuit, when wires
might cross on the wall, the under crossing arc is fed behind the wall through a
pair of small holes.

T am belaboring this point with knot diagrams because I want to generalize
it to knotted surfaces. Now suppose that a surface is embedded in a 4-space
that consists of BR? x (=3¢, 0]. Most of the surface is embedded in the 3-space
R? x {0} in which you are reading this article. However, there are small sections
of the surface, along would-be double arcs, triple points and near branch points
at which the surface bends below R? x {0}, and protrudes in to the “vinn” — a
term coined by Rudy Rucker (Up is to down, as right is to left, as fore is to aft,
as vinn is to vout). Along arcs of double points the surface has the structure of
an interval times a semi-circle. At branch points this structure tapers off, and at
the lower sheet at a triple point, there is a pair of canals that accommodates the
canal at the middle sheet. Figures for these surfaces are given in [18].

The 2 category of 2-tangles is an algebraic model for knotted surfaces in
4-space. Here is the complete description. As before the objects are finite sets
of points along a line. The 1-morphisms consist of |, U, N, X and X. The 2-
morphisms consists of cusps C': (N @ |) o (| ®U) = | (and variants, births and
deaths of simple closed curves, B : l = (NoU) and D : (NoU) = 0 respectively,
and saddles S : Uo N = |[|. Each of these 2-morphisms has an analogue in which
source and target 1-morphisms are switched. Finally, the lifts of the 2-morphisms
depicted in Figs. 4 and 13 are included. Here lifts means that the 1-morphism
X in these figures is replaced by the classical knot crossing, either X or X,
so that the resulting broken surfaces have consistent crossing information along
their double curves. More specifically, the resulting 2-morphisms are the classical
Reidemeister moves (including the 1 move), births, deaths, saddles, and cusps.

The relations among 2-morphisms can be encoded in terms of their effects
on their projections to the retinal plane. In [17] we gave a set of chart moves
that encrypted all of the movie moves in the resulting theory; the figures also
appear in [18]. Again all of these can be described in purely categorical means as
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Figure 15: The chart moves page 1

in [5]. The following conventions were used in preparing these diagrams. A thin
dashed line indicates a fold line in the retinal plane. A thick dashed line indicates
either a fold or a crossing line. The crossings among thick dashed lines, then,
are tensorators. A thin solid line represents a double arc from the projection
of the knotted surface (originally in 4-space) to its diagram (in 3-space), and
finally into the retinal plane. The three-fold intersection of solid lines represent
triple points in the projection to 3-space (Reidemeister type III moves). The
apparently tangential intersection between solid lines and dashed lines represents
the 2-morphism 1>. The points at which arcs of double points appear to end at a
fold line represent branch points (Reidemeister type I moves).

2.4 Why anyone else should care

An analogue of the Yang-Baxter equation is the Zamolodchikov equation (ZE)
from statistical mechanics. In a braided monoidal 2-category, there is a solution
to the ZE, and it has been shown [33], that a braided monoidal 2-category can be
constructed from a solution to the ZI. Now our case of knotted surfaces has the
added duality structure much of which I have hidden in the closet. Most of the
duality has to do with the ability to include variants of the 2-morphisms obtained
by reflecting them in various planes parallel to the faces of the boxes containing
them. It has turned out that braided monoidal 2-categories with duals have been
relatively difficult to find.

On the other hand some progress has been made. Most notably, is the Baez-
Crans development [22, 3] in which categorifications of Lie Algebras give solutions
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Introducing Categories to the
Practicing Physicist

Bob Coecke

Abstract. Tt is our aim to convince the physicist, and more specific the quantum
physicist and /or informatician, that category theory should become a part of their daily
practice. The reason for this is not that category theory is a better way of doing mathe-
matics, but that monoidal categories constitute the actual algebra of practicing physics.
We will not provide rigorous definitions or anything resembling a coherent mathemat-
ical theory, but we will take the reader for a journey introducing concepts which are
part of category theory in a manner that the physicist will recognize them.

1 Why?

Why would a physicist care about category theory, why would he want to know
about it, why would he want to show off with it? There could be many rea-
sons. For example, you might find John Baez’s webside one of the coolest in the
world. Or you might be fascinated by Chris Isham’s and Lee Smolin’s ideas on
the use of topos theory in Quantum Gravity. Also the connections between knot
theory, braided categories, and sophisticated mathematical physics such as quan-
tum groups and topological quantum field theory might Iure you. Or, if you are
also into pure mathematics, you might just appreciate category theory due to
its incredible unifying power of mathematical structures and constructions. But
there is a far more on-the-nose reason which is never mentioned. Namely,

a category is the exact mathematical structure of practicing physics!

What do I mean here by a practicing physics? Consider a physical system of type
A (e.g. a qubit, or two qubits, or an electron, or classical measurement data) and
perform an operation f on it (e.g. perform a measurement on it) which results



46 Bob Coecke

in a system possibly of a different type B (e.g. the system together with classical
data which encodes the measurement outcome, or, just classical data in the case
that the measurement destroyed the system). So typically we have

f

A B

where A is the initial type of the system, B is the resulting type, and f is the
operation. One can perform an operation

B c

after f since the resulting type B of f is also the initial type of g, and we write
g o [ for the consecutive application of these two operations. Clearly we have
(hog)o f = ho(go f) since putting the brackets merely adds the superficial data
of conceiving two operations as one. If we further set

14

A A

for the operation ‘doing nothing on a system of type A’ we have
lpof=fola=1Ff.

Hence we have a category! (a concept introduced by Samuel Eilenberg and Saun-
ders Mac Lane in 1945 in [15]) When we also want to be able to conceive two
systems A and B as one whole which we will denote byA @ B, and hence also
need to consider the compound operations

f2g

A@B ceD

inherited from the operations on the individual systems, then we pass from or-
dinary categories to a particular case of the 2-dimensional variant of categories
called monoidal categories. (a concept introduced by Jean Benabou in 1963 in
[8]) We will define these monoidal categories in Section 5.

2 What?

The (almost) formally precise definition of a category is the following:
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Definition. A category C consists of:
e objects A, B,C, ...,
e morphisms f. g, h,... € C(A, B) for each pair A, B,

e composition of each f€ C(A, B) with each g € C(B, C) resulting
in go f€C(A, C) and this composition is such that

(hog)of=hol(gef),
o identity morphisms 14 € C(A, A) for all A which satisfy

fola=1pof=/f.

For the same operational reasons as discussed above (and which extend to the
far more compelling case of monoidal categories as we shall see below), category
theory could be expected to play an important role in other fields where oper-
ations/processes play a central role e.g. Programing (programs as morphisis)
and Logic & Proof Theory (proofs as morphisms), and indeed, in the theoretical
counterparts to these fields category theory has become quite common practice
cf. the many available textbooks and even undergraduate courses [1].

LOGIC & PROOF THEORY | PROGRAMMING PHYSICS
Propositions Data Types Physical System
Proofs Programs Physical Operation

Unfortunately, the standard existing literature on category theory (e.g. [24])
might not be suitable for the andience we want to address in this draft. Category
theory literature typically addresses the (broadminded & modern) pure mathe-
matician and as a consequence the presentations are tailored towards them. The
typical examples are various categories of mathematical structures and the main
focus is on their similarities in terms of mathematical practice. This tendency
started with the paper which marked the official birth of category theory [15]
in which Samuel Eilenberg and Saunders Mac Lane observe that the collection
of mathematical objects of some given kind/type, when equipped with the maps
between them, deserves to be studied in its own right as a mathematical struc-
ture since this study entails unification of constructions arising from different
mathematical fields such as geometry, algebra, topology, algebraic topology etc.

But sometimes going into the area of pure mathematics can be useful exactly
to avoid doing to much mathematics. Indeed, an amazing thing of the particular
kind of category theory that we need here is that it formally justifies its own
formal absence, in the sense that at an highly abstract level you can prove that
proofs of equational statements in the abstract algebra are equivalent to merely
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drawing and manipulating some intuitive pictures [18, 28]. Look for example
to how quite sophisticated quantum mechanical calculations can be simplified
thanks to category theory in Kindergarten Quantum Mechanics [13].

3 Where?

They truly are everywhere! But that’s exactly where people start to get con-
fused. (if you are not up for a storm of data just skip this section and go to
the next one) We consider some examples from mathematics. A group G is a
category with a single object in which every morphism is an isomorphism:

Definition. A morphism f: A — B is an isomorphism (iso) if it has an
inverse i.e. there exists f~!: B — A such that

flof=14 and foft=1p.

A ‘group without inverses’ is called a monoid and is by definition a category in
which there is only one object. Also each partially ordered set P is a category
with the elements of this poset as objects, and whenever a < b we take P(a,b) to
be a singleton, otherwise we take it to be empty. Closedness under composition
is guaranteed by transitivity and the identities are provided by reflexivity. Hence
a poset is an example of a category with only few morphisms. A preordered
set (i.e. ‘partial order without anti-symmetry’) can be defined as a category in
which there is at most one arrow from an object to another one. Still in category
theoretic terms, a poset is bounded if it has a terminal and an initial object:

Definition. An object T is terminal if C(A, T) is a singleton for all A.
An object L is initial if C(L, A) is a singleton for all A.

It is lattice if it has products and coproducts, categorical concepts which we will
define further below. But on the other hand, we also have the category Group
which has groups as objects and group homomorphisms as morphisms, and we
can also consider the category Poset which has posets as objects and order-
preserving maps as morphisms. This are two examples of categories with mathe-
matical structure of some kind as objects, and corresponding structure preserving
maps as morphisms. Other examples of this sort are topological spaces and con-
tinunous maps (Top), vector spaces over KK and linear maps (Vecg), categories
and categorical-structure-preserving maps called functors (Cat), etc.
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4 Quantum?

We can also consider two distinct categories which both have sets as objects,
but one with functions as morphisms denoted by Set and one with relations
as morphisms denoted by Rel. While you might think that since both have
sets as objects they are quite similar, nothing is less true! As a matter of fact,
Rel much more resembles the category of finite dimensional Hilbert spaces and
linear maps FdHilb than it resembles Set, and here things really start to get
interesting. For example, category theory is able to detect the fact that both
vector spaces and relations admit a matrix calculus, respectively over the field K
and over the semiring of booleans B.! While technically this involves some more
sophisticated concepts, we are already able to show that both Rel and FdHilb
admit a notion of superposition while Set doesn’t. We expose this through the
categorical notion of element i.e. a notion of element which exposes itself at
the level of morphisms. First note that for any set X we have a bijection, i.e.,
categorically, an isomorphism

X x{x}~X,

where {*} is just some singleton set, so we can expect {*} to play a special role
both in Set and Rel. Similarly, in finite dimensional Hilbert spaces we have

HeC=H,

so we expect the one-dimensional Hilbert space C to play a special role in FdHilb.
And indeed, in Set we can define X’s elements as the functions

Jo x> Xusx—u

since in this way each element # € X arises as f(%) for the function f, : % — .
Analogously in FdHilb we define H's elements as linear maps

flgy 1 C—=H 1w [1)

since by linearity fi,,(1) = [1)) determines the linear map Jjyy completely. By
analogy in Rel X's elements are relations

{x) /X,

but since relations are ‘multi-valued’ this means that the elements do not corre-
spond with the elements of X but with the subsets ¥ C X | and one can think of
these subsets as superpositions of the singletons. Indeed, setting

YV, =XiffiecY and p=0iff i g Y,

LA semiring is a ring in ‘without additive inverses’. For a matrix calculus it indeed suffices
to be able to add and to multiply scalars, while no substraction is needed.
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both in FdHilb and Rel we can decompose elements over some notion of bases
respectively as

o) = > v i) Y= [JYin{i}.
ieX ie X

Hence the sum becomes a union and the C-valued coefficients become Boolean-
valued since {0, X'} ~ B, the Booleans. In other words, we can think of the subsets
of a set, i.e. the elements in Rel, as being embedded in some vector space:

——
=
-
()
i)

Very erucial in all this is the fact that we considered the cartesian product x in
Rel and the tensor product @ in FdHilb, while both categories allow to combine
their objects in many different other ways (e.g. the direct sum of Hilbert spaces).
This shows that it is essential to consider these additional operations as a genuine
part of the structure, introducing monoidal structure.

5 Which?

The key feature we have seen so far of a category are:
e The structure lives in the space of operations (vs. state space),
e Types enable to distinguish different kinds of systems,
e Composition/application is the primitive ingredient.

We are still missing something crucial. While not officially part of the basic
definition of a category, for any ‘operational’ situation as discussed in Section
1 it is natural to have, besides (temporal) sequential composition, some notion
of parallel composition which allows one to consider two distinct entities as one
whole (e.g. the tensor product in quantum mechanics). In abstract category-
theoretic terms this means introducing a second dimension.
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Definition. A symmetric monoidal category is a category with a sym-
metric monoidal tensor, that is, an assignment both for pairs of objects
and pairs morphisms

(A,B) — A@B

Mt o9 o a0l pen

which is bifunctorioral, and comes together with left & right unit natural
is0s, a symmetry natural iso and an associativity natural iso.

So it remains to explain what bifunctoriality and those natural isos stand for.

To this means we depict morphisms (i.e. physical processes) as square boxes,
and we label the inputs and outputs of these boxes by types which tell on which
kind of system these boxes act cf. one qubit, n-qubits, classical data etc. Se-
quential composition (in time) is depicted by connecting matching outputs and
inputs of these boxes by lines, and parallel composition (cf. tensor) by locat-
ing boxes side by side. Eg. 14 : A — A, f: A — B, go fforg: B — C,
lay@1lp: A@B — A@B, f@lg, f@gfor f: B— Dand g: C — FE, and
(f@g)ohfor h: A— B® C respectively depict as:

c
B B D |E
A * B A |B c * *
A A C
A
We now show that the requirements ‘bifunctoriality’ and ‘existence and naturality
for some special isomorphisms’ with respect to the operation ‘combining systems’

are physically so evidently true that they almost seem redundant. (but as we will
see further they do have major implications)

Bifunctoriality. In the graphical language bifunctoriality stands for:

-

Bifunctoriality has a very clear conceptual interpretation: If we apply an oper-
ation f to one system and an operation g to another system, then the order in
which we apply them doesn’t matter. Hence bifunctoriality expresses some no-
tion of locality but still allows for the quantum type of non-locality. The above
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pictorial equation can also be written down in term of a commutative diagram:

f@la,

A1®As B1®As

A2 B>

78 La. By®B,

which expresses that both paths yield the same result. Actually, taking on a
relativistic spirit, (1@ g)o (f@1) = (f@1)o (1@ g) expresses that what is at the
left and at the right of the tensor does not temporally compare (cf. are space-like
separated) so we can denote them both without any harm by f @ g, and hence
assume the slightly more general condition

(91 ®@g2)0 (f1 @ f2) = (g10 f1) @ (g2 0 fa)

from which it easily follows that

(1@glo(fel)=1cfl@(gol)=(fel)@(log)=(f@1)e(1@g).

This stronger condition was already implicitly present in the picture calculus
since the latter explicitly ignores the brackets:

i.e. it doesn’t matter if we either first consider the sequential composition or the
parallel composition. We read this as: since f; is causally before g and fo is
causally before go, the pair (f1, f2) is causally before (g1, ¢2) and vice versa, but
we do not assume any a priori space-like correlations ‘along the tensor’. Finally
in addition to the above we also require

la®1p =1lags
for the tensor, which is again self-evident from an operational perspective.
Symmetry and associativity natural isomorphisms. One can think of

natural isomorphisms as ‘explicitly witnessed’ canonical isomorphisms. This is
best seen through an example. Consider the following picture:

-
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which, in operational terms, expresses that if we swap the location of two systems
then we also have to swap the operations we intend to apply on them in order to
get the same result. Diagrammatically it corresponds to commutation of:

@

A ® Ag f—g' By @By
UA],AQ GBlgB:’
Ay @A —— By @ By
9@ f

and we call the family of isomorphisms {04, 5 : A@ B — B® A} which stands for
‘swapping the systems’ a natural isomorphism. Hence this idea of the existence
of morphisms witnessing the fact that two objects are isomorphic is again highly
operational. Given two expressions A(—,...,—) and Z(—,...,—) using the bi-
functor (— ® —). a (restricted?) formal notion of natural isomorphism generalizes
in terms of the existence of a family

{g}h,--‘,ﬁn : A(Ala .. -An) - E(Ala ‘e ‘aAn)}

for which we have commutation of:

A(Al,...,AR)MA(Bl,. , B,)

EA,.. A, £p,...B, (1)
(A, .. A, =(Bi,..., B
( 1, 3 )E(f13"'!fﬂ) ( 1 )

Analogously to ‘swapping’, we can consider a notion of associating systems to
each other e.g. being in the possession of the same agent or being located ‘not to
far from each other’. The corresponding natural isomorphism which re-associates
systems should obviously satisfy:

(f@g9)®h

(A1 @ A2) @ Ag (B1® B2) ® By

Ay, Az, Ag QBy,B2,Bs

2We will present a much more general notion of natural isomorphism/transformation below
ones we have the general notion of morphism of categories at our disposal.
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that is, in a picture,

P

When abandoning the spatial interpretation of associativity, naturality is still
implicitly present in the pictures due to the implicit absence of brackets in:

Ll

i.e. it makes no difference if we either want to conceive the first two systems or
the last two systems as one whole. One can of course always choose to have

(Al R Ag) @ Ag = Al ® (A2 624 Ag) with Ay Ay Ay = 1A1®A3®A3

but in many cases it is very useful to have a non-trivial witness. An example
of this is the analysis of quantum teleportation in [2] were it stands for Alice
sending a qubit to Bob in the teleportation protocol i.e. ‘association’ stands for
‘spatial colocation’

Alice Bob Alice Bob

G (© = O @9

Unit object and unit natural isomorphisms. Physical operations can de-
stroy a system e.g. measurement of the position of a photon. On the other hand,
one can conceive a preparation procedure as the creation of a system from an
unspecified source. Therefore it is useful to have an object standing for no system,
preparation or state then being of the type I — A and destruction being of the
type A — I — in Dirac’s notation [14] these respectively are the so-called kets
and bras. Clearly, since I stands for ‘no system’ we have

A~ A~1I2 A

and these left & right unit natural isomorphisms obviously should satisfy:

A f B A f B
Aa AB PA PB (2)
I9oA——+ 1@ B Al — B®I1
Lef fel

G. Sica (ed.) What is Category Theory?
(©)2006 Polimetrica International Scientific Publisher Monza /Italy



Introducing Categories to the Practicing Physicist 55

i.e. introducing nothing should not alter the effect of an operation. In other words,
the left & right unit natural isomorphisms allow us to introduce or discard such
an extra object at any time. Such an object also comes with a notion of scalar
i.e. a morphism of type s : I — 1. In particular do these scalars arise when
post-composing a state with a costate i.e. when we have a bra-ket

mo: T —4e A+ 1.

As we will see below in Section 6, having such a ‘no system’-object has much
more striking consequences than one would expect at first. We also introduce
a graphical symbol for states or elements ¢ : I — A (which are now formally
defined in the presence of a symmetric monoidal tensor), for costates w: A — 1,
and for scalars s : 1 — I, of which 7o 1 is an example:

A e @-3

The above naturality diagram now boils down to:

R

which rewrites as a diagram as:

A B

(v @14)0Aa (1 ®1B) o Ap

CoA—  ~(C@B
le@f
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and is obtained by pasting diagram (2) with bifunctoriality:

A ! B
/\A )\B
Ie A leB
Lerf
P@1g Bifunct. V@ 1p

ceA cCeB

le®f

Typical examples of symmetric monoidal categories are (Set, x) and (Rel, x)
with {#} as unit object and (FdHilb, ®) with C as unit object — which we al-
ready implicitly referred to when discussing the similarities between their respec-
tive elements. But there is for example also (FdHilb, &) with the 0-dimensional
vector space as unit object and (Set, +) and (Rel, +) (where + is the ‘disjoint
union’) with the empty set as unit object. Again (FdHilb, &) and (Rel, +) are
very similar categorically, but still quite different from (Set, +).

Bases independency. For the particular case of vector spaces over some field
K, setting A; = B; := V; and taking f,g,... to be a change of bases for the
corresponding vector space, the general naturality diagram (1) exactly expresses
base independency. Hence in the context of vector spaces natural concepts are
always bases independent concepts.

Coherence. We want the different natural isomorphisms introduced above to
coexist peacefully and for that reason we need to require some coherence condi-
tions e.g. o1, 40 A4 = pa and A1 = p1. We will not spell them out explicitly here.
The general theory of coherence in categories is highly non-trivial as a branch
of developing category theory (as opposed to using category theory). The reason
we mention these coherence conditions here is that the axiomatic algebra of cat-
egorical quantumness (see Section 11), somewhat surprisingly, first appeared in
the context of coherence theory (20, 21].

Braided categories. One coherence condition for a symmetric monoidal ten-
sor is JE,IB = 0B A le 0B A©°0AR = lagp, which depicts as:
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In braided monoidal categories this is not true anymore, giving rise to braided
structure for op 4 0 04 p:

N

™N

We refer to the web pages by John Baez and the books by Louis Kauffman for
prose on this body of mathematics research.

6 How much?

So far nothing quantilalive seems to have been going on here. Not true! Given a
category C we will call X 4 := C(I, A) the state space of system A and S := C(I, A)
the scalar monoid. The scalar monoid in (FdHilb, ®) is isomorphic to C since
any linear map s : C — C is by linearity completely determined by the image of
1 € C. Those in (Rel, x) are the Booleans, since there are two relations from a
singleton to itself, the identity and the empty relation. A remarkable result is that
the scalar monoid is always commutative [21] — the big diagram below is indeed
a proof, which uses bifunctoriality, left & right unit naturality and A\; = pr:

[— = Jol o1 ol — 1
l 1@t 5@111 5
| o
I 121 5@t 121 I
l s(8|111 1@t l
J l
I 121 121 121 I

~ ~

This is quite a surprising result. From the very evident operationally motivated
assumptions on compoundness we obtain something as strong as a requirement of
commutation. This for example implies that if we would want to vary quantum
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theory by changing the underlying field of the vector space we need to stay
commutative, excluding quaternionic quantum mechanics [16]. But there is much
more. The left-hand-side of the above diagram expresses

~ t ~
sot=1I 101 2% 101 I.

We generalize this and define scalar multiplication as

sef A a1 g1 = p

given a scalar s and any morphism f. We think of se — as being a (probablilistic)
weight which is attributed to the operation f. One can prove that (e.g. [12])

(seflo(teg)=(sot)e(fog) and (sef)@(teg)=(sot)e(f@g)

i.e. diamonds can move around freely in “time’ and ‘space’:

ve-utou

One can also show that states and costates satisfy a similar property (e.g. [12])

por—A—s1eAt2T pe1—=. B

1=

Conclusively, at the very basic level of monoidal categories we get a quantitative
notion of value for free, encoded as scalars (provided the scalar monoid itself is
non-trivial), and which arises when a state meets a costate, that is, in Dirac’s
terminology, when a ket meets a bra.

what results in:

7 Key categorical concepts

The above introduced notions of bifunctoriality and natural iso are instances
of the key categorical concepts called functor and natural transformation. In
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Eilenberg-Mac Lane functors were introduced as morphisms between categories
while natural transformations were introduced as morphisms between functors.

Definition. A functor ' : C — D is a ‘structure preserving map of
categories’ i.e. it maps an object A to an object FFA, and a morphism

A—Ls Bioa morphism F'A N F'B, and satisfies

F(go f)=Fgo Ff and F(la)=1Fa.

Given a category define a new category C x C which has pairs (A, B) as ob-
jects, pairs (f, g) as morphisms, pairs (14, 1pg) as identities and with composition
pairwise defined. Hence a functor I’ : C x C — C satisfies

F(gio fi,g20 f2) = F(g1 @ g2) o (f1 @ f2)-

Setting F(—,—) = — @ — it follows that a tensor is indeed a functor, by bi-
functoriality. Another example is a group homomorphism which turns out to be
a functor of groups since functoriality implies preservation of inverses:

ala=e=a-a! = Fa'a)=Fe=Fla-at)
= F(a')-Fa=e=Fa F(a?)
= (Fa)'=F(a).

This is the case because an inverse is a categorical property.

Definition. Given two functors I, G : C — D a natural transformation
€: F = Gisafamily {£4 : FA — GA} 4 of morphisms in D such that
for all morphisms f: A — B in C we have commutation of

ry

FA FB

£a {B

GA GB

Gf

The symmetry isomorphism is indeed a special case of this definition for

(A,B) — A®B
(f,9) — f@g

(A,B) — B®A
(f,g) — g&f

F:CxC—»C::{

G:CXC—>C::{
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While this general definition might be non-intuitive, there are some conceptually
highly significant examples of it. A natural diagonal expresses the process of
copying. It consists of the family {A4 : A — A® A} 4 which again for operational
reasons obviously has to satisfy

A B

Ay Ap

A®@A—— B®B
fef

As a consequence, due to the no-cloning theorem for quantum mechanics [30] we
can expect that in FdHilb we cannot have a natural diagonal. We can define a
map H — H @ H = |i) — |i) @ |i), but since this map depends on the choice of
bases, it cannot be natural. Explicitly, the following diagram does not cormmmute:

C 1~ [0+ + CaC
0) = |0} @ [0
e 0) = [0 o
1) = 1) @ 1)
C~C®C . (CaC)® (CEC)

1@ 1 (|0) + (1)) @ (|0) + [1))

since via one path we obtain the Bell-state

1= 0)@[0) +[1) @]1)
while via the other path we obtain a disentangled state

L= (10) + (1)) @ (|0) + [1)) -

Exactly the same phenomenon happens in Rel. Recall that a relation between
two sets X and Y is a subset R C X x Y consisting of the pairs which satisfy
the relation. Hence the diagonal function

X—=XxX:uaow— ()

can be written as a relation as

{(z, (z,2)) |z € X}.
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But this relation is not natural since we have non-commutation of:

o {5,0), (1) 0.1

{0, (=, %))} {(0,(0,0)), (1, (1, 1))}

{0, %)} {0,1} x {0,1}

{(+,0), (+, 1)} > {(+,0), (. 1)}

since via one path we have

{(+,(0,0)), (+, (1,1))}

while the other path vields
{(x,(0,0)), (+,(0,1)), (,(1,0)), (x, (1, 1))} .

On the other hand, this example does not carry over to Set since we use relations
which are properly multi-valued. In fact, in Set we do have a natural diagonal:

z— f(x)

X Y

R e ywy s S

and this is a consequence of the high-level fact that in Set the cartesian product
is a true product in the categorical sense.

Definition. A product of two objects A and B is a triple consisting of
an object and a pair of operations called projections

(ANB, m:ANB— A, po: ANNB — B)

which are such that for every pair operations f:C — Aand g: C — B
there exists a unique operation h such that we have commutation of:

C
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The uniqueness of h : C' — AT B is usually referred to as the universal property
of the product. But we can reformulate this definition in a manner which gives
it a more direct operational significance in terms of pairing and unpairing meta-
operations.

Definition. A product of two objects A and B is a triple consisting of
an object and a pair of operations called projections

(ANMB, pp: ANMB— A, pa: ANMB — B)
together with pairing and unpairing operations
[-,-]: C(C,A) x C(C,B) — C(C, AN B)
pro—:C(C,AMNB) — C(C, A) pro—:C(C,AM B) — C(C, B)
which are such that

[proh,proh]=h prolfigl=f p2olfigl=g9.

The three required equalities essentially say that pairing and unpairing are each
other inverse as meta-operations i.e. they allow each operation of type C' — Ax B
to be transformed in a pair of operations of respective types C' — A and C' — B
and vice versa. If one has such a product structure than one always has a natural
diagonal and provide a notion of copying. Moreover, also the projections are
natural and can be interpreted as a natural notion of deleting. (cf. the no-deleting
theorem in quantum mechanics [25])
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Proposition. Products yield a monoidal tensor
fMg:=|[fop,gops] : ANNB—=CID
for f: A— Cand g: B— D and a diagonal
Agi=[14,14A—ANA.

Moreover, projections are natural i.e. we have commutation of:

AanB I cqp

»n n

A C

f

Specifying the idea of pairing and unpairing for states we have that the informa-

tion encoded in any bipartite state
V:I1-A®B
can be equivalently encoded in the pair

ﬁ:lzploq’:]_%ﬂ and ﬁL'Q:}U?O\II:IHB

which immediately excludes the possibility of entanglement. Hence, no-cloning
is not a surprise at all in the presence of anything which even remotely behaves
like entanglement. But pairing and unpairing are not the only meaningful meta-
operations of their kind since there exist also the notions of copairing and co-
unpairing, since there is indeed a dual notion to product named coproduct which
is obtained by reversing all the arrows involved. A coproduct of two objects A
and B is a triple consisting of an object and a pair of operations called injections

(AuB, 1 :A—AUB, ¢:B— AUDB)

which are such that for every pair operations f: A — C and g : B — C there

exists a unique operation h such that we have commutation of:

C
5N l &
A AURB B
q1 g
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From coproducts we can define a codiagonal
Va=AUA—- A

analogously as we defined a diagonal given products.

Linear logic. Quantum theory is of course not the only theory in which there
are no natural notions of copying and deleting. E.g. in spoken language we have:

not not # not,

a fact which was well-known to one of the main builders of category theory Jim
Lambek [22]. Both in computing and proof theory, absence of evident availabil-
ity of copying and deleting captures resource sensitivity i.e. it counts how many
times a resource is used. While much of the technical machinery was already
available due to Jim Lambek, Saunders MacLane, Max Kelly and other category
theoreticians, the name and conceptual understanding of linear logic has to be
attributed to Jean-Yves Girard [17], and the full identification in category theo-
retic was provided in [27]. For a useful survey on category theory from the linear
logician’s perspective we refer to [10].

8 Enriched categories

We will not get in detail on this mathematically highly non-trivial subject and
refer the reader for an easy-going introduction to [11]. Here we just want to men-
tion the existence of this particular way of adding more structure to categories,
since we will encounter a simple example of it below. Consider the so-called
Hilbert-Schmidt correspondence for finite dimensional Hilbert spaces i.e. given
two Hilbert spaces 7, and Hs there is a nafural isomorphism in FdHilb?

HE @ Ho ~ FAHilb(H,, Ha) (3)

between the tensor product of Hj (i.e. the dual of H,) and Hs and Hilbert space of
linear maps between H; and Hs. In particular do we have that FdHilb(H, Hs)
is itself a Hilbert space. Note also that there exists a linear map

FdHilb(H,, Hs) ® FdHilb(Ha, Hs) — FAHilb(H,, Hs) = (f,g) — go f

due to the wniversal property of the Hilbert space tensor product i.e. for each
triple H1, Ha, H3 there exists a particular morphism in FdHilb which internalizes

3Surprisingly enough, in much of the quantum mechanical literature (e.g. [5, 31]) one does
not encounter this natural correspondence but rather an un-natural one namely H; ® Ho =~
FdHilb(H,,H>) which is merely a bijection between sets and which is of course is bases
dependent. The same is the case for many other notions used in the quantum physics literature.
Life could be made so much easier if physicist would learn about the benefits of naturality.
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composition of linear maps. Hence we have a situation where the morphism-sets of
a category C are themselves structured as objects in (possibly another) category
(D, @) in such a manner that composition in C, i.e.

—o—:C(A,B)x C(B,C)— C(A,C),
internalizes in (D, ®) as an explicit morphism
capc:C(A B)®C(B,C) — C(AC).

Such a category C is called D-enriched or simply a D-category. Each category
is by definition a Set-category. A 2-dimensional category or simply, a 2-category
is defined as a Cat-category. Similarly, a 3-category is a 2-Cat-category, and
a (n+ 1)-category is a n-Cat-category, a branch of category which currently

intensively studied, and in particular strongly advertised by John Baez. A par-
ticular fragment FdHilb-enrichment (cf. FdHilb is itself FdHilb-enriched) is

enrichment in commutative monoids CMon i.e. linear maps can be added.

9 Logical closure

Categorical enrichment is not the only way to encode the Hilbert-Schmidt corre-
spondence. From eq.(3) and (H; ® H2)* ~ H{ @ H3 it follows that

FdHilb(H @Ha, Ha) =~ (HI@H3)@H3 ~ Hi®(H32H3) ~ FdHilb(H,, Hi@H3)
Hence when defining a new connective between Hilbert spaces by setting
Ho = Hz = Hy @ Hs,
called implication, we obtain
FdHilb(H;® Ha, Hz) ~ FAHilb(H, Ho = H3)
which is a special case of the general situation of monoidal closure:
C(A®B,C)~C(A,B=C)

where we now assume (not necesarily being in a self-enriched context) that the
isomorphism is natural in Set.* This is precisely the deductive content of general
categorical logic, which states that for each proof

e [7:A® B — C ‘which deduces from A and B that C is true’

1 Actually we have an example of a so-called adjunction between the two functors B @ —
and B = — for each object B of the category. While in many category theory books for
very compelling mathematical reasons adjunction will be put forward as the most important
mathematical concept of the whole of category theory, we unfortunately won’t have the space
here to develop it, and it would deviate us too much from our story line.
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that there is a corresponding proof
o o A— B= C ‘which deduces from A that B implies C’

and vice versa. A particular situation of monoidal closure is cartesian closure
where the monoidal tensor is a categorical product i.e. we have

C(AMB,C)~C(A,B = C)

— which of course is not the case for (FdHilb, ®) since as we have seen above
that a product structure prevents the existence of entanglement. The notion
of a topos is an even more (Set, x)-resembling particular case of a cartesian
closed category, so, although some have proposed topos theory to be used in
the foundations of quantum mechanics, one fact is certain: a topos is manifestly
non-quantuwm. Putting this in more technical terms, in FdHilb we have another
(than cartesian closure) particular case of monoidal closure called #-autonomy
[7], which requires that there exists an operation negation denoted by a star and
which is such that we can derive the implication from it by setting

A= B (A®B*)*

which logically makes a lot of sense: A implies B when we do not have that A
is true and that not B is true, that is, by the De Morgan law, that A implies B
when we either have that not A is true or that B is true.

Proposition. A symmetric monoidal category which is both cartesian
closed and #-autonomous can only be a preordered set.

This translates physically in the fact that if a quantum formalism would be
cartesian closed then the only operation on a system which preserves it is the
identity, which implies that there cannot be any non-trivial notion of unitarity.

But again, FAHilb has even more structure than x-autonomy, namely the
fact that (A ® B)* ~ A* @ B*, which logically is a bit weird, stating that not (A
and B) is equivalent to (not A) and (not B), hence it follows that and is the same
as or.” This kind of logically degenerate monoidal categories in which the tensor
is self-dual are called compact closed categories and where introduced by Max
Kelly [20], in terms of a much simpler definition than the above one which we will
discuss in the section ‘Categorical quantumness’. Surprisingly, they arise in many
more contexts than one would expect, for example in linguistics [23], in relativity
since cobordism categories turn out to be compact closed [6], in concurrency
theory [4], they also enable to formalize the mathematical notion of a knot, and
of course, they consitute the key to axiomatizing quantum entanglement [2, 3].

5This logical view highly contrasts the Birkhoff-von Neumann proposal in [9] that quantum
logic is a weak logic in which we can do less than classical logic. In fact, we can do more!
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10 Categorical matrix calculus

While till now we have focussed on the tensor product of Hilbert spaces, in this
section we show how the direct sum of Hilbert spaces carries the matrix calculus.
If an object is both terminal and initial we call it a zero-object and in that case
there is a unique zero-maps between any two objects:

Oa.B

S

and these zero-maps are moreover closed under composition:

A B

Oa.B Op,c

A B C

Assume that in addition to this we have a situation of what we roughly describe
as ‘coinciding products and coproducts’, and which we will denote by — & —.
Since in this case we both have diagonal A and a codiagonal V, for each pair
f.g: A— B we can define the following sum:

frg=ALvAea 1% 464 Y 4
and by naturality of A and V it moreover follows that

(fitfa)og=_(fiog) +(faog) folgtg2)=(fog)+(foga).

One verifies that we obtain CMomn-enrichment. But we also both have projections
and injections so for each morphism

f:AeB-»C&D

we can write down a matrix

piofoqn  pirofoq
(fij)ij =
profoq  paofoq

and it turns out that we obtain a full-blown matrix calculus in which we can add
and multiply in the usual linear-algebraic fashion. The exact notion which cap-
tures the above situation is that of a biproduct. We give two alternative equivalent
definitions.
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Definition. If C has a 0-object, products and coproducts and if all

morphisms with matrix {1] | ) are isos then C has biproducts.

Definition. If C is CMon-enriched and if there are morphisms

p1

p
A& B g
q1 q2

Az B

with
pi o qj = 0ij Za giopi = lasn
then C has biproducts.

Each such biproduct category admits an additive and multiplicative matrix calcu-
lus, and each category with numbers as objects and n x m-matrices in a commu-
tative semiring as morphisms vields a biproduct category. In particular (Rel, +)
and (Vectyg,$) are biproduct categories.

Distributivity. We have now seen that in FdHilb there exist two monoidal
structures, namely the @-structure which captures entanglement, and the &-
structure which provides the matrix calculus. But these two are not at all inde-
pendent since there exists a distributivity natural isomorphism:

(i f)@g

(AigA)@C (Bi® B) @D

DIST A, ,4.,C DISTB,,B.,D

(A1@0) & (A200) (B1 @ D)& (B2 ® D)

(hege(f209)

Such a distributity isomorphism is a very useful tool which for example can be
used to encode classical communication between agents [2]:

(I#]) @ Agent =~ (1® Agent) & (1@ Agent) .

However, while the @-structure and $-structure clearly behave very different,
the first is in the case of finite dimensional objects derivable from the second.
Indeed, given a biproduct category BP with an object 1 such that BP(I,1) is
commutative, define a new category:

e the objects are the natural numbers N~ {I% ... &1 | n e N}
e’

n
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