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WHAT IS MATHEMATICS?

Mathematics as an expression of the human mind reflects the active
will, the contemplative reason, and the desire for aesthetic perfection.
Its basic elements are logic and intuition, analysis and construction,
generality and individuality. Though different traditions may emphasize
different aspects, it is only the interplay of these antithetic forces and
the struggle for their synthesis that constitute the life, usefulness, and
supreme value of mathematical science.

Without doubt, all mathematical development has its psychological
roots in more or less practical requirements. But once started under the
pressure of necessary applications, it inevitably gains momentum in it-
self and transcends the confines of immediate utility. This trend from
applied to theoretical science appears in ancient history as well as in
many contributions to modern mathematics by engineers and physicists.

Recorded mathematics begins in the Orient, where, about 2000 B.C.,
the Babylonians collected a great wealth of material that we would clas-
sify today under elementary algebra. Yet as a science in the modemn
sense mathematics only emerges later, on Greek soil, in the fifth and
fourth centuries B.C. The ever-increasing contact between the Orient
and the Greeks, beginning at the time of the Persian empire and reaching
a climax in the period following Alexander’'s expeditions, made the
Greeks familiar with the achievements of Babylonian mathematics and
astronomy. Mathematics was soon subjected to the philosophical dis-
cussion that flourished in the Greek city states. Thus Greek thinkers
became conscious of the great difficulties inherent in the mathematical
concepts of continuity, motion, and infinity, and in the problem of mea-
suring arbitrary quantities by given units. In an admirable effort the
challenge was met, and the result, Eudoxus’ theory of the geometrical
continuum, is an achievement that was only paralleled more than two
thousand years later by the modern theory of irrational numbers. The
deductive-postulational trend in mathematics originated at the time of
Eudoxus and was crystallized in Euclid's Elements.

However, while the theoretical and postulational tendency of Greek
mathematics remains one of its important characteristics and has ex-
ercised an enormous influence, it cannot be emphasized too strongly
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that application and connection with physical reality played just as im-
portant a part in the mathematics of antiquity, and that a manner of
presentation less rigid than Euclid’s was very often preferred.

It may be that the early discovery of the difficulties connected with
“incommensurable” quantities deterred the Greeks from developing the
art of numerical reckoning achieved before in the Orient. Instead they
forced their way through the thicket of pure axiomatic geometry. Thus
one of the strange detours of the history of science began, and perhaps
a great opportunity was missed. For almost two thousand years the
weight of Greek geometrical tradition retarded the inevitable evolution
of the number concept and of algebraic manipulation, which later
formed the basis of modern science.

After a period of slow preparation, the revolution in mathematics and
science began its vigorous phase in the seventeenth century with ana-
lytic geometry and the differential and integral calculus. While Greek
geometry retained an important place, the Greek ideal of axiomatic crys-
tallization and systematic deduction disappeared in the seventeenth and
eighteenth centuries. Logically precise reasoning, starting from clear
definitions and non-contradictory, “evident” axioms, seemed immaterial
to the new pioneers of mathematical science. In a veritable orgy of in-
tuitive guesswork, of cogent reasoning interwoven with nonsensical
mysticism, with a blind confidence in the superhuman power of formal
procedure, they conquered a mathematical world of immense riches.
Gradually the ecstasy of progress gave way to a spirit of critical self-
control. In the nineteenth century the immanent need for consolidation
and the desire for more security in the extension of higher learning that
was prompted by the French revolution, inevitably led back to a revision
of the foundations of the new mathematics, in particular of the differ-
ential and integral calculus and the underlying concept of limit. Thus
the nineteenth century not only became a period of new advances, but
was also characterized by a successful return to the classical ideal of
precision and rigorous proof. In this respect it even surpassed the model
of Greek science. Once more the pendulum swung toward the side of
logical purity and abstraction. At present we still seem to be in this
period, although it is to be hoped that the resulting unfortunate sepa-
ration between pure mathematics and the vital applications, perhaps
inevitable in times of critical revision, will be followed by an era of
closer unity. The regained internal strength and, above all, the enormous
simplification attained on the basis of clearer comprehension make it
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possible today to master the mathematical theory without losing sight
of applications. To establish once again an organic union between pure
and applied science and a sound balance between abstract generality
and colorful individuality may well be the paramount task of mathe-
matics in the immediate future.

This is not the place for a detailed philosophical or psychological
analysis of mathematics. Only a few points should be stressed. There
seems to be a great danger in the prevailing overemphasis on the
deductive-postulational character of mathematics. True, the element of
constructive invention, of directing and motivating intuition, is apt to
elude a simple philosophical formulation; but it remains the core of any
mathematical achievement, even in the most abstract fields. If the crys-
tallized deductive form is the goal, intuition and construction are at least
the driving forces. A serious threat to the very life of science is implied
in the assertion that mathematics is nothing but a system of conclusions
drawn from definitions and postulates that must be consistent but oth-
erwise may be created by the free will of the mathematician. If this
description were accurate, mathematics could not attract any intelligent
person. It would be a game with definitions, rules, and syllogisms, with-
out motive or goal. The notion that the intellect can create meaningful
postulational systems at its whim is a deceptive halftruth. Only under
the discipline of responsibility to the organic whole, only guided by
intrinsic necessity, can the free mind achieve results of scientific value.

While the contemplative trend of logical analysis does not represent
all of mathematics, it has led to a more profound understanding of math-
ematical facts and their interdependence, and to a clearer comprehen-
sion of the essence of mathematical concepts. From it has evolved a
modern point of view in mathematics that is typical of a universal sci-
entific attitude.

Whatever our philosophical standpoint may be, for all purposes of
scientific observation an object exhausts itself in the totality of possible
relations to the perceiving subject or instrument. Of course, mere per-
ception does not constitute knowledge and insight; it must be coordi-
nated and interpreted by reference to some underlying entity, a “thing
in itself,” which is not an object of direct physical observation, but be-
longs to metaphysics. Yet for scientific procedure it is important to dis-
card elements of metaphysical character and to consider observable
facts always as the ultimate source of notions and constructions. To
renounce the goal of comprehending the “thing in itself,” of knowing
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the “ultimate truth,” of unraveling the innermost essence of the world,
may be a psychological hardship for naive enthusiasts, but in fact it was
one of the most fruitful turns in modern thinking.

Some of the greatest achievements in physics have come as a reward
for courageous adherence to the principle of eliminating metaphysics.
When Einstein tried to reduce the notion of “simultaneous events oc-
curring at different places” to observable phenomena, when he un-
masked as a metaphysical prejudice the belief that this concept must
have a scientific meaning in itself, he had found the key to his theory of
relativity. When Niels Bohr and his pupils analyzed the fact that any
physical observation must be accompanied by an effect of the observing
instrument on the observed object, it became clear that the sharp si-
multaneous fixation of position and velocity of a particle is not possible
in the sense of physics. The far-reaching consequences of this discovery,
embodied in the modemn theory of quantum mechanics, are now familiar
to every physicist. In the nineteenth century the idea prevailed that me-
chanical forces and motions of particles in space are things in them-
selves, while electricity, light, and magnetism should be reduced to or
“explained” as mechanical phenomena, just as had been done with heat.
The “ether” was invented as a hypothetical medium capable of not en-
tirely explained mechanical motions that appear to us as light or elec-
tricity. Slowly it was realized that the ether is of necessity unobservable;
that it belongs to metaphysics and not to physics. With sorrow in some
quarters, with relief in others, the mechanical explanations of light and
electricity, and with them the ether, were finally abandoned.

A similar situation, even more accentuated, exists in mathematics.
Throughout the ages mathematicians have considered their objects,
such as numbers, points, etc., as substantial things in themselves. Since
these entities had always defied attempts at an adequate description, it
slowly dawned on the mathematicians of the nineteenth century that
the question of the meaning of these objects as substantial things does
not make sense within mathematics, if at all. The only relevant asser-
tions concerning them do not refer to substantial reality; they state only
the interrelations between mathematically “undefined objects” and the
rules governing operations with them. What points, lines, numbers “ac-
tually” are cannot and need not be discussed in mathematical science.
What matters and what corresponds to “verifiable” fact is structure and
relationship, that two points determine a line, that numbers combine
according to certain rules to form other numbers, etc. A clear insight
into the necessity of a dissubstantiation of elementary mathematical
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concepts has been one of the most important and fruitful results of the
modern postulational development.

Fortunately, creative minds forget dogmatic philosophical beliefs
whenever adherence to them would impede constructive achievement.
For scholars and layman alike it is not philosophy but active experience
in mathematics itself that alone can answer the question: What is math-
ematics?



CHAPTER I

THE NATURAL NUMBERS
INTRODUCTION

Number is the basis of modern mathematics. But what is number?
What doesit meantosaythat} + 3 =1,4.34 =3 and(=1)(=1) = 1?
We learn in school the mechanics of handling fractions and negative
numbers, but for a real understanding of the number system we must go
back to simpler elements. While the Greeks chose the geometrical con-
cepts of point and line as the basis of their mathematies, it has
become the modern guiding principle that all mathematical statements
should be reducible ultimately to statements about the natural numbers,
1,2, 3,---. “God created the natural numbers; everything else is
man’s handiwork.” In these words Leopold Kronecker (1823-1891)
pointed out the safe ground on which the structure of mathematics can
be built.

Created by the human mind to count the objects in various assem-
blages, numbers have no reference to the individual characteristics of
the objects counted. The number six is an abstraction from all actual
collections containing six things; it does not depend on any specific
qualities of these things or on the symbols used. Only at a rather
advanced stage of intellectual development does the abstract character
of the idea of number become clear. To children, numbers always re-
main connected with tangible objects such as fingers or beads, and primi-
tive languages display a concrete number sense by providing different
sets of number words for different types of objects.

Fortunately, the mathematician as such need not be concerned with
the philosophical nature of the transition from collections of concrete
objects to the abstract number concept. We shall therefore accept the
natural numbers as given, together with the two fundamental opera-
tions, addition and multiplication, by which they may be combined.

§1. CALCULATION WITH INTEGERS

1. Laws of Arithmetic

The mathematical theory of the natural numbers or positive integers
is known as arithmetic. It is based on the fact that the addition and
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multiplication of integers are governed by certain laws. In order to
state these laws in full generality we cannot use symbols like 1, 2, 3
which refer to specific integers. The statement

1+42=2+1

is only a particular instance of the general law that the sum of two
integers is the same regardless of the order in which they are considered.
Hence, when we wish to express the fact that a certain relation between
integers is valid irrespective of the values of the particular integers
involved, we shall denote integers symbolically by letters a, b, ¢, --- .
With this agreement we may state five fundamental laws of arithmetic
with which the reader is familiar:

)a+b=>b+a, 2) ab = ba,
at+@@+te)=(a+Db)+e¢ 4) a(be) = (ab)c,
5) a(b + ¢) = ab + ac.

The first two of these, the commutative laws of addition and multipli-
cation, state that one may interchange the order of the elements involved
in addition or multiplication. The third, the associative law of addition,
states that addition of three numbers gives the same result whether we
add to the first the sum of the second and third, or to the third the sum
of the first and second. The fourth is the associative law of multiplica-
tion. The last, the distributive law, expresses the fact that to multiply
a sum by an integer we may multiply each term of the sum by this integer
and then add the products.

These laws of arithmetic are very simple, and may seem obvious. But
they might not be applicable to entities other than integers. If a
and b are symbols not for integers but for chemical substances, and
if ““addition’’ is used in a colloquial sense, it is evident that the commuta-
tive law will not always hold. For example, if sulphuric acid is added to
water, a dilute solution is obtained, while the addition of water to pure
sulphuric acid may result in disaster to the experimenter. Similar illus-
trations will show that in this type of chemical “‘arithmetic’’ the associa-
tive and distributive laws of addition may also fail. Thus one can
imagine types of arithmetic in which one or more of the laws 1)-5)
donot hold. Such systems have actually been studied in modern mathe-
matices.

A concrete model for the abstract concept of integer will indicate the
intuitive basis on which the laws 1)-5) rest. Instead of using the usual
number symbols 1, 2, 3, etc., let us denote the integer that gives the



CALCULATION WITH INTEGERS 3

number of objects in a given collection (say the collection of apples on a
particular tree) by a set of dots placed in a rectangular box, one dot for
each object. By operating with these boxes we may investigate the laws
of the arithmetic of integers. To add two integers a and b, we place the
corresponding boxes end to end and remove the partition.

m{-[-_-:_]:{c---ou-oo]

Fig. 1. Addition.

To multiply a and b, we arrange the dots in the two boxes in rows, and
form a new box with @ rows and b columns of dots. The rules 1)-5)

Fooajxlcashlz * s e

Fig. 2. Multiplication.

will now be seen to correspond to intuitively obvious properties of these
operations with boxes.

Ioo.]x(loo]-'-loooo.])e. o LI I

Fig. 3. The Distributive Law.

On the basis of the definition of addition of two integers we may define
the relation of inequality. Each of the equivalent statements, a < &
(read, “‘a is less than b’’) and b > a (read, ‘‘bis greater than a"), means
that box b may be obtained from box a by the addition of a properly
chosen third box ¢, so that b = @ 4+ ¢. When this is so we write

c=0b-—a,
which defines the operation of subtraction.

lnonnnncool—ro-oﬂzlnnu..J
Fig. 4. Subtraction.

Addition and subtraction are said to be inverse operations, since if
the addition of the integer d to the integer a is followed by the subtraction
of the integer d, the result is the original integer a:

(a+d)-d=a.
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It should be noted that the integer b — a has been defined only when
b > a. The interpretation of the symbol b — a as a negative infeger
when b < a will be discussed later (p. 54 et seq.).

It is often convenient to use one of the notations, b > a (read, ‘b is
greater than or equal to a’’) ora < b (read, ‘‘a is less than or equal to
b’’), to express the denial of the statement, @ > b. Thus, 2 > 2, anl
3 =22

We may slightly extend the domain of positive integers, represented
by boxes of dots, by introducing the integer zero, represented by a
completely empty box. If we denote the empty box by the usual symbol
0, then, according to our definition of addition and multiplication,

a+0=a,
a0 =0,
for every integer a. For a + 0 denotes the addition of an empty box
to the box a, while a-0 denotes a box with no columns;i.e. an empty
box. It is then natural to extend the definition of subtraction by setting
a—a=10
for every integer a. These are the characteristic arithmetical propertics
of zero.

Geometrical models like these boxes of dots, such as the ancient

abacus, were widely used for numerical calculations until late in the

middle ages, when they were slowly displaced by greatly superior
symbolic methods based on the decimal system.

2. The Representation of Integers

We must carefully distinguish between an integer and the symbol,
5,V, ..., etc., used to represent it. In the decimal system the ten
digit symbols, 0, 1, 2, 3, - - - , 9, are used for zero and the first nine posi-
tive integers. A larger integer, such as ‘‘three hundred and seventy-
two,”” can be expressed in the form

300 + 70 + 2 = 3.10° + 7.10 + 2,
and is denoted in the decimal system by the symbol 372. Here the
important point is that the meaning of the digit symbols 3, 7, 2 depends
on their position in the units, tens, or hundreds place. With this
“‘positional notation’’ we can represent any integer by using only the
ten digit symbols in various combinations. The general rule is to express
an integer in the form illustrated by

z=a.10'4+b-10"+¢. 10 + d,
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where the digits a, b, ¢, d are integers from zero to nine. The integer z
is then represented by the abbreviated symbol
abed.

We note in passing that the coefficients d, ¢, b, a are the remainders left
after successive divisions of z by 10. Thus

10)372 Remainder

1037 2
103 7
0 3

The particular expression given above for z can only represent integers
less than ten thousand, since larger integers will require five or more digit
symbols. If z is an integer between ten thousand and one hundred
thousand, we can express it in the form

z=a.10'4+b-10'4+c-10°+d-10+e¢

and represent it by the symbol abede. A similar statement holds for
integers between one hundred thousand and one million, ete. It is very
useful to have a way of indicating the result in perfect generality by a
single formula. We may do this if we denote the different coefficients,
e, d, ¢, --- , by the single letter a with different ‘‘subseripts,’”’ a, a;,
az, a3, - -+ ,and indicate the fact that the powers of ten may be as large
as necessary by denoting the highest power, not by 10° or 10" as in the
examples above, but by 10", where n is understood to stand for an arbi-
trary integer. Then the general method for representing an integer z
in the decimal system is to express z in the form

(1) 2=0y-10"+ Gy 10"+ .. +a;. 10 + a,
and to represent it by the symbol
Gnln1Gn-g *+* G180 .

As in the special case above, we see that the digits a;, a1, @, +-+ , @a
are simply the successive remainders when z is divided repeatedly by 10.

In the decimal system the number ten is singled out to serve as a base.
The layman may not realize that the selection of ten is not essential,
and that any integer greater than one would serve the same purpose.
For example, a septimal system (base 7) could be used. In such a sys-
tem, an integer would be expressed as

2 ba s "4 b - 7" s b T+ by,
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where the b’s are digits from zero to six, and denoted by the symbol
bnbn-l R blbﬁ .
Thus “‘one hundred and nine”” would be denoted in the septimal system
by the symbol 214, meaning
2.74+1.74+4
As an exercise the reader may prove that the general rule for passing
from the base ten to any other base B is to perform successive divisions
of the number z by B; the remainders will be the digits of the number in
the system with base B. For example:
7)109 Remainder

5 4
2 1
0 2

109 (decimal system) = 214 (septimal system).

It is natural to ask whether any particular choice of base would be most
desirable. We shall see that too small a base has disadvantages, while
a large base requires the learning of many digit symbols, and an extended
multiplication table. The choice of twelve as base has been advocated,
since twelve is exactly divisible by two, three, four, and six, and, as a
result, work involving division and fractions would often be simplified.
To write any integer in terms of the base twelve (duodecimal system),
we require two new digit symbols for ten and eleven. Let us write «
for ten and B for eleven, Then in the duodecimal system “‘twelve’
would be written 10, “twenty-two’’ would be 1, ‘‘twenty-three’’ would
be 18, and “‘one hundred thirty-one'’ would be af.

The invention of positiongl notation, attributed to the Sumerians or
Babylonians and developed by the Hindus, was of enormous significance
for civilization. Early systems of numeration were based on a purely
additive principle. In the Roman symbolism, for example, one wrote

CXVIII = one hundred + ten + five 4+ one + one -+ one.

The Egyptian, Hebrew, and Greek systems of numeration were on the
same level. One disadvantage of any purely additive notation is that
more and more new symbols are needed as numbers get larger. (Of
course, early scientists were not troubled by our modern astronomical
or atomic magnitudes.) But the chief fault of ancient systems, such as
the Roman, was that computation with numbers was so difficult that
only the specialist could handle any but the simplest problems. It is
quite different with the Hindu positional system now in use. This was
intreduced into medieval Europe by the merchants of Italy, who learned
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it from the Moslems. The positional system has the agreeable property
that all numbers, however large or small, can be represented by the use
of a small set of different digit symbols (in the decimal system, these are
the “Arabic numerals” 0, 1, 2, ... ,9). Along with this goes the more
important advantage of ease of computation. The rules of reckoning
with numbers represented in positional notation can be stated in the
form of addition and multiplication tables for thedigits that can be memo-
rized once and forall. The ancient art of computation, once confined toa
few adepts, is now taught in elementary school. There are not many
instances where scientific progress has so deeply affected and facilitated
everyday life.

3. Computation in Systems Other than the Decimal

The use of ten as a base goes back to the dawn of civilization, and is
undoubtedly due to the fact that we have ten fingers on which to count.
But the number words of many languages show remnants of the use of
other bases, notably twelve and twenty. In English and German the
words for 11 and 12 are not constructed on the decimal principle of com-
bining 10 with the digits, as are the ‘‘teens,’’ but are linguistically inde-
pendent of the words for 10. In French the words ‘‘vingt’’ and ‘‘quatre-
vingt’’ for 20 and 80 suggest that for some purposes a system with base
20 might have been used. In Danish the word for 70, ‘‘halvfirsinds-
tyve,”” means half-way (from three times) to four times twenty. The
Babylonian astronomers had a system of notation that was partly
sexagesimal (base 60), and this is believed to account for the customary
division of the hour and the angular degree into 60 minutes.

In a system other than the decimal the rules of arithmetic are the same,
but one must use different tables for the addition and multiplication of
digits. Accustomed to the decimal system and tied to it by the number
words of our language, we might at first find this a little confusing. Let
us try an example of multiplication in the septimal system. Before
proceeding, it is advisable to write down the tables we shall have to use:

Addition Multiplication

1 2 3 4 5 6 _ |1 2 3 4 5 &
1,2 3 4 5 6 10 111 2 3 4 5 6
2] 3 4 5 6 1011 212 4 6 11 13 15
3| 4 5 6 10 11 12 3(3 6 12 15 21 24
4| 5 6 10 11 12 13 414 11 15 22 26 33
5| 6 10 11 12 13 14 5156 13 21 26 34 42
6110 11 12 13 14 15 66 15 24 33 42 51



8 THE NATURAL NUMBERS (1)

Let us now multiply 265 by 24, where these number symbols are
written in the septimal system. (In the decimal system this would be
equivalent to multiplying 145 by 18.) The rules of multiplication are
the same as in the decimal system. We begin by multiplying 5 by 4,
which is 26, as the multiplication table shows.

265
24

1456
563

10416

We write down 6 in the units place, “‘carrying” the 2 to the next
place. Then we find 4.6 = 33, and 33 + 2 = 35. We write down 5,
and proceed in this way until everything has been multiplied out. Add-
ing 1,456 + 5,630, we get 6 + 0 = 6 in the units place, 5 + 3 = 1l in
the sevens place. Again we write down 1 and keep 1 for the forty-
nines place, where we have 1 + 6 + 4 = 14. The final result is
265-24 = 10,416.

To check this result we may multiply the same numbers in the decimal
system. 10,416 (septimal system) may be written in the decimal
system by finding the powers of 7 up to the fourth: 7* = 49, 7° = 343,
7' = 2,401. Hence 10,416 = 2,401 + 4.49 + 7 + 6, this evaluation
being in the decimal system. Adding these numbers we find that 10,416
in the septimal system is equal to 2,610 in the decimal system. Now
we multiply 145 by 18 in the decimal system; the result is 2,610, so
the calculations check.

Ezercises: 1) Set up the addition and multiplication tables in the duodecimal
system and work some examples of the same sort.

2) Express “thirty” and ‘‘one hundred and thirty-three” in the systems with
the bases 5, 7, 11, 12.

8) What do the symbols 11111 and 21212 mean in these systems?

4) Form the addition and multiplication tables for the bases 5, 11, 13.

From a theoretical point of view, the positional system with the
base 2 is singled out as the one with the smallest possible base. The
only digits in this dyadic system are 0 and 1; every other number z
is represented by a row of these symbols. The addition and multiplica-
tion tables consist merely of the rules 1 + 1 = 10and 1.1 = 1. But
the disadvantage of this system is obvious: long expressions are needed
to represent small numbers. Thus seventy-nine, which may be ex-
pressed as 1-2° + 0-2° + 0-2' + 1-2° + 1-2° 4+ 1-2 + 1, is written
in the dyadic system as 1,001,111,
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As an illustration of the simplicity of multiplication in the dyadie
system, we shall multiply seven and five, which are respectively 111
and 101. Remembering that 1 4+ 1 = 10 in this system, we have

111
101

111
111

100011 = 2"+ 2+ 1,

which is thirty-five, as it should be.

Gottfried Wilhelm Leibniz (1646-1716), one of the greatest intellects
of his time, was fond of the dyadic system. To quote Laplace: “Leib-
niz saw in his binary arithmetic the image of creation. He imagined
that Unity represented God, and zero the void; that the Supreme Being
drew all beings from the void, just as unity and zero express all numbers
in his system of numeration.”

Ezercise: Consider the question of representing integers with the base a.
In order to name the integers in this system we need words for the digits
0,1, -+, a — 1and for the various powers of a:a, a%, a%, --- . How many different
number words are needed to name all numbers from zero to one thousand, for
a=23 4,5, +--, 152 Which base requires the fewest? (Examples: If
a = 10, we need ten words for the digits, plus words for 10, 100, and 1000, making
a total of 13. For a = 20, we need twenty words for the digits, plus words for
20 and 400, making a total of 22. If a = 100, we need 100 plus 1.)

*§2. THE INFINITUDE OF THE NUMBER SYSTEM.
MATHEMATICAL INDUCTION

1. The Principle of Mathematical Induction

There is no end to the sequence of integers 1, 2, 3, 4, ... ; for after
any integer n has been reached we may write the next integer, n + 1.
We express this property of the sequence of integers by saying that
there are infinifely many integers. The sequence of integers represents
the simplest and most natural example of the mathematical infinite,
which plays a dominant réle in modern mathematics. Everywhere in
this book we shall have to deal with collections or ‘‘sets” containing
infinitely many mathematical objects, like the set of all points on a line
or the set of all triangles in a plane. The infinite sequence of integers
is the simplest example of an infinite set.

The step by step procedure of passing from n to n + 1 which generates
the infinite sequence of integers also forms the basis of onc of the most
fundamental patterns of mathematical reasoning, the principle of
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mathematical induction. “Empirical induction” in the natural sciences
proceeds from a particular series of observations of a certain phenomenon
to the statement of a general law governing all occurrences of this
phenomenon. The degree of certainty with which the law is thereby
established depends on the number of single observations and confirma-
tions. This sort of inductive reasoning is often entirely convincing;
the prediction that the sun will rise tomorrow in the east is as certain
as anything can be, but the character of this statement is not the same
as that of a theorem proved by strict logical or mathematical reasoning.
In quite a different way mathematical induction is used to establish
the truth of a mathematical theorem for an infinite sequence of cases,
the first, the second, the third, and so on without exception. Let us
denote by A a statement that involves an arbitrary integer n. For
example, A may be the statement, “The sum of the angles in a convex
polygon of n 4 2 sides is n times 180 degrees.” Or A’ may be the as-
sertion, “By drawing n lines in a plane we cannot divide the plane into
more than 2" parts.” To prove such a theorem for every integer n it
does not suffice to prove it separately for the first 10 or 100 or even 1000
values of n. This indeed would correspond to the attitude of empirical
induction. Instead, we must use a method of strictly mathematical
and non-empirical reasoning whose character will be indicated by the
following proofs for the special examples A and A’. In the case 4, we
know that for n = 1 the polygon is a triangle, and from elementary
geometry the sum of the angles is known to be 1-180°. For a quadri-
lateral, n = 2, we draw a diagonal which divides the quadrilateral into
two triangles. This shows immediately that the sum of the angles of
the quadrilateral is equal to the sum of the angles in the two triangles,
which yields 180° + 180° = 2-180°. Proceeding to the case of a pen-
tagon with 5 edges, n = 3, we decompose it into a triangle plus a quad-
rilateral. Since the latter has the angle sum 2-180° as we have just
proved, and since the triangle has the angle sum 180°, we obtain 3-180
degrees for the 5-gon. Now it is clear that we can proceed indefinitely
in the same way, proving the theorem for n = 4, then for n = 5, and
so on. Each statement follows in the same way from the preceding
one, so that the general theorem A can be established for all n.
Similarly we can prove the theorem A’. For n = 1 it is obviously
true, since a single line divides the plane into 2 parts. Now add a
second line. Each of the previous parts will be divided into two new
parts, unless the new line is parallel to the first. In either case, for
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n = 2 we have not more than 4 = 2’ parts. Now we add a third line.
Each of the previous domains will either be cut into two parts or be
left untouched. Thus the sum of parts is not greater than 2°.2 = 2°,
Knowing this to be true, we can prove the next case in the same way,
and so on indefinitely.

The essential idea in the preceding arguments is to establish a
general theorem A for all values of n by successively proving a sequence
of special cases, A;, A2, ... . The possibility of doing this depends
on two things: a) There is a general method for showing that ¢f any
statement A, is true then the next statement, A,4, will also be true.
b) The first statement A, is known to be true. That these two condi-
tions are sufficient to establish the truth of all the statements
Ay, Aa, A;, - - - is a logical principle which is as fundamental to mathe-
matics as are the classical rules of Aristotelian logic. We formulate it
as follows:

Let us suppose that we wish to establish a whole infinite sequence of
mathematical propositions

Ay, Ay, Ay, et

which together constitute the general proposition A. Suppose that a)
by some mathematical argument it is shown that if r is any integer and if
the assertion A, 1s known to be true then the truth of the assertion Aryy will
follow, and that b) the first proposition A, is known to be true. Then all
the propositions of the sequence must be true, and A 1s proved.

We shall not hesitate to accept this, just as we accept the simple
rules of ordinary logic, as a basic principle of mathematical reasoning.
For we can establish the truth of every statement A4,, starting from the
given assertion b) that A, is true, and proceeding by repeated use of
the assertion a) to establish successively the truth of 4s, 4;, 44, and
so on until we reach the statement A,. The principle of mathematical
induction thus rests on the fact that after any integer r there is a next,
r 4+ 1, and that any desired integer n may be reached by a finite number
of such steps, starting from the integer 1.

Often the principle of mathematical induction is applied without
explicit mention, or is simply indicated by a casual “ete.” or “and so
on.” This is especially frequent in elementary instruction. But the
explicit use of an inductive argument is indispensable in more subtle
proofs. We shall give a few illustrations of a simple but not quite
trivial cLaracter.
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2. The Arithmetical Progression
For every value of n, the sum 1 + 24+ 3 + ... + n of the first n integers
18 equal lo n(_n_;_-_l_z. In order to prove this theorem by mathematical

induction we must show that for every n the assertion A,:

aln+1)
2

is true. a) We observe that if r is an integer and if the statement A, is
known to be true, i.e. if it is known that

(1 142484 o $am

rir + 1)
2 ’

then by adding the number (r 4+ 1) to both sides of this equation we
obtain the equation

1+2+3+--- +f=

14243+ +rte+D)=TF D44y

_rr+D)+20r+1) _ ¢+ Dr+2),
2 2

which is precisely the statement A,;. b) The statement A, is ob-

152. Hence, by the principle of mathematical
induction, the statement A, is true for every =, as was to be proved.
Ordinarily this is shown by writingthesum 1 +2 4+ 3 + .- + n

in two forms:

viously true, since 1 =

Sa=14+24+ .+ m-1)+n
and
So=n+Mm-1)+...4+2+1.

On adding, we see that each pair of numbers in the same column yields
the sum 7 + 1, and, since there are n columns in all, it follows that

28, = n(n + 1),
which proves the desired result.
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From (1) we may immediately derive the formula for the sum of the
first (n + 1) terms of any arithmetical progression,

@ Pu=a+@+d+@+2)+e +(adng) = EFDE0ED,

For
Po=(n+Da+(1+2+-.. +n)d-(n+1)a+"("';1)d

~2n+1a+nn+1)d _ (n+1)(2a+ nd)
2 2 ‘

For the case @ = 0, d = 1, this is equivalent to (1).

3. The Geometrical Progression

One may treat the general geometrical progression in a similar way.
We shall prove that for every value of n

n+l

(3) Go=atagtar+ -+ =a; =1
(We suppose that ¢ # 1, since otherwise the right side of (3) has ne
meaning.)

Certainly this assertion is true for n = 1, for then it states that

al—¢) _al+q)(1—¢) _
T =0 a(1+9).

Gi=a+ag =
And if we assume that

!
G,=a+aq+...+aq'=ai_gr+ "

then we find as a consequence that

_— 1
G-+1=(a+GQ+---+aq')+aq'+’=('r’.-+aq'“=ai__f++aq'+‘
1—gq 1-¢ 1—¢q
But this is precisely the assertion (3) for the case n = r 4+ 1. This

completes the proof.
In elementary textbooks the usual proof proceeds as follows. Set

Go=a+ag+---+ag,
and multiply both sides of this equation by g, obtaining

9@ =ag+ag" + ..o +ag™",
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Now subtract corresponding sides of this equation from the preceding
equation, obtaining

G."'ﬂ." a_aqn+l’

(1-9)G. =a(1 — ¢™*),

+1
G.nal_q‘ .
1-g¢

4. The Sum of the First n Squares

A further interesting application of the principle of mathematical
induction refers to the sum of the first n squares. By direct trial one
finds that, at least for small values of n,

a(n + 1)(2n 4 1)
= 6 ’
and one might guess that this remarkable formula is valid for all integers
n. To prove this, we shall again use the principle of mathematical
induction. We begin by observing that if the assertion A,, which in
this case is the equation (4), is true for the case n = r, so that

rir+ D(2r + 1)
6 ’

then on adding (r + 1) to both sides of this equation we obtain
rir +1)(2r 4+ 1)
6

4) P+2 438+ ... 4+0

P+24+3F ... 4=

P+d+dt o tri b+ = + @+ 1

D@+ 1) +6(+1" _ (r+Dr@r+1) +6(r+1)]
6 6

TR+ +6) _ (r+ Dir+2)(2r +3)
6 6 '

which is precisely the assertion 4,4, in this case, since it is obtained by
substituting » + 1 for n in (4). To complete the proof we need only
remark that the assertion 4, , in this case the equation

po 10+ D@+
6 ’
is obviously true. Hence the equation (4) is true for every n.
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Formulas of a similar sort may be found for higher powers of the
integers, 1* + 2" 4+ 3" + ... + =", where k is any positive integer
As an exercise, the reader may prove by mathematical induction that

(5) 1'+2'+3'+---+n'=[w:r.

It should be remarked that although the principle of mathematical
induction suffices to prove the formula (5) once this formula has been
written down, the proof gives no indication of how this formula was
arrived at in the first place; why precisely the expression [2(n 4+ 1)/2]
should be guessed as an expression for the sum of the first n cubes,
rather than [n(n + 1)/3] or (197" — 41n + 24)/2 or any of the in-
finitely many expressions of a similar type that could have been con-
sidered. The fact that the proof of a theorem consists in the applica-
tion of certain simple rules of logic does not dispose of the creative
element in mathematics, which lies in the choice of the possibilities to
be examined. The question of the origin of the hypothesis (5)
belongs to a domain in which no very general rules can be given; experi-
ment, analogy, and constructive intuition play their part here. But
once the correct hypothesis is formulated, the principle of mathematical
induction is often sufficient to provide the proof. Inasmuch as such a
proof does not give a clue to the act of discovery, it might more fittingly
be called a verification.

*5. An Important Inequality
In a subsequent chapter we shall find use for the inequality
(6) 1+p2"21+ np,
which holds for every number p > —1 and positive integer n. (For
the sake of generality we are anticipating here the use of negative and
non-integral numbers by allowing p to be any number greater than —1.
The proof for the general case is exactly the same as in the case where
p is a positive integer.) Again we use mathematical induction.
a) If it is true that (1 + p)" > 1 + rp, then on multiplying both sides
of this inequality by the positive number 1 + p, we obtain
A+ >214+mp+p+
Dropping the positive term rp’ only strengthens this inequality, so that

A+p™M214 ¢+ p,
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Now subtract corresponding sides of this equation from the preceding
equation, obtaining
G. — =g — an'H ,
(1-¢)Ga = a(1 - ¢"*),
1 - qD‘H.
1—-¢ °

4. The Sum of the First n Squares

A further interesting application of the principle of mathematical
induction refers to the sum of the first n squares. By direct trial one
finds that, at least for small values of n,

- nln + 1)(2n + 1)
6

and one might guess that this remarkable formula is valid for all integers
n. To prove this, we shall again use the principle of mathematical
induction. We begin by observing that if the assertion A,, which in
this case is the equation (4), is true for the case n = r, so that

rir+1)(2r + 1)
6 ’

then on adding (r + 1)* to both sides of this equation we obtain

Go=a

(4) P+2+3+ ... +0°

’+24+3F... 47 =

P42 4+8+ P+ = CEDEHD gy
=T+ D@+ 1) +6(+1)" _ (r+Dir(2r+1) +6(r+1)]
6 6
DR +7r+6) _ (r+ 1+ 2)(@r + 3)
6 6 '

which is precisely the assertion A4,,, in this case, since it is obtained by
substituting r + 1 for n in (4). To complete the proof we need only
remark that the assertion 4, , in this case the equation

P 0+DE+1)
6 »
is obviously true. Hence the equation (4) is true for every n.
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Formulas of a similar sort may be found for higher powers of the
integers, 1* + 2" + 3" + ... + =", where k is any positive integer
As an exercise, the reader may prove by mathematical induction that

) '+ 2" +3' + .+n'=[n(n;n

It should be remarked that although the principle of mathematical
induction suffices to prove the formula (5) once this formula has been
written down, the proof gives no indication of how this formula was
arrived at in the first place; why precisely the expression [n(n + 1)/2]
should be guessed as an expression for the sum of the first n cubes,
rather than [n(n + 1)/3) or (197" — 41n + 24)/2 or any of the in-
finitely many expressions of a similar type that could have been con-
sidered. The fact that the proof of a theorem consists in the applica-~
tion of certain simple rules of logic does not dispose of the creative
element in mathematics, which lies in the choice of the possibilities to
be examined. The question of the origin of the hypothesis (5)
belongs to a domain in which no very general rules can be given; experi-
ment, analogy, and constructive intuition play their part here But
once the correct hypothesis is formulated, the principle of mathematical
induction is often sufficient to provide the proof. Inasmuch as such a
proof does not give a clue to the act of discovery, it might more fittingly
be called a verification.

*5. An Important Inequality
In a subsequent chapter we shall find use for the inequality
(6) 1+p)"21+ np,

which holds for every number p > —1 and positive integer n. (For
the sake of generality we are anticipating here the use of negative and
non-integral numbers by allowing p to be any number greater than —1.
The proof for the general case is exactly the same as in the case where
p is a positive integer.) Again we use mathematical induction,

a) Ifitis true that (1 + p)" > 1 + rp, then on multiplying both sides
of this inequality by the positive number 1 4+ p, we obtain

A+ 214+m+p+
Dropping the positive term rp’ only strengthens this inequality, so that
1+ 214 ¢+ p,
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which shows that the inequality (6) will also hold for the next integer,
r+ 1. b) Itisobviously true that (1 + p)' > 1 + p. This completes
the proof that (6) is true foreveryn. Therestriction to numbersp > —1
is essential. If p < —1, then 1 + p is negative and the argument in
a) breaks down, since if both members of an inequality are multiplied
by a negative quantity, the sense of the inequality is reversed. (For
example, if we multiply both sides of the inequality 3 > 2 by —1 we
obtain —3 > -2, which is false.)

*6. The Binomial Theorem
Frequently it is important to have an explicit expression for the
nth power of a binomial, (a 4+ b)". We find by explicit calculation that
forn =1, (a + b)' = a +b,
forn=2(a+b"'=(a+b)a+b) =al@a+bd) + bla+b)
= a' + 2ab + b,
forn =3, (a+b"'= (a+ b)(a+ b)’ = a(@® + 2ab + b*)

+ b(a* + 2ab + V") = a’ + 3a’b + 3ab’ + b,
and so on. What general law of formation lies behind the words “and
80 on”? Let us examine the process by which (a + b)* was computed.
Since (a + b)* = (a + b)(a + b), we obtained the expression for (a + b)
by multiplying each term in the expression @ + b by a, then by b, and
adding. The same procedure was used to calculate (a + b)' =
(@ + b)(a + b)’. We may continue in the same way to calculate
(a + b)', (@ + b)", and so on indefinitely. The expression for (a + b)"
will be obtained by multiplying each term of the previously obtained
expression for (@ + b)" by a, then by b, and adding. This leads to
the following diagram:

°+b" /\“/\_
(a+b) =

‘ /\"/\.’/\‘
(a + b)' = 3¢ + 3ab

‘ /\-/\/\/\
(a + b)' = a* 4a" + 6a'V + 4ab® + B

which gives at once the general rule for forming the coefficients in the ex-
pansion of (@ 4+ b)". We construct a triangular array of numbers,
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starting with the coefficients 1, 1 of @ + b, and such that each number of
the triangle is the sum of the two numbers on each side of it in the
preceding row. This array is known as Pascal’s Triangle,

1 1

The nth row of this array gives the coefficients in the expansion of (a + b)*
in descending powers of a and ascending powers of b; thus
(@ +b) = d' + 7a% + 214" + 35a'0* + 35a"* + 21a'p* + 7ab® + b'.
Using a concise subscript and superseript notation we may denote the
numbers in the nth row of Pascal’s Triangle by

c; =1,01,03,C3,---,Ch0,Ch = 1.
Then the general formula for’ (a + b)" may be written
(M (@+b"=a"+ Cla""b + Cia™ " + ... + Caab™" + b".

According to the law of formation of Pascal’s Triangle, we have

8 C? =05 4+ C.

As an exercise, the experienced reader may use this relation, together
with the fact that Cg = Ci = 1, to show by mathematical induction that

a nin—=1)n—-2)...(n—141) n!
W) G 5.8 = im-o
(For any positive integer n, the symbol n! (read, “n factorial”) de-
notes the product of the first n integers: n! = 1.2.3 ... n. Itis con-
venient also to define 0! = 1, so that 9) is valid for« = 0 and ¢ = n.)
This explicit formula for the coefficients in the binomial expansion is
sometimes called the binomial theorem. (See also p. 475.)

Ezercises: Prove by mathematical induction:

1 n

l)‘1'3'*23 It R a1
2 .3 n n+2

2) 2'+5+§+“'+2;-2— >
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1 - (n+1)g" + ng*"
(1 —qp '
) i q’u+l
) 1+ + @M1 +¢) - U+g" e
Find the sum of the following geometrical progressions:

*3) 142 +3¢ + -+ + gt =

1
)l+z'+(1+:.‘)' tare
e ™

1 +=* Gxat tarae

n =L ”'+(" "')+---+ ’—'—"—”')'.

6) 1+ ——

4 *+ ! + 3t
Using formulas (4) and (5) prove:

) 18 4 3 + ---+(2n+1)’-("+1)(2";'m2"+3)

) B4 3P+ oo+ 20+ 10 = (n + 1)%(2n* + 4n + 1).
10) Prove the same results directly by mathematical induction.

*7. Further Remarks on Mathematical Induction

The principle of mathematical induction may be generalized slightly to read:
“If a sequence of statements A, , 4,51, Aes3, - 8 given, where s is some positive
integer, and if

a) For every value of r > s, the truth of A,,; will follow from the truth of 4,,
and

b) A, is known to be true,
then all the statements A,, 4,1, A4y -+ are true; that is to say, A, is true
for all n > s.”' Precisely the same reasoning used to establish the truth of the
ordinary principle of mathematical induction applies here, with the sequence
1,2, 3, ++- replaced by the similar sequence s,s + 1,8+ 2,8+ 3 ---. By using
the prineciple in this form we can strengthen somewhat the inequality on page 15
by eliminating the possibility of the =" sign. We state: For every p # 0 and
> —1 and every infeger n > 2,

(10) A+p)">1+np.

The proof will be left to the reader.

Closely related to the principle of mathematical induction is the “principle
of the smallest integer” which states that every non-empty set C of positive inlegers
has a smallest member. A set is empty if it has no members, e.g., the set of
straight circles or the set of integers n such that n > n. For obvious reasons
we exclude such sets in the statement of the principle. The set C may be finite,
like theset 1, 2, 3, 4, 5, orinfinite, like the set of all even numbers 2, 4, 6, 8,
10, »++ . Any non-empty set C must contain at least one integer, say n, and
the smallest of the integers 1, 2, 3, +-+ , n that belongs to C will be the smallest
integer in C.

The only way to realize the significance of this principle is to observe that it
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does not apply to every set C of numbers that are not integers; for example,
the set of positive fractions 1, §, 1, 1, -+ - does not contain a smallest member.
From the point of view of logic it is interesting to observe that the princi-
ple of the smallest integer may be used to prove the principle of mathematical in-
duction as a theorem. To this end, let us consider any sequence of statements
Ay, Ay, Ay, ++- such that
a) For any positive integer r the truth of A...; will follow from that of A,.
b) 4, is known to be true.
We shall show the hypothesis that any one of the A’s is false to be untenable.
For if even one of the A’s were false, the set C of all positive integers n for which
A, is false would be non-empty. By the principle of the smallest integer, C
would contain a smallest integer, p, which must be > 1 because of b). Hence 4,
would be false, but A,_; true. This contradicts a)..

Once more we emphasize that the principle of mathematical induction
is quite distinct from empirical induction in the natural sciences.
The confirmation of a general law in any finite number of cases, no matter
how large, cannot provide a proof for the law in the rigorous mathemat-
ical sense of the word, even if no exception is known at the time. Such
a law would remain only a very reasonable hypothesis, subject to modi-
fication by the results of future experience. In mathematics, alaw ora
theorem is proved only if it can be shown to be a necessary logical
consequence of certain assumptions which are accepted as valid. There
are many examples of mathematical statements which have been veri-
fied in every particular case considered thus far, but which have not
yet been proved to hold in general (for an example see p. 30). One
may suspect that a theorem is true in all generality by observing its
truth in a number of examples; one may then attempt to prove it by
mathematical induction. If the attempt succeeds the theorem is
proved to be true; if the attempt fails, the theorem may be true or false
and may some day be proved or disproved by other methods.

In using the principle of mathematical induction one must always be sure that
the conditions a) and b) are really satisfied. Neglect of this precaution may
lead to absurdities like the following, in which the reader is invited to discover
the fallacy. Wesnall “prove’’ that any two positive integers are equal; for example,
that 5 = 10.

First a definition: If a and b are two unequal positive integers, we define
max (a, b) to be a or b, whichever is greater; if a = b we set max (a, b) = a = b,
Thus max (3, §) = max (5, 3) = 5, while max (4,4) = 4. Now let A, be the state-
ment, ‘‘If ¢ and b are any two positive integers such that max (g, b) = n, then
a=b"
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a) Suppose A, to be true. Let a and b be any two positive integers such that

max (a, b) = r + 1. Consider the two integers

a=g-—1

B=b-1;
then max (a, 8) = r. Hence a = 8, for we are assuming A, to be true. It follows
that a = b; hence 4,4, is true.

b) A, is obviously true, for if max (a, b) = 1, then since a and b are by hypothe-
gis positive integers they must both be equal to 1. Therefore, by mathematical
induction, A. is true for every n.

Now if a and b are any two positive integers whatsoever, denote max (a, b) by r.
Since A, has been shown to be true for every n, in particular A, is true. Hence
a=b



SUPPLEMENT TO CHAPTER I
THE THEORY OF NUMBERS

INTRODUCTION

The integers have gradually lost their association with superstition
and mysticism, but their interest for mathematicians has never waned.
Euclid (circa 300 B.C.), whose fame rests on the portion of his Elements
that forms the foundation of geometry studied in high school, seems to
have made original contributions to number theory, while his geometry
was largely a compilation of previous results. Diophantus of Alex-
andria (cirea 275 A.D.), an early algebraist, left his mark on the theory
of numbers. Pierre de Fermat (1601-1665), a jurist of Toulouse, and
one of the greatest mathematicians of his time, initiated the modern
work in this field. Euler (1707-1783), the most prolific of mathemati-
cians, included much number-theoretical work in his researches. Names
prominent in the annals of mathematics—Legendre, Dirichlet, Riemann
—can be added to the list. Gauss (1777-1855), the foremost mathe-
matieian of modern times, who devoted himself to many different
branches of mathematics, is said to have expressed his opinion of num-
ber theory in the remark, “Mathematics is the queen of the sciences
and the theory of numbers is the queen of mathematics.”

§1. THE PRIME NUMBERS

1. Fundamental Facts

Most statements in number theory, as in mathematics as a whole,
are concerned not with a single object—the number-5 or the number
32—but with a whole class of objects that have some common prop-
erty, such as the class of all even integers,

2,4,6,8, ...,
or the class of all integers divisible by 3,

3,6,912 ...,
or the class of all squares of integers,

1,4,9,16,---. ’
and 50 on.
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either py < qrorgi < pr. Suppose ;1 < u. (If ¢« < p we simply
interchange the letters p and ¢ in what follows.) We form the integer

@ m' =m — (D1gags - -+ Q).

By substituting for m the two expressions of equation (1) we may write
the integer m’ in either of the two forms

@) m=(@Ep--P)— (Pr@2---q) = P1(PaPs -+ Pr — Qs -+~ Q)
4 m=(p-q%)— D:p-q)=(@—p)ep - q)

Since py < ¢u, it follows from (4) that m’ is a positive integer, while from
(2) it follows that m’ is smaller than m. Hence the prime decomposi-
tion of m’ must be unique, aside from the order of the factors. But
from (3) it appears that the prime p, is a factor of m’, hence from (4)
. must appear as a factor of either (¢ — 1) or (qags --- ¢.). (This
follows from the assumed uniqueness of the prime decomposition of m';
see the reasoning in the next paragraph.) The latter is impossible,
since all the ¢’s are larger than p; . Hence p; must be a factorof ¢ — 71,
so that for some integer A,

a—m=p-h or q=pkh+1).

But this shows that p; is a factor of ¢1, contrary to the fact that ¢, is
a prime. This contradiction shows our initial assumption to be unten-
able and hence completes the proof of the fundamental theorem of
arithmetic.

An important corollary of the fundamental theorem is the following:
If a prime p 1s a factor of the product ab, then p must be a factor of either
a or b. For if p were a factor of neither a nor b, then the product
of the prime decompositions of @ and b would yield a prime decomposi-
tion of the integer ab not containing p. On the other hand, since p is
assumed to be a factor of ab, there exists an integer ¢ such that

ab = pt.

Hence the product of p by a prime decomposition of ¢ would yield a prime
decomposition of the integer ab containing p, contrary to the fact that
the prime decomposition of ab is unique.

Examples: If one has verified the fact that 13 is a factor of 2652, and
the fact that 2652 = 6.442, one may conclude that 13 is a factor of 442,
On the other hand, 6 is a factor of 240, and 240 = 15.16, but 6 is not a
factor of either 15 or 16. This shows that the assumption that p is
prime is an essential one.
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Ezercise: In order to find all the divisors of any number a we need only decom-
pose a into a product

a=p, o

DI

where the p’s are distinet primes, each raised to a certain power. Al the divisors

of a are the numbers
b= P P,

where the 8's are any integers satisfying the inequalities
0L <1, 0<B:< e, ,0<6 < axr.

Prove this statement. As a consequence, show that the number of different
divisors of a (including the divisors a and 1) is given by the product

(a1 + Diaz + 1) -+ (ar + 1).

For example,
144 = 24.39

has 5-3 divisors. They are 1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144.

2. The Distribution of the Primes

A list of all the primes up to any given integer N may be constructed
by writing down in order all the integers less than N, striking out all
those which are multiples of 2, then all those remaining which are
multiples of 3, and so on until all composite numbers have been elimi-
nated. This process, known as the “sieve of Eratosthenes,” will catch
in its meshes the primes up to N. Complete tables of primes up to
about 10,000,000 have gradually been computed by refinements of this
method, and they provide us with a tremendous mass of empirical data
concerning the distribution and properties of the primes. On the basis
of these tables we can make many highly plausible conjectures (as
though number theory were an experimental science) which are often
extremely difficult to prove.

a. Formulas Producing Primes

Attempts have been made to find simple arithmetical formulas that
yield only primes, even though they may not give all of them. Fermat
made the famous conjecture (but not the definite assertion) that all
numbers of the form

F(n) =28 +1
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are primes. Indeed, for n = 1, 2, 3, 4 we obtain
Fl)=2241=35,
F@=2"+1=2"4+1=17,
F@) =2"+4+1=2"41 =257,
F4) =2"+1=2"4+1 = 65537,

all primes. But in 1732 Euler discovered the factorization 2" + 1 =
641.6,700,417; hence F(5) is not a prime. Later, more of these ‘“Fermat
numbers” were found to be composite, deeper number-theoretical
methods being required in each case because of the insurmountable
difficulty of direct trial. To date it has not even been proved that
any of the numbers F(n) is a prime for n > 4.

Another remarkable and simple expression which produces many
primes is

f(n) = n*' — n + 41.

For n =1,23, ... ,40, f(n) is a prime; but for n = 41, we have
f(n) = 41°, which is no longer a prime.

The expression

n' — T9n + 1601

yields primes for all n up to 79, but fails when n = 80. On the whole,
it has been a futile task to seek expressions of a simple type which
produce only primes. Even less promising is the attempt to find an
algebraic formula which shall yield all the primes.

b. Primes in Arithmetical Progressions

While it was simple to prove that there are infinitely many primes in
the sequence of all integers, 1, 2, 3, 4, - - . , the step to sequences such as
1, 4,7,10, 13, ... or 3, 7, 11, 15, 19, ... or, more generally, to any
arithmetical progression,a,a +d,a+ 2d,...a+ nd, - - ., whereaand d
have no common factor, was much more difficult. All observations
pointed to the fact that in each such progression there are infinitely
many primes, just as in the simplest one, 1, 2, 3, ... . It required an
enormous effort to prove this general theorem. Lejeune Dirichlet
(1805-1859), one of the leading mathematicians of the nineteenth cen-
tury, obtained full success by applying the most advanced tools of
mathematical analysis them known. His original papers on the subject
rank even now among the outstanding achievements in mathematics,
and after a hundred years the proof has not yet been simplified enough
to be within the reach of students who are not well trained in the
technique of the caleulus and of function theory.
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Although we cannot attempt to prove Dirichlet’s general theorem,
it is easy to generalize Euclid’s proof of the infinitude of primes to cover
some special arithmetical progressions such as 4n 4+ 3 and 6n + 5. To
treat the first of these, we observe that any prime greater than 2 is
odd (since otherwise it would be divisible by 2) and hence is of the form
4n + 1 or 4n + 3, for some integer n. Furthermore, the product of
two numbers of the form 4n + 1 is again of that form, since

(4a+ 1)(4b+ 1) = 16ab + 4a + 4b+ 1 = 4(4ab+a + b) + 1.

Now suppose there were but a finite number of primes, p1, p1, -+ - Pa,
of the form 4n + 3, and consider the number

N=4ppr---ps) —1=4(p1---pa— 1) +3.

Either N is itself a prime, or it may be decomposed into a product of
primes, none of which can be py, « -+, pa, since these divide N with a
remainder —1. Furthermore, all the prime factors of N cannot be of
the form 4n + 1, for N is not of that form and, as we have seen, the
product of numbers of the form 4n + 1 is again of that form. Hence
at least one prime factor must be of the form 4n 4 3, which is impossible,
since we saw that none of the p’s, which we supposed to be all the primes
of the form 4n + 3, can be a factor of N. Therefore the assumption
that the number of primes of the form 4n + 3 is finite has led to a
contradiction, and hence the number of such primes must be infi-
nite.

Ezxercise: Prove the corresponding theorem for the progression 6n + 5.

¢. The Prime Number Theorem

In the search for a law governing the distribution of the primes, the
decisive step was taken when mathematicians gave up futile attempts
to find a simple mathematical formula yielding all the primes or giving
the exact number of primes contained among the first n integers, and
sought instead for information concerning the average distribution of
the primes among the integers.

For any integer n let us denote by A, the number of primes among
the integers 1, 2, 3, ... , n. If we underline the primes in the sequence
consisting of the first few integers: 1234567 8910111213 14 15
16 17 18 19 .. . we can compute the first few values of 4, :

A1=0,A3=1,A|=A¢-"=2,A5=A|=3,A1=A|=A| = Au= 4,
An=An=50,An=Au=Au=Au=06,An = Au="7, 4 = 8, ete.
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If we now take any sequence of values for n which increases without
limit, say

n = 10, 10%, 10°, 10, ...,
then the corresponding values of A,,
Ao, Arr, Aros, Aggty +o+,

will also increase without limit (although more slowly). For we know
that there are infinitely many primes, so the values of A, will sooner
or later exceed any finite number. The “density” of the primes among
the first n integers is given by the ratio 4,/n, and from a table of primes
the values of 4,/n may be computed empirically for fairly large values
of n.

n| A./n
10*| 0.168

10° [ 0.078498
10° [ 0.050847478

The last entry in this table may be regarded as giving the probability
that an integer picked at random from among the first 10° integers will
be a prime, since there are 10° possible choices, of which A;s are
primes.

The distribution of the individual primes among the integers is ex-
tremely irregular. But this irregularity ‘“in the small” disappears if
we fix our attention on the average distribution of the primes as given
by the ratio A,/n. The simple law that governs the behavior of
this ratio is one of the most remarkable discoveries in the whole of
mathematics. In order to state the prime number theorem we must
define the “natural logarithm” of an integer n. To do this we take two
perpendicular axes in a plane, and consider the locus of all points in
the plane the product of whose distances z and y from these axes is
equal toone. In terms of the cobrdinates z and y this locus, an equilat-
eral hyperbola, is defined by the equation zy = 1. We now define log
n to be the area in Figure 5 bounded by the hyperbola, the z-axis, and
the two vertical linesz = 1 and z = n. (A more detailed discussion of
the logarithm will be found in Chapter VIII.) From an empirical study
of prime number tables Gauss observed that the ratio A,/n is approxi-
mately equal to 1/log n, and that this approximation appears to improve
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as n increases. The goodness of the approximation is given by the

Fakis 1;11;/3 ", whose values for n = 1000, 1,000,000, 1,000,000,000 are
shown in the following table.
An/n
n An/n 1/log n mog_ﬂ
10* 0.168 0.145 1.159

10° 0.078498 0.072382 1.084
10° 0.050847478 0.048254942 1.053

ess ersscvsssn erssasesas sraw

"

1 n
Fig. 5. The area of the shaded region under the hyperbols defines log n.

On the basis of such empirical evidence Gauss made the conjecture that
the ratio A./n is “‘asymptotically equal” to 1/log n. By this is meant
that if we take a sequence of larger and larger values of n, say n equal o
10, 10%, 10°, 10%, ..
as before, then the ratio of A./n to 1/log n,
A./n
1/logn’
calculated for these successive values of n, will become more and more
nearly equal to 1, and that the difference of this ratio from 1 can be
made as small as we please by confining ourselves to sufficiently large
values of n. This assertion is symbolically expressed by the sign ~:
e, 1 means An/n
n logn 1/logn
That ~ cannot be replaced by the ordinary sign = of equality is clear
from the fact that while 4, is always an integer, n/log n is not.

tends to 1 as n increases.
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That the average behavior of the prime number distribution can be
described by the logarithmic function is a very remarkable discovery,
for it is surprising that two mathematical concepts which seem so un-
related should be in fact so intimately connected.

Although the statement of Gauss’s conjecture is simple to understand,
a rigorous mathematical proof was far beyond the powers of mathemati-
cal science in Gauss’s time. To prove this theorem, concerned only with
the most elementary concepts, it is necessary to employ the most
powerful methods of modern mathematics. It took almost a hundred
years before analysis was developed to the point where Hadamard
(1896) in Paris and de la Vallée Poussin (1896) in Louvain could give
a complete proof of the prime number theorem. Simplifications and
important modifications were given by v. Mangoldt and Landau.
Long before Hadamard, decisive pioneering work had been done by Rie-
mann (1826-1866) in a famous paper where the strategic lines for the
attack were drawn. Recently, the American mathematician Norbert
Wiener was able to modify the proof so as to avoid the use of complex
numbers at an important step of the reasoning. But the proof of the
prime number theorem is still no easy matter even for an advanced
student. We shall return to this subject on page 482 et seq.

d. Two Unsolved Problems Concerning Prime Numbers

While the problem of the average distribution of primes has been
satisfactorily solved, there are many other conjectures which are sup-
ported by all the empirical evidence but which have not yet been proved
to be true.

One of these is the famous Goldbach conjecture. Goldbach (1690-
1764) has no significance in the history of mathematics except for this
problem, which he proposed in 1742 in a letter to Euler. He observed
that for every case he tried, any even number (except 2, which is itself
a prime) could be represented as the sum of two primes. For example:

4=2+4+26=3+3,8=5+4+3,10=5+512=54+714=
7+7,16=13+3,18=11+47,20=13+7,--.,48 = 20 + 19,
«e-, 100 = 97 + 3, ete.

Goldbach asked if Euler could prove this to be true for all even num-
bers, or if he could find an example disproving it. Euler never provided
an answer, nor has one been given since. The empirical evidence in
favor of the statement that every even number can be so represented
is thoroughly convincing, as anyone can verify by tryving a number of
examples. The source of the difficulty is that primes are defined in
terms of multiplication, while the problem involves addition. Generally
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speaking, it is difficult to establish connections between the multi-
plicative and the additive properties of integers.

Until recently, a proof of Goldbach’s conjecture seemed completely
inaccessible. Today a solution no longer seems out of reach. An
important success, very unexpected and startling to all experts, was
achieved in 1931 by a then unknown young Russian mathematician,
Schnirelmann (1905-1938), who proved that every positive infeger can
be represented as the sum of not more than 300,000 primes. Though this
result seems ludicrous in comparison with the original goal of proving
Goldbach’s conjecture, nevertheless it was a first step in that direction.
The proof is a direct, constructive one, although it does not provide any
practical method for finding the prime decomposition of an arbitrary
integer. More recently, the Russian mathematician Vinogradoff,
using methods due to Hardy, Littlewood and their great Indian col-
laborator Ramanujan, has succeeded in reducing the number from
300,000 to 4. This is much nearer to a solution of Goldbach’s problem.
But there is a striking difference between Schnirelmann’s result and
Vinogradoff’s; more significant, perhaps, than the difference between
300,000 and 4. Vinogradoff’s theorem was proved only fér all “suffi-
ciently large” integers; more precisely, Vinogradoff proved that there
exists an integer N such that any integer n > N can be represented as
the sum of at most 4 primes. Vinogradoff’s proof does not permit us
to appraise N; in contrast to Schnirelmann’s theorem it is essentially
indirect and non-constructive. What Vinogradoff really proved is
that the assumption that infinitely many integers cannot be decomposed
into at most 4 prime summands leads to an absurdity. Here we have
a good example of the profound difference between the two types of
proof, direct and indirect. (See the general discussion on p. 86.)

The following even more striking problem than Goldbach’s has come
nowhere near a solution. It has been observed that primes frequently
occur in pairs of the form p and p + 2. Such are 3 and 5, 11 and 13,
29 and 31, etc. The statement that there are infinitely many such pairs
is believed to be correct, but as yet not the slightest definite step has
been taken towards a proof.

§2. CONGRUENCES

1. General Concepts

Whenever the question of the divisibility of integers by a fixed integer
d occurs, the concept and the notation of “congruence” (due to Gauss)
serves to clarify and simplify the reasoning,
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To introduce this concept let us examine the remainders left when
integers are divided by the number 5. We have

0=0.54+0 7=15+2 -1=-1.5+4
0-5+1 8§=1.5+4+3 -2=-1.56+3
5+2 9=15+4 -3=-1.6+2
0-5+3 10=2.540 -4 =-=1.5+1
0.5+ 4 11=25+1 -§6=-1.54+0
1-54+0
1.5+1

12=2.54+2 —6=-2.5+4
ete. ete.

We observe that the remainder left when any integer is divided by 5 is
one of the five integers 0, 1, 2, 3, 4. We say that two integers a and b
are “congruent modulo 5” if they leave the same remainder on division
by 5. Thus 2, 7, 12, 17, 22, ..., —3, —8, —13, —18, ... are all
congruent modulo 5, since they leave the remainder 2. In general, we
say that two integers a and b are congruent modulo d, where d is a fixed
integer, if a and b leave the same remainder on division by d, i.e., if
there is an integer n such that a — b = nd. Forexample, 27 and 15 are
congruent modulo 4, since

27 = 6.4 + 3, 15 = 3.4 + 3.
The concept of congruence is so useful that it is desirable to have a
brief notation for it. We write
a=b (mod d)

to express the fact that a and b are congruent modulo d. If there is
no doubt concerning the modulus, the “mod d” of the formula may be
omitted. (If a is not congruent to b modulo d, we shall write a 3¢ b
(mod d).)

Congruences occur frequently in daily life. For example, the hands
on a clock indicate the hour modulo 12, and the mileage indicator on a
car gives the total miles traveled modulo 100,000.

Before proceeding with the detailed discussion of congruences the
reader should observe that the following statements are all equivalent:

1. a is congruent to b modulo d.
2. a = b 4+ nd for some integer n.
3. d dividesa — b.
The usefulness of Gauss’s congruence notation lies in the fact that
congruence with respect to a fixed modulus has many of the formal

1
2
8 =
i -
5-
6 =
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properties of ordinary equality. The most important formal properties
of the relation a = b are the following:

1) Alwaysa = a.

2) Ifa = b, then b = a.

3) fa=>bandb =¢, thena =¢.
Moreover, if a = a’ and b = b/, then

4)a+b=a +V.

5)a—b=a -V.

6) ab = a'b’.
These properties remain true when the relation a = b is replaced by the
congruence relation a = b (mod d). Thus

1) Always @ = a (mod d).
2’) If a = b (mod d) then b = a (mod d).
3’) If a = b (mod d) and b = ¢ (mod d), then a = ¢ (mod d).
The trivial verification of these facts is left to the reader.
Moreover, if ¢ = a’ (mod d) and b = b’ (mod d), then
4Y a4+ b =a 4+ bV (mod d).
5) a—b=a — b (modd).
6") ab=a'bt’ (mod d).
Thus congruences with respect to the same modulus may be added, sub-

tracted, and multiplied. To prove these three statements we need only
observe that if

a=ad+rd, b=V +ad,
then
a+b=d+ b+ (r+ s8)d,
a—b=a —b + (r — s8)d,
ab=a'b'+ (a's + b'r + rsd)d,
from which the desired conclusions follow.

The concept of congruence has an illuminating geometrical inter-
pretation. Usually, if we wish to represent the integers geometrically,
we choose a segment of unit length and extend it by multiples of its
own length in both directions. In this way we can find a point on the
line corresponding to each integer, as in Figure 6. But when we are

dealing with the integers modulo d, any two congruent numbers are con-
sidered the same as far as their behavior on division by a is concerned,
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since they leave the same remainder. In order to show this geometri-
cally, we use a circle divided into d equal parts. Any integer when
divided by d leaves as remainder one of the d numbers 0, 1, ... ,d — 1,
which are placed at equal intervals on the circumference of the circle.
Every integer is congruent modulo d to one of these numbers, and hence
is represented geometrically by one of these points; two numbers are
congruent if they are represented by the same point. Figure7isdrawn
for the case d = 6. The face of a clock is another illustration from
daily life.

. - - - &

-3 -2 -1 0 1 2 3
Fig. 8. Geometrical representation of the integers.

Fig. 7. Geometrical representation of the integers modulo 6.

As an example of the use of the multiplicative property 6’) of con-
gruences we may determine the remainders left when successive powers
of 10 are divided by a given number. For example,

10 = —1 (mod 11),
since 10 = —1 4 11. Successively multiplying this congruence by
itself, we obtain

10 = (-1)(-1) =1 (mod 11),
10'= -1 -
10'=1 “ ,ete
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From this we can show that any integer
z2=0a+ -10 + a;-10" + ... + @,-10",

expressed in the decimal system, leaves the same remainder on division
by 11 as does the sum of its digits, taken with alternating signs,

t=a—a+a —a+ .
For we may write
z—1=a;11 4 a(10° = 1) + a;(10* + 1) + a(10* = 1) + ... .

Since all the numbers 11, 10° — 1, 10° + 1, - - - are congruent to 0 modulo
11, z — ¢ is also, and therefore z leaves the same remainder on division
by 11 asdoes{. It follows in particular that a number is divisible by 11
(i.e. leaves the remainder 0) if and only if the alternating sum of its digits
is divisible by 11. For example,since3 — 1+ 6—-2+8—-1+4+9 =
22, the number z = 3162819 is divisible by 11. To find a rule for
divisibility by 3 or 9 is even simpler, since 10 = 1 (mod 3 or 9), and
therefore 10" = 1 (mod 3 or 9) for any n. It follows that a number z
is divisible by 3 or 9 if and only if the sum of its digits

s=a+t+at+a+t- -+ a,

is likewise divisible by 3 or 9, respectively.
For congruences modulo 7 we have

10=3 100=2 100=—1, 10°= -3, 10°= -2, 10°=1.

The successive remainders then repeat. Thus z is divisible by 7 if and
only if the expression

r=a + 3a;+ 20; — as — 3a¢ — 2as + as + 3a7 + ---
is divisible by 7.
Ezercise: Find a similar rule for divisibility by 13.

In adding or multiplying congruences with respect to a fixed modulus,
say d = 5, we may keep the numbers involved from getting too large
by always replacing any number a by the number from the set

0, 1, 2, 3, 4
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to which it is congruent. Thus, in order to calculate sums and products
of integers modulo 5, we need only use the following addition and
multiplication tables.

a+b a-b
b=0 1 2 3 4 b=0 1 2 3 4
a=0 012 3 4 a=0 00000
1 1 23 40 1 01 2 3 4
2 23 401 2 02 41 3
3 34012 3 031 4 2
4 4 01 2 3 4 043 21

From the second of these tables it appears that a product ab is con-
gruent to 0 (mod 5) only if @ or bis = 0 (mod 5). This suggests the
general law

7) ab = 0 (mod d) only if either a == 0 or b = 0 (mod d),

which is an extension of the ordinary law for integers which states that
ab=0onlyifa=0o0rb=0. Thelaw?7) holds only when the modulus d
is a prime. For the congruence

ab =0 (mod d)

means that d divides ab, and we have seen that a prime d divides a
product ab only if it divides a or b; that is, only if

a=0 (modd) or b=0 (mod d).

If d is not a prime the law need not hold; for we can write d = r.s,
where r and s are less than d, so that

r#0 (modd), s#¥0 (modd),
but

rs=d=0 (mod d).

For example, 2 # 0 (mod 6) and 3 # 0 (mod 6), but 2.3 = 6 = 0
(mod 6).

Ezercise: Show that the following law of cancellation holds for con-
gruences with respect to a prime modulus:

If ab = acand a $ 0, then b = ¢.

Ezercises: 1) To what number between 0 and 6 inclusive is the product 11-18-
2322-13-19 congruent modulo 7?
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2) To what number between 0 and 12 inclusive is 3-7-11-17-19-23-29-113
congruent modulo 13?

3) To what number between 0 and 4 inclusive is thesum 1 4+ 2 4 28 4 «+. 4 210
congruent modulo 5?7

2. Fermat’s Theorem

In the seventeenth century, Fermat, the founder of modern number
theory, discovered a most important theorem: If p s any prime which
does not divide the integer a, then

=1 (mod p).
This means that the (p — 1)st power of a leaves the remainder 1 upon
division by p.

Some of our previous calculations confirm this theorem; for example,
we found that 10° = 1 (mod 7), 10’ = 1 (mod 3), and 10" = 1
(mod 11). Likewise we may show that 2" = 1 (mod 13) and 5 = 1
(mod 11). To check the latter congruences we need not actually cal-
culate such high powers, since we may take advantage of the multi-
plicative property of congruences:

2 =16=3 (mod 13), 5" =3 (mod 11),
2 =90m —4 “ 5 =0= -2 “
"= —-43=-12=21 ¢ |, §'=4 “

1
5'=34=12=1 “
To prove Fermat’s theorem, we consider the multiples of a
m = a, my = 2a, my=3a, ---,myy = (p — l)a.

No two of these integers can be congruent modulo p, for then » would
be a factor of m, — m, = (r — s)a for some pair of integers r, s with
1 <r<s < (p—1). Butthelaw 7) shows that this cannot occur;
for since s — r is less than p, p is not a factor of ¢ — r, while by assump-
tion p is not a factor of a. Likewise, none of these numbers can be
congruent to 0. Therefore the numbers m;, ms, «+. , my_y must be
respectively congruent to the numbers 1, 2, 3,...,p — 1, in some
arrangement. It follows that

mmy - Mmyy = 1.2.3... (p— 1)a" "' =1.2.3... (p — 1) (mod p),
or, if for brevity we write K for 1.2.3 ... (p — 1),
K@’ —=1)=0 (modp).
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But K is not divisible by p, since none of its factors is; hence by the
law 7), (@®* — 1) must be divisible by p, i.e.

@' =1=0 (modp).

This is Fermat’s theorem.

To check the theorem once more, let us take p = 23 and a = 5.
We then have, all modulo 23, 5° =2, 5'=4, 5 = 16 = -7, 5" =
40 = 3, 5" = 12, 5” = 24 = 1. With a = 4 instead of 5, we get,
again modulo 23,4’ = -7, 4’ = -28 = —5,4'= -20=3,4' = 9,
"= —45=1,4" =1

In the example above with a = 4, p =23, and in others, we ob-
serve that not only the (p — 1)st power of a, but also a smaller power
may be congruent to 1. It is always true that the smallest such power,
in this case 11, is a divisor of p — 1. (See the following Exercise 3.)

Ezercises: 1) Show by similar computation that 28 =1 (mod 17);3* = —1 (mod
17); 34 = —1 (mod 29); 24 = —1 (mod 29); 4" = 1 (mod 29); 5" = 1 (mod 29).
2) Check Fermat’s theorem for p = 5, 7, 11, 17, and 23 with different values
ofa.
3) Prove the general theorem: The smallest positive integer ¢ for which a* = 1
(mod p) must be a divisor of p — 1. (Hint: Divide p — 1 by ¢, obtaining
p—1=ke+r,

where 0 < r < ¢, and use the fact that a*! = g* = 1 (mod p).)

3. Quadratic Residues

Referring to the examples for Fermat's theorem, we find that not
only is a” " = 1 (mod p) always, but (if p is a prime different from 2,
therefore odd and of the form p = 2p’ + 1) that for some values of g,
@ = a" " = 1 (mod p). This fact suggests a chain of interesting
investigations. We may write the theorem in the following form:

' —1=a""-1=(@ =1)@ +1)=0 (mod p).

Sincé a product is divisible‘by p only if one of the factors is, it appears
immediately that either a® — 1 or @® + 1 must be divisible by p, so
that for any prime » > 2 and any number a not divisible by p, either

A" =] or "= ~1 (modp).
From the beginning of modern number theory mathematicians have
been interested in finding out for what numbers a we have the first

case and for what numbers the second. Suppose a is congruent modulo
p to the square of some number z,

a=2z  (modp).
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Then 6®""* = 2z*, which according to Fermat’s theorem is congruent
to 1 modulo p. A number a, not a multiple of p, which is congruent
modulo p to the square of some number is called a quadratic residue of p,
while a number b, not a multiple of p, which is not congruent to any
square is called a quadralic non-residue of p. We have just seen that
every quadratic residue @ of p satisfies the congruence a®™” = 1
(mod p). Without serious difficulty it can be proved that for every
non-residue b we have the congruence b*>"* = —1 (mod p). More-
over, we shall presently show that among the numbers 1,2, 3, -+- ,p—1
there are exactly (p — 1)/2 quadratic residues and (p — 1)/2 non-
residues.

Although much empirical data could be gathered by direct computa-
tion, it was not easy at first to discover general laws governing the
distribution of quadratic residues and non-residues. The first deep-
lying property of these residues was observed by Legendre (1752-1833),
and later called by Gauss the Law of Quadralic Reciprocity. This
law concerns the behavior of two different primes p and g, and states
that ¢ is a quadratic residue of p if and only if p is a quadratic residue of g,

provided that the product (1—);—1)(‘1——2'}- is even. In case this

product is odd, the situation is reversed, so that p is a residue of ¢ if
and only if ¢ is a non-residue of p. One of the achievements of the
young Gauss was to give the first rigorous proof of this remarkable
theorem, which had long been a challenge to mathematicians. Gauss’s
first proof was by no means simple, and the reciprocity law is not too
easy to establish even today, although a great many different proofs
have been published. Its true significance has come to light only re-
cently in connection with modern developments in algebraic number
theory.

As an example illustrating the distribution of quadratic residues, let
us choose p = 7. Then, since

0'=0, I'=1, =4, =2 =2 Fm4, =1,

all modulo 7, and since the remaining squares repeat this sequence, the
quadratic residues of 7 are the numbers congruent to 1, 2, or 4, while
the non-residues are congruent to 3, 5, or 6. In the general case, the
quadratic residues of p consist of the numbers congruent to 1°,
2, -+, (p — 1)°. But these are congruent in pairs, for

= (p — a:)‘ (mod p) (e.g., 2=y (mod 7)),
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since (p — z)' = p’' — 2pz + z* = 2’ (mod p). Hence half the num-
bers 1,2, ..., p — 1 are quadratic residues of p and half are quadratic
non-residues.

To illustrate the quadratic reciprocity law, let us choose p = 5,
g = 11. Since 11 = 1* (mod 5), 11 is a quadratic residue (mod 5);
since the product [(5 — 1)/2][(11 — 1)/2] is even, the reciprocity law
tells us that 5 is a quadratic residue (mod 11). In confirmation of this,
we observe that 5 = 4° (mod 11). On the other hand, if p = 7, ¢ = 11,
the product [(7 — 1)/2][(11 — 1)/2] is odd, and indeed 11 is a residue
(mod 7) (since 11 = 2* (mod 7)), while 7 is a non-residue (mod 11).

Ezxercises: 1. 6 = 36 = 13 (mod 23). Is 23 a quadratic residue (mod 13)?

2. We have seen that 2* s (p — z)? (mod p). Show that these are the only
congruences among the numbers 12, 2%, 32, ..., (p — 1)

§3. PYTHAGOREAN NUMBERS AND FERMAT'S
LAST THEOREM

An interesting question in number theory is connected with the
Pythagorean theorem. The Greeks knew that a triangle with sides
3, 4, 5 is a right triangle. This suggests the general question: What
other right triangles have sides whose lengths are integral multiples of
a unit length? The Pythagorean theorem is expressed algebraically by
the equation
(1) ad+b =7,
where a and b are the lengths of the legs of a right triangle and ¢ is the
length of the hypotenuse. The problem of finding all right triangles
with sides of integral length is thus equivalent to the problem of finding
all integer solutions (a, b, ¢) of equation (1). Any such triple of numbers
is called a Pythagorean number triple.

The problem of finding all Pythagorean number triples can be solved
very simply. If @, b and ¢ form a Pythagorean number triple, so that
a' + b® = ¢, then we put, for abbreviation, a/c¢ = z,b/c = y. zandy
are rational numbers for which z' + * = 1. We then have 3 =
(1 —-2)1+2z),ory/(1 +2) = (1 —z)/y. The common value of the
two sides of this equation is & number ¢ which is expressible as the
quotient of two integers, u/v. We can now write y = {(1 + z) and
(1—-1z)=tyor

z—y= —i z+ ty =1

From these simultaneous equations we find immediately that
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Substituting for z, y and ¢, we have

=v’—u’ b 2uy
t4 0 ¢

S8
1~

Therefore
a= (" — u)r,
(2) b = (2uv)r,
¢ = U+ o),
for some rational factor of proportionality . This shows that if (a, b, ¢)
is a Pythagorean number triple, then a, b, ¢ are proportional to v* — °,
2uv, 4’ + o*, respectively. Conversely, it is easy to see that any triple
(a, b, c) defined by (2) is a Pythagorean triple, for from (2) we obtain
a' = (u' — 2u™' + oY),
b = (4uhh)r,
¢ = (u' + 2uM' + o',
so that ' + ' = ¢’

This result may be simplified somewhat. From any Pythagorean
number triple (a, b, ¢) we may derive infinitely many other Pythagorean
triples (sa, sb, sc) for any positive integer s. Thus, from (3, 4, 5) we
obtain (6, 8, 10), (9, 12, 15), etc. Such triples are not essentially dis-
tinet, since they correspond to similar right triangles. We shall there-
fore define a primitive Pythagorean number triple to be one where a,
b, and ¢ have no common factor. It can then be shown that the formulas

a=10—u
b = 2uy,
c=u 4+,
for any positive indegers u and v with v > u, where u and v have no com-

mon factor and are not both odd, yield all primitive Pythagorean number
triples.

*Ezercise: Prove the last statement.

As examples of primitive Pythagorean number triples we have u = 2,
v=1:(3,4,5),u=30v=2:(51213),u = 4,v = 3: (7, 24, 25), - - - ,
u = 10, v = T: (51, 140, 149), ete.
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This result concerning Pythagorean numbers naturally raises the
question as to whether integers a, b, ¢ can be found for which a® + b* =
¢' or a* 4 b* = ¢!, or, in general, whether, for a given positive integral
exponent n > 2, the equation

(3) a"+b" ="

can be solved with positive integers a, b, c. An answer was provided
by Fermat in a spectacular way. Fermat had studied the work of
Diophantus, the ancient contributor to number theory, and was accus-
tomed to making comments in the margin of his copy. Although he
stated many theorems there without bothering to give proofs, all of
them have subsequently been proved, with but one significant exception.
While commenting on Pythagorean numbers, Fermat stated that
the equation (3) is not solvable in integers for any n > 2, but that the
elegant proof which he had found was unfortunately too long for the
margin in which he was writing.

Fermat’s general statement has never been proved true or false,
despite the efforts of some of the greatest mathematicians since his
time. The theorem has indeed been proved for many values of n, in
particular, for all n < 619, but not for all n, although no counter-
example has ever been produced. Although the theorem itself is not
so important mathematically, attempts to prove it have given rise to
many important investigations in number theory. The problem has
also aroused much interest in non-mathematical circles, due in part to a
prize of 100,000 marks offered to the person who should first give a
solution and held in trust at the Royal Academy at Gottingen. Until
the post-war German inflation wiped out the monetary value of this
prize, a great number of incorrect “solutions” was presented each year
to the trustees. Even serious mathematicians sometimes deceived
themselves into handing in or publishing proofs which collapsed after
some superficial mistake was discovered. General interest in the ques-
tion seems to have abated since the devaluation of the mark, though from
time to time there is an announcement in the press that the problem has
been solved by some hitherto unknown genius.

§4. THE EUCLIDEAN ALGORITHM

1. General Theory

The reader is familiar with the ordinary process of long division of one
integer a by another integer b and knows that the process can be carried
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out until the remainder is smaller than the divisor. Thus if a = 648
and b = 7 we have a quotient ¢ = 92 and a remainder r = 4.

_92
7]648 648 = 7.92 + 4.
63
18
14
4

We may state this as a general theorem: If a is any infeger and b 18
any integer greater than 0, then we can always find an integer q such that

(1) a=b.q+r,
where t is an integer satisfying the inequality 0 < r < b.
To prove this statement without making use of the process of long division we
need only observe that any integer a is either itself a multiple of b,
a = by,
or lies between two successive multiples of b,
bg <a<blg+1) =bg+b

In the first case the equation (1) holds with r = 0. In the second case we have,
from the first of the inequalities above,

a—bg=r>0,
while from the second inequality we have

a—bg=r<h
g0 that 0 < r < b as required by (1).

From this simple fact we shall deduce a variety of important conse-
quences. The first of these is a method for finding the greatest common
divisor of two integers.

Let a and b be any two integers, not both equal to 0, and consider the
set of all positive integers which divide both @ and b. This set is cer-
tainly finite, since if a, for example, is # 0, then no integer greater in
magnitude than a can be a divisor of g, to say nothing of b. Hence
there can be but a finite number of common divisors of a and b, and of
these let d be the greatest. The integer d is called the greatest common
divisor of a and b, and written d = (a, b). Thusfora = 8and b = 12
we find by direct trial that (8, 12) = 4, while fora = 5and b = 9 we
find that (5,9) = 1. When a and b are large, say a = 1804 and b = 328,
the attempt to find (a. b) bv trial and error would be quite wearisome.
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A short and certain method is provided by the Euclidean algorithm.
(An algorithm is a systematic method for computation.) It is based
on the fact that from any relation of the form

(2) a=bg+r

it follows that

3) (a,b) = (b, 7).

For any number u which divides both a and b,
a = su, b = tu,

also divides r, since r = @ — bg = su — gtu = (s — gt)u; and con-
versely, every number » which divides b and r,
b= s, r= 1t
also divides a, since a = bg + r = s'vg + t'v = (s'¢ + t)v. Hence
every common divisor of @ and b is at the same time a common divisor
of b and r, and conversely. Since, therefore, the set of all common
divisors of a and b is identical with the set of all common divisors of b
and r, the greatest common divisor of a and b must be equal to the
greatest common divisor of b and r, which establishes (3). The useful-
ness of this relation will be seen immediately.
Let us return to the question of finding the greatest common divisor
of 1804 and 328. By ordinary long division

5
328 | 1804
1640
164
we find that
1804 = 5.328 + 164,
Hence from (3) we conclude that
(1804, 328) = (328, 164).
Observe that the problem of finding (1804, 328) has been replaced by a
problem involving smaller numbers. We may continue the process.
Since
2
164|328
328
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we have 328 = 2.164 + 0, so that (328, 164) = (164,0) = 164. Hence
(1804, 328) = (328, 164) = (164, 0) = 164, which is the desired result.

This process for finding the greatest common divisor of two numbers
is given in a geometric form in Euclid’s Elements. For arbitrary integers
a and b, not both 0, it may be described arithmetically in the following
terms.

We may suppose that b = 0, since (a, 0) = a. Then by successive
division we can write

a=bql+n (0<T1<b)
@ b=riq+n 0D<r<n
rn=rigs+ s 0<rs<m)
rs = raqu + 14 0<r<ry)
so long as the remainders ry, 12, 73, --- are not 0. From an inspection

of the inequalities at the right, we see that the successive remainders
form a steadily decreasing sequence of positive numbers:

(5) bo>n>mn>n>rn>...>0.

Hence after at most b steps (often many fewer, since the difference
between two successive r's is usually greater than 1) the remainder 0 must

appear:
Tat = Tnoin + Ta
Ta-1 = Tagns1 + 0.
When this occurs we know that
(@,b) = ra;

in other words, (a, b) s the last positive rematnder in the sequence (5).
This follows from successive application of the equality (3) to the eq-
uations (4), since from successive lines of (4) we have

(a, ) = (b, ), (b, ) = (1, ma), (ryr) = (rz, 1),
(ra,r) = (r3,74), +++ , (Tac1, Ta) = (ra, 0) = 1y,

Exercise: Carry out the Euclidean algorithm for finding the greatest common
divisor of (a) 187, 77. (b) 105, 385. (c) 245, 193.

An extremely important property of (a, b) can be derived from equa-~
tions (4). Ifd = (a, b), then posilive or negative inlegers k and | can be
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Sfound such that
(6) d = ka + b.
To show this, let us consider the sequence (5) of successive remainders.
From the first equation in (4)
rn=ua-—qb,

so that r; can be written in the form ka + Lb (in this case k; = 1,
L = —q). From the next equation,

rs=0b— gy = b — qulkia + Ld)

= (—g@k)a + (1 — @h)b = ka + hd.

Clearly this process ean be repeated through the successive remainders
r3, 'y, - -+ until we arrive at a representation

= ka + b,
as was to be proved.
As an example, consider the Euclidean algorithm for finding (61, 24);
the greatest common divisor is 1 and the desired representation for 1
can be computed from the equations

61 = 2.24 4 13, 24 =1.13 + 11, 13 = 1.11 + 2,
11 = 5.2+ 1, 2=2.14+0.
We have from the first of these equations
13 = 61 — 2.24,
from the second,
11 =24 - 13 =24 — (61 — 2.24) = —61 + 3.24,
from the third,
2 =13 — 11 = (61 — 2.24) — (—61 + 3.24) = 2.61 — 5.24,
and from the fourth,
1=11-5.2=(—61+4+3.24) — 5(2.61 — 5.24) = —11.61 + 28.24.

2. Application to the Fundamental Theorem of Arithmetic

The fact that d = (a, b) can always be written in the form d =
ka + b may be used to give a proof of the fundamental theorem of
arithmetic that is independent of the proof given on page 23. First
we shall prove, as a lemma, the corollary of page 24, and then from this
lemma we shall deduce the fundamental theorem, thus reversing the
previous order of proof.
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Lemma: If a prime p divides a product ab, then p must divide a or b.

If a prime p does not divide the integer @, then (a, p) = 1, since the
only divisors of p are p and 1. Hence we can find integers k and I
such that

1 = ka + Ip.
Multiplying both sides of this equation by b we obtain
b = kab + Ipb.

Now if p divides ab we can write
ab = pr,
so that

b = kpr + Ipb = p(kr + Ib).

from which it is evident that p divides b. Thus we have shown that if
p divides ab but does not divide a then it must divide b, so that in any
event p must divide a or b if it divides ab.

The extension to products of more than two integers is immediate,
For example, if p divides abe, then by twice applying the lemma we can
show that p must divide at least one of the integers a, b, and ¢. For if
p divides neither a, b, nor ¢, then it cannot divide ab and hence cannot
divide (ab)c = abe.

Ezercise: The extension of this argument to products of any number n of
integers requires the explicit or implicit use of the principle of mathematical in-
duction. Supply the details of this argument,

From this result the fundamental theorem of arithmetic follows at
once. Let us suppose given any two decompositions of a positive in-
teger N into-primes:

N=p1p=...p'=qlq,...q‘,

Since p, divides the left side of this equation, it must also divide the
right, and hence, by the previous exercise, must divide one of the
factors gx. But gx is a prime, therefore p; must be equal to this g.
After these equal factors have been cancelled from the equation, it
follows that p, must divide one of the remaining factors ¢;, and hence
must be equal to it. Striking out p, and g; , we proceed similarly with
Ps, .-+ ,Pr. At the end of this process all the p's will be cancelled,
leaving only 1 on the left side. No ¢ can remain on the right side,
since all the ¢’s are larger than one. Hence the p’s and ¢'s will be
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Every rational number can be written in the form a/b, where a and b
are integers, and all these numbers can be put in an array, with a/b in
the ath column and bth row. For example, 3/4 is found in the third
column and fourth row of the table below. All the positive rational
numbers may now be arranged according to the following scheme: in
the array just defined we draw a continuous, broken line that goes
through all the numbers in the array. Starting at 1, we go horizontally
to the next place on the right, obtaining 2 as the second member of the
sequence, then diagonally down to the left until the first column is
reached at the position occupied by 1/2, then vertically down one place
to 1/3, diagonally up until the first row is reached again at 3, across to
4, diagonally down to 1/4, and so on, as shown in the figure. Travelling
along this broken line we arrive at a sequence 1, 2, 1/2, 1/3, 2/2, 3, 4,
3/2,2/3,1/4,1/5,2/4,3/3,4/2, 5, - - - containing the rational numbers
in the order in which they occur along the broken line. In this sequence
we now cancel all those numbers a/b for which a and b have a common
factor, so that each rational number r will appear exactly once and in
its simplest form. Thus we obtain a sequence

1 2 3 4 56 7 . .
EEREREERE '
EEEE R '
S S RO S S
S SR S B
EERE R R

Fig. 19. Denumeration of the rational sumbers.

1,2,1/2,1/8,3,4,3/2,2/3,1/4,1/5, 5, - . . which contains each positive
rational number once and only once. This shows that the set of all
positive rational numbers is denumerable. In view of the fact that the
rational numbers correspond in a biunique manner with the rational
points on a line, we have proved at the same time that the set of posi-
tive rational points on a line is denumerable.

Ezercises: 1) Show that the set of all positive and negative integers is de-
numerable. Show that the set of all positive and negative rational numbers is
denumerable.
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