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Preface to the Second Edition

It’s high time that there was a second edition of Winning Ways.

Largely as a result of the first edition, and of John Conway’s On Numbers and Games,
which we are glad to say is also reappearing, the subject of combinatorial games has burgeoned
into a vast area, bringing together artificial intelligence experts, combinatorists, and computer
scientists, as well as practitioners and theoreticians of particular games such as Go, Chess,
Amazons and Konane: games much more interesting to play than the simple examples that
we needed to introduce our theory.

Just as the subject of combinatorics was slow to be accepted by many “serious” mathemati-
cians, so, even more slowly, is that of combinatorial games. But now it has achieved consid-
erable maturity and is giving rise to an extensive literature, documented by Aviezri Fraenkel
and exemplified by the book Mathematical Go: Chilling Gets the Last Point by Berlekamp
and Wolfe. Games are fun to play and it’s more fun the better you are at playing them.

The subject has become too big for us to do it justice even in the four-volume work that we
now offer. So we’ve contented ourselves with a minimum of necessary changes to the original
text (we are proud that our first formulations have so well withstood the test of time), with
additions to the Extras at the ends of the chapters, and with the insertion of many references
to guide the more serious student to further reading. And we've corrected some of the one
hundred and sixty-three mistakes.

We are delighted that Alice and Klaus Peters have agreed to publish this second edition.
Their great experience, and their competent and cooperative staff, notably Sarah Gillis and
Kathryn Maier, have been invaluable assets during its production. And of course we are
indebted to the rapidly growing band of people interested in the subject. If we mention one
name we should mention a hundred; browse through the Index and the References at the end of
each chapter. As a start, try Games of No Chance, the book of the workshop that we organized
a few years ago, and look out for its successor, More Games of No Chance, documenting the
workshop that took place earlier this year.

Elwyn Berlekamp, University of California, Berkeley
John Conway, Princeton University

Richard Guy, The University of Calgary, Canada

November 3, 2000

XV



Preface

Does a book need a Preface? What more, after fifteen years of toil, do three talented authors
have to add. We can reassure the bookstore browser, “Yes, this is just the book you want!”
We can direct you, if you want to know quickly what’s in the book, to the last pages of this
preliminary material. This in turn directs you to Volume 1, Volume 2, Volume 3 and Volume 4.

We can supply the reviewer, faced with the task of ploughing through nearly a thousand
information-packed pages, with some pithy criticisms by indicating the horns of the polylemma
the book finds itself on. It is not an encyclopedia. It is encyclopedic, but there are still
too many games missing for it to claim to be complete. It is not a book on recreational
mathematics because there’s too much serious mathematics in it. On the other hand, for us, as
for our predecessors Rouse Ball, Dudeney, Martin Gardner, Kraitchik, Sam Loyd, Lucas, Tom
O’Beirne and Fred. Schuh, mathematics itself is a recreation. It is not an undergraduate text,
since the exercises are not set out in an orderly fashion, with the easy ones at the beginning.
They are there though, and with the hundred and sixty-three mistakes we've left in, provide
plenty of opportunity for reader participation. So don’t just stand back and admire it, work
of art though it is. It is not a graduate text, since it’s too expensive and contains far more
than any graduate student can be expected to learn. But it does carry you to the frontiers of
research in combinatorial game theory and the many unsolved problems will stimulate further
discoveries.

We thank Patrick Browne for our title. This exercised us for quite a time. One morning,
while walking to the university, John and Richard came up with “Whose game?” but realized
they couldn’t spell it (there are three tooze in English) so it became a one-line joke on line
one of the text. There isn’t room to explain all the jokes, not even the fifty-nine private ones
(each of our birthdays appears more than once in the book).

Omar started as a joke, but soon materialized as Kimberley King. Louise Guy also helped
with proof-reading, but her greater contribution was the hospitality which enabled the three
of us to work together on several occasions. Louise also did technical typing after many drafts
had been made by Karen McDermid and Betty Teare.

Our thanks for many contributions to content may be measured by the number of names
in the index. To do real justice would take too much space. Here’s an abridged list of helpers:
Richard Austin, Clive Bach, John Beasley, Aviezri Fraenkel, David Fremlin, Solomon Golomb,

xvi



& Preface xvii

Steve Grantham, Mike Guy, Dean Hickerson, Hendrik Lenstra, Richard Nowakowski, Anne
Scott, David Seal, John Selfridge, Cedric Smith and Steve Tschantz.

No small part of the reason for the assured success of the book is owed to the well-informed
and sympathetic guidance of Len Cegielka and the willingness of the staff of Academic Press
and of Page Bros. to adapt to the idiosyncrasies of the authors, who grasped every opportunity
to modify grammar, strain semantics, pervert punctuation, alter orthography, tamper with
traditional typography and commit outrageous puns and inside jokes.

Thanks also to the Isaak Walton Killam Foundation for Richard’s Resident Fellowship
at The University of Calgary during the compilation of a critical draft, and to the National
(Science & Engineering) Research Council of Canada for a grant which enabled Elwyn and
John to visit him more frequently than our widely scattered habitats would normally allow.

And thank you, Simon!

Unaversity of California, Berkeley, CA 94720 Elwyn Berlekamp
Unwversity of Cambridge, England, CB2 15B John H. Conway
University of Calgary, Canada, T2N 1N4 Richard Guy

November 1981



NWooq P o HES 7 e seapy s g shepiod e Sonpaes Brmgfioe g Ay Jroypa
A 3o e Asowe pess pue mdey fve yaid o 21qe 2 ppioys mofl “neaoy]

soureqy peoq Purgeimqe] iseq, oy saiseq
s2wed PYN-WIN

pagmopug| [ Bwnddes) Jlodgyp] sy | [Rdooyf St femer] geo [soquysequny

mw“.vﬂnmu ﬁn*a“oa“m,*w_“b_wuﬁm—“t m—“a—“:“olm _w_w“w“m“.v__nﬂﬂn—
¢ L4 (A ¢
S21PMNAIg 2seD syl 42410 UOINPPY 1EH2UDD
1D0311DO3VY¥d A OITH]IL

?Ag%j%é&g%%hgdeﬁé

*aa:ww O o gpsamog 3] Buweg
m\waﬂﬂ_ * saw  web suw = §W§
T TN, () sy oy Burpuag
.ﬂ gJOﬂ/ 0 cen  see wes ...bﬂzao §
5o s ama) 9w Jhoqe s Ay ) 9 W] 43y Aoy

“aamuos ey Fybnos oy o Juea mofi 3] e nox



Spade-Work!

Let spades be trumps! she said, and trumps they were.
Alexander Pope, The Rape of the Lock, c.iii, 1.46.

CECILY: When [ see a spade I call it a spade.
GWENDOLEN: I am glad to say I have never seen a spade.
Oscar Wilde, The Importance of Being Earnest, 11.

Our first few chapters do the spade-work for the rest by telling how to add games together
and how to work out their values.

Chapters 1 and 2 introduce these ideas and show that some simple examples have ordinary
numbers for values while others don’t.

In Chapter 3 you’ll see how the special values called nimbers, that arise in the game of
Nim, suffice for all impartial games, and lots of examples are tackled in Chapter 4.

Chapter 5 has some very small games, and some others which, because they are both big
(unlike nimbers) and hot (unlike numbers), really need the theory of Chapter 6.

Finally, Chapter 7 discusses the small games to within an atom or two, and Chapter 8
show how such values arise along with ordinary numbers in the game of Hackenbush.

Xix
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Whose Game?

‘Begin at the beginning,” the King said, gravely, ‘and go on till you come to the end, then stop.”
Lewis Carroll, Alice in Wonderland, ch. 12

It is hard if [ cannot start some game on these lone heaths.

William Hazlitt, On Going a Journey

Who's game for an easy pencil-and-paper (or chalk-and-blackboard) game?

Figure 1. A Blue-Red Hackenbush Picture.



2 Whose Game? 'Y

Blue-Red Hackenbush

Blue-Red Hackenbush is played with a picture such as that of Fig. 1. We shall call the two
players Left and Right. Left moves by deleting any bLue edge, together with any edges that
are no longer connected to the ground (which is the dotted line in the figure), and Right moves
by deleting a Red edge in a similar way. (Play it on a blackboard if you can, because it’s easier
to rub the edges out.) Quite soon, one of the players will find he can’t move because there are
no edges of his color in what remains of the picture, and whoever is first trapped in this way
is the loser. You must make sure that doesn’t happen to you!

Well, what can you do about it? Perhaps it would be a good idea to sit back and watch a
game first, to make sure you quite understand the rules of the game before playing with the
professionals, so let’s watch the effect of a few simple moves. Left might move first and rub
out the girl’s left foot. This would leave the rest of her left leg dangling rather lamely, but no
other edges would actually disappear because every edge of the girl is still connected to the
ground through her right leg. But Right at his next move could remove the girl completely, if
he so wished, by rubbing out her right foot. Or Left could instead have used his first move to
remove the girl’'s upper arm, when the rest of her arm and the apple would also disappear. So
now you really understand the rules, and want to start winning. We think Fig. 1 might be a
bit hard for you just yet, so let’s look at Fig. 2, in which the blue and red edges are separated
into parts that can’t interact. Plainly the girl belongs to Left, in some sense, and the boy
to Right, and the two players will alternately delete edges of their two people. Since the girl
has more edges, Left can survive longer than Right, and can therefore win no matter who
starts. In fact, since the girl has 14 edges to the boy’s 11, Left ends with at least 14 — 11 =3
spare moves, if he chops from the top downwards, and Right can hold him down to this in a
similar way.

Figure 2. Boy meets Girl.

Tweedledum and Tweedledee in Fig. 3 have the same number of edges each, so that Left is
19 — 19 = 0 moves ahead. What does this mean? If Left starts, and both players play sensibly
from the top downwards, the moves will alternate Left, Right, Left, Right, until each player
has made 19 moves, and it will be Left’s turn to move when no edge remains. So if Left starts,
Left will lose, and similarly if Right starts, Right will lose. So in this zero position, whoever
starts loses.
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Figure 3. Tweedledum and Tweedledee, about to have a Battle.

The Tweedledum and Tweedledee Argument

In Fig. 4, we have swapped a few edges about so that Tweedledum and Tweedledee both
have some edges of each color. But since we turn the new Dum into the new Dee exactly
by interchanging blue with red, neither player seems to have any advantage. Is Fig. 4 still a
zero position in the same sense that whoever starts loses? Yes, for the player second to move
can copy any of his opponent’s moves by simply chopping the corresponding edge from the
other twin. If he does this throughout the game, he is sure to win, because he can never be
without an available move. We shall often find games for which an argument like this gives a
good strategy for one of the two players—we shall call it the Tweedledum and Tweedledee
Argument (or Strategy) from now on.

Figure 4. After their first Battle: Ready for the Next?
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The main difficulty in playing Blue-Red Hackenbush is that your opponent might contrive
to steal some of your moves by cutting out of the picture a large number of edges of your
color. But there are several cases when even though the picture may look very complicated,
you can be sure that he will be unable to do this. Figure 5 shows a simple example. In this
little dog, each player’s edges are connected to the ground via other edges of his own color.
So if he chops these in a suitable order, each player can be sure of making one move for each
edge of his own color, and plainly he can’t hope for more. The value of Fig. 5 is therefore once
again determined by counting edges—it is 9 — 7 = 2 moves for Left. In pictures like this, the
correct chopping order is to take first those edges whose path to the ground via your own color
has most edges—this makes sure you don’t isolate any of your edges by chopping away any of
their supporters. Thus in Fig. 5 Left would be extremely foolish to put the blue edges of the
neck and head at risk by removing the dog’s front leg; for then Right could arrange that after
only 2 moves the 5 blue edges here would have vanished.

R

Figure 5. A Dog with Leftward Leanings.

How Can You Have Half a Move?

But these easy arguments won’t suffice for all Hackenbush positions. Perhaps the simplest
case of failure is the two-edge “picture” of Fig. 6(a). Here if Left starts, he takes the bottom
edge and wins instantly, but if Right starts, necessarily taking the top edge, Left can still
remove the bottom edge and win. So Left can win no matter who starts, and this certainly
sounds like a positive advantage for Left. Is it as much as a 1-move advantage? We can try
counterbalancing it by putting an extra red edge (which counts as a 1-move advantage for
Right) on the ground, getting Fig. 6(b). Who wins now?

L,—,i ------------ A1 1]

(© (d)
Figure 6. What do we mean by Half a Move?
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If Right starts, he should take the higher of his two red edges, since this is clearly in danger.
Then when Left removes his only blue edge, Right can still move and win. If Left starts, his
only possible move still leaves Right a free edge, and so Right still wins. So this time, it
is Right that wins, whoever starts, and Left’s positive advantage of Fig. 6(a) has now been
overwhelmed by adding the free move for Right. We can say that Left’s advantage in Fig. 6(a),
although positive, was strictly less than an advantage of one free move. Will it perhaps be
one-half of a move?

We test this in Fig. 6(c), made up of two copies of Fig. 6(a) with just one free move for
Right added, since if we are correct % — % for Left will exactly balance 1 for Right. Who wins
Fig. 6(c)? Left has essentially only one kind of move, leading to a picture like Fig. 6(b), which
we know Right wins. On the other hand, if Right starts sensibly by taking either of his two
threatened edges, Left will move to a picture like Fig. 6(d) and win after Right’s next move.
If Right has used up his free move at the outset, Left’s reply would take us to Fig. 6(a), which
we know he wins.

We've just shown that Right wins if Left starts and Left wins if Right starts, so that
Fig. 6(c) is a zero game. This seems to show that two copies of Fig. 6(a) behave just like one
free move for Left, in that together they exactly counterbalance a free move for Right. So it's
really quite sensible to regard Fig. 6(a) as being a half-move’s advantage for Left.

Putting Right’s red edge partly under Left’s control made Fig. 6(a) worse for him than
Fig. 6(d). So perhaps Fig. 7(a) should be worth less to Right than Fig. 7(b) in which Right’s
edge is threatened by only one of Left’s?

1% moves 1% moves 1% moves A zero game
for Left? for Left for Right

................. i Y I, W -

(a) (b) (c) (d)

Figure 7. Is Right’s Edge even more under Left’s Control?

We are asking whether Fig. 7(a) is worth exactly 1% moves to Left like Fig. 7(b). We can
test this by adding 1% free moves for Right to Fig. 7(a). Since Fig. 7(c¢) is the opposite of
Fig. 7(b), we produce the required allowance by adjoining it to Fig. 7(a), giving Fig. 7(d).

Who wins this complicated little pattern? Here each player has just one risky edge partly
in control of his opponent, and if a player starts by taking his risky edge, his opponent can
remove the other, leaving two unfettered moves each. If instead he takes the edge just below
his opponent’s risky edge, the opponent can do likewise, now leaving just one free move each.
The only other starting move for Left is stupid since it leaves only red edges touching the
ground and indeed Right can win with a move to spare.

What about Right’s remaining move? Since this is to remove the isolated red edge, it must
be stupid, for surely it would be better to take the middle red edge and so demolish a blue
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edge at the same time? And indeed Left’s reply of chopping the middle edge of the chain of
three proves perfectly adequate. So every first move loses, and once again the game is what
we called a zero game. This seems to show that contrary to our first guess, Figs. 7(a) and 7(b)
confer exactly the same advantage to Left, namely one and a half free moves.

... And Quarter Moves?

In Fig. 8(a), Right’s topmost edge is partly under Left’s control, but also partly under Right’s
as well, so it should perhaps be worth more to him than his middle one? Since we found that
the middle edge was worth half a move to Right, the pair of red edges collectively would then
be worth at least a whole move to him, counteracting Left’s single edge. So maybe Right has
the advantage here?

____________________________________ - '»]

(a) (b) (c) (d)
Figure 8. Are Right’s Edges worth more than Left’s?

This naive opinion is dispelled as soon as play starts, for Left’s only move wins the game
as soon as he makes it, showing that Fig. 8(a) gives a positive advantage to Left. But when we
adjoin half a move for Right as in Fig. 8(b), Right can win by playing first, by removing the
topmost edge, or playing second, by removing the highest red edge remaining. So Fig. 8(a),
though a positive advantage for Left, is worth even less to him than half a move. Is it perhaps,
being three edges high, worth just one-third of a move? No! We leave the reader to show
that two copies of Fig. 8(a) exactly balance half a move for Right, by showing that the second
player to move wins Fig. 8(c), so that Fig. 8(a) is in fact a quarter move’s advantage for Left.

And how much is Fig. 8(d) worth?

Figure 9. A Hackenbush Position worth 91.

Figure 9 shows a Hackenbush position of value 9%, since the tree has value 9, and the rest
value % What are the moves here? Right has a unique red edge, and so a unique move, to a
position of value 9 4+ 1 = 10, but Left can move either at the top of the tree, leaving 8%, or by
removing the % completely, which is a better move, since it leaves value 9. Since Left’s best
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move is to value 9, and Right’s to 10, we express this by writing
{9/10} = 9% (“9 slash 10 equals 9%”)

In a similar way, we have the more general equation

1
{njn+1}=n+3,

of which the simplest case is

{Oll} = %’
with which we began. We also have the simpler equation

{nl}=n+1

for each n =0, 1, 2, ..., for if Left has just n + 1 free moves, he can move so as to leave just
n free moves, while Right cannot move at all. The very simplest equation of this type is

{I}=0

which expresses the fact that if neither player has a legal move the game has zero value.

Figure 10. A Game of Ski-Jumps.
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Ski-Jumps for Beginners

Figure 10 shows a ski-slope with some skiers in the pay of Left and Right, about to participate
in our next game. In a single move, Left may move any skier a square or more Eastwards,
or Right any one of his, Westwards, provided there is no other active skier in the way. Such
a move may take the skier off the slope; in this case he takes no further part in the game.
No two skiers may occupy the same square of the slope. Alternatively a skier on the square
immediately above one containing a skier of the opposing team, may jump over him onto the
square immediately below, provided this is empty. A man jumped over is so humiliated that
he will never jump over anyone else—in fact he is demoted from being a jumper to an ordinary
skier, or slipper!

No other kind of move is permitted in this game, so that when all the skiers belonging to
one of the players have left the ski-slope, that player cannot move, and a player who cannot
move when it is his turn to do so, loses the game. Let’s examine some simple positions. Figure
11(a) shows a case when Left’s only jumper is already east of Right’s, so that no jump is
possible. Since Left’s man can move 5 times and Right’s only 3, the value is 5 — 3 = 2 spare
moves for left.

L l L

(a) (b) (c)
Figure 11. Some Ski-Jumps Positions.

We can similarly evaluate any other position in which no further jumps are possible. Thus
in Fig. 11(b) Left has one man on the row above Right’s, and another lower down, but still
no jump will be possible, for Left’s upper man has been demoted to a mere slipper (hence his
lower case name, !), while his lower man, being two rows below Right’s, is not threatened.
Left’s two men have collectively 2 + 5 moves to Right’s 8, so the value is

24+5-8=-1

moves to Left, that is, 1 move in favor of Right.

Now let’s look at Fig. 11(c), in which Left’s man may jump over Right’s, if he wishes. If
he does so, the value will be 4 — 2 = 2, which is better than the value 3 — 2 = 1 he reaches by
sliding one place East. If, on the other hand, Right has the move, it will be to a position of
value 4 — 1 = 3. So the position has value

{2[3} = 23

moves to Left. More generally, if Left has a single man on the board, with a spaces (and hence
a+ 1 moves) before him, and Right a single man with b spaces before him, and one of the two
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men is now in a position to jump over the other, the value will be

a—b+% or a—b—%
according as it is Left’s or Right’s man who has the jump. We can think of an imminent jump
as being worth half a move to the player who can make it

Figure 12 shows all the positions on a 3 x 5 board in which there are just two men, of which
Left’s might possibly jump Right’s either at his first move or later

/ \
L L L
R R R
(-2|0} = -1 {olt}=3 {1]33=2
/ N/ 0\
L L L L
R R R R
{-35]-h1=-2  {-tfi}=0 {4l24} =1 {2344} =3
/ \ / \  /
L L L L L
R R R R R
I
/ \ / \

2 H
2 0/ \1 2/ \ +/ \5

Figure 12. Ski-Jumps Positions on a 3 x 5 Board
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Don’t Just Take the Average!

The positions in the bottom two lines are those we have just analyzed, in which the jump is
imminent or past. From any of the other positions, Left has just one move, to the position
diagonally down and left from the given one, and Right similarly has a unique move, to the
position diagonally rightwards. We have appended the values of all these positions, measured
as usual in terms of free moves for Left, and there are some surprises. We have evaluated the
rightmost position on the fourth row as

{2341} = 3.

Surely this is wrong? Anyone can see that the average of 21 and 41 is 3%, can’t they?

Well yes, of course 3% is the average, but it turns out that the value is 3, nevertheless. You
don’t simply evaluate positions in games by averaging Left’s and Right’s best moves! Exactly
how you do evaluate them is the main topic of this book, so we can’t reveal it all at once. But
we will explain why the second position on the fourth row has value 0, rather than —%, as
might have been expected.

If the value were —% or any other negative number, Right ought to win, no matter who
starts. But in this position, if Right starts, Left can jump him immediately, after which they
will have just three moves, and Right will exhaust his before Left. In fact neither player can
win this position if he starts, for if Left moves first, Right can slip leftwards past him to avoid
the threatened jump, leaving Left with but two moves to Right’s three. A position in which
the first player to move loses always has value zero.

We could have seen the same thing from the symbolic expression {—1%|3} for the position,
for since Left’s best option has negative value he cannot move to it and win (if Right plays

well), and since Right’s best move is positive, he cannot move to win either. It does not matter

O

L# L L
3
-1 lz. 2
EEREE NEEE
[ K
-2 0 { 3
| i TEssss s s= s T T T Ess T R it T i A
i » L[ 1] L ™ H
H kl— —IZIE— i& F '
3L - i % 5ol

Figure 13. The value of a Potential Jump is 1, % or 0.
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